Integrability for nonlinear time-delay systems

Arvo Kaldmae, Claudia CalifanMember, IEEEand Claude H. Moogkellow, IEEE

Abstract—In this paper the notion of integrability is defined In this paper, we use the notion of closure of a submodule
NiS pe : > de pap
for 1-forms defined in the time-delay context. While in the [3]to define two notions of integrability - strong integrability
delay-free case, a set of l-forms_ defines a vector space, it ISand weak integrability - and give necessary and sufficient
shown that 1-forms computed for time-delay systems have to be conditions to check both these bproperties for a set of 1-
viewed as elements of a module over a certain non-commutative A h prop )
polynomial ring. Two notions of integrability are defined, strong  forms. The relationship between the obtained results and the
and weak integrability, which coincide in the delay-free case. dual results of [4] is also discussed. Then, two problems are
Necessary and sufficient conditions are given to check if a set of considered, where the integrability of 1-forms plays a key role.
(1)?(1;:23tgp?éro?r%gg?;gﬁg/klgflnﬁ%rr?ﬁlse'igoussgzwtglecmgggzﬂzg Accessibility of nonlinear time-delay systems is characterized
the accessib’ility property for nonlinear time-delay systems. The through the Integrablllty of a certain submodule and Condlthns
possibility of transforming a system into a certain normal form  are found under which a given system can be transformed into
is also considered. a certain normal form. Preliminary results and examples can
Index Terms—Time-delay systems, algebraic methods, accessi-P€ found in [17]. _ _ _ _
bility The paper is organized in the following manner. In Section
II, basic mathematical notions are given, which will be used
in the paper. In Section 1ll, the main results are presented. The
) ) ) integrability of 1-forms is defined and the condition is given,
ITlme-deIay systems are used in rranydlrrl;polrta_nt ?reas, li¥Qether with two algorithms, to check integrability. In section
telecommunications, remote control and biologica syster“?, the connection between the results of section Il and [4] is

(see [11 and the r_eferenc_es therein)_. The great successa&Iued_ Applications of integrability of 1-forms are considered
algebraic [7] and differential geometric [6], [8] methods 1‘05’n Section V. The paper ends with some conclusions.
delay-free systems has motivated many authors to generalize

the approaches to the time-delay case [2], [4], [9], [10], [11], I

. PRELIMINARIES
[12], [13], [16]. Of major importance in these approaches is . lgebra i d to define the i bili
the notion of integrability of codistributions (or distributions). Non-commutative algebra is used to define the integrability

In the delay-free case, the integrability is fully Characterize((‘ﬁac 1-forms and to find the hecessary gnd sufﬁment conditions
by the so-called Frobenius Theorem. The class of time-del get integrability (which is done in Section 1ll). More
systems is a special class of infinite dimensional systerﬂ cisely, _the proposed method refers_ to deuIes OVer non-
though, it was shown in [4] that Frobenius Theorem is Stiﬁom_mutatlve rings (see [5], [9])'. In this sect|0r_1, the mathe-
valid to derive specific results. In [5] and [2], integrabilitymat'cS and deflmtlons beyond this me_thod are introduced.
was tackled in the case of one-dimensional submodules and &et_lc_denote the field O_f meromorphic functions that depend
necessary and sufficient condition was derived. A sufficiei' 2 finite number of variables from the set(t —); € N},
condition for the general case was also given in [2]. ﬁélm(x(t)_) - .AISO’ denotg byS the vector shace spanned
different approach was used in [4], where the integrability waY (e differentials{d(t —i);i € N} over the fieldk.. The
characterized using the extended Lie brackets. € ements oE are_called_l-forms. .

At this point, there is no general theory about integrabilit Qon3|der the t'm? S,h'ft acting over fgncﬂoﬁ;; k=K
of 1-forms/codistributions in the case of time-delay systemd€fined asif(x(t —nl)§ ! ekN) = f(a(t —i—1);i €N). On
The main goal in this paper is to clarify those notions of '€ Iformw = 3.7, > j_g aidzi(t — j), one gets that the
integrability of 1-forms and which are not fully captured by thdime shift dw of w is given by
integrability of vector fields. In [2], the existence of an exact n__k
basis is defined for a module, while in [5] as the existence of ow=1w" = Z Z 6(ai)da;(t —j —1).
an exact basis is defined for the closure of a module. i=1 j=0
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The following notation is also used: Definition 4: The right-kernel (right-annihilator) of the left-

submoduleA is the right-submodulé\ containing all vectors

q(9) € M such thatP(d)q(9) = 0.

means thatlw Awy A -+ Aig = 0. From Definition 4, the right-kernel is necessarily closed.
Next, the non-commutative ring of polynomial§(J] is Consider a right-submodul& = spany{q1(?), ..., q(9)}.

constructed. The elements of this ring are polynomials in the Definition 5: The left-kernel (left-annihilator) ofA is the

formag +a19+ - - -+ a,9° for some finites € N anda; € K, left-submoduled containing all 1-formsv() € M such that

i = 0,...,s. Addition is defined on this ring as usual, buts(9¥)A = 0.

the rule for multiplication is¥y = §(¢)¥ for somey € K. Again, from Definition 5, the left-kernel is necessarily

Similarly, 9(w) = éw, and when no confusion arise#(w) closed. Finally, it is straightforward to prove the following.

will be denotedyw. The set of matricef (J]*** is also used  Lemma 1:The right-kernels of the left-submodule$ and

in this paper. cli(9)(A) are equal. The left-kernels of the right-submodules
Definition 1: [15] A matrix A(¢) € K(9]**¥ is unimodular A andclix (s (A) are equal.

if it is invertible within the ring of polynomial matrices,e.

if there exists aB(J) € K(J]"** such thatA(9)B(v) = [1l. RESULTS ON INTEGRABILITY OF1-FORMS
B9)A®) = Iy.

dw =0 mod spang{@i,..., &g}

Example 1:The matrix In the present set_:tion a_set of 1-forr_|{i®1, .. .,u_;k} in-
dependent ovelC(V] is considered (that is, there is no non
A(9) = ( 1 za(t —1)0 ) ) zero linear combination over the ring(¥] which vanishes).
U 14za(t—2)0 As it will be shown hereafter, the fact of considering 1-forms
is unimodular, since the matrix as elements ojM naturally leads to two different notions of
2 integrability. If 1-forms are considered as elements of vector
AWt = ( 1+ xQ(_tﬁ_ 19 _xQ(tl_ 19 ) spacef, there is only one single notion of integrability.

In fact, as it happens in the delay-free case, if the set of 1-
is such thatA(J)A(9)~' = A(W)"'A(W) = I,. Note that forms{w;...,w;} are considered ové, then they are said to
while any unimodular matrix has full rank, the converse is n@je integrable if there exists an invertible matrixe C*** and
true. For example, there is no polynomial inverse for-v). functionsy = (1, ..., )", such thaty = Ady. The full

Let us now note that the set of 1-forndshas the structure rank of A guarantees the invertibility ofl, sincek is a field.
of a vector space over the field. However, it has also the Instead, if the 1-formgw; ...,w;} are viewed as elements

structure of a module, denotettt, over the ring(¥], i.e. of the module M, then the matrixA € K(9]%** instead of
. KCk>k, Since A(¥) may be of full rank but not unimodular,
M = spane{de(t)}- it is necessary(to) distinguish two cases. Accordingly, one has

Example 2:The 1-formsdz,(t) anddz:(t — 1) are inde- the following two definitions of integrability.
pendent over the fieldC, but dependent over the ring(J], Definition 6: A set of k 1-forms{wy, . ..,w}, independent
sinceddxr(t) — dz1(t — 1) = 0. This simple example shows over K(1], is said to be strongly integrable if there exist
that the action of time-delay is taken into accountu, but independent function$y, . .., i}, such that
not in £. This motivates the definition of the module!.

A left-submodule of M consists of all possible linear Spanlc(ﬁ]{wla"'awk} :Span/c(ﬁ]{d<ﬂ1a---ad<ﬂk}-
combinations of given 1-forms (or r(_)w-\_/ectorié(z)zl, - Wi A set of k 1-forms {wy, ..., w;}, independent oveiC(v],
over the ring/C(¥], i.e. linear combinations of row-vectors.. . . . o

. is said to be weakly integrable if there existindependent
A left-submodule, generated byws,...,ws}, is denoted functions { }. such that
by A = spaniy{wi,...,wk}. A right-submodule of M PLo- Pkt
[4] consists of all possible linear combinations of column- spanyc (g {wi, - . ., wi} C span g {der, ..., dog}.
vectors qi, ..., q, ¢ € K(@¥]™*!, and is denoted by\ =
spang g {qu, ., ai}- If the 1-forms w = (w1, --,wi)T are strongly (re-

Definition 2: The left closure of a left-submoduld of A1, SPectively weakly) integrable, then the left-submodule
denoted byclx (s (A), is defined aslic(g)(A) = {w € M | span,c(ﬁ]{wl,...,wk} is said to be strongly (respectively
Ip(¥) € K], p(P)w € A}. weakly) integrable. L : .

By definition, the left closure of the left-submodulé is the Clearly, strong integrability yields weak integrability. Also,
largest left-submodule, containing, with the same rank ad.  the 1-formsw are weakly integrable if and only if there exists

Definition 3: The right closure of a right-submodul& of @ matrix A(¢) € K(J]*** with full rank and functionsy =

M| Jq(0) € K], Xq(9) € A). A("9) can be chosen to be unimodular, then the 1-fosnere

The right closure of the right-submoduleis the largest right- /S0 strongly integrable.

submodule, containing\, with the same rank aa. Example 3:The 1-formw; = dz(t) + z(t — 1)dz(t — 1) is
Consider a left-submodulgl of M and let the 1-forms weakly integrable sincey = (1 + z(t — 1)9)dz(t). It is also

w be the basis ofd. These 1-forms can be written as= strongly integrable as; = d(z(t)+1/2z(t—1)?). Instead, the

P(¥)dz(t) for some matrixP(9) € K(9)F*". 1-formwy = day(t) + 2o (t)dz1(t — 1) = (1 + z2(t)9)dx1 (F)



is weakly integrable, but not strongly integrable, because thé1-forms{ws,...,ws} is given by the following theorem in

polynomial 1 + z2(t)? is not invertible. terms of the limit/Z2..

Remark 1Note that integrability of a closed left-submodule Theorem L:A set of 1-forms{wy,...,w}, independent
spaty g {w1,...,ws} always implies strong integrability. As _overIC(ﬁ], is strongly integrable |f_ and onlg/ if there exists an
a consequence, the two notions of strong and weak integraBidex p < s(k — 1) such that starting fronf; defined by (2),
ity coincide in case of delay-free 1-forms. th_e derived flag algorithm (1) converges iy given by (3)

Integrability of a set ofk 1-forms {wy,...,w,} is tested with
thanks to the so-called w; € spanyc g {dey, ..., deh } ©)

Derived Flag Algorithm (DFA): fori=1,...,k.

Starting from a giver/; the algorithm computes Proof. Necessity. If a set of 1-forms {wi,...,wk},
independent over K(¥], is strongly integrable, then
I; =spang{w € I;_1 [ dw =0 mod I;_1}. (1) there exist k functions 0, © = 1,...,k, such that
The sequence (1) converges as it defines a strictly decreagibigfic(s {wi - - -» @i} = span (g {de1, ..., dpr}.
sequence of vector spacésand by the standard FrobeniusThUS wi €  spangg{de1,...,dex} and de; €
Theorem, the limit/,, has an exact basis, which represent®ang{wi, .. .,ws, . cowrPw Py for i = 1,0k
the largest integrable codistribution containedZin and somep > 0. Clearly,dy; € I%, and the condition (5) is

In order to defind, one has to note that when considering &atisfied.
set of k 1-forms{wy,- - - ,wy}, Some shifts ofv; are required It remains to show that < s(k—1). Note that there exist in-
for integration. It follows that the inizialization finitely many pairs(A(J), ¢), that satisfyw = A(J)de. Since

the degree of unimodular matrice§+J) has a lower bound,
I§ = spany{wr, ..., Wk, - wy e wi P (2)  then one can find a pajrd (), ¢), where the degree of matrix

allows to compute the smallest number of time shifts require/(]:](ﬁ) 's minimal among all possible pairs. Let(i/) be such

. . ST T
for the given 1-forms for the maximal integration of the,a\ll unimodular matrix for some functions = (g1, .., px)"

submodule. More precisely, the sequengedefined by (1)
converges to an integrable vector space

ote thatA(¥) and ¢ are not unique.
We show that the degree of(¥) is less or equal ta. By
contradiction, assume that the degreeAf#}) is larger than

17, = span,{d¢?, - de? } (3) s for examples + 1. Then for some
for some~, > 0. By definition,dy} € spany g {ws, ..., wk} wi = aj(9)depy + -+ ai(9)dey, (6)
— p . .
fori=1,...,7 andp > 0. The exact 1-formsly;, i = wherea(9) € K(¥], j = 1,...,k, and at least one polyno-
1,...,7p, are independent ovét, but may not be independent

mial a’ () has degree + 1.

Let al(¥) = Y77y ai 9!, j =1,..., k. From (6) one gets

over K(9]. A basis forspanyy{d¢¥, . ..,d¢? } is obtained
by computing a basis for

k s+1
p i i
190 [ mod(Iic?, 6155 1)] wi= > a5 e, Y
i=1 j=1¢=0
asli_ +6I, C Iit, where at least one coefficient, .., € K is non-zero. For
Remark 2A different initialization of derived flag algorithm Simplicity assume that; ., # 0 anda? ., = 0 for 7 =
is 2,...,k. We have assumed that the maximum delaywijnis
_ s, but the maximum delay ide; *~! is at leasts + 1.
Iy = spang{spany g {w, - wr} N Note thatde,...,dp; "1, ..., dp,*~ ' are independent
span{dz(t),- - ,da(t —p)}}. (4) over K. Therefore, to eliminatéy; *~" from (7),
. . . k
which allows to compute for eagh> 0, the exact differentials sl _
contained in the given submodule and which depend on dey _ij(ﬂ)d¢j+w (8)
z(t), ..., z(t—p) only. Both initialization allow the algorithm =t
to converge towards the same integrable submodule/6¢8}, for some coefficients; () € KC(J]. Letl; = degb;(¥) < s
but follow different steps, as shown in the next example. and the 1-form@ € spang{dz,dz—,...,dz"%}. Let ! :=

Example 4:Let spanyy {dz(t —2)}. On one hand, initial- min{l;}. For clarity, letl = I, andb,(J) = 9!, We show that
ization (2) is completed fop = 0 as no time-shift oflz(t—2) @ can be chosen such that it is integrable. By contradiction,
is required for its integration. On the other hand, initializatioassume thao can not be chosen integrable. Then, the coef-
(4) yields a0 limit for p = 0 andp = 1 as the exact differential ficients of @ must depend on higher delays thanSincew
involves larger delays than(t) andz (¢t — 1). The final result is not integrable, then the coefficients & , , ;& depend also

is obtained forp = 2. on higher delays than Now, substitutez§75+1d<pf5*1 to (7).
Assume that the maximum delay that appears i@ne gets that,; depends omius and thus also on higher
{w1,...,wr} (either in the coefficients or differentials) is delays thars. This is a contradiction and thascan be chosen

The necessary and sufficient condition for strong integrabilitygtegrable.



let © = ad¢! for some a,¢ € K. Then SufficiencySufficiency is satisfied directly by the definitions

spany (g {dp1, -, dpr} = spang g {der, dé, dps, -+, dpx}  of strong and weak integrability. ]
and there exists an unimodular matrix(s) with smaller _ _
degree thanA(v), and functionsp = (@1, ¢, @3, ..., k)" Example 5:Consider the following 1-forms

such thatw = A(9¥)dp, which leads to a contradiction. Thus
the degree ofA(¥) must be less than or equal toand the “* =3(t — Ddwa(t) a2 (t)dws(t — 1) +2a(t — 1)dza(t - 1)
degree ofA—1(¥) is less or equal te(k—1), i.e.p < s(k—1). w2=z3(t —2)dwa(t — 1) + z2(¢t — 1)dzs(t — 2)

The general case requires a more technical proof. +dxy (t) + 2o(t — 2)day (t — 2).
Sufficiency.Let 12, = spang{de}, wherep < s(k —

1). By construction IZ, C spangg{ws,...,wp} and One gets fors(k —1) = 2:

by (5) wi € spangy{dp} for i = 1,...,k Thus,

2 _ _ —
span g {wi, ..., wk} = spang g {dep}. u Lo = spanic{da1 (£), daa(t = 1), d(@:(t)es(t = 1))}

When one eliminates the basis elements, which are dependent

Since I2, C 2! for any p > 0, one can check the
over K(v], one gets that the rank epan ¢y {dz1(t), dz1(t -
condition (5) step- by step, increasing the value efvery step. 1), d(zs(t)as(t — 1))} is 2. To check the condition (5), one

When for somep = p the condition (5) is satisfied, then it 'Shas to check whether there exists a matdkd) such that
satls_ﬂed for allp > p. _ w = A(9)dp, wherew = (wr,w2)Ts o = (o1, 00)7, o1 =

Given the se_t of 1-formgws, . "’sui]i}f) mde_pendent over 2(D)23(t— 1), 09 = 21(L). In fact,w — A(9)dy, where the
K(d], the basis of vector SpaCéOO defines the ba- unimodular matrixA(¢) is defined in Example 1. Thus, the
sis for the largest integrable left-submodule contained N¢,ms (11) are strongly integrable.

spatl(g) {wi, - - Wk} _ _ Example 6:Consider the following 1-forms:

Lemma 2:A set of 1-forms{ws,...,wr} is weakly inte-
grable if and only if the left closure of the left- submodulew1 = dzo(t)
generated by{ws, .. .,wg}, is (strongly) integrable. — a(t — 1)dz1 () + 22 (8)daa(t — 1) + 21 (t)dza(t — 1)
Proof: Necessity. By definitions of weak integrability and B d d 1
left closure, there exist functiong = (p1,..., )7 such “3 = @3(t)z4(t)dz2(t) + z2(t)za(t)das () (11)
that dp = A(J9)@, where @ is the basis of the closure tas3(t — Ddaa(t — 1) + 22(t — 1)dzs(t — 1).
of the left-submodule, generated Hw;,...,wr}. Choose
{de1,...,dpy} such that fori =1,... k For s(k — 1) = 2 I5, = spang{ds(t),d(za(t —

Daq(t)), dee(t — 1), dee(t — 2), d(za(t —2)x1(t — 1)) }. Now,
wi € 12, andwy € 1%, butws ¢ I2. Thus, 1-forms (11)
dpi #adp+ Y b;(0)dy; (9) are not strongly integrable, antban,c g {dxa(t), d(za(t —
J=Lig#i 1)z1(¢))} is the largest integrable left-submodule, contained

in A = spanc g {w1, w2, ws}.

Now, one can check if 1-forms (11) are weakly integrable.
p For that, one has to compute the left closureoénd check if
it is strongly integrable. In practice, the left closure of a left-
submoduled can be computed as the left-kernel of its right-
kernelA. Thus, the right-kernel ofl is A = span4{q(?)},
whereq(d) = (z1(t)9,0,0, —x4(t))T. The left-kernel ofA is

for any ¢ € IC andb;(9) € K(¥]. It remains to show that one
can choosey such thatw; € spancy{de}.

By contradiction, assume that one can not chopsguc
thatw; € spany g {de}. Thenwy & span g {de} and also
wy,” & spang g {dep1, ..., dgy} for j > 1 and anyyp. Really,
if

@ =) ci(®)des, (10)
i clic(o)(A) = span g {dza(t), dzs(t), d(w4(t — 1)z1(t))}
then, since on the left-hand side of (10) everything is delayed
at least;j times, everything that is delayed less thatimes Therefore, the 1-forms (11) are weakly integrable.
on the right-hand side should cancel out. Therefore, one is
able to find functionsp;,v; € K, i = 1,...,k, such that IV. INTEGRABILITY OF RIGHT-SUBMODULES

Since the left annihilator of a right submodule is by con-

ci(V)de; € spany g {dz™ 7 Z ci(9)dy; = 0. struction clos_ed, the ip_tegrability of a right submodule refers
only to weak integrability. Consider the right-submodule

Now, because of (9)); = 0, ¢; = ¢; fori=1,..., kandthus _

Sy, = 1Y, &(9)dp!? which yieldsay = 3, & (9)dg,” A = spana{ar(D), - (D)

Clearly, 1-f0rmsd<pi“ have to belong tospany g {w}, be- whereg;(1)) are then x 1 column vectors.

causedy; € spany g {w}. Now, one has a contradiction and Definition 7: The right-submodulé\ is said to be integrable
thereforeajk’j ¢ spanyg{de} for j > 1. Then, by construc- if the left-kernel of A admits an exact basis.

tion spanyg{d1,...,dpx} C spangg{wi,...,wk-1}, Define a matrixQ(9) = (¢1(9), - - -, @(¥)) and letQ(9) =
which is impossible. Thus, the assumption that one can @t + @19 + --- + Qs9° for somes > 0 and matrices
choosep such thaty; € spany g {de} must be wrong. Q; € K™**, j=0,...,s Assume, that the ranks of matrices



Q) and @, arek. Consider the distributiond,; defined on In this section/C,, denotes the field of meromorphic func-

RO+s+1n, tions that depend on a finite number of variables from
Qo+ Q. 0 o .. the setC = {z(-),u(),...,u®();k € N}. Also, denote
0 ° by &£, the vector space spanned by the symbdis =
0 . 0 |, {dz(-),du(-),...,du®();k € N} over the fieldC, and
— g > 9 9 ] ) .
Aq 1= spany : 50y - 50. 0 020 M, = spang g {dz(t),dul®)(t); k > 0} is the correspond-
(') 0 0 s I ing module spanned over the ririg, (9].

Definition 8: A 1-form w € span_ ({dz(t)} has relative
Theorem 214] The right-submodule\ is integrable if and degree r, if r is the smallest integer such that™ ¢

only if there exists an integey such that, locally around SOMespan,. (»{dz(t)}. A functiony € K, is said to have relative
point 2°(-), dim(A,) — dim(A,_1) =k . degreer if the 1-form dy has relative degree.
The integrability of right-submodules and 1-forms are con- pefine a sequence of left-submodulds > H, O ... of
nected by the following corollary, which follows from Corol- o4, as follows:
lary 2 and Lemma 1.
Corollary 1: Weak integrability of 1-forms is equivalent to Hi = spang, g {dz(t)}
the integrability of its right-kernel. Hi = spang g{weHii|weHi1}. (14)
To show more explicitly how the integrability of right- .
submodules and weak integrability of 1-forms are relate@inc€*1 has finite rank and all the left-submodulés are
consider the Algorithm (1) inizialized with (4). The left-kernelclosed, sequence (14) converges (see [9]) A&t be the limit
of A;, defined above, is equal tf_, wherel’_ is computed of sequence (14)._8%- one denotes the largest mtegrabl_e left-
with respect to the closure of a given submodule. submodule contained ift;. A left-submodule; contains
The next example shows, that in some cases, one can not@sdhe 1-forms with relative degree or bigger. Thus,H
the results of Section IV to check the integrability of 1-formscontains all the 1-forms which have infinite relative degree.

In that case, one has to use the results of Section Ill.

Example 7:Consider the 1-forms A. Accessibility
wi = 1t —1)dz1(t) + 1 (¢)dz1(t — 1) In this subsection the accessibility property of system (13)
—a5(t)daa(t — 1) + dzs(t — 1) (12) s characterized using the notion of autonomous element, as
= dao(t) + ms(B)daa(t — 1) is done in [7] for delay-free systems, or in [18] for linear
w2 o= A Talt)Eratt = 4)- time-delay systems through the notion of torsion elements.
The 1-formsw = (w1, w2)” can be written as Definition 9: A nonzero functiony € I, is said to be an
autonomous element of system (13) if there exist an integer
_(mE=Ddm®)y )y 0 da(t). and a nonzero functiof’ € K,, such that
0 1+ xg(t)ﬁ 0
: . ; W)y =
The right-kernel of the left-submodulean g {w1,w»} is Flp,@,...,9")=0. (15)

not causal i(e. one needs forward-shifts of variable$t) to Now, accessibility of system (13) can be defined as non-
represent it), thus one can not use Theorem 2 to check f8sience of autonomous elements.

weak integrability of 1-forms (12). But, one can check by pefinition 10: System (13) is said to be accessible if there
using Corollary 2 and Theorem 1, thaanyc(y {w1,w2} € does not exist any autonomous element.
spang (g {d(z1(t)z1(t — 1) + z3(t — 1)), dz2()} and thus, | eyma 3:Functiony € K, is an autonomous element of
1-forms (12) are weakly integrable. system (13) if and only if it has infinite relative degree.
Proof: Necessitylet ¢ be an autonomous element of sys-
V. APPLICATIONS OF INTEGRABILITY tem (13) and assume it has finite relative degree. Then,
In this Section, two problems are considered, where intéim(span, (g {de, . ., dpk=D1) = k for all k& > 1. Be-
grability of 1-forms is used. First, it is shown that accessibilitgause of (15), the last equality is not satisfied fo= v + 1,
of nonlinear time-delay systems can be characterized throughich is a contradiction. Thusy has infinite relative degree.
integrability of a certain left-submodule. Secondly, necessarySufficiencylLet ¢ be a honzero function with infinite relative

and sufficient conditions are given to transform a nonlinedegree. Then 1-formdey,...,dp™ are dependent over the
time-delay system into the form (17) below. ring IC,,(9]. Thus, there exist; € K, (9], =0,...,n, where
Consider the nonlinear time-delay system at least one of them is nonzero, such that

I(t) = f(x(t—z),u(t—z),z: O,---,dmam), (13) w = a0d<p+ —}-and(p(n) = O (16)
where z(t) € R" and u(t) € R™. Also, assume that the Then, there exists a delay differential equation as
function f is meromorphic. To simplify the presentationy (s, ¢,...,¢(™) = 0. By Definition 9 function ¢ is an
the following notation is usedz(-) := (x(t),z(t — 1),...). autonomous element of system (13). n
The notationp(z(-)) means that functiorp can depend on
x(t),...,z(t — ) for some finite; > 0. The same notation is Now, one can characterize accessibility of system (13) in

used for other variables. the following way.



Theorem 3: System (13) is accessible if and only

Hoo = 0.

VI. CONCLUSION

The integrability of 1-forms, which plays an important

Proof: Necessityif system (13) is accessible, then by Lemma $yle in the analysis of time-delay systems, was characterized.
there does not exist any non constant functionkip with  Necessary and sufficient conditions were given to check if a set
infinite relative degree. Therefore, there can not be any exggt1-forms is strongly (weakly) integrable, together with two

nonzero 1-form inH., and thusH., = ® must be true.

algorithms to compute the largest integrable left-submodule,

SufficiencyThe left-submodulé?.. contains all the 1-forms which is contained in the (closure of) left-submodule generated

with infinite relative degree. Sincé{.

= 0, there is no py the given 1-forms. It was also shown that accessibility

non constant exact 1-form with infinite relative degree angk nonlinear time-delay systems can be characterized through

therefore, by Lemma 3, there is no autonomous elemeMt.

B. Normal form [1

In this subsection, one considers the possibility of transg;
forming (13), with one single inputf = 1), into the form

F1(21 () ul))
F2(21 (), 2% (),

where the dynamics corresponding 46(¢) is accessible, by
a state transformation(t) = ¢(z(-)) and a regular static [g)
feedbacku(t) = a(z(-), v(-)).

To solve the above mentioned problem, first, we define
invariant and controlled invariant left-submodules. For thatjg)
consider a left-submodulgl = spany {wi,...,wr} and [7]
let .A = span,cu(ﬁ]{ubl, ceey u')k}.

Definition 11: A left-submoduleA C spany g {dz(t)} is
said to be invariant itd C clic, 9 (A) + spany g{du(t)}.

Definition 12: A left-submodule A C spany g {dz(?)}
is said to be controlled invariant if there exists a regular
feedbacku(t) = a(z(-),v(-)) such thatd C cl, g (A) + 0
Spally, 09{dv()}

Theorem 4:System (13), wheren = 1, can be trans- [11]
formed into the form (17), wherdim z'(¢) = k, by a state
transformationz(t) = ¢(«(-)) and a regular static feedback{12]
u(t) = a(z(-),v(:)) if and only if

(i) rank Hy >n—k [13]
(ii) there exists a weakly integrable controlled invariant left-
submoduleA with rank k& such thatd N Ho = 0 and A [14]
containsH; / Ho.
Proof: NecessitySince dim z!(t) = k, thendim 22(¢t) =
n — k. Because the first order time derivatives ©f(t) do
not depend on the input variable, one gets tﬁaf(t) =
d%( z(-)) € Ha, j = 1,...,n — k. Therefore, sincez7,
j=1,...,n—k are independent, conditiofi) is satisfied.

Let A spang (9{dz'}. Clearly, this left-submodule [t
satisfies the conditioffiz) of Theorem 4.

Sufficiency. Because A is weakly integrable one has
clic, ) (A) = span,cu(ﬁ]{dgol,...,dgok}. Define 2z} = ¢;,
i=1,...,k. SinceA contains’Hl/HQ andrank Hs > n—k,
one can findz? = ?(x(-)) such thatdz? € H, and z(t) =
(2%, 22)T is a state transformation [19]. Becauskis con-
trolled invariant, there exists a feedbackt) = a(x(-), v(-))
which makesA invariant. Finally, condition4 N Hoo = 0
guarantees accessibility of . [ |

a7 B

[4]

(8]
9]

[15]

[16]

(18]

[19]

integrability of certain left-submodule.
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