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Abstract We propose a method for sparse and robust principal component analysis.
The methodology is structured in two steps: first, a robust estimate of the covariance
matrix is obtained, then this estimate is plugged-in into an elastic-net regression which
enforces sparseness. Our approach provides an intuitive, general and flexible extension
of sparse principal component analysis to the robust setting. We also show how to
implement the algorithmwhen the dimensionality exceeds the number of observations
by adapting the approach to the use of robust loadings from ROBPCA. The proposed
technique is seen to compare well for simulated and real datasets.

Keywords Dimension reduction · Elastic net · Explained variance · L1 norm ·
MCD · MM · Outliers · ROBPCA · Trade-off curve
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1 Introduction

Principal component analysis (PCA) is a widely used technique for descriptive multi-
variate statistics and dimensionality reduction (Jolliffe 2005). The main aim of PCA
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is finding a lower dimensional representation of the data that simplifies the interpre-
tation of the associations among variables and highlights the more relevant features.
Dimensionality reduction is made at the price of some information loss, which is kept
minimal by classical PCA. The n× p data matrix X is mapped to a new set of orthog-
onal and uncorrelated variables, collected in an n × q matrix Yu

q , with q ≤ p. The
trace of the covariance matrix of Yu

q is the largest one can attain. Here the superscript
u stands for unconstrained. The principal components are linear combinations of the
original variables as in

Yu
j = aT

j X = a1 j X1 + a2 j X2 + · · · + apj X p, j = 1, 2, . . . , q.

The coefficients of the linear combination are called loadings. Large loadings identify
the most important variables. PCA does not necessarily deliver interpretable compo-
nents and the strategy to ignore features associated with loadings that are small in
absolute value may be misleading (Cadima and Jolliffe 1995). This has motivated
sparse PCA, some of whose loadings are exactly zero. The interpretation and label-
ing of the components from sparse PCA is much simpler than that of classical PCA
and compression and storing of the data is enhanced as some variables might be dis-
carded. One of the first formal approaches to sparse PCA is SCoTLASS (Jolliffe et al.
2003). Here, we focus on the procedure introduced by Zou et al. (2006) and based on
elastic-net regression, named sparse PCA (SPCA).

A well-known issue with PCA (and consequently with sparse PCA) is that outliers
may spoil loading estimates, artificially inflate variances, mask the relevant features
of the clean part of the data. This has motivated the development of several robust
techniques; see Maronna et al. (2006), Varmuza and Filzmoser (2008), Heritier et al.
(2009), Farcomeni and Ventura (2012) and Farcomeni and Greco (2015) for general
reviews. One can distinguish two main approaches to robust PCA. The first is based
on the eigen-decomposition of a robust estimate of the covariance matrix (Croux
and Haesbroeck 2000; Salibian-Barrera et al. 2006). The second relies on projection
pursuit (PP) based on a robust scale estimator (Croux and Ruiz-Gazen 2005; Croux
et al. 2007). In a PP framework, principal components are found in sequence, without
the need to estimate the covariance matrix. A related approach is ROBPCA (Hubert
et al. 2005; Engelen et al. 2005), that combines projection pursuit ideas with robust
estimation of the covariance matrix. In particular, PP and ROBPCA are well suited to
handle high-dimensional data and situations in which the number of variables exceeds
the number of observations, that is p > n. There are also other methods, like spherical
PCA (Locantore et al. 1999) and orthogonal PCA (Maronna 2005), that will be not
considered in the rest of this paper.

There are still very few methods for robust and sparse PCA. A notable exception
is Croux et al. (2013), with a method based on projection pursuit (SPP). In this paper,
we illustrate an alternative but complementary solution along the lines of plug-in
principles (Hubert et al. 2008). We obtain robust loadings and enforce sparseness.
With n > p, loadings can be usually obtained via eigen-decomposition of a robust
estimate of covariance. In high dimensions or when p > n, loadings can be estimated
through ROBPCA. In summary, we have two steps: when n > p, a robust estimate
of the covariance matrix is obtained, then this estimate is plugged-in an elastic-net
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regression leading to a sparse approximation of the robust loadings (Zou et al. 2006).
We suggest to use the reweighted minimum Princiiance estimator (MCD) (Rousseeuw
and Van Driessen 1999; Croux and Haesbroeck 2000) or the MM-estimator (Tatsuoka
and Tyler 2000; Salibian-Barrera et al. 2006), whose properties and finite sample
behavior are well known. In high dimensions or when p > n, it is not feasible to
compute robust estimates of covariance. We proceed by using ROBPCA to estimate
the first q robust loading vectors and corresponding eigenvalues, and, as a by product,
a rank q robust estimate of the covariance matrix (Hubert et al. 2005). Then, this
estimate is plugged into SPCA. Our method can be directly implemented as soon as
a robust estimate (even not of full rank) of the covariance matrix is available. One
referee kindly made us aware of Hubert et al. (2015), who obtain sparse and robust
PCA via a modification of ROBPCA, named RObust Sparse PCA (ROSPCA). This
approach shares some ideas with ours, but it is operationally different. ROSPCA is
based on a first step identifying an outlier-free subset, then ScoTLASS is applied to
the identified subset.

The paper is organized as follows: in Sect. 2 we give some background. In Sect. 3
we outline our robust plug-in sparse PCA.Numerical studies and real data applications
are described in Sects. 4 and 5, respectively. Final remarks are given in Sect. 6.

2 Sparse and robust PCA

Sparse PCA can be obtained by introducing constraints on the loadings [e.g., on their
L1 or even L0 norm as in Farcomeni (2009)]. One of the first formal approaches
is SCoTLASS (Jolliffe et al. 2003): the variance of the j th component is maximized
under an upper constraint on the sumof the absolute value of the loadings. The loadings
l j for the j th sparse component are, then,

l j = argmax||a||=1a
T Sa − λ1 j ||a||1, a ⊥ l1 ⊥ · · · ⊥ l j−1 (1)

where || · ||1 denotes the L1 norm, S is the sample variance–covariance matrix, λ1 j is
a penalty parameter regulating the degree of sparsity of the j th component. Uncon-
strained PCA is obtained with λ1 j = 0.

A possibility for robust sparse PCA is projection pursuit (Croux et al. 2013). Robust
PCA based on PP searches for directions that sequentially maximize a robust measure
of variability σ̂ 2(·), where σ̂ (·) could be a scale M-estimate (Maronna 2005), the
median absolute deviation (MAD), the Qn estimator (Rousseeuw and Croux 1993),
or the trimmed squared scale estimate (Rousseeuw and Leroy 1987). The advantage
of robust PP is that one does not need estimating the covariance matrix. The j th sparse
robust loading vector is given by

�σ̂ ; j = argmax||a||=1σ̂
2(aT x1, a

T x2, . . . , a
T xn) − λ1 j ||a||1, (2)

requiring that a ⊥ �1 ⊥ · · · ⊥ � j−1. Eigenvalues are then computed as vσ̂ ; j =
σ̂ 2(�

T
σ̂ ; j x1, �

T
σ̂ ; j x2, . . . , �

T
σ̂ ; j xn). Guidelines for choosing λ1 j can be found in Leng

and Wang (2009), Farcomeni (2009), Guo et al. (2010) and Croux et al. (2013). Even
if, in general, wemaywant to select a different sparsity parameter for each component,
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a simple shortcut, aimed at reducing the computational burden, is to set λ1 j = λ,∀ j .
One may select λ by minimizing the criterion proposed by Croux et al. (2013), which
is a robust counterpart of the proposal of Guo et al. (2010). Let Ls

q and Lu
q be the

loading matrices from sparse and unconstrained (robust) PCA containing the first q
PC directions, respectively. Let Rs = X − XLs(Ls)

T and Ru = X − XLu(Lu)
T be

the corresponding residual matrices, whose j th columns are rsj = (rs1 j , r
s
2 j , . . . , r

s
nj )

T

and ruj = (ru1 j , r
u
2 j , . . . , r

u
nj )

T , respectively. A robust criterion is given by

QCFF(λ) =
∑q

j=1 σ̂ 2
(
rsj

)

∑q
j=1 σ 2

(
r̂ uj

) + m(λ)
log n

n
, (3)

where m(λ) denotes the cardinality (that is the number of non-zero loadings) of Ls
q .

When we are interested in the selection of a different λ1 j for each component, we
can select λ1 j by maximizing the trade-off product optimization as proposed in Croux
et al. (2013), that is given by the explained variance multiplied by the number of zero
loadings of the j th component, i.e.,

QTPO(λ j ) = σ̂ 2
(
Y s
j

) [
p − m(λ1 j )

]
. (4)

Moreover, we could also try to select the same λ for each component by defining

QTPO(λ) =
q∑

j=1

σ̂ 2
(
Y s
j

)
[qp − m(λ)] . (5)

Another open issue is how to choose the number of components q. When PCA is
based on the eigen-decomposition of a robust estimate of the covariance matrix, the
explained robust variance is typically measured by the ratio of the sum of its first q
larger eigenvalues to the sum of all of them.When robust eigenvectors and eigenvalues
are obtained according to the PP approach, the percentage of explained robust variance

is given by
∑q

j=1 vσ̂ ; j
∑p

j=1 σ̂ 2(X j )
. This strategy is naturally extended to the sparse setting. The

percentage of robust variance explained by the first q sparse and robust components
is

EVr1
q =

∑q
j=1 σ̂ 2

(
Y s
j

)

∑p
j=1 σ̂ 2(X j )

. (6)

An alternative route is to to measure the total robust variance based on unconstrained
robust components

EVr2
q =

∑q
j=1 σ̂ 2

(
Y s
j

)

∑p
j=1 σ̂ 2

(
Yu
j

) . (7)

When σ̂ 2 is the sample variance, (6) and (7) coincide.
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3 Robust plug-in sparse PCA

PCA is commonly performed through eigen-decomposition of the sample covariance
matrix. It is shown in Zou et al. (2006) that an equivalent formulation can be obtained
by defining a ridge regression problem. Let A = [a1, . . . , aq ] and B = [b1, . . . , bq ]
be p× q matrices. Without loss of generality, we assume X is zero centered. The first
q principal components are the solution to

argmin
A,B

n∑

i=1

||xi − ABT xi ||2 + λ2

q∑

j=1

||b j ||2, λ2 > 0 (8)

subject to AT A = Iq , where Iq is the identity matrix of size q. The elements of B
solving (8) are proportional to the loadings. As in (1) and (2), a sparse approximation
of the loadings is obtained by adding an L1 penalty into (8). Sparse loadings are indeed
proportional to the solution of

argminA,B

n∑

i=1

||xi − ABT xi ||2 + λ2

q∑

j=1

||b j ||2 +
q∑

j=1

λ1 j ||b j ||1 . (9)

Problem (9) is usually referred to as the elastic net (Zou and Hastie 2005). See also
Leng and Wang (2009) and Guo et al. (2010) for further improvements and Witten
et al. (2009) for amore general approach. In Zou et al. (2006) it is shown that the elastic
net problem (9) only depends on the original data matrix via the sample covariance
matrix S and one can minimize

q∑

j=1

(a j − b j )
T S(a j − b j ) + λ2

q∑

j=1

||b j ||2 +
q∑

j=1

λ1, j ||b j ||1. (10)

The optimization problem in (10) yields the SPCA solution, that is clearly non-robust.
A robust SPCA algorithm can be obtained by plugging-in a robust estimate Σ̂ of the
covariancematrix in (10). Now the data are centered according to a robust measure of
location. Our proposal is to minimize

q∑

j=1

(a j − b j )
T
Σ̂(a j − b j ) + λ2

q∑

j=1

||b j ||2 +
q∑

j=1

λ1, j ||b j ||1. (11)

This yields sparse and robust components quite naturally.We call this solution SRPCA.
The optimization problem (11) is solved similarly to Zou et al. (2006) through an
alternating least squares algorithm, whose general iteration is given in Algorithm 1.
In practice, λ2 is fixed as a small positive number, and only the parameters λ1, j are
selected according to the chosen criterion. It can be shown that for any finite λ2 there
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exist a sequence of λ1, j leading to the same solutions (Zou et al. 2006). The vectors
a j , j = 1, 2, . . . , q can be initialized to the leading eigenvectors of Σ̂ . To investigate
the stability of the algorithm we randomly perturbed the leading eigenvectors of Σ̂ by
adding noise uniform over the interval (−ε, ε) in our simulated and real data examples.
We did not find any remarkable change in the final solution for reasonable values of
ε.

Algorithm 1 SRPCA
Update B
for j = 1, . . . , q do
b j = argminb(a j − b)T Σ̂(a j − b) + λ2||b||2 + λ1 j ||b||1

end for
Update A
Solve Σ̂B = UDV T .
Let Â = UV T

Algorithm 1 is feasible as long as we are able to compute a robust estimate Σ̂ . A
major concern is that popular and effective robust estimates such as the MM or the
reweighted MCD are limited to moderate dimensions (p ≤ 100 in some cases) and
to n > p. One could in other cases plug-in the spatial sign covariance matrix. This
approach has been also suggested by Croux et al. (2013), who use SCoTLASS instead
of SPCA, but as they also note a robust solution is not obtained. In order to obtain a
sparse and robust PCA in the challenging p > n situation and/or in high dimensions,
we suggest to base the first step on an unconstrained robust PCA well suited to handle
p > n and/or high-dimensional data, such as ROBPCA (Hubert et al. 2005). ROBPCA
yields a rank q robust estimate of the covariance matrix Σ̂q = Lu

qMq
(
Lu
q

)T
, where

Mq = diag(ν j ), j = 1, 2, . . . , q is the diagonal matrix of eigenvalues. In the p > n
situation and high dimensions, Zou et al. (2006) suggested to modify Algorithm 1
by letting λ2 → ∞. This reduces the computational burden and corresponds to soft-
thresholding the loadings, where the threshold is given by a function of λ1, j . In our
method, the estimate Σ̂q is plugged into SPCA based on soft-thresholding, leading
to a robust plug-in solution. This corresponds to sparsifing the subspace spanned by
the first q robust loadings found by ROBPCA. The resulting method is outlined in
Algorithm 2, that is a special case of Algorithm 1. The soft-thresholding operator is

ST (y, δ) = (|y| − δ)+sign(y) =
⎧
⎨

⎩

y − δ if y > δ, y > 0
0 if |y| < δ

y + δ if y < −δ, y < 0

and is related to coordinate descent (Friedman et al. 2007).
Algorithms 1 and 2 are currently implemented into the R functions spca and

arrayspc in package elasticnet, respectively, for non-robust cases. SRPCA is
obtained by using a robust estimate of covariance as input in spca. SRPCA by soft-
thresholding is slightly more cumbersome. We provide our code as supplementary
material with this paper.
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Algorithm 2 SRPCA by soft-thresholding
Update B
for j = 1, . . . , q do

b j = ST
(
aTj Σ̂q ,

λ1 j
2

)

end for
Update A
Solve Σ̂q B = UDV T .

Let Â = UV T

The sparse components based on (9) and their robust counterparts driven by (11)
are (usually mildly) correlated. As a consequence, the explained (robust) variance
accounted for by the first q components will not correspond to the sum of their
variances. In the non-robust setting, Zou et al. (2006) suggested to use the adjusted
variance. Let u j be the vector of residuals of the linear regression where the j th sparse
component is the response and the previous ones are predictors. The total variance
explained by the first q components is

∑q
j=1 Var(u j ). The explained robust variance

can be estimated similarly.We suggest to obtain the residuals u j with robust regression,
such as least trimmed squares (LTS) (Rousseeuw 1984; Rousseeuw and Leroy 1987;
Rousseeuw and Van Driessen 1999; Pison et al. 2002) or MM regression (Salibian-
Barrera and Yohai 2006; Maronna et al. 2006) and, then, estimate the adjusted robust
variance as

∑q
j=1 σ̂ 2(u j ). See Farcomeni and Greco (2015) for more details on this.

4 Numerical studies

In order to illustrate the finite sample behavior of SRPCA we use two synthetic exam-
ples. SRPCA will be based on both the MCD and the MM-estimators when n > p,
whereas it will rely on ROBPCA when p > n. In the first example we study the
distribution of the maximal angle between the fitted and true subspaces, whereas in
the second one we mainly focus on the distribution of the loadings and the percentage
of explained robust variance.

4.1 Example 1

The first example is along the lines of Croux et al. (2013). The true sparse structured
loading matrix is assumed to be

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
0.5 0

√
0.5 0 0 . . . 0√

0.5 0 −√
0.5 0 0 . . . 0

0
√
0.5 0

√
0.5 0 . . . 0

0
√
0.5 0 −√

0.5 0 . . . 0
0 0 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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of dimension p = 10, 200, and the eigenvalues are v = (1, 0.5, 0.1, . . . , 0.1), n = 50.
Data are generated from an ε-contaminated multivariate normal distribution (1 −
ε)Np(0, LV LT )+εH , V = diag(v j ), with outliers generated from H , that is assumed
to be p-variate Normal N

(
ξ, Ip

)
with mean vector ξ obtained by stacking p

10 times
the vector (2, 4, 2, 4, 0,−1, 1, 0, 1,−1). The results are averaged over 100 replicates.
We consider clean data (ε = 0) and four different contamination rates, ranging from
ε = 10% to ε = 40%. Figures 1 and 2 show the average value of 2φ/π (called average
deviation), where φ is the maximal angle between the subspaces spanned by the first
two columns of L and the resulting first two components from SRPCA as a function of
the penalty parameter λ. The maximal angle is scaled to lie in [0, 1]. SRPCA is based
on both the 50 % breakdown point MCD estimator and the 50 % breakdown point
and 95 % scale efficient MM-estimator for n > p, whereas it is based on the first two
eigenvectors from ROBPCA with 50 % breakdown point when p > n. The results
have the expected pattern, similarly to the SPP methodology in Croux et al. (2013). In
absence of contamination, when the underlying model is sparse, the sparse techniques
improve over their unconstrained counterparts. The average deviation decreases until a
minimum is reached and then it starts to increase as a function of the penalty parameter.
Lack of efficiency of SRPCA under the assumed model is tolerable, indeed. Under
contamination, SRPCAstill gives accurate results,whereas outliers break downSPCA.
Table 1 gives the median (with MAD) of the minimum values 2φ/π obtained in each
trial. SRPCA leads to more accurate results than SPP based on the Qn estimator of
scale in all scenarios considered. The plug-in approach based on ROBPCA works
properly leading to suitable and robust results when p > n, whereas the plug-in
approach discussed in Croux et al. (2013) did not lead to a robust solution.

The computing time is reasonable. Figure 3 gives the CPU time on an Intel Core i7
at 2.4 GHz for both SRPCA and SPPwhen λ = λ∗, where λ∗ is the value for which the
minimum average deviation for non-contaminated data was obtained. When p = 10
SRPCA based on Algorithm 1 is slightly more time consuming than SPP on median
and it exhibits a noticeably larger variability. On the other hand, SRPCA based on soft-
thresholding leads to a substantial decrease in computational time. When p = 200,
SRPCA combined with soft-thresholding, exhibits a noticeably lower computational
burden than SPP, whose CPU time is about ten times larger. Table 2 gives the mean
CPU time (in seconds) for n = 50, 100, 500 and p = 50, 100, 500, 1000 over 100
trials for SRPCA based on ROBPCA and soft-thresholding and SPP based on Qn , for
q = 2 and λ = 1. Here and in the following we used the function SPcaGrid from
package rrcovHD.

According to the same data generating scheme, we also performed a further numer-
ical investigation. For each sample, we computed the value 2φ/π driven by SPCA,
MM-SRPCA and MCD-SRPCA from both Algorithms 1 and 2 (the three latter ones
here are denoted as SPCA2,MM-SRPCA2 andMCD-SRPCA2), by selecting the para-
meter λ according to the criterion (3) based on the Qn . We also included ROSPCA
(with 50 % breakdown point) and SPP based on Qn for comparison purposes. From
Fig. 4we notice that SRPCAalways has a low bias, well comparablewith that of SPCA
when contamination does not occur, and lower than that of SPP. A similar behavior
is observed for ROSPCA. Furthermore, both Algorithms 1 and 2 exhibit close perfor-
mances even if Algorithm 2 leads to a slightly larger variability in the maximal angles.
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Table 1 Example 1

ε % p = 10 p = 200

SPCA MCD-SRPCA MM-SRPCA Qn -SPP SPCA ROBPCA-SRPCA Qn -SPP

0 0.030 (0.014) 0.048 (0.028) 0.032 (0.016) 0.076 (0.037) 0.033 (0.016) 0.043 (0.025) 0.151 (0.035)

10 0.838 (0.142) 0.051 (0.035) 0.033 (0.022) 0.072 (0.039) 0.972 (0.024) 0.038 (0.024) 0.152 (0.037)

20 0.834 (0.140) 0.047 (0.031) 0.036 (0.019) 0.071 (0.039) 0.968 (0.022) 0.046 (0.032) 0.152 (0.040)

30 0.816 (0.124) 0.048 (0.032) 0.034 (0.023) 0.078 (0.027) 0.970 (0.025) 0.047 (0.034) 0.153 (0.041)

40 0.823 (0.139) 0.065 (0.074) 0.052 (0.049) 0.093 (0.047) 0.971 (0.023) 0.057 (0.043) 0.159 (0.057)

Median (with MAD) of the minimum values of 2φ/π from SPCA, SRPCA and SPP, for n = 50, ε =
0, 0.1, 0.2, 0.3, 0.4, for p = 10, 200

Figure 5 shows the distribution of the selected sparsity parameter λ for SRPCA and
SRPCA2 both in the non-contaminated and contaminated scenarios. The p > n case
is illustrated in Fig. 6. Here SRPCA is based on the first two ROBPCA loadings and
Algorithm 2 has been used. As before, we observe a good behavior of SRPCA both
when no contamination occurs and in the presence of outliers. In particular, SRPCA
seems to be more accurate than ROSPCA, at the cost of a slightly larger variability.

4.2 Example 2

In our second example, we consider the same simulation scheme of Guo et al. (2010)
and Farcomeni (2009), augmented with the outlier generating process in Croux et al.
(2013). The proposed design is characterized by three hidden factors V1 ∼ N (0, 290),
V2 ∼ N (0, 300) and V3 = −0.3V1 +0.925V2 + ε, where ε ∼ N (0, 1) and V1, V2 and
ε are independent. Then, p variables are obtained according to the following scheme:

X j =

⎧
⎪⎨

⎪⎩

V1 + ε j , 1 ≤ j ≤ 4p
10

V2 + ε j ,
4p
10 + 1 ≤ j ≤ 8p

10
V3 + ε j ,

8p
10 + 1 ≤ j ≤ p

We set n = 20, p = 10, 40 and ε = 0, 10 %. We use the 25 % breakdown point MCD
estimator and the 50 % breakdown point and 95 % scale efficient MM-estimator for
n > p, and ROBPCA with 25 % breakdown point for p > n. The numerical studies
are based on 100 replicates. By construction, an ideal sparse representation of the
loadings should consist of two PCs of cardinality 6p

10 and 4p
10 , respectively. The first

block of variables from X1 to X 4p
10
should have high loadings on the second component

and zero loadings on the first one. The second block of variables from X 4p
10 +1 to X 8p

10
is expected to have high loadings on the first component and zero loadings on the
second one. The remaining variables in the third block should have larger loadings
on the first component and a sparse approach should shrink them toward zero on the
second component. Let us consider the case n = 20 and p = 10 first. Table 3 reports
the median (with MAD) of the loadings of the first two components obtained with
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Table 2 Example 1

Mean CPU time (in seconds)
needed for SRPCA with
soft-thresholding (bold) and SPP

n/p 50 100 500 1000

50 0.155 0.163 0.554 3.589

0.506 0.595 6.506 29.866

100 0.261 0.289 1.184 15.085

1.234 3.569 14.856 61.233

500 1.248 1.886 47.927 57.620

16.907 18.274 131.344 219.578

SPCA and SRPCA, along with the median percentage of explained adjusted robust
variance, evaluated according to (7). We use Qn as robust measure of scale and LTS as
regression scheme for decorrelating the components. For each sample, we searched for
the same penalty parameter on both components according to the criterion (5) based on
the Qn . Similar results were obtained using (3). When the data are not contaminated,
all methods are able to recover the ideal sparse representation. The slightly larger
variability that characterizes the robust estimates is tolerable. When outliers occur,
SPCA is not able anymore to recover the true sparse structure, whereas SRPCA still
leads to reliable results. In addition to Table 3 and Fig. 7 shows the boxplots concerning
the distribution of the loadings (in absolute value, to handle the indeterminacy in the
sign of the loadings) of the first two components of SPCA and SRPCA.

Now we investigate the p > n situation. We compare SRPCA with soft-
thresholding based on ROBPCA with ROSPCA and SPP based on the Qn estimator.
The results are summarized in Table 4, where we report the median (withMAD) of the
loadings in each of the three blocks of variables. The median percentage of explained
adjusted robust variance is given in the last line. SRPCA estimates successfully the
expected loadings’ pattern for both clean and contaminated data. The estimated load-
ings are close to those of ROSPCA, and have a smaller variability than those obtained
SPP. SRPCA also allows to explain a larger rate of total robust variability. Figure 8
shows the distribution of the loadings (in absolute value) on the first two components
based on SPCA, ROBPCA-SRPCA, ROSPCA and SPP.

We conclude by noting that a larger contamination rate may yield numerical insta-
bility in the MCD. If we use a contamination rate 20 %, when n = 20, p = 10,
the MCD is unfeasible given the small sample size with respect to the number of
dimensions. The procedure based on MM is still reliable. Figure 9 shows loadings of
MM-SRPCA for a contamination rate ε = 20 %. If we increase the sample size there
are no problems also with the MCD.

5 Real data applications

We now consider two real data applications. The first example concerns a dataset with
n > p, the second one deals with the p > n case.
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Table 3 Example 2

SPCA MCD-SRPCA MM-SRPCA

PC1 PC2 PC1 PC2 PC1 PC2

ε = 0 %

Block 1

X1 0 (0) 0.49 (0.07) 0 (0) 0.49 (0.11) 0(0) 0.49 (0.12)

X2 0 (0) 0.50 (0.08) 0 (0) 0.50 (0.09) 0 (0) 0.50 (0.13)

X3 0 (0) 0.48 (0.07) 0 (0) 0.49 (0.10) 0 (0) 0.48 (0.13)

X4 0 (0) 0.51 (0.07) 0 (0) 0.50 (0.10) 0 (0) 0.49 (0.13)

Block 2

X5 0.42 (0.04) 0 (0) 0.42 (0.06) 0 (0) 0.41 (0.09) 0 (0)

X6 0.41 (0.04) 0 (0) 0.41 (0.06) 0 (0) 0.40 (0.07) 0 (0)

X7 0.41 (0.04) 0 (0) 0.42 (0.05) 0 (0) 0.41 (0.10) 0 (0)

X8 0.41 (0.04) 0 (0) 0.41 (0.06) 0 (0) 0.39 (0.10) 0 (0)

Block 3

X9 0.38 (0.04) 0 (0) 0.38 (0.06) 0 (0) 0.37 (0.08) 0 (0)

X10 0.38 (0.05) 0 (0) 0.38 (0.06) 0 (0) 0.37 (0.09) 0 (0)

EVr2
2 0.59 (0.10) 0.33 (0.08) 0.59 (0.13) 0.32 (0.12) 0.54 (0.14) 0.31 (0.11)

ε = 10 %

Block 1

X1 0 (0) 0 (0) 0 (0) 0.45 (0.13) 0 (0) 0.44 (0.18)

X2 0.12 (0.08) 0 (0) 0 (0) 0.46 (0.13) 0 (0) 0.46 (0.15)

X3 0.51 (0.32) 0 (0) 0 (0) 0.47 (0.14) 0 (0) 0.45 (0.16)

X4 0 (0) 0 (0) 0 (0) 0.48 (0.14) 0 (0) 0.49 (0.18)

Block 2

X5 0 (0) 0 (0) 0.40 (0.11) 0 (0) 0.42 (0.17) 0 (0)

X6 0.51 (0.26) 0 (0) 0.40 (0.09) 0 (0) 0.37 (0.15) 0 (0)

X7 0.31 (0.24) 0.22 (0.33) 0.40 (0.08) 0 (0) 0.40 (0.16) 0 (0)

X8 0 (0) 0 (0) 0.38 (0.12) 0 (0) 0.39 (0.13) 0 (0)

Block 3

X9 0 (0) 0.17 (0.26) 0.36 (0.11) 0 (0) 0.39 (0.12) 0 (0)

X10 0 (0) 0 (0) 0.37 (0.10) 0 (0) 0.37 (0.16) 0 (0)

EVr2
2 0.37 (0.16) 0.17 (0.07) 0.58 (0.14) 0.30 (0.14) 0.61 (0.16) 0.30 (0.13)

Median (with MAD) of the loadings on the first two components using SPCA and SRPCA based on the
MCD and the MM-estimator of covariance, with n = 20, p = 10. The last line gives the median (with
MAD) percentage of explained adjusted robust variance based on the Qn estimate of scale

5.1 The car data

The first dataset we analyze concerns n = 195 cars and p = 14 variables containing
technical and insurance-related data. The example has also been considered in Croux
et al. (2013). The data include 20 cars equipped with a diesel engine, that could be
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Fig. 9 Example 2. Loadings (in absolute value) from MM-SRPCA, n = 20, p = 10, ε = 20 %. Labels
1:10 denote the loadings of the first component. Labels 11:20 denote the loadings of the second component

considered as outliers compared to the majority of cars running on gasoline. In par-
ticular, cars running on diesel exhibit larger compression ratios than those running on
gasoline. In the following, we perform PCA and sparse PCA by omitting the informa-
tion concerning the type of engine. The data have been pre-processed by standardizing
each column by the Qn estimate of scale. We compare the results of SRPCA based on
both the 25 % breakdown point MCD and the 95 % shape efficient MM estimate of
the covariance matrix. We also included in the analysis SPP based on Qn . We retain
the first three components, which account for about 75 % of the total robust variance,
evaluated as in the denominator of (7), regardless of the robust estimator used. Fig-
ure 10 shows (3), based on Qn , over a grid of 50 values. It leads to select λ = 0.214
when both for the reweighed MCD and the MM-estimator. Tables 5 and 6 report the
unconstrained and sparse robust loadings based on the two plug-in approaches. The
last lines give the percentage of explained adjusted robust variance based on Qn , com-
puted according to (6) and (7), respectively, and obtained by using LTS regression.
Entries in parenthesis give the unadjusted explained robust variance. The occurrence
of zero loadings clearly helps in interpretation. The first sparse component contrasts
some characteristics of the vehicle and of the engine (positive sign) with fuel efficiency
(negative sign). The price appears to be related to the former set of variables. The sec-
ond component is mainly dominated by height and compression ratio, the
third by stroke and peak-rpm. By introducing sparseness into robust PCA based
on the reweighed MCD and the MM-estimator of covariance, the cardinality of the
loadings matrix is reduced from 42 to 17. The percentage of explained robust variance
only drops slightly at the selected penalty parameter. Figure 11 shows the proportion
of cumulative explained adjusted variance as a function of λ. This is the so called
trade-off curve proposed in Croux et al. (2013). The selected penalty parameter is
located right before the curve drops, therefore we conclude that this is an acceptable
value and the trade-off between sparsity and information loss is tolerable.

Table 7 also gives the output from SPP based on the Qn . In the constrained set-
ting, (3) lead us to fix λ = 1.65. The loadings from SPP are characterized by the
same sparse configuration for the first component, but the results for the second and
third are rather different. In particular, it turns out that the second component is dom-
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Table 5 Car data

Unconstrained MCD Sparse MCD

PC1 PC2 PC3 PC1 PC2 PC3

Symboling 0.05 0.19 0.13 0 0.07 0

Wheel-base −0.33 −0.19 −0.25 0.39 −0.28 0

Length −0.33 −0.12 −0.12 0.39 0 0

Width −0.31 −0.02 −0.11 0.23 0 0

Height −0.15 −0.41 −0.31 0 −0.63 0

Curb-weight −0.32 0.02 −0.02 0.32 0 0

Bore −0.31 −0.20 0.29 0.25 0 −0.16

Stroke −0.04 0.61 −0.31 0 0 0.81

Compression-ratio 0.16 −0.42 −0.46 −0.17 −0.72 0

Horsepower −0.35 0.22 0.01 0.40 0 0

Peak-rpm 0.07 0.28 −0.63 0 0 0.57

City-mpg 0.30 −0.13 −0.07 −0.22 0 0

Highway-mpg 0.31 −0.12 −0.07 −0.36 0 0

Price −0.36 0.01 −0.08 0.33 0 0

%EVr1 68.22 16.85 12.31 65.41 7.14 (7.75) 6.37 (7.40)

%EVr2 52.98 13.08 9.56 50.80 5.55 (6.02) 4.95 (5.75)

Loadings on the first q = 3 non-sparse and sparse components from MCD estimation. The last lines give
the percentage of explained adjusted variance. The rate of unadjusted variance is given in parenthesis

inated by peak-rpm and the only other non-null loading is the one corresponding to
symboling. The third component is entirely determined by stroke. SPP leads to
a more sparse solution than SRPCA, but at the cost of a slight reduction in the per-
centage of explained robust variance. According to (7), the percentage of explained
robust variance is 62.57 % for MCD-SRPCA and 63.18 % for MM-SRPCA but only
55.71 % for Qn-SPP.

Robust PCA can be used as a tool for reliable outlier detection by using appropriate
outlier maps (e.g., Hubert et al. 2005; Cerioli and Farcomeni 2011; Farcomeni and
Greco 2015). Outlier maps are obtained by plotting the score distance (SD) and the
orthogonal distance (OD) for each observation. Anomalous observations are charac-
terized by large score or orthogonal distances. Figure 12 indicates that the sparsity
constraints do not affect the diagnostic power of the robust methodologies. Outlier
maps from both MCD- and MM-SRPCA detect the group of outliers in the right top
corner, corresponding to the cars running on diesel. The 20 cars running on diesel
exhibit both large distances and can be classified as bad leverages.The solid lines give
the cut-off values aimed at detecting outliers (see Hubert et al. 2005; Farcomeni and
Greco 2015 for more details).

5.2 Octane data

The Octane data consist of n = 39 gasoline samples. For each gasoline sample the
near-infrared absorbance spectrum over p = 226 wavelengths is measured, hence
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Table 6 Car data

Unconstrained MM Sparse MM

PC1 PC2 PC3 PC1 PC2 PC3

Symboling 0.05 0.19 0.13 0 0.01 0

Wheel-base −0.32 −0.21 −0.25 0.24 −0.53 0

Length −0.33 −0.14 −0.12 0.34 0 0

Width −0.33 −0.03 −0.13 0.32 0 0

Height −0.14 −0.42 −0.33 0 −0.66 0

Curb-weight −0.32 0.02 0 0.30 0 0

bore −0.29 −0.21 0.33 0.21 0 −0.27

Stroke −0.05 0.60 −0.33 0 0 0.80

Compression-ratio 0.16 −0.40 −0.43 −0.24 −0.53 0

Horsepower −0.34 0.23 0.05 0.44 0 0

Peak-rpm 0.05 0.28 −0.60 0 0 0.93

City-mpg 0.30 −0.13 −0.08 −0.25 0 0

Highway-mpg 0.31 −0.12 −0.07 −0.37 0 0

Price −0.37 0.03 −0.09 0.36 0 0

%EVr1 68.67 17.10 12.29 67.60 8.36 (13.76) 6.70 (7.48)

%EVr2 52.49 13.07 9.39 51.67 6.39 (10.52) 5.12 (5.72)

Loadings on the first q = 3 non-sparse and sparse components from MM-estimation. The last lines give
the percentage of explained adjusted variance. The rate of unadjusted variance is given in parenthesis

p 
 n. A sparse representation of the loadings may be useful for identifying relevant
spectral ranges. Six samples contain added alcohol and are outliers. Their spectra
clearly deviate from the others as they present larger values after the 145thwavelength.
This example has been discussed in Hubert et al. (2005).

Here, a sparse structure of the loadings has been recovered by using SRPCA based
on the first two leading loadings vectors from ROBPCA (with 25 % breakdown point)
and Algorithm 2. A different sparsity parameter λ1 j , j = 1, 2 has been selected for
each component by maximizing the criterion (4) based on the MAD, as shown in
Fig. 13, over a grid of 50 values. In order to run Algorithm 2 separately for each
component, we proceeded as follows: first we applied Algorithm 2 only for the first
component over a grid of values for λ11; then we run it again but by looking for two
components and imposing no restrictions on the first but only on the second one by
varying λ12 on a different grid of 50 points.

The unconstrained and the sparse robust loadings are given in Fig. 14. Sparseness
enhances the interpretation of the two components, since relevant spectral ranges are
now clearly identified. The cardinality of the first sparse component is 90, wheres
57 is the number of non-null loadings for the second one. It is worth noting that the
two sparse components have exact zero loadings in wavelengths on the right end of
the spectrum, that is the region of the spectrum in which the six outlying samples
exhibit anomalous large values. At the selected sparsity parameters, the percentage
of explained (unadjusted) robust variance evaluated by using MAD for the first two
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Table 7 Car data

Unconstrained PP Sparse PP

PC1 PC2 PC3 PC1 PC2 PC3

Symboling 0.03 −0.10 0.25 0 0.12 0

Wheel-base −0.32 0.16 −0.20 −0.05 0 0

Length −0.30 0.21 0.01 −0.26 0 0

Width −0.32 0.10 0.09 −0.22 0 0

Height −0.13 0.16 −0.29 0 0 0

Curb-weight −0.29 0.13 0.07 −0.27 0 0

Bore −0.13 0.37 −0.02 −0.27 0 0

Stroke −0.01 −0.26 0.49 0 0 1.00

Compression−ratio 0.47 0.57 0.52 0.44 0 0

Horsepower −0.31 0.00 0.31 −0.41 0 0

Peak-rpm −0.15 −0.53 0.29 0 0.99 0

City-mpg 0.28 −0.01 −0.13 0.30 0 0

Highway-mpg 0.27 −0.06 −0.14 0.33 0 0

Price −0.32 0.23 0.28 −0.42 0 0

%EVr1 83.22 28.69 17.81 80.01 8.90 7.13

%EVr2 48.28 16.64 10.33 46.41 5.16 4.14

Loadings on the first q = 3 non-sparse and sparse components from SPP based on Qn . The last lines give
the percentage of explained adjusted variance

components is 86.77 and 29.40, respectively. Figure 15 shows the trade-off curve for
each component based on (7): parameters λ11 and λ12 are well before the sharpest
decline of the curve. After adjusting with LTS regression, the explained variance for
the second components drops to 9.73 and the cumulative explained variance is 96.50.
SPP based on the MAD leads to a close number of non-null loadings on the first
two components, that is 130, but accounting for only about 80 % of the total robust
variance. The total variance has been computed on the first two components from the
corresponding unconstrained analyses, respectively, according to (7), with p = q = 2.
The criterion (6) here is not appropriate, since in both cases the robust variance of the
components is larger than the total robust variance

∑p
j=1 σ̂ 2(X j ). From Fig. 16 we

can see that enforcing sparseness does not affect the diagnostic power of the robust
procedure. The outlier map based on q = 2 is still able to flag the six outlying samples,
as does unconstrained ROBPCA. As one referee pointed out, the score distances of the
six outliers became smaller in the sparse analysis. Actually, SRPCA gives many zero
loadings to those wavelengths in which the six outlying samples exhibit anomalous
larger values than the other clean samples. Hence, their scores on both the first and the
second sparse component decrease in absolute valuewith respect to their unconstrained
counterparts and the same happens to the corresponding score distances.

In this example, the CPU time for obtaining the SRPCA solution (including
ROBPCA and the search for the sparseness parameters) was 0.461 seconds. The time
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required by SPP was 0.161 seconds, but the comparison is not fair because the latter
method is based on optimized R code whereas the former is not.

6 Final remarks

We proposed a robust technique for sparse PCA that has been thought as a direct
extension of robust PCA based on robust covariance estimation, but it also performs
well in high dimensions and when p > n. SRPCA is based on combining a robust
estimate (possibly not full rank) of the covariance matrix and SPCA. In principle
any robust PCA method could be used to this end. In our experience not all methods
give satisfactory solutions. For instance, spherical PCA does not seem to be a good
choice. For our illustration, for reasons of space, we have focused only on few (good)
options. SRPCA compares well with existing methods, such as sparse and robust
projection pursuit and ROSPCA. In conclusion, SRPCA has been seen to be accurate
and to lead to an acceptable trade-off between sparseness and efficiency loss. The use
of computationally efficient algorithms, available through R functions, allows us to
readily obtain solutions in reasonable time even in high-dimensional problems.
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