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Integrability for nonlinear time-delay systems
Arvo Kaldmäe, Claudia CalifanoMember, IEEEand Claude H. Moog,Fellow, IEEE

Abstract—In this paper the notion of integrability is defined
for 1-forms defined in the time–delay context. While in the
delay-free case, a set of 1-forms defines a vector space, it is
shown that 1-forms computed for time-delay systems have to be
viewed as elements of a module over a certain non-commutative
polynomial ring. Two notions of integrability are defined, strong
and weak integrability, which coincide in the delay-free case.
Necessary and sufficient conditions are given to check if a set of
1-forms is strongly or weakly integrable. To show the importance
of the topic, integrability of 1-forms is used to characterize
the accessibility property for nonlinear time-delay systems. The
possibility of transforming a system into a certain normal form
is also considered.

Index Terms—Time-delay systems, algebraic methods, accessi-
bility

I. INTRODUCTION

Time-delay systems are used in many important areas, like
telecommunications, remote control and biological systems
(see [1] and the references therein). The great success of
algebraic [7] and differential geometric [6], [8] methods for
delay-free systems has motivated many authors to generalize
the approaches to the time-delay case [2], [4], [9], [10], [11],
[12], [13], [16]. Of major importance in these approaches is
the notion of integrability of codistributions (or distributions).
In the delay-free case, the integrability is fully characterized
by the so-called Frobenius Theorem. The class of time-delay
systems is a special class of infinite dimensional systems
though, it was shown in [4] that Frobenius Theorem is still
valid to derive specific results. In [5] and [2], integrability
was tackled in the case of one-dimensional submodules and a
necessary and sufficient condition was derived. A sufficient
condition for the general case was also given in [2]. A
different approach was used in [4], where the integrability was
characterized using the extended Lie brackets.

At this point, there is no general theory about integrability
of 1-forms/codistributions in the case of time-delay systems.
The main goal in this paper is to clarify those notions of
integrability of 1-forms and which are not fully captured by the
integrability of vector fields. In [2], the existence of an exact
basis is defined for a module, while in [5] as the existence of
an exact basis is defined for the closure of a module.
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In this paper, we use the notion of closure of a submodule
[3] to define two notions of integrability - strong integrability
and weak integrability - and give necessary and sufficient
conditions to check both these properties for a set of 1-
forms. The relationship between the obtained results and the
dual results of [4] is also discussed. Then, two problems are
considered, where the integrability of 1-forms plays a key role.
Accessibility of nonlinear time-delay systems is characterized
through the integrability of a certain submodule and conditions
are found under which a given system can be transformed into
a certain normal form. Preliminary results and examples can
be found in [17].

The paper is organized in the following manner. In Section
II, basic mathematical notions are given, which will be used
in the paper. In Section III, the main results are presented. The
integrability of 1-forms is defined and the condition is given,
together with two algorithms, to check integrability. In section
IV, the connection between the results of section III and [4] is
argued. Applications of integrability of 1-forms are considered
in Section V. The paper ends with some conclusions.

II. PRELIMINARIES

Non-commutative algebra is used to define the integrability
of 1-forms and to find the necessary and sufficient conditions
to get integrability (which is done in Section III). More
precisely, the proposed method refers to modules over non-
commutative rings (see [5], [9]). In this section, the mathe-
matics and definitions beyond this method are introduced.

LetK denote the field of meromorphic functions that depend
on a finite number of variables from the set{x(t− i); i ∈ N},
dim(x(t)) = n. Also, denote byE the vector space spanned
by the differentials{dx(t − i); i ∈ N} over the fieldK. The
elements ofE are called 1-forms.

Consider the time shift acting over functionsδ : K → K
defined asδf(x(t − i); i ∈ N) := f(x(t − i − 1); i ∈ N). On
the 1-formω =

∑n
i=1

∑k
j=0 aidxi(t − j), one gets that the

time shift δω of ω is given by

δω =: ω− =
n∑

i=1

k∑

j=0

δ(ai)dxi(t − j − 1).

Accordingly, ω−p := δω−p+1. Furthermore,ω is said to be
exact if there existsϕ ∈ K such thatω = dϕ. The use of
exterior differentiation and of the wedge product allows to
state in a concise manner both Poincaré Lemma and Frobenius
Theorem [14]:

• the 1-form ω is locally exact if and only ifdω = 0;
• the codistributionspanK{ω1, . . . , ωq} is integrable if and

only if the q + 2-forms dωi ∧ ω1 ∧ . . . ∧ ωq are zero
for i = 1, . . . , q, where∧ denotes the wedge product of
differential forms [14].
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The following notation is also used:

dω = 0 mod spanK{ω̄1, . . . , ω̄q}

means thatdω ∧ ω̄1 ∧ · · · ∧ ω̄q = 0.
Next, the non-commutative ring of polynomialsK(ϑ] is

constructed. The elements of this ring are polynomials in the
form a0 +a1ϑ+ · · ·+asϑ

s for some finites ∈ N andai ∈ K,
i = 0, . . . , s. Addition is defined on this ring as usual, but
the rule for multiplication isϑψ = δ(ψ)ϑ for someψ ∈ K.
Similarly, ϑ(ω) = δω, and when no confusion arises,ϑ(ω)
will be denotedϑω. The set of matricesK(ϑ]k×s is also used
in this paper.

Definition 1: [15] A matrix A(ϑ) ∈ K(ϑ]k×k is unimodular
if it is invertible within the ring of polynomial matrices,i.e.
if there exists aB(ϑ) ∈ K(ϑ]k×k such thatA(ϑ)B(ϑ) =
B(ϑ)A(ϑ) = Ik.

Example 1:The matrix

A(ϑ) =
(

1 x2(t − 1)ϑ
ϑ 1 + x2(t− 2)ϑ2

)

is unimodular, since the matrix

A(ϑ)−1 =
(

1 + x2(t − 1)ϑ2 −x2(t − 1)ϑ
−ϑ 1

)

is such thatA(ϑ)A(ϑ)−1 = A(ϑ)−1A(ϑ) = I2. Note that
while any unimodular matrix has full rank, the converse is not
true. For example, there is no polynomial inverse for(1 + ϑ).

Let us now note that the set of 1-formsE has the structure
of a vector space over the fieldK. However, it has also the
structure of a module, denotedM, over the ringK(ϑ], i.e.

M = spanK(ϑ]{dx(t)}.

Example 2:The 1-formsdx1(t) and dx1(t − 1) are inde-
pendent over the fieldK, but dependent over the ringK(ϑ],
sinceϑdx1(t) − dx1(t− 1) = 0. This simple example shows
that the action of time-delay is taken into account inM, but
not in E . This motivates the definition of the moduleM.

A left-submodule ofM consists of all possible linear
combinations of given 1-forms (or row-vectors){ω1, . . . , ωk}
over the ringK(ϑ], i.e. linear combinations of row-vectors.
A left-submodule, generated by{ω1, . . . , ωk}, is denoted
by A = spanK(ϑ]{ω1, . . . , ωk}. A right-submodule ofM̂
[4] consists of all possible linear combinations of column-
vectors q1, . . . , ql, qi ∈ K(ϑ]n×1, and is denoted by∆ =
spanK(ϑ]{q1, . . . , ql}.

Definition 2: The left closure of a left-submoduleA of M,
denoted byclK(ϑ](A), is defined asclK(ϑ](A) = {ω ∈ M |
∃p(ϑ) ∈ K(ϑ], p(ϑ)ω ∈ A}.
By definition, the left closure of the left-submoduleA is the
largest left-submodule, containingA, with the same rank asA.

Definition 3: The right closure of a right-submodule∆ of
M̂, denoted byclK(ϑ](∆), is defined asclK(ϑ](∆) = {X ∈
M̂ | ∃q(ϑ) ∈ K(ϑ], Xq(ϑ) ∈ ∆}.
The right closure of the right-submodule∆ is the largest right-
submodule, containing∆, with the same rank as∆.

Consider a left-submoduleA of M and let the 1-forms
ω be the basis ofA. These 1-forms can be written asω =
P (ϑ)dx(t) for some matrixP (ϑ) ∈ K(ϑ]k×n.

Definition 4: The right-kernel (right-annihilator) of the left-
submoduleA is the right-submodule∆ containing all vectors
q(ϑ) ∈ M̂ such thatP (ϑ)q(ϑ) = 0.

From Definition 4, the right-kernel is necessarily closed.
Consider a right-submodule∆ = spanK(ϑ]{q1(ϑ), . . . , ql(ϑ)}.

Definition 5: The left-kernel (left-annihilator) of∆ is the
left-submoduleA containing all 1-formsω(ϑ) ∈ M such that
ω(ϑ)∆ = 0.

Again, from Definition 5, the left-kernel is necessarily
closed. Finally, it is straightforward to prove the following.

Lemma 1:The right-kernels of the left-submodulesA and
clK(ϑ](A) are equal. The left-kernels of the right-submodules
∆ andclK(ϑ](∆) are equal.

III. RESULTS ON INTEGRABILITY OF1-FORMS

In the present section a set of 1-forms{ω1, . . . , ωk} in-
dependent overK(ϑ] is considered (that is, there is no non
zero linear combination over the ringK(ϑ] which vanishes).
As it will be shown hereafter, the fact of considering 1-forms
as elements ofM naturally leads to two different notions of
integrability. If 1-forms are considered as elements of vector
spaceE , there is only one single notion of integrability.

In fact, as it happens in the delay-free case, if the set of 1-
forms{ω1 . . . , ωk} are considered overK, then they are said to
be integrable if there exists an invertible matrixA ∈ Kk×k and
functionsϕ = (ϕ1, . . . , ϕk)T , such thatω = Adϕ. The full
rank ofA guarantees the invertibility ofA, sinceK is a field.
Instead, if the 1-forms{ω1 . . . , ωk} are viewed as elements
of the moduleM, then the matrixA ∈ K(ϑ]k×k instead of
Kk×k. SinceA(ϑ) may be of full rank but not unimodular,
it is necessary to distinguish two cases. Accordingly, one has
the following two definitions of integrability.

Definition 6: A set ofk 1-forms{ω1, . . . , ωk}, independent
over K(ϑ], is said to be strongly integrable if there existk
independent functions{ϕ1, . . . , ϕk}, such that

spanK(ϑ]{ω1, . . . , ωk} = spanK(ϑ]{dϕ1, . . . , dϕk}.

A set of k 1-forms {ω1, . . . , ωk}, independent overK(ϑ],
is said to be weakly integrable if there existk independent
functions{ϕ1, . . . , ϕk}, such that

spanK(ϑ]{ω1, . . . , ωk} ⊆ spanK(ϑ]{dϕ1, . . . , dϕk}.

If the 1-forms ω = (ω1, · · · , ωk)T are strongly (re-
spectively weakly) integrable, then the left-submodule
spanK(ϑ]{ω1, . . . , ωk} is said to be strongly (respectively
weakly) integrable.

Clearly, strong integrability yields weak integrability. Also,
the 1-formsω are weakly integrable if and only if there exists
a matrixA(ϑ) ∈ K(ϑ]k×k with full rank and functionsϕ =
(ϕ1, . . . , ϕk)T such thatω = A(ϑ)dϕ. If in addition the matrix
A(ϑ) can be chosen to be unimodular, then the 1-formsω are
also strongly integrable.

Example 3:The 1-formω1 = dx(t) + x(t− 1)dx(t− 1) is
weakly integrable sinceω1 = (1 + x(t− 1)ϑ)dx(t). It is also
strongly integrable asω1 = d(x(t)+1/2x(t−1)2). Instead, the
1-form ω2 = dx1(t) + x2(t)dx1(t− 1) = (1 + x2(t)ϑ)dx1(t)
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is weakly integrable, but not strongly integrable, because the
polynomial1 + x2(t)ϑ is not invertible.

Remark 1:Note that integrability of a closed left-submodule
spanK(ϑ]{ω1, . . . , ωk} always implies strong integrability. As
a consequence, the two notions of strong and weak integrabil-
ity coincide in case of delay-free 1-forms.

Integrability of a set ofk 1-forms {ω1, . . . , ωk} is tested
thanks to the so-called

Derived Flag Algorithm (DFA) :
Starting from a givenI0 the algorithm computes

Ii = spanK{ω ∈ Ii−1 | dω = 0 mod Ii−1}. (1)

The sequence (1) converges as it defines a strictly decreasing
sequence of vector spacesIi and by the standard Frobenius
Theorem, the limitI∞ has an exact basis, which represents
the largest integrable codistribution contained inI0.

In order to defineI0 one has to note that when considering a
set ofk 1-forms{ω1, · · · , ωk}, some shifts ofωi are required
for integration. It follows that the inizialization

Ip
0 = spanK{ω1, . . . , ωk, . . . , ω

−p
1 , . . . , ω−p

k }, (2)

allows to compute the smallest number of time shifts required
for the given 1-forms for the maximal integration of the
submodule. More precisely, the sequenceIp

i defined by (1)
converges to an integrable vector space

Ip
∞ = spanK{dϕ

p
1, . . . , dϕ

p
γp
} (3)

for someγp ≥ 0. By definition,dϕp
i ∈ spanK(ϑ]{ω1, . . . , ωk}

for i = 1, . . . , γp and p ≥ 0. The exact 1-formsdϕp
i , i =

1, . . . , γp, are independent overK, but may not be independent
overK(ϑ]. A basis forspanK(ϑ]{dϕ

p
1, . . . , dϕ

p
γp
} is obtained

by computing a basis for

I0
∞ ∪

p⋃

i=1

[
Ii
∞ mod(Ii−1

∞ , δIi−1
∞ )

]

asIi
∞ + δIi

∞ ⊂ Ii+1
∞ .

Remark 2:A different initialization of derived flag algorithm
is

Ĩp
0 = spanK{spanK(ϑ]{ω1,· · ·,ωk} ∩

spanK{dx(t),· · · ,dx(t− p)}}. (4)

which allows to compute for eachp ≥ 0, the exact differentials
contained in the given submodule and which depend on
x(t), . . . , x(t−p) only. Both initialization allow the algorithm
to converge towards the same integrable submodule overK(ϑ],
but follow different steps, as shown in the next example.

Example 4:Let spanK(ϑ]{dx(t− 2)}. On one hand, initial-
ization (2) is completed forp = 0 as no time-shift ofdx(t−2)
is required for its integration. On the other hand, initialization
(4) yields a0 limit for p = 0 andp = 1 as the exact differential
involves larger delays thanx(t) andx(t− 1). The final result
is obtained forp = 2.

Assume that the maximum delay that appears in
{ω1, . . . , ωk} (either in the coefficients or differentials) iss.
The necessary and sufficient condition for strong integrability

of 1-forms{ω1, . . . , ωk} is given by the following theorem in
terms of the limitIp

∞.
Theorem 1:A set of 1-forms{ω1, . . . , ωk}, independent

overK(ϑ], is strongly integrable if and only if there exists an
index p ≤ s(k − 1) such that starting fromIp

0 defined by (2),
the derived flag algorithm (1) converges toIp

∞ given by (3)
with

ωi ∈ spanK(ϑ]{dϕ
p
1, . . . , dϕ

p
γp
} (5)

for i = 1, . . . , k.
Proof. Necessity. If a set of 1-forms {ω1, . . . , ωk},
independent over K(ϑ], is strongly integrable, then
there exist k functions ϕi, i = 1, . . . , k, such that
spanK(ϑ]{ω1, . . . , ωk} = spanK(ϑ]{dϕ1, . . . , dϕk}.
Thus ωi ∈ spanK(ϑ]{dϕ1, . . . , dϕk} and dϕi ∈
spanK{ω1, . . . , ωk, . . . , ω

−p
1 , . . . , ω−p

k } for i = 1, . . . , k
and somep ≥ 0. Clearly,dϕi ∈ Ip

∞ and the condition (5) is
satisfied.

It remains to show thatp ≤ s(k−1). Note that there exist in-
finitely many pairs(A(ϑ), ϕ), that satisfyω = A(ϑ)dϕ. Since
the degree of unimodular matricesA(ϑ) has a lower bound,
then one can find a pair(A(ϑ), ϕ), where the degree of matrix
A(ϑ) is minimal among all possible pairs. LetA(ϑ) be such
a unimodular matrix for some functionsϕ = (ϕ1, . . . , ϕk)T .
Note thatA(ϑ) andϕ are not unique.

We show that the degree ofA(ϑ) is less or equal tos. By
contradiction, assume that the degree ofA(ϑ) is larger than
s, for examples+ 1. Then for somei

ωi = ai
1(ϑ)dϕ1 + · · ·+ ai

k(ϑ)dϕk, (6)

whereai
j(ϑ) ∈ K(ϑ], j = 1, . . . , k, and at least one polyno-

mial ai
j(ϑ) has degrees + 1.

Let ai
j(ϑ) =

∑s+1
l=0 a

i
j,lϑ

l, j = 1, . . . , k. From (6) one gets

ωi =
k∑

j=1

s+1∑

`=0

ai
j,`dϕ

−i
j , (7)

where at least one coefficientai
j,s+1 ∈ K is non-zero. For

simplicity assume thatai
1,s+1 6= 0 and ai

γ,s+1 = 0 for γ =
2, . . . , k. We have assumed that the maximum delay inωi is
s, but the maximum delay indϕ−s−1

1 is at leasts+ 1.
Note thatdϕ1, . . . , dϕ−s−1

1 , . . . , dϕ−s−1
k are independent

overK. Therefore, to eliminatedϕ−s−1
1 from (7),

dϕ−s−1
1 =

k∑

j=1

bj(ϑ)dϕj + ω̄ (8)

for some coefficientsbj(ϑ) ∈ K(ϑ]. Let lj = degbj(ϑ) ≤ s
and the 1-formω̄ ∈ spanK{dx, dx−, . . . , dx−s}. Let l :=
min{lj}. For clarity, letl = l2 andb2(ϑ) = ϑl. We show that
ω̄ can be chosen such that it is integrable. By contradiction,
assume that̄ω can not be chosen integrable. Then, the coef-
ficients of ω̄ must depend on higher delays thans. Since ω̄
is not integrable, then the coefficients ofai

1,s+1ω̄ depend also
on higher delays thans. Now, substituteai

1,s+1dϕ
−s−1
1 to (7).

One gets thatωi depends onai
1,s+1ω̄ and thus also on higher

delays thans. This is a contradiction and thus̄ω can be chosen
integrable.
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Let ω̄ = adφ−l for some a, φ ∈ K. Then
spanK(ϑ]{dϕ1,· · ·, dϕk} = spanK(ϑ]{dϕ1, dφ, dϕ3,· · ·, dϕk}
and there exists an unimodular matrix̄A(ϑ) with smaller
degree thanA(ϑ), and functionsϕ̄ = (ϕ1, φ, ϕ3, . . . , ϕk)T

such thatω = Ā(ϑ)dϕ̄, which leads to a contradiction. Thus
the degree ofA(ϑ) must be less than or equal tos and the
degree ofA−1(ϑ) is less or equal tos(k−1), i.e.p ≤ s(k−1).
The general case requires a more technical proof.

Sufficiency.Let Ip
∞ = spanK{dϕ}, where p ≤ s(k −

1). By construction Ip
∞ ⊂ spanK(ϑ]{ω1, . . . , ωk} and

by (5) ωi ∈ spanK(ϑ]{dϕ} for i = 1, . . . , k. Thus,
spanK(ϑ]{ω1, . . . , ωk} = spanK(ϑ]{dϕ}.

Since Ip
∞ ⊆ Ip+1

∞ for any p ≥ 0, one can check the
condition (5) step-by-step, increasing the value ofp every step.
When for somep = p̄ the condition (5) is satisfied, then it is
satisfied for allp > p̄.

Given the set of 1-forms{ω1, . . . , ωk}, independent over
K(ϑ], the basis of vector spaceIs(k−1)

∞ defines the ba-
sis for the largest integrable left-submodule contained in
spanK(ϑ]{ω1, . . . , ωk}.

Lemma 2:A set of 1-forms{ω1, . . . , ωk} is weakly inte-
grable if and only if the left closure of the left-submodule,
generated by{ω1, . . . , ωk}, is (strongly) integrable.
Proof: Necessity.By definitions of weak integrability and
left closure, there exist functionsϕ = (ϕ1, . . . , ϕk)T such
that dϕ = A(ϑ)ω̄, where ω̄ is the basis of the closure
of the left-submodule, generated by{ω1, . . . , ωk}. Choose
{dϕ1, . . . , dϕk} such that fori = 1, . . . , k

dϕi 6= adφ+
k∑

j=1;j 6=i

bj(ϑ)dϕj (9)

for anyφ ∈ K andbj(ϑ) ∈ K(ϑ]. It remains to show that one
can chooseϕ such thatω̄i ∈ spanK(ϑ]{dϕ}.

By contradiction, assume that one can not chooseϕ such
that ω̄i ∈ spanK(ϑ]{dϕ}. Then ω̄k 6∈ spanK(ϑ]{dϕ} and also
ω̄−j

k 6∈ spanK(ϑ]{dϕ1, . . . , dϕk} for j ≥ 1 and anyϕ. Really,
if

ω̄−j
k =

∑

i

ci(ϑ)dϕi, (10)

then, since on the left-hand side of (10) everything is delayed
at leastj times, everything that is delayed less thanj times
on the right-hand side should cancel out. Therefore, one is
able to find functionsφi, ψi ∈ K, i = 1, . . . , k, such that
dϕi = dφi + dψi and

ci(ϑ)dφi ∈ spanK(ϑ]{dx−j}
∑

i

ci(ϑ)dψi = 0.

Now, because of (9),ψi = 0, φi = ϕi for i = 1, . . . , k and thus
δj ω̄k = δj

∑
i c̄i(ϑ)dϕ+j

i which yields ω̄k =
∑

i c̄i(ϑ)dϕ+j
i .

Clearly, 1-formsdϕ+j
i have to belong tospanK(ϑ]{ω̄}, be-

causedϕi ∈ spanK(ϑ]{ω̄}. Now, one has a contradiction and
thereforeω̄−j

k 6∈ spanK(ϑ]{dϕ} for j ≥ 1. Then, by construc-
tion spanK(ϑ]{dϕ1, . . . , dϕk} ⊂ spanK(ϑ]{ω1, . . . , ωk−1},
which is impossible. Thus, the assumption that one can not
chooseϕ such thatω̄i ∈ spanK(ϑ]{dϕ} must be wrong.

Sufficiency.Sufficiency is satisfied directly by the definitions
of strong and weak integrability.

Example 5:Consider the following 1-forms

ω1 =x3(t− 1)dx2(t)+x2(t)dx3(t − 1)+x2(t − 1)dx1(t − 1)
ω2 =x3(t− 2)dx2(t− 1) + x2(t− 1)dx3(t− 2)

+dx1(t) + x2(t− 2)dx1(t − 2).

One gets fors(k − 1) = 2:

I2
∞ = spanK{dx1(t), dx1(t− 1), d(x2(t)x3(t− 1))}.

When one eliminates the basis elements, which are dependent
overK(ϑ], one gets that the rank ofspanK(ϑ]{dx1(t), dx1(t−
1), d(x2(t)x3(t − 1))} is 2. To check the condition (5), one
has to check whether there exists a matrixA(ϑ) such that
ω = A(ϑ)dϕ, whereω = (ω1, ω2)T , ϕ = (ϕ1, ϕ2)T , ϕ1 =
x2(t)x3(t − 1), ϕ2 = x1(t). In fact,ω = A(ϑ)dϕ, where the
unimodular matrixA(ϑ) is defined in Example 1. Thus, the
1-forms (11) are strongly integrable.

Example 6:Consider the following 1-forms:

ω1 = dx2(t)
ω2 = x4(t− 1)dx1(t) + x2(t)dx2(t − 1) + x1(t)dx4(t− 1)
ω3 = x3(t)x4(t)dx2(t) + x2(t)x4(t)dx3(t) (11)

+x3(t− 1)dx2(t − 1) + x2(t− 1)dx3(t − 1).

For s(k − 1) = 2: I2
∞ = spanK{dx2(t), d(x4(t −

1)x1(t)), dx2(t−1), dx2(t−2), d(x4(t−2)x1(t−1))}. Now,
ω1 ∈ I2

∞ and ω2 ∈ I2
∞, but ω3 /∈ I2

∞. Thus, 1-forms (11)
are not strongly integrable, andspanK(ϑ]{dx2(t), d(x4(t −
1)x1(t))} is the largest integrable left-submodule, contained
in A = spanK(ϑ]{ω1, ω2, ω3}.

Now, one can check if 1-forms (11) are weakly integrable.
For that, one has to compute the left closure ofA and check if
it is strongly integrable. In practice, the left closure of a left-
submoduleA can be computed as the left-kernel of its right-
kernel∆. Thus, the right-kernel ofA is ∆ = spanK(ϑ]{q(ϑ)},
whereq(ϑ) = (x1(t)ϑ, 0, 0,−x4(t))T . The left-kernel of∆ is

clK(ϑ](A) = spanK(ϑ]{dx2(t), dx3(t), d(x4(t− 1)x1(t))}.

Therefore, the 1-forms (11) are weakly integrable.

IV. I NTEGRABILITY OF RIGHT-SUBMODULES

Since the left annihilator of a right submodule is by con-
struction closed, the integrability of a right submodule refers
only to weak integrability. Consider the right-submodule

∆ = spanK(ϑ]{q1(ϑ), . . . , qk(ϑ)},

whereqi(ϑ) are then× 1 column vectors.
Definition 7: The right-submodule∆ is said to be integrable

if the left-kernel of∆ admits an exact basis.
Define a matrixQ(ϑ) = (q1(ϑ), · · · , ql(ϑ)) and letQ(ϑ) =

Q0 + Q1ϑ + · · · + Qsϑ
s for some s ≥ 0 and matrices

Qj ∈ Kn×k, j = 0, . . . , s. Assume, that the ranks of matrices
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Q(ϑ) andQ0 arek. Consider the distributions∆i defined on
R(i+s+1)n,

∆i := spanK





Q0 · · · Qs 0 · · · · · ·

0
. . . · · ·

. . . 0 · · ·
...

. . . δiQ0 · · · δiQs 0
0 · · · · · · 0 Ins




, i ≥ 0

Theorem 2:[4] The right-submodule∆ is integrable if and
only if there exists an integerγ such that, locally around some
point x0(·), dim(∆̄γ) − dim(∆̄γ−1) = k .

The integrability of right-submodules and 1-forms are con-
nected by the following corollary, which follows from Corol-
lary 2 and Lemma 1.

Corollary 1: Weak integrability of 1-forms is equivalent to
the integrability of its right-kernel.

To show more explicitly how the integrability of right-
submodules and weak integrability of 1-forms are related,
consider the Algorithm (1) inizialized with (4). The left-kernel
of ∆i, defined above, is equal toIi

∞, whereIi
∞ is computed

with respect to the closure of a given submodule.
The next example shows, that in some cases, one can not use

the results of Section IV to check the integrability of 1-forms.
In that case, one has to use the results of Section III.

Example 7:Consider the 1-forms

ω1 = x1(t− 1)dx1(t) + x1(t)dx1(t − 1)
−x3(t)dx2(t− 1) + dx3(t− 1) (12)

ω2 = dx2(t) + x3(t)dx2(t − 1).

The 1-formsω = (ω1, ω2)T can be written as

ω =
(
x1(t− 1) + x1(t)ϑ −x3(t)ϑ ϑ

0 1 + x3(t)ϑ 0

)
dx(t).

The right-kernel of the left-submodulespanK(ϑ]{ω1, ω2} is
not causal (i.e. one needs forward-shifts of variablesx(t) to
represent it), thus one can not use Theorem 2 to check the
weak integrability of 1-forms (12). But, one can check by
using Corollary 2 and Theorem 1, thatspanK(ϑ]{ω1, ω2} ⊂
spanK(ϑ]{d(x1(t)x1(t − 1) + x3(t − 1)), dx2(t)} and thus,
1-forms (12) are weakly integrable.

V. APPLICATIONS OF INTEGRABILITY

In this Section, two problems are considered, where inte-
grability of 1-forms is used. First, it is shown that accessibility
of nonlinear time-delay systems can be characterized through
integrability of a certain left-submodule. Secondly, necessary
and sufficient conditions are given to transform a nonlinear
time-delay system into the form (17) below.

Consider the nonlinear time-delay system

ẋ(t) = f(x(t − i), u(t− i); i = 0, . . . , dmax), (13)

where x(t) ∈ Rn and u(t) ∈ Rm. Also, assume that the
function f is meromorphic. To simplify the presentation,
the following notation is used:x(·) := (x(t), x(t − 1), . . .).
The notationϕ(x(·)) means that functionϕ can depend on
x(t), . . . , x(t− i) for some finitei ≥ 0. The same notation is
used for other variables.

In this sectionKu denotes the field of meromorphic func-
tions that depend on a finite number of variables from
the setC = {x(·), u(·), . . . , u(k)(·); k ∈ N}. Also, denote
by Eu the vector space spanned by the symbolsdC =
{dx(·), du(·), . . ., du(k)(·); k ∈ N} over the fieldKu and
Mu = spanKu(ϑ]{dx(t), du(k)(t); k ≥ 0} is the correspond-
ing module spanned over the ringKu(ϑ].

Definition 8: A 1-form ω ∈ spanKu(ϑ]{dx(t)} has relative
degree r, if r is the smallest integer such thatω(r) 6∈
spanKu(ϑ]{dx(t)}. A functionϕ ∈ Ku is said to have relative
degreer if the 1-form dϕ has relative degreer.

Define a sequence of left-submodulesH1 ⊃ H2 ⊃ . . . of
Mu as follows:

H1 = spanKu(ϑ]{dx(t)}
Hi = spanKu(ϑ]{ω ∈ Hi−1 | ω̇ ∈ Hi−1}. (14)

SinceH1 has finite rank and all the left-submodulesHi are
closed, sequence (14) converges (see [9]). LetH∞ be the limit
of sequence (14). BŷHi one denotes the largest integrable left-
submodule contained inHi. A left-submoduleHi contains
all the 1-forms with relative degreei or bigger. Thus,H∞
contains all the 1-forms which have infinite relative degree.

A. Accessibility

In this subsection the accessibility property of system (13)
is characterized using the notion of autonomous element, as
is done in [7] for delay-free systems, or in [18] for linear
time-delay systems through the notion of torsion elements.

Definition 9: A nonzero functionϕ ∈ Ku is said to be an
autonomous element of system (13) if there exist an integerν
and a nonzero functionF ∈ Ku such that

F (ϕ, ϕ̇, . . . , ϕ(ν)) = 0. (15)

Now, accessibility of system (13) can be defined as non-
existence of autonomous elements.

Definition 10: System (13) is said to be accessible if there
does not exist any autonomous element.

Lemma 3:Functionϕ ∈ Ku is an autonomous element of
system (13) if and only if it has infinite relative degree.
Proof: Necessity.Let ϕ be an autonomous element of sys-
tem (13) and assume it has finite relative degree. Then,
dim(spanKu(ϑ]{dϕ, . . . , dϕ(k−1)}) = k for all k ≥ 1. Be-
cause of (15), the last equality is not satisfied fork = ν + 1,
which is a contradiction. Thus,ϕ has infinite relative degree.

Sufficiency.Letϕ be a nonzero function with infinite relative
degree. Then 1-formsdϕ, . . . , dϕ(n) are dependent over the
ring Ku(ϑ]. Thus, there existai ∈ Ku(ϑ], i = 0, . . . , n, where
at least one of them is nonzero, such that

ω := a0dϕ+ · · ·+ andϕ(n) = 0. (16)

Then, there exists a delay differential equation as
α(δ, ϕ, . . . , ϕ(n)) = 0. By Definition 9 function ϕ is an
autonomous element of system (13).

Now, one can characterize accessibility of system (13) in
the following way.
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Theorem 3: System (13) is accessible if and only if
Ĥ∞ = ∅.
Proof: Necessity.If system (13) is accessible, then by Lemma 3
there does not exist any non constant function inKu with
infinite relative degree. Therefore, there can not be any exact
nonzero 1-form inH∞ and thusĤ∞ = ∅ must be true.

Sufficiency.The left-submoduleH∞ contains all the 1-forms
with infinite relative degree. SincêH∞ = ∅, there is no
non constant exact 1-form with infinite relative degree and
therefore, by Lemma 3, there is no autonomous element.

B. Normal form

In this subsection, one considers the possibility of trans-
forming (13), with one single input (m = 1), into the form

ż1(t) = f1(z1(·), u(·)) (17)

ż2(t) = f2(z1(·), z2(·)),

where the dynamics corresponding toz1(t) is accessible, by
a state transformationz(t) = ϕ(x(·)) and a regular static
feedbacku(t) = α(x(·), v(·)).

To solve the above mentioned problem, first, we define
invariant and controlled invariant left-submodules. For that,
consider a left-submoduleA = spanKu(ϑ]{ω1, . . . , ωk} and
let Ȧ = spanKu(ϑ]{ω̇1, . . . , ω̇k}.

Definition 11: A left-submoduleA ⊆ spanKu(ϑ]{dx(t)} is
said to be invariant ifȦ ⊆ clKu(ϑ](A) + spanKu(ϑ]{du(t)}.

Definition 12: A left-submoduleA ⊆ spanKu(ϑ]{dx(t)}
is said to be controlled invariant if there exists a regular
feedbacku(t) = α(x(·), v(·)) such thatȦ ⊆ clKu(ϑ](A) +
spanKu(ϑ]{dv(t)}.

Theorem 4:System (13), wherem = 1, can be trans-
formed into the form (17), wheredim z1(t) = k, by a state
transformationz(t) = ϕ(x(·)) and a regular static feedback
u(t) = α(x(·), v(·)) if and only if

(i) rank Ĥ2 ≥ n− k
(ii) there exists a weakly integrable controlled invariant left-

submoduleA with rank k such thatA∩Ĥ∞ = ∅ andA
containsH1/Ĥ2.

Proof: Necessity.Since dim z1(t) = k, then dim z2(t) =
n − k. Because the first order time derivatives ofz2(t) do
not depend on the input variable, one gets thatdz2

j (t) =
dϕ2

j (x(·)) ∈ Ĥ2, j = 1, . . . , n − k. Therefore, sincez2
j ,

j = 1, . . . , n− k are independent, condition(i) is satisfied.
Let A = spanKu(ϑ]{dz1}. Clearly, this left-submodule

satisfies the condition(ii) of Theorem 4.
Sufficiency. BecauseA is weakly integrable one has

clKu(ϑ](A) = spanKu(ϑ]{dϕ1, . . . , dϕk}. Define z1
i = ϕi,

i = 1, . . . , k. SinceA containsH1/Ĥ2 andrank Ĥ2 ≥ n−k,
one can findz2 = ϕ2(x(·)) such thatdz2 ∈ H2 and z(t) =
(z1, z2)T is a state transformation [19]. BecauseA is con-
trolled invariant, there exists a feedbacku(t) = α(x(·), v(·))
which makesA invariant. Finally, conditionA ∩ Ĥ∞ = ∅
guarantees accessibility ofz1.

VI. CONCLUSION

The integrability of 1-forms, which plays an important
role in the analysis of time-delay systems, was characterized.
Necessary and sufficient conditions were given to check if a set
of 1-forms is strongly (weakly) integrable, together with two
algorithms to compute the largest integrable left-submodule,
which is contained in the (closure of) left-submodule generated
by the given 1-forms. It was also shown that accessibility
of nonlinear time-delay systems can be characterized through
integrability of certain left-submodule.
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