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We recover some recent results by Dotsenko, Shadrin, and Vallette on the Deligne

groupoid of a pre-Lie algebra, showing that they follow naturally by a pre-Lie variant

of the PBW theorem. As an application, we show that Kapranov’s L∞ algebra structure

on the Dolbeault complex of a Kähler manifold is homotopy abelian and independent on

the choice of Kähler metric up to an L∞ isomorphism, making the trivializing homotopy

and the L∞ isomorphism explicit.

1 Introduction

Pre-Lie algebras were introduced by Gerstenhaber [21] in his study of the deformation

theory of associative algebras and independently by Vinberg [51], under the name of left

symmetric algebras, in connection with problems in differential geometry: since then

they have been employed in a variety of contexts, ranging from numerical analysis to

quantum field theory [1, 11, 37, 45]. As in the recent paper [16], we are mainly concerned

with the role of pre-Lie algebras in deformation theory: we invite the reader to compare

the following considerations with the ones in the introduction of loc. cit.
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2 R. Bandiera

According to a well-known principle sponsored by Deligne and others in the

1980s [15, 23, 49], over a field of characteristic zero every infinitesimal deformation

problem is controlled by a dg Lie algebra via the associated deformation functor: this is

the functor of Artin rings [48] sending a local Artin ring A to the set of Maurer–Cartan

elements in L ⊗mA (where mA⊂ A is the maximal ideal) modulo Gauge equivalence, cf.

[4, 23, 27, 30, 39]. This principle has been recently made into a rigorous theorem in the

papers [36, 46], cf. also [38]: to do so, we have to consider the ordinary deformation func-

tor as the truncation of a derived deformation functor going from the homotopy category

of dg local Artin rings to the homotopy category of∞-groupoids, that is, Kan complexes.

Explicit models of the derived deformation functor associated to a dg Lie algebra L were

introduced by Hinich [25, 26] and Getzler [22], following ideas from rational homotopy

theory [50]. Hinich’s model sends a dg local Artin ring A to the Kan complex of Maurer–

Cartan forms on the standard cosimplicial simplex Δ• with coefficients in L ⊗mA. By the

proof of the de Rham theorem given in [17], integration of forms over simplexes is a sim-

plicial quasi-isomorphism from the simplicial dg Lie algebra of forms to the simplicial

dg space C ∗(Δ•; L ⊗mA) of non-degenerate cochains on Δ• with coefficients in L ⊗mA,

hence via homotopy transfer (along Dupont’s contraction [17, 22]) there is a simplicial

L∞ algebra structure on C ∗(Δ•; L ⊗mA): finally, Getzler’s model sends A to the Kan com-

plex MC(C ∗(Δ•; L ⊗mA)) of Maurer–Cartan cochains on Δ• with coefficients in L ⊗mA

(the equivalence of the above definition and the one from [22] is implicit in loc. cit.,

an explicit proof can be found in [3]). Getzler’s model is more closely related to classi-

cal deformation theory, for instance, 1-simplices are in bijective correspondence with

arrows in the Deligne groupoid (the action groupoid associated to the Gauge action on

Maurer–Cartan elements [4, 23, 25]).

We remark here, and hope to elaborate more on this point somewhere else,

that the derived deformation theory controlled by a dg associative algebra B should

be much simpler to describe than in the general Lie case: like before, as a model of

the derived deformation functor we may take A→MC(C ∗(Δ•; B ⊗mA)), but now we

consider C ∗(Δ•; B ⊗mA) as a simplicial dg associative algebra via the cup product.

In fact, it should not be hard to show, using the inductive techniques of the recent

paper [7], that this simplicial dg algebra structure is A∞ isomorphic to the simpli-

cial A∞ algebra structure induced via homotopy transfer along Dupont’s contraction.

Using this model, some difficulties in Getzler’s theory (for instance, the integration of

∞-morphisms or the explicit description of the∞-groupoid structure in the sense of [22,

Section 2]) may be more easily addressed. On the other hand, the class of deformation

problems controlled by (the dg Lie algebra associated with) a dg associative algebra is
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 3

very special, the typical example being the deformations of a complex (V, d), which are

controlled by the dg associative algebra (End(V), [d,−], ◦) (where ◦ is the composition

product).

Conversely, for several important deformation problems, such as the

deformations of an algebra over an operad [16] or the deformations of the complex

structure on a Kähler manifold, the Lie bracket of the controlling dg Lie algebra is the

commutator of a pre-Lie product. As pre-Lie algebras sit in between associative and Lie

algebras, it might be interesting to study the derived deformation theory of pre-Lie alge-

bras along the lines of the associative case sketched above. Of course, the first step in

this study, and the only one we will be concerned with in this paper, should be the study

of the ordinary deformation theory: this was carried out in [16, Section 4] with differ-

ent motivations, we refer to loc. cit. for several interesting applications, in particular

to homotopy transfer formulas. In Section 3, we recover the results from [16, Section 4]

using a different method. Whereas in loc. cit. they are proved via a direct computation in

a free pre-Lie algebra, where the calculation is done by combinatorics of trees, we shall

see that they also follow rather naturally by a pre-Lie variant of the usual Poincaré–

Birkhoff–Witt theorem we learned from [37, 45].

More precisely, a pre-Lie algebra structure on L induces a structure of

U L-bimodule on the symmetric coalgebra SL, where we denote by U L the universal

enveloping algebra of the associated Lie algebra. The structure of left (resp.: right,

according if we are in a left or right pre-Lie algebra) U L-module is given by the adjoint

of the pre-Lie product, while the structure of right (resp.: left) U L-module is given by

the associated symmetric braces on L (cf. [45], where there is shown that this induces

an isomorphism between the category of pre-Lie algebras and the category of sym-

metric brace algebras): the usual argument for the PBW theorem implies that there is

an isomorphism of U L-bimodules η : U L→ SL. The morphisms of graded Lie algebras

s, s⊥ : L→End(SL) associated to the left and right L-action respectively factor through

the inclusion Coder(SL)→End(SL), which in turn implies that η is also an isomorphism

of coalgebras. According to the classification theorem from [13, 35, 44], the morphism of

graded Lie algebras s− s⊥ : L × L→Coder(SL) : (x, y)→ s(x)− s⊥(y) classifies an exten-

sion of L∞ algebras of base L × L and fiber L[−1]. The underlying complex of the total

space is naturally isomorphic to the complex C ∗(Δ1; L) of non-degenerate cochains on

the 1-simplex with coefficients in L: we denote the L∞ algebra structure on the total

space by C ∗(Δ1; L)p−Lie (when L is actually an associative algebra, we recover the dg Lie

algebra structure on C ∗(Δ1; L)p−Lie induced by the cup product) to distinguish it from

the previously considered one induced via homotopy transfer along Dupont contraction,
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4 R. Bandiera

which we denote by C ∗(Δ1; L)Lie. Working on computations by Fiorenza and Manetti

[19], we show that the latter is classified by an analog morphism of graded Lie algebras

Φ −Φ⊥ : L × L→Coder(SL), where this time Φ,Φ⊥ : L→Coder(SL) are associated with

the U L-bimodule structure on SL induced by the inverse sym−1 : U L→ SL of the usual

PBW isomorphism given by symmetrization.

We shall denote by E = ηsym the composition of the pre-Lie PBW isomorphism

η : U L→ SL with the usual PBW isomorphism sym : SL→U L: we call this automor-

phism of the coalgebra SL the exponential automorphism, since it induces the pre-

Lie exponential map [1, 16] on group-like elements. In Theorem 3.16, we deduce from

the above an explicit isomorphism of L∞ algebras C ∗(Δ1; L)Lie→ C ∗(Δ1; L)p−Lie, closely

related to the exponential automorphism E . Maurer–Cartan elements in C ∗(Δ1; L)Lie cor-

respond to arrows in the Deligne groupoid of L: in light of the previous considerations,

the induced isomorphism MC(C ∗(Δ1; L)Lie)→MC(C ∗(Δ1; L)p−Lie) of Maurer–Cartan sets

recovers the pre-Lie integration of the Deligne groupoid from [16]. In [16, Section 4,

Theorem 2], the authors give a nice description of the groupoid structure in terms of

the symmetric braces on L, this can also be recovered in our setting, cf. Theorem 3.9: the

proof is simplified by the observation (perhaps new) that the morphism of graded Lie

algebras s⊥ : L→Coder(SL) associated to the symmetric braces is actually a morphism

of graded pre-Lie algebras, where Coder(SL) is a pre-Lie algebra via the Nijenhuis–

Richardson product, cf. Proposition 3.5.

For applications in deformation theory, we are interested in the case when it is

given d making L into a dg Lie algebra. We shall denote by K(d)= EdE−1 the twisting

of the linear coderivation d : SL→ SL by the exponential automorphism E : SL→ SL,

and by C ∗(Δ1; L , d)p−Lie the total space of the L∞ extension classified by the same mor-

phism s− s⊥ as before, but with fiber the L∞ algebra structure on L[−1] induced by

K(d): this fiber identifies with the subalgebra C ∗(Δ1, ∂Δ1; L , d)p−Lie ⊂ C ∗(Δ1; L , d)p−Lie

of cochains relative to the boundary ∂Δ1 ⊂Δ1. Again, we consider the L∞ algebra

C ∗(Δ1; L , d)Lie defined via homotopy transfer along Dupont’s contraction: this is the

total space of an L∞ extension classified by Φ −Φ⊥, as before, where the fiber is

C ∗(Δ1, ∂Δ1; L , d)Lie = (L[−1]− d) regarded as an abelian L∞ algebra (i.e., the only non-

vanishing bracket is the differential). Finally, the same explicit formulas as in the case

d= 0 define an isomorphsim of L∞ algebras C ∗(Δ1; L , d)Lie→ C ∗(Δ1; L , d)p−Lie. In Propo-

sition 3.12, we show that the higher brackets K(d)n : L
n→ L, n≥ 1 may be computed

explicitly by a simple recursion (3.7): the latter resembles closely the construction given

by Kapranov in the paper [28], and in fact it recovers it as a particular case, cf. the fol-

lowing paragraphs, for this reason we call the brackets K(d)n the Kapranov brackets on
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 5

L associated to d. It might be interesting to point out that, conversely, the brackets

associated to K−1(d)= E−1dE are a natural generalization to pre-Lie algebras of the

classical construction of Koszul brackets on a graded commutative algebra [31], cf.

Remark 3.11 and references therein.

In Section 4, we consider an example from Kähler geometry: recall that the defor-

mations of the complex structure on a compact complex manifold X (the prototypical

example of a deformation problem) are controlled by the Kodaira–Spencer dg Lie alge-

bra (A0,∗(TX), ∂̄, [−,−]) of Dolbeault forms on X with coefficients in the tangent bundle

TX [39]. If X is a Kähler manifold, the (1, 0)-component ∇ of the Chern connection (the

latter is the only connection compatible with both the metric and the complex structure

[29]) is flat and torsion free, in particular, it induces a pre-Lie product on A0,∗(TX) with

associated Lie bracket the usual one.

In the seminal paper [28], motivated by the study of Rozansky–Witten invari-

ants, Kapranov showed that the Atiyah class makes TX[−1] into a Lie algebra object in

the derived category of bounded below complexes of vector bundles (more in general,

coherent sheaves) on X: there is a companion theorem for vector bundles, saying that

the Atiyah class of a vector bundle E makes E [−1] into a module over the Lie algebra

object TX[−1]. He considered two spaces of cochains with coefficients in the (shifted)

tangent bundle, and for both choices he showed how the Jacobi identity in the derived

category unravels to an actual L∞ algebra structure on the space of cochains.

The first construction uses Kähler geometry, and the choice of cochains is the

usual one of Dolbeault forms: the quadratic bracket is given by the curvature and

the higher brackets by its covariant derivatives. We shall see in Theorem 4.2 that the

induced L∞ algebra structure on A0,∗(TX)[−1] coincides with the one we denoted by

C ∗(Δ1, ∂Δ1;A0,∗(TX), ∂̄)p−Lie in the previous paragraphs. By the results of Section 3, we

see in particular that Kapranov’s L∞ algebra is abelian up to homotopy (in fact, it is

the loop space of the Kodaira–Spencer algebra in the homotopy category of dg Lie alge-

bras, cf. Remark 3.18), and we get moreover an explicit L∞ isomorphism with the strictly

abelian L∞ algebra (A0,∗(TX)[−1],−∂̄)= C ∗(Δ1, ∂Δ1;A0,∗(TX), ∂̄)Lie by polarization of the

pre-Lie exponential (this may be compared with [28, Section 2.9]). As a by-product of our

analysis, we show in Proposition 4.3 that two different choices of Kähler metric induce

isomorphic L∞ algebra structures, by exhibiting an explicit, recursively defined, L∞ iso-

morphism. We should remark that even though Kapranov’s brackets on A0,∗(TX)[−1] are

linear over the Dolbeault algebra A0,∗
X , and they are independent on the metric up to an

A0,∗
X -linear L∞ isomorphism, homotopy abelianity only holds, in general, over the field

of complex numbers.
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6 R. Bandiera

As pointed out by the referee, both results are expected, and in a certain measure

already implicit in Kapranov’s second construction, which uses formal geometry [6, 20]

and as cochains the relative forms with coefficients in the space of formal exponential

maps, cf. [28, Section 4] (thus, the only actual novelties are the explicit isomorphisms and

the method of proof, using pre-Lie algebras) . In particular, the second construction uses

only the complex structure, which should imply Proposition 4.3. Following a point of

view further developed in the papers [8, 9], Kapranov’s construction may be considered

as a first step in establishing a dictionary between Lie theory and complex (or algebraic)

geometry. In this dictionary, the manifold X corresponds to the Lie object TX[−1] and the

derived category of bounded below complexes of coherent sheaves on X to the category

of representations of TX[−1]. Moreover, the structure sheaf OX corresponds to the trivial

representation and the (shifted) tangent sheaf to the adjoint representation: finally, the

complex A0,∗(TX)[−1], regarded as RHom(OX, TX[−1]) (where we compute RHom(−,−) in

the dg category of coherent sheaves), corresponds to the Chevalley–Eilenberg complex

of TX[−1] with coefficients in the adjoint representation (cf. [10, 52]), or in other words,

to the derived center of the Lie algebra object TX[−1], and in particular its L∞ algebra

structure should be abelian up to homotopy (over the base field, and not in general over

the Chevalley–Eilenberg algebra with coefficients in the trivial representation). Kapra-

nov’s constructions have been recently the object of extensive study, for further readings

we refer to [8, 9, 12, 14, 24, 33, 34, 53]

2 Preliminaries on L∞[1] Algebras

In the first part of this section, mostly with the aim to fix notations, we recall some

well-known fact on L∞ algebras: at the end we recall the classification of L∞ algebra

extensions from [13, 35, 44]. We work over a field K of characteristic zero, graded means

Z-graded. For a graded space V =⊕
i∈Z Vi, we denote by V⊗n the nth tensor power of V ,

i.e., the tensor product of n copies of V , and by V
n, resp. V∧n, the nth symmetric power,

resp. exterior power, of V , that is, the space of coinvariants of V⊗n under the natural,

resp. alternate, action of the symmetric group Sn (with the usual Koszul rule for twisting

signs); V⊗0 = V
0 = V∧0 :=K . Given an integer k∈Z, we denote by V [k] the shifted space

V [k]i = Vk+i. For graded spaces V and W, we denote by Hom(V, W)=⊕
i∈Z Homi(V, W) the

internal mapping space in the category of graded spaces. Given integers i1 + · · · + ik=n,

we denote by S(i1, . . . , ik)⊂ Sn the set of (i1, . . . , ik)-unshuffles, that is, permutations σ ∈
Sn such that σ(1) < · · ·< σ(i1), σ(i1 + 1) < · · ·< σ(i1 + i2), . . . , σ (i1 + · · · + ik−1 + 1) < · · ·<
σ(n).
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 7

Let V be a graded space, we denote by SV =⊕
n≥0 V
n (or sometimes S(V)) the

symmetric coalgebra over V : the graded cocommutative coalgebra structure is given by

the unshuffle coproduct Δ : SV→ SV ⊗ SV

Δ(v1 
 · · · 
 vn)=
n∑

i=0

∑
σ∈S(i,n−i)

ε (σ )
(
vσ(1) 
 · · · 
 vσ(i)

)⊗ (
vσ(i+1) 
 · · · 
 vσ(n)

)
,

where ε(σ )= ε(σ ; v1, . . . , vn) is the Koszul sign, and with the understanding that for

i = 0 or i =n we put 1 ∈K = V
0 ⊂ SV in place of the empty string (in particular Δ(1)=
1⊗ 1). The natural projection SV→ V
0 =K and the natural inclusion K = V
0→ SV

give, respectively, a counit and a coaugmentation for the coalgebra structure. The

reduced symmetric coalgebra (SV, Δ̄) over V (sometimes denoted by S̄(V)) is the space⊕
n≥1 V
n=: SV ⊂ SV , with the reduced coproduct Δ̄ defined by the same formula as

before but taking the sum from i = 1 to n− 1.

Given graded spaces V, W and a morphism of graded coaugmented coalgebras

F : SV→ SW, the Taylor coefficients of F are the morphism of graded spaces fn : V
n ↪→
SV

F−→ SW
p−→W, n≥ 1, where we denote by p : SW→W the natural projection. We can

reconstruct F knowing its Taylor coefficients via F (1)= 1 and for n≥ 1

F (v1 
 · · · 
 vn)=
n∑

k=1

1

k!

∑
i1+···+ik=n

∑
σ∈S(i1,...,ik)

ε (σ ) fi1
(
vσ(1) 
 · · ·

)
 · · · 
 fik
(· · · 
 vσ(n)

)
,

(2.1)

conversely, any family of morphisms fn : V
n→W, n≥ 1, determines a morphism of

graded coaugmented coalgebras F in this way. Notice that F (SV)⊂ SW.

Similarly, every coderivation Q : SV→ SV is determined by its corestriction

SV
Q−→ SV

p−→ V , giving an isomorphism of graded spaces

Coder (SV)
∼=−→Hom (SV, V)=

∏
n≥0

Hom
(
V
n, V

)
: Q−→ pQ= (q0, q1, . . . , qn, . . .) .

The linear maps qn : V
n→ V , n≥ 0, are called the Taylor coefficients of Q, we reconstruct

Q from its Taylor coefficients via

Q (v1 
 · · · 
 vn)=
n∑

i=0

∑
σ∈S(i,n−i)

ε (σ ) qi
(
vσ(1) 
 · · · 
 vσ(i)

)
 vσ(i+1) 
 · · · 
 vσ(n), (2.2)

always with the understanding that q0(∅) := q0(1) (in particular Q(1)= q0(1) ∈ V ⊂ SV ).

Remark 2.1. We call a coderivation Q ∈Coder(SV) linear (resp.: constant) if qn= 0 for

n �= 1 (resp.: n �= 0). Given v ∈ V , we denote by Coder(SV) � σv = v 
− : SV→ SV the con-

stant coderivation with σv(1)= v. �
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8 R. Bandiera

Similarly, a coderivation Q : SV→ SV is determined by its corestriction pQ :

SV→ V , and there is an embedding Coder(SV)→Coder(SV) with image the graded Lie

subalgebra of coderivations with vanishing constant term.

The graded Lie algebra structure on Coder(SV) is induced by a right pre-Lie

product (cf. Definition 3.1), called the Nijenhuis–Richardson product, which we denote

by ◦: it sends Q, R∈Coder(SV) to the only coderivation Q ◦ R which corestricts to pQR :

SV→ V . In Taylor coefficients, if pQ= (q0, . . . , qn, . . .) and pR= (r0, . . . , rn, . . .), then

(Q ◦ R)n (v1 
 · · · 
 vn)=
n∑

i=0

∑
σ∈S(i,n−i)

ε (σ ) qn−i+1
(
ri

(
vσ(1) 
 · · · 
 vσ(i)

)
 vσ(i+1) 
 · · · 
 vσ(n)

)
.

(2.3)

As already remarked, the associated Lie bracket, called the Nijenhuis–Richardson

bracket, is the usual commutator of coderivations.

Remark 2.2. Given Q ∈Coder(SV) and a constant coderivation σv, the Nijenhuis–

Richardson bracket [Q, σv]= Q ◦ σv − (−1)|Q||v|σv ◦ Q= Q ◦ σv is given in Taylor coeffi-

cients by [Q, σv]n= qn+1(v 
−): more precisely,

[Q, σv]n (v1 
 · · · 
 vn)= qn+1 (v 
 v1 
 · · · 
 vn) for all n≥ 0.

In particular, the constant coderivations span an abelian Lie subalgebra of Coder(SL).

Given f : V→ V , regarded as a linear coderivation on SV , we find [ f, σv]= σ f(v). �

Definition 2.3. An L∞[1] algebra structure on a graded space V is the datum of a dg coal-

gebra structure on the reduced symmetric coalgebra SV : in other words, is the datum

of a coderivation Q= (0, q1, . . . , qn, . . .), |Q| = 1, such that Q ◦ Q= 0. A morphism F :

(V, Q)→ (W, R) of L∞[1] algebras is a morphism F = ( f1, . . . , fn, . . .) : (SV, Q)→ (SW, R)

of dg coaugmented coalgebras: it is strict if fn= 0 for n≥ 2. �

Remark 2.4. We recall the link with L∞ algebras, as defined for instance in [32].

We denote by s−1 : V→ V [1] and s : V [1]→ V the shifts, then décalage

déc : Hom
(
V⊗n, W

)→Hom
(
V [1]⊗n, W[1]

)
: f→ s−1 fs⊗n

is an isomorphism of vector spaces which shifts the degrees by n− 1. Taking into

account the signs coming from the Koszul rule, it can be checked that it restricts

to a degree n− 1 isomorphism déc:Hom(V∧n, W)→Hom(V [1]
n, W[1]). An L∞ algebra

structure on V is the datum of a family of degree 2− n graded antisymmetric bracket

ln : V∧n→ V , n≥ 1, satisfying some relations: these translate into the requirement that

 by guest on February 26, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 9

the qn := déc(ln) : V [1]
n→ V [1] are the Taylor coefficients of an L∞[1] algebra structure

on V [1]. Similarly, an L∞ morphism between L∞ algebras V and W is a family of degree

1− n maps fn : V∧n→W, n≥ 1, such that déc( fn) : V [1]
n→W[1] are the Taylor coeffi-

cients of an L∞[1] morphism between the corresponding L∞[1] algebras. In other words,

décalage is an isomorphism between the categories of L∞ and L∞[1] algebras, cf. [32] for

more details. �

Example 2.5. In particular, a dg Lie algebra structure (L , d, [·, ·]) on L induces an L∞[1]

algebra structure Q on L[1] with Taylor coefficients q1(s−1x)=−s−1dx, q2(s−1x
 s−1y)=
(−1)|x|s−1[x, y] and qn= 0 for n≥ 3. �

Definition 2.6. Given an L∞[1] algebra structure Q on V , the linear Taylor coeffi-

cient q1 satisfies q2
1 = 0: we call the dg space (V, q1) the tangent complex of the L∞[1]

algebra (V, Q), and its cohomology H(V, q1) the tangent cohomology of (V, Q). Given

F : (V, Q)→ (W, R) an L∞[1] morphism, its linear part is a dg morphism between the

tangent complexes f1 : (V, q1)→ (W, r1): if f1 is a quasi-isomorphism then F is called a

weak equivalence. An L∞[1] algebra (V, Q) is called abelian if Q is a linear coderiva-

tion, and is called homotopy abelian if it is weakly equivalent to an abelian L∞[1]

algebra. �

Remark 2.7. A minimal model of the L∞[1] algebra (V, Q) is the datum of an L∞[1] weak

equivalence F : (W, R)→ (V, Q) with (W, R) minimal: recall that this means r1 = 0. Struc-

ture theory of L∞[1] algebras (cf. [30]) says that a minimal model of (V, Q) always exists

and it is well defined up to a non-canonical L∞[1] isomorphism over (V, Q), moreover,

(V, Q) is isomorphic, as an L∞[1] algebra, to the direct product of a minimal model and

an acyclic complex, the latter regarded as an abelian L∞[1] algebra. It is easy to show

that (V, Q) is homotopy abelian if and only if the L∞[1] algebra structure on a min-

imal model is trivial if and only if the following seemingly stronger condition holds:

there is an L∞[1] isomorphism F : (V, q1)→ (V, Q) with f1 = idV , where in the left hand

side we regard (V, q1) as an abelian L∞[1] algebra. We refer the reader to [40] for a more

exhaustive discussion on homotopy abelian L∞[1] algebras and their role in deformation

theory. �

Given an L∞[1] algebra (V, Q), under suitable conditions ensuring convergence,

for instance, if the Taylor coefficients of Q are continuous with respect to a com-

plete descending filtration V = F 1V ⊃ · · · ⊃ F pV ⊃ · · · on V = lim←−V/F pV , it makes sense
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10 R. Bandiera

to consider the set MC(V) of solutions of the Maurer–Cartan equation

MC (V) :=
{

x∈ V0 s.t.
∑
n≥1

1

n!
qn (x
 · · · 
 x)= 0

}

Remark 2.8. Given a dg Lie algebra structure (L , d, [−,−]) on L, seen as an L∞[1] algebra

structure on L[1], the Maurer–Cartan equation is the usual one MC(L)= {x∈ L1 s.t. dx+
1
2 [x, x]= 0}. As well known, the exponential group of L, namely, L0 equipped with the

group structure given by the Baker–Campbell–Hausdorff product •, acts on the set

MC(L) via the Gauge action [23]: we shall denote the latter by e− ∗G − : L0 ×MC(L)→
MC(L) : (a, x)→ ea ∗G x, explicitly, where ada= [a,−] : L→ L is the adjoint,

ea ∗G x= x+
∑
n≥0

(ada)
n

(n+ 1)!
([a, x]− da) .

The Deligne groupoid of L, of fundamental importance in the study of deformation the-

ory via dg Lie algebras [4, 23, 25, 27], is the action groupoid associated to the Gauge

action: the objects are the Maurer–Cartan elements x∈MC(L) and the arrows the Gauge

equivalences between them, the composition is given by the Baker–Campbell–Hausdorff

product. �

We close this section by reviewing the classification of L∞ extensions from

[13, 35, 44].

Definition 2.9. A graded subspace I ⊂ L of the L∞[1] algebra (V, q1, . . . , qk, . . .) is an L∞[1]

ideal if qk(I ⊗ V
k−1)⊂ I for all k≥ 1: then there is an induced L∞[1] algebra structure

on V/I such that the projection V→ V/I is a strict morphism of L∞[1] algebras. The

sequence of L∞[1] algebras and strict morphisms I→ V→ V/I is called an L∞[1] exten-

sion of fiber I and base V/I . �

Example 2.10. Let (W, r1, . . . , rn, . . .), (I, q1, . . . , qn, . . .) be L∞[1] algebras. We con-

sider the dg Lie algebra structure on Coder(SI ) given by the Nijenhuis–Richardson

bracket and the differential [Q,−], together with the associated L∞[1] algebra

structure on Coder(SI )[1]. Given a morphism F = ( f1, . . . , fk, . . .) : W→Coder(SI )[1] of

L∞[1] algebras, this defines an L∞[1] extension I→W ×F I→W of fiber I and

base W as follows: the underlying space is W ×F I =W × I , the L∞[1] structure is

given in Taylor coefficients q̃n : (W × I )
n→W × I by (according to the decomposition
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 11

Hom((W× I )
n, W× I )=∏
j+k=n Hom(W
 j ⊗ I
k, W × I ))

q̃k (i1 
 · · · 
 ik)= (0, qk (i1 
 · · · 
 ik)) ,

q̃j(w1 
 · · · 
 w j)= (rj(w1 
 · · · 
 w j), sfj(w1 
 · · · 
 w j)0(1)),

q̃j+k
(
w1 
 · · · 
 w j ⊗ i1 
 · · · 
 ik

)= (
0, sfj

(
w1 
 · · · 
 w j

)
k (i1 
 · · · 
 ik)

)
,

where sfj is the composition W
 j fj−→Coder(SI )[1]
s−→Coder(SI ). We refer to [13, 35, 44]

for a proof that Q̃= (q̃1, . . . , q̃n, . . .) is an L∞[1] algebra structure, then it is clear that

I→W ×F I→W is an L∞[1] extension of fiber I and base W, which we call the L∞[1]

extension classified by F . �

Conversely, all L∞[1] extensions can be constructed as in the previous example.

Theorem 2.11. Given an L∞[1] extensions I→ L→ L/I and an isomorphism of graded

spaces ϕ : L→ L/I × I , there is an L∞[1] morphism F : L/I→CE(I )[1] such that ϕ is a

strict isomorphism of L∞[1] algebras ϕ : L→ L/I ×F I . �

Proof. Cf. [13, 35, 44]. �

We shall need the following lemma, whose proof is a tedious but direct veri-

fication. Given an L∞[1] extension I→W ×F I→W, classified by F : W→Coder(SI )[1]

as in the previous example, together with an L∞[1] isomorphism G = (g1, . . . , gn, . . .) :

(I, Q)→ (I ′, Q′), we shall denote by G∗F : W→Coder(SI ′)[1] the composition of F and the

isomorphism of dg Lie algebras G − G−1 : Coder(SI )→Coder(SI ′), and by G̃ : W ×F I→
W ×G∗F I ′ given in Taylor coefficients g̃n : (W × I )
n→W × I ′ by

g̃1 (w, i)= (w, g1 (i)) ,

g̃n ((w1, i1)
 · · · 
 (wn, in))= (0, gn (i1 
 · · · 
 in)) for all n≥ 2. (2.4)

Lemma 2.12. The diagram

I ��

G

��

W ×F I ��

G̃
��

W

I ′ �� W ×G∗F I ′ �� W

is an isomorphism of L∞ extensions. �
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12 R. Bandiera

3 Pre-Lie Deformation Theory and PBW Theorem

Definition 3.1. A graded left pre-Lie algebra (L , �) is a graded space L together with a

bilinear product � : L⊗2→ L such that the associator, defined by

A : L⊗3→ L : x⊗ y⊗ z→ A(x, y, z)= (x � y) � z− x � (y � z) ,

is graded symmetric in the first two arguments, that is,

A(x, y, z)= (−1)|x||y| A(y, x, z) , ∀x, y, z∈ L . (3.1)

As well known, this implies that the commutator

[·, ·] : L∧2→ L , [x, y] := x � y− (−1)|x||y| y � x,

satisfies the graded Jacobi identity, hence defines a graded Lie algebra structure on L.

Motivated by geometric examples, we denote by ∇ : L→End(L) : x→{∇x : y→ x � y} the

left adjoint morphism; then the left pre-Lie identity (3.1) is equivalent to

[∇x,∇y]=∇[x,y] ∀x, y∈ L. (3.2)

A graded space L equipped with a bilinear product � such that the associator is graded

symmetric in the last two variables is called a graded right pre-Lie algebra: again,

the associated commutator is a Lie bracket. It is straightforward that � is a left pre-

Lie product on L if and only if the opposite product x � y := (−1)|x||y|y � x is right pre-

Lie: in the following we shall restrict our attention to left pre-Lie algebras, keeping in

mind that all the results can be translated in the right pre-Lie case via the previous

observation. �

We denote by (U L , ∗,ΔU L) the universal enveloping algebra of the graded Lie

algebra (L , [·, ·]), with its structure of biaugmented graded cocommutative bialgebra,

and as usual by (SL ,Δ) the symmetric coalgebra over L.

Theorem 3.2 (Poincaré–Birkhoff–Witt). The symmetrization map sym : SL→U L

sym (1)= 1, sym (x1 
 · · · 
 xn)= 1

n!

∑
σ∈Sn

ε (σ ) xσ(1) ∗ · · · ∗ xσ(n), (3.3)

is an isomorphism of coaugmented coalgebras. �
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 13

Following the papers [37, 45], we shall recall in the following Theorem 3.3 a pre-

Lie variant of the above well-known theorem, which will be the main tool behind the

computations of this section.

Given a graded left pre-Lie algebra (L , �), there is an induced Lie action of L on

SL by coderivations

s : L→Coder (SL) : x→ s (x) := σx + ∇x, (3.4)

where σx= x
− : SL→ SL is the constant coderivation as in Remark 2.1, and we regard

∇x as a linear coderivation. This is in fact a morphism of graded Lie algebras: by (3.2)

and Remark 2.2

[s (x) , s (y)]= [σx +∇x, σy+∇y]= σ∇x(y)−(−1)|x||y|∇y(x) + [∇x,∇y]= σ[x,y] + ∇[x,y] = s ([x, y]) .

We can regard SL as a left U L-module via the unique extension of (3.4) to a morphism

of graded algebras s : U L→End(SL).

Theorem 3.3. The linear map η : U L→ SL

η (1)= 1, η (x1 ∗ · · · ∗ xn)= s (x1 ∗ · · · ∗ xn) (1)= s (x1) · · · s (xn) (1) , (3.5)

is both an isomorphism of coaugmented coalgebras and of left U L-modules. �

Proof. η is by construction a morphism of left U L-modules: in fact, it is the only

morphism of left U L-modules such that η(1)= 1. Denoting by U L≤n and SL≤n the sub-

spaces spanned by words of length ≤n, we see inductively that η restricts to an iso-

morphism U L≤n
∼=−→ SL≤n for all n≥ 0: in fact, η restricts to the identity on U L≤1 =

K 1⊕ L = SL≤1, while the inductive step follows since η(x1 ∗ · · · ∗ xn)= x1 
 · · · 
 xn+
{terms in SL≤n−1}.η is clearly compatible with the counits and the coaugmentations;

hence, it only remains to show that it is compatible with the coproducts: this follows

since s(x) is a coderivation for all x∈ L, thus

Δη(x1 ∗ · · · ∗ xn)=Δs(x1) · · · s(xn)(1)

= (s(x1)⊗ id+ id⊗ s(x1)) · · · (s(xn)⊗ id+ id⊗ s(xn)) (1⊗ 1)

=
n∑

i=0

∑
σ∈S(i,n−i)

ε(σ )s(xσ(1)) · · · s(xσ(i))(1)⊗ s(xσ(i+1)) · · · s(xσ(n))(1)

=
n∑

i=0

∑
σ∈S(i,n−i)

ε(σ )η(xσ(1) ∗ · · · ∗ xσ(i))⊗ η(xσ(i+1) ∗ · · · ∗ xσ(n))
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14 R. Bandiera

= (η ⊗ η) ((x1 ⊗ 1+ 1⊗ x1) ∗ · · · ∗ (xn⊗ 1+ 1⊗ xn))

= (η ⊗ η) (ΔU L(x1) ∗ · · · ∗ΔU L(xn))= (η ⊗ η)ΔU L(x1 ∗ · · · ∗ xn). �

Remark 3.4. The same proof shows the following more general fact: given a graded

space L and a linear embedding s : L→Coder(SL) such that the image is closed under the

Nijenhuis–Richardson bracket and s(x)0(1)= x for all x∈ L, then L carries together with

the induced graded Lie algebra structure an “ exotic” PBW isomorphism η : U L→ SL,

defined as in the claim of the previous proposition. For instance, given a graded post-

Lie algebra (L , [−,−], �), as defined for instance in [18], it is not hard to show (using

[2, Theorem 1.2]) that s : x→Φ(x)+∇x satisfies the above hypotheses, where ∇x= x � − :

L→ L and Φ is induced from the bracket [−,−] as in (3.12). This recovers the “ exotic”

post-Lie PBW isomorphism from [18]. �

Given x∈ L, the operators x ∗ −,− ∗ x : U L→U L of left and right multiplication

with x are coderivations of the bialgebra U L. By construction, we have s(x)= η(x ∗ −)η−1

for all x∈ L, where η is the isomorphism from the previous theorem. We shall denote by

s⊥ the correspondence s⊥ : L→Coder(SL) : x→ s⊥(x) := η(− ∗ x)η−1. Since (U L , ∗) is an

associative algebra [− ∗ x, y ∗ −]= 0 for all x, y∈ L, which implies that the coderivation

s⊥(x) satisfies [s⊥(x), s(y)]= 0 for all y∈ L, moreover, s⊥(x)(1)= η(− ∗ x)η−1(1)= η(x)= x.

Conversely, these two properties characterize s⊥(x) completely, as they determine the

Taylor coefficients s⊥(x)n recursively (cf. Remark 2.2): for all n≥ 1 and x, y∈ L

s⊥(x)n+1(y
−)= [s⊥(x)n+1, σy]= [s⊥(x)n+1, s(y)0]

= [s⊥(x), s(y)]n− [s⊥(x)n, s(y)1]=−[s⊥(x)n,∇y].

We put {y1, . . . , yn; x} := (−1)|x|(|y1|+···+|yn|)s⊥(x)n(y1 
 · · · 
 yn). When we make the previous

recursion explicit, we find

{1; x} = x, {y; x} = y � x, {y, z; x} = y � (z� x)− (y � z) � x,

{y, y1, . . . , yn; x} = {y; {y1, . . . , yn; x}} −
n∑

i=1

(−1)|y|(|y1|+···+|yi−1|){y1, . . . , {y; yi}, . . . , yn; x}.

In other words, the higher braces {−; x} : SL→ L are the ones defining the associated

structure of (right) symmetric brace algebra on the (left) pre-lie algebra L, cf. [16, 45]:

this follows by a direct comparison with the definitions in loc. cit. Recall that Coder(SL)

is a right pre-Lie algebra via the Nijenhuis–Richardson product ◦, moreover, we may
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 15

regard the left pre-Lie algebra (L , �) as a right pre-Lie algebra (L , �) via the opposite

product x � y := (−1)|x||y|y � x.

Proposition 3.5. The correspondence s⊥ : (L , �)→ (Coder(SL), ◦) is a morphism of

graded right pre-Lie algebras. For a fixed x∈ L, the coderivation s⊥(x) is uniquely deter-

mined by the properties

s⊥ (x)0 (1)= x, [s⊥ (x) , s (y)]= 0 for all y∈ L . �

Proof. We have already proved the second statement, we will show that this also

implies the first one. Given a coderivation Q ∈Coder(SL), we see by a straightforward

computation that the failure of [Q,−] to be a derivation with respect to ◦ is measured by

the associator A(Q,−,−): more precisely,

A(Q, R, S)= (Q ◦ R) ◦ S− Q ◦ (R ◦ S)= [Q, R] ◦ S+ (−1)|Q||R| R ◦ [Q, S]− [Q, R ◦ S].

Since A(Q,−,−)= 0 whenever the coderivation Q is constant or linear, [s(x),−] is a

derivation with respect to ◦ for all x∈ L. In particular,

[s (x) , s⊥ (y) ◦ s⊥ (z)]= [s (x) , s⊥ (y)] ◦ s⊥ (z)+ (−1)|x||y| s⊥ (y) ◦ [s (x) , s⊥ (z)]= 0 for all x∈ L .

Since moreover (s⊥(y) ◦ s⊥(z))0(1)= ps⊥(y)s⊥(z)(1)= s⊥(y)1(z)= (−1)|y||z|z� y= y � z, by

the second part of the proposition s⊥(y) ◦ s⊥(z)= s⊥(y � z). �

Definition 3.6. The exponential automorphism E : SL→ SL of the symmetric coalgebra

SL (associated with the pre-Lie product � on L) is the composition E : SL
sym−−→U L

η−→ SL,

with sym as in Theorem 3.2 and η as in Theorem 3.3. The inverse E−1 : SL→ SL is the

logarithmic automorphism of SL. �

The choice of names is due to the fact that, under suitable hypotheses ensur-

ing convergence, for instance, if � is continuous with respect to a complete filtration on

L, the induced bijections between group-like elements of SL are the usual (left) pre-Lie

exponential and logarithmic maps. Recall [1, 16] that (under the same suitable hypothe-

ses as before) the (left) pre-Lie exponential map e−� − 1 : L0→ L0 is defined by

e−� − 1 : L0→ L0 : a→ ea
� − 1 := a+ 1

2
a� a+ 1

6
a� (a� a)+ · · · + 1

n!
a� (· · · � (a� a) · · · )+ · · · .

This is a bijection with inverse the (left) pre-Lie logarithm log�(−+ 1) : L0→ L0. The lat-

ter may be computed recursively via the identity x := log�(a+ 1)=∑
n≥0

Bn
n! (∇x)

n(a), cf. [1],
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16 R. Bandiera

where B0 = 1, B1 =− 1
2 , B2 = 1

6 , B3 = 0, B4 =− 1
30 , . . ., are the Bernoulli numbers: the first

few terms are

log� (a+ 1)= a− 1
2a� a+ 1

4 (a� a) � a+ 1
12a� (a� a)+ · · · .

Remark 3.7. In the previous identities, we are not using 1 in the left hand side to

denote a particular element of L, just as a formal symbol to remind us that in the case of

a unitary associative algebra, seen as a left pre-Lie algebra, we recover the power series

expansions of the usual exponential and logarithmic functions ea− 1, log(a+ 1). �

Given a degree zero element a∈ L0, we denote by an

 = a
 · · · 
 a and an

∗ = a ∗ · · · ∗
a the nth power of a in SL and U L, respectively, and by ea


 =
∑

n≥0
1
n!a

n

, ea

∗ =
∑

n≥0
1
n!a

n
∗ the

corresponding group-like elements of SL and U L (to be more precise, the latters should

be considered as elements in the completed coalgebras ŜL and Û L, cf. [47], but with a lit-

tle abuse we shall overlook this point). We have sym(ea

)= ea

∗ and η(ea
∗)= E(ea


)= e(ea
�−1)

 .

The first identity is clear, to prove the second it suffices to show that pη(ea
∗)= ea

� −1,

where p : SL→ L is the natural projection: we have pη(1)= 0 and an easy induction

shows pη(an
∗)= ps(a)n(1)=∇a(ps(a)n−1(1))=∇n−1

a (a) for all n≥ 1, from which the claim

follows.

Remark 3.8. By a standard argument (cf., for instance, [5]), we see in particular that

E, E−1 are induced by the pre-Lie exponential and logarithm via the usual polarization

trick. More precisely, E is given in Taylor coefficients en : L
n→ L, n≥ 1, by

e1 = idL , en (x1 
 · · · 
 xn)= 1

n!

∑
σ∈Sn

ε (σ ) xσ(1) �
(· · · � (

xσ(n−1) � xσ(n)

) · · · ) , (3.6)

while the Taylor coefficients of E−1 are determined recursively by e−1
1 = idL , and for n≥ 2

e−1
n (x1 
 · · · 
 xn)=

n−1∑
k=1

Bk

k!

∑
i1+···+ik=n−1

∑
σ∈S(i1,...,ik,1)

ε(σ )

× e−1
i1 (xσ(1) 
 · · · 
 xσ(i1)) �

(· · · � (
e−1

ik (xσ(n−ik) 
 · · · 
 xσ(n−1)) � xσ(n)

) · · · ) .

�

Following [16], we shall denote by (−+ 1) �− : L0 × L→ L : (a, x)→ (a+ 1) � x :=
ps⊥(x)(ea


)=∑
n≥0

1
n! {a, . . . , a; x} and call it the circle product on L (as in Remark 3.7, we

treat 1 as a formal symbol); moreover, we shall denote by − • − : L0 × L0→ L0 the Baker–

Campbell–Hausdorff product on the Lie algebra (L0, [−,−]). The previous setup implies

rather naturally the following computation, from [16], of the formal group law on L0
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 17

associated to the left pre-Lie product on L, that is, the transfer of • via the pre-Lie

exponential and logarithm.

Theorem 3.9. For all a, b∈ L0 (under suitable hypotheses ensuring convergence), we

have

elog�(a+1)•log�(b+1)
� − 1= a+ (a+ 1) � b= a+ e∇log�(a+1) (b) . �

The first identity is [16, Section 4, Theorem 2] while the second is [16, Section 4,

Proposition 3], the identity between the left and the right hand side was proved in [1].

Proof. For simplicity, we put x := log�(a+ 1) and y := log�(b+ 1). We have ex•y
� −

1= pη(ex•y
∗ )= pη(ex

∗ ∗ ey
∗): since ey

∗ = η−1(eb

), we see that ex•y

� − 1= pη(ex∗−)η−1(eb

)=

pes(x)(eb

), where the exponentials ex∗−, es(x) are taken in End(U L) and End(SL), respec-

tively. We have p(eb

)= b, ps(x)(eb


)= pσx(eb

)+ p∇x(eb


)= x+ x � b and by induction

ps(x)n(eb

)= p(σx + ∇x)s(x)n−1(eb


)=∇x(ps(x)n−1(eb

))=∇n−1

x (x+ x � b)

for all n≥ 2, thus pes(x)(eb

)= (ex

� − 1)+ e∇x(b)= a+ e∇log�(a+1) (b).

Reasoning as before, we see moreover ex•y
� − 1= pη(e−∗y)η−1(ea


)= pes⊥(y)(ea

). In

the right pre-Lie algebra (L , �), we put yn
� = (· · · (y � y) � · · · ) � y= yn

� , similarly, given a

coderivation Q ∈Coder(SL), we put Qn
◦ = (· · · (Q ◦ Q) ◦ · · · ) ◦ Q. For all n≥ 1, we have

pQn
◦ = pQn : SL→ L: for n= 1 this is trivial and for n= 2 it is true by definition of the

Nijenhuis–Richardson product, in general, by induction, pQn
◦ = p(Q◦n−1 ◦ Q)= pQn−1

◦ Q=
pQn. Finally, by Proposition 3.5

pes⊥(y)(ea

)= a+

∑
n≥1

1

n!
ps⊥(y)n(ea


)= a+
∑
n≥1

1

n!
ps⊥(y)n

◦(e
a

)= a+

∑
n≥1

1

n!
ps⊥(yn

� )(e
a

)

= a+
∑
n≥1

1

n!
ps⊥(yn

� )(e
a

)= a+ ps⊥(ey

� − 1)(ea

)= a+ ps⊥(b)(ea


)+a= (a+ 1) � (b).

�

Definition 3.10. We denote by K : Coder(SL)→Coder(SL) : Q→ E QE−1 the twisting by

the exponential automorphism of SL: this is an automorphism of the graded Lie algebra

Coder(SL), with inverse K−1 : Coder(SL)→Coder(SL) : Q→ E−1 QE . Given an endomor-

phism f : L→ L, regarded as a linear coderivation on SL, we shall call the Taylor coef-

ficients K( f)n : L
n→ L, K−1( f)n : L
n→ L, respectively, the Kapranov brackets and the

Koszul brackets on the pre-Lie algebra L associated to f . �
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18 R. Bandiera

Remark 3.11. Given a graded commutative algebra (A, ·), regarded as a left pre-Lie

algebra, and f : A→ A, the K−1( f)n are the usual Koszul brackets on A associated to f

[31]: this follows directly by results of Markl [42, 43]. If we drop graded commutativity

of (A, ·) but maintain associativity, we recover the non-commutative Koszul brackets

considered in [2, 5, 41] (actually, as in [31] the first two references deal with unitary

algebras, and consider slightly different brackets twisted by the unit 1A∈ A). �

Proposition 3.12. Given a graded left pre-Lie algebra L and a derivation d∈Der(L , [·, ·])
of the associated graded Lie algebra, the Kapranov brackets K(d)n : L
n→ L are deter-

mined by the recursion⎧⎪⎪⎪⎨⎪⎪⎪⎩
K (d)0 = 0, K (d)1 =d,

K (d)2 (x
 y)=∇dx (y)− [d,∇x] (y) ,

K (d)n+1 (x
 y1 
 · · · 
 yn)=−[K (d)n ,∇x] (y1 
 · · · 
 yn) for n≥ 2,

(3.7)

where the bracket in the right hand side is the Nijenhuis–Richardson bracket. �

Proof. EdE−1(1)= Ed(1)= 0, thus K(d)0 = 0. We can write the above recursion in the

more compact form

[K (d) , s (x)]= [K (d) , σx + ∇x]= σdx +∇dx= s (dx) ∀x∈ L . (3.8)

In fact, taking the induced identity between the nth Taylor coefficients in (3.8), n≥
0, we recover the recursive definition of K(d)n+1 in (3.7), cf. Remark 2.2. We have

K(d)= η(symdsym−1)η−1. Since d is a Lie algebra derivation, it induces a bideriva-

tion of the bialgebra U L, which we denote by dU L , and it is straightforward to check

symdsym−1=dU L . Finally,

[K (d) , s (x)]= [η (dU L) η−1, η (x ∗ −) η−1]= η[dU L , x ∗ −]η−1 = η (dx ∗ −) η−1 = s (dx) ,

proving (3.8) and therefore the proposition. �

Remark 3.13. It would not be a priori obvious (if not for the proposition) that the brack-

ets K(d)n defined by (3.7) are graded symmetric: in fact, this follows from the hypothesis

d∈Der(L , [−,−]). For instance

∇dx (y)− [d,∇x] (y)=dx � y+ (−1)|x||d| x � dy− d(x � y) ,
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 19

in other words, ∇dx − [d,∇x] (thus K(d)2, if d∈Der(L , [−,−])) measures how far is d from

satisfying the Leibniz rule with respect to the pre-Lie product �: clearly, this is graded

symmetric in x and y if and only if d is a derivation of the associated Lie bracket. �

Remark 3.14. Given two left pre-Lie products � and � on L with the same asso-

ciated graded Lie bracket, we denote by ∇−,∇′− : L→End(L), η, η′ : U L→ SL, K,K′ :
Coder(SL)→Coder(SL) the respective data defined as before. The automorphism

G := η′η−1 : SL→ SL of the symmetric coalgebra SL satisfies GK(Q)G−1 =K′(Q), ∀Q ∈
Coder(SL). We have

G(x
 y1 
 · · · 
 yn)= η′η−1(x
 y1 
 · · · 
 yn)

= η′
(
x ∗ η−1(y1 
 · · · 
 yn)− η−1(∇x(y1 
 · · · 
 yn))

)
= (σx +∇′x)G(y1 
 · · · 
 yn)− G∇x(y1 
 · · · 
 yn).

Taking the corestriction on both sides, we see that G is given in Taylor coefficients gn :

L
n→ L, n≥ 1, by g1 = idL , and for n+ 1≥ 2 by the recursion

gn+1(x
 y1 
 · · · 
 yn)

=∇′x (gn(y1 
 · · · 
 yn))−
n∑

i=1

(−1)
∑i−1

j=1 |x||yj |gn(y1 
 · · · 
 ∇x(yi)
 · · · 
 yn). (3.9)

For instance g2(x
 y)=∇′x(y)−∇x(y)= x � y− x � y: this is graded symmetric since by

hypothesis � and � have the same associated Lie bracket. �

Notice that the previous proposition implies [s(x)−K(adx), s(y)]= 0 for all y∈ L:

by Proposition 3.5 s(x)−K(adx)= s⊥(x) for all x∈ L, and then [K(d), s⊥(x)]= s⊥(dx) for all

x∈ L. Putting this facts together we see that, given d∈Der1(L , [−,−]) such that [d, d]=
2d2 = 0, the correspondence

s− s⊥ : (L , d, [−,−])× (L , d, [−,−])→ (Coder (SL) , [K (d) ,−], [−,−]) : (x, y)→ s (x)− s⊥ (y)

is a morphism of dg Lie algebras. According to Example 2.10, this morphism clas-

sifies an L∞ extension of base L × L and fiber the L∞ algebra structure on L[−1]

induced by the Kaprnaov brackets K(d)n: the total space of this L∞ extension has

underlying tangent complex naturally isomorphic to C ∗(Δ1; L , d), the complex of non-

degenerate cochains on the 1-simplex Δ1 with coefficients in (L , d), and we may similarly

identify the projection over the base with the pull-back C ∗(Δ1; L , d)→ C ∗(∂Δ1; L , d)∼=
(L , d)× (L , d) of cochains and the inclusion of the fiber with the inclusion (L[−1],−d)∼=
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20 R. Bandiera

C ∗(Δ1, ∂Δ1; L , d)→ C ∗(Δ1; L , d) of relative cochains, where ∂Δ1 ⊂Δ1 is the boundary.

Accordingly, we shall denote by

C ∗ (Δ1, ∂Δ1; L , d)p−Lie→ C ∗ (Δ1; L , d)p−Lie→ C ∗ (∂Δ1; L , d)p−Lie (3.10)

the L∞ extension classified by s− s⊥ : L × L→Coder(SL).

Remark 3.15. Given a dg associative algebra (A, d, ·), seen as a left pre-Lie algebra, (3.10)

is the extension of dg associative algebras obtained by tensorizing the extension

C ∗(Δ1, ∂Δ1;K )→ C ∗(Δ1;K )→ C ∗(∂Δ1;K ),

with the dg algebra structure given by the usual differential and the cup product, with

(A, d, ·). �

We want to compare the L∞ extension (3.10) with another one, essentially intro-

duced by Fiorenza and Manetti [19], which we shall denote by

C ∗ (Δ1, ∂Δ1; L , d)Lie→ C ∗ (Δ1; L , d)Lie→ C ∗ (∂Δ1; L , d)Lie (3.11)

The base is again C ∗(∂Δ1; L , d)Lie := (L , d, [−,−])× (L , d, [−,−]), while this time the fiber

is C ∗(Δ1, ∂Δ1; L , d)Lie := (L[−1],−d) regarded as an abelian L∞ algebra. The underly-

ing tangent complex of C ∗(Δ1; L , d)Lie is again naturally isomorphic to C ∗(Δ1; L , d). We

denote the classifying morphism by Φ −Φ⊥ : L × L→Coder(SL) : (x, y)→Φ(x)−Φ⊥(y):

it is given in Taylor coefficients by Φ(x)0(1)= x=Φ⊥(x)0(1), and for n≥ 1

Φ (x)n (x1 
 · · · 
 xn)= (−1)n Bn

n!

∑
σ∈Sn

ε (σ ) [· · · [x, xσ(1)] · · · , xσ(n)],

Φ⊥ (x)n (x1 
 · · · 
 xn)= Bn

n!

∑
σ∈Sn

ε (σ ) [· · · [x, xσ(1)] · · · , xσ(n)]. (3.12)

The fact that Φ,−Φ⊥, Φ −Φ⊥ are morphisms of dg Lie algebras follows from

Theorem 2.11 and the results from [19] (cf. also [2, Section 3]: with the definitions given

there, the L∞ algebra C ∗(Δ1; L , d)Lie is the mapping cocylinder of the identity idL : L→
L). Since Φ : L→Coder(SL) is a morphism of graded Lie algebras and Φ(x)0(1)= x for

all x∈ L, Remark 3.4 shows that ϕ : U L→ SL : x1 ∗ · · · ∗ xn→Φ(x1) · · ·Φ(xn)(1) is an iso-

morphism of coaugmented coalgebras: we claim that ϕ = sym−1. To prove the claim, by a

standard polarization argument it suffices to show that eΦ(x)(1)= ϕ(ex
∗)= ϕsym(ex


)= ex



for all x∈ L0: this follows immediately from Φ(x)n(xn

)= 0 for all n≥ 1. In particular, we
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 21

see that Φ(x)= sym−1(x ∗ −)sym, thus

EΦ (x) E−1 = η
(
symΦ (x) sym−1) η−1 = η (x ∗ −) η−1 = s (x)

for all x∈ L. Similarly, Φ⊥(y)= sym−1(− ∗ y)sym and then EΦ⊥(y)E−1 = s⊥(y) for all

y∈ L. Finally, we may regard the isomorphism E : (SL , d)→ (SL ,K(d))= (SL , EdE−1)

of dg coalgebras as an isomorphism of L∞ algebras E : C ∗(Δ1, ∂Δ1; L , d)Lie→
C ∗(Δ1, ∂Δ1; L , d)p−Lie. We have just proved E(Φ −Φ⊥)E−1 = s− s⊥: according to

Lemma 2.12 this implies the following result, where we denote by Ẽ : C ∗(Δ1; L , d)Lie→
C ∗(Δ1; L , d)p−Lie the L∞ isomorphism associated to E as in (2.4).

Theorem 3.16. The diagram

C ∗ (Δ1, ∂Δ1; L , d)Lie
��

E
��

C ∗ (Δ1; L , d)Lie
��

Ẽ
��

C ∗ (∂Δ1; L , d)Lie

C ∗ (Δ1, ∂Δ1; L , d)p−Lie �� C ∗ (Δ1; L , d)p−Lie �� C ∗ (∂Δ1; L , d)p−Lie

is an isomorphism of L∞ extensions. �

The interest for the L∞ extension (3.11) lies in the fact that a 1-cochain x
a−→y∈

C 1(Δ1; L), where x, y∈ L1, a∈ L0, is Maurer–Cartan in the L∞ algebra C ∗(Δ1; L , d)Lie

if and only if x, y are Maurer–Cartan elements of (L , d, [−,−]) and a∈ L0 is a Gauge

equivalence between them, ea ∗G y= x with the notations of Remark 2.8: this follows

from the computations in [19, Section 7]. In other words, the Maurer–Cartan ele-

ments of C ∗(Δ1; L , d)Lie are in bijective correspondence with the arrows in the Deligne

groupoid of the dg Lie algebra (L , d, [−,−]): by the previous theorem these are also in

bijective correspondence with the Maurer–Cartan elements in C ∗(Δ1; L , d)p−Lie via the

isomorphism

MC
(
Ẽ

)
: MC

(
C ∗ (Δ1; L , d)Lie

)→MC
(
C ∗ (Δ1; L , d)p−Lie

)
: x

a−→y → x
ea
�−1−−→y .

Putting b := ea
� − 1, the 1-cochain x

b−→y is Maurer–Cartan in C ∗(Δ1; L , d)p−Lie if and only

if x, y are Maurer–Cartan elements of (L , d, [−,−]) and p(s(x)− s⊥(y)+K(d))(eb

)= 0. We

obtain the following result, which is [16, Proposition 5].
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22 R. Bandiera

Corollary 3.17. Given Maurer–Cartan elements x, y of (L , d, [−,−]) and a∈ L0, then (as

usual, under suitable hypotheses ensuring convergence) ea ∗G y= x if and only if∑
n≥1

1

n!
K (d)n

((
ea
� − 1

)n


)
= ea
� � y− x � ea

�,

where we put, cf. Remark 3.7, ea
� � y := ((ea

� − 1)+ 1) � y and x � ea
� := x+ x � (ea

� − 1). �

Remark 3.18. From the point of view of homotopy theory C ∗(Δ1, ∂Δ1; L , d)p−Lie, or in

other words, L[−1] with the L∞ structure given by the Kapranov brackets K(d)n, may be

regarded as a model of the the based loop space of (L , d, [−,−]) in the homotopy category

of L∞ algebras. Then it is clear that it should be homotopy abelian: this is analog to the

well-known fact in rational homotopy theory that the minimal model of an H-space, in

particular, a based loop space, has trivial differential. Of course, by our results we have

the explicit isomorphism E between C ∗(Δ1, ∂Δ1; L , d)p−Lie and the abelian L∞ algebra

C ∗(Δ1, ∂Δ1; L , d)Lie. �

We close this section by considering an example from algebra.

Example 3.19. Let (V, Q) be an L∞[1]-algebra: we regard Coder(SV) as a left pre-Lie

algebra via the opposite of the Nijenhuis–Richardson product Q � R= (−1)|Q||R|+1 R◦ Q,

and we consider the dg Lie algebra structure on the associated Lie algebra

(Coder(SV), [Q,−], [−,−]) controlling the deformations of the L∞[1] algebra V . We

sketch the computation of the Kapranov brackets K([Q,−])n, leaving to the reader to

fill up the details and the signs in the formulas. We have K([Q,−])1 = [Q,−], while

K([Q,−])2 measures the failure of [Q,−] to satisfy the Leibniz rule with respect to ◦,
cf. Remark 3.13: as in the proof of Proposition 3.5, the latter is given (up to a sign)

by the associator A(Q,−,−). Finally, it is not hard to see inductively, using the direct

computation of A(Q,−,−) as base of the induction and the recursion (3.7) for the

inductive step, that for all R1 = (r1,1, . . . , r1,k, . . .), . . . Rn= (rn,1, . . . , rn,k, . . .) ∈Coder(SL)

the coderivation K([Q,−])n(R1 
 · · · 
 Rn) is given in Taylor coefficients K([Q,−])n(R1 

· · · 
 Rn)N : L
N→ L by

K([Q,−])n(R1 
 · · · 
 Rn)N(x1 
 · · · 
 xN)

=
∑

i1+···+in+k=N

∑
σ∈S(i1,...,in,k)

±qk+n(r1,i1(xσ(1) 
 · · · )
 · · · 
 rn,in(· · · 
 xσ(i1+···+in))
 · · · 
 xσ(N)).

Given a dg Lie algebra (L , d, [−,−]), we denote by Q= (q1, q2, 0, . . . , 0, . . .) the asso-

ciated L∞[1] algebra structure on L[1]: as in Example 2.5, this is q1(s−1l)=−s−1dl,
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Formality of Kapranov’s Brackets in Kähler Geometry via Pre-Lie Deformation Theory 23

q2(s−1l 
 s−1m)= (−1)|l|s−1[l, m]. By the above formulas K([Q,−])n= 0 for all n≥ 3, and

the resulting dg Lie algebra structure on the space (cf. Remark 2.4)

CE∗ (L , L) :=Coder
(
S̄ (L[1])

)
[−1]=

∏
n≥1

Hom
(
L[1]
n, L[1]

)
[−1]=

∏
n≥1

Hom
(
L∧n, L

)
[−n]

coincides (perhaps up to signs) with the usual dg Lie algebra structure on the Chevalley–

Eilenberg complex of L with coefficients in the adjoint representation: in particular, the

latter is homotopy abelian (which is expected, since it is the derived center of the dg Lie

algebra L Notice that homotopy abelianity is only claimed over the base field K , and not

over the Chevalley–Eilenberg algebra CE∗(L , K ).). �

4 Kapranov’s Brackets in Kähler Geometry

Let X be a hermitian manifold, we denote by AX the de Rham algebra of complex valued

smooth forms on X, and by A(TX) the AX-module of smooth forms with coefficients in the

tangent bundle TX. We denote by D =∇ + ∂̄ : A∗,∗(TX)→A∗+1,∗(TX)⊕A∗,∗+1(TX) the Chern

connection on A(TX) (i.e., the only connection compatible with both the metric and the

complex structure on TX). Finally, we denote by (z1, . . . , zd) a system of local holomorphic

coordinates on X and by
(

∂
∂z1 , . . . ,

∂
∂zd

)
the corresponding local frame of TX.

Given α ∈Ap,q(TX), the contraction operator iα ∈Endp−1,q
(A(TX)) is defined

as follows: if in local coordinates α=∑
i αi ⊗ ∂

∂zi
and β =∑

j β j ⊗ ∂
∂zj

, then iα(β)=∑
j

(∑
i αi ∧

(
∂

∂zi
�β j

))
⊗ ∂

∂zj
, where we denote by � the contraction of forms with vec-

tor fields and by ∧ the exterior product of forms. A straightforward computation shows

that

[∂̄, iα]= i∂̄α.

Recall that A(TX) carries a natural structure of (bi)graded Lie algebra

(A(TX), [·, ·]) induced by the bracket of vector fields, cf. for instance [39]. Given α ∈
Ap,q(TX) we introduce the operators

Dα := [iα, D] ∈Endp+q
(A (TX)) and ∇α := [iα,∇] ∈Endp,q

(A (TX)) .

If iα(β)= iβ(α)= 0, in particular for all α, β ∈A0,∗(TX), the usual Cartan identities

[iα, iβ ]= 0 and [Dα, iβ ]= i[α,β] hold, moreover, since Dα = [iα,∇ + ∂̄]=∇α + (−1)|α|i∂̄α,

[∇α, iβ ]= i[α,β] ∀α, β ∈A0,∗ (TX) . (4.1)
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We show that the bilinear product

� :A0,∗ (TX)⊗A0,∗ (TX)→A0,∗ (TX) : α ⊗ β→ α � β :=∇α (β)= Dα (β) ,

defines a graded left pre-Lie algebra structure on A0,∗(TX) precisely when the hermitian

metric on X is Kähler: in this case, the associated Lie bracket is the usual one.

As well known [29], the curvature D2 ∈End2
(A(TX)) is AX-linear, thus in local

coordinates D2(
∑

j β j ⊗ ∂
∂zj )=

∑
i(

∑
j β j ∧Ω i

j)⊗ ∂
∂zi , where the two-forms Ω i

j ∈A2
X are

locally defined by D2
(

∂
∂zj

)=∑
i Ω i

j ⊗ ∂
∂zi . For the Chern connection of an hermitian man-

ifold we know moreover that the Ω i
j are (1, 1)-forms [29], thus D2 = 1

2 [∇ + ∂̄,∇ + ∂̄] ∈
End1,1

(A(TX)), and looking at the bidegrees

D2 = [∂̄,∇], 0= [∇,∇]. (4.2)

By the Jacobi identity [∇α,∇]= [[iα,∇],∇]= 0, ∀α ∈A(TX), and by the Cartan identity (4.1)

[∇α,∇β ]= [∇α, [iβ,∇]]= [[∇α, iβ ],∇]= [i[α,β],∇]=∇[α,β], ∀α, β ∈A0,∗ (TX) .

On the right hand side, we have the bracket [α, β] induced by the one of vector fields, the

pre-Lie identity (3.2) holds if this coincides with the commutator of �

[α, β]=∇α(β)− (−1)|α||β|∇β(α)= Dα(β)− (−1)|α||β|Dβ(α), ∀α, β ∈A0,∗(TX).

In other words, � is a left pre-Lie product on A0,∗(TX) if and only if D is torsion free,

but as well known [29] this is equivalent to the hermitian metric on X being Kähler. We

assume in the remainder that X is a Kähler manifold.

We notice that ∂̄ ∈Der(A0,∗(TX), [−,−]), in fact (A0,∗(TX), ∂̄, [−,−]) is the Kodaira–

Spencer dg Lie algebra controlling the infinitesimal deformation of the complex struc-

ture on X [39]. We are in the setup of Proposition 3.12, so the brackets K(∂̄)n, defined as

in (3.7), induce an L∞ algebra structure on A0,∗(TX)[−1]: we denote, as in the previous

section, this L∞ algebra by C ∗(Δ1, ∂Δ1;A0,∗(TX), ∂̄)p−Lie.

Next we recall the construction of the L∞ algebra structure on A0,∗(TX)[−1] by

Kapranov [28]. We can form a bundle of cocommutative coalgebras STX =
⊕

n≥0 T
n
X and

a bundle of Lie algebras Coder(STX) over X as in Section 2, this time working in the

symmetric monoidal category BndX of holomorphic vector bundles over X. Coder(STX)

is isomorphic to
∏

n≥0 Hom(T
n
X , TX) as a holomorphic vector bundle, where the symmet-

ric powers and the internal Hom(−,−) are taken in the category BndX. Looking at the
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Dolbeault complexes, we have

A0,∗ (Coder (STX))∼=
∏
n≥0

A0,∗ (Hom
(
T
n

X , TX
))

.

For all n≥ 0, it is defined a morphism of dg spaces

Ψ :A0,∗ (Hom
(
T
n

X , TX
))→Hom

(A0,∗ (TX)
n ,A0,∗ (TX)
)
. (4.3)

For n= 0 both the left and right hand side become A0,∗(TX) and Ψ is the identity, for n≥ 1

it sends Rn∈A0,∗(Hom(T
n
X , TX)) to the composition

Ψ (Rn) :A0,∗ (TX)
n −⊗Rn−−−→A0,∗ (T
n
X

)⊗A0,∗ (Hom
(
T
n

X , TX
))−→A0,∗ (TX)

induced by the wedge product of forms and the contraction T
n
X ⊗Hom(T
n

X , TX)→ TX.

Remark 4.1. We notice that the brackets Ψ (Rn) are A0,∗
X -multilinear in the following

graded sense:

Ψ (Rn) (α1 
 · · · 
 (ω ∧ αk)
 · · · 
 αn)= (−1)
|ω|

(
|Rn|+

∑k−1
j=1 |α j |

)
ω ∧ Ψ (Rn) (α1 
 · · · 
 αn) , (4.4)

for all α1, . . . αn∈A0,∗(TX), ω ∈A0,∗
X . �

Finally, there is a dg Lie algebra structure on A0,∗(Coder(STX)) induced by the

bundle of Lie algebras structure on Coder(STX), and it is easy to see that the various Ψ

as in (4.3) assemble to a morphism of dg Lie algebras

Ψ :
(A0,∗ (Coder (STX)) , ∂̄, [·, ·])→ (

Coder
(
SA0,∗ (TX)

)
, [∂̄, ·], [·, ·]) ,

where in the right hand side we regard ∂̄ as a linear coderivation on SA0,∗(TX).

The hermitian metric and the connections D,∇ on TX induce a hermitian met-

ric and connections, which we still denote by D and ∇, on the associated bundles

Hom(T⊗n
X , TX), n≥ 0: these are compatible and

D =∇ + ∂̄ ∈End1,0
(A(Hom(T⊗n

X , TX)))⊕ End0,1
(A(Hom(T⊗n

X , TX)))

is the Chern connection on the hermitian bundle Hom(T⊗n
X , TX), cf. [29]. Following [28], we

define a hierarchy of tensors Rn∈A0,1(Hom(T⊗n
X , TX)), n≥ 2, starting with the curvature

R2 =Ω =
∑
i, j

Ω i
jdzj ⊗ ∂

∂zi
∈A1,1 (End (TX))∼=A0,1 (

Hom
(
T⊗2

X , TX
))
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and then for n+ 1≥ 3 by the recursion

Rn+1 =∇ (Rn) ∈A1,1 (
Hom

(
T⊗n

X , TX
))∼=A0,1 (

Hom
(
T⊗n+1

X , TX
))

. (4.5)

In [28, Proposition 2.5.6], there is shown that the tensors Rn are totally symmetric in

their holomorphic covariant indices Rn∈A0,1(Hom(T
n
X , TX)), ∀n≥ 2. Moreover, by the

proof of [28, Theorem 2.6]

R= (0, 0, R2, . . . , Rn, . . .) ∈
∏
n≥0

A0,1(Hom(T
n
X , TX))=A0,1(Coder(STX))

is a Maurer–Cartan element of the dg Lie algebra (A0,∗(Coder(STX)), ∂̄, [·, ·]), that is,

∂̄ R+ 1
2 [R, R]= 0.

Finally, as Ψ is a morphism of dg Lie algebras, this implies that ∂̄ + Ψ (R) is an L∞[1]

structure on A0,∗(TX), where again we are regarding ∂̄ as a linear coderivation on

SA0,∗(TX): in fact,

1
2 [∂̄ + Ψ (R) , ∂̄ + Ψ (R)]= [∂̄, Ψ (R)]+ 1

2 [Ψ (R) , Ψ (R)]=Ψ
(
∂̄ R+ 1

2 [R, R]
)= 0.

This is the L∞[1] algebra structure on A0,∗(TX) defined in [28].

Theorem 4.2. The two L∞[1] algebra structures K(∂̄) and ∂̄ + Ψ (R) on the Dolbeault

complex (A0,∗(TX), ∂̄) are the same, that is, Kapranov’s L∞ algebra coincides with the one

we denoted by C ∗(Δ1, ∂Δ1;A0,∗(TX), ∂̄)p−Lie in the previous section. In particular, there is

an L∞ isomorphism

E : (A0,∗(TX), ∂̄)→ (A0,∗(TX), ∂̄ + Ψ (R))

e1 = idA0,∗(TX), en (α1 
 · · · 
 αn)= 1

n!

∑
σ∈Sn

ε (σ )∇ασ(1)
· · · ∇ασ(n−1)

(
ασ(n)

)
,

where in the left hand side we regard (A0,∗(TX), ∂̄) as an abelian L∞[1] algebra. �

Proof. We have to show ∂̄ + Ψ (R)=K(∂̄) := E ∂̄E−1, where the Taylor coefficients K(∂̄)n

are defined by the recursion (3.7): for n= 2

K (
∂̄
)

2 (α 
 β)=∇∂̄α (β)− [∂̄,∇α] (β)= [i∂̄α,∇] (β)− [∂̄, [iα,∇]] (β)

= (−1)|α|[iα, [∂̄,∇]](β)= (−1)|α|iα D2(β).
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In local coordinates, if α =∑
i αi ⊗ ∂

∂zi , β =∑
j β j ⊗ ∂

∂zj ,

K (
∂̄
)

2 (α 
 β)=
∑

k

⎛⎝∑
i, j

(−1)|α| αi ∧
(

∂

∂zi
�

(
β j ∧Ωk

j

))⎞⎠⊗ ∂

∂zk

=
∑

k

⎛⎝∑
i, j

(−1)|α|+|β|αi ∧ β j ∧
(

∂

∂zi
�Ωk

j

)⎞⎠⊗ ∂

∂zk
=Ψ (R2)(α 
 β).

The thesis follows inductively by comparing the recursions (3.7) and (4.5).

For all n≥ 2 the bracket K(∂̄)n is A0,∗
X -multilinear in the sense of (4.4): for n= 2

it follows by K(∂̄)2 =Ψ (R2), in general, by graded symmetry, it suffices to show A0,∗
X -

linearity in the first variable, which follows inductively by the recursive definition and

∇ω∧α (β)=ω ∧ ∇α (β) , ∀α, β ∈A0,∗ (TX) , ω ∈A0,∗
X . (4.6)

This reduces the proof of Ψ (Rn)(α1 
 · · · 
 αn)=K(∂̄)n(α1 
 · · · 
 αn) ∀α1, . . . αn∈A0,∗(TX),

n≥ 3, to the case αk= ∂

∂zik
, k= 1, . . . , n. Finally, a direct computation in local coordinates,

using (4.5), shows Ψ (Rn)
(

∂

∂zi1

 · · · 
 ∂

∂zin

)
= [∇ ∂

∂zi1
, Ψ (Rn−1)]

(
∂

∂zi2

 · · · 
 ∂

∂zin

)
for all n≥ 3,

hence by induction and (3.7)

Ψ (Rn)

(
∂

∂zi1

 · · · 
 ∂

∂zin

)
= [∇ ∂

∂zi1
, Ψ (Rn−1)]

(
∂

∂zi2

 · · · 
 ∂

∂zin

)

=−[K(∂̄)n−1,∇ ∂

∂zi1
]
(

∂

∂zi2

 · · · 
 ∂

∂zin

)

=K(∂̄)n

(
∂

∂zi1

 · · · 
 ∂

∂zin

)
. �

Proposition 4.3. Kapranov’s L∞[1] algebra structure on A0,∗(TX) is independent on the

choice of a Kähler metric up to an A0,∗
X -multilinear L∞[1] isomorphism (defined recur-

sively as in (3.9)). �

Proof. Given two Kähler metrics on X, we denote by D =∇ + ∂̄ and D′ = ∇′ + ∂̄ the

respective Chern connections and by K(∂̄) and K′(∂̄) the associated Kapranov brackets

on A0,∗(TX). There is an L∞[1] isomorphism G : (A0,∗(TX),K(∂̄))→ (A0,∗(TX),K′(∂̄)) defined

recursively as in Remark 3.14. The Taylor coefficients gn are all A0,∗
X -multilinear: by

graded symmetry it suffices to check A0,∗
X -linearity in the first variable, which follows

by induction using (3.9) and (4.6). �
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