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Abstract In several economical, statistical and geographical applications, a ter-
ritory must be subdivided into functional regions. Such regions are not fixed and
politically delimited, but should be identified by analyzing the interactions among
all its constituent localities. This is a very delicate and important task, that often
turns out to be computationally difficult. In this work we propose an innovative
approach to this problem based on the solution of minimum cut problems over an
undirected graph called here transitions graph. The proposed procedure guaran-
tees that the obtained regions satisfy all the statistical conditions required when
considering this type of problems. Results on real-world instances show the effec-
tiveness of the proposed approach.

Keywords Functional Regionalization ·Min-Cut problem · Local Labour Market
Areas · Territorial Districting

1 Introduction

Unlike administrative regions, that have been politically delimited and are, more
or less, fixed, functional regions are defined over a territory or a geographical area
by a system of interactions. The identification of functional regions within a given
territory is the basis of several important analysis in many economical, statistical
and geographical applications. However, this identification, also called functional
regionalization, is often a difficult task, especially from the computational point of
view, mainly because of the size of the problems. Indeed, the pattern of functional
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regions is generally not stable over the years, because of changes in geographical
organization of production-system. The general problem of partitioning a territory,
also known as Territorial Districting or Territory Design, is central to several
applicative tasks, see, e.g., [12,33].

One very important case of regionalization is the identification of the so-called
Local Labour Markets Areas (LLMAs). A LLMA is “a geographical region where
the majority of the local population seeks employment and from which the ma-
jority of local employers recruit labour” [19]. In other words, it is an area where
demand and supply for labour meet at a high degree, and commuters entering
the area or going out from it are only a minority. LLMAs are widely accepted as
the most appropriate units for the analysis of spatial patterns of employment and
unemployment, for the detection of industrial districts, and for the evaluation of
productivity advantages of local economies (see, e.g., [11]). LLMAs often do not
fit administrative boundaries, since these boundaries usually remain unchanged
for decades and so become unrelated to the changing economic reality [38].

Numerous alternative approaches to the identification of LLMAs have been
developed during the past decades. They have been based on a variety of different
methods using different terminology. Fischer provided in [14] a summary of the
earlier purely statistical approaches to the regionalization problem, and classifies
them as either hierarchic or non-hierarchic. A particularly well-known procedure
is the intra-regional interaction maximization, or INTRAMAX, initially developed
by Masser and Brown [29], also implemented in the software FLOWMAP devel-
oped at the University of Utrecht [41]. This procedure is a stepwise hierarchical
algorithm based on an interaction matrix, which contains the interactions (e.g.,
journey-to-work flows) between all the localities constituent a given territory, in-
cluding the interactions of each locality with itself. In each step, two localities
are selected and merged together, producing a new locality (a region) that is the
union of the two, and all the interactions involving this new locality are updated
accordingly. To avoid possible cases of fusions between nonadjacent localities, a
contiguity constraint has also been incorporated into the grouping procedure [29].
However, this constraint causes some loss of information and affects the empirical
findings as showed in [34].

According to [8], the methods for the identification of LLMAs can be subdi-
vided into three types of approaches. The first one consists of methods reliant on
the manual intervention of experts of the field, and typically involves designating
a number of focal points, usually the city centres, before assigning the remaining
localities to these points (e.g., [9]). An alternative approach, that is more based
on statistical methods, is to employ numerical taxonomy principles. These meth-
ods typically use a single procedure that seeks to maximize a statistical criterion
representing the objective. They include cluster analyses and specific regionaliza-
tion algorithms (e.g., [29]) The third approach, initially proposed by Coombes
and Openshaw to define a set of Travel-To-Work Areas (TTWA) in Britain [6,
7], is a possible evolution of the other two alternatives, in the sense that it relies
on multiple-step statistical methods and principles, in order to ensure that the
final boundaries meet predefined criteria. The assignment of a group of localities
to a TTWA (a region) is guided by the maximization of the interaction between
those localities. Thus, indirectly, the interaction that crosses boundaries between
TTWAs is minimized. Besides, every TTWA must reach a minimum level of self-
containment and a minimum size in terms of resident occupied population. The
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trade-off between size and self-containment is the peculiarity of the TTWA algo-
rithm. A more general version of the TTWA-based algorithm was devised by Sforzi,
Openshaw and Wymer to regionalize Italy in LLMAs with support from Istat [35].
The presence/absence of the trade-off between size and self-containment is the
main difference between the TTWA-based algorithm and the LLMA-based Italian
one. The choice to remove the trade-off was justified by the discretionality of the
size of employment and to preserve the established threshold of self-containment,
recognized as the key criterion. This algorithm was officially applied by Istat to
process journey-to-work data for the functional regionalization of Italy in 1981,
1991 and 2001. To process 2011 data, Istat has modified the algorithm used in
the previous decades by restoring the trade-off between size and self-containment.
This decision is explained in the methodological note [23] with the need to conform
to a procedure recommended by Eurostat to explore the possible definition of a
European algorithm for statistical reporting areas.

Van der Laan and Schalke [26] also develop a multi-level classification of the
LLMAs identification methods. They basically distinguish between methods al-
lowing for heterogeneity among LLMAs and methods which provide homogeneity.
Then, they subdivide the homogeneous category into deductive methods, which
identify at first urban centres around which the LLMAs are constructed, and in-
ductive methods, which do not use such pre-conceived structures. In their review,
Casado-Dı́az and Coombes [5] present another taxonomy of methods, and suggests
that identifying best practice has so far been held back by a lack of clear criteria
for objectively evaluating different methods. Flórez-Revuelta et al. present in [15,
28] a new approach to the identification of LLMAs based on evolutionary com-
putation. The procedure is based on the maximization of a fitness function that
measures the aggregate intra-region interaction under constraints of inter-region
separation and minimum size.

Another interesting approach to the problem is based on measures of modu-
larity (see, e.g., [17]), since there should be dense connections within each region,
but only sparse connections between regions. Girvan and Newman [18] propose an
algorithm that uses betweenness centrality to find community boundaries. Mod-
ularity is used as quality index of a partition of a network into communities.
It measures internal (and not external) connectivity, but it does so with refer-
ence to a randomized null model. This approach should have specific advantages
over existing regionalization procedures, particularly in the context of disaggre-
gate commuting patterns of socio-economics subgroups [13]. Following this line
of research, modularity has been very influential in recent community detection
literature, and one can use spectral techniques to approximate it [18,42]. However,
Guimerá et al. [20] and Fortunato and Barthélemy [16] show that random graphs
have high-modularity subsets and that exists a size scale below which modularity
cannot identify communities. Finally, Kim et al. [25] propose an exact approach
to the case of regionalization problem with a predetermined number of regions.

We propose here a new approach to regionalization problems, with specific
reference to the identification of LLMAs. The problem is converted into a graph
partitioning problem, and the solution is obtained by solving a sequence of mini-
mum cut problems over an undirected graph obtained from the interactions among
the localities. This graph is here called transitions graph. The procedure has been
implemented in c++ and tested on real data from the Italian Census of Population
2001. The results of the proposed approach are compared to those of the procedure
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officially used by the Italian National Institute of Statistics (Istat) in 1981,1991
and 2001 to define the Italian LLMAs ([32,36,37]). After the choice of a method
highly specialized to determine the Italian LLMAs, another comparison is with
the state-of-the-art procedure for general purpose graph partitioning METIS [24].

The main contribution of this work is therefore an innovative and effective
approach based on Combinatorial Optimization for solving an economically im-
portant and challenging real-world problem. The rest of this work is organized as
follows. Section 2 describes in detail the problem of the identification of LLMAs.
Section 3 explains the proposed procedure, based on the solution of minimum cuts
problems. Section 4 outlines the algorithms used for the comparison. Section 5
reports the experiments and the comparison on data from the Italian Census of
Population 2001, along with a discussion of the empirical results.

2 The Regionalization Problem

The approach proposed for the problem of the identification of functional regions
will be hereinafter explained by referring to the specific case of the identification of
Local Labour Markets Areas (LLMAs). This is indeed one of the most important
cases of regionalization, because it has a great economic relevance and it requires
to deal with a very large set of data. In the described case, we have the set

A = {a1, . . . , an}

of all the localities ai situated in a territory T , that is the geographical area under
analysis. Set A is such that

⋃n
i=1 ai = T and ai ∩ aj = φ for i 6= j. Moreover, we

have an n× n matrix

F =

 f11 . . . f1n

. . .
fn1 . . . fnn


of the interactions existing between all the pairs of localities. In particular, value
fij ≥ 0 is a measure of the flow of workers that reside in locality ai and work
in locality aj , and is called commuting flow, or also daily journey-to-work flow.
Clearly, F is not necessarily symmetric. The identification of the LLMAs consists
of a partition of the set A into subsets R1, . . . , Rm (the functional regions) such
that Rp ∩Rq = φ for p 6= q and

⋃m
p=1Rp = T . The goals of this partition may be

viewed from different perspectives, but basically consist of maximizing the number
of LLMA such that the obtained regions remain statistically and economically
meaningful. This means that: (i) each LLMA must be sufficiently self-contained;
(ii) each LLMA must have a sufficient number of workers; (iii) each LLMA must
be composed by a set of localities; (iv) each LLMA must be internally contiguous.

To impose condition (i) one needs to evaluate self-containment. The total oc-
cupied population working in locality ai (i.e., for short, workers in ai) is w(ai) =∑n

k=1 fki. Consequently, the total number of workers in region Rp is

w(Rp) =
∑

ai∈Rp

n∑
k=1

fki.
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Specularly, the total occupied population residing in ai (i.e., for short, residents
in ai) is r(ai) =

∑n
j=1 fij . Consequently, the total number of residents in Rp is

r(Rp) =
∑

ai∈Rp

n∑
j=1

fij .

Also, the total number of workers in locality ai that reside outside of ai (the
incoming commuters) is c−(ai) =

∑n
k=1,k 6=i fki. Consequently, the total number

of incoming commuters in region Rp is

c−(Rp) =
∑

(ki):ak 6∈Rp,ai∈Rp

fki.

Conversely, the total number of residents in locality ai that work outside of ai (the
outgoing commuters) is c+(ai) =

∑n
j=1,j 6=i fij . Consequently, the total number of

outgoing commuters from region Rp is

c+(Rp) =
∑

(ij):ai∈Rp,aj 6∈Rp

fij .

Finally, the total number of residents in region Rp that also work in Rp (the
internal flow) is

l(Rp) =
∑

(i,j): ai,aj∈Rp

fij .

Hence, value fii is also called the internal flow of locality ai. The Supply-side self-
containment function for ai is defined to evaluate the portion of people residing
and working in locality ai within the total number of workers in ai, as follows:

scw(ai) =
fii
w(ai)

.

Consequently, the Supply-side self-containment for a region Rp is

scw(Rp) =
l(Rp)

w(Rp)
. (1)

The Demand-side self-containment function for ai is defined to evaluate the portion
of people residing and working in ai within the total residents in ai, as follows:

scr(ai) =
fii
r(ai)

.

Consequently, the Demand-side self-containment for a region Rp is

scr(Rp) =
l(Rp)

r(Rp)
. (2)

Finally, we define the Overall self-containment function for ai to evaluate the
portion of people residing and working in ai within the total number of persons
interacting with ai (that is, working and/or residing), as follows:

sc(ai) =
fii

fii + c−(ai) + c+(ai)



6 Gianpiero Bianchi et al.

Consequently, the Overall self-containment for a region Rp is

sc(Rp) =
l(Rp)

l(Rp) + c−(Rp) + c+(Rp)
. (3)

Self-containment functions have been used in the literature in different manners.
Clearly, the first two only consider partial aspects. We select the Overall self-
containment one, because in our opinion it is more coherent with the definition of
LLMA. Hence, a region Rp is sufficiently self-contained, i.e., respects condition (i)
above, when sc(Rp) ≥ c1, where c1 is a threshold defined for the specific analysis.
Since in any case sc(Rp) ∈ [0, 1], possible thresholds range in (0.5, 1]. We mention,
however, that several authors make a different choice, and consider simultaneously
the Supply-side self-containment and the Demand-side self-containment for their
analysis [8]. Nevertheless, note that sc(Rp) ≥ c1 implies both scw(Rp) ≥ c1 and
scr(Rp) ≥ c1, since all the values involved in their computation are nonnegative.

A region Rp has a sufficient number of workers, i.e., it respects condition (ii)
above, when w(Rp) ≥ c2, where c2 is a natural number, again depending on the
specific analysis and on the size of the ai (as an example, for the present case-
study c2 = 1000). A region Rp respects condition (iii) above when the number
of localities composing it is such that |Rp| ≥ c3, where c3 is another natural
number, again depending on the specific analysis. For example, c3 = 2, see also
[35]. However, the proposed approach is flexible and allows setting c3 to different
natural numbers whenever the application would require it.

Condition (iv), finally, is of difficult mathematical formalization. However, sev-
eral authors in the literature state that this condition should not be imposed during
the generation of the LLMAs, because otherwise, at each step of a generic region-
alization procedure, it would limit the possible choices, and this would very likely
lead to the determination of worse LLMAs boundaries, as explained in, e.g., [5].
So, the possibility of working with non-contiguous proto-regions before producing
the final (contiguous) LLMAs should be allowed during the generation process.
On the contrary, contiguity should be checked on the final LLMAs, and, if one of
them does not respect it, one has to disassemble that LLMA and possibly merge
some of its localities with other LLMAs contiguous to them.

Conditions (i) and (ii) can be slightly relaxed, in the sense that the (almost)
full satisfaction of one condition is considered enough to compensate a little un-
satisfaction of the other. Hence, the following condition (4) can subsume the two
conditions (i) and (ii), where c is a threshold with a value generally ≥ 0.75 [39].(

min

{
sc(Rp)

c1
, 1

})
.

(
min

{
w(Rp)

c2
, 1

})
≥ c (4)

Evidently, all the above conditions are more easily respected by large LLMAs,
and, indeed, one unique LLMA over the whole territory under analysis would
fully satisfy them (assuming of course that the values of c2 and c3 are feasible for
that territory). In order to avoid such kind of solutions, useless from the practical
point of view, and to maximize the number of LLMAs, one usually wants that
the above conditions (i), (ii) and (iii) are satisfied with the minimum values of
self-containment, workers and areas that are able to do that, possibly relaxing
conditions (i) and (ii) with condition (4). When this happens, and also condition
(iv) is met, the regionalization task has been successfully performed. Note that
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the practical cases of this problem are generally very computationally demanding,
and all the approaches used for this problem are actually approximate procedures
(unless simplifications of the problem are considered, for example by pre-assigning
the number m of LLMAs that should be generated).

3 The Proposed Min-Cut Approach

By viewing the set A as the set of the vertices V of a graph, and the set of the
values of F as the weights of a set of edges E′ connecting all the pairs of vertices
in V , the problem evidently becomes a type of graph partitioning problem over
a complete graph G′ = (V,E′). However, differently from the standard cases, G′

contains also loops, i.e., arcs of the type (i, i), going from i to i itself and corre-
sponding to the mentioned internal flows. Since F is not symmetric, G′ will be a
directed graph. Graph partitioning problems have been extensively studied (see [2]
for references), since they have applications in many areas, e.g., clustering, detec-
tion of cliques in social, pathological and biological networks, programs mapping
onto parallel architectures, image segmentation, numerical analysis, VLSI design.
Typically, graph partitioning problems fall under the category of NP-hard prob-
lems, and practical solutions algorithms are based on heuristics (see, e.g., [31]).
One widely used approach is the so-called multilevel one. Multilevel algorithms
iteratively reduce the size of the graph by collapsing vertices and edges, partition
the smaller graph, then map back and refine this partition on the original graph.
A good example of this approach is implemented in the software METIS [24]. We
analyze the usability of similar approaches for solving the regionalization problem
in the following Section 4.

However, we note that expression (3) for the computation of sc, has the follow-
ing property: both numerator and denominator are constituted of sums of com-
muting flows, and fij is contained in one of those sums if and only if also fji is
contained in it. Therefore, we consider an undirected complete graph G = (V,E)
having for each arc (i, j) ∈ E a weight

w(i, j) = fij + fji

Graph G can be used instead of G′ for the computation of (3) or (4) without any
loss of information. The advantage is that G has a considerably smaller number of
arcs. We also observe that a partition solving our regionalization problem discon-
nects G in such a way that the arcs that are removed constitute a set that should
have small total sum of the w(i, j) flows and that certainly would not include
loops. Therefore, when searching for such a set of arcs, we can remove all loops
from G. We obtain in this manner an undirected complete graph G, that we call

transitions graph, having n2−n
2 arcs, instead of the directed graph G′ having n2

arcs. Graph G does not contain the whole information of the commuting flows.
Nevertheless, each solution to the original problem is obtainable as a partition of
G, since loops would never be cut.

On the other hand, the internal flows are needed for the evaluation of self-
containment. Therefore, our algorithm includes a validation step, during which
the partitions obtained on G are checked for the satisfaction of condition (4) by
computing sc as in (3), that is, by considering also the internal flows. As showed
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in the previous section, given a generic LLMA, an Overall self-containment ≥ c1
implies that both its Supply- and Demand-side self-containment are ≥ c1. As a
consequence, we can guarantee that the partitions of G produced by our algorithm
respect the conditions described in the previous section. Note also that the internal
flows generally represent the larger values in matrix F , and some of them may be
order of magnitude larger than all non-internal flows. So, the restriction of the
partitioning problem to G also improves the numerical condition of the problem,
that may indeed be originally ill-conditioned.

We now describe the recursive partitioning procedure that we apply. We denote
the set of vertices of a generic graph G by V (G) or simply by V when there is
no ambiguity. A cut in G is a partition (S, S̄) of V , a cutset is the set of arcs
connecting S and S̄ in G. We define the weight of cut (S, S̄) as

W (S, S̄) =
∑

i∈S, j∈S̄

w(i, j).

Similarly, we define for any two sets A,B of vertices of G, the weight

W (A : B) =
∑

i∈A,j∈B
w(i, j)

The transitions graph G is partitioned in order to obtain the subsets of vertices
(S1, . . . , Sm) corresponding to the LLMAs (R1, . . . , Rm) by finding cuts with min-
imum weight. We also need to define an operation, called contraction, or equiva-
lently join or merge, of two or more vertices of a graph G, that produces a graph
with less vertices, as follows. Given a graph G, the contraction of two vertices ν
and µ produces a new graph G/ν ∼ µ, where ν and µ are replaced by a new ver-
tex [ν] = [µ], and the weights of the edges (v, ν) and (v, µ), for any generic vertex
v 6= ν, µ, are summed, i.e., w(v, [ν]) = w(v, ν) + w(v, µ). The contraction of a set
of vertices is the repeated contraction of its pairs of vertices. The contraction of a
(sub-)graph is the contraction of the set of all its vertices.

We say that a (sub-)graph G is feasible when it satisfies conditions (4) and
|V (G)| ≥ c3. We say that we split a (sub-)graph G when we remove from it all
the arcs of a cutset. We also say that a (sub-)graph G is unsplittable when it is
feasible but it has values of self-containment, workers and localities such that any
further splitting of G will produce subgraphs that are not feasible. Since our aim
is to partition the transitions graph at the maximum extent, we try to obtain a
partition corresponding to subgraphs that are all unsplittable.

In the procedure below we use a list of open problems L to store all the sub-
graphs of G that have not yet been identified as unsplittable, and so will undergo
the cutting operation. We also use a list of closed problems T to store the subgraphs
Gp that have been recognized as unsplittable.

Procedure for the generation of LLMAs

Input An undirected complete graph G(V,E) with n vertices associated with the n
localities ai, edge weights w(i, j) = (fij + fji) ≥ 0, vertex weights f(i, i) ≥ 0.

Output A partition of V into (S1, . . . , Sm) such that |Sp| ≥ c3 for p = 1, . . . ,m, and
that the corresponding (R1, . . . , Rm) respect condition (4) and are contiguous.
Value m is not fixed in advance.
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Initialization:
Remove from E all the edges with w(i, j) = 0
Identify the connected components of G, call them G0, . . . , Gc and insert them
into the list of open problems L
The list of closed problems T is empty

Iteration:
Cut If L is empty: break the iteration and goto Contiguity enforcement

If L is not empty: extract (sub-)graph Gh from L
Apply procedure MinCut to Gh to obtain the minimum weight cut (S, S̄)h
Remove the corresponding cutset obtaining subgraphs Gh+1 and Gh+2

Valid Check if Gh+1, Gh+2 satisfy condition (4) and have at least c3 localities each
Case 1 If both Gh+1 and Gh+2 satisfy these conditions: insert Gh+1 and Gh+2 in L

and repeat the Iteration
Case 2 If neither Gh+1 nor Gh+2 satisfy these conditions: Gh is unsplittable

Insert Gh in T and repeat the Iteration
Case 3 If only one of them, say w.l.o.g. Gh+1, satisfies these conditions:

Contract Gh+2 into a single vertex ν,
Contract ν with the vertex µ = argmax

v∈V (Gh+1)

{w(ν, v)}

Add the obtained Gh+3 = Gh+1/ν ∼ µ to L and repeat the Iteration

Contiguity enforcement:
Split For each Gp ∈ T , consider the set Sp = V (Gp). If Sp is non-contiguous, split

it in its contiguous parts Sp1 . . . Spk

Join Join each Spi with the set Sq = argmax
S: co.∧ne.

{W (S : Spi)}, where

co. = contiguous and ne. = neighboring to Spi

Return (S1, . . . , Sm)

During the initialization step, we remove all zero edges from G in order to further
reduce the size of the problem. In case this operation disconnects G, we simply
work independently on each of its connected components. Quite often, however, G
remains connected. We use a depth-first search algorithm for finding the connected
components in linear time (see, e.g., [22]). After the initialization step, we repeat-
edly apply the iteration step, that means we split each (sub-)graph Gh contained
in L by removing the edges corresponding to the minimum weight cut. The pro-
cedure for finding such cut is described below. If the subgraphs Gh+1 and Gh+2

obtained in this way are still feasible, they may be even further splittable. There-
fore, we insert them in L so that they will undergo a new cutting operation. On the
contrary, if Gh+1 and Gh+2 are not feasible, this means that Gh is unsplittable,
ans so Gh is inserted in T . Finally, when exactly one of Gh+1 and Gh+2 is feasible,
the infeasible one represents a set of localities that cannot remain alone but are
strongly interconnected. Therefore, we contract them into a single vertex, and join
it to the vertex of the feasible subgraph that maximizes the interaction. Since the
graph obtained by this operation may be even further splittable, we insert it in L.
The procedure stops when L becomes empty, that means that all the generated
subgraphs are unsplittable. When this happens, T contains those m unsplittable
subgraphs whose sets of vertices (S1, . . . , Sm) constitute the wanted partition.
The LLMAs (R1, . . . , Rm) corresponding to such sets must now be checked for
geographical contiguity. Each non-contiguous Rp is split into its contiguous parts
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Rp1 . . . Rpk. Then, each part Rpi is joined with a neighboring LLMA Rq such that
the total weights of the arcs connecting Rpi and Rq is maximum. The described
procedure guarantees that the generated LLMAs satisfy conditions (4), (iii) and
(iv), (or other conditions that may be imposed in the validation step). The number
m of generated LLMAs is not guaranteed to be maximum, thought it is generally
large enough.

A minimum weight cut, also called for brevity minimum cut or min-cut, of
an undirected graph with edge weights, is a set of edges with minimum sum of
weights, such that its removal would cause the graph to become disconnected. The
total weight of the edges in a minimum cut of G is denoted by λ(G) and called
edge-connectivity of G (see, e.g., [10]). To compute such a cut, there exist in the lit-
erature many methods. One group of algorithms is based on the well-known result
of Ford and Fulkerson regarding the duality of maximum s-t-flows and minimum
s-t-cuts for arbitrary vertices s and t. Following this approach, Hao and Orlin [21]
showed an algorithm to solve all the necessary max-flow problems in time asymp-
totically equal to one max-flow computation, requiring O(|V | × |E| log(|V |2/|E|))
steps. Nagamochi and Ibaraki [30] described an algorithm without using maximum
flows. Instead, they construct spanning forests and iteratively contract edges with
high weights. This leads to an asymptotic runtime of O(|V |× |E|+ |V |2 log |V |) on
undirected graphs with nonnegative real edge weights. Their approach was refined
in [40] by Stoer and Wagner, by replacing the construction of spanning forests
with the construction of Maximum Adjacency, and by Brinkmeier [3] by contract-
ing more than one pair of vertices if possible and by introducing an alternative
data structure called priority queues with threshold. Incorporating these improve-
ments, the algorithm obtains an asymptotic runtime of O(|V |2λ(G)) for undirected
graphs with nonnegative integer weights, as it is the case of our transitions graph,
and this is the algorithm that we apply. A Maximum Adjacency (MA) order is
defined as follows. Given a graph G = (V,E), its vertices are arranged in an MA
order, if, for each vi with i > 1, the sum of the weights from vi to all preceding
vertices v1, . . . , vi−1 is maximal among all vertices vk with k ≥ i [40]. We now
describe the procedure for finding the minimum weight cut.

Procedure MinCut

Input An undirected connected G(V,E) with edge weights w(i, j) ≥ 0

Output A cut (S, S̄) in G with minimum weight

Initialization:
Chose any vertex ∈ V and call it v1

Let n = |V |. Let S = {v1}

for i = 2 to n:
Let vi be the vertex corresponding to argmax

v∈V \S
W (S : {v})

Let S := S ∪ vi
endfor

if n = 2: return the cut ({v1}, {vn})
else: return the minimum cut between ({v1, . . . , vn−1}, {vn})
and MinCut(G/vn−1 ∼ vn)
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The algorithm starts with any vertex, say v1, and builds an ordering of the vertices
by always adding to the set S of the selected vertices the vertex whose total weight
to S is maximized. This provides an MA ordering. After this, the cut induced
by the last vertex in the ordering is considered, as well as the cuts obtained by
recursively applying the procedure to the graph obtained by contracting the last
two vertices. The minimum among the cuts obtained during these recursions is
the global minimum weight cut of the graph.

4 Comparison with Other Techniques

In this section we describe two existing solution approaches to functional region-
alization that we selected for a comparison with our procedure. First we describe
the procedure officially used by the Italian National Institute of Statistics (Istat)
in 1981,1991 and 2001 to define the Italian LLMAs ([37]). This procedure has been
selected as our reference algorithm because, among the ones proposed in literature,
it appears to be the most appropriate to provide a meaningful functional region-
alization of Italy (see, e.g., [11,4]). After the choice of a method highly specialized
in the individuation of LLMAs, we consider a general purpose graph partitioning
method. A very effective among such methods is METIS [24], that is therefore
selected for the second comparison.

4.1 Established Algorithm for the definition of Italian LLMAs

We describe here the procedure that has been officially used by Istat for the defi-
nition the Italian LLMAs. It is an agglomerative multi-stage heuristic constituted
by 5 phases: (1) Identification of potential LLMAs focal points; (2) Amalgamation
of potential LLMAs focal points; (3) Expansion of focal points into proto-LLMAs;
(4) Identification of potential LLMAs; (5) Optimization of LLMAs boundaries.
This procedure, described in detail in [37], uses the supply-side self-containment
scw(ai) and the demand-side self-containment scr(ai) defined in Section 2 and the
Job ratio function defined as: jr(ai) = c−(ai)/c

+(ai).

In phase (1) the algorithm receives a set of localities (that is, the Italian munic-
ipalities) M ⊂ A and selects those that could be used as focal points for building
LLMAs. For each candidate locality ai ∈ M , it evaluates scw(ai) and jr(ai) and
chooses the localities that have values in the top 20% for either of the two measures.
In phase (2) the algorithm amalgamates focal points that exhibit a high degree of
interaction. For focus ai, having a high degree of interaction with another focus
aj means that: either supply-side or demand-side self-containment must be less
than 0.5; and that ai receives at least 10% of the flows coming out of aj , that
is fji ≥ 0.1(c+(aj) + fjj); and that aj receives at least 1% of flow coming out
of ai, that is fij ≥ 0.01(c+(ai) + fii). Therefore, all focal points are sorted in
descending order by their value of incoming flows c−(ai). In this order, if some ai
has min{scw(ai), sc

r(ai)} < 0.5, then it is merged with the aj that maximizes the
following weighted interaction index, provided that this exceeds 0.002.

f2
ji

(fjj + c+(aj)(fii + c−(ai))
+

f2
ij

(fii + c+(ai)(fjj + c−(aj))
. (5)
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The new combined locality replaces both ai and aj and is considered as a focus.
This process continues until no more of such amalgamations can be done. At
the end of this phase we obtain a small number of localities containing a single
municipality or a few of those. In phase (3) the algorithm expands focal points
to proto-LLMAs by allocating them localities with which they have a high degree
of interaction. Hence, each proto-LLMA will be a set P of localities. This phase
considers links between the focal points themselves and also between focal and
non focal localities. All focal points are sorted in descending order of the following
function, where t1=t2=0.75, t3=1000.

F (ai) =

(
min

{
scw(ai)

t1
,
scr(ai)

t2
, 1

})
.

(
min

{
w(ai)

t3
, 1

})
(6)

If some ai has F (ai) < 0.75, then it is merged in a Pk with another locality aj
such that: F (aj) < 0.75 and ai receives at least 10% of the flows coming out of
aj and aj is the one that, when merged to ai, maximizes the above F (Pk). Any
locality ai such that F (ai) ≥ 0.75 is a proto-LLMA by itself.

In phase (4) the algorithm allocates remaining non-focal localities to existing
proto-LLMAs. At first it iteratively dismembers groups of areas with F (Pk) < 0.75,
in order to reallocate their localities. After this, the set of localities not yet allo-
cated to proto-LLMAs is sorted in decreasing order of in-flow c−(ai), and each of
them is joined with the proto-LLMA with which it show the strongest connection,
i.e., the one maximizing (5). Only localities without in-flows and out-flows are left
isolated. Each of such localities will be joined with the nearer contiguous LLMA
at the end of the procedure. Then, iteratively, proto-LLMAs are again checked
and those having F (Pk) < 0.75 are dismembered and its constituent localities are
once again joined to the remaining proto-LLMA just like at the beginning of phase
4. The phase continues until there are only proto-LLMAs with F (Pk) ≥ 0.75. In
phase (5), finally, the algorithm checks if each proto-LLMA is contiguous. Those
that are not contiguous are dismembered and each of its constituent localities is
joined to the contiguous proto-LLMA that maximizes (5), similarly to phase (4).

4.2 Functional Regionalization based on Graph Partitioning

Approaches based on graph partitioning have been used for functional regionaliza-
tion since pioneering works. Recently, similar techniques are used to find network
communities in real-world networks. Due to some similarity of the two problems,
methods used for network community detection provide a possible approach for the
identification of LLMAs. An analysis of the main heuristic used for network com-
munity detection is in Leskovec et al. [27]. They explore a range of such methods
in order to understand their relative performance and the systematic biases in the
networks community they identify. In particular, they compare structural proper-
ties of network community extracted by two completely different computational
paradigms: a spectral based graph partitioning method Local Spectral [1] and the
multilevel partitioning algorithm METIS [24]. Analyzing the network community
profile (NCP) of a large number of communities, they highlight that METIS is
generally better than Local Spectral at the nominal task of finding cuts with low
conductance, although some of METIS clusters may be internally disconnected.

We now briefly describe METIS algorithm. It is a general purpose graph par-
titioner, not specifically designed for the identification of LLMAs, but aiming at
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finding high quality partitions in short times for large problems. METIS initially
coarsens the graph by generating a sequence of graphs G0, . . . , Gm such that G0 is
the original graph, and, for each j ≥ i, the number of vertices in Gj is smaller than
the number of vertices in Gi. Each coarser graph is obtained by searching for a
maximal matching and by collapsing the couples of adjacent vertices corresponding
to the edges of the matching. Coarsening a graph using matchings preserves many
properties of the original graph. After this, METIS computes a recursive bisection,
or directly a k-way partition, of the smaller graph Gm by minimizing the sum of
the weights of the edges crossing the partitions. Since the size of the coarser graph
Gm is small (i.e., |Vm| < 100), this step takes a small amount of time. Finally,
METIS projects the partition back through the sequence of Gm, . . . , G0, using
also, in each step, local refinement heuristics to improve the projected partition of
each graph, until producing the partition of the original graph G0.

5 Experimental Results

The procedure described in Section 3 was implemented in C++ and tested by
generating the LLMAs for all the Italian administrative regions. The commuting
flows considered for this test were gathered via the 2001 Italian Population Census.
This Census collects data about inter-municipal commuting flows. Thus, munici-
palities are the localities constituting our basic units of data. The target was to
meet conditions (4), (iii) and (iv), with c = 0.75, c1 = 0.75, c2 = 1000, c3 = 2. The
experiments were conducted on a PC Intel Pentium CPU 3.10 Ghz with 4Gb of
RAM under MS windows7 64 bit Operating System.

We first compare our algorithm with the reference algorithm based on [37] and
described in Section 4.1. For each Italian administrative region, Table 1 reports the
number of LLMAs generated by our algorithm based on minimum cuts; their aver-
age value of Overall self-containment (mean sc); their minimum value of Demand-
and Supply-side self-containment (min scr, min scw); time required for processing
the whole administrative region; the number of LLMAs generated by the reference
algorithm; all the values already provided for the first algorithm. Conditions (4),
(iii) and (iv) are always satisfied by the two approaches. Times are in minutes
and are computed on the same machine. Although both methods were successful
in generating feasible LLMAs, our approach showed to be able to generate a num-
ber of LLMAs that is (often considerably) larger than the reference algorithm in
all cases. In addition, the values of self-containment of the LLMAs generated by
our approach are closer (from above) to the self-containment threshold than those
provided by the reference algorithm. These are positive features for a regionaliza-
tion algorithm, as explained in Section 2. Hence, the proposed method provides
LLMAs with better statistical quality. Times needed by the proposed algorithm
are generally much shorter than those of the reference algorithm. While the total
running time of our procedure, for all Italian administrative regions, is 8 hours
and 22 minutes, the total running time of the reference procedure is 16 hours.

Then, we compare our algorithm with the state-of-the-art graph partitioner
METIS [24]. METIS takes in input the number of clusters (the LLMAs in our
case) that should be produced. This number was assigned to the same number
of LLMAs produced by our algorithm in order to make a fair comparison of the
regionalization quality. For each Italian administrative region, Table 2 reports the
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number of vertices (localities) and of edges (linkages) of the transitions graph, and
an analysis of the self-containment of the LLMAs produced by the two algorithms,
by giving their minimum and maximum values, their average and their variance.
METIS produces LLMAs that often are not enough self-contained (they often
do not satisfy conditions (4) and (iii)), and the self-containement values of the
LLMAs generated by METIS are much more variable than those of the LLMAs
generated by our algorithm. Indeed, some lack of internal cluster connection is
quite intrinsic in METIS approach. Therefore, the proposed algorithm appears a
better option for performing a similar functional regionalization, although METIS
is a faster graph partitioner.

Our Algorithm Reference Algorithm

Region LLMAs mean sc min scr min scw time LLMAs mean sc min scr min scw time
Piemonte 36 0.69 0.67 0.71 90 35 0.70 0.71 0.75 239
V. d’Aosta 4 0.71 0.73 0.73 4 3 0.83 0.89 0.86 21
Lombardia 55 0.65 0.63 0.68 320 54 0.67 0.66 0.76 452
Trentino AA 33 0.66 0.61 0.72 4 28 0.74 0.64 0.76 16
Veneto 37 0.66 0.65 0.70 19 35 0.70 0.65 0.76 34
Friuli VG 10 0.68 0.65 0.75 3 6 0.75 0.65 0.78 7
Liguria 17 0.68 0.62 0.72 3 16 0.72 0.64 0.77 13
Emilia Rom. 45 0.68 0.63 0.74 4 41 0.68 0.64 0.76 10
Toscana 47 0.69 0.68 0.69 3 40 0.73 0.73 0.76 7
Umbria 15 0.74 0.66 0.78 1 14 0.73 0.68 0.77 5
Marche 34 0.66 0.67 0.73 2 29 0.69 0.67 0.76 7
Lazio 21 0.70 0.62 0.80 7 18 0.71 0.63 0.80 23
Abruzzo 22 0.68 0.64 0.64 4 20 0.70 0.66 0.76 15
Molise 13 0.69 0.66 0.72 1 9 0.76 0.72 0.80 5
Campania 54 0.66 0.66 0.68 16 49 0.67 0.62 0.75 32
Puglia 48 0.68 0.65 0.67 3 34 0.71 0.68 0.75 8
Basilicata 21 0.71 0.67 0.78 1 18 0.72 0.72 0.76 5
Calabria 60 0.67 0.64 0.69 7 47 0.72 0.66 0.79 25
Sicilia 66 0.69 0.63 0.70 5 48 0.74 0.70 0.76 17
Sardegna 44 0.69 0.65 0.69 5 38 0.72 0.69 0.76 18

Table 1 Comparison of our and reference algorithm on all Italian administrative regions

6 Conclusions

We proposed an innovative approach to the problem of the generation of LLMAs
by using techniques of Combinatorial Optimization. This procedure is based on
the iterative partitioning of the transitions graph, which represents the interaction
among the localities of the territory under analysis. The proposed procedure works
at the formal level, hence it can be used for other problems of different origin but
sharing the same structure. Since the arising minimum cut problems can be solved
to optimality in extremely short times by using state-of-the-art min-cut algorithms,
the procedure is able to generate LLMAs in large real-world networks such as the
Italian administrative regions in times that are very reasonable and much shorter
than the official reference method used for comparison. The statistical quality of
the partitions generated by the proposed method is generally better than that
obtained by using the reference method, and clearly better than that obtained by
using a general purpose graph partitioner not specifically designed for this task.
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Our Algorithm METIS Algorithm

Region | V | | E | LLMAs min sc max sc mean sc var sc min sc max sc mean sc var sc
Piemonte 1206 35903 36 0.57 0.89 0.69 0.007 0.26 0.85 0.61 0.033
V. d’Aosta 74 1021 4 0.64 0.89 0.71 0.010 0.58 0.85 0.70 0.017
Lombardia 1546 91625 55 0.56 0.87 0.65 0.006 0.27 0.89 0.55 0.023
Trentino AA 339 5826 33 0.57 0.95 0.66 0.006 0.21 0.89 0.61 0.034
Friuli VG 219 7168 37 0.57 0.82 0.66 0.006 0.31 0.89 0.61 0.020
Veneto 581 24926 10 0.57 0.87 0.68 0.009 0.27 0.90 0.65 0.035
Liguria 235 3523 17 0.57 0.95 0.68 0.017 0.34 0.95 0.64 0.040
Emilia Rom. 341 9529 45 0.57 0.85 0.68 0.006 0.29 0.85 0.58 0.024
Toscana 287 7462 47 0.58 0.91 0.69 0.006 0.30 0.92 0.63 0.025
Umbria 92 1321 15 0.58 0.87 0.74 0.008 0.39 0.90 0.67 0.032
Marche 246 5586 34 0.56 0.84 0.66 0.005 0.30 0.95 0.60 0.023
Lazio 378 8729 21 0.56 0.92 0.70 0.007 0.27 0.89 0.59 0.036
Abruzzo 305 5615 22 0.56 0.87 0.68 0.010 0.32 0.86 0.60 0.033
Molise 136 1785 13 0.59 0.82 0.69 0.006 0.38 0.86 0.61 0.023
Campania 551 20590 54 0.56 0.80 0.66 0.004 0.33 0.84 0.58 0.017
Puglia 258 7372 48 0.56 0.83 0.68 0.005 0.36 0.89 0.60 0.020
Basilicata 131 1958 21 0.61 0.86 0.71 0.004 0.39 0.90 0.68 0.019
Calabria 409 8247 60 0.57 0.87 0.67 0.004 0.30 0.88 0.62 0.015
Sicilia 390 9189 66 0.57 0.93 0.69 0.007 0.33 0.89 0.65 0.019
Sardegna 377 7686 44 0.56 0.88 0.69 0.008 0.31 0.90 0.62 0.028

Table 2 Comparison of our algorithm and METIS on all Italian administrative regions
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15. Flórez-Revuelta, F., Casado-Dı́az, J.M., Mart́ınez-Bernabeu, L.: An evolutionary approach
to the delineation of functional areas based on travel-to-work flows. International Journal of
Automation and Computing 5(1), 10-21 (2008)
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