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Abstract

Materials with memory are here considered. The introduction of the dependence on
time not only via the present, but also, via the past time represents a way, alterna-
tive to the introduction of possible non linearities, when the physical problem under
investigation cannot be suitably described by any linear model. Specifically, the two
different models of a rigid heat conductor, on one side, and of a viscoelastic body,
on the other one, are analyzed. In them both, to evaluate the quantities of physical
interest a key role is played by the past history of the material and, accordingly, the
behaviour of such materials is characterized by suitable constitutive equations where
Volterra type kernels appear. Specifically, in the heat conduction problem, the heat
flux is related to the history of the temperature-gradient while, in isothermal viscoelas-
ticity, the stress tensor is related to the strain history. Then, the notion of equivalence
is considered to single out and associate together all those different thermal histories,
or, in turn, strain histories, which produce the same work. The corresponding explicit
expressions of the minimum free energy are compared.

1 Introduction

The introduction of a Volterra type integral to model a rigid heat conductor in such a way
to avoid the infinte speed heat propagation goes back to Cattaneo [3], who suggested a
new generalized Fourier’s law which linearly relates the heat flux, its time derivative and
the temperature-gradient. Subsequently, Coleman’s results [4] concerning materials with
memory, induced Gurtin and Pipkin [20], to proposed a non-linear model, as well as a
linearized version of it, which generalizes the previous ones.

Among the many results, since then, in the study of heat transfer phenomena, those
more directly of interest in connection to the present approach have been obtained by
Gurtin [19] and by Coleman and Dill [5]. They studied properties of free energy func-
tionals in the case of materials with memory and, subsequently, Giorgi and Gentili [16]
investigated the heat conduction problem in a fading memory material. The thermody-
namical model here adopted is the same studied by Fabrizio, Gentili and Reynolds [11],
who considered the thermodynamics of a rigid homogeneous linear heat conductor with
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memory. On the other hand, as far as the viscoelasticity problem is concerned, in mate-
rials with memory, here Noll’s definition of state [23] is adopted. Indeed Noll takes the
material response as the basis for the definition of state: if an arbitrary continuation of
different given histories leads to the same response of the material, then the given histo-
ries are equivalent and the state is represented as the class of all the equivalent histories.
Accordingly, Fabrizio and Golden [12] introduced the notion of the minimal state. This
idea has been applied in [18] to the case of linear viscoelasticity with scalar relaxation
functions given by a sum of exponentials.

The material in the present work is organized as follows. The opening Section 2 is
devoted to briefly recall the model, according to [11], of a rigid heat conductor with
memory. Specifically, the thermodynamic state function is defined and, subsequently, the
meaning of what termed process, process prolongation and some related quantities, are
exploited. A key role is played by the notion of equivalence between different thermal
histories, stated on identification of all those ones associated to the same heat flux.

The thermal work associated to a process is considered in the subsequent Section 3
where results obtained in [2] are recalled. In particular, given two different, but equivalent,
thermal processes, the thermal work related to them both is the same (and viceversa).
Hence, given a thermal history, the concept of equivalence can be stated in terms of the
thermal work instead than of the heat flux. A representation of the functional space of all
finite thermal work processes is given.

The subsequent Section 4, is concerned about an introduction on the model of isother-
mal linear viscoelastic solid with memory according to the approach widely exposed by
Fabrizio and Morro in [14]. Some remarks on the comparison between the heat conduction
and the viscoelastic cases are also comprised.

The subject of the subsequent Section 5 is the definition of process, process prolonga-
tion and, hence, of equivalence in terms of the strain history associated to each process.
Accordingly, [15], the same strain history corresponds to equivalent viscoelastic processes.
Then, the viscoelastic work is written, under the form obtained by Gentili [15]; it is
compared with that one [2], obtained in the case of the thermal work functional. An inter-
esting connection between thermodynamics of rigid bodies and isothermal viscoelasticity
appears. Indeed, not only the work functionals here considered, but also the minimum free
energies assume, in the two different cases, expressions which show many analogies. The
comparison between them follows when recent investigations obtained in the framework
of linear isothermal viscoelasticity are recalled. In particular, the results of Deseri, Gentili
and Golden [8], Fabrizio and Golden [12] [13], Golden [17], Gentili [15], and Fabrizio [10]
are here referred to. Furthermore, it should be remarked that Gurtin and Pipkin in [20]
already pointed out analytical analogies between the two models of heat conduction with
memory, on one side, and of longitudinal motion of a viscoelastic bar, on the other one;
indeed, the integro-differential equation which follows from the energy equation is of the
same form in both cases.

An Appendix comprises some of the background definitions required throughout the
previous Sections.
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2 Heat conduction in a rigid solid

This section is devoted to describe the model of a rigid heat conductor with memory.
In particular, the approach presented by Fabrizio, Gentili and Reynolds in [11], and,
subsequently, in [2] is adopted. Accordingly, the key notions comprised in [2] are briefly
reviewed.

The simplifying assumption that the internal energy and the relative temperature are
linearly related is adopted. That is, the internal energy e is assumed of the form

e(x, t) = α0u(x, t) , (2.1)

where α0 represents the energy relaxation function, here assumed to be constant, x ∈ R
3

denotes the position within the conductor1, t ∈ R
+ denotes the time variable2, and u :=

θ − θ0 the temperature difference with respect to a fixed reference temperature θ0. The
heat flux q ∈ R

3, when the heat flux relaxation function denoted by k(x, t), is assumed to
satisfy the constitutive equation

q(x, t) = −

∫
∞

0
k(x, τ)∇θ(x, t − τ) dτ , (2.2)

which shows that the heat flux q depends on the time variable not only via the present
time t, but also via its past history. In addition, according to [11] and [2], the rigid heat
conductor is understood to be an isotropic material, and, hence, focussing the attention
on a generic element of the conductor, no dependence on the position in the conductor
is considered. Then, the energy e, the heat flux q, the temperature θ and, consequently,
all the other quantities are represented by functions of the time variable alone. Thus,
formulae (2.1, 2.2) can be rewritten omitting the x−dependence; and, in particular, the
heat flux relaxation function, which reads k(t), can be represented by

k(t) = k0 +

∫ t

0
k̇(s) ds , (2.3)

where k0 ≡ k(0) denotes the initial (positive) value of the heat flux relaxation function,
thus termed initial heat flux relaxation coefficient. It is further required that

k̇ ∈ L1(R+) ∩ L2(R+) and k ∈ L1(R+) (2.4)

which imply k(∞) := lim
t→∞

k(t) = 0. These assumptions can be physically interpreted re-

calling that there is no heat flux when, at infinity, the thermal equilibrium is reached.
The constitutive equations (2.1) and (2.2) can be re-written, in turn, as follows

e(t) = α0 [θ(t) − θ0] (2.5)

and, when the heat flux relaxation function k satisfies both conditions (2.3) and (2.4), the
heat flux q can be written in the following two equivalent forms:

q(t) = −

∫
∞

0
k(τ)g(t − τ) dτ or q(t) =

∫
∞

0
k̇(τ)ḡt(τ) dτ ; (2.6)

1more precisely, it should be required that x ∈ B ⊂ R
3 where B denotes the bounded closed set in R

3

which represents the configuration domain of the conductor, here not specified since of no interest in the
present study.

2
notation remark: throughout the whole paper R

+ := [0,∞) while R
++ := (0,∞).
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where g := ∇θ denotes the temperature-gradient, and

ḡt(τ) =

∫ t

t−τ

g(s) ds (2.7)

represents the integrated history of the temperature-gradient. The thermodynamical state
of the conductor is characterized when, according to [11], [22] and [2], the thermodynamic
state function σ : R → R×R

3 which associates t 	−→ σ(t) ≡
(
θ(t), ḡt

)
is given; that is, when

the temperature and the integrated history of the temperature-gradient, ḡt which belong to
a suitable Hilbert space, are assigned. In addition, physically admissible thermodynamical
phenomena, namely associated to finite heat flux, are those ones which belong to the
following vectorial space

Γ :=

{
ḡt : (0,∞) → R

3 :

∣∣∣∣
∫

∞

0
k̇(s + τ) ḡt(s) ds

∣∣∣∣ < ∞ , ∀ τ ≥ 0

}
. (2.8)

According to [15], the property k̇ ∈ L1(R) is termed fading memory: it implies that
corresponding to any arbitrary ε > 0 there exists a positive constant ã = a(ε, ḡt) such
that ∣∣∣∣

∫
∞

0
k̇(s + a)ḡt(s) ds

∣∣∣∣ < ε ⇔

∣∣∣∣
∫

∞

0
k(s + a)g(t − s) ds

∣∣∣∣ < ε , ∀ a > ã , (2.9)

whose thermodynamical meaning is that, when the conductor is approaching its asymp-
totic thermal equilibrium, the heat flux becomes smaller and smaller in agreement with
the prescription of no heat flux at equilibrium.

Hence, the set of all possible heat fluxes, corresponding to different integrated histories
of the temperature-gradient, can be represented via the linear functional

Q̃{ḡt} :=

∫
∞

0
k̇(s) ḡt(s) ds =⇒ ∀T > 0, Q̃{ḡt+T } =

∫
∞

0
k̇(s) ḡt+T (s) ds, (2.10)

and, by definition (2.7), when an integrated history of the temperature-gradient ḡt is
choosen, the corresponding heat flux at time t + T follows

q(t + T ) :=

∫
∞

0
k̇(s) ḡt+T (s) ds . (2.11)

The definitions of process and of the set of admissible states, given in [11], see also [2],
are here only briefly recalled. An integrable function P : [0, T ) → R × R

3 such that

P (τ) =
(
θ̇P (τ),gP (τ)

)
∀ τ ∈ [0, T ) is termed process of duration T > 0. Accordingly,

a process P of duration T < ∞ is known when the two applications θ̇P : [0, T ) → R and
gP : [0, T ) → R

3 are assigned, and thus the state function σ(t) follows via integration
from the initial time t = 0 to the generic time t. Indeed, as pointed out in [11], given its
initial value σ(0) =

(
θ�(0), ḡ

0
�

)
, where, in turn, θ�(0) denotes the temperature, and ḡ0

� the
integrated history of the temperature-gradient at time t = 0, then a process P delivers
the state function σ(t) =

(
θ(t), ḡt

)
,∀ t ∈ [0, T ), defined by

θ(t) = θ�(0) +

∫ t

0
θ̇P (ξ) dξ , ḡt(s) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t

t−s

gP (ξ) dξ 0 ≤ s < t∫ t

0
gP (ξ) dξ + ḡ0

�(s − t) s ≥ t ,

(2.12)
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which is continuous at s = t. A key tool is represented by the definition of “prolongation”
(denoted via �) [2] of a generic process of known history, via a given one, characterized
by an assigned gP . According to [2], a prolongation of the integrated history, which is
continuous at s = T , and hence (gP � ḡi)

T (T ) = ḡT
P (T ), is introduced as follows.

Definition 1. Given a process P , hence assigned gP , its duration T and a set of integrated
histories of the temperature-gradient ḡt

i(s), corresponding to gt
i(s), i = 1, . . . , n, n ∈ N,

then the prolongation of the history ḡt
i(s), induced by the process P , is defined by

(gP � ḡi)
t+T (s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ḡT
P (s) =

∫ T

T−s

gP (ξ) dξ 0 ≤ s < T

ḡT
P (T ) + ḡt

i(s − T ) =

∫ T

0
gP (ξ) dξ +

∫ t

t+T−s

gi(ξ) dξ s ≥ T .

(2.13)

Then, as pointed out in [2], the notion of equivalence between two thermodynamical
states can be established. Precisely,

Definition 2. two thermodynamical state functions assigned via σ1(t) = (θ1(t), ḡ
t
1) and

σ2(t)(θ2(t), ḡ
t
2) are equivalent if ∀ gP : [0, T ) → R

3 , ∀ T > 0, the corresponding heat

flux is the same, namely Q̃
{
(gP � ḡ1)

t+T
}

= Q̃
{
(gP � ḡ2)

t+T
}

.

This definition, see [2] for details, can also be rewritten replacing the thermodynamical
state functions with the integrated histories of the temperature-gradient, sometimes for
short termed thermal histories. Thus, two different integrated histories of the temperature-
gradient, or two thermodynamical states, are equivalent when, for any prolongation of
any time duration, the same heat flux corresponds to both of them. Under a physical
viewpoint, this equivalence is introduced exactly to find and join together all those states
associated to the same heat flux, no matter the specific temperature evolution θ(t).

A detailed analysis is comprised in [2], where are considered both the case of a generic
history as well as the special one, termed zero history, characterized by a constant tem-
perature θ(t) = θ0 and, hence, a zero temperature-gradient so that the corresponding
integrated history of the temperature-gradient, denote as ḡt

0, is also zero. Accordingly,
the corresponding state function is σ0 : R → R×R

3 which associates t 	−→ σ0(t) ≡ (θ0,0).
In particular, [2], a prolongation of the zero history via any assigned process, characterized
by the duration τ , τ ≤ T < ∞ and gP : [0, τ) → R

3, is given by

(gP � ḡ0)
t+τ (s) =

⎧⎨
⎩ ḡτ

P (s) =

∫ τ

τ−s

gP (ξ) dξ 0 ≤ s < τ

ḡτ
P (τ) s ≥ τ .

(2.14)

The set of all admissible states, [2], is the set comprising all those states which correspond
to a finite heat flux, namely

Σ :=

{
σ(t) ∈ R × R

3 :

∣∣∣∣
∫

∞

0
k̇(s) ḡt(s)ds

∣∣∣∣ < ∞ ⇔

∣∣∣∣
∫

∞

0
k(s)g(t − s)ds

∣∣∣∣ < ∞

}
, (2.15)

Notably, if σ ∈ Σ, it follows that both the heat flux q, as well as the internal energy
e, given, in turn, by (2.6) and (2.1), are finite. Indeed, according to remarks in [11]
and [2], those processes with a physical meaning, namely which admit associated finite
thermodynamic potentials, are exactly those ones characterized by a state σ(0) ∈ Σ whose
time evolution σ(t) belongs to Σ itself.
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3 Thermal Work

This Section is devoted to show, according to the results obtained in [2], a convenient
form in which the thermal work functional can be written. Remarkably, the thermal work
associated to equivalent processes turns out to be the same.

The relevance of the concept of work in the study of any physical problem, and in
particular a thermodynamical one [11], is well known. Thus, this Section is concerned
about the notion of work, termed thermal work, in the case of the thermodynamical model
under investigation. Thus, for later convenience, the following definition [2] is recalled.

Definition 3. Given any initial state, defined on assigning the state function σ(t) =
(θ(t), ḡt), and any prolongation process P of arbitrary finite duration τ , where 0 ≤ τ < T ,

P (τ) =
(
θ̇P (τ),gP (τ)

)
, then the thermal work associated to the time interval [0, T ) is

represented by the functional

W̃{ḡt;gP } := −

∫ T

0
Q̃

{
(gP � ḡ)t+τ

}
· gP (τ) dτ . (3.1)

The value of the thermal work, W̃ (ḡt;gP ), which corresponds to a specific choice of the
initial state and of the prolongation process can be evaluated via

W̃
(
ḡt;gP

)
= −

∫ T

0
q (t + τ) · gP (τ) dτ (3.2)

where q (t + τ ), given by (2.11), represents the heat flux at time t + τ .

In the case when the zero history, characterized by the state function σ(t) ≡ (θ0,0), is
prolonged via any assigned process P according to (2.14), then the thermal work functional
is given by

W̃{0;gP }= −

∫ T

0

∫
∞

0
k̇(s) (gP � ḡ0)

t+τ (s) · gP (τ) dsdτ . (3.3)

Different expressions of the thermal work functional can be obtained, according to the
detailed computations in [2]. In particular, when an arbitrary process is assigned, i.e. gP

is known, the thermal work functional follows from the state to be prolonged: two different
cases arise. They correspond to prolong via the assigned gP }, in turn, the zero history
characterized by the state function σ0 ≡ (θ0,0) (trivial prolongation), and any fixed state
function σ(t) ≡

(
θ(t), ḡt

)
(generic prolongation). Convenient forms of the thermal work

functional, for any given process P , and hence any gP (τ), and for all 0 ≤ τ < T < ∞,
are, see [2], W{0;gP } in (3.3), when the zero history is prolonged and

W̃{ḡt;gP }=

∫
∞

0

∫
∞

0

[
1

2
k(|τ − s|)gP (s) − k̇(τ + s)ḡt(s)

]
· gP (τ) dsdτ , (3.4)

when the generic case is considered. Then, the introduction of

I(τ, ḡt) :=

∫
∞

0
k̇(τ + s) ḡt(s)ds , (3.5)
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allows to write W̃{ḡt;gP } as follows

W̃{ḡt;gP }=

∫
∞

0

[
1

2

∫
∞

0
k(|τ − s|)gP (s)ds − I(τ, ḡt)

]
· gP (τ)dτ . (3.6)

Furthermore, see [2], via the introduction of Fourier transforms, the thermal work

functional W̃ can be written

Ŵ{ḡt;gP } =
1

2π

[∫ +∞

−∞

kc(ω)g+(ω) · g+(ω) dω −

∫ +∞

−∞

I+(ω) · g+(ω) dω

]
(3.7)

where g+(ω) and I+(ω), in turn, according to the usual definitions also recalled in the
Appendix ((6.1), (6.3)), represent the Fourier Transforms

I+(ω) :=

∫
∞

0
I(τ, ḡt) e−iωτdτ , g+(ω) :=

∫
∞

0
gP (τ) e−iωτ dτ , (3.8)

of the non negative real valued functions I(τ, ḡt) and of gP , both defined over R
+. In

addition, g+(ω) denotes the complex conjugate of g+(ω), and kc(ω) the Fourier cosine
transform, given by (6.1), of k(|τ − s|), which, by definition, is an even function of its real
non negative argument since kc(0) > 0, as prescribed by the adopted assumptions [11]
and the thermodynamical restrictions on the constitutive equation. Hence, the analytical
form of W̃{ḡt;gP } and Ŵ{ḡt;gP } suggests to introduce the following inner product

〈f, φ〉 :=

∫ +∞

0
f(t) · φ(t) dt =

1

2π

∫ +∞

−∞

f+(ω) · φ+(ω) dω , (3.9)

whenever the integral is finite. It is clear, since Plancharel’s theorem implies the identity
of norms in spaces dual with respect to Fourier transforms, that W̃{ḡt;gP } = Ŵ{ḡt;gP };

hence, W̃{ḡt;gP } is finite whenever Ŵ{ḡt;gP } is finite; accordingly, inner products can
be evaluated in both the spaces related to each other via duality under Fourier transform.

Definition 4. A process is termed finite thermal work process whenever the functional
W̃{0;gP } is finite; namely, on account of (3.3), when

W̃{0;gP }=
1

2

∫
∞

0

∫
∞

0
k(|τ − s|)gP (s) · gP (τ)dsdτ < ∞ . (3.10)

That is, when the zero history is prolonged via an arbitrary finite thermal work process,
then, the functional W̃{0;gP } is finite. It, on application of the duality via Fourier

transform, can be also expressed as Ŵ{0;gP }, given by

Ŵ{0;gP } =
1

2π

∫ +∞

−∞

kc(ω)g+(ω) · g+(ω) dω. (3.11)

Hence, the set of all finite thermal work states can be represented on introduction of the
functional space

H(R+, R3) :=

{
φ : R

+→R
3 :

∣∣∣∣
∫ +∞

−∞

kc(ω)φ+(ω) · φ+(ω)dω

∣∣∣∣ < ∞

}
. (3.12)
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Since kc(ω) is a real even function, according to Section 2, which, since k(0) = k0 is
positive, and in agreement with [11] is assumed to be positive valued, then, the functional
space H(R+, R3), can be equipped by the following inner product

〈f, φ〉k :=

∫ +∞

−∞

kc(ω) f+(ω) · φ+(ω) dω (3.13)

and by the induced norm

‖φ‖k := 〈φ, φ〉k

∫ +∞

−∞

kc(ω)φ+(ω) · φ+(ω) dω . (3.14)

Hence, the functional space which comprises all admissible thermal states, denoted as
Hk(R

+, R3), can be characterized as the completion with respect to the norm ‖ · ‖k of the
functional space H(R+, R3). Specifically, the following definition is adopted.

Definition 5. The set of all finite thermal work states is the set Σ0 ⊂ Σ comprising all
those thermal states which correspond to a finite thermal work. Thus, according to this
Definition, Σ0 ⊂ Σ represents a subset of the set Σ of admissible states, given by (2.15);
in particular, Σ0 comprises all those admissible states, i.e. all couples (θ(t), ḡt(τ)) ∈ Σ ⊂

R × R
3, such that, in addition, the thermal work W̃{ḡt;gP } is finite for any choice of the

prolongation process P characterized by gP ∈ Hk(R
+, R3).

Now, in the case of a generic thermal state, the corresponding thermal work (3.6) needs

to be considered. Specifically, the boundedness of W̃{ḡt;gP } is required to characterize the

admissibility of a generic thermal state. Comparison between W̃{0;gP } and W̃{ḡt;gP },

given, respectively, by (3.10) and (3.6), shows that when W̃{0;gP } is bounded, then, the

first term of W̃{ḡt;gP } is bounded too, and, accordingly, only the second one remains to

be considered. Again, via Fourier transform, Ŵ{ḡt;gP } in (3.7) is obtained; the latter

compared with Ŵ{0;gP } shows that the boundedness condition is satisfied as soon as

〈I,g〉 :=
1

2π

∫ +∞

−∞

I+(ω) · g+(ω) dω , (3.15)

where I+(ω) is given in (3.8), is finite. Hence, when a generic thermal state is considered,
it can be termed admissible whenever its prolongation via any process P produces a finite
thermal work: precisely, the following definition is equivalent to the previous one.

Definition 6. The set of all admissible thermal states is the set of all states σ(t) ∈ Σ0,
such that, for any choice of the prolongation process P , such that gP ∈ Hk, it follows that
I+(ω) belongs to the space

H′

k(R
+, R3) :=

{
f : R

+→R
3 s.t. |〈f, φ〉k| < ∞, ∀ φ ∈ Hk(R

+, R3)
}

, (3.16)

dual of Hk(R
+, R3) with respect to the inner product 〈·, ·〉k defined in (3.13). This defi-

nition implies that, ∀ σ(t) ∈ Σ0, it follows that I+(ω) ∈ H′

k(R
+, R3). Consequently, the

notion of equivalence between two different states can be stated on the basis of the related
thermal work.
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Definition 7. Two integrated histories of the temperature-gradient ḡt
1 and ḡt

2, which
correspond to the states (θ1(t), ḡ

t
1) and (θ2(t), ḡ

t
2), are termed w-equivalent if

∀ gP : [0, τ) → R
3 , ∀ τ > 0 =⇒ W̃{ḡt

1;gP } = W̃{ḡt
2;gP } ; (3.17)

that is, on application of Plancharel’s theorem,

∀ gP : [0, τ) → R
3 , ∀ τ > 0 =⇒ Ŵ{ḡt

1;gP } = Ŵ{ḡt
2;gP } . (3.18)

In [2] is proved, that two arbitrary histories of the temperature-gradient, corresponding
to the states (θ1(t), ḡ

t
1) and (θ2(t), ḡ

t
2), are w-equivalent if and only if they are equivalent

according to Definition 2. That is, ∀ gP : [0, τ) → R
3, ∀ τ > 0

Q̃
{
(gP � ḡ1)

t+τ
}

=Q̃
{
(gP � ḡ2)

t+τ
}
⇐⇒ W̃{ḡt

1;gP }=W̃{ḡt
2;gP }. (3.19)

Consequently, according to the result in [2], equivalence can be stated in terms of heat
flux (equivalence) or of thermal work (w-equivalence); namely, if two different equivalent
processes, i.e. associated to the same heat flux, are considered, then the corresponding
thermal work is also the same. Thus, the thermal work functional can be regarded as a
state function, that, on application of Plancharel’s formulae, can be written

W(σ(t),gP ) := W̃{ḡt;gP } ⇐⇒ W(σ(t),gP ) = Ŵ{ḡt;gP }. (3.20)

The introduction of W(σ(t),gP ) emphasizes that, when a process P is assigned via gP , the
thermal work which corresponds to all those states identified by the same state function
σ(t) is the same. Finally, via the approach adopted in [2], the expression of the minimum
free energy can be readily obtained to be [2] represented by

ψm(σ) =
1

2

∫
∞

0

∫
∞

0
k(|τ − s|)g(m)(s) · g(m)(τ) dsdτ , (3.21)

where g(m)(·) represents the temperature gradient, solution of a suitable [2] Wiener-Hopf
equation.

4 Isothermal viscoelastic body with memory

The aim of this Section is to briefly summarize the analytical description of the model of
an isothermal viscoelastic material with memory. Indeed, the historical as well as phe-
nomenological ideas which have been developed throughout the literature are far beyond
the present study. Conversely, here the main goal is to show the analytical analogy be-
tween the two models with memory: rigid heat conductor, on one hand, and isothermal
viscoelastic body, on the other one. An overview concerning isothermal viscoelasticity is
comprised in [15] and in [7] as well as in references therein. The work by Gentili [15] is
devoted to minimum free energy and its connection to maximum recoverable work, while
Deseri, Fabrizio and Golden, in [7], studied free energies, again in isothermal viscoelastic-
ity, with the aim to treat applications to partial differential equations.
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In this Section, following the lines of Section 2, only those definitions which are needed
to establish equivalence between two different viscoelastic processes are considered. In-
deed, the idea is to associate into equivalence classes all those processes which produce
the same material response according to the approach proposed by Noll [23].

Hence, following to the same way of thinking adopted in connection to the heat conduc-
tion problem, no space variable dependence is considered under the assumption the body
is isotropic. The constitutive equation which characterizes a linear viscoelastic material is
the classical Boltzmann-Volterra that relates the stress tensor T(t) ∈ Sym to the strain
history tensor E : (−∞, t] → Sym:

T (t) =

∫
∞

0
lG(τ) Ė (t − τ) dτ or T(t) = lG0E(t) +

∫
∞

0
l̇G(τ)E(t − τ) dτ (4.1)

where the fourth order tensor lG(t) denotes the elastic modulus, E(t) the value of the
strain at the time t and Et the past history defined by

Et : (0,∞) → Sym

t 	−→ Et(s) := E(t − s) .
(4.2)

The elastic modulus is assumed such that its time derivative ˙lG(t) ∈ L1(R+, Lin(Sym))
so that, for all positive t,

lG(t) = lG0 +

∫ t

0
l̇G(s)ds , lG0 := lG(0) (4.3)

where the initial value of the elastic modulus lG0 is termed instantaneous elastic modulus
[15]; furthermore, since l̇G ∈ L1(R+), then

lG(∞) := lim
t→∞

lG(t) ∈ Lin(Sym) (4.4)

which represents the equilibrium elastic modulus. Hence, the tensor defined via

l̆G(t) = lG(t) − lG(∞) =⇒ lim
t→∞

l̆G(t) = 0, (4.5)

is symmetric, l̆G
T
(t) = l̆G(t) and, by definition, belongs to L1(R+). The state and the

strain history of a viscoelastic body is characterized, according to [15], [14] and [7], by a
viscoelastic state function σ : R → Sym × Sym, which associates t 	→ σ(t) :≡ (E(t),Et).
Hence, the viscoelastic state function is known when the strain tensor E(t) and the strain
past history, Et which belong to a suitable Hilbert space, are assigned. Physically mean-
ingful viscoelastic phenomena, are characterized by a finite stress tensor T(t) for all times
t and thus they belong to the vectorial space

Γ :=

{
Et : (0,∞) → Sym :

∣∣∣∣
∫

∞

0
l̇G(s + τ)Et(s) ds

∣∣∣∣ < ∞ , ∀ τ ≥ 0

}
. (4.6)

According to [15], the property l̇G ∈ L1(R+) is termed fading memory and it implies that,
corresponding to any arbitrary ε > 0, there exists a positive constant ã = a(ε,Et) such
that ∣∣∣∣

∫
∞

0
l̇G(s + a)Et(s) ds

∣∣∣∣ =

∣∣∣∣
∫

∞

0
l̇G(s + a)E(t − s) ds

∣∣∣∣ < ε , ∀ a > ã . (4.7)
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Now, as far as the setting of the models is concerned, some remarks close this Section.
Specifically, the expression (4.1), which gives the stress T when the strain history is
known, is of the same form of (2.6) where the heat flux is written when the history of the
temperature gradient is assigned. A comparison between such two formulae shows, further
than the obvious dimensionality difference, they cannot be obtained one from the other one
via simple substitutions. Indeed, comparison between the first two formulae (2.6) and (4.1)
show that, in turn, the time derivative of the strain history and the elastic modulus play the
same role of the history of the temperature gradient and the heat flux relaxation function.
The sign difference follows from the different time behavior of the elastic modulus and the
heat flux relaxation function; specifically, the latter is a non increasing monotone function
which admits an initial positive value k0 while the behaviour of the fourth order tensor lG0,
described for instance by Gentili in [15], is not the same. Indeed, if the symmetric tensor
l̃G(t) := − l̆G(t), is introduced, then it shares with k(t) the property to be a non increasing
function of t admitting an initial positive value and converging to zero when t → ∞. Since
its definition combined with (4.5) implies l̃G(t) := lG(∞) − lG(t): the “minus” sign which
appears in (2.6) and doesn’t in (4.1) is explained. Furthermore, comparison between the
second two expressions in (2.6) and (4.1) shows that it can be expected the role, in turn,
played by the stress tensor, the relaxation modulus and the time derivative of the strain
tensor in isothermal viscoelasticity to be the same, respectively, of the heat flux, the heat
flux relaxation function and the temperature gradient in heat conduction in a rigid body.
Indeed, the elastic modulus is a non decreasing function which admits the finite limit
value lG(∞) ∈ Lin(Sym). In particular, the behaviour of l̃G follows immediately from its
definition.

Finally, note that the definition of the function space Γ exhibits interesting similarities
with the corresponding definition (2.6), which characterizes admissible states of a rigid
heat conductor with memory. Indeed, definition (2.9), follows from definition (2.6), as
soon as the heat flux relaxation function and the integrated history of the temperature
gradient are, in turn, replaced by the elastic modulus and the strain history.

5 Viscoelastic Work

The present Section is concerned about the notions of process, process prolongation and,
subsequently, of work, here termed viscoelastic work, to emphasize that it is referred to
the linear viscoelasticity model. The Section closes with a brief comparison with the case
of the thermal work.

In investigations concerning a linear viscoelastic solid, various authors [23, 18, 9, 6],
have been concerned about the notions of state and process. Here, the definitions adopted
in [15] of process and of process prolongation are recalled

Definition 8. Given a process P , hence assigned EP , its duration T and σ(t) := (E(t),Et),
then the prolongation of the history Et(s), induced by the process P , is defined by

(EP � E)t+T (s) :=

⎧⎨
⎩

ET
P (s) 0 ≤ s < T

Et+T (s) s ≥ T .
(5.1)
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Remark. Note that this definition of prolongation is quite different from that one (2.13)
referring to rigid heat conduction; indeed, the two models differ the most as far as the
definition of prolongation is concerned. This follows since the role played by the strain
history Et(τ) := E(t − τ) in the viscoelastic model is the same the integrated history of
the temperature gradient ḡt(τ)

∫ t

t−τ
g(s) ds plays in rigid heat conduction.

The subsequent step is the introduction of the following definition of equivalence, see
Gentili [15].

Definition 9. two given two strain histories assigned via σi(t) := (Ei(t),E
t
i), i = 1, 2,

they are termed to be equivalent if ∀EP : [0, T ) → Sym , ∀ T > 0, are equivalent
if ∀ EP : [0, T ) → Sym , ∀ T > 0, the corresponding stress tensor is the same, namely
T̃

{
EP (t), (EP � E1)

t+T
}

= T̃
{
EP (t), (EP � E2)

t+T
}

.

This relation plays the same role in the isothermal viscoelastic model that the equiva-
lence between two different thermal history, obtained in [2], plays in the rigid linear heat
conduction problem. Hence, strain histories are divided into equivalence classes depending
on the associated stress.

Then, the viscoelastic work can be introduced. In particular, two different situations are
considered: on one hand, the viscoelastic work is evaluated when the process P is prolonged
via the null strain history or via a generic strain history. The expressions obtained in the
two different cases show interesting similarities with the corresponding ones when the
thermal work is studied. In particular, the “zero” prolongation is characterized by the
state function σ(t) := (0(t),0t) so that (5.1) implies

E0(t) :=

∫ t

0
Ė(s)ds , (EP � E)t+T (s) :=

⎧⎨
⎩

ET
P (s) 0 ≤ s < T

Et+T (s) s ≥ T .
(5.2)

It can be proved, see [15], that the corresponding viscoelastic work reads

W̃{0,0; ĖP } =
1

2

∫
∞

0

∫
∞

0
lG(|τ − s|)ĖP (s) · ĖP (τ) dsdτ , (5.3)

in the case of the trivial prolongation, and

W̃{E(t),Et; ĖP }=

∫
∞

0

[
1

2

∫
∞

0
lG(|τ − s|)ĖP (s)ds − I(τ,E(t),Et)

]
· ĖP (τ)dτ , (5.4)

where

I(τ,E(t),Et) := − lG(τ)E(t) −

∫
∞

0
l̇G(τ + s)Et(s)ds , (5.5)

when the generic prolongation is considered. Then, on introduction of l̆G, W̃ in (5.3) reads

W̃{0,0; ĖP } =
1

2
lG∞E0(T ) · E0(T ) +

1

2

∫
∞

0

∫
∞

0
l̆G(|τ − s|)ĖP (s) · ĖP (τ) dsdτ , (5.6)

which, see [15], via the introduction of

Ĭ(τ, Ĕt) := −

∫
∞

0
l̇G(τ + s) Ĕt(s)ds = lG∞ E(t) + I(τ,E(t),Et) , τ ≥ 0 , (5.7)
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can be rewritten in the form

W̃{0,0; ĖP } =
1

2
lG∞E0(T ) ·E0(T ) +

1

2

∫
∞

0

∫
∞

0
l̆G(|τ − s|)ĖP (s) · ĖP (τ) dsdτ

+
1

2
lG∞E0(t) ·E0(T ) −

1

2

∫
∞

0

∫
∞

0
Ĭ(τ, Ĕt) · ĖP (τ) dsdτ ,

(5.8)

where

Ĭ(τ, Ĕt) := −

∫
∞

0
l̇G(τ + s) Ĕt(s)ds = lG∞ E(t) + I(τ,E(t),Et) , τ ≥ 0 . (5.9)

On introduction of the following transforms

Ĭ+(ω, Ĕt) :=

∫
∞

0
Ĭ(τ, Ĕt) e−iωτ dτ , Ė+(ω) :=

∫
∞

0
ĖP (τ) e−iωτ dτ , (5.10)

the viscoelastic work can be written as follows

W̃{0,0; ĖP } =
1

2
lG∞E0(T ) · E0(T ) +

1

2π

∫ +∞

−∞

l̆G(ω)Ė+(ω) · Ė+(ω) dω (5.11)

in the case of the trivial zero prolongation, where Ė+(ω) represent the Fourier Transforms,

Ė+(ω) its complex conjugate and l̆Gc(ω), according to [15], the Fourier cosine transform
of l̆G(|τ − s|). In the general case, the viscoelastic work, again in the form obtained by
Gentili [15], reads

Ŵ{E(t), Ĕt; ĖP } =
1

2
lG∞E0(T ) ·E0(T ) +

1

2π

∫ +∞

−∞

l̆G(ω)Ė+(ω) · Ė+(ω) dω

+
1

2
lG∞E0(t) · E0(T ) −

1

2π

∫ +∞

−∞

Ĭ+(ω, Ĕt) · Ė+(ω) dω .

(5.12)

Again, exactly in the same way as in Section 3, in the case when the thermal work was
considered, the inner product (3.9) can be introduced whenever the integral is finite. Then,
on application of Plancharel’s theorem, the identity of norms in spaces dual with respect
to Fourier transforms, implies that W̃{E(t),Et; ĖP } = Ŵ{E(t), Ĕt; ĖP}; hence, the latter
is finite if, and only if, the first one is finite; accordingly, inner products can be evaluated
in both the spaces related to each other via duality under Fourier transform.

The same way of reasoning followed in Section 3, see [15], allows to establish the admis-
sible states are only those ones related to a finite viscoelastic work, and the equivalence
between any couple of different states as those ones associated to the same value of the
viscoelastic work. Finally, also in viscoelasticity, the work functional can be proved to
represent, [15], a state function. Finally, also in the case of viscoelasticity, the minimum
free energy follows to be [15] represented by

ψm(σ) =
1

2
lG∞E0(t) ·E0(t) +

1

2π

∫ +∞

−∞

l̆G(ω)Ė
(m)
+ (ω) · Ė

(m)
+ (ω) dω (5.13)

where E(m)(·) denotes the strain, solution of a suitable [15] Wiener-Hopf equation. Note
that, the two forms assumed by the free energy in thermodynamics (3.21) and in viscoelas-
ticity (5.13) are of the same form except for the extra term which appears in the latter,
due to the different behaviour at infinity of the heat flux relaxation function k and the
relaxation modulus lG: that is lim

t→∞
k(t) = 0, while lim

t→∞
lG(t) = lG(∞) �= 0.
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6 Appendix

This short Section is devoted to briefly recall some notions, in the classical notation,
required throughout the whole paper. Accordingly, (see for instance [1]), the following
Fourier transforms are defined. Given a function f : [0,∞) → R

n, the formal half range
Fourier sine and cosine transforms are defined, in turn, by

fs(ω) =

∫
∞

0
f(τ) sin ωτ dτ , fc(ω) =

∫
∞

0
f(τ) cos ωτ dτ . (6.1)

In the case when its trivial prolongation over the whole R, denoted again as f ,

f(τ) :=

⎧⎨
⎩

f(τ) τ ≥ 0

0 τ < 0 ,
(6.2)

is considered, then, the corresponding Fourier transform is given by

f̃(ω) =

∫
∞

−∞

f(τ)e−iωτ dτ hence f̃(ω) = fc(ω) − ifs(ω) , (6.3)

where the relation of Fourier transform with Fourier sine and cosine transforms is also
shown. In addition, when the even prolongation of f over the whole R, denoted as f(|τ |),
is considered

f(|τ |) :=

⎧⎨
⎩

f(τ) τ ≥ 0

f(−τ) τ < 0 ,
(6.4)

then, since f(|τ |), even by definition (6.4), is real valued, then the corresponding Fourier
transform, given by (6.3), is an even real valued function, namely �(ω) = 0 implies
�(f̃(ω)) = 0 (see for instance [1]), related to Fourier cosine transforms via f̃(ω) = 2fc(ω).
As far as the tensor quantities which appear in the viscoelastic model, Sym denotes the
space of symmetric second order tensors acting on R

3, i.e. Sym := {M ∈ Lin(R3) : M =
M�}, where the superscript “�” stands for transposition. The space of the fourth order
tensors defined over Sym is indicated as Lin(Sym), thus Sym is isomorphic to R

6. In
particular, for every L,M ∈ Sym, if Ci, i = 1, ..., 6 is an orthonormal basis of Sym with
respect to the usual inner product in Lin(R3), namely tr(LM�), then

L =

6∑
i=1

LiCi , M =

6∑
i=1

MiCi (6.5)

and tr(LM�) =
∑6

i=1 LiMi. As a consequence, each tensor of Sym can be treated as
a vector in R

6, in addition, L · M denotes the inner product between elements of Sym,
namely

L · M = tr(LM�) = tr(LM) =
6∑

i=1

LiMi (6.6)
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and |M|2 = M · M. Hence [21], given any fourth order tensor IK ∈ Lin(Sym) it can be
represented as

IK =

6∑
i,i=1

KijCi ⊗ Cj , (6.7)

where IK� denotes the transpose of IK, as an element of Lin(R6). The norm |IK| of
IK ∈ Lin(Sym) follows

|IK|2 = tr
(
IKIK�

)
=

⎛
⎝ 6∑

i,j=1

KijKji

⎞
⎠ .
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