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Abstract - The aim of this paper is to propose a real time 

classification algorithm for the low-amplitude electroencephalography 

(EEG) signals, such as those produced by remembering an unpleasant 

odor, to drive a Brain Computer Interface (BCI). The peculiarity of 

these EEG signals is that they require ad-hoc signals pre-processing by 

wavelet decomposition, and the definition of a set of features able to 

characterize the signals and to discriminate among different 

conditions. The proposed method is completely parameterized, aiming 

at a multi-class classification and it might be considered in the 

framework of machine learning. It is a two stages algorithm. The first 

stage is off-line and it is devoted to the determination of a suitable set 

of features and to the training of a classifier. The second stage, the real-

time one, is to test the proposed method on new data. In order to avoid 

redundancy in the set of features, the Principal Components Analysis is 

adapted to the specific EEG signal characteristics and it is applied; the 

classification is performed through the Support Vector Machine. 

Experimental tests on 10 subjects, demonstrating the good 

performance of the algorithm in terms both of accuracy and efficiency, 

are also reported and discussed. 

 

Index Terms— brain computer interface classification algorithm,  

electroencephalography, low-amplitude EEG signals, principal 

components analysis, support vector machine. 

 

I. INTRODUCTION 

IGNALS classification is a main issue in many different 

applications and, among them, in BCI. A BCI is a 

computer based communication system that analyses signals 

generated by voluntary neural activity of the central nervous 

system. The subject, thinking about an intention, generates 

voluntary brain signals which will be translated into 

commands for an output device. In this way it is available a 

new channel of output for the brain [1-4]. The neural 

activity useful for BCI can be measured through EEG; it 

measures the electrical activity produced by neurons either  
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by electrodes placed on the head [5] or through 

microelectrodes positioned inside the skull [6, 7]. 

Though the presence of the skull or other tissues is sources 

of noise and blurring, EEG with external electrodes is 

characterized by high temporal resolution, it is safe, not 

expensive, portable, not invasive [8] and for this reason it is 

often used for BCI.  

BCI is currently applied in different fields, ranging from 

video games to army and as a communication support for 

people with disabilities. In fact, in the last ten years BCI has 

revealed its potentialities for severely disabled and locked-in 

individuals who had very few possibilities to interact with 

the ambient and with other subjects [9-11]. 

Generally a BCI for disabled subjects is based on signals 

produced by sensory-motor rhythm amplitudes [12-14] or 

induced by external stimuli (visual [15], auditory [16-18], or 

tactile [19,20]).  Recently, attention has been addressed to 

the recognition of the emotional responses externally 

elicited by multimedia presentation; in particular, what was 

investigated in [21] was the association among music-

induced emotions and EEG.  

There are patients for whom the above mentioned paradigms 

cannot be used and who need other forms of stimulations to 

be explored. Recently, in [22] the Authors proposed a new 

promising paradigm that used the signals generated by the 

disgust produced by remembering an unpleasant odor. The 

task in [22] was alternative to the classical stimuli because: 

1) it was a self-induced stimulus voluntarily generated by 

the subject and not externally elicited; 

2) it was free from disturbs that could be caused by any 

external stimulation, being a self-induced stimulation. 

However, the signals produced by a self-induced task have 

lower amplitude compared to those produced by external 

stimulations because: 

1) the analyzed subject could lose concentration 

during the task; 

2) the signals caused by remembering a past situation 

are always lower than those produced while living 

the situation directly [23]. 

Moreover, the signals produced by a self-induced task are 

not well time-resolved. This makes the classification of 

these signals very hard.  

In literature the analysis of EEG signal is a well-established 
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field of research and the different techniques proposed 

mainly depend on the kind of signal to be analyzed and the 

information to be retrieved. For decades [24] the EEG 

signals have been interesting for their information content, 

stimulating the adaptation of signal analysis techniques to 

these particular physiological data [25,26]. 

Three main aspects must be faced when dealing with signal 

classification: the transformation to be applied to the signal, 

the choice of the features to be evaluated over the 

transformed data and the classification strategy.  

The transformation of the signal is necessary to synthesize 

and to group the useful information content of the signal. 

The feature selection and/or extraction procedures are 

referred to the identification of some signal characteristics, 

the features, necessary for the signal classification. The 

classification strategy uses the identified features of a given 

signal to establish its class of pertinence. 

Regarding the signal transformation, a time-frequency 

representation of the EEG signal, concerning two mental 

states, was obtained by a Discrete Wavelet Transform 

(DWT) in [27]; in particular a Daubechy 4 wavelet (DWT-

Db4) was applied for multiresolution analysis considering 

only levels 4 and 5.  The DWT till level 5 was used in [28], 

where it was also considered the problem of features’ 

identification by calculating the entropy, the energy and the 

standard deviation of the DWT transformed signal. In [29] 

to analyse EEG signals, first and second order spatial and 

temporal features, based on a bilinear model, were 

proposed. Among the statistical features, the mean of the 

absolute values of the coefficients of the Wavelets Discrete 

Transform in each sub-band, the average power, the 

standard deviation and the ratio of the absolute mean values 

of adjacent sub-bands were mostly used [30]. 

The problem of reducing data dimension and facilitating 

features identification may be addressed by considering the 

Principal Components Analysis (PCA), the Independent 

Component Analysis (ICA) and the Linear Discriminant 

Analysis (LDA) [30]. In [31] an efficient algorithm based on 

PCA was proposed and it inspired part of the procedure 

adopted in this paper. 

The classification strategy is used to assign a given signal to 

a specific class. An efficient method for the classification of 

the EEG signals is the Support Vector Machines (SVM) 

[32,33] that take as input the features in order to classify the 

given signals. 

 Generally the SVM are applied as a binary classifier, but 

they can be extended for multi-class classifiers as in [34] 

and in [35] where multilayer perceptron neural network, 

probabilistic neural network and multiclass support vector 

machines were considered for EEG signals. 

The paradigm proposed in [22] allowed the construction of a 

binary BCI in the class of affective BCI, based on the 

measurement of one of the emotions, the disgust, produced 

by remembering an unpleasant odor. It was presented a 

specific classification method, based on the short time 

Fourier Transform. The method was simple and effective in 

classifying binary data (“disgust” compared to “relax”), but 

it was based on a simplifying assumption: only the channels 

located in the right hemisphere of the brain were considered 

and averaged together in order to improve the signal quality.  

The aim of this paper is to propose an alternative 

classification strategy for the paradigm proposed in [22]. 

There are many reasons to explore a different strategy: 

1) to improve the classification accuracy and to obtain 

a robust classification; 

2) to generalize the strategy by considering all the 

recorded signals (this is particularly important to  

increase the cardinality of the alphabet, if new 

emotions would be added, and to study the 

relationship between signals and features 

corresponding  to different channels); 

3) to improve spatial resolution; 

4) to propose a minimal subset of features and 

channels in order to design a minimal helmet 

configuration for the proposed task. 

In what follows, the EEG signal classification problem is 

addressed by considering the peculiarity of low-amplitude 

signals: the particular aspects of signal processing, analysis 

and classification were pointed out exploring and adapting 

strategies like the Wavelet Transform, the PCA and the 

SVM. The method was applied to the signals generated by 

the disgust produced by remembering an unpleasant odor. 

The procedure was a 2-steps one. First the signals 

(belonging to a training set) were suitably filtered, a set of 

features was extracted, the more informative ones were 

selected, and an ad hoc classifier was tuned by applying the 

SVM method. The first step was concluded by performing 

the validation of the optimized classifier on a specific 

dataset. The second step, an on line one, was the application 

of the obtained classifier to new, real-time, data (in our tests 

it was applied to the test set). The classification method 

proposed therein was tuned on low-amplitude EEG signals, 

as those generated by a self-induced stimulus. 

The paper is organized as follows. In Section 2 the 

acquisition system, the signal processing strategy and the 

classification method are described; the numerical results 

are presented in Section 3; conclusions and future work are 

outlined in Section 4.  

II. MATERIALS AND METHODS 

The first step of the experimental process was to collect the 

EEG signals produced by the self-induced stimulation of the 

disgust produced by remembering an unpleasant odor.  

Being the resulting signals produced by a self-induced task, 

they were weaker than those produced by external 

stimulation and the first operation that had to be applied was 

a pre-filtering one in order to improve the signal quality by 

preserving only the useful information. To this purpose a 

Wavelet Transform was applied with the selection of the 

characterizing signal structures related to the proposed task. 
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After preprocessing, a set of features was computed on the 

resulting signals and, to avoid redundancy, a PCA features’ 

selection was applied. On the reduced set of features the 

Support Vector Machines technique was applied to obtain 

the classification. Figure 1 shows a block diagram 

synthesizing the overall procedure that will be described in 

the next subsections. 

 

 

 
Fig.1. Block diagram of the classification procedure. Note that steps #1 and 

#2 were executed in sequence and not in parallel. Moreover, note that the 

on-line stage could use the test set (whose labels were known) or a new 

unknown (on-line) signal.  

2.1 The acquisition procedure 

The experimental protocol consisted in a combination of 

two different tasks: one produced by self-induction of the 

disgust derived by remembering an unpleasant odor 

(identified as task #1, or concentration); the other produced 

by relaxing or any other brain activity except task #1 

(identified as task #2, or relax).  

In order to collect data, each examined subject was sat in a 

comfortable armchair with the arms lying relaxed, in a quiet 

and lit room. The experiment consisted in showing a 

sequence of symbols “↓” or “+”, each presented for 3.6 

seconds on a screen. All the examined subjects were 

previously informed that when they saw “↓” they had to 

concentrate on the unpleasant odor producing the disgust; 

whereas when they saw “+” they had to relax. The stimulus 

or the relax tasks had to be maintained until the symbol 

changed. During this time, the EEG signals were recorded. 

The order of presentation was random but the number of 

symbols “↓” was equal to the number of symbols “+”. 

Anonymous symbols were used only to synchronize the 

tasks, but not to elicit any mental state. The subjects 

received instructions through the projection of a short video, 

on the modality and duration of the experiment. In addition, 

at the end of the experiments, the subjects were asked to 

yield a feedback, by filling a form, about their difficulties in 

concentrating during the session.  For more details please 

refer to [22].  

Two sequences, each containing 100 trials (50 trials for each 

class, where a class was associate to “↓” and another to “+”) 

were recorded for each subject. In each sequence the trials 

of the two classes were mixed in a random order and 

executed without interruptions for 6 minutes.  

The system used to record the EEG was EnobioNE® 

(http://www.neuroelectrics.com/enobio), a precise and 

robust 8 channels (two more channels were used one as 

reference and another for ground) wireless EEG equipment 

that uses a neoprene cap to fix the channels in the desired 

brain locations. Thanks to the supporting software, the 

channels can be dynamically associated to variable locations 

in the international 10-20 positioning system [36]. The 

positions we used were: P4, C4, T8, P8, P3, C3, T7 and P7 

(Figure 2).  

Dry copper electrodes (coated by a silver layer) fastened to 

the cap helped to ensure the contact with the subject’s scalp. 

The electric conduction was ensured by contact: the 

electrodes terminated with a circular disposition of contact 

tips to pass through the hair. For reference and ground 

channels, located just behind the right ear in an area where 

the skin was free, the fastening strategy was ensured by 

adhesive, disposable, flat gel-containing connectors to 

whom the electrodes were plugged in. Main characteristics 

of EnobioNE® were: amplitude resolution of 24 bits (0.05 

uV); sampling rate of 500 Hz; low-pass filtering between 1 

Hz and 46 Hz. Data were analyzed and classified by a 

specific algorithm (described herein) implemented in 

Matlab®. The signals were directly captured through the 

BCI2000 software that contains the utilities to acquire and 

to process them. 
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Fig.2. International 10-20 positioning system.  The used channels are in 

bold. 

 

2.2 Signal processing: wavelet decomposition and features’ 

selection 

To test the rule and the importance of each signal 

corresponding to a specific channel, the analysis was 

performed on the data of all the channels separately, even if 

the verification of the efficacy of the classification was 

performed in all the channels (see Fig.1 and below).  

The proposed classification method was divided in two 

steps. First, a set of collected signals was used for 

calibration. This off-line stage allowed the identification of 

the most predominant features referring to the two distinct 

conditions, the one due ‘activation’ (task #1) and the other 

due to ‘relax’ (task #2), considering that the class of a given 

signal was known in advance. The second step was the on-

line classification of a signal whose pertinence to the task #1 

or #2 was unknown in advance.  

A set of N trials was considered for all the analyzed 

subjects. Each trial consisted of a set of signals collected 

contemporary by all the considered channels for a given 

time interval. At this moment the N trials were divided into 

two sets, trN  used for the training and testN  used for the 

test. The only attention paid in this partition was using the 

same number of trials of the two different classes within 

each group; this shrewdness was motivated by the aim not to 

polarize the training in one sense or in another.  

A suitable wavelet transformation was applied on each trial 

[37]. For EEG data different wavelet functions could be 

considered. It has been demonstrated that orthogonal 

wavelet transformations are particularly useful in analyzing 

brain signals for their capability in separating different 

frequency bands [38], and for their de-noising effects, as 

pointed out in [39]. In the present case the Meyer wavelet 

was chosen: it is an orthogonal symmetric wavelet, 

infinitely differentiable and with infinite support.  

The wavelet transformation represents the similarity 

between the analyzed signal and the wavelet function  : 

  

n

jjjj
d nknskC 2)(2)2,2( 2/   

It decomposes the signal in the approximation and in the 

detail coefficients. 

The choice of the decomposition level depends on the band 

of frequencies of interest. More precisely, assuming a 

sampling frequency of 500 Hz (the sampling frequency of 

the EEG system used for the experiments), and therefore the 

presence of frequencies in the signal up to 250 Hz, at the 

-level of a dyadic decomposition the approximation CA  

contains frequencies in the band 







2

250
,0 Hz, whereas the 

detail CD  yields information in the band 







12

250
,

2

250


Hz. 

The reconstructed signal 
recs  may be represented as 

follows: 

 










1i

i
rec CDCAs . 

 

The dyadic wavelet decomposition was used to select and 

retain only specific frequency bands of the original signal 

before skipping to the following step of the classification 

method.  

After wavelet filtering, features calculation and selection 

were performed.  

To this aim, by considering a generic subject and a generic 

channel among those measured, let us denote with 

Nisi ,...,1,   the i-th trial.  

The aim was to classify each trial as referring to the task 

#1 or to the task #2. As stated above, each trial was 

measured during a defined time interval. In theory, the time 

interval could be chosen short enough (as will be clarified 

below, the information of interest could be contained in a 

short time-window of signal of the duration of about 0.5 

sec), having also ensured that the subject maintained his 

concentration during the whole time interval. However, if 

the trial duration was too short, the subject could not have 

enough time to concentrate on the task and/or the 

classification algorithm could not have enough information 

to come to the right decision, due to the low amplitude of 

the signals (being weak signals, it was necessary to improve 

their sensitivity also by increasing the interval of 

measurement). The adopted strategy was using an interval 

of measurement of 3.6 seconds for each trial in order to 

break the signal into pieces and average them together (see 

below). At the same time, we implemented a strategy for 

discarding pieces of the signals where useful information 
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were absent, for example, because of the subject’s loss of 

concentration.   

To this aim, each trial is , consisting of a number   of 

samples corresponding to a record of sN  seconds, was 

divided into q  sub-trials qhsih ,...,1,   of qN seconds, 

corresponding to   samples, with an overlapping factor of 

p elements (Fig.3). 

 

 
Fig.3 Trial division in q sub-trials. p represents the number of overlapping 

points between consecutive sub-trials. 

 

Regarding the trials in the trN  set, a set of fN  features 

was computed in each sub-trial. 

Given a subject, a trial and a channel, the matrix of features 

F was defined as follows: 

  fu NqufF ,...,1,...,1,    

 where the element uf , qu ,...,1 , fN,...,1 , was the  

th  feature f  of the thu   sub-trial. Therefore the 

matrix of features for each trial had dimension fNq  .  

To avoid noisy sub-trials of signals, among the q  sub-trials 

it would be recommendable to recognize the values of the 

features that could be assumed as “singular” and discard the 

sub-trials generating these “noisy” feature values. To this 

aim in each trial the sum of the absolute values of the 

differences among one feature and the others, of the same 

type, was computed as follows: 

qhffd

q

j

jhh ,...1,

1




                                       

thus obtaining the matrix  
fNqhdD


   of differences. 

For each column of this matrix D only the r smaller values 

were preserved and the corresponding features hf  were 

collected in the matrix reducedF  of dimension .fNr   This 

means that in the trial, for a given type of feature, among the 

values of the feature evaluated on the q  sub-trials, rq

values with significant difference among each other were 

disregarded as effect of “noise”.  

Finally, for each fN,....,1 , the mean value of these r  

features was evaluated obtaining a unique value for each of 

the fN  features (this operation “integrates” the information 

contained in the remaining useful sub-trials). Therefore, for 

each trial i  a vector of the fN  features )( 21 fiNii fff   

was available. The vector of features for each trial had 

dimension fN1 .  

This procedure was applied to all the trials; to obtain 

comparable data, within each trial the elements of the 

features vector were normalized. More precisely, for each 

fNj ,....,1  the new elements of the vector of features of 

the i-th trial were:  

 

ff

f

Nj

ij

Nj

ij

Nj

ijij

norm
ij

ff

ff

f











11

1

)min()max(

)min(

 

 

Therefore for each kind of feature, the data that we 

classified were the fN  normalized features, one for each 

trial, of the set trN . The matrix  
fNtrN

norm
ijfF


  of the 

normalized features had dimension ftr NN  .  

The procedure of features selection, using the PCA, was 

inspired by [31]. First, the PCA evaluated the correlation 

matrix cF  of F ; the eigenvalues fi Ni ,...,2,1,   of cF  

along with the principal components coefficients jiW ,

fNj ,...,2,1  (i.e. the components of the corresponding 

eigenvectors iV ) were computed. The larger c  eigenvalues 

and the corresponding eigenvectors were retained. The other 

neglected eigenvectors were considered as noise or 

redundant information. 

By considering only the first c  principal components, the 

percentage of the retrieved information was given by: 

100

1

1 









fN

i

i

c

i

i

cP





.                                     (1) 

For each of the considered principal components, the two 

most significant features were considered, i.e. the features 

with higher weights jiW , thus providing robust information. 
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A rationale in the choice of c  must be 2/fNc  . If, 

among the features with the higher weight, there was a 

repetition, it was considered the next one. 

A set of c2  features for each of the considered channels 

(P4, C4, T8, P8, P3, C3, T7 and P7) was selected as output 

of the PCA features’ selection: the selected features could 

be different for different channels.  

Once for each channel the c2  features were selected and 

validated (see next Subsection), they were evaluated also on 

the set testN , by repeating the procedures for sub-trials 

elimination and features integration used for the trN  trials.   

 

2.3 Training, validation and classification  

Once the number of features was reduced, the SVM was 

applied to determine the optimal hyperplane in order to split 

the data into two groups and allocate each trial to task #1 

(activation stage) or to task #2 (relaxing stage). The optimal 

hyperplane was obtained as a tradeoff between the 

requirement of maximizing the Euclidean distance between 

the closest points and the requirement of minimizing the 

error on misclassified points [40, 41]. A penalty parameter 

H>0 on the error term was introduced.  

The optimal separating hyperplane was obtained by solving 

the following Quadratic Programming Problem: 



i

i
T

bw
Hww 

 2

1
min

,,
                        (2) 

with the constraint: 

  0,1  iii
T

i bxwy  ,                    (3) 

where w was the vector of the points perpendicular to the 

separating hyperplane, ix  was the i -th c21  normalized 

features’ vector and  1,1jy  was the label that expressed 

the class to which ix  belonged. Then, 1jy  if jx  

corresponded to a stimulus situation (task #1) and 1jy  if 

jx  represented a relax one (task #2). 

In order to make the elements ix  of the two classes linearly 

separable, the data were mapped into a richer space (the 

“feature space”) by using a function  , and the separating 

hyperplane was determined in that space. Different choices 

for the function   were possible by considering a kernel 

function K . The radial basis function was assumed in this 

paper: 

2

2

2

2
)()(),(




ji

j

T

iji

xx
xxxxK


         (4) 

where 
2
  represented the 2L -norm. The two parameters 

to evaluate, H and  , could be determined by using the 10-

fold cross validation, [41]. The classification was performed 

through the SVM algorithm LIBSVM 3.18, [42]. 

More precisely, the data of the training set trN  were split 

into two sets, 1trN  and 2trN . The first one was used to 

train the SVM, searching the parameters H  and   on a 

grid and yielding the accuracy values of the training  

(generally, after this step, the test could be performed). In 

the present application, due to the specific nature of the data 

to be classified (features from signals with low-amplitude), 

two classifiers were validated on the set 2trN . The used 

classifiers were those yielding the larger accuracy to 

determine the best couple (
*H ,

* ) over this new set of 

data ( 2trN  was not used in the training phase where just the 

set 1trN was involved). This procedure was repeated for 

each channel. After the determination of the best classifiers 

on the set 2trN , one for each channel, the list of classifiers 

was accepted if the percentage of success (the parameter 

Acc in Fig.1)  was above 80% in at least one channel. 

Otherwise the set trN  had to be integrated by collecting 

new data (Fig. 1). The reason behind this choice is that, 

having supposed that the activation task was effective, at 

least one area of the brain had to be active during the signals 

acquisition (in the same way, the non-activation of other 

areas of the brain justified the presence of classifiers with 

low accuracy in some channels). For this reason, if the 

accuracy was below 80% in all channels, for a binary 

classification, we considered the training set too poor to 

instruct correctly the machine (the signal-to-noise-ratio was 

low and more signals had to be used for training). In those 

channels where accuracy remained below 80%, because the 

activation was too weak and no significant differences 

occurred between the two tasks, an optimal classifier could 

not be found and the test was not performed.  

The obtained classifiers were then tested on the test set 

,testN whose true labels were known, by evaluating the 

percentage of success, i.e. the ratio between correct 

classifications over the total number testN . Note that the 

classification accuracy considered the percentage of data 

correctly classified with the optimal choice (
*H ,

* ) and it 

represented a property of the classifier evaluated over the 

training set, whereas the percentage of success was 

evaluated over the test set testN .  

 

3 NUMERICAL RESULTS 

The proposed algorithm was applied to a set of EEG signals 

collected from ten healthy subjects, Mi, i=1,2,…,10. Two 

sequences, each containing 100 trials (50 trials for each 

class, where a class was associate to “↓” and another to 

“+”), were recorded for each subject. The order of execution 
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of the two sequences was alternated (first sequence from the 

first subject; first sequence from the second subject; … ; 

first sequence for the last subject; second sequence for the 

first subject; second sequence for the second subject; … ; 

second sequence for the last subject) with 24 minutes of 

interruptions between subjects (for preparation of the 

following subject). In this way, each subject experienced a 

resting period of about 5 hours between the first and the 

second experiment.  

 For the same subject, data allowing to the two different 

tests were grouped in a single group of N=200 trials. Each 

trial consisted of 1800  elements, corresponding to a 

record of sec6.3sN ; each trial was divided into 7q  

sub-trials, corresponding to 300 elements including the 

overlapping segments. This number was chosen to point out, 

if present, significant features in the different parts of the 

signal. Consecutive sub-trials had an overlapping segment 

of 50p samples, corresponding to sec1.0 : the 

overlapping segment helped to avoid the exclusion of useful 

information that might be present on the tails of the sub-

trials.    

As shown in Fig.1 and explained in Section 2, the algorithm 

was based on splitting the data into two main sets, the 

120trN , used for the training phase, and 80testN , used 

for the test. We wanted to be sure that the specific division 

of the data into these sets wouldn’t influence the final result. 

For this reason, we considered different random choices 

assuming only the constraint of using the same number of 

trials in both classes (stimulus/not stimulus) and all the 

results proposed in this paper were obtained as the mean 

value of all the performed analyses.   

In [22] the relevant information for the self-induced 

stimulus of disgust was in the interval 30-42 Hz and, to 

confirm the activation of the memory, also in the interval 8-

12 Hz. The frequency band is relevant when a subject is 

concentrating to any task, and not specifically to the self-

induced stimulus considered in this paper. Therefore, a level 

3 Meyer wavelet decomposition was assumed and the 

detail 3CD  was considered thus retrieving the information 

of interest of this specific stimulus into the interval 30-42 

Hz. 

From the detail signals 3CD  a set of features was chosen: 

the mean and the median values, 1f  and 2f  respectively, 

the mode 3f  (i.e. the most frequent value in a sub-trial), 

the largest and the smallest elements, 4f  and 5f  

respectively, the range 6f  of the values and their standard 

deviation, the mean value 8f  and the median 9f  of the 

absolute value of the  difference between the vector and its 

mean value, the sum 10f  of all the elements, the norm 11f  

and the maximum value 12f . The considered features were 

the most common in the relevant literature [43-45]. To 

determine the matrix reducedF  of dimension fNr   the 

value 4r  was assumed; therefore the 3 sub-trials, 

corresponding to about 1.5sec, with higher differences from 

the others were disregarded. This choice was rather 

conservative, but reasonable if we consider that a subject 

could experience difficulties to keep focused. In order to 

reduce the number of features useful for the classification, 

we applied PCA and assumed 2c . In fact, by applying 

Eq. (1) to the available data of the ten considered subjects, 

the choice 2c represented a good compromise between 

the performance improvement and the reduced complexity. 

Thus, for each channel a set of 42 c features was 

considered, as suggested by robustness arguments in 

Subsection 2.3. 

The four selected features for each subject S and each 

channel Ch were reported in Table 1. 

 

Table 1: Features selected through the PCA by considering the first two 

Principal Components. Note that the selected features were the same in the 

different random choices of the training sets, but changed for different 

channels of the same subject. 
S Ch 

P4 

Ch 

C4 

Ch 

T8 

Ch 

P8 

Ch 

P3 

Ch 

C3 

Ch 

T7 

Ch 

P7 

M1 

117

53

;

;

ff

ff

 

129

61

;

;

ff

ff

 

108

53

;

;

ff

ff

 

108

53

;

;

ff

ff

 

126

21

;

;

ff

ff

 

76

53

;

;

ff

ff

 

129

83

;

;

ff

ff

 

117

53

;

;

ff

ff

 

M2 

1211

75

;

;

ff

ff

 

108

53

;

;

ff

ff

 

117

21

;

;

ff

ff

 

108

53

;

;

ff

ff

 

117

53

;

;

ff

ff

 

108

53

;

;

ff

ff

 

1210

84

;

;

ff

ff

 

117

53

;

;

ff

ff

 

M3 

107

53

;

;

ff

ff

 

117

21

;

;

ff

ff

 

108

53

;

;

ff

ff

 

108

51

;

;

ff

ff

 

108

53

;

;

ff

ff

 

117

53

;

;

ff

ff

 

108

53

;

;

ff

ff

 

108

52

;

;

ff

ff

 

M4 

127

53

;

;

ff

ff

 

129

61

;

;

ff

ff

 

117

21

;

;

ff

ff

 

105

31

;

;

ff

ff

 

108

53

;

;

ff

ff

 

87

63

;

;

ff

ff

 

129

83

;

;

ff

ff

 

118

53

;

;

ff

ff

 

M5 

105

31

;

;

ff

ff

 

105

31

;

;

ff

ff

 

108

53

;

;

ff

ff

 

108

53

;

;

ff

ff

 

53

21

;

;

ff

ff

 

87

53

;

;

ff

ff

 

1210

93

;

;

ff

ff

 

117

52

;

;

ff

ff

 

M6 

1211

75

;

;

ff

ff

 

117

21

;

;

ff

ff

 

118

53

;

;

ff

ff

 

129

63

;

;

ff

ff

 

129

61

;

;

ff

ff

 

117

63

;

;

ff

ff

 

129

83

;

;

ff

ff

 

117

53

;

;

ff

ff

 

M7 

1211

75

;

;

ff

ff

 

108

53

;

;;

ff

ff

 

117

21

;

;

ff

ff

 

87

53

;

;

ff

ff

 

108

53

;

;

ff

ff

 

76

53

;

;

ff

ff

 

129

85

;

;

ff

ff

 

117

43

;

;

ff

ff

 

M8 

1211

73

;

;

ff

ff

 

129

61

;

;;

ff

ff

 

117

53

;

;

ff

ff

 

129

65

;

;

ff

ff

 

126

21

;

;

ff

ff

 

87

53

;

;;

ff

ff

 

1211

83

;

;

ff

ff

 

117

52

;

;

ff

ff

 

M9 

1211

75

;

;

ff

ff

 

129

61

;

;

ff

ff

 

108

53

;

;

ff

ff

 

129

61

;

;

ff

ff

 

126

21

;

;

ff

ff

 

126

53

;

;

ff

ff

 

129

83

;

;

ff

ff

 

128

53

;

;

ff

ff

 
M10 

1211

73

;

;

ff

ff

 

108

53

;

;

ff

ff

 

117

21

;

;

ff

ff

 

87

53

;

;

ff

ff

 

126

53

;

;

ff

ff

 

115

32

;

;

ff

ff

 

129

75

;

;

ff

ff

 

117

53

;

;

ff

ff
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At a first glance the sets of features selected by the PCA 

were different both among different channels in the same 

subject and among the same channel in different subjects, 

but some features were selected more frequently than others, 

as we will discuss later. 

For the classification, given the low number of features, the 

adopted kernel function was the previously recalled RBF 

(Eq. 4); this was generally assumed as the reasonable first 

choice, more general and versatile than linear kernel.  

As already said, the two parameters H and   were 

determined by using the 10-fold cross validation and the 

classification was performed by LIBSVM 3.18, that 

provided also the optimized values for parameter b .  

In Subsection 2.3 it was described the adopted procedure for 

the training; as far as the two sets 1trN and 2trN  they were 

chosen in the percentage of 60% and 40% respectively of 

the training set trN .  

To evaluate the goodness of the obtained classifiers the 

mean training accuracy Ta (in %) was considered (Table 2) 

as the average value of the accuracy calculated for twenty 

different random choices of the training sets. The optimal 

values for H
*
 and α

*
 were also reported. 

 

Table 2:  H*, α* and test accuracy of the classifiers obtained for the ten 

considered subjects.  

S  SVM 

P4 

SVM 

C4 

SVM 

T8 

SVM 

P8 

SVM 

P3 

SVM 

C3 

SVM 

T7 

SVM 

P7 

M1 H* 30 0.01 0.01 22 20 20 20 28 

α* -20 2 0.01 -16 -2 -2 -2 16 

Ta 92.4 87.2 100 89.1 80 77.1 92.6 67.2 

M2 H*
 -20 30 4 14 22 8 -20 0.01 

α*
 4 -10 -6 -8 -6 -4 -6 4 

Ta 87.5 52.5 100 61.7 62.5 72.5 82.7 75 

M3 H*
 -18 24 0.1 12 20 6 -10 12 

α*
 4 -4 -6 -2 2 -2 -4 -2 

Ta 92.5 72.4 100 68.5 72.5 63.9 84.7 50.2 

M4 H*
 -28 4 0.2 16 10 8 -10 10 

α*
 2 -4 -6 -4 2 0.01 -6 -2 

Ta 80.5 60.4 98 74.6 57.5 52.3 68.7 90 

M5 H* -20 10 0.1 12 0.01 6 -6 0.01 
α* 4 -4 -6 -16 2 2 -4 -2 
Ta 84.2 88.2 96 80.5 54.3 54.7 92.7 73 

M6 H* 0.01 2 10 16 20 0.01 -10 10 
α* 2 -2 -4 0.01 4 2 -2 0.01 
Ta 82.6 70.2 96 84.1 45.6 80.5 90.7 94 

M7 H* 30 0.01 10 22 10 0.01 10 26 

α* 0.01 0.01 -4 2 -6 2 2 4 

Ta 98 100 96 98 80 96 100 98 

M8 H* 20 0.01 4 10 20 10 10 16 

α* -20 0.01 2 -16 2 0.01 -2 2 

Ta 96 96 98 100 85 98 100 100 

M9 H* 30 0.01 0.01 12 20 20 20 16 

α* -20 2 0.01 -8 -2 -2 0.01 4 

Ta 88 75.2 94.4 88.1 73.2 70.6 91.2 69.2 

M10 H* 20 8 0.01 10 2 30 4 0.01 

α* 4 0.01 4 0.01 0.01 -2 -4 0.01 

Ta 64 85.1 98 88.4 45.3 60.1 94.8 81.5 

 

For all the analyzed subjects, the first considered training set 

allowed to obtain an accuracy value above 80% in at least 

one channel. 

The obtained classifiers were tested on the features of Table 

1 selected from the signals of the set testN and the 

percentage of success was determined and reported in Table 

3. The results relative to the examined subjects were 

presented separately for the considered channels. The results 

were computed as the average among the ones obtained 

considering the twenty different random choices of the 

training sets; also the standard deviations were shown.  

The percentage of accuracy was evaluated on the 2trN  set, 

whereas the performance of the classifier was calculated on 

the test set testN .  

 

Table 3: Results of the test for each subject and for all the significant 

(active) channels; the percentage of success (obtained as mean values in the 

different random choices of the sets trN and testN ) along with the standard 

deviations were reported.  Note that cells were empty for all channels 

whose accuracy was below 80% (insignificant, inactive, channels). 

S Ch 

P4 

Ch 

C4 

Ch 

T8 

Ch 

P8 

Ch 

P3 

Ch 

C3 

Ch 

T7 

Ch 

P7 

M1 91.1 

±0.3 

84.4 

±1.5 

98.8 

±0.8 

90 

±3.2 

76.1 

±5.4 

_ 92 

±1.5 

_ 

M2 84.2 

±3.9 

_ 89.1 

±6.5 

_ _ _ 83.2 

±5.3 

_ 

M3 94.7 

±3.4 

_ 95.3 

±2.4 

_ _ _ 82.6 

±3.4 

_ 

M4 81.1 

±4.3 

_ 96.8 

±3.4 

_ _ _ ___

_ 

87.2 

±5.3 

M5 82.5 

±3.3 

85.8 

±4.8 

95.8 

±2.4 

82,2 

±2.2 

_ _ 89.6 

±3.3 

_ 

M6 81.7 

±2.1 

_ 95.6 

±2.6 

82.2 

±1.1 

_ 80.2 

±3.2 

88.6 

±4.1 

_ 

M7 _ 94 

±2.2 

93.3 

±3.4 

_ 80.3 

±5.5 

_ 92.6 

±3.5 

_ 

M8 80.8 

±6.4 

_ 95.5 

±3.2 

85.4 

±2.4 

_ 82.8 

±4.8 

87.6 

±3.8 

_ 

M9 _ _ 92.0 

±4.4 

_ _ _ 86.6 

±4.8 

_ 

M10 _ 82.3 

±3.2 

96.1 

±3.2 

84.4 

±2.8 

_ _ 92.6 

±3.8 

82.6 

±3.8 

 

 

By comparing the results obtained by the subjects and 

shown in Table 3, it could be noticed that the highest values 

of average percentage of success were obtained in the right 

hemisphere of the brain and in particular for the channel T8 

(this channel was active in all the considered subjects), as 

could be observed by averaging inter-subjects data and 

maintaining distinct information for the channels. Moreover, 

the useful results in the right hemisphere were generally 

very close to the chosen threshold. On the other hand, T7 

(left hemisphere) had also significant accuracy in almost all 

subjects but it was more isolated compared to its closer 

channels.  

Regarding the computational time the algorithm, 

implemented in Matlab® on a personal computer (Intel(R) 

Core(TM) i7-4790 CPU @3.60 GHz 3.60 GHz RAM: 16,0 

GB) took 81 minutes for processing all the trials used for the 

calibration step, including both training and validation   (120 
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trials), 2.2 minutes for the test (80 trials), and 
4104.5  sec. 

for a single trial processing (on-line). 

Though the time necessary to process a single trial during 

the test was very low, almost real-time, the reduction of the 

computation time could be very important for the calibration 

step. At a first glance, by using the previously discussed 

classification results, we could reduce the computation time 

by a factor of 8 by using only information of the channel T8 

(this could allow the use of a EEG helmet with only one 

electrode). 

In the same direction, the computational efficiency could be 

further improved by considering only the features that best 

characterized the signals. From Table 1 it could be 

appreciated that the couple of features 3f  and 5f  was 

selected more often than the others. 
With the aim of investigating the importance of these 

features for the classification success, we trained and tested 

a classifier using only the two features (and only the active 

channels of Table 3). The obtained results were shown in 

Table 4.   

 

Table 4: Average and standard deviation percentage of classification 

success using only the features 3f  and 5f  in the active channels of Table 

3. Note that the values of accuracy in the active channels were indicated 

also if the accuracy was below 80%. 

S Ch 

P4 

Ch 

C4 

Ch 

T8 

Ch 

P8 

Ch 

P3 

Ch 

C3 

Ch 

T7 

Ch 

P7 

M1 90.2 

±1.1 

82.7 

±2.7 

98.2 

±0.6 

88 

±2.7 

72.1 

±4.7 

_ 89.4 

±1.1 

_ 

M2 74.7 

±7.9 

_ 86.1 

±3.6  

_ _ _ 73.2 

±4.8 

_ 

M3 91.2 

±4.6 

_ 93.6 

±2.7 

_ _ _ 81.6 

±3.3 

_ 

M4 65.4 

±8.1 

_ 94.2 

±3.1 

_ _ _ _ 82.1 

±6.9 

M5 70.5 

±8.3 

82.8 

±7.1 

94.6 

±2.8 

72.7 

±5.1 

_ _ 86. 

±4.9 

_ 

M6 71.3 

±8.7 

_ 95.2 

±3.4 

81.3 

±2.1 

_ 71.3 

±5.1 

85.7 

±4.3 

_ 

M7 _ 91.0 

±3.2 

92.5 

±3.8 

_ 71.3 

±6.7 

_ 90.2 

±3.8 

_ 

M8 72.1 

±8.4 

_ 92.0 

±3.8 

83.7 

±3.9 

_ 70.9 

±6.8 

88.3 

±5.1 

_ 

M9 _ _ 90.0 

±4.7 

_ _ _ 82.4 

±6.2 

_ 

M10 _ 80.6 

±5.0 

93.4 

±4.3 

81.7 

±4.6 

_ _ 88.2 

±5 

70.9 

±6.3 

 

By considering all the subjects, the results shown in Table 4 

agreed with the ones obtained using all the features selected 

by the PCA; in all the subjects, the channel that provided the 

highest percentage values of classification success continued 

to be the channel T8. Since we aimed at testing the 

significant channels with only two features, we reported the 

accuracy results also where they were lower than 80%. 

However, the channel T8 remained above 80% in all the 

tested subjects. These results confirmed that the features 

selected by PCA were the most significant for signal 

classifications and allowed to consider an even smaller 

number of features with a further reduction of computation 

time, thus making negligible also the time required for 

calibration (about 90sec, by considering just T8 and the 

couple features 3f  and 5f ).  

3.1 Comparison with previous works 

As stated in the Introduction section, the self-induced 

stimulus of disgust has been proposed for the first time in a 

recent paper [22] where also a classification strategy was 

implemented. Despite the methodological differences, the 

two classification approaches provided very similar results, 

in both classification accuracy and computational efficiency, 

by considering as distinct all the channels in the method 

proposed therein. However, the machine learning method 

proposed herein has the following advantages compared to 

[22]: 

1) it was able to highlight the activation differences 

between channels, thus obtaining a better spatial resolution 

than [22], as the latter considered the average among all 

the channels in the right hemisphere; 

2) it demonstrated the possibility of using only one channel 

(T8) in the classification to obtain an average accuracy that 

was above 90% (a minimal helmet could be constructed, 

with only one channel, to distinguish “disgust” from 

“relax”); 

3) as a consequence of point 2) it could improve 

computational efficiency (the processing time could be 

reduced by a factor of 8); 

4) as a consequence of point 1), it could allow the 

discrimination of a greater set of emotional states compared 

to [22]. 

The present method could also be improved along the 

following directions: 

a) it could eventually improve the classification accuracy by 

combining the information coming from more than just a 

single channel; 

b) it could be generalized by searching different activation 

patterns for different activation stimuli, if more activation 

tasks would be implemented. 

These aspects, being rather demanding (in particular, point a 

would require that all possible combinations of groups of 

channels are explored and analyzed), will be the objects of 

future investigations. 

 

4 CONCLUSIONS 

In this paper it was presented a fully automatic real time 

algorithm for the classification of low amplitude EEG 

signals (the disgust self-induced by remembering an 

unpleasant odor).  

The signals were classified by a two stages algorithm: the 

first one was an off-line stage, aiming at the training of a 

suitable classifier whose input was the set of selected 

features; the second stage was the application of the 

classifier to new data. The specific considered signals 

required the use and the adaptation of mathematical tools 

like Wavelet Signal Decomposition theory, Principal 

Components Analysis and Support Vector Machine. The 

specific decomposition level to be considered depended on 
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the frequency of interest; in theory the proposed method 

allowed also to detect the frequency bands interested by a 

particular stimulus. The procedure, applied to real data 

coming from 10 different subjects, yielded satisfactory 

results in both accuracy and efficiency. Furthermore, the 

predominance of the right hemisphere in revealing the 

stimulus, and specifically of the channel T8, was confirmed. 

Ongoing work will be done in the following directions: 

- to merge the results obtained from single channels 

in order  to improve the classification accuracy; 

- to study a minimal headset device (minimally 

cumbersome) to implement a robust binary BCI; 

- to enlarge the number of different emotional states; 

- to apply the proposed procedure to data coming 

from subjects affected by severe disabilities by 

using an adapted single channel device. 
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