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i colleghi più cari del DISG con i quali ho condiviso parte di questa bellissima esperienza formativa.

Analogo pensiero vorrei rivolgerlo a tutti gli ”international friends”, in particolare Michael, Michelle,

David e Hooman, incontrati durante il lungo periodo trascorso a Potsdam alla Clarkson University e con

i quali ho avuto il piacere di lavorare e confrontarmi non solo scientificamente. Infine, seppur il tempo
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Alla mia famiglia va poi il pensiero più caro, con la consapevolezza di averli resi ancora una volta

orgogliosi di me.

Più di ogni altra cosa però, questo dottorato di ricerca lo voglio dedicare alla persona che, più di tutte,
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Abstract

Wind-induced vibration in super-long-span bridges is a major concern for the designers. There is a

need to enhance the structural design technology, through improved computational capabilities, a critical

step for a better understanding of fluid-flow physics that induce vibration and fluid-structure dynamics

of flexible bridges. The design of bridges with spans significantly longer than those existing today is quite

challenging. To refine the computational tools required for such bridges, a multi-disciplinary research

effort devoted to the advanced modeling of flexible long-span suspension bridges is proposed. These

structures exhibit an aeroelastic behavior quite different from conventional bridges.

In the present work, a fully nonlinear model of suspension bridges parameterized by one single space

coordinate is proposed to describe the overall three-dimensional motion. The nonlinear equations of mo-

tion are obtained via a direct Lagrangian formulation and the kinematics, for the deck-girder and the

suspension cables, feature the finite displacements of the associated base lines and the flexural and tor-

sional finite rotations of the deck cross sections. The strain-displacement relationships for the generalized

strain parameters - the cable elongations, the deck elongation, and the three curvatures - retain the full

geometric nonlinearities.

The nonlinear aerodynamic characteristics of the boxed sharp-edge cross section of the Danish Great

Belt Bridge are investigated by using two state-of-the-art computational methods, the k-ϵ turbulence

model implemented in FLUENT-ANSYS to solve the Reynolds Averaged Navier Stokes (RANS) equations

and the Navier Stokes (NS) discrete-vortex method implemented in DVMFLOW-COWI. The computa-

tional fluid dynamics tools have been used to develop computationally efficient unsteady aerodynamic

models taking into account viscous effects, including flow separation and boundary layer thickening,

treated using Reduced-Order Models (ROMs). Frequency-domain representations of the aerodynamic

loads in terms of flutter derivatives are obtained for selected values of the wind initial angle of attack.

Consequently, nonlinear indicial functions are derived for these angles and incorporated into the proposed

ROMs.

As a result, a fully nonlinear coupled fluid-structure model for suspension bridges is assembled to study

the nonlinear static and dynamic behavior thus addressing problems of static aeroelastic stability, such

as torsional divergence, and dynamic aeroelastic instabilities, such as flutter and post-flutter.

The geometrically exact formulation developed in this study lends itself naturally to parametric studies

about the sensitivity of the static and dynamic limit states of the bridges with respect to variations of

the characteristic structural parameters. In addition, the study addresses the dynamic response of the

bridges under time- and space-dependent loading conditions due to time- and space-wise distributed gust

excitations as well as the study of the effects of spatial nonuniform wind distributions on the critical flutter

condition. Finally, the post-flutter behavior is studied by using a continuation method to highlight the

post-critical bifurcation scenarios and emphasize the complex nonlinear response of slender self-excited

suspended structures.
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Sommario

Le vibrazioni indotte dall’azione del vento su ponti sospesi di grandissima luce rappresentano uno

dei maggiori problemi per i progettisti di tali opere. Vi è pertanto la necessità di migliorare le attuali

tecnologie progettuali, facendo uso delle più avanzate tecniche computazionali, poichè ciò è essenziale per

una migliore comprensione della fluido dinamica che governa il problema e che è la causa dell’accopiamento

fluido-strutturale in ponti cos̀ı flessibili e dunque delle vibrazioni che ne conseguono. La progettazione

di ponti aventi luci significativamente più lunghe di quelle tutt’ora esistenti rappresenta oggi una grande

sfida. Per poter effettivamente migliorare gli strumenti computazionali necessari per la progettazione di

ponti di grandissima luce, è proposto un contributo di ricerca multi disciplinare mirato alla modellazione

avanzata di ponti sospesi di grande luce. Tali strutture hanno un comportamento aeroelastico alquanto

differente da quello dei ponti convenzionali.

Nel presente lavoro di ricerca, è proposto un modello completamente nonlineare di ponte sospeso

parametrizzato attraverso una singola coordinata spaziale al fine di descrivere la dinamica tri-dimensionale

globale del sistema. Le equazioni del moto non lineari sono ottenute mediante una formulazione La-

grangiana diretta e la cinematica, per l’impalcato e per i cavi di sospensione, è basata sull’ipotesi di

spostamenti finiti e di rotazioni flessionali e torsionali finite delle sezioni trasversali dell’impalcato. Le re-

lazioni di congruenza interna, deformazione-spostamento, dei parametri generalizzati della deformazione

- l’elogazione dei cavi, quella dell’impalcato e le tre curvature - conservano le non linearità geometriche

complete, ovvero nessuno sviluppo in serie è stato condotto al fine di semplificare le loro espressioni.

Le caratteristiche aerodinamiche non lineari della sezione scatolare del Great Belt Bridge in Danimarca

sono state investigate mediante l’uso di due metodi di analisi fluidodinamica computazionale tradizionali,

il modello di turbolenza k-ϵ, implementato nel codice di calcolo FLUENT-ANSYS, che utilizza le equazioni

Reynolds Averaged Navier Stokes (RANS) e il metodo discrete vortex per la soluzione delle equazioni di

Navier Stokes (NS), implementato nel codice DVMFLOW-COWI. Tali strumenti di calcolo fluidodinamico

sono stati utilizzati per la formulazione di una aerodinamica instazionaria che tenga in conto degli effetti

viscosi, come la separazione del filetto fluido e l’accrescimento in spessore dello strato limite, attraverso

modelli aerodinamici di ordine ridotto (ROMs). Le rappresentazioni nel dominio delle frequenze delle

forzanti aerodinamiche in termini delle derivate aeroelastiche sono state ottenute per determinati valori

di angolo d’attacco iniziale del vento. Di conseguenza, funzioni indiciali non lineari sono state derivate

per tali angoli e incorporate nei ROMs proposti.

Infine, un modello completamente non lineare di accoppiamento fluido strutturale per ponti sospesi è

stato messo a punto per analizzare il comportamento statico e dinamico di tali strutture e mirato allo

studio di stabilità aeroelastica statica, tipo divergenza torsionale, e di instabilità dinamiche, tipo flutter,

nonchè all’analisi della risposta dinamica in regime di post-flutter.

La formulazione geometricamente esatta sviluppata in questo lavoro si presta per natura a studi para-

metrici di sensitività degli stati limite dinamici e statici dei ponti rispetto alle variazioni dei parametri

strutturali caratteristici. Ulteriori studi sono stati rivolti all’analisi della risposta dei ponti sotto l’azione

di carichi aerodinamici con distribuzioni spaziali e temporali del vento non uniformi, come quelli indotti

da raffiche, e alla valutazione degli effetti di distribuzioni spaziali non uniformi del vento sulla condizione

critica di flutter. Infine, è stato studiato il comportamento in post-flutter mediante l’uso di metodi di

continuazione con lo scopo di evidenziare gli scenari biforcativi post-critici ed enfatizzare la complessa

risposta non lineare di strutture snelle soggette a carichi dinamici autoeccitanti.



Chapter 1

Introduction

Structures possessing high flexural-torsional flexibility when subjected to wind-induced excitations can

be affected by elastic instability phenomena such as torsional divergence or flexural-torsional flutter. In

long- and super-long-span suspension bridges, the geometric nonlinearities induced by the suspension

cables and the high flexural-torsional slenderness of the deck-girder play an important role in the static

and dynamic response of the bridge. Moreover, the nonlinear effective stiffness of the structure in its

prestressed equilibrium configuration under dead loads can strongly influence the behavior under both

autonomous forces (e.g., aeroelastic loads) and non-autonomous dynamic forces (e.g., traffic-induced exci-

tations). These bridges show a characteristic nonlinear precritical behavior under quasi-static incremental

loads and, depending on the direction of loading (downward or upward), the ensuing increase or loss of

tension in the suspension cables causes an increase or a loss of stiffness as a result of the positive or

negative geometric stiffness effects, respectively. Thus, to predict correctly any static or dynamic critical

condition, it is necessary to describe accurately the overall precritical behavior as well as the mechan-

ical asymmetry exhibited by these formidable suspended structures. Phenomena including static and

dynamic aeroelastic instabilities induced by wind-structure interaction can be effectively investigated in

the context of a parametric modeling and a continuum formulation of the elastostatic and elastodynamic

problems.

Several numerical models of suspension bridges have been proposed in the technical literature and

different studies have been conducted to investigate their static/dynamic response and the aeroelastic

limit states. One of the first and most important contributions can be found in [1] where parametric for-

mulations are adopted to describe the static and dynamic response of cables and suspended structures.

Different studies on linearized models of suspension bridges can be found in [2, 3, 4, 5], whereas the first

general theory and analysis of nonlinear vibrations of such structures were proposed in [6, 7] where the

authors used the method of multiple scales to investigate nonlinear free flexural-torsional vibrations. By

the same method, passive and active schemes were investigated to control nonlinear oscillations in suspen-

sion bridges [8, 9]. Most recent works can be found in [10] and in [11, 12] in which the nonlinear equations

of motion are obtained by employing variational methods based on truncated geometric nonlinearities.

Studies on the static aeroelastic instability of long-span cable-stayed bridges were carried out in [13]

to evaluate the critical wind velocity that will lead to a nonlinear lateral-torsional buckling instability

using a Finite Element (FE) approach. Three-dimensional nonlinear FE analyses on a super-long-span

suspension bridge were also performed in [14] to demonstrate the significant influence of the geometric

nonlinearities on the static and dynamic behaviors of such slender structures under the action of aero-

dynamic loads. In [15, 16] a series method was proposed for the deterministic static aeroelastic stability

analysis of suspension bridges; however, some conservative assumptions in the kinematic modeling and

in the prestress contribution of the dead and wind-induced loads were made. In [17] numerical static

aeroelastic stability analyses are performed on a three-dimensional FE model of a suspension bridge to

3
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study the combined effects of geometric and material nonlinearities and the nonlinear modeling of the

wind loads. A simplified method to analyze the lateral response of suspension bridges under wind loads

was proposed in [18] deriving the analytical formulas of the aeroelastic response for a three-DOF model

under some kinematic and mechanical assumptions. A continuum model of suspension bridges, that can

undergo three-dimensional motions, was first proposed in [19, 20]. The model was formulated via a total

Lagrangian approach within a geometrically exact framework. The torsional divergence condition was

determined as the static bifurcation condition at a flow speed for which the tangent stiffness along the

nonlinear equilibrium path becomes was singular.

The dynamic aeroelastic behavior of suspension bridges has also been widely investigated in the lit-

erature by different numerical strategies. The flutter instability, whose general theory is given in [21], is

classically studied by the frequency- and time-domain approaches [22]. The importance of the structural

nonlinearities on the aerodynamic response of suspension bridges is a well-known fact as shown in [23].

In [24] the concept of aeroelastic derivatives –see also [25] and [26]– was first proposed to evaluate the

flutter wind speed by solving a complex-valued eigenvalue problem whose solution represents the bridge

frequency at the flutter condition. A modal analysis technique was applied in [27], [28, 29], and more

recently in [30] and [31] for the evaluation of the critical flutter speed of a suspension bridge by using a

linear three-dimensional multi-dof framework. A numerical model that treats the bridge and flowing air

as elements of a single dynamic system was proposed in [32] where the governing equations are integrated

numerically, simultaneously, and interactively to predict the onset of flutter.

A fully nonlinear parametric model for the study of wind-induced excitation in arch bridges was first

proposed in [33] and [34] where the flutter analysis of Ponte della Musica, recently erected in Rome, Italy,

was carried out by solving the complex eigenvalue problem associated with the governing equations of

motion linearized about the in-service prestressed bridge equilibrium under dead loads and wind-induced

forces. The same approach was followed in [35] on a classical FE model. An interesting application of

classical eigenvalue analysis for the critical flutter condition on a real bridge is given in [36] and [37] where

an iterative procedure was employed to estimate the flutter velocity for different wind angles of attack and

several suspension bridge configurations. In [38] a FE calculation of the aerodynamic flutter phenomenon

is presented for a cable-stayed bridge by solving the eigenvalue problem delivered by the mode-by-mode

method with the limitation that it neglects any a priori modal coupling. A multi-mode flutter analysis was

performed in [39] by a FE model. To account for the wind loading spatial distribution, especially for long-

span bridges, [40, 41] proposed a three-dimensional flutter analysis of a simply supported bridge girder by

the so-called finite strip method which allows to consider distributed wind forces on different strips of the

bridge girder. The wind spatial distribution can influence both the stability and the aeroelastic response

of suspension bridges. In [37] the effects of nonuniform discrete wind spatial distribution are studied by

adopting empirical coefficients that account for the horizontal (span-wise) and vertical variation of the

wind speed. In [42] is proposed an iterative approach of non-Gaussian conditional simulation employing

the spectral representation technique together with non-Gaussian mapping technique to simulate the wind

speed profiles by using the speed data collected at different locations. It was found that the buffeting

response evaluated using the non-Gaussian simulation scheme may be higher when compared with other

simulation schemes. The aerodynamic forces acting on the bridge deck are usually modeled using the

aeroelastic derivatives, which correspond to a set of functions evaluated through wind-tunnel tests on a

sectional scaled model of the reference bridge [26, 43, 44].

An important aspect to be carefully considered in the study of the static and dynamic aeroelastic

response of such structures is the proper definition of the aerodynamic properties of the bridge deck-

girder cross section. The sharp edges and the corners characterizing their shape are in fact the reason

of vortex shedding and the separation of the flow around the section at low wind speeds and small

angles of attack. These phenomena represent a non-negligible source of nonlinearities in the aerodynamic
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loads generated around the section. An analytical formulation of the aerodynamic loads acting on a

rigid section is only available in the thin plate theory, where the description in the time and frequency

domains of the aerodynamic loads is provided by the well known theories formulated by Wagner [45] first

and then Theodorsen [21], Küssner [46], von Kármán [47] and Garrick [48, 49]. These methods all provide

a closed-form solution, in the frequency and time domains, for the pressure distribution on the thin-airfoil

lifting surface for generic forcing conditions and are valid for two-dimensional incompressible irrotational

potential flow. Alternatively, numerical solutions or experimental data can be used in the development

of semi-analytical or semi-empirical methods for the study of the aerodynamics of bluff bodies, such as

the bridge deck sections. These methods are supplied by Computational Fluid Dynamics (CFD) tools or

by performing experimental tests in wind tunnels.

The cross section of the Great Belt Bridge (GBB) deck was assumed as reference geometry in order

to carry out the computational fluid dynamic (CFD) simulations necessary to develop the nonlinear

aerodynamic tools. This particular section has been subject of various experimental measurements [50]

and computational studies, such as in [51, 52] and more recently in [53, 54, 55], therefore it provides a

significant data-base to be used for testing the simulations performed in the present work.

1.1 Objectives

The objectives of the present thesis are multifold:

• to develop a geometrically exact one-dimensional formulation of the static and dynamic aeroelastic

problem for suspension bridges and validate the aeroelastic predictions based on this model

• to develop an unsteady aerodynamic formulation taking into account viscous effects, including flow

separation and boundary layer thickening, in a reduced-order aerodynamic model based on nonlinear

indicial functions

• to assemble a fully nonlinear coupled fluid-structure model for suspension bridges as to study their

nonlinear static and dynamic behavior to address problems of static stability, including divergence,

and dynamic instabilities including flutter. In addition the study addresses the dynamic response of

the bridge under time and space dependent loading conditions due to a distributed gust excitation

• to perform parametric studies to evaluate the static and dynamic behavior of the bridge to selected

structural characteristic parameters using the geometrically exact formulation developed in this study

• to study the post-flutter bifurcation behavior of the bridge using a continuation tool to emphasize the

complex nonlinear response of flexible slender structures

1.2 Chapters Overview

In Chapter 2, aeroelastic modeling aspects are discussed and the fluid-structure interaction (FSI) phe-

nomena treated in this work are described. In particular, the geometric descriptors and associated forces

generated by the flow are presented together with a discussion related to static and dynamic aeroelastic

instabilities. The analytical approaches employed to study these phenomena and the formulation of the

aerodynamic loads, both in the frequency and time domains, are proposed.

Chapter 3 presents the aerodynamic modeling of bridge deck cross sections. The background theory

concerning the fluid-dynamic modeling for incompressible viscous flows is briefly described and compu-

tational fluid dynamic (CFD) simulations for sharp-edge bluff-sections are proposed to investigate the

aerodynamic response of the GBB bridge deck cross section. Two different approaches and CFD solvers are
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used to perform the simulations and the results obtained are compared with the results from the avail-

able literature. The static curves of the aerodynamic coefficients and the frequency- and time-domain

expressions of the aerodynamic loads, accounting for the nonlinearities related to the viscous effects, the

flow separation and high angle of attack, are defined.

In Chapter 4, a fully nonlinear parametric model of suspension bridges, taking into account accurately

any nonuniform stiffness and mass properties as well as all other nonuniform data (e.g., the wind force

distribution) is proposed. The structural model accounts for the elastic characteristics of the suspension

hangers, modeled as a continuum elastic (membrane-type) distribution along the bridge span while the

Cosserat theory is employed to describe the mechanics of the deck-girder. No restrictions are placed on the

geometry of deformation besides the rigidity of the cross sections. A 3D kinematic theory accounting for

large displacements and finite rotations is first derived and the equilibrium equations and the equations

of motion are thus derived via a Lagrangian formulation which allows to include in a straightforward

manner nonconservative loads such as aeroelastic forces. A finite element (FE) approach is chosen to

solve the nonlinear partial differential equations (PDEs) governing the bridge statics and dynamics, and

the solver Comsol Multiphysicsr [56] was chosen to implement and integrate the PDEs system. Two

cases-studies are proposed in order to validate the model and modal analyses and nonlinear precritical

equilibrium paths are performed.

In Chapter 5, the static aeroelastic stability of these two suspension bridges is investigated by per-

forming nonlinear incremental analyses and evaluating torsional-divergence. The flutter analysis is then

performed for one case study and a comparison between two modal techniques is proposed; the study is

in fact conducted by solving a complex-valued eigenvalue problem and a classical, iterative, eigenvalue

problem by considering the pre-stressed configurations induced by the bridge dead loads and the in-service

loads as well as the static components of the wind loads. A few sensitivity analyses are then carried out

in order to demonstrate the wide applicability of the model.

The nonlinear aerodynamics characterizing the geometry of the GBB section and generated in the

first part of this work (Chapter 3) are then applied to the proposed structural nonlinear model and,

in Chapter 6, studies on the dynamic aeroelastic response at pre- and post-critical wind speed regime

are performed. Linear and nonlinear flutter is evaluated and the post-critical response is studied in the

context of a quasi-steady nonlinear aerodynamics as well as by accounting for a nonlinear unsteady

formulation of the self-excited aerodynamic loads and the limit cycle oscillations occurring in the post-

critical condition are investigated. The effects in the critical flutter condition of nonuniform wind speed

spatial distributions are studied and the modeling of a non uniformly distributed wind gust is then

proposed and the pre-critical aeroelastic response of suspension bridges under its action is presented and

commented.



Chapter 2

Aeroelastic Phenomena

2.1 Introduction

Critical aeroelastic instabilities can occur in flexible structures when subjected to the action of aerody-

namic loads, generated by the motion of air flow around them and strictly dependent on the self-excited

motion of the structure. In suspension bridges, in particular in long- and super-long-span bridges, the

effect of the wind-structure interaction is emphasized by the high slenderness of the deck and the associ-

ated low bending-torsional stiffness. Moreover, these structures are mostly erected on flat, wide areas like

river beds, canyons or over the sea, where the air flow, not dammed by any natural or artificial obstacles,

can reach high values of speed that can be of critical magnitude for the stability of the bridge. The air

flows in which such structures are immersed are usually turbulent, that is, the velocity vector U has non

uniform component both in space x and in time t

U(x, t) = U∞(x) +UT(t) (2.1.1)

where,U∞(x) is the static space-dependent free-stream component, whereasUT(t) represents its dynamic

component, due to time-dependent gust or turbulence. The main interest of this work is referred to the

aeroelastic phenomena induced by the static mean component U∞(x) of the wind speed and the response

to a space- and time-dependent wind gust, while the effects associated to the turbulent part will not be

treated in these studies. In particular, the loss of stability due to torsional divergence and the dynamic

instability associated to the flutter phenomenon will be investigated.

The aerodynamic loads do not depend only on the magnitude of the wind speed but, because of their

self-exciting character, they are also function of the effective wind angle of attack αE that is varying

with the motion of the structure. The drag force D, acting in the direction of the flow, the lift force L,

orthogonal to that, and the aerodynamic moment M of axis normal to the section’s plane are defined as

D(αE) =
1

2
ρU2BCD(α

E) , L(αE) =
1

2
ρU2BCL(α

E) , M(αE) =
1

2
ρU2B2 CM(α

E) (2.1.2)

where ρ is the air density, U is the intensity of the wind speed (U = ||U∞||), B is the deck width and

CD, CL and CM are the drag, the lift, and the aerodynamic moment coefficients, respectively.

By referring to an orthonormal fixed frame {e1,e2, e3}, where e1 is collinear with the section width,

e2 lays in the section plane and e3 is along the bridge span direction, the static component U∞ of the

flow velocity is defined as U∞ = −U cos ᾱ e1 + U sin ᾱ e2, where ᾱ is the angle between the direction e1
and the vector of the absolute wind velocity U∞(x) (see Fig. 2.1). The angle αE can be defined as the

sum of the three contributions αE = ᾱ + ϕ3 + ϕR
3 where ϕ3 is the pure torsional rotation of the section

and ϕR
3 is the relative angle due to the motion of the section and defined as:

7
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ϕR

3 = tan−1

(
(U∞ ×UR) · e3

U∞ ·UR

)
(2.1.3)

where UR is the vector of the relative wind velocity

UR = U∞ −w (2.1.4)

where w is the velocity of the section quarter-chord point

w = u̇1 e1 +

(
u̇2 +

B

4
ϕ̇3

)
e2 (2.1.5)

u2 and u1 are respectively the wind speed magnitude, the vertical (heave) and the horizontal (sway) section

displacements referred to the elastic center of the section and the dot indicates the time derivative.

UR = − (U cos ᾱ+ u̇1) e1 +

(
U sin ᾱ− u̇2 −

B

4
ϕ̇3

)
e2 (2.1.6)

The adopted positive sign convention is proposed in Figure 2.1, note that ᾱ is assumed positive in the

opposite direction of ϕ3. The definition of the velocity vector w is critical since it is related to the

contribution of ϕ̇3 to the effective angle of incidence αE. In the classical aeronautical convention, in the

airfoil theory, its vertical component is assumed as u̇2 − B
4 ϕ̇3 indicating that the velocity at the three-

quarter-chord point is selected for the calculation of αE. However, this is inconsistent with the airfoil

theory and the wind tunnel derived data concerning bluff bridge sections [57, 58]. Alternatively, the

expression u̇2 +
B
4 ϕ̇3 can be assumed corresponding to the velocity at the quarter-chord point.

D Á
3
,M

U
∞

u
1
e
1 α > 0

−

L
u
2
e
2

α+Á
3
 

−

U
R

U−w
Á
3

∞R

R

Fig. 2.1: Positive aerodynamic convention.

ϕR

3 = tan−1

− u̇1 sin ᾱ+
(
u̇2 +

B
4 ϕ̇3

)
cos ᾱ

U + u̇1 cos ᾱ−
(
u̇2 +

B
4 ϕ̇3

)
sin ᾱ

 (2.1.7)

by assuming small initial angles of attack ᾱ ≈ 0, expression (2.1.7) can be linearized and approximated

as

ϕR

3 ≈ −
u̇2 +

B
4 ϕ̇3

U + u̇1
(2.1.8)

thus the effective angle of attack is given by the following expression

αE = ᾱ+ ϕ3 −
u̇2 +

B
4 ϕ̇3

U + u̇1
(2.1.9)
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that, when no motion is induced in the section, becomes

αE = ᾱ+ ϕ3 (2.1.10)

2.2 Static Aeroelastic Loads and Torsional Divergence

The static drag, lift, and aerodynamic moment can be expressed in a form equivalent to (2.1.2), where

the effective angle of attack is given by (2.1.10) and the static coefficients can be obtained via experimen-

tal or numerical simulations. These loads, functions of the angle ϕ3, introduce an aerodynamic torsional

stiffness term, proportional to the square of the wind speed, and usually of opposite sign of the elasto-

geometric stiffness of the structure; thus, by increasing the velocity of the flow, the torsional divergence

occurs when the global stiffness, combination of the aerodynamic and elastogeometric stiffness, becomes

zero. By referring to the case of a single degree-of-freedom (SDOF) sectional model, the equilibrium of

the section under the action of the aeroelastic loads can be reduced to the linear equilibrium equation

involving the equivalent torsional stiffness of the structure (accounting for the contribution of the deck

elastic stiffness and the cables geometric stiffness) and the aerodynamic moment

Kϕ ϕ3 =
1

2
ρU2B2CM(α

E) (2.2.1)

In the hypothesis of small angle of attack and small rotation and assuming ᾱ = 0, that is αE = ϕ3, the

aerodynamic moment coefficient can be linearized around ϕ3 = 0 as

CM(ϕ3) = C0
M + ϕ3

dCM

dϕ3

∣∣∣∣
ϕ3=0

(2.2.2)

and the equilibrium Eq. (2.2.1) can be written in the form

Kϕ ϕ3 =
1

2
ρU2B2

(
C0

M + C ′
Mϕ3

)
(2.2.3)

where C0
M is the value of the moment coefficient at ϕ3 = 0 and C ′

M = dCM

dϕ3

∣∣∣
ϕ3=0

represents the slope

of the static moment coefficient curve evaluated at ϕ3 = 0. By defining the strictly positive parameter

σ2 = 1
2ρU

2B2, Eq. (2.2.3) can be written as(
Kϕ − σ2C ′

M

)
ϕ3 = σ2C0

M (2.2.4)

from Eq. (2.2.4) it is easy to notice that the bifurcation of the equilibrium state occurs when

Kϕ − σ2C ′
M = 0 (2.2.5)

and the velocity at the onset of the torsional divergence can be calculated as:

U cr =

√
2Kϕ

ρB2C ′
M

(2.2.6)

When a continuous model is employed to describe the aeroelastic response of a structure, the velocity

at the onset of the torsional divergence can be still evaluated by solving an eigenvalue problem, equivalent
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to the one shown in (2.2.4) for the case of an SDOF system, where the critical condition is identified

when the first eigenvalue becomes purely real.

2.3 Dynamic Aeroelastic Loads and Flutter

Flutter is a dynamic aeroelastic instability that arises when the aerodynamic loads are such that the

global damping of the mechanical system vanishes, hence, a perturbation of the equilibrium state can lead

to unbounded oscillations of the structure. Differently from the case of the torsional divergence earlier

discussed, this dynamic instability involves the torsional rotation ϕ3 of the section and it arises as a

flexural-torsional periodic oscillation where, in the case of suspension bridges, the torsional rotation is

coupled with the vertical motion. The critical flutter velocity can be evaluated either as the solution of

a linear (or nonlinear) eigenvalue problem or by time-dependent simulations.

One important parameter used in the description of the unsteady aerodynamics is the reduced fre-

quency K adopted to determine the degree of unsteadiness of the system. In aircraft aerodynamics, this

parameter is usually defined in terms of the airfoil (streamlined lifting surface) semi-chord c/2, while in

bridges aerodynamics applications, is commonly expressed in terms of the section width B

K :=
2πfB

U
(2.3.1)

where f is the section dimensional frequency of oscillation in the flow. Another important parameter is

represented by the reduced time (or nondimensional time) s representing the relative distance measured

in width length B (or, in alternative, semi-chord c/2) traveled by the section through the flow in the time

t:

s :=
1

B

∫ t

0

U dt (2.3.2)

2.3.1 The Frequency-Domain Approach in the Flutter Analysis

Analytical frequency-domain closed-form expressions of the aerodynamic lift and moment acting on a

lifting surface oscillating in an incompressible flow were developed by Theodorsen in 1935 [21]

L(K) = π
1

2
ρU2B

[
B

2U2
ḧ+

B

2U
α̇−

(
B

2V

)2

a α̈

]
+

+ 2π
1

2
ρU2B

[
ḣ

U
+ α+

Bα̇

2U

(
1

2
− a

)]
C(K)

(2.3.3)

M(K) = −ρ B
2

8

[
π

(
1

2
− a

)
U Bα̇ +π

B2

2

(
1

8
+ a2

)
α̈− a πB ḧ

]
+

+2ρU
B2

4
π

(
a+

1

2

)[
U α+ ḣ+

B

2

(
1

2
− a

)
α̇

]
C(K)

(2.3.4)

where a is the distance of the pitch axis (elastic axis) measured from the mid-chord B/2, whereas the

reduced frequency-dependent function C(K) = F (K)+iG(K) is the complex-valued Theodorsen function

accounting for wake effects on the unsteady aerodynamic loads.
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However, these expressions are only valid for thin airfoil assuming fully attached flow and small os-

cillations and, unfortunately, as already mentioned, in the case of bridge deck cross section analytical

closed-form expressions for the aerodynamic loads are not available. The most common description in

the frequency-domain of the aerodynamic loads acting on a sharp-edge bluff section, such as bridge cross

sections, was first given by Scanlan [24] as

D(K) = 1
2ρB U

2
(K
U
P1ḣ+

KB

U
P2α̇+K2P3α+

K2

B
P4h+

K

U
P5ṗ+

K2

B
P6p

)
L(K) = 1

2ρB U
2
(K
U
H1ḣ+

KB

U
H2α̇+K2H3α+

K2

B
H4h+

K

U
H5ṗ+

K2

B
H6p

)
M(K) = 1

2ρB
2U2

(K
U
A1ḣ+

KB

U
A2α̇+K2A3α+

K2

B
A4h+

K

U
A5ṗ+

K2

B
A6p

) (2.3.5)

The eigenvalue approach is thus based on the knowledge of the so-called flutter (or aeroelastic) deriva-

tives, Pi, Hi, and Ai i = 1, ...6, that is, coefficients depending on the reduced frequency K and obtained

via experimental or numerical simulations by imposing a forced sinusoidal motion to the section. The

motion of the structure is described by the heave h, the sway p, and the pitch α accordingly to the original

definition given by Scanlan and assuming the sign convention shown in Figure 2.2. Further details on the

procedure to evaluate the aeroelastic derivatives will be given in Chapter 3. The eigenvalue problem is

then solved by linearizing the bridge equations of motion around the configuration induced by the action

of static component of the aeroelastic forces. The critical condition is obtained at the value of the wind

h,L

α,M

U
∞

p,D

i
1

i
2

Fig. 2.2: Scanlan positive aerodynamic convention.

speed where the first complex eigenvalue describes an undamped vibrational mode. The full description

of the eigenvalue procedures developed to investigate the flutter phenomenon in suspension bridges is

provided in Section 5.2.

2.3.2 The Time-Domain Approach in the Flutter Analysis

Differently from the eigenvalue analysis, the time-dependent approach allows to account for all the

nonlinearities modeled in the system, geometrical and constitutive, and evaluate the flutter condition

by analyzing the time histories at different wind speeds and estimating the critical velocity when an

undamped periodic oscillation is reached. In this case, the aerodynamic loads can be suitably defined in the

time domain by employing the indicial theory. Within this theory, the time evolution of the aerodynamic

forces is described by the convolution integral of particular functions representing the response of the

bridge section to the step-change (instantaneous variation) of an aerodynamic input.

This more general theory for the formulation of the unsteady aerodynamic loads in the time domain

was first developed by Wagner in 1925 [45], for thin airfoil in incompressible flow as a solution for the

indicial lift by imposing a step-change in the airfoil angle of attack. In particular, the resulting variation
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in the lift coefficient for an instantaneous change of the angle of attack can be written as:

CL(t) =
πc

2U
δ(t) + 2παϕ(s) (2.3.6)

where δ(t) is the Dirac-δ function, ϕ(s) is the Wagner function, s = (2U/c) t (with the assumption of

being U constant) and c the airfoil chord length; 2πα is the steady-state value of the lift coefficient for 2D

thin airfoil. Usually, the most complicated exact analytical form of the Wagner function ϕ(s) is replaced

by a simpler linear combination of exponential terms

ϕ(s) ≈ 1−
N∑
i=1

ai e
−bis (2.3.7)

where, according to the Wagner exact solution, bi > 0 and
∑N

i=1 ai = 0.5. One of the most employed

approximation of the function ϕ(s) is due to Jones [59] and defined as

ϕ(s) ≈ 1−
(
0.165 e−0.0455s + 0.335 e−0.3s

)
(2.3.8)

An algebraic, less accurate, approximation of the Wagner function was proposed by Garrick [48]

ϕ(s) ≈ s+ 2

s+ 4
(2.3.9)

0 4 8 12 16 20
s [-]

0

0.25

0.5

0.75

1

ϕ
(s

) 
[-
]

Jones 1938

Garrick 1938

Fig. 2.3: Wagner function approximations.

The main advantage of the method is that, when the response to this particular variation of the

aerodynamic input ξ is determined, then the unsteady response to an arbitrary change in the effective

angle of attack can be obtained by means of Duhamel integral, that is the superposition of the indicial

responses.

F (t) = ξ(0)ϕ(t) +

∫ t

0

dξ

dt
ϕ(t− τ) dτ (2.3.10)
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2.3.3 Unsteady Aerodynamics of Bridges cross sections in the Linear

Indicial Theory

As previously described, the linear indicial method is based on the fundamental principle that the

motion of the section develops in regime of small oscillations and assuming a fully attached flow around

the lifting surface. Even if a closed form expression of the indicial function for bridges cross sections cannot

be determined, computational fluid dynamics (CFD) simulations can be employed to derive numerically

the indicial response of such sections.

Based on the assumptions made, the aerodynamic loads, which are in general nonlinear functions of

the effective angle of attack αE, can be linearized about the mean value α0, and the generic unsteady

aerodynamic coefficient CAE(α
E, t) can then be expressed as

CAE(α
E, t) = CAE(α

0, t = 0) +
∂CAE

∂αE

∣∣∣∣
α0

∆αE (2.3.11)

If ∂CAE/∂α
E does not depend on αE but it only depends on the time after the instantaneous change of

the aerodynamic input is applied, then the coefficient can be written as

CAE(t) = CAE(α
0, t = 0) + ΦAE(t)∆α

E (2.3.12)

where the function ΦAE(t) represents the indicial response of the section due to a step-change of the angle

αE. At the time t = 0, when the instantaneous change in the effective angle of attack is applied, there is no

circulation in the flow around the section. As time progresses the non-circulatory part of the aerodynamic

loads decays quickly as the pressure waves propagate away at the local speed of sound, and the circulatory

part of the loads simultaneously begins to build up. By referring to the linearized expression of (2.1.7),

the unsteady part of the effective angle of attack αE can be decomposed in the contribution given by the

pitch, the heave, and the sway motions, and the response in terms of the aerodynamic coefficients can be

generalized by the indicial theory as follow

CAE(t) =
dCAE

dξ

[
ξ(0)ΦAE(t) +

∫ t

0

dξ

dt
(τ)ΦAE(t− τ) dτ

]
(2.3.13)

where ξ = α, ṗ/U, ḣ/U represents the aerodynamic input. The evaluation of the convolution inte-

gral (2.3.13) contains all the prior time history information of what has happened to the aerodynamic

response since the initial time.

Differently from the case of the determination of the aeroelastic derivatives, experimental procedures

to obtain the indicial functions for bridges deck cross sections are not yet well established, thus numerical

CFD simulations are typically employed to this purpose. The indicial functions ΦAE(s) are then typically

represented by a series of N exponential terms whose coefficients can be obtained by least-square ap-

proximations of the aerodynamic response curves calculated numerically. In this approach, the main issue

is related to the instantaneous step-change of the aerodynamic input that has to be assigned to obtain

the indicial response. The numerical procedures adopted to bypass this inconvenience is to simulate the

instantaneous step-change via an equivalent smooth ramp variation of the input. One could also assume

the temporal dynamics of the section configuration right after the first time step. Alternatively to the

step-change simulations, it is also possible to derive the analytical approximation of the indicial functions

from the aeroelastic derivatives obtained, also in this case, either by experimental procedures or CFD

calculations. Further details on these procedures are given in Chapter 3.
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2.3.4 Aerodynamic Added State Formulation

Once the functions ΦAE(s) are evaluated, the main issue related to the indicial method is the calcula-

tion of the convolution integral (2.3.13) in order to evaluate the aeroelastic response of the section and

integrate the aeroelastic governing equations. The most interesting strategy to bypass the calculation of

the Duhamel integral consists in the use of the state-space representation of the unsteady aerodynamics.

In particular, the unsteady loads are defined as a combination of further aerodynamic states whose time

evolution is described by a set of first-order differential equations coupled with the motion of the section.

Let now derive the expressions of the aerodynamic forces and moment by the superposition of the

indicial responses obtained for a step change in the wind angles of attack α, ḣ/U , and ṗ/U . By assuming

respectively j = Lift, Drag, and Moment and ξ = α, ṗ/U, ḣ/U , the indicial function for the generic

aerodynamic load due to a step change of the input ξ, can be generalized with the exponential series of

Nξ
j terms

Φξ
j(s) = 1−

Nξ
j∑

k=1

aξj,k e
−bξj,ks (2.3.14)

where s is the nondimensional time defined as s = 2U
B t. By the use of the Duhamel superposition integral,

the aerodynamic load Fj(t) due to the generic variation of all the aerodynamic inputs ξ(t) can be written

as

Fj(t) = Gj

∑
ξ

cξj

∫ t

−∞
Φξ
j(t− τ)ξ̇(τ) dτ (2.3.15)

where the dot is the derivative with respect to time t and Gj is a coefficient representing the mean kinetic

force or moment per unit length of the air, and it is defined as

Gj =


1
2ρU

2B j = Lift and Drag

1
2ρU

2B2 j = Moment

(2.3.16)

By assuming the origin of the time at t = 0, Eq. (2.3.15) can be written in the form

Fj(t) = Gj

ξ∑
cξj

[
Φξ
j(t)ξ(0) +

∫ t

0

Φξ
j(t− τ)ξ̇(τ) dτ

]
(2.3.17)

and integrating by part the convolution integral in (2.3.17), the aerodynamic load can be expressed as

Fj(t) = Gj

∑
ξ

cξj

[
Φξ
j(t)ξ(0) +

(
Φξ
j(0)ξ(t)− Φξ

j(t)ξ(0)
)
+

∫ t

0

Φ̇ξ
j(t− τ)ξ(τ) dτ

]

= Gj

∑
ξ

cξj

[
Φξ
j(0)ξ(t) +

∫ t

0

Φ̇ξ
j(t− τ)ξ(τ) dτ

]
(2.3.18)

By referring to the indicial function Φξ
j as in Eq. (2.3.14), its derivative with respect to time t is given

by:

Φ̇ξ
j (t− τ) =

Nξ
j∑

k=1

b̂ξj,ka
ξ
j,k e

−b̂ξj,k(t−τ) (2.3.19)

where, from the linear relation between the dimensionless time s and the time t, the coefficient b̂ξj,k is

defined as b̂ξj,k = (2U/B) bξj,k. For the sake of notation, it is useful to introduce the function
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φξ
j,k (t− τ) := e−b̂ξj,k(t−τ) (2.3.20)

and rewrite Eq.(2.3.19) in term of φξ
j,k (t− τ) as

Φ̇ξ
j (t− τ) =

Nξ
j∑

k=1

b̂ξj,ka
ξ
j,kφ

ξ
j,k (t− τ) (2.3.21)

thus, the convolution integral in (2.3.18) accordingly to (2.3.21) can be written as

∫ t

0

Φ̇ξ
j(t− τ)ξ(τ) dτ =

Nξ
j∑

k=1

b̂ξj,ka
ξ
j,k

∫ t

0

φξ
j,k (t− τ) ξ(τ) dτ (2.3.22)

By denoting now with W ξ
j,k the new generic state variable governing the aerodynamics of the section

and defined as

W ξ
j,k (t) :=

∫ t

0

φξ
j,k (t− τ) ξ(τ) dτ (2.3.23)

Eq. (2.3.22) becomes ∫ t

0

Φ̇ξ
j(t− τ)ξ(τ) dτ =

Nξ
j∑

k=1

b̂ξj,ka
ξ
j,kW

ξ
j,k (t) (2.3.24)

By enforcing the differentiation properties of the convolution integral, the time derivative, counterpart

of (2.3.23), can be written as

Ẇ ξ
j,k (t) = ξ(t)φξ

j,k (0) +

∫ t

0

φ̇ξ
j,k (t− τ) ξ(τ) dτ (2.3.25)

where it is worth notice that d
dt

[
φξ
j,k (t− τ)

]
= −b̂ξj,kφ

ξ
j,k (t− τ) and that φξ

j,k (0) = 1. Consequently,

Eq. (2.3.25) can be manipulated and cast in the form

Ẇ ξ
j,k (t) = ξ(t)− b̂ξj,k

∫ t

0

φξ
j,k (t− τ) ξ(τ) dτ (2.3.26)

Finally, according to the definition (2.3.23) the time evolution of the generic added aerodynamic state

W ξ
j,k (t) is governed by the following differential equation

Ẇ ξ
j,k (t) = ξ(t)− b̂ξj,kW

ξ
j,k (t) (2.3.27)

The first-order differential Eq. (2.3.27) represents one of the
∑3

j=1

∑
ξ N

ξ
j additional state equations

describing the time evolution of the jmax = 3 unsteady aerodynamic loads (the lift, the drag and the

aerodynamic moment), with Nξ
j exponential terms (for each indicial function) due to the generic variation

of the aerodynamic inputs ξ(t).
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2.3.5 Nonlinear Indicial Formulation

Differently from the linear case, nonlinear indicial functions can depend on the motion of the section

and not only on time delay t−τ since the application of the instantaneous step-change of the aerodynamic

state variable ξ(t) such as the angle of attack α, ḣ/U , etc. The bases of the nonlinear indicial theory were

first formalized by [60, 61] and [62], and more recently in [63, 64] and [65] where interesting applications

in the aerodynamics of helicopter blades sections in subsonic and supersonic flow regimes can be found.

In the nonlinear indicial formulation, a more general expression of the aerodynamic coefficient given

in (2.3.13) can be defined as

CAE(t) = CAE (t, ξ(0)) +

∫ t

0

∂CAE

∂ξ

∣∣∣∣
τ

dξ

dt
(τ)ΦAE(ξ; t− τ) dτ (2.3.28)

where the nonlinear indicial function ΦAE depends not only on the time interval t−τ but also on the time

evolution of the aerodynamic state ξ(t). Since the fluid-dynamics of sharp-edge bluff-sections, like those

considered in this work, is characterized by flow separation at any value of the mean angle of attack,

and the aerodynamic loads generated at different angles may vary significantly because of the separation

effects, the assumption of linear indicial response may not be sufficient to describe the aeroelastic response

of bridge deck sections.

The exponential series approximation can still be adopted to describe the indicial response at a generic

input ξ

ΦAE(ξ; t− τ) = 1−
N∑
i=1

Ai(ξ) e
−Bi(ξ)s (2.3.29)

where, differently from expression (2.3.7), the coefficients Ai and Bi of the series expansion now depend

on the aerodynamic state ξ itself. Thus, these coefficients must be first determined for each instantaneous

change in ξ and then expressed by an appropriate analytical approximation determined via least square

minimization of the coefficients evaluated at each discrete values ξ̄. In this sense, a low-order polynomial

approximation can be adopted:

Ai(ξ̄) =

M∑
j=0

pj ξ̄j , Bi(ξ̄) =

M∑
j=0

pj ξ̄j (2.3.30)

The use of nonlinear indicial functions in the study of the aeroelastic response of suspension bridges,

turns out to be not straightforward as in the linear case. In fact, the added state formulation adopted

to bypass the evaluation of the convolutional integral is not possible anymore because of the functional

nature of the integral (2.3.28). Therefore, a step-by-step time integration of the aeroelastic equations

might be considered for evaluating the dynamic response of the bridge. In Chapter 3, the formulation of

the nonlinear indicial functions for a bridge deck cross section is proposed and the nonlinear dependence

to the angle of attack of the indicial coefficients is derived. However, the fully nonlinear aerodynamic

formulation was not implemented in the aeroelastic modeling and analysis of suspension bridge performed

in the following chapters.

Nevertheless, as to retain the effect of nonlinear unsteady aerodynamic contributions, at least at the

first order, nonlinearities are retained within the coefficients cξj in Eq. (2.3.15) representing the static

drag, lift, and moment coefficients curve slopes. Within this representation, the aerodynamic loads are

calculated at the effective angle of attack αE, defined in Eq. (2.1.9), and only the instantaneous variation

from the dynamic configuration, is assumed to be linear and described through the indicial formulation

derived in Section 2.3.4.



Chapter 3

Aerodynamics of Bridge Deck Cross Sections

Long-span bridges have remarkably low natural frequencies with an associated low ratio between the

fundamental torsional and vertical modes. This makes long-span bridges very susceptible to the actions of

strong wind and may experience, among others, vortex-induced vibration, turbulence-induced buffeting

and motion-induced flutter instability. While the computationally efficient mode-by-mode approach used

in the prediction of flutter and buffeting is valid for the large majority of bridges currently built, the

aerodynamic performance of very long-span bridges requires studies at very low frequencies and associated

higher reduced velocities. In those circumstances aerodynamic coupling needs to be properly considered.

In this sense aerodynamic coupling in terms of the contribution of the aerodynamic forces on the bridge

system damping can lead to a multi-mode coupled flutter behavior.

Flutter and buffeting aeroelastic responses of bridges are usually computed using aerodynamic forces

linearized about statically deformed configurations. This approach based on linear aerodynamic forces

model is quite useful and has been proved to work in most designs, however, particularly for long-span

bridges, this model is incapable of accounting for complex issues such as aerodynamic nonlinearities and

turbulence effects, increasingly important when the aerodynamic characteristics of bridge decks exhibit

significant sensitivity with respect to the effective angle of incidence and as the bridges span increases.

In this respect, the author of this thesis is proposing a novel nonlinear aerodynamic model and asso-

ciated time-domain analysis framework where the aeroelastic response of bridges under turbulent winds

in pre- and post-flutter condition is predicted using an efficient reduced-order model for the nonlinear

aerodynamics based on novel nonlinear indicial functions. The aerodynamic forces model includes the

frequency-dependent unsteady aerodynamic characteristics that are nonlinear functions of the effective

angle of incidence, and is based on a nonlinear functional form accounting for viscous flow, thickness ef-

fect, large flow separation at varying angles of incidence. The proposed aerodynamic framework provides

a novel tool to study the influence of aerodynamic nonlinearities and turbulence on aeroelastic response

of bridges.

Before plunging into the description of the proposed procedure developed to evaluate the aerodynamic

indicial functions, a short overview of the aerodynamic modeling aspects along with pertinent assumptions

used in the computational tools employed in this work are presented.

3.1 The Equations of Viscous Flows

A brief overview describing the equations governing the physics of the problems is presented. Most

comprehensive and detailed interpretations of the fluid dynamics theories and the derivation and appli-

cation of the Navier-Stokes equations can be found in the wide available literature, among which the

17
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book of F.M. White [66] represents, according to the author of this thesis, one of the most interesting

contribution.

The symbolism adopted to define the physical parameters governing the motion of viscous fluids are

presented next. Let consider an infinitesimal fluid control volume dV = dx dy dz, this volume can be

assumed fixed in the space with the fluid moving through it or, alternatively moving into the stream with

a certain velocity U . At the time t, the velocity vector describing the motion of the fluid volume in the

fixed inertial frame (e1, e2, e3) can be expressed as:

U(x, t) = u(x, t) e1 + v(x, t) e2 + w(x, t) e3

where x = x(t) is the volume position vector at time step t. By introducing the fluid density ρ = ρ(x, t),

the instantaneous time rate of change in density of the fluid element as it moves from position x(t0) to

x(t) is given by the substantial derivative of ρ:

Dρ

Dt
=
∂ρ

∂t
+U · ∇ (ρ) (3.1.1)

where ∂ρ/∂t is the local derivative of ρ, with the physical meaning of average time rate of change of fluid

density at the initial position x(t0), whereas U ·∇ (ρ) is the convective derivative and represents the time

rate of change of ρ due to the fluid motion from position x(t0) to x(t). ∇ (·) is the gradient operator

defined as:

∇ (·) = ∂(·)
∂x1

e1 +
∂(·)
∂x2

e2 +
∂(·)
∂x3

e3

The internal stress state in the infinitesimal fluid elements is described by the stress tensor T

T =

 σ1 τ12 τ13
τ21 σ2 τ23
τ31 τ32 σ3

 (3.1.2)

whereas the forces acting on the generic volume can be summarized as follow:

a) The surface forces, such as the pressure, at the interface dS between two adjacent fluid elements.

b) The volume forces f = (f1e1 + f2e2 + f3e3), such as the gravitational force.

On the generic fluid control volume, the rate of work due to volume and surface forces can be written as:

LI = ρ (f ·U) dV + [∇ · (T ·U)−∇ · (ρU)] dV (3.1.3)

where

T ·U =

uσ1 + vτ12 + wτ13
uτ21 + vσ2 + wτ23
uτ31 + vτ32 + wσ3

 (3.1.4)

The net flux of heat into the element is given by two different contributions: the volumetric heating,

such as absorbtion or emission of radiation, and the heat transfer across the surface due to temperature

gradients (thermal conduction).

LII = [ρq̇ +∇ · (k∇T )] dV (3.1.5)

where q̇ represents the rate of volumetric heat added per unit mass, therefore ρq̇ dV is the volumetric

heating of element, with q = ||q(x, t)||. The Fourier law of heat conduction has been employed, such that

the temperature T and the thermal conductivity k lead to: q̇ = −k∇T . The rate of energy exchange

inside the fluid volume, can be written as:
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LIII =

{
∂

∂t

[
ρ

(
e+

U2

2

)]
+∇ ·

[
ρ

(
e+

U2

2

)
U

]}
dV (3.1.6)

where e is the element’s internal energy per unit mass and ρU2/2 its kinetic energy; this expression has

to be equal to the sum of the two works LI and LII . The equations governing the motion of viscous flow

are derived in their differential form, assuming that the fluid control volume is fixed in space and the

field equations (i.e. the momentum, continuity and energy equations) are written in their conservation

form. The governing equations for an unsteady three-dimensional, compressible, viscous flow are defined

as follows:

1. The continuity equation (e.g. the conservation of mass equation)

∂ρ

∂t
+∇ · (ρU) = 0 (3.1.7)

2. The momentum equations (e.g. the Navier-Stokes equations)

∂ (ρu)

∂t
+∇ · (ρuU) = − ∂p

∂x1
+
∂σ1
∂x1

+
∂τ12
∂x2

+
∂τ13
∂x3

+ ρf1

∂ (ρv)

∂t
+∇ · (ρvU) = − ∂p

∂x2
+
∂τ21
∂x1

+
∂σ2
∂x2

+
∂τ23
∂x3

+ ρf2

∂ (ρw)

∂t
+∇ · (ρwU) = − ∂p

∂x3
+
∂τ31
∂x1

+
∂τ32
∂x2

+
∂σ3
∂x3

+ ρf3 (3.1.8)

3. The energy equation (e.g. the conservation of energy equation)

∂

∂t

[
ρ

(
e+

U2

2

)]
+∇ ·

[
ρ

(
e+

U2

2

)
U

]
= ρq̇+∇ · (k∇T )−∇ · (pU) +∇ · (T ·U) + ρf ·U (3.1.9)

Most of the CFD codes commercially available solve the Reynolds-averaged Navier-Stokes equations

(or RANS equations). These are time-averaged equations of motion for the fluid flow, based on the

Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged and

fluctuating quantities. These equations are primarily used to describe turbulent flows, and can be used

with approximations based on knowledge of the properties of flow turbulence to give approximate time-

averaged solutions to the Navier-Stokes equations.

For a stationary, incompressible Newtonian fluid, these equations can be written in Einstein notation

as:

ρ
DU

Dt
+ ρ

∂u′iu
′
j

∂xj
= ρf −∇p+ µ∇2U (3.1.10)

where overline refers to the mean value of the time dependent variables and the prime refers to their fluc-

tuation. An ensemble version of the governing equations is solved by introducing the apparent Reynolds

stresses. This adds a second order tensor of unknowns for which various models can provide different

levels of closure.

It is worth remarking that RANS equations do apply to flows with a time-varying mean flow. Sta-

tistically unsteady or non-stationary flows can be treated, but the turbulence models used to close the

equations are valid only as long as the time over which these changes in the mean occur are large compared

to the time scales of the turbulent motion containing most of the energy.
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3.1.1 Boundary Conditions

Two particular types of boundary conditions are considered in this work

a) Solid surface (not porous, the so called wall) .

b) Inlet or outlet boundary.

Other boundary conditions, such as a free liquid surface condition, a liquid-vapor interface, and a liquid-

liquid interface might be required depending on the fluid dynamic problems at hand. Details related to

these boundary conditions can be found in [66].

Considering a stationary solid surface with the flow moving past it, the boundary condition assumes

zero relative velocity between the surface and the fluid, that is

U = 0 (3.1.11)

a no-slip condition at the wall. The analogous no-slip condition in term of the temperature T at the

surface, can be written simply as T = Tw, where Tw is the temperature at the wall. If the temperature

Tw is not known, by enforcing the Fourier law, one can write the boundary condition on the temperature

gradient at the wall as (
∂T
∂n

)
w

= − q̇w
k

(3.1.12)

and in the case of adiabatic wall condition (
∂T
∂n

)
w

= 0 (3.1.13)

where n denotes the direction normal to the wall. At every generic position x of the inlet or outlet

boundary section of the fluid domain, it is then necessary to know the velocity field U , the pressure p,

and the temperature T , defined as:

U(x, t) = U0 , p(x, t) = p0 , T (x, t) = T0 (3.1.14)

3.1.2 Turbulent Boundary Layer on a Flat Plate

The average velocity of a turbulent flow at a specific point is proportional to the logarithm of the

distance from that point to the wall, a boundary of the fluid region. The law of the wall is attributed

to Theodore von Kármán in 1930. The logarithmic law of the wall is valid for flows at high Reynolds

numbers, that is in a region with constant shear stress, and far enough from the wall, to be able to neglect

direct viscous effects.

In the log-law region, the velocity profile can be estimated using the well known law

u+ =
1

k
ln

(
y+

)
+ C ∀ 30 ≤ y+ ≤ 300

u+ = y+ ∀ y+ ≤ 5 (3.1.15)

where u+ is the nondimensional fluid velocity defined as u+ = U/u∗, with U the local fluid dimensional

velocity and u∗ the friction velocity at wall:

u∗ =

√
τw
ρ

(3.1.16)
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where ρ is the fluid density (for air at sea level it is ρ = 1.225 kg/m3) and τw is the wall shear stress. The

nondimensional wall distance y+ is defined as

y+ =
u∗yw
ν

(3.1.17)

Fig. 3.1: Law of the wall [66].

Herein yw represents the dimensional distance from the wall and when the y+ values are assigned, can

be found as:

yw =
y+ν

U

[
1

k
ln

(
y+

)
+ C

]
∀ 30 ≤ y+ ≤ 300

yw =
ν

U

(
y+

)2 ∀ y+ ≤ 5 (3.1.18)

where ν is the air kinematic viscosity, assumed to be ν = 1.45 · 10−5 m2/s, whereas k is the von Kármán

constant k = 0.41 and C = 5.1 is a constant [67].

3.2 Computational Fluid Dynamic Modeling, a Case Study: the GBB

Suspension Bridge

The main section of the Great Belt suspension Bridge (GBB) deck was assumed as reference geometry

in order to study the aerodynamic response of bluff-sharped edge sections typical of many bridge decks.

This particular bridge cross section, has been widely studied in the past and a large amount of data, from

experimental and numerical investigations, are today available and useful for comparison and validation

purpose. Initial analyses were performed to evaluate the aerodynamic loads of this section in terms of the

static coefficients at several mean angles of attack, and to calibrate the parameters of the computational

tool used for the simulations. In this work, two different softwares were tested and their efficiency, in

terms of accuracy in the results and computational effort, was evaluated. In particular it was determined
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which commercial CFD software would be used for further studies, including the development of the

indicial functions, required in the aeroelastic modeling and dynamic analysis of the bridge section. The

two softwares employed are FLUENTr by ANSYS and DVMFLOWr by COWI, respectively.

3.2.1 ANSYS FLUENTr

FLUENTr, was employed first for the prediction of the aerodynamic loads around the bluff body bridge

cross section. This is a robust CFD program that can solve the Reynolds-Averaged Navier-Stokes (RANS)

Equations using a finite volume approach. In addition, FLUENTr has a wide range of applications and

features several well-know turbulence models, including the k − ϵ selected for this work. This general

purpose CFD code is able to treat many different fluid-dynamic problems, however it is not specifically

developed for the study of the aerodynamics of bridge sections. Because of its wide range of application,

the software implements various numerical methods for solving the equations described in Section 3.1,

and consequently requires a wise choice of a number of variables, specific for the particular problem at

hand.

In the following Sections, the geometry adopted, the meshing procedures, and the numerical methods

selected by pertinent assumptions along with their justification are presented. In addition, the results

and the comparisons with archival literature are shown as a validation of the studies carried out.

3.2.1.1 Computational Domain

The computational two dimensional (2-D) domain used in the carried out CFD simulations is proposed

in Fig. 3.2. Four different subdomains have been defined in order to properly define the mesh size in

each particular zone. The elliptical shape for subdomain Ω1 has been chosen to easier fit the mesh in

the leading and trailing edges regions of the bridge section. Ω2 represents the wake zone, where vortex

shedding develops when the range of velocities is such that the turbulence phenomena can generate eddies

detachment. Subdomains Ω3 and Ω4 allow to quickly reduce the cells number in the zones far away from

the bridge section. The domain is meshed by using paved triangular elements.

This ad hoc domain partition was selected in order to evaluate the indicial response of the cross section

in terms of the step-change of the wind angle of attack. More precisely, subdomain Ω1 is a moving zone,

that moves together with the wall boundaries defined by the bridge section as a rigid body with respect

to the other three domains that are fixed. Subdomains Ω2 and Ω3 are characterized by a deforming

mesh structure whereas in subdomain Ω4 a stationary undeformable mesh is used. In this study, four

different mesh sizes are proposed and used to validate the results of the employed turbulence model in

term of mesh independency. Table 3.1 shows, for each considered mesh, the number of cells generated in

the subdomains Ωi. The partition generated in the four cases, was obtained by varying the number of

cells around the bridge section (subdomain Ω1) and in the wake zone (subdomain Ω2), that is, in the

zones affected by large turbulence production. It is worth mentioning that the 4 meshes were derived

accordingly with the boundary layer sensitivity analysis shown in Table 3.2, and, in particular, the first

cell thickness yw was assumed to be such that yw/B ≈ 1.29 · 10−4 (see Fig. 3.3).

Table 3.2, shows the number of triangular cells contained in each subdomain Ωi and the value of

the nondimensional wall cell thickness yw/B adopted (Fig. 3.4). More precisely, boundary layers among

the various mesh sizes, differ by the value of the first cell thickness yw in order to have a y+ value in

the appropriate range required when using the standard wall treatment, as proposed by Launder and

Spalding [68] and evaluated by the classic log-law valid for flat plates, the first expression of (3.1.15).
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d

Fig. 3.2: Computational domain and geometry of the GBB deck section.

Fig. 3.3: GBB deck section: boundary layer discretization.

Mesh fitting has been performed to upgrade the mesh resolution closer to the bridge section boundary

and in the zone where vortex shedding might develop, thus domains Ω3 and Ω4 have not been modified

in terms of number of cells. To resolve the boundary layer close to the wall, the value of the y+ has been



24 3 Aerodynamics of Bridge Deck Cross Sections

Ω1 Ω2 Ω3 Ω4 Tot. ∆[%]
Mesh 1 211105 33437 22144 15302 281988 −
Mesh 2 150787 22253 22144 15302 210486 −25.35%
Mesh 3 284043 48963 22144 15302 370452 +31.37%
Mesh 4 55775 831 3602 5110 65318 −76.84%

Table 3.1: Boundary Layer 2, first cell thickness yw = 4 mm, yw/B ≈ 1.29 · 10−4.

Ω1 Ω2 Ω3 Ω4 Tot. yw/B
Mesh 1

Boundary Layer 1 211401 33437 22144 15302 282284 6.45 · 10−5

Boundary Layer 2 211105 33437 22144 15302 281988 1.29 · 10−4

Boundary Layer 3 213483 33437 22144 15302 284366 1.935 · 10−4

Mesh 4

Boundary Layer 2 55775 831 3602 5110 65318 1.29 · 10−4

Boundary Layer 4 54273 831 3602 5110 63816 3.23 · 10−4

Boundary Layer 5 51093 831 3602 5110 60636 6.45 · 10−4

Table 3.2: Mesh partitioning: boundary layer sizes.

(a) Mesh 1

(b) Mesh 4

Fig. 3.4: Example of mesh used in the analyses: (a) Mesh 1 and (b) Mesh 4.

evaluated for each of the selected mesh and the value yw of the cell thickness nearest to the wall is also

presented in Table 3.2.

Since the main vortical structure is located on the lower surface of the bridge deck near the wake, a

refined mesh is required in this region to properly capture the wake phenomena. In this respect boundary

layer separation occurs at every corner of the bridge deck. On the other end, on the lower surface of the

deck, advected vortices are traveling from the front far-wake side to the rear near-wake side of the section.
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Vortices generated in the far-wake during advected procession coalesce with vortices in the near-wake side

and shed into the wake, generating the vortex shedding phenomenon. This complex phenomenon can be

captured at the right frequency by properly sizing the mesh and performing its refinement as needed.

3.2.1.2 The k − ϵ Model

For fluid flow problems with high Reynolds numbers it is important to choose an appropriate turbulence

model capable of capturing the flow characteristics and associated aerodynamic loads acting on the object

of interest. Since no turbulence model is accepted as better than another, it is important to choose a

model that is specific to the problem at hand, sufficiently accurate within the available computational

recourses. Among the various turbulence models currently available k−ϵ as been widely used and accepted,

particularly for free-shear layer flows and for wall-bounded and internal flows, when there are relatively

small mean pressure gradients, while accuracy has been shown experimentally to be reduced for flows

containing large adverse pressure gradients, and becomes inappropriate for problems such as inlets and

compressors.

Turbulence models are associated to the Reynolds Average Navier-Stokes (RANS) equations to com-

pute the Reynolds stresses, which can be done by three main categories of RANS-based turbulence models,

i) the linear eddy viscosity models, ii) the nonlinear eddy viscosity models, and iii) Reynolds stress model

(RSM).

Among the two equations linear eddy viscosity models, one of the most used types in a variety of

engineering and industry problems, the k-eps turbulent model, has been selected for its less computational

time and resources requirement to achieve high degree of accuracy. This is a two equations model including

two extra transport equations to represent the turbulent properties of the flow and to account for history

effects like convection and diffusion of turbulent energy. Two transported variable are used in this model,

the turbulent kinetic energy, k, and the turbulent dissipation, ϵ. While k determines the energy in the

turbulence, ϵ determines the scale of the turbulence. The standard k − ϵ model is based on the two

equations, for turbulent kinetic energy k

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+ Pk + Pb − ρϵ− YM + Sk (3.2.1)

and for dissipation ϵ

∂

∂t
(ρϵ) +

∂

∂xi
(ρϵui) =

∂

∂xj

[(
µ+

µt

σϵ

)
∂ϵ

∂xj

]
+ C1ϵ

ϵ

k
(Pk + C3ϵPb)− C2ϵρ

ϵ2

k
+ Sϵ (3.2.2)

The turbulent viscosity is modeled as:

µt = ρCµ
k2

ϵ
(3.2.3)

while the production of k is modeled as

Pk = −ρu′iu′j
∂uj
∂xi

(3.2.4)

Pk = µtS
2 (3.2.5)

Herein S is the modulus of the mean rate-of-strain tensor, defined as :

S ≡
√
2SijSij (3.2.6)



26 3 Aerodynamics of Bridge Deck Cross Sections

and the effect of buoyancy is modeled as

Pb = βgi
µt

Prt

∂T

∂xi
(3.2.7)

In addition, Prt is the turbulent energy (Prandtl number) and gi is the component of the gravitational

vector in the ith direction. For the standard and realizable models, the default value of Prt is 0.85. The

coefficient of thermal expansion, β , is defined as

β = −1

ρ

(
∂ρ

∂T

)
p

(3.2.8)

furthermore, the constants used in the turbulent model are:

C1ϵ = 1.44, C2ϵ = 1.92, Cµ = 0.09, σk = 1.0, σϵ = 1.3 (3.2.9)

There exist variants of the standard k − ϵ model. The one considered in this study is the realizable

k− ϵ model, usually used when predicting the flow effects in flows with large amount of energy producing

eddies that are unpredictable in the spread rate by the standard k− ϵ model. The following values of the

parameters governing the k − ϵ viscous turbulence model are assumed:

a) Realizable k − ε model accounting for standard wall functions, since this selection of wall functions

give reasonably accurate predictions for the majority of high-Reynolds-number, wall-bounded flows.

The transport equation for the realizable k − ϵ model is

∂

∂t
(ρk) +

∂

∂xj
(ρkuj) =

∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+ Pk + Pb − ρϵ− YM + Sk (3.2.10)

∂

∂t
(ρϵ) +

∂

∂xj
(ρϵuj) =

∂

∂xj

[(
µ+

µt

σϵ

)
∂ϵ

∂xj

]
+ ρC1Sϵ− ρC2

ϵ2

k +
√
νϵ

+ C1ϵ
ϵ

k
C3ϵPb + Sϵ (3.2.11)

where

C1 = max

[
0.43,

η

η + 5

]
, η = S

k

ϵ
, S =

√
2SijSij (3.2.12)

in these equations, Pk represents the generation of turbulence kinetic energy.

b) Turbulence parameters at the inflow boundaries: turbulence intensity It = 0, turbulence length scale

lt = 31 (in [m], represents the section width B)

c) Integration scheme: SIMPLE (Semi-Implicit Method for Pressure-Linked Equations). As the pressure

appears in all three momentum equations while the velocity field also has to satisfy the continuity

equation. While there is no explicit equation for pressure, to solve the four equations in the four

variables, a pressure-velocity coupling algorithms is used to derive an equation for the pressure from

the momentum and the continuity equations. The SIMPLE algorithm, a default algorithm in most

commercial finite volume codes, uses an algebraic equation for the pressure correction in a form similar

to the equations derived for the convection-diffusion equations.

The momentum equations were solved using second-order upwind spatial discretization, and a least

square cell based gradient option. Since a pressure-based solver is used, PREssure STaggering Option

(PRESTO!) for pressure interpolation scheme was also selected. In addition, second order upwind was

also selected to spatially discretize both the turbulent kinetic energy and dissipation rate equations.
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3.2.1.3 Numerical Results

The simulations were carried out for a turbulent flow regime, in particular assuming a free-stream

velocity U = 8 m/s, corresponding to a Reynolds number Re = 1.71 × 107. The unsteady analyses

were run by adopting a time step size ∆t = 1 × 10−3 sec, nevertheless studies on the ∆t convergence

were previously performed and an example of that is given in Table 3.5. The geometry of the section is

described in Fig. 3.2 where a deck with B = 31 m and depth d = 4.4 m represent the main parameters.

The aerodynamic drag, lift, and moment coefficients (CD, CL and CM ) evaluated by the CFD analyses,

are here defined according to the following convention:

CD :=
D

1
2ρU

2B
, CL :=

L
1
2ρU

2B
, CM :=

M
1
2ρU

2B2
(3.2.13)

where D, L are the drag and lift forces, respectively, and M is the aerodynamic moment computed with

respect to the elastic center of the section. It is important to note that the drag coefficient appears in the

literature also in an alternative form, evaluated in terms of deck depth d as C∗
D := D

1
2ρU

2d
. Moreover, the

aerodynamic moment is assumed positive accordingly to the nose-up positive convention for the rotation

α of the section. The dimensionless Strouhal number, describing the oscillating flow mechanism for fixed

aerodynamic sections, is also computed. It is defined as St = fd
U , where f is the vortex shedding frequency

in [Hz] of the calculated unsteady aerodynamic loads extracted from the Fourier spectrum of their time

histories.

Simulations at a mean angle of attack α = 0◦ were first carried in order to evaluate the influence of

the computational domain discretization in the calculation of the aerodynamic coefficients. In Table 3.3

the results obtained by using the 4 meshes previously described in this Section (see an example of them

in Figure 3.4), show how also with the minimum discretization adopted (Mesh 4) the estimation of

the aerodynamic loads is very close to the values calculated with smaller mesh size. Nevertheless, the

mesh resolution strongly affects the vorticity dissipation in the wake, as shown in Figure 3.5b where

the generated eddies vanish after less than one chord length. Higher variations were instead found by

adopting the different boundary layers described in Table 3.2.

Finally, in Table 3.5, the comparison between the analyses performed assuming different time steps is

proposed and the best compromise, in terms of computational effort and accuracy of results, was found

to be corresponding to the adoption of the Mesh 4 and the Boundary Layer 2.

Boundary Layer 2

Mesh 1 Mesh 2 Mesh 3 Mesh 4
CL 0.0786 0.0790 0.0778 0.0756
CD 0.03518 0.03525 0.03521 0.03368
C∗

D 0.2479 0.2484 0.2480 0.2373
CM 0.02970 0.02976 0.02965 0.02915

Table 3.3: Mean value of the aerodynamic coefficients, Re = 1.71× 107 and α = 0◦, ∆t = 0.001 sec.

In Figure 3.6, the velocity and vorticity fields generated by the flow around the section and in the wake

are shown when adopting the best mesh resolution implemented in this study, that is Mesh 1. Figure 3.7

finally shows the time histories of the aerodynamic coefficients and their frequency spectrum and the

main frequency of oscillation, corresponding to the Strouhal number reported in Table 3.5, is highlighted.

Although not of a major interest for the content of this thesis, it is worth presenting a note about

the flow pattern around the bridge deck at the Reynolds numbers at which the computations have been
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Mesh 1 Mesh 4
B-L 1 B-L 2 B-L 3 B-L 4 B-L 5

CL 0.0663 0.0786 0.0912 0.0970 0.1248

CD 0.0360 0.03518 0.03458 0.03099 N.A.
C∗

D 0.2537 0.2479 0.24365 0.21834 N.A.

CM 0.03031 0.02970 0.02928 0.02798 0.02718

Table 3.4: Mean aerodynamic coefficients, Re = 1.71 · 107 and α = 0◦, integration time step ∆t = 0.001
sec.

Mesh 4 - Boundary Layer 2
∆t = 1× 10−3 sec ∆t = 0.5× 10−4 sec

CL 0.0756 0.0755

CD 0.03368 0.03366
C∗

D 0.2373 0.2372

CM 0.02915 0.02916
St ≈ 0.36 ≈ 0.356

Table 3.5: Aerodynamic coefficients and Strouhal number, Re = 1.71 × 107 and α = 0◦, boundary layer
yw = 4 mm, Mesh 4.

(a)

(b) Mesh 4

Fig. 3.5: Vorticity around the GBB deck section, at Re = 1.71 × 107 and α = 0◦, assuming different
meshes.

performed. It is particularly important to infer about the effect of the vortices generated on the upper

and lower surface of the bridge deck. From the study of the flow pattern and vortices motion one can

conclude that there is a strong interaction between vortices that are generated on the upper and on the
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(a) Velocity magnitude

(b) Vorticity magnitude

Fig. 3.6: Velocity and vorticity profiles around the GBB deck section, at Re = 1.71× 107 and α = 0◦.

lower surface of the bridge deck as they are traveling downstream. The size and strength of the vortices

affect the shedding frequency between the vortices that are migrating into the wake.

In Table 3.6, reported from the work of Bruno and Khris [55], are summarized the experimental and

numerical results carried out for the GBB section at an angle of attack ᾱ = 0◦ by the most relevant

studies available in literature. It is worth pointing out the wide range of variation of the aerodynamic

coefficients and the Strouhal number calculated by the different simulations. None of the numerical results

shown in the table is obtained by employing the k-ϵ turbulence model which was employed in this thesis.

In spite of the large variability in results presented in Table 3.6, by comparing the values calculated in the



30 3 Aerodynamics of Bridge Deck Cross Sections

95 100 105 110 115 120 125 130 135

t [sec]

0.0348

0.0351

0.0354

0.0357

C
D
(t
)

CD 0.0352

0 0.5 1 1.5 2 2.5 3 3.5

f [Hz]

10
-6

10
-5

10
-4

C
D
( 
f 
)

fS Hz

95 100 105 110 115 120 125 130 135

t [sec]

0.06

0.07

0.08

0.09

0.1

C
L
(t
)

CL 0.0786

0 0.5 1 1.5 2 2.5 3 3.5

f [Hz]

10
-4

10
-3

10
-2

C
L
( 
f 
)

fS Hz

100 105 110 115 120 125 130 135

t [sec]

0.026

0.028

0.03

0.032

0.034

C
M
(t
)

CM 0.0297

0 0.5 1 1.5 2 2.5 3 3.5

f [Hz]

10
-5

10
-4

10
-3

C
M
( 
f 
)

fS Hz

Fig. 3.7: Aerodynamic drag, lift and moment coefficients at Re = 1.71 × 107 and α = 0◦: time histories
and FFT.

present work, reported in Table 3.5, a good agreement is achieved in terms of lift coefficient whereas the

estimation of CD appears to underestimate the effect of the drag force. It is likely that the underestimate

prediction of the drag coefficient can be attributed to the fact that the numerical simulations performed

did not include barriers, and the incoming flow to the bridge section was much smoother than the one

realized during the experimental and other numerical investigations.

In Table 3.7 are reported the values of the mean aerodynamic coefficients evaluated at different values

of the angle of attack ᾱ for Re = 1.71×107, by adopting the Mesh 4, Boundary Layer 2 and ∆t = 1×10−3

s.
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Author Method Model Geom. Re C̄D C̄L St
Reinhold Exp. Section det 1 · 105 0.08 +0.01 0.109-0.158
Larose Exp. Taut-strip det 7 · 104 0.10 -0.08 0.11
Frandsen Exp. Full scale det 1.7 · 107 - - 0.08-0.15
Larsen DVM pot. ω 2Dbas 1 · 105 0.06 +0.06 0.1-0.168
Taylor DVM pot. ω 2Dbas 1 · 105 0.05 +0.07 0.16-0.18
Frandsen DVM pot. ω 2Dbas 1.6 · 107 0.08 +0.06 0.09

FEM NSE lam 2Dbas 1.6 · 107 0.06 -0.09 0.25
Kuroda FDM NSE lam 2Dbas 3 · 105 0.07 -0.19 0.101-0.168
Selvam FEM NSE les 2Dbas 1 · 105 0.06 -0.34 0.168
Jenssen FVM NSE les 3Ddet 4.5 · 104 0.06 +0.04 0.16
Enevoldsen FEM NSE les 2Ddet 7 · 104 0.07 +0.08 0.17

Table 3.6: Mean value of the lift and drag coefficients and Strouhal number, for α = 0◦ and different
Reynolds number: literature results [55] for GBB section.

α [deg] CD CL CM

0 0.0337 0.0756 0.0291
1 0.0327 0.1647 0.0538
5 0.0177 0.5820 0.1523
10 0.0863 0.4291 0.1121

Table 3.7: FLUENTr results: mean coefficients at different angle of attack α.
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3.2.2 DVMFLOWr

In addition to the simulations performed in FLUENTr, a mesh-less Discrete Vortex Method (DVM)

is also employed to characterize the aerodynamics of the GBB deck section. In particular, the software

DVMFLOWr by COWI, was used to perform the analyses. This CFD software was specifically developed

to study the aerodynamics of bluff-bodies, and sharped-edge sections such as bridge deck cross sections,

and it showed to provide aerodynamic and aeroelastic (static/dynamic) loads in agreement with experi-

mental and literature results for the tested sections [53, 54, 55], with a relatively low computational time.

Computational efficiency is obtained thank to fast adaptive multipole algorithm.

DVMFLOWr handles viscous two-dimensional single and multiple bodies undergoing prescribed and

arbitrary motion. Using a boundary element method, DVMFLOWr enforces the velocity boundary con-

dition as to determine the surface vorticity while the random walk algorithm is used to handle diffusion.

The value of the vorticity at the solid boundary is obtained from the Biot-Savart (B-S) relation, in which

only the contribution from the surface vorticity is unknown while volume and surface integrals are known,

e.g.: ∫
D

ω0 × (r0 − r)

|r0 − r|d
dD = I(rB)−A [v(rB)− U ] (3.2.14)

I(rB) =

∮
B

(v0 · n0) (r0 − r)

|r0 − r|d
dB +

∮
B

(v0 × n0)× (r0 − r)

|r0 − r|d
dB −

∫
D

ω0 × (r0 − r)

|r0 − r|d
dD

By introducing a vortex sheet, one can solve equations (3.2.14) for the no penetration velocity com-

ponent. A detailed mathematical treatment of the DVMFLOWr code is provided in J. H. Walther PhD

thesis, the interested reader is referred to [51]. One of the greatest advantages of this code as compared

to other CFD codes, here-hence the numerical efficiency gained, is the fact that is mesh free, where

the velocity boundary condition is handled according to the B-S relation, without referring to boundary

layer approximation. Once the surface vorticity is computed, it is then converted into circulation and it

is assigned to the nascent vortices on the surface of the body. Subsequently these vortices diffuses into

the flow, and are subjected to diffusion and convection. The process of discretization of the boundary,

the flow boundary conditions along with the vorticity boundary value and the process of vortex-vortex

interaction and surface-vortex influence are well described in [51]. Detailed application of the code on

bridge deck sections and several aerodynamic analyses are proposed in [52].

The parameters employed to perform the CFD simulations carried out in this work are thus based on

those assumed by Walther [51] and optimized for the section considered here. The main parameters char-

acterizing the specific fluid dynamic problem are: the dimensional free-stream wind velocity U , assumed

by default to be 1 m/s, the width B of the section is scaled in order to have B = 1 m. Accordingly to

the default settings, the user can select different free-stream velocities by varying the Reynolds number

Re and providing the kinematic viscosity ν = UB/Re. The simulation time t is also a dimensionless

parameter representing the number of chord lengths s = (U/B) · t traveled by the fluid.

Mesh-convergence analyses were not needed using the DVM method, while only tests on the accuracy

of the solution varying the integration time step size and analyses at two different Reynolds number were

carried out to validate the results for the GBB section. As specified before, the internal code parameters

optimized for the proposed deck section by Walther [51] were implemented as such for the simulations

carried out in this work, hence, no further convergence tests were needed.
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3.2.2.1 Static Coefficients

In the follow, the lift, drag and moment coefficients are evaluated at different values of the mean

angle of attack α by performing time dependent simulations, and their steady-state value was calculated

by averaging the response after a convenient calculation time. In particular, the total dimensionless

simulation time assumed in the analyses was smax = 100, that is 100 chord lengths traveled by the fluid,

and the averaging process was performed for s ∈ [50, 100]. The step sizes used in the simulations were

∆s = 0.001 and ∆s = 0.025 (value set as optimum by the software developers [51, 52]) for two different

Reynolds number, Re = 1× 105 and Re = 1.71× 107. The results obtained by the simulations performed

at Re = 1.71× 107, were compared with those got by k − ϵ and LES methods.

The simulations were performed for selected angles of attack α = 0, 0.1, 1, 5, 10, 15 degrees. Figure 3.8

shows small differences between the curves calculated at different ∆s at value of the angle of attack

α ≥ 5◦, as also reported in Tab. 3.8.
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Fig. 3.8: Static coefficients curves evaluated at different time step sizes for a Reynolds number of Re =
1× 105.

A wider and more refined range of α values was employed to determine the static coefficients curves

for the case studies Re = 1 × 105 and Re = 1.71 × 107. These curves, shown in Fig. 3.9, highlight the

nonlinear behavior due to the stall phenomenon occurring at high angles of attack and characteristic of

these sections for a turbulent wind flow regime. As expected, the steady state value of the aerodynamic

coefficients turns out to be only slightly affected by the assumed Re at small angle of attack, and such

difference becomes appreciable only at high angles of attack, when the stall phenomenon is governing the

aerodynamics of the section.
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α ∆s CL CD CM α ∆s CL CD CM

0 0.01 0.03670 0.04954 0.03205 5 0.01 0.4255 0.08802 0.1388
0 0.025 0.04579 0.06307 0.03292 5 0.025 0.5091 0.1097 0.1149
0.1 0.01 0.04980 0.04977 0.03378 10 0.01 0.6714 0.1937 0.1811
0.1 0.025 0.04465 0.06244 0.03474 10 0.025 0.6272 0.2209 0.1077

1 0.01 0.1447 0.05187 0.05160 15 0.01 0.6710 0.3297 0.1522
1 0.025 0.1428 0.06610 0.05285 15 0.025 0.5152 0.3025 0.1189

Table 3.8: Mean values of the aerodynamic coefficients at different value of the angle of attack α, for
Re = 1× 105: convergence in time step size ∆s.
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Fig. 3.9: Static coefficients curves evaluated at different Reynolds numbers, ∆s = 0.025.
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In Tab. 3.9 the calculated values of the aerodynamic coefficients are presented and a good agreement

with the literature results for α = 0◦ is demonstrated by comparing them, for the corresponding Reynolds

numbers, as reported in Tab. 3.10.

Re = 1 · 105
α [deg] CL CD CM

-20 -0.9267 0.3641 -0.1540
-15 -0.8230 0.2648 -0.1182
-12 -0.6611 0.2104 -0.08262
-10 -0.6881 0.1783 -0.07699
-9 -0.7016 0.1542 -0.08300
-7 -0.6247 0.1151 -0.07520
-5 -0.4508 0.09085 -0.05751
-3 -0.2393 0.07557 -0.02400
-1 -0.04618 0.07007 0.01223
-0.5 -0.003441 0.07312 0.02253
-0.2 0.03916 0.06989 0.02859
-0.1 0.04340 0.07150 0.03131

0 0.05292 0.07141 0.03292
0.1 0.04921 0.07244 0.03474
0.2 0.06910 0.07044 0.03679
0.5 0.1003 0.06954 0.04260
1 0.1515 0.07235 0.05285
3 0.3390 0.08269 0.09328
5 0.5131 0.1105 0.1149
7 0.6360 0.1498 0.1127
9 0.5865 0.1862 0.1072
10 0.6293 0.2114 0.1077
12 0.6039 0.2469 0.1089
15 0.5190 0.2916 0.1189
20 0.5059 0.3599 0.1422

Re = 1.71 · 107
α [deg] CL CD CM

-20 -0.8889 0.3349 -0.1499
-15 -0.7570 0.2459 -0.1126
-12 -0.6779 0.2098 -0.07723
-10 -0.6992 0.1780 -0.06744
-9 -0.6505 0.1692 -0.05972
-7 -0.5193 0.1374 -0.04249
-5 -0.3672 0.1101 -0.02585
-3 -0.1977 0.09232 -0.001255
-1 -0.02519 0.07877 0.01833
-0.5 0.03035 0.07646 0.02725
-0.2 0.04982 0.07946 0.03168
-0.1 0.05623 0.07764 0.03263

0 0.07818 0.07515 0.03520
0.1 0.08139 0.07540 0.03667
0.2 0.07929 0.07632 0.03903
0.5 0.1074 0.07631 0.04445
1 0.1602 0.07972 0.05280
3 0.3315 0.09411 0.07540
5 0.4320 0.1253 0.07965
7 0.5554 0.1701 0.07858
9 0.6199 0.2067 0.08598
10 0.7167 0.2359 0.09615
12 0.6766 0.2683 0.08879
15 0.7416 0.3504 0.1039
20 0.5312 0.3601 0.1429

Table 3.9: Mean coefficients at different angle of attack α, ∆s = 0.025.
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In Tab. 3.10 is proposed the comparison between the values of the lift and drag coefficients evaluated for

α = 0◦ at different turbulence regimes evaluated in the present work by the two CFD methods described

in the previous sections (k-ϵ and DVM) and the corresponding results available in literature and shown

in Tab. 3.6. The curves generated for Re = 1 × 105 are assumed as baseline to define the nonlinear

Re = 1 · 105 CL CD St
PW: DVMFLOW 0.053 0.071 0.084
Reinhold Exp. 0.01 0.08 0.109-0.158
Larsen DVM 0.06 0.06 0.1-0.168
Taylor DVM 0.07 0.05 0.16-0.18
Selvam FEM -0.34 0.06 0.168
Re = 1.71 · 107 CL CD St

PW: k-ϵ 0.076 0.034 0.36
PW: DVMFLOW 0.078 0.075 0.077
Frandsen DVM 0.06 0.08 0.09
Frandsen FEM -0.09 0.06 0.25

Table 3.10: Mean coefficients at α = 0◦, comparison between proposed work (PW) and literature results.

static aerodynamic loads acting on the bridge section; in particular, a polynomial law is proposed using a

least square minimization to fit the discrete data computed by DVMFLOWr . The analytical nonlinear

expressions of the aerodynamic coefficients are given in (3.2.15), and the fitting of the CFD data is shown

in Fig. 3.10.

CL(α) = 0.0496 + 6.3567α− 2.5893α2 − 109.3908α3 − 2.6756α4 + 786.1796α5

CD(α) = 0.0695 + 0.1332α+ 4.7033α2 − 1.1667α3 − 24.1297α4

CM (α) = 0.0330 + 1.1379α− 0.7673α2 − 27.0033α3 + 4.5606α4 + 249.0324α5

(3.2.15)
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Fig. 3.10: Static lift, drag and moment coefficients at Re = 1× 105: CFD data and polynomial fitting, lift
(solid), drag (dashed) and moment (dash-dot).
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3.2.2.2 Aeroelastic Derivatives

In order to fully describe the aerodynamic response of the GBB section, an extensive set of CFD

simulations was performed to define the aerodynamic loads acting on the section, both in the frequency-

and in the time-domain. In particular, in the frequency-domain the aerodynamic forces and moment are

defined, accordingly to the expressions provided by Simiu and Scanlan in [25], as

D(K) = 1
2ρB U

2
(K
U
P1ḣ+

KB

U
P2α̇+K2P3α+

K2

B
P4h+

K

U
P5ṗ+

K2

B
P6p

)
L(K) = 1

2ρB U
2
(K
U
H1ḣ+

KB

U
H2α̇+K2H3α+

K2

B
H4h+

K

U
H5ṗ+

K2

B
H6p

)
M(K) = 1

2ρB
2U2

(K
U
A1ḣ+

KB

U
A2α̇+K2A3α+

K2

B
A4h+

K

U
A5ṗ+

K2

B
A6p

) (3.2.16)

where the dot represents derivation with respect to time t, ρ is the air density, K is the reduced frequency

of oscillation defined as K = 2πfB/U (with f the dimensional frequency), h, α and p represent the

heave, pitch, and sway degree of freedom, respectively, and Hi, Ai and Pi (i = 1, ..., 6) are the associated

aeroelastic derivatives. It is worth mentioning that, in literature, expressions (3.2.16) are often given

by neglecting the factor 1/2 as well as switching the aeroelastic derivatives referred to heave and sway

(i.e. P1 and P2 multiply ṗ and p instead of ḣ and h, respectively). In the following, only the aeroelastic

derivatives covering an important role in the aeroelastic behavior of suspension bridges are considered,

that is, Hi, Ai (i = 1, 2, 3, 4), P5 and P6.

The evaluation of the aeroelastic derivatives was performed according to the classical technique first

proposed by Scanlan [24], that is, by forcing the section in a sinusoidal motion and extracting the values

of the derivatives via a minimization procedure. In particular, pure pitch, heave, and sway oscillations

are imposed by time, and the derivatives associated to the degree of freedom involved in the motion are

extracted.

The procedure employed to calculate the flutter derivatives for a forced pure pitch motion is briefly

illustrated next. Equivalent analyses are then performed also for heave and sway.

1. For a given reduced frequency K, a pure pitch sinusoidal motion α(s) = αmax sin(K s) is imposed to

the section.

2. The time response in terms of the aerodynamic lift, drag and moment is evaluated by the CFD

simulation: L̄(K), D̄(K) and M̄(K).

3. A nonlinear least square minimization of the error between the evaluated aerodynamic loads L̄(K),

D̄(K), M̄(K) and the expressions suggested by Scanlan in terms of aeroelastic derivatives accounting

for pure pitch motion

D(K) = 1
2ρB U

2
(KB
U

P2α̇+K2P3α
)

L(K) = 1
2ρB U

2
(KB
U

H2α̇+K2H3α
)

M(K) = 1
2ρB

2U2
(KB
U

A2α̇+K2A3α
) (3.2.17)

is provided by the software (DVMFLOWr) and the coefficients P2, P3,H2,H3, A2 and A3, respectively,

are calculated.

4. The procedure is repeated in the range of reduced frequencies K assumed.

5. Pure heave and sway sinusoidal motions, h(s) = hmax sin(K s) and p(s) = pmax sin(K s), are also

applied in order to evaluate the remaining derivatives.
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The amplitudes of the sinusoidal motion were assumed according to the suggestions of the DVMFLOWr

developers [51, 52] and, in particular, αmax = 0.05236 rad = 3◦ and hmax = pmax = 0.04B were used in

the computations. The analyses were then performed for a wind velocity corresponding to Re = 1× 105

and in a range of reduced velocities Ur := 2π/K such that Ur ∈ [1, 14]; the results obtained assuming a

mean wind angle of attack ᾱ = 0◦ are shown in Fig. 3.11 and will be discussed in the next section. Further

analyses were performed at different mean angles of attack ᾱ and the corresponding flutter derivatives

are reported in Fig. 3.12. The effect of the angle of attack is appreciable in the coefficients H2 and A2,

representing the contribution in the lift force and pitching moment, respectively, in terms of aerodynamic

torsional damping. Increasing the value of ᾱ in fact, these two coefficients become positive, therefore

they introduce a negative damping in the aeroelastic system (suspension bridge), at lower values of the

reduced velocity Ur with the expecting effect of reducing the critical flutter velocity.



3.2 Computational Fluid Dynamic Modeling, a Case Study: the GBB Suspension Bridge 39

2 4 6 8 10 12 14

Ur [-]

-0.4

-0.3

-0.2

-0.1

0

0.1

P
5
P
6
 [
-]

P5 IF (Nc=2)

P5 IF (Nc=1)

P5 DVM

P6 IF (Nc=2)

P6 IF (Nc=1)

P6 DVM

P5 pseudo-steady

2 4 6 8 10 12 14

U
r
[-]

-10

-8

-6

-4

-2

0

2

H
1
H
4
 [
-]

H
1
IF (N

c
=2)

H
1
IF (N

c
=1)

H
1
DVM

H
4
IF (N

c
=2)

H
4
IF (N

c
=1)

H
4
DVM

2 4 6 8 10 12 14

U
r
[-]

-25

-20

-15

-10

-5

0

5

H
2
H
3
 [
-]

H
2
IF (N

c
=2)

H
2
IF (N

c
=1)

H
2
DVM

H
3
IF (N

c
=2)

H
3
IF (N

c
=1)

H
3
DVM

2 4 6 8 10 12 14

U
r
[-]

0

0.5

1

1.5

2

A
1
A
4
 [
-]

A
1
IF (N

c
=2)

A
1
IF (N

c
=1)

A
1
DVM

A
4
IF (N

c
=2)

A
4
IF (N

c
=1)

A
4
DVM

2 4 6 8 10 12 14

U
r
[-]

-1

0

1

2

3

4

5

A
2
A
3
 [
-]

A
2
IF (N

c
=3)

A
2
IF (N

c
=2)

A
2
DVM

A
3
IF (N

c
=3)

A
3
IF (N

c
=2)

A
3
DVM

Fig. 3.11: GBB deck section: aeroelastic derivatives calculated at a mean angle of attack ᾱ = 0◦.
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Fig. 3.12: GBB deck section: aeroelastic derivatives calculated at different mean angles ᾱ.
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3.2.2.3 Indicial Functions from Frequency- and Time-Domain Analyses

As introduced in Section 2.3.2, an analogous formulation of the aerodynamic loads in the time domain

can be provided by employing the indicial theory, that is, using the aerodynamic response to a step

change of the aerodynamic state ξ(t) (e.g. the indicial response Φξ
j(t)), to obtain the response to a generic

variation in time of ξ(t). For the ease of notation it is useful to define the state governing the aerodynamics

of the section as ξ(t) =
{
h(t), α(t), p(t), ḣ(t), α̇(t), ṗ(t)

}
, thus, the expressions of the aerodynamic drag

D(t), lift L(t) and moment M(t), can be defined in the time domain as follows:

Fj = Gj

∑
ξ

cξj

(
Φξ
j(0)ξ(t) +

∫ t

0

Φ̇ξ
j(t− τ)ξ(τ)dτ

)
(3.2.18)

In expression (3.2.18), Fj represents the generic aerodynamic force and moment, where j = D,L,M

correspond to drag, lift and moment, respectively; Gj = 0.5ρU2B for drag and lift and Gj = 0.5ρU2B2

for the aerodynamic moment. The indicial function associated with the j−th aerodynamic load and the

aerodynamic state ξ(t) is defined as a linear combination of exponential functions as

Φξ
j(s) = 1−

Nξ
j∑

k=1

aξj,ke
−bξj,ks (3.2.19)

where s is the nondimensional time s = 2(U/B) t and Nξ
j is the number of exponential terms adopted.

Note that in this case, the time s represents the dimensionless distance measured in half deck width B/2

traveled by the fluid; this notation results in fact the most employed in the indicial theory, that finds

most of its applications in the aeronautical field where the semi-chord c/2 is used to nondimensionalize

the variables.

As first proposed in [49], and more recently in [58, 69, 22], the coefficients of the aerodynamic states

in (3.2.16) can be derived from the coefficients aξj,k, b
ξ
j,k and cξj in the time domain formulation (3.2.18)

and vice-versa using the appropriate reciprocity relations:

Dξ
j = cξj

1− π2

Nξ
j∑

k=1

aξj,k

π2 +
(
Urb

ξ
j,k

)2


Eξ

j = −cξj
U2
r

2

Nξ
j∑

k=1

aξj,kb
ξ
j,k

π2 +
(
Urb

ξ
j,k

)2

(3.2.20)

In (3.2.20), the unsteady coefficients Dξ
j and Eξ

j are directly related to the aeroelastic derivatives and to

the reduced frequency K , their expressions are provided, and fully described, in [22] and are summarized

herewith:

D̄ḣ
D = KP̄1 , D̄

α
D = K2P̄3 , D̄

ṗ
D = KP̄5 , Ē

ḣ
D = −P̄4 , Ē

α
D = KP̄2 , Ē

ṗ
D = −P̄6

D̄ḣ
L = KH̄1 , D̄

α
L = K2H̄3 , D̄

ṗ
L = KH̄5 , Ē

ḣ
L = −H̄4 , Ē

α
L = KH̄2 , Ē

ṗ
L = −H̄6

D̄ḣ
M = KĀ1 , D̄

α
M = K2Ā3 , D̄

ṗ
M = KĀ5 , Ē

ḣ
M = −Ā4 , Ē

α
M = KĀ2 , Ē

ṗ
M = −Ā6

(3.2.21)

Thus, in order to evaluate the
∑

j

∑
ξ(2N

ξ
j + 1) coefficients needed in the indicial formulation, it is

useful to define error functions between the values of the unsteady coefficients (D̄ξ
j , Ē

ξ
j ), derived from

the aeroelastic derivatives calculated via CFD simulations (or experimentally), and their expressions
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(Dξ
j , E

ξ
j ) in terms of the indicial coefficients. One possible choice for defining these error functions can be

that proposed in [22] :

ϵξj =
M∑
i=1

[(
Dξ

j (Ki)− D̄ξ
j (Ki)

)2

+
(
Eξ

j (Ki)− Ēξ
j (Ki)

)2
]

(3.2.22)

where M represents the total number of frequencies Ki for which the aeroelastic derivatives in the

simulations have been evaluated. Finally, by minimizing the error (3.2.22) with respect to the unknown

parameters aξj,k, b
ξ
j,k and cξj , the values of the indicial coefficients can be estimated. This minimization

procedure turns out to be represented by a high nonlinear algebraic system of equations which solution

was performed by employing appropriate algorithms implemented in the code Mathematicar [70].

It is worth mentioning that, by analogy with the quasi-steady formulation of the aeroelastic forces,

the unknowns cξj can be related to the values C̄j(ᾱ) of the aerodynamic coefficients and to the slope

∂αCj of the static curves at the mean value of the angle of attack ᾱ; by these relations, it turns out

that only 6 of the 9 coefficients cξj are independent, as shown in recent works in [58] and [22], and the

expressions (3.2.23) show the dependence of the remaining 3 coefficients:

cḣD = cαD −
cṗL
2
, cḣL = cαL +

cṗD
2
, cḣM = cαM (3.2.23)

and the following relations are valid

C̄D(ᾱ) =
(
cαL − cḣL

)
= −

cṗD
2
, C̄L(ᾱ) =

(
cαD − cḣD

)
=
cṗL
2
, C̄M (ᾱ) = −

cṗM
2

∂αCD|ᾱ = cαD , ∂αCL|ᾱ = −cαL , ∂αCM |ᾱ = cαM

(3.2.24)

Accordingly to the choice of retaining only the contribution of the flutter derivatives Hi, Ai (i = 1, 2, 3, 4),

P5 and P6 in the expressions of the aeroelastic loads, only 5N+3 are the total number of identified coeffi-

cients for the considered 5 indicial functions. Nevertheless, relating the unknowns cξj to the aerodynamic

coefficients and the slope of the static curves it is not a prerequisite for determining the indicial functions

from the aerodynamic derivatives. In Tables 3.11 and 3.12 one can appreciate the difference.

The expressions of the unsteady coefficients (3.2.20) satisfy the limit conditions (3.2.25)

lim
K→∞

Dξ
j = cξj

1−
Nξ

j∑
k=1

aξj,k

 , lim
K→∞

Eξ
j = 0 (3.2.25)

whereas, the values of the numerically evaluated coefficients (3.2.21) depends on the aeroelastic deriva-

tives. As specified before, the flutter derivatives are extracted within the range of reduced velocities

Ur = 2π/K ∈ [1, 14], in order to be able to represent also the behavior in the non-circulatory part of

the aerodynamic response of the section. In order of limiting the description to a finite value of indicial

coefficients, an additional constraint was introduced in the minimization of the error functions (3.2.22),

that is: 1−
Nξ

j∑
k=1

aξj,k

 < Φξ
j(0) (3.2.26)

where Φξ
j(0) represents the finite value of the indicial function at t = 0+ assumed to be sufficiently large

to correctly represent the non-circulatory part of the indicial response or, in other terms, it is capable of

producing indicial functions that are able to correctly reproduce the aeroelastic derivatives (Eqs. (3.2.20)
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and (3.2.21)) at the lowest values of Ur. The steady-state condition that Φξ
j(t) must represent for t→ ∞,

then imposes the additional constraint

bξj,k > 0 (3.2.27)

The curves representing the aeroelastic derivatives in terms of the reduced velocity Ur, determined by

the coefficients of the indicial functions with the discrete values calculated via CFD simulations, are

compared in Fig. 3.11. A good agreement is also obtained at low values of Ur. The results obtained

for different number Nξ
j of exponential terms assumed to define the indicial function are presented in

Fig. 3.11. The trial value for this number is usually chosen as lowest as possible and then increased in

order to capture the aerodynamic response in the non-circulatory part and reproduce the asymptotic

behavior of the circulatory part of the response (the latter is usually such that Φξ
j(t) ≈ 1 for s < 10).

According to these criteria, N ξ
j = 1 turns out to be sufficient to represent the aerodynamic response in

terms of the drag force, whereas the minimum number N ξ
j for representing the indicial lift response due

to the change in the states α and ḣ and the indicial response of the moment due to the change in ḣ

appears to be Nξ
j = 2; finally, Nξ

j = 3 was necessary for Φα
M , as evident in Fig. 3.11. In Fig. 3.13 the

indicial functions evaluated for selected values of the number of the exponential terms for a mean value

of the wind angle of attack of ᾱ = 0◦ are compared. Fig. 3.14, shows the indicial functions derived from

the aeroelastic derivatives calculated for selected values of ᾱ and reported in Fig. 3.12. The effect of the

leading edge separation is evident at high angle of attack. The good agreement between the numerical

results obtained in the evaluation of the aeroelastic derivatives P5 and its theoretical estimation based

on the pseudo-steady formulations commonly used in the flutter analyses (see [71]) in the absence of

numerical or experimental values is presented in Fig. 3.11.

P5 = −Ur

π
CD (3.2.28)
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Fig. 3.13: GBB deck section: indicial functions evaluated from the aeroelastic derivatives at ᾱ = 0◦.
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Fig. 3.14: GBB deck section: indicial functions evaluated from the aeroelastic derivatives at different
values of ᾱ.

In Table 3.11 and Tab. 3.12, the estimated coefficients of the indicial functions are reported, whereas

in Tables 3.13 and 3.14 the mean value of the aerodynamic coefficients and the slope of the static

curves extracted from the coefficients cξj are compared with those evaluated in Section 3.2.2.1. It is

worth remarking that the choice of not identifying all the aeroelastic derivatives and the related indicial

functions, does not allow to estimate the mean values of the lift and moment coefficient as well as the

slope of the drag curve.
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Φξ
j aξj,1 bξj,1 aξj,2 bξj,2 aξj,3 bξj,3 cξj

Φṗ
D -8.496 12.055 0 0 0 0 -0.1428

Φḣ
L -9.626 16.762 0.626 0.383 0 0 -4.9036

Φα
L 0.416 0.346 -3.821 8.239 0 0 -4.8322

Φḣ
M -19.664 0.390 19.848 0.385 0 0 1.0952

Φα
M -102.832 11.720 0.262 0.1615 131.159 14.749 1.0952

Table 3.11: GBB section: indicial functions coefficients for ᾱ = 0◦.

Φξ
j aξj,1 bξj,1 aξj,2 bξj,2 aξj,3 bξj,3 cξj

Φṗ
D -6.982 9.696 0 0 0 0 -0.140

Φḣ
L -9.635 16.972 0.635 0.425 0 0 -4.670

Φα
L 0.393 0.235 -14.211 33.975 0 0 -5.335

Φḣ
M 0.501 0.274 -0.312 0.565 0 0 1.107

Φα
M 0.256 0.181 -10859.3 12.161 10884.9 12.187 1.075

Table 3.12: GBB section: indicial functions coefficients for ᾱ = 0◦, all cξj assumed independent.

Drag Lift Moment

AD Stat. AD Stat. AD Stat.
C̄j(ᾱ) 0.0714 0.0714 − 0.0529 − 0.0329
∂αCj |ᾱ − 0 4.8322 4.6372 1.0952 1.1089

Table 3.13: GBB section: indicial functions coefficients for ᾱ = 0◦.

Drag Lift Moment
AD Stat. AD Stat. AD Stat.

C̄j(ᾱ) 0.0700 0.0714 − 0.0529 − 0.0329
∂αCj |ᾱ − 0 5.3352 4.6372 1.0747 1.1089

Table 3.14: GBB section: indicial functions coefficients for ᾱ = 0◦, all cξj assumed independent.

The variation of the coefficients of the indicial functions with the angle of attack ᾱ is proposed in

Figs. 3.15-3.19 where the dashed curve is the approximating polynomial law evaluated by a least square

minimization of the data obtained by the procedure previously described in this section and summarized

in Tabs. 3.15-3.20.
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Fig. 3.15: GBB deck section: indicial function coefficients at different values of ᾱ (Drag due to a step
change in ṗ/U).
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Fig. 3.16: GBB deck section: indicial function coefficients at different values of ᾱ (Lift due to a step
change in ḣ/U).
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Fig. 3.17: GBB deck section: indicial function coefficients at different values of ᾱ (Lift due to a step
change in α).
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Fig. 3.18: GBB deck section: indicial function coefficients at different values of ᾱ (Aerodynamic Moment
due to a step change in ḣ/U).
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Fig. 3.19: GBB deck section: indicial function coefficients at different values of ᾱ (Aerodynamic Moment
due to a step change in α).
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Φξ
j aξj,1 bξj,1 aξj,2 bξj,2 aξj,3 bξj,3 cξj

Φṗ
D -11.643 26.447 -0.472 0.741 0 0 -0.111

Φḣ
L 0.650 0.374 -9.650 22.091 0 0 -4.628

Φα
L -3.474 5.873 0.436 0.273 0 0 -5.199

Φḣ
M 760.053 0.397 -759.929 0.397 0 0 1.065

Φα
M -358.858 12.568 375.903 13.046 0.229 0.055 1.170

Table 3.15: GBB section: indicial functions coefficients for ᾱ = +1◦.

Φξ
j aξj,1 bξj,1 aξj,2 bξj,2 aξj,3 bξj,3 cξj

Φṗ
D 0.940 0.016 -3.673 48.767 0 0 -2.711

Φḣ
L 8240.85 0.204 -8241.28 0.203 -18.566 8.383 -0.946

Φα
L 0.771 0.732 -5.158 7.809 0 0 -5.160

Φḣ
M -0.296 3.797 -0.040 0.261 0 0 0.858

Φα
M 1.781× 106 5.707 −3.572× 106 5.721 1.791× 106 5.734 0.923

Table 3.16: GBB section: indicial functions coefficients for ᾱ = +3◦.

Φξ
j aξj,1 bξj,1 aξj,2 bξj,2 aξj,3 bξj,3 cξj

Φṗ
D 0.593 0.463 -3.038 6.010 0 0 -0.252

Φḣ
L 7.418 0.333 -7.113 0.186 -12.674 21.764 -1.898

Φα
L -2.584 0.248 -18.002 3.162 11.586 1.079 -3.294

Φḣ
M -4.705 0.298 17106.7 14.735 -17131.6 14.773 0.207

Φα
M -4.842 0.273 900.455 6.644 -864.612 6.426 0.209

Table 3.17: GBB section: indicial functions coefficients for ᾱ = +5◦.

Φξ
j aξj,1 bξj,1 aξj,2 bξj,2 aξj,3 bξj,3 cξj

Φṗ
D -16.875 19.395 0.354 0.504 0 0 -0.146

Φḣ
L -9.651 17.879 0.651 0.477 0 0 -4.787

Φα
L -9.514 14.042 0.514 0.325 0 0 -5.082

Φḣ
M -582.972 0.479 583.065 0.479 0 0 0.966

Φα
M -16919.8 14.287 0.327 0.286 16950.5 14.312 1.030

Table 3.18: GBB section: indicial functions coefficients for ᾱ = −1◦.
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Φξ
j aξj,1 bξj,1 aξj,2 bξj,2 aξj,3 bξj,3 cξj

Φṗ
D -15.345 13.053 0.869 1.860 0 0 -0.145

Φḣ
L -9.570 22.963 0.571 0.339 0 0 -5.061

Φα
L -9.491 29.155 0.491 0.072 0 0 -7.127

Φḣ
M -1416.99 0.183 1417.3 0.183 0 0 1.243

Φα
M -13.201 5.564 8.078 16.045 36.123 16.045 0.768

Table 3.19: GBB section: indicial functions coefficients for ᾱ = −3◦.

Φξ
j aξj,1 bξj,1 aξj,2 bξj,2 aξj,3 bξj,3 cξj

Φṗ
D -19.388 33.516 0.388 0.379 0 0 -0.211

Φḣ
L -10.153 24.542 0.561 0.043 0.592 1.807 -9.454

Φα
L -3.382 8.834 -3.382 0.508 3.352 0.467 -4.316

Φḣ
M -10.687 0.194 10.844 0.181 10.844 435.431 1.047

Φα
M -2.363 1.485 5.070 21.721 28.293 21.721 0.589

Table 3.20: GBB section: indicial functions coefficients for ᾱ = −5◦.

Finally, in Eqs. (3.2.29)-(3.2.33) are reported the nonlinear expressions of the indicial functions coef-

ficients in terms of the effective angle of attack.

• Drag due to an instantaneous change in ṗ/U

cṗD = −0.119093− 0.152922αE − 8.12684αE2

aṗD,1 = −9.08144 + 110.593αE

bṗD,1 = 10.9893− 151.374αE + 2551.63αE2

(3.2.29)

• Lift due to an instantaneous change in ḣ/U

cḣL = −4.63784− 5.50893αE − 53.7433αE2

aḣL,1 = −9.57469− 4.72776αE − 147.569αE2

bḣL,1 = 20.3016− 19.3603αE − 677.453αE2

aḣL,2 = 0.57469 + 4.72792αE + 147.572αE2

bḣL,2 = 0.395365 + 2.12066αE + 138.258αE2

(3.2.30)

• Lift due to an instantaneous change in α

cα
E

L = −5.22785− 4.74107αE − 40.9614αE2

aαE

L,1 = −7.74122− 14.3973αE + 410.761αE2

bα
E

L,1 = 14.989− 6.70829αE − 1123.96αE2

aαE

L,2 = 0.482501 + 3.1992αE + 6.15893αE2

bα
E

L,2 = 0.321943 + 3.25265αE + 9.1801αE2

(3.2.31)

• Aerodynamic Moment due to an instantaneous change in ḣ/U
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cḣM = 1.01784− 1.94729αE − 84.8161αE2

aḣM,1 = −1.45159 + 34.8321αE − 795.574αE2

bḣM,1 = 0.788939− 14.0458αE + 69.7451αE2

aḣM,2 = 1.53358− 37.6714αE + 900.035αE2

bḣM,2 = 0.258172 + 6.28261αE + 499.934αE2

(3.2.32)

• Aerodynamic Moment due to an instantaneous change in α

cα
E

M = 0.976116− 1.38887αE − 70.8025αE2

aαE

M,1 = −44.2767 + 68.3032αE + 5619.12αE2

bα
E

M,1 = 6.79692 + 5.90456αE − 603.964αE2

aαE

M,2 = 37.602− 290.482αE − 4094.04αE2

bα
E

M,2 = 34.8833− 256.841αE − 1369.1αE2

aαE

M,3 = 57.6747 + 222.179αE − 1525.08αE2

bα
E

M,3 = 11.8829− 113.017αE + 3615.91αE2

(3.2.33)

The goal here was to find a minimal set of coefficients, producing an approximation that is as simple

as possible. In this respect up to the quadratic term in the effective angle of attack was considered. These

representations will be useful in future development of nonlinear unsteady aerodynamic loading and

associated aeroelastic simulations, guaranteeing a good balance between accuracy in fitting the indicial

response behavior and also in minimizing computational efforts when the indicial response functions are

used in the practical evaluation of the unsteady loading. In the fully nonlinear representation of the

aerodynamic loading with functional integral terms, one can be satisfied with an approximate solution

if provides accuracy. Although non explored here, a recurrence algorithm, such as the mid-point rule,

estimating the relative error incurred in the integral terms, can be employed for this purpose. This is left

as a future development to be carried out elsewhere.



Chapter 4

Structural Modeling

In the following sections, the finite kinematics and the nonlinear equations governing the equilibrium

and the dynamics of suspension bridges are derived and illustrated. A finite element (FE) computational

approach is employed to solve the nonlinear partial differential equations (PDE) governing the dynamics

of two long-span suspension bridges, the Runyang and the Hu Men suspension bridges, whose mean

structural characteristics are reported in the body of the text. In the last section, a first aeroelastic

application of the model is proposed and the torsional divergence phenomenon is studied for the two

suspension bridges.

4.1 Fully Nonlinear Parametric Model

A three-dimensional geometrically exact approach [72, 73] is employed to obtain the equations of

motion according to a Total and an Updated Lagrangian formulation. The bridge undeformed (stress-free)

configuration is considered as the reference configuration. The fixed Cartesian reference frame {e1, e2, e3}
has the origin in the center of mass of the left deck terminal section (see Fig. 4.1). For the two suspension

cables under their own weight, the catenary equilibrium states, taken as reference configuration, are given

by:

yc(x) =
Hc

ρAcg

{
cosh

[
ρAcg

Hc

(
l

2
− x

)]
− cosh

ρAcg l

2Hc

}
(4.1.1)

where x is the horizontal coordinate along the base line of the deck in the reference configuration (here,

it is taken to coincide with the centerline), ρAc is the cable mass per unit length, g is the gravitational

constant, l is the span of the bridge, and Hc is the horizontal component of the tension N c in each cable.

To identify the two suspension cables and the associated variables, the superscripts ′′+′′ and ′′−′′ are

introduced with the convention that the plus sign refers to the cable undergoing incremental tension,

the minus indicates the cable undergoing tension loosening, respectively, when the deck is subject to

a counterclockwise rotation. The orientation of the deck cross section in the reference configuration is

given by the unit vectors {b1(x), b2(x)} collinear with the principal inertia directions. The local frame

is completed by the unit vector b3 = b1 × b2 orthogonal to the cross section. For the suspension cables

in the reference configuration, the unit vectors a±
3 (x) represent the local tangent to the cable base lines

(i.e., the cables centerlines). To complete the local frame for the cables, a pair of orthogonal unit vectors

{a±
1 (x),a

±
2 (x)} lying in the plane orthogonal to a±

3 (x) is considered.

55
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4.1.1 Kinematic and Dynamic Formulation

In the orthonormal basis of the fixed inertial reference frame {e1, e2, e3}, the reference (stress-free)

configuration of the deck is described by the position vector of the centerline, x(x) = xe3, where x is the

coordinate along the bridge span (see Fig. 4.1); on the other hand, the reference configurations of the

two cables are given by the vectors y±(x). The equilibrium configurations of the deck-girder and cables

under the static loads, respectively denoted by Bo and Co, are described by:

po = x(x) + uo(x) , q±
o = y±(x) + v±

o (x). (4.1.2)

e2

e1

e3

y+
y
_

x+
x
_

b1

b2
b2

b1

0

0
φ3
0

B

d

B
c

-+

Fig. 4.1: three-dimensional view (left) and deck section reference frames (right) of the suspension bridge
model.

The orientation of the deck cross sections is given by the unit vectors {bo

1(x), b
o

2(x), b
o

3(x)}, whereas
the cables tangent unit vectors are a±

o (x), where the subscript 3 is omitted for ease of notation. In terms

of the fixed basis {e1, e2, e3}, they are expressed as

bo

i(x) =
3∑

j=1

Ro

j,i(x)ej ,

a±
o (x, t) =

cos θc

ν±o

[
vo

±
1,xe1 +

(
ycx + vo

±
2,x

)
e2 +

(
1 + vo

±
3,x

)
e3

] (4.1.3)

where cos θc is the horizontal projection of the tangent unit vector to the catenary cable configuration

yc(x), θc = arctan
(
ycx
)
, the subscript x indicates differentiation with respect to x and Ro

j,i(x) represents

the (i, j)th component of the orthogonal matrix Ro obtained through the following sequence of finite

rotations (see Fig. 4.2): flexural rotation about axis e1, flexural rotation about b(1)

2 and torsional rotation

about axis b(2)

3 where {b(k)

1 , b(k)

2 , b(k)

3 } is the basis resulting from the kth rotation. The nine components

of the rotation matrix Ro are given by

Ro

11 = cosϕo

2 cosϕ
o

3, R
o

12 = − cosϕo

2 sinϕ
o

3, R
o

13 = sinϕo

2 ,

Ro

21 = sinϕo

1 sinϕ
o

2 cosϕ
o

3 + cosϕo

1 sinϕ
o

3, R
o

22 = cosϕo

1 cosϕ
o

3 − sinϕo

1 sinϕ
o

2 sinϕ
o

3,

Ro

23 = − sinϕo

1 cosϕ
o

2, Ro

3,1 = sinϕo

1 sinϕ
o

3 − cosϕo

1 sinϕ
o

2 cosϕ
o

3,

Ro

32 = cosϕo

1 sinϕ
o

2 sinϕ
o

3 + sinϕo

1 cosϕ
o

3, Ro

33 = cosϕo

1 cosϕ
o

2.

(4.1.4)
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φ

e3

e2

e1

1

φ2

φ3

b3
(1)

b2
(1)

b1
(1)=

b3
(1)

b2
(2)
b2
(1)

=

b1
(1)

b1
(2) b3

(2)

b3 b3
(2)

=

b2
(2)

b1
(2)

b2

b1
0

0

0

0

0

0

Fig. 4.2: Sequence of finite rotations experienced by the deck local bases.

The motions of the deck-girder and the cables baselines are described by p̆(x, t) and q̆±(x, t):

p̆(x, t) = po(x) + u(x, t) , q̆±(x, t) = q±
o (x) + v±(x, t). (4.1.5)

The deck intrinsic frame {b̆1(x, t), b̆2(x, t), b̆3(x, t)} and the cables tangent unit vectors ă±
3 (x, t) can be

expressed in terms of the fixed basis {e1, e2, e3} as

b̆i(x, t) =

3∑
j=1

R̆j,i(x, t)ej ,

ă±(x, t) =
cos θc

ν̆±

[ (
vo

±
1,x + v±1,x

)
e1 +

(
ycx + vo

±
2,x + v±2,x

)
e2 +

(
1 + vo

±
3,x + v±3,x

)
e3

] (4.1.6)

where R̆j,i(x, t) is the component of the total rotation matrix R̆(x, t) obtained as

R̆(x, t) := Ro(x) ·R(x, t). (4.1.7)

In Eq. (4.1.7), R(x, t) represents the sequence of incremental finite rotations ϕi(x, t) from the static

configuration Bo to the dynamic configuration B̆ and its components are formally the same as those

shown in (4.1.4).

The generalized total strain parameters are defined in the local basis of each structural element. For

the cables, the static stretch and the total dynamic stretch are given by

ν±o = ∂sq
±
o · a±

o , ν̆± = ∂sq̆
± · ă± (4.1.8)

where ∂s (·) indicates the derivative with respect to the cable arc length coordinate s, ∂s (·) = cos θc ∂x (·)
and ∂x (·) indicates differentiation with respect to the bridge span coordinate x. The deck generalized

strains comprise the stretch, the two shear strains, the two bending curvatures, and the twist curvature

defined as:

∂xpo = ηo

1b
o

1 + ηo

2b
o

2 + νobo

3 , ∂xb
o

k = µo × bo

k , (4.1.9)

∂xp̆ = η̆1b̆1 + η̆2b̆2 + ν̆b̆3 , ∂xb̆k = µ̆× b̆k.
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For the sake of brevity, only the nonlinear expressions of the static shear strains, stretch, and curvatures

are reported, in particular:

ηo1 = cosϕo2 cosϕ
o
3 ∂xuo1 + (sinϕo1 sinϕ

o
2 cosϕ

o
3 + cosϕo1 sinϕ

o
3) ∂xuo2+

+ (sinϕo1 sinϕ
o
3 − cosϕo1 sinϕ

o
2 cosϕ

o
3) (1 + ∂xuo3) ,

ηo2 = − cosϕo2 sinϕ
o
3 ∂xuo1 + (cosϕo1 cosϕ

o
3 − sinϕo1 sinϕ

o
2 sinϕ

o
3) ∂xuo2+

+ (sinϕo1 cosϕ
o
3 + cosϕo1 sinϕ

o
2 sinϕ

o
3) (1 + ∂xuo3) ,

νo = sinϕo2 ∂xuo1 − sinϕo1 cosϕ
o
2 ∂xuo2 + cosϕo1 cosϕ

o
2 (1 + ∂xuo3) .

(4.1.10)

and
µo
1 = cosϕo2 cosϕ

o
3 ∂xϕ

o
1 + sinϕo3 ∂xϕ

o
2,

µo
2 = cosϕo3 ∂xϕ

o
2 − cosϕo2 sinϕ

o
3 ∂xϕ

o
1,

µo
3 = ∂xϕ

o
3 + sinϕo2 ∂xϕ

o
1.

(4.1.11)

For the equilibrium and dynamic configurations Bo and B̆, νo and ν̆ represent the deck stretches,

(ηo
1, η

o
2) and (η̆1, η̆2) are the shear strains along the bo

1 and b̆1 and bo

2 and b̆2 directions, respectively. The

components of the curvature vector in the static and dynamic local basis (µo = µo
1b

o

1 + µo
2b

o

2 + µo
3b

o

3 and

µ̆ = µ̆1b̆1 + µ̆2b̆2 + µ̆3b̆3) denote the torsional curvatures (µo
3, µ̆3) and the bending curvatures (µo

1, µ̆1)

and (µo
2, µ̆2), respectively.

To describe the cables equilibrium and dynamic generalized stress resultants, the vectors n±
o and n̆±

are introduced as:

n±
o (x) = N±

o (x)a±
o , n̆±(x, t) = N̆±(x, t)ă±. (4.1.12)

The generalized stress resultants and stress moment resultants of the deck-girder are given by (no,mo)

in Bo and by (n̆, m̆) in B̆. The component form of the deck contact forces and couples is given by:

no(x) = Qo

1(x)b
o

1 +Qo

2(x)b
o

2 +N o(x)bo

3 ,

n̆(x, t) = Q̆1(x, t)b̆1 + Q̆2(x, t)b̆2 + N̆(x, t)b̆3 ,

mo(x) =M o

1(x)b
o

1 +M o

2(x)b
o

2 + T o(x)bo

3 ,

m̆(x, t) = M̆1(x, t)b̆1 + M̆2(x, t)b̆2 + T̆ (x, t)b̆3

(4.1.13)

where the components have the meaning of tensions (N o, N̆), shear forces (Qo
1, Q̆1) and (Qo

2, Q̆2) for the

contact force vectors (no, n̆) while, for the contact couples (mo, m̆), they represent the torques (T o, T̆ )

and the bending moments (M o
1 , M̆1) and (M o

2 , M̆2). The equilibrium equations can thus be written as

∂xn
±
o + f±

o − r±o = o ,

∂xn
o + f o + r+o + r−o = o ,

∂xm
o + ∂xpo × no + Bc

2 bo

1 × (r−o − r+o ) + co = o .

(4.1.14)

where the forces f±
o (x),f

o(x) and couples co(x) include the cables and deck weights and Bc represents

the distance between the two suspension cables (see Fig. 4.1).

The equations of motion are obtained by enforcing the balance of linear and angular momentum for

the cable-deck system. The equations of motion read

∂xn̆
± + f̆

±
− r̆± = ρAc sec θ±o (x) ∂ttv

± +Dc
j ∂tv

±,

∂xn̆+ f̆ + r̆+ + r̆− = ρAd∂ttu+Dd
j ∂tu,

∂xm̆+ ∂xp̆× n̆+ c̆+ Bc

2 b̆1 × (r̆− − r̆+) = ρJC · ∂tω + ω × (ρJC · ω) +DT

j ω .

(4.1.15)
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where ∂t(·) indicates partial differentiation with respect to time t and sec θ±o (x) = ν±o /[cos θ
c(1+∂xvo

±
3 )];

ρAc and ρAd are the cables and deck mass per unit length, respectively, ρJC is the tensor of the inertia

mass moments of the deck cross sections referred to the center of mass; ω(x, t) is the incremental angular

velocity vector of the cross sections defined in the local reference frame such that ∂tb̆k = ω × b̆k. In

addition, f̆(x, t) and c̆(x, t) denote the total forces and couples per unit length, respectively, acting in

the deck current dynamic configuration; finally, the damping forces are assumed proportional, through

the coefficients Dvj , Duj and Dϕj , to the velocity ∂tu and the angular velocity ω(x, t). Linearly elastic

constitutive laws are assumed in order to describe the relations between the generalized stress resultant

forces and couples and the generalized strain parameters.

The hangers strain and the tension r±o and r̆± can be defined assuming an equivalent continuous

hangers distribution along the bridge span; accordingly lh(x) := h+ yc(x) is a function that defines the

hangers undeformed length along the bridge span and h is the height of the bridge towers measured from

the deck. The cables catenaries can be described in the fixed frame by y±(x) = ∓ (Bc/2) e1 + lh(x) e2 +

x e3. The expressions of the static and dynamic hanger stretches νo

h
± (x) and ν̆±h (x, t) are obtained as

νo

h
± (x) =

∥q±
o − p±

o ∥
lh(x)

, ν̆±h (x, t) =
∥q̆± − p̆±∥

lh(x)
. (4.1.16)

The vectors p±
o and p̆± indicate the position vectors of the hanger points of attachment onto the deck in

the static and dynamic configurations, respectively, and their expressions are given by

p±
o (x) = x(x) + u±

o (x) , p̆±(x, t) = x(x) + ŭ±(x, t) ,

u±
o (x) = uo(x)∓ Bc

2 (bo

1(x)− e1) , ŭ±(x, t) = ŭ(x, t)∓ Bc

2

(
b̆1(x, t)− e1

)
.

(4.1.17)

where the total displacements of the deck and cable base lines, ŭ(x, t) and v̆±(x, t), respectively, are

defined as

ŭ(x, t) := uo(x) + u(x, t) , v̆±(x, t) := v±
o (x) + v±(x, t). (4.1.18)

The elastic constitutive law for the hangers can be written as

r±o (x) =
EhAh

lh(x)

(
νo

h
± (x)− 1

)
eo

±
h , r̆

±(x, t) =
EhAh

νo

h
± (x) lh(x)

(
ν̆±h (x, t)− 1

)
ĕ±h ,

eo
±
h =

q±
o − p±

o

∥q±
o − p±

o ∥
, ĕ±h =

q̆± − p̆±

∥q̆± − p̆±∥
.

(4.1.19)

Finally, the kinematic and mechanical boundary conditions are referred to a simply-supported scheme

for the deck while the two suspension cables ends are fixed atop the towers. They can be written in the

global reference frame {e1, e2,e3} as

uo(0) = o, mo(0) · e1 = 0, ψo

2(0) = 0, ψo

3(0) = 0

uo(l) · e1 = 0, uo(l) · e2 = 0, no(l) · e3 = 0, mo(l) · e1 = 0, ψo

2(l) = 0, ψo

3(l) = 0

v±
o (0) = o, v±

o (l) = o

ŭ(0, t) = o, m̆(0, t) · e1 = 0, ψ̆2(0, t) = 0, ψ̆3(0, t) = 0

ŭ(l, t) · e1 = 0, ŭ(l, t) · e2 = 0, n̆(l, t) · e3 = 0,

m̆(l, t) · e1 = 0, ψ̆2(l, t) = 0, ψ̆3(l, t) = 0

(4.1.20)

where ψo
i (x) and ψ̆i(x, t), i = 1, 2, 3, represent the static and dynamic rotations of the deck cross section

and their expressions in the fixed frame {e1,e2, e3} can be defined as:
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Ψ o =
[
ψo

1 ψ
o

2 ψ
o

3

]⊤
, Ψ̆ =

[
ψ̆1, ψ̆2, ψ̆3

]⊤
,

ψo

1 = ϕo

1 + ϕo

3 sinϕ
o

2, ψo

2 = ϕo

2 cosϕ
o

1 − ϕo

3 sinϕ
o

1 cosϕ
o

2,

ψo

3 = ϕo

2 sinϕ
o

1 + ϕo

3 cosϕ
o

1 cosϕ
o

2.

(4.1.21)

ψ̆1 =ϕ1 cosϕ
o

2 cosϕ
o

3 + ϕ2
(
sinϕo

2 sinϕ1 − cosϕo

2 sinϕ
o

3 cosϕ1
)

+ ϕ3
(
sinϕo

2 cosϕ1 cosϕ2 + cosϕo

2 sinϕ
o

3 sinϕ1 cosϕ2 + cosϕo

2 cosϕ
o

3 sinϕ2
)
,

ψ̆2 =ϕ1
(
sinϕo

1 sinϕ
o

2 cosϕ
o

3 + cosϕo

1 sinϕ
o

3

)
+ ϕ2

[
cosϕ1

(
cosϕo

1 cosϕ
o

3

− sinϕo

1 sinϕ
o

2 sinϕ
o

3

)
− sinϕo

1 cosϕ
o

2 sinϕ1
]

+ ϕ3
[
− sinϕo

1 cosϕ
o

2 cosϕ1 cosϕ2 − sinϕ1 cosϕ2
(
cosϕo

1 cosϕ
o

3

− sinϕo

1 sinϕ
o

2 sinϕ
o

3

)
+ sinϕ2

(
sinϕo

1 sinϕ
o

2 cosϕ
o

3 + cosϕo

1 sinϕ
o

3

)]
,

ψ̆3 =ϕ1
(
sinϕo

1 sinϕ
o

3 − cosϕo

1 sinϕ
o

2 cosϕ
o

3

)
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(4.1.22)

4.1.2 Nondimensional Form

The governing static and dynamic equations (4.1.14) and (4.1.15), together with the associated bound-

ary conditions (4.1.20), are cast in nondimensional form by using the deck span l as characteristic length

and
√
ρAdl4/EdJ1 as characteristic time, where ρAd is the deck mass per unit length, Ed is the deck

Young modulus and J1 the moment of inertia about the local axis b1. The deck nondimensional mass

per unit length turns out to be ϱd = 1 whereas the cables mass in nondimensional form can be written

as ϱc = ρAc/ρAd. Moreover, the nondimensional structural damping coefficients are expressed as

D̄vj = 2ζωvjϱ
c , D̄uj = 2ζωuj , D̄ϕ3 = 2ζωϕ3 J̄

m , (j = 1, 2, 3) . (4.1.23)

With this notation it is assumed that the nondimensional damping coefficients are proportional through

a damping factor ζ to the nondimensional first lower natural frequencies ωvj , ωuj and ωϕ3 evaluated

for the linear representation of the bridge under the self-weight; J̄m =
(
ρJC

3 + 1
2ρA

cBc2
)
/
(
ρAdl2

)
is

the nondimensional mass moment along the direction b̆3 of the deck accounting for the cables mass

contribution. The contribution of the flexural angular rates on the structural damping as well as their

inertial contribution is neglected in the modeling. The independent nondimensional stiffness parameters

are defined as ratios to the flexural deck stiffness EdJ1/l
3.

The nondimensionalized equations (4.1.14) and (4.1.15), projected into the fixed basis {e1, e2, e3}, yield
twelve nonlinear partial-differential equations in twelve independent kinematic unknowns. The obtained

equations govern the elastostatic and elastodynamic problems, respectively, and the following independent

parameters are introduced to cast the model in nondimensional form:

αc =
Hcl2

EdJ1
, κc =

EcAcl2

EdJ1
, κh =

EhAhl2

EdJ1
, κd =

Adl2

J1

γj =
GdA∗

j
dl2

EdJ1
, χ =

J2
J1
, τ =

GdJ3
EdJ1

(4.1.24)
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where Ac and Ah are the cables and hangers cross section area, Ec and Eh their Young’s modulus, Ad

and A∗d are the deck cross section area and shear area in direction bj , j = 1, 2,, Gd is the shear modulus;

J2 and J3 are the flexural moment of inertia and the torsional moment of inertia. The space and time

nondimensional coordinates are then defined as x̄ = x/l , ȳc(x̄) = yc(x)/l , ȳ±(x̄) = y±(x)/l , t̄ =

t ω̄ , ω̄ =
√
EdJ1/ (ρAdl4) and the displacement vectors as ū = u/l, v̄± = v±/l. Accordingly, by

considering the definitions in (4.1.24), the elastic constitutive laws can be expressed in the nondimensional

form:
N±

o = N c + κc
(
ν±o − 1

)
, N o = κd (νo − 1) , Qo

1 = γ1 η
o

1 , Q
o

2 = γ2 η
o

2 ,

M o

1 = µo

1 , M
o

2 = χµo

2 , T
o = τ µo

3 ,

N̆± = N c + κc
(
ν̆± − 1

)
, N̆ = κd (ν̆ − 1) , Q̆1 = γ1 η̆1 , Q̆2 = γ2 η̆2 ,

M̆1 = µ̆1 , M̆2 = χ µ̆2 , T̆ = τ µ̆3 ,

r±o (x) =
κh

l̄h(x)

(
νo

h
± (x)− 1

)
eo

±
h , r̆

±(x, t) =
κh

νo

h
± (x) l̄h(x)

(
ν̆±h (x, t)− 1

)
ĕ±h

(4.1.25)

where N c = αc/ cos θc is the catenary cable tension and l̄h = lh/l.

4.2 Computational Approach and Model Validation

The coupled nonlinear partial-differential equations of motion (4.1.15), cast in a nondimensional form,

are implemented in the finite element computational platform [56] using the PDE-mode feature. The

space-time integration is numerically performed by using the FE method. The mesh of the one-dimensional

domain [0, 1], representing the bridge span, was adapted to optimize the accuracy and evaluation time

of the solution, and fourth-order Lagrangian polynomials were used to approximate each of the 12 kine-

matic independent variables of the system. The generalized-α method, a one step implicit, second-order

method present in the FE code employed, was adopted for solving the transient problem when integrating

equations (4.1.14) and (4.1.15).

A preliminary validation of the equations of motion is performed evaluating the modal properties of

two existing suspension bridges: the Runyang Suspension Bridge with a span of 1490 m and the Hu Men

Suspension Bridge having a span of about 888 m. These two bridges have more or less the same shape

and cross sectional size, but a very different span since the Runyang span is about 70% greater than the

Hu Men span. This implies significantly different nonlinear behaviors as highlighted by the investigations

carried out in this work about the static aeroelastic stability. The following analyses are based on the

reference mechanical parameters and the obtained results are compared with those proposed in [14, 36, 37]

for the Runyang bridge and [15, 18] for the Hu Men bridge, respectively.

The elastogeometric properties of the girder-deck of the Runyang and Hu Men bridges can be sum-

marized as follows: l = 1490/888 m, B = 35.9/35.6 m, D = 3/3.012 m, Ad = 1.2481/1.2443 m2,

ρAd = 18387/18330 kg/m, ρJE
3 = 1.852 · 106/1.743 · 106 kg m2/m, E = 210/210 GPa, G = 80.77/80.77

GPa, J1 = 1.9842/1.98 m4, J2 = 137.754/124.39 m4, JE
3 = 5.034/5.1 m4. Here and henceforth, the slash

separates quantities referred to the Runyang bridge (left) from those referred to the Hu Men bridge

(right). On the other hand, the suspension cables exhibit the following properties: Ec = 200/200 GPa,

dc = 0.776/0.623 m, Ac = 0.47347/0.305 m2, ρAc = 3817/2397 kg/m. The sag of the cables under their

own weight is 149/84.6 m and the horizontal force is Hc = 7.096/2.792 · 107 N. The hangers have the

following properties: Eh = 210/160 GPa, dh = 0.0522/0.0529 m, Ah = 2.14/2.198 · 10−3 m2, and the

distance between the hangers is Bc = 34.3/33 m. The height of the towers is h = 154/90 m. The damping

factor is 0.5% for both bridges.
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4.3 Modal Analysis

The eigenvalue problem is solved considering the bridge deformed configuration under dead load so as

to account for the pre-stressed state. The study is performed in two steps: in the first step, the equilibrium

equations (4.1.14) are solved to obtain the equilibrium state and the generalized stresses are evaluated

across the structure. In the second step, the lowest natural frequencies and mode shapes of the bridge

are evaluated solving the eigenvalue problem associated with equations (4.1.15) including the computed

equilibrium configuration.

In Tab. 4.1 the lowest few frequencies of the bridge modes are illustrated and compared with the

literature results obtained via a linear FE model of the structure. Slightly higher values obtained by

the proposed model are due to the adopted continuum formulation in which the stiffness parameters are

average values and the real discrete hanger distribution is replaced by a continuum equivalent distribu-

tion. The kinematic unknowns, which govern such a rich mechanical problem in the present continuum

formulation, are only 12.

Proposed parametric nonlinear model
f1[Hz] f2[Hz] f3[Hz] f4[Hz] f5[Hz] f6[Hz] f7[Hz]
F-1 sym F-2 skew F-2 sym F-1 skew F-2 skew T skew T sym
v±1 |u1 v±2 , u2 v±2 , u2 v±1 |u1 v±2 , u2 v±2 , ϕ3 v±2 , ϕ3

SF 0.045|0.064 0.050 0.074 0.09|0.175 0.108 0.211 0.253

v±1 , u1 v±2 , u2 v±2 , u2 v±1 , u1 v±2 , u2 v±2 , ϕ3 v̆±2 , ϕ̆3
PS 0.070 0.096 0.128 0.1707 0.1797 0.229 0.277

Literature results [36]
– – 0.126 – 0.172 – 0.241

Table 4.1: Frequencies of the lowest six modes of the Runyang suspension bridge about the stress-free and
pre-stressed configurations. SF stands for stress-free and PS refers to pre-stresses condition, whereas F-1,
F-2 and T identify the flexural modes in directions e2 and e3 and the torsional mode, respectively.

Proposed parametric nonlinear model
f1[Hz] f2[Hz] f3[Hz] f4[Hz] f5[Hz] f6[Hz] f7[Hz]
F-1sym F-2 skew F-2 sym F-1 skew F-2 skew T skew T sym
v±1 |u1 v±2 , u2 v±2 , u2 v±1 |u1 v±2 , u2 v±2 , ϕ3 v±2 , ϕ3

SF 0.06|0.170 0.065 0.106 0.119|0.469 0.174 0.402 0.409

F-2 skew F-1 sym F-2 sym F-2 skew F-1 skew T skew T sym
v±2 , u2 v±1 , u1 v±2 , u2 v±2 , u2 v±1 , u1 v±2 , ϕ3 v±2 , ϕ3

PS 0.129 0.161 0.181 0.269 0.319 0.434 0.439
Literature results [35]

– – 0.172 – – 0.426 0.361

Table 4.2: Frequencies of the lowest six modes of the Hu Men suspension bridge about the stress-free and
pre-stressed configurations. SF stands for stress-free and PS refers to pre-stresses condition, whereas F-1,
F-2 and T identify the flexural modes in directions e2 and e3 and the torsional mode, respectively.

The first row gives the frequencies calculated considering the stress-free configuration of the bridge.

The first mode is a symmetric local mode affecting the cables alone moving in the out-of-plane direction

in a pendulum-like mode. The second mode is the first symmetric lateral bending mode for the deck

involving also the cables. The modes that follow in the sequence are the lowest skew–symmetric and
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.3: The lowest six mode shapes of the Runyang suspension bridge.

lowest symmetric bending modes in the vertical direction. Thereafter, the bridge exhibits the lowest

skew-symmetric lateral mode and the second skew-symmetric mode in the vertical direction. The sixth

and the seventh modes are the lowest skew-symmetric and symmetric torsional modes.
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On the other hand, if the prestressed condition is taken into account, the local cable mode disappears

but the sequence of global modes is preserved. The difference is the higher values of the frequencies

of all modes due to the positive geometric stiffness of the cables. A good correlation is found with the

frequencies reported in the literature [36]. The lowest six modal configurations of the Runyang suspension

bridge are portrayed in Fig. 4.3. The aspect ratio of the reference geometry of the bridge as well as the

scaling of the modal displacement components have been optimized for visualization purposes of the

modal patterns.

For the Hu Men Suspension Bridge, the modal sequence for the stress-free bridge is the same as the

Runyang bridge although the frequencies are higher due to the shorter span of the Hu Men. For the

prestressed condition, the only difference is that the fourth mode is the second skew-symmetric vertical

mode while the fifth mode is the lowest skew-symmetric lateral mode. The frequencies are all higher for

this bridge.

4.4 Nonlinear Precritical Equilibrium Paths

The theoretical predictions based on the present nonlinear formulation have been first tested in the

context of a static stability analysis since suspension bridges exhibit a substantial nonlinear precritical

behavior due to the geometric nonlinearities of the cables. The aim of the analysis is to evaluate the

nonlinear equilibrium paths of the bridge subject to vertical downward loads of increasing magnitude

(quantified by the multiplier λ of the dead loads) and estimate the increase of stiffness suffered by the

cables. On the other hand, path following analyses for increasing upward loads are performed to show the

softening effect induced by the loss of tension in the cables. The geometric nonlinearities accounted for

in the deck modeling are expected to give a marginal contribution to the increase of the overall stiffness

of the bridge because of the assumed typical boundary conditions for the deck. The simply supported

scheme does not allow the stretching effect to appear with the associated funicular-type load-bearing

capacity so that the only nonlinear (geometric) contribution to the deck stiffness comes from nonlinear

curvature effects.

Figures 4.4a and 4.4b show the nonlinear equilibrium paths obtained for the vertical displacement

component of the deck and the maximum stretch of the cables compared with the paths obtained by

linear theory. The increment of stiffness due to the geometric nonlinearity is appreciable; the difference in

the structural response becomes discernible already at low values of the dead load multiplier λ. Otherwise,

very small increments of upward loads induce a pronounced softening behavior, which can be appreciated

in Figs. 4.4c and 4.4d, due to the loss of tension suffered by the cables.

The equilibrium paths, shown in Figs. 4.5a and 4.5b, were obtained considering the bridge prestressed

under the dead load f o
2 , subsequently subject to an incremental horizontal load f o

1 (Fig. 4.5-a) and

twisting couple co3 (Fig. 4.5-b) proportional to the load f o
2 . These uniform loads are considered collinear

with the directions of the aeroelastic forces so as to show that the geometric nonlinearities accounted for

in the cables and deck-girder induce coupling between forces and displacements along different directions

contrary to the predictions of linear theory. In fact such effects vanish in the context of a linear model

as suggested by the tangent lines to the curves at the origin of the plots in Figs. 4.5. Moreover, Figs.

4.6a and 4.6b show that the main consequence is the nontrivial, nonsymmetric stretch variations in the

cables.
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Fig. 4.4: Nonlinear equilibrium paths under vertical loads: (a) vertical (absolute) deck displacement and
(b) cables stretch at the mid-span for increasing load, (c) vertical deck displacement and (d) cables stretch
at the mid-span for decreasing load.
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Fig. 4.5: Nonlinear equilibrium paths: vertical displacement of the mid-span deck section for (a) increasing
uniform horizontal load and (b) uniform torque.
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Fig. 4.6: Cables stretch at the mid-span: (a) for increasing uniform horizontal load and (b) for increasing
uniform torque. The gray lines refer to the cable ”− ”, the black lines refer to the cable ” + ”.



Chapter 5

Aeroelastic Stability Analysis

The proper evaluation of the bridge tangent stiffness in the pre-stressed configuration induced by the

in-service loads, accounting also for the torsional and out-of-plane components, is a necessary step within

the context of an accurate study of the limit states arising from wind-structure interaction. In bridge

design, aeroelastic phenomena are usually investigated in the context of cumbersome FE models where

sensitivity parametric analyses are computationally demanding because the regeneration of the mesh for

the whole geometry of the bridge must be carried out for each individual analysis. On the other hand,

the proposed geometrically exact continuum model of suspension bridges represents a suitable parametric

framework for investigating limit states and conducting rapid structural optimization studies.

In the following chapter, a nonlinear coupled fluid-structure model for suspension bridges is assembled

and static and dynamic aeroelastic instabilities phenomena are investigated. The aerodynamic properties

available in the literature for the two case study bridges presented in Section 4.2 are first adopted in

the calculations in order to validate the proposed nonlinear modeling; thus, the torsional divergence

phenomenon is investigated both by a static parametric analysis and via a modal approach by studying

the associated eigenvalue problem, whereas the flutter critical condition is evaluated in the frequency-

domain through the use of the aeroelastic derivatives available in the literature. Finally, the frequency-

and time-domain descriptions of the aerodynamics of the GBB deck cross section derived in Chapter 3 are

then assumed and parametric flutter analyses are performed in both domains and the results compared.

5.1 Static Aeroelastic Instability: Torsional Divergence

The torsional divergence represents the bifurcation of the equilibrium state occurring when the bridge

torsional stiffness becomes zero under the static aerodynamic wind loads. This condition is studied by

computing the nonlinear precritical equilibrium path under increasing aerodynamic forces until the critical

condition is flagged by the singularity of the stiffness matrix. Moreover, an eigenvalue analysis linearized

about the configuration induced by the static aerodynamic load is performed, and the critical condition

is identified when one of the eigenvalues goes through zero on the real axis.

The static aerodynamic coefficients experimentally determined in wind tunnel tests for the sectional

models of the Runyang bridge and the Hu Men bridge are shown in Fig. 5.1. The data obtained by

digitalization of the original figures are used to determine by polynomial fitting the following expressions

for the lift, drag, and aerodynamic moment coefficients:

67
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i) Runyang bridge:

CR

L (αE) = −0.0864 + 0.0744αE − 0.00195αE2,

CR

D (αE) = 0.7510 + 0.05867αE − 0.0066αE2,

CR

M (αE) = 0.0153 + 0.01654αE.

ii) Hu Men bridge:

CHM

L (αE) = −0.024 + 0.0789αE,

CHM

D (αE) = 0.8276 + 0.0242535αE − 0.00815αE2,

CHM

M (αE) = 0.0153 + 0.0181αE.
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Fig. 5.1: Lift, drag and moment coefficients obtained in previous experiments and by polynomial fitting
for (left) the Runyang bridge and (right) the Hu Men bridge.

The interaction between the cables and the wind is accounted for by considering the drag force alone

having the drag coefficient set to CD = 0.7 as suggested in [74].
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Fig. 5.2: Positive convention of the aerodynamic forces.

In the orthonormal frame {ē1, ē2, ē3}, where ē1 identifies the direction of the wind speed U = −U ē1
(see Fig. 5.2), such that ᾱ = arccos (e1 · ē1), the nondimensional expressions of the forces per unit length

of the deck generated by the static component U of the wind speed are expressed as
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fo
AE = −Do(x)ē1 + Lo(x)ē2 , c

o
AE =Mo(x)ē3

Lo(x) = F δ CL(α
E) , Do(x) = F δ d̄ CD(α

E) , Mo(x) = F δ2 CM(α
E)

f±
o,AE = −Do

c (x)ē
±
1 = −0.7F dc

B
ē±1

(5.1.1)

where dc is the cable diameter, αE = ᾱ + ϕo3 is the static effective angle of attack, B and d are the deck

width and height, respectively, (see Fig. 4.1) and

F =
1

2

ρU2

ρAdω̄2
, δ =

B

l
, d̄ =

d

B
(5.1.2)

where, consistently with the definition given in Chapter 4, the term ρAd represents the mass per unit

length of the bridge deck. Finally, the static aerodynamic forces (5.1.1) enter the equilibrium equations

(4.1.14) through fo(x), co(x) and f±
0 (x).

A parametric nonlinear calculation is performed by increasing the static aerodynamic forces through

the wind velocity U . The pre-critical equilibrium paths are evaluated for three initial wind angles of attack

ᾱ. The evolution of all kinematic variables for the Runyang suspension bridge including the vertical and

horizontal deck displacements uo2 and uo1 and the twisting rotation ϕo3 can be observed in Figs. 5.3a

and 5.3b. Torsional divergence is found to occur around 100 m/s when ᾱ = +3◦, as shown in Fig. 5.3b.

For ᾱ = 0◦ or for negative values of the angle of attack, the static lift and moments are negative thus

inducing a tensioning of the cables which, in turn, causes an increase of the bridge torsional stiffness.
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Fig. 5.3: Equilibrium paths of the Runyang bridge for increasing aeroelastic loads at different wind angles
of attack ᾱ: (a) vertical displacement and (b) torsional rotation vs. wind velocity U . The dashed lines
refer to a linearized model, the solid lines refer to the proposed fully nonlinear model.

The same analyses are conducted for the Hu Men suspension bridge for which a torsional divergence

analysis is provided in [15]. Figure 5.4 shows the equilibrium paths obtained by the nonlinear model and

compared with the typical path constructed by a linear model that neglects flexural-torsional coupling.

A lower critical wind velocity is obtained by the proposed nonlinear model. The results are in good

agreement with those of [15, 37]. It shows how the coupling of the static aerodynamic forces leads to a

decrease of the critical wind velocity.

Figure 5.5 shows the nonlinear precritical paths for different initial wind angles of attack ᾱ, it can

be noticed how the initial angle ᾱ affects the aeroelastic response in determining the critical condition.

Lower U cr is estimated by assuming ᾱ > 0 whereas for negative values of ᾱ the divergence condition

is not reached in the considered range of wind speed U . This is related to the expressions of the static
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Fig. 5.4: Linear (dashed) and nonlinear (solid) equilibrium paths of the Hu Men suspension bridge for
increasing aeroelastic loads for ᾱ = 0◦: (a) vertical displacement and (b) torsional rotation vs. wind
velocity U .
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Fig. 5.5: Equilibrium paths of the Hu Men suspension bridge for increasing aeroelastic loads for different
ᾱ: (a) vertical displacement and (b) torsional rotation vs. wind velocity U .

aerodynamic coefficients characterizing the considered cross section (see Figure 5.1, left), for which an

initial value of the wind angle of attack ᾱ = −2◦ generates a negative lift and moment and the increasing

wind speed U leads to a negative increase of the effective angle αE = ᾱ+ϕo3. Such negative angle generates

a downward lift that increases the tension in the bridge cables, and consequently their geometric stiffness,

thus increasing the bridge global torsional stiffness, entailing the shift of the critical wind speed to higher

values.

The path traced by the eigenvalues as the wind speed is varied in the vicinity of the divergence bifur-

cation for the Runyang bridge confirms that two complex conjugate eigenvalues move on the imaginary

axis toward the origin and coalesce to zero when the bifurcation occurs; this is shown in Fig. 5.6 (left).

On the other hand, the sensitivity of the frequency of the mode that undergoes divergence (imaginary

part of the eigenvalue) with respect to the wind speed is appreciable, see Fig. 5.6 (right) where the three

angles of attack ᾱ = (+3◦,+2◦,+1◦) are considered. Similar behaviors are observed in the vicinity of the

divergence bifurcation of the Hu Men suspension bridge in Fig. 5.7. The flexural/torsional modes that

undergo divergence for the Runyang and Hu Men bridges in the critical state are shown in Fig. 5.8.
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Fig. 5.6: The path of the lowest eigenvalue of the Runyang suspension bridge in the vicinity of the diver-
gence bifurcation (left) and imaginary part vs. wind speed (right): circles stand for ᾱ = +3◦, triangles
stand for ᾱ = +2◦, and diamonds stand for ᾱ = +1◦.
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Fig. 5.7: The paths of the lowest eigenvalue of the Hu Men suspension bridge in the vicinity of the
divergence bifurcation: circles stand for ᾱ = +2◦, triangles stand for ᾱ = +1◦, and diamonds stand for
ᾱ = 0◦.
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Fig. 5.8: Mode undergoing divergence for the Runyang suspension bridge (left) when ᾱ = +1◦ and U cr =
111.2 m/s and for the Hu Men suspension bridge (right) when ᾱ = 0◦ and U cr = 136.2 m/s.

The continuum formulation is also used for sensitivity analyses whose main results are shown in

Fig. 5.9. Here the geometric and constitutive characteristics of the Runyang and Hu Men Suspension

Bridge, indicated respectively by subscripts ”R” and ”HM”, are taken as reference values about which

some suitable variations are considered. As expected, the results highlight the high sensitivity of the

aeroelastic response of the bridge to the parameters governing the global elastogeometric (nonlinear)

stiffness of the bridge. In particular, not only the cables axial stiffness kc, supposedly the most relevant

source of geometric nonlinearity, but also the deck torsional stiffness τ strongly influence the value of

the torsional divergence speed U cr. Moreover, the nonlinear dependence of the critical velocity to the

variation of these two parameters seems to be more emphasized only in the vicinity of the design values

of the bridges analyzed. It also appears that the critical speed is less sensitive to variations in the hangers

stiffness ratio κh and clearly this is due to the fact that its design value is already very high, condition

that justify the assumption of undeformability of the hangers, usually made in the classical modeling.

Finally, the presence of a very slight contribution of the parameter χ governing the flexural bending in

the plane {b3, b1} is due to the nonlinear expression of the torsional curvature containing a term related

to the flexural finite rotation ϕo2.
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Fig. 5.9: Sensitivity analyses to the stiffness parameters ratios vs. the critical divergence wind speed.
Subscripts ”R” and ”HM” refer to the Runyang bridge and Hu Men bridge parameters, respectively.

5.1.1 The Great Belt Bridge Aerodynamics

In the following section, the critical speed at the onset of the torsional divergence condition is evaluated

assuming the aerodynamic properties of the GBB section. While the numerically calculated curves of the

static lift, drag, and aerodynamic moment coefficients proposed in Chapter 3 are here adopted in order

to define the static aeroelastic loads, the structural characteristics of the bridge model and the boundary

conditions are those of the Runyang suspension bridge. The reference values employed in the evaluation

of the aerodynamic loads are those reported in Chapter 3: B = 31 m and d = 4.4 m.

Only the eigenvalue procedure described in the previous section was adopted to evaluate the wind speed

at the onset of torsional divergence. The paths of the real and imaginary parts of the lowest eigenvalue

are shown in Fig. 5.10 (left) for different values of the initial angle of attack ᾱ whereas Fig. 5.10 (right)

shows the critical velocities as the values where the imaginary part of the lowest eigenvalue becomes zero.

A sensitivity analysis on the effect of ᾱ in the evaluation of the torsional divergence condition is then

shown in Figure 5.11 where the asymmetric behavior of the section is highlighted. In particular, it is

shown how the minimal critical torsional divergence value occurs at small positive mean angles of attack,

and it is associated with the lower stabilizing effect due to the minimal values of the aerodynamic loads

at those angles. By contrary, as the angles of attack increases toward lower negative or higher positive

values a relatively large increase in the divergence speed is obtained. In this case the aerodynamic loads

effect coupled with the structural characteristics of the bridge are such that a stabilizing behavior is

experienced leading to a higher values of the divergence speed.



74 5 Aeroelastic Stability Analysis

0 20 40 60 80 100

Re( )

-200

-100

0

100

200
Im
(
)

α = 0 deg

α = 1 deg

α = 2 deg

α = 3 deg

95 115 135 155 175

U [m/s]

-200

-100

0

100

200

Im
(σ
)

α = 0 deg

α = 1 deg

α = 2 deg

α = 3 deg

Fig. 5.10: Lowest eigenvalue path for the Runyang suspension bridge, assuming the aerodynamics of the
GBB section, in the vicinity of the divergence speed (left) and imaginary part vs. wind speed (right).

-3 -1.5 0 1.5 3

α [deg]

100

120

140

160

U
cr
 [
m
/s
]

Fig. 5.11: Critical velocity U cr at the onset of the torsional divergence condition for selected values of the
mean angle of attack ᾱ.

5.2 Dynamic Aeroelastic Instability: Flutter

As previously described in Chapter 2, the flutter condition can be studied by performing time-

dependent simulations or by evaluating the solution of a linear (or nonlinear) eigenvalue problem. Aero-

dynamic, geometric and constitutive nonlinearities, characterizing the aeroelastic model can be accounted

for employing the first approach. In this case the flutter condition is evaluated by analyzing the time his-

tories of aeroelastic vibrational response at different wind speeds, thus, by estimating the critical velocity

when a periodic oscillation is reached. On the other hand, in the eigenvalue approach only the prestress

condition induced by the static component of the wind-induced loads and by the dead loads is taken

into account by studying the eigenvalue problem arising from the linearization of the balance equations

around the static aeroelastic configuration.

The definition of the flutter condition is straightforward; according to Bisplinghoff et al. [75], flutter

can be defined as the dynamic instability of an elastic body in an air stream. As indicated in [76] a more

pertinent definition of the flutter condition and the properties of an aeroelastic system can be proposed by

studying the stability of the infinitesimal motions about that condition [21]. It is then sufficient to analyze

the aeroelastic vibration with a complex exponential time dependence function, since all other motions

can be defined by superposition. However the air loads due to the deflections of the elastic structure from
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the undeformed state are affecting the flutter condition. If the dynamic aeroelastic characteristics of the

perturbed system are the same, whatever reference point is assumed, then it is possible to investigate the

flutter behavior of the system; this correspond to the classical flutter speed, e.g. the flutter velocity in

linear equilibrium condition, or linear flutter speed. On the other hand, the perturbed motion dynamics

can be influenced by the chosen equilibrium point. Therefore, the reduced linear perturbation system leads

to a linear approximation of the behavior of the system in the neighborhood of the static equilibrium

point, implying that there is going to be a flutter speed associated with each condition. In this case the

flutter speed is the one obtained from the nonlinear equilibrium condition, or nonlinear flutter speed.

Clearly, when the structure is highly flexible, as in the case of long-span suspension bridges, the classical

approach is no longer suitable to correctly identify the flutter speed.Moderate to large deflections under

loads strongly modify the equilibrium point.

5.2.1 Flutter via Eigenvalue Approach

This approach, is based on the knowledge of the flutter derivatives, experimentally or numerically

obtained for each bridge section. The critical condition is obtained at the wind speed where a complex-

conjugate pair of eigenvalues crosses the imaginary axis. Figure 5.2 shows the aerodynamic (non-classical)

convention assumed in this work: the lift force along with the vertical displacement are assumed positive

upward, the drag force is oriented in the direction of the air flow and the moment is assumed positive if

the section rotates in the counter-clockwise direction.

To compute the onset of flutter, the classical complex eigenvalue analysis is performed by expressing

the aerodynamic forces in terms of the flutter derivatives. Herein, two approaches are implemented;

the first approach, proposed by [24], consists of defining a complex nonlinear eigenvalue problem solved

by increasing the wind speed U about the static aeroelastic equilibrium until the condition of purely

imaginary eigenvalues is found. On the other hand, several linear eigenvalue problems can be solved for

each value of U to obtain the actual eigenvalues in the vicinity of the flutter condition. The first approach

can be easily adopted for a two-DOF sectional model, as in [25], although it is a nonclassical procedure

for multi-dof systems. The results obtained by the two approaches are discussed next.

The expressions of the aerodynamic forces per unit length, in terms of the aeroelastic derivatives

(Pi , Hi , Ai , i = 1, ...6), are given in (5.2.1). The latter are then introduced in the aeroelastic governing

equations (4.1.15) through f̆(x, t) and c̆(x, t) as follows:

f̆AE = fo
AE −D(x, t)ē1 + L(x, t)ē2 , c̆AE = coAE +M(x, t)ē3 ,

D(x,K) = 1
2ρB U

2
(K
U
P1∂tu2 +

KB

U
P2∂tϕ3 +K2P3ϕ3 +

K2

B
P4u2 −

K

U
P5∂tu1 −

K2

B
P6u1

)
L(x,K) = 1

2ρB U
2
(K
U
H1∂tu2 +

KB

U
H2∂tϕ3 +K2H3ϕ3 +

K2

B
H4u2 −

K

U
H5∂tu1 −

K2

B
H6u1

)
M(x,K) = 1

2ρB
2U2

(K
U
A1∂tu2 +

KB

U
A2∂tϕ3 +K2A3ϕ3 +

K2

B
A4u2 −

K

U
A5∂tu1 −

K2

B
A6u1

)
(5.2.1)

Consistently with the classical notations, ρ denotes the air density, B is the deck depth, U is the dimen-

sional wind velocity, and K is the reduced frequency defined as K := 2πfB/U , where f is the frequency

of oscillation of the bridge (see Chapter 2).
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5.2.1.1 Complex Eigenvalue Problem

The expressions of the aerodynamic forces are first cast in a suitable nondimensional form. By assuming

the reduced frequency K as function of the circular frequency ωf at the onset of flutter

K :=
ωfB

U
(5.2.2)

and by introducing the dimensionless parameters

Ff =
1

2

ρB l

ρAd
, δ =

B

l
(5.2.3)

the nondimensional form of Eq. (5.2.1) becomes

D(x, σ) = Ff δ
[
σ P1 ∂tu2(x, t) + σ δ P2 ∂tϕ3(x, t) + σ2 δ P3 ϕ3(x, t) + σ2 P4 u2(x, t)+

−σ P5 ∂tu1(x, t)− σ2 P6 u1(x, t)
]

L(x, σ) = Ff δ
[
σH1 ∂tu2(x, t) + σ δ H2 ∂tϕ3(x, t) + σ2 δ H3 ϕ3(x, t) + σ2H4 u2(x, t)+

−σH5 ∂tu1(x, t)− σ2H6 u1(x, t)
]

M(x, σ) = Ff δ
2
[
σ A1 ∂tu2(x, t) + σ δ A2 ∂tϕ3(x, t) + σ2 δ A3 ϕ3(x, t) + σ2A4 u2(x, t)+

−σ A5 ∂tu1(x, t)− σ2A6 u1(x, t)
]

(5.2.4)

where σ is the nondimensional circular flutter frequency σ = ωf/ω̄. By assuming the solution of the

dynamic problem in the form
[
u(x, t), ϕj(x, t),v

±(x, t)
]
=

[
ū(x), ϕ̄j(x), v̄

±(x)
]
eiσt with j = 1, 2, 3, the

flutter condition is found when a pair of eigenvalues σ = σR + i σI becomes purely real.

In terms of the eigenvalue σ, the aerodynamic nondimensional loads can be written as

D̄(x, σ) = Ff δ σ
2
(
i P1ū2 + i δP2ϕ̄3 + δP3ϕ̄3 + P4ū2 − i P5ū1 − P6ū1

)
eiσt

L̄(x, σ) = Ff δ σ
2
(
iH1ū2 + i δH2ϕ̄3 + δH3ϕ̄3 +H4ū2 − iH5ū1 −H6ū1

)
eiσt

M̄(x, σ) = Ff δ
2 σ2

(
i A1ū2 + i δA2ϕ̄3 + δA3ϕ̄3 +A4ū2 − i A5ū1 −A6ū1

)
eiσt

(5.2.5)

Accordingly, the nondimensional inertia and damping forces, by neglecting the contributions of the rota-

tory inertia and damping about axes b̆1 and b̆2, can be expressed as

f̄
±
M + f̄

±
D =

[
− σ2ϱc sec θ±o (x) v̄±(x) + i σDc

j v̄
±(x)

]
eiσt ,

f̄M + f̄D =
[
− σ2ū(x) + i σDd

j ū(x)
]
eiσt ,

c̄M + c̄D =
[
− σ2Jmϕ̄3(x) + i σDT

j ϕ̄3(x)
]
eiσt b3 .

(5.2.6)

5.2.1.2 Classical Eigenvalue Problem

The solution of the dynamic problem is here assumed in the form
[
u(x, t), ϕj(x, t),v

±(x, t)
]

=[
ū(x), ϕ̄j(x), v̄

±(x)
]
eσt with j = 1, 2, 3. It is worth noticing that now σ does not represent the fre-

quency of oscillation of the structure at the onset of flutter, as in the Scanlan formulation described in

Section 5.2.1.1, but it is the nondimensional circular frequency σ = ω/ω̄ of the system. Accordingly,
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the flutter condition is obtained when a pair of eigenvalues σ = σR + i σI becomes purely imaginary. By

introducing the parameter Ū := U/ (ω̄ l), the aerodynamic nondimensional loads can be written in terms

of the eigenvalue σ as

D̄(x,K, σ) = Ff Ū
2
(KP1

Ū
σ ū2 + δ

KP2

Ū
σ ϕ̄3 +K2P3 ϕ̄3 +

K2P4

δ
ū2 −

KP5

Ū
σ ū1 −

K2P6

δ
ū1

)
eσt

L̄(x,K, σ) = Ff Ū
2
(KH1

Ū
σ ū2 + δ

KH2

Ū
σ ϕ̄3 +K2H3 ϕ̄3 +

K2H4

δ
ū2 −

KH5

Ū
σ ū1 −

K2H6

δ
ū1

)
eσt

M̄(x,K, σ) = Ff δ Ū
2
(KA1

Ū
σ ū2 + δ

KA2

Ū
σ ϕ̄3 +K2A3 ϕ̄3 +

K2A4

δ
ū2 −

KA5

Ū
σ ū1 −

K2A6

δ
ū1

)
eσt

(5.2.7)

On the other hand, the nondimensional inertia and damping forces can be written as

f̄
±
M + f̄

±
D =

[
σ2ϱc sec θ±o (x) v̄±(x) + σDc

j v̄
±(x)

]
eσt ,

f̄M + f̄D =
[
σ2ū(x) + σDd

j ū(x)
]
eσt ,

c̄M + c̄D =
[
σ2Jmϕ̄3(x) + σDT

j ϕ̄3(x)
]
eσt b3 .

(5.2.8)

For the sake of clarity, the relation between the nondimensional parameters Ff and F , employed in the

static and dynamic aeroelastic analyses, is given in the follow

Ff = F δ

Ū2
(5.2.9)

5.2.2 Numerical Results

A first set of simulations is carried out in order to evaluate the flutter velocity for the Runyang

suspension bridge by adopting the experimental values of the flutter derivatives calculated for its deck

cross section [14]. For that case study, only the aeroelastic derivatives Hi and Ai, i = 1, ...4 were available.

The analyses are performed employing both the eigenvalue approaches described in Section 5.2 and

according to the following procedure:

1. An initial lower value than the critical free-stream wind speed U is assumed and the aeroelastic

configuration induced by the static components of the aerodynamic loads is calculated by solving the

nonlinear PDEs system (4.1.14) accounting for the expressions (5.1.1).

2. The first torsional mode is tentatively assumed to be the expected flutter mode and its frequency f̃T1
is used as trial value to evaluate the reduced velocity Ur := U/(Bf).

3. The aeroelastic derivatives are evaluated at the calculated value of Ur and the eigenvalue problem

(Scanlan or classical approach) is solved by linearizing the balance equations (4.1.15), accounting

for the aerodynamic loads given by the expressions (5.2.4) or (5.2.7), around the static aeroelastic

configuration.

4. The frequency fT1 of the lowest torsional mode is evaluated and compared with the trial value f̃T1 and

steps 2. and 3. are iterated until |fT1 − f̃T1 | ≤ ϵtol, where ϵtol is the chosen tolerance. At each iteration,

the value of f̃T1 is updated to the last evaluated value of fT1 .

5. The wind velocity U is increased and the procedure is performed until the critical condition is reached

(i.e. until the damping of the lowest torsional mode becomes zero).

The numerical simulations were carried out by the FE solver Comsol Multiphysicsr [56] by coupling this

software with the computational platform Matlabr in order to perform the iterative procedure described



78 5 Aeroelastic Stability Analysis

above. Figure 5.12 shows the variation of the torsional and flexural bending frequencies f and logarithmic

decrement ∆ with the wind velocity U and the results obtained for the two eigenvalue problems are

compared. As expected the two procedures lead to the same result only at the flutter speed where the

Scanlan assumption (see Eq. (5.2.2)), which defines K as function of the flutter circular frequency ωf, is

valid.
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Fig. 5.12: Flutter investigation for the Runyang bridge using the experimental aeroelastic derivatives for
ᾱ = 0◦: (a) and (b) torsional modes, (c) and (d) vertical bending modes. The dashed lines indicate the
Scanlan procedure, the solid lines represent the iterative procedure. The black lines refer to the symmetric
modes, the gray lines refer to the skew-symmetric modes.

In Fig. 5.13 a three-dimensional view of the flutter mode shape at U ≈ 70 m/s is shown, it is evident

that is due to the coupling between bending and torsional modes.

Figure 5.14 shows the expected high sensitivity of the flutter speed with respect to the damping ratio

and the multiplier of the dead loads. In particular, the figure highlights the nonlinear trend, with a 40%

increase in the dead load leading to a 10% increase in the flutter speed, due to the positive geometric

stiffness induced in the structure, mostly in the cables, by the pre-stress static loads. These studies are

possible only in the context of a fully nonlinear parametric model formulation since the prestress condition

is properly accounted for and the tangent stiffness at the prestressed state is correctly evaluated.
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Fig. 5.13: Flutter mode shape of the Runyang suspension bridge for ᾱ = 0◦.
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Fig. 5.14: Sensitivity of the flutter speed to: (a) the structural damping ratio ζ, (b) the dead load multiplier
λ for ᾱ = 0◦.
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5.2.2.1 The Great Belt Bridge Aerodynamics

The computational fluid dynamic studies conducted in Chapter 3 that allowed to determine the flutter

derivatives for the GBB suspension bridge cross section at different values of the mean angle ᾱ, are in

this section employed in order to study the influence of the wind angle of attack in the evaluation of the

critical flutter condition. In Fig. 5.15, the numerical values of the flutter derivatives for the deck cross

section of the GBB suspension bridge evaluated via CFD calculations, and discussed in Chapter 3, are

proposed. Data are calculated for increasing values of the reduced velocity Ur = 2π/K.
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Fig. 5.15: GBB deck section: aeroelastic derivatives calculated at different mean angles ᾱ.
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Figure 5.16 shows the path of the first symmetric torsional mode, in terms of its damping and frequency,

obtained for the set of flutter derivatives evaluated at different values of ᾱ. Figure 5.18 shows the sensitivity

of the value of the critical flutter velocity U cr to the mean angle of attack and in Fig. 5.17 the comparison

is proposed between the aeroelastic responses obtained assuming linear and nonlinear structural models.

In the nonlinear model the eigenvalue problem is defined by linearizing the bridge equations of motions

about the aeroelastic equilibrium, thus, the pre-stress effect induced by the static aerodynamic loads

turns out to reduce the global torsional stiffness of the bridge, as evident comparing the frequencies in

Fig. 5.17 (right), situation that implies the decrease of the critical speed U cr with respect to the linear

model, in this case of about 5.9%.
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Fig. 5.16: Flutter investigation for the Runyang bridge using the aeroelastic derivatives of the GBB cross
section. Fully nonlinear structural model.
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Fig. 5.17: Flutter investigation for the Runyang bridge using the aeroelastic derivatives of the GBB cross
section: comparison between linear and nonlinear structural model results for ᾱ = 0◦.

Figure 5.18 shows the variation of the flutter speed U cr and frequency f cr at selected values of the

initial angle of attack ᾱ, and assuming the corresponding flutter derivatives, for the linear and nonlinear

structural models.

The behavior highlighted in Fig.5.18 is typical of bluff-bodies with non-symmetrical cross section with

positive camber. In this sense, the flutter speed reaches its maximum for a negative value of the mean
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Fig. 5.18: Critical flutter velocity (left) and flutter speed (right) for selected values of the mean angle of
attack ᾱ. Least square minimizations by cubic polynomial functions: nonlinear structural model (solid
line), linear structural model (dashed line).

angle of attack highlighting the effect of the static lift coefficient at those angles. The smaller aerodynamic

loads generated at negative assets positive affect the flutter speed which increases proportionally.

5.2.3 Flutter Analysis via Indicial Functions

To perform aeroelastic stability studies, an alternative strategy is the analysis in the time domain where

the bridge response is carried out within a given range of wind speeds that is expected to bracket the

flutter speed [77] and the critical condition is found when the bridge dynamic response shows a periodic

oscillation. The time domain analysis has a significant advantage respect to the eigenvalue approach, as

it allows to study the pre- and post-critical flutter response accounting for structural and aerodynamic

nonlinearities [78, 79]. The drawbacks are the high computational burden and complexity necessary to

obtain appropriate analytical functions describing the unsteady aerodynamics of the typical cross sections

of a deck bridge. Once these are available, the computations can be carried out in a relatively straight

forward manner.

This section concerns the evaluation of the flutter response of a suspension bridge having structural

characteristics of the Runyang bridge, illustrated in Section 4.2, and assuming the aerodynamics of the

GBB cross section, developed and studied in Chapter 3. It is worth mentioning that the cross sections

of the two bridges, Runyang and GBB, are very similar in terms of shape (boxed section) and absolute

dimensions (B = [35.9 , 31] m and d = [3 , 4.4] m). Nevertheless, since the Runyang deck cross section

(B/d = 11.97) is more streamlined with respect to that of the GBB (B/d = 7.04), lower values of

the critical wind velocities are expected with respect to the cases analyzed in Chapter 5. The aeroelastic

equilibrium is first solved accounting for the static components of the wind loads referred to the nonlinear

coefficients curves calculated by the CFD analyses illustrated in Section 3.2; in particular, the nonlinear

expressions of the lift, drag, and aerodynamic moment coefficients (3.2.15) in terms of the effective angle

of attack αE are reported below:

CD(αE) = 0.0695 + 0.1332αE + 4.7033αE2 − 1.1667αE3 − 24.1297αE4,

CL(α
E) = 0.0496 + 6.3567αE − 2.5893αE2 − 109.3908αE3 − 2.6756αE4 + 786.1796αE5,

CM (αE) = 0.0330 + 1.1379αE − 0.7673αE2 − 27.0033αE3
+ 4.5606αE4 + 249.0324αE5.

(5.2.10)
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where the expression of αE was proposed in Chapter 2 in the form αE(x) = ᾱ + ϕo3(x). The nonlinear

coefficients, whose expressions are given in Eq. (5.2.10), are shown in Fig. 5.19 where the nonlinearities

arising at high angles of attack are appreciable.
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Fig. 5.19: Drag, lift, and moment coefficients: DVM numerical results (symbols), polynomial fitting (solid
line) and linear approximation (dashed line).

The aeroelastostatic governing equations are reported below

∂xn
±
o + f±

o + f±
o,AE − r±o = o ,

∂xn
o + fo + fo

AE + r+o + r−o = o ,

∂xm
o + ∂xpo × no + Bc

2 bo1 × (r−o − r+o ) + co + coAE = o .

(5.2.11)

where, according to expressions (5.1.1) and the signs convention in Figure 5.2

fo
AE(x) = −F δ CD(α

E)ē1 + F δ CL(α
E)ē2 , c

o
AE(x) = F δ2 CM(α

E)ē3 (5.2.12)

The nondimensional drag force per unit length is here expressed in terms of the bridge deck width B

instead of the depth d according to the definition of the coefficient CD; furthermore, the contribution of

the drag force on the cables was neglected in the simulations. At an assigned value of the free-stream

wind speed U , the solution of equations (5.2.11), representing the prestress effect induced by the static

aeroelastic configuration, is then substituted into the equations of motion (4.1.15) and the response to

the unsteady aerodynamics loads given in the indicial form (see Section 2.3.2) is studied by solving the

following PDEs-ODEs system of equations given by equations (5.2.13) and (5.2.15), respectively.
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∂xn̆
± + f̆

±
− r̆± = ρAc sec θ±o (x) ∂ttv

± +Dc
j ∂tv

±,

∂xn̆+ f̆ + f̆AE + r̆+ + r̆− = ρAd∂ttu+Dd
j ∂tu,

∂xm̆+ ∂xp̆× n̆+ c̆+ c̆AE + Bc

2 b̆1 × (r̆− − r̆+) = ρJC · ∂tω + ω × (ρJC · ω) +DT

j ω

(5.2.13)

In Eq. (5.2.13), the total aerodynamic forces f̆AE = D̆(x, t)ē1 + L̆(x, t)ē2 and moment c̆AE = M̆(x, t)ē3,

accounting for the static components of the wind loads, D̆(x, t) = Do(x)+D(x, t), L̆(x, t) = Lo(x)+L(x, t),

and M̆(x, t) =Mo(x)+M(x, t), are defined in terms of the indicial functions and the added aerodynamic

states and

D(x, t) = F δ
∑
ξ

cξD

[
Φξ

D(0)ξ(x, t) +
N∑

k=1

b̂ξD,ka
ξ
D,kW

ξ
D,k (x, t)

]
,

L(x, t) = F δ
∑
ξ

cξL

[
Φξ

L(0)ξ(x, t) +

N∑
k=1

b̂ξL,ka
ξ
L,kW

ξ
L,k (x, t)

]
,

M(x, t) = F δ2
∑
ξ

cξM

[
Φξ

M(0)ξ(x, t) +
N∑

k=1

b̂ξM,ka
ξ
M,kW

ξ
M,k (x, t)

]
.

(5.2.14)

where, as previously defined, F = 1
2

ρU2

ρAdω̄2 , δ =
B
l and

ξ(x, t) =

{
∂tu1(x, t)

Ū
,
∂tu2(x, t)

Ū
, ϕ3(x, t)

}
, with Ū =

U

ω̄ l

The linear differential equations governing the time-evolution of the added aerodynamic states W ξ
j,k

coupled with the system of nonlinear partial differential equations (5.2.13) can be written as

∂tW
ξ
D,k (x, t) = ξ(x, t)− b̂ξD,kW

ξ
D,k (x, t)

∂tW
ξ
L,k (x, t) = ξ(x, t)− b̂ξL,kW

ξ
L,k (x, t)

∂tW
ξ
M,k (x, t) = ξ(x, t)− b̂ξM,kW

ξ
M,k (x, t)

(5.2.15)

where equations (5.2.15) represent a system of
∑3

j=1

∑
ξN

ξ
j = 10 (see Section 2.3.4) first-order ordinary

differential equations.

The values of the coefficients cξj , b̂
ξ
j,k, and aξj,k adopted in the analyses, were determined by CFD

calculations as discussed in Section 3.2.2 and in Tab. 5.1 are reported the coefficients evaluated for an

initial wind angles of attack ᾱ = 0◦.

Φξ
j aξj,1 bξj,1 aξj,2 bξj,2 aξj,3 bξj,3 cξj

Φu̇1
D -6.982 9.696 0 0 0 0 -0.140

Φu̇2
L -9.635 16.972 0.635 0.425 0 0 -4.670

Φϕ3
L 0.393 0.235 -14.211 33.975 0 0 -5.335

Φu̇2
M 0.501 0.274 -0.312 0.565 0 0 1.107

Φϕ3
M 0.256 0.181 -10859.3 12.161 10884.9 12.187 1.075

Table 5.1: GBB section: indicial functions coefficients for ᾱ = 0◦.

Once evaluated the nonlinear aeroelastic equilibrium at a selected value of the free-stream speed U

by integrating equations (5.2.11), the time dependent simulations presented in the follow are carried out
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by solving simultaneously equations (5.2.13) and (5.2.15) for an assigned initial condition perturbing

the aeroelastic equilibrium state. The indicial model here considered is linear, as the evolution of the

unsteady loads is described adopting the added states formulation, used to convert the integral form

of the aerodynamic loads into a differential form, that can straightforwardly be treated numerically.

However, these indicial functions have been computed in Chapter 3 by taking into account flow separation

and boundary layer thickness, typical viscous flow phenomena. In addition, as indicated in Eq. (5.2.10),

the nonlinear form of the aerodynamic loads is considered to evaluate the static equilibrium condition

therefore the procedure uses a nonlinear unsteady aerodynamic description.
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Fig. 5.20: Time histories of the incremental vertical displacement u2 and torsional rotation ϕ3 at the
mid-span. Response at the onset of flutter for an initial angle of attack ᾱ = 0◦.
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Fig. 5.21: Time histories of the incremental vertical displacement u2 and torsional rotation ϕ3 at the
quarter-span. Response at the onset of flutter for an initial angle of attack ᾱ = 0◦.

The numerical simulations revealed that the eigenvalue analyses carried out by employing both, the

linear and the fully nonlinear structural models, and accounting for the aerostatic configuration in the

nonlinear case, produce the same results obtained from the time dependent simulations performed by

adopting the indicial functions derived from the aerodynamic derivatives. That is expected since both

the frequency- and time-domain representation of the aerodynamics of the bridge cross section (bluff-body

with sharp edges) are identical but in different spaces.
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By performing time-domain analyses the critical flutter condition is attained when periodic oscillations

are reached. Figures 5.20 and 5.21 show the time histories of the response at the onset of flutter in

terms of the deck maximum deflection u2 and torsional rotation ϕ3 at the mid-span and highlight the

vertical flexural-torsional modal coupling typical of the flutter mode in long-span suspension bridges. The

frequency spectrum of the flutter oscillation is shown in Fig. 5.22 where one can appreciate the expected

correspondence of the results experienced in the frequency domain analyses and shown in Fig. 5.17.
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Fig. 5.22: FFT of the flutter response for the linear and nonlinear structural models. Response at the
onset of flutter for an initial angle of attack ᾱ = 0◦.

The two suspension bridge models assume the same aerodynamics, thus the differences shown in the

responses are due to the geometric nonlinearities retained in the proposed fully nonlinear structural model

and derived in Chapter 4. As previously discussed in Section 4.4 and shown in Figs 4.4, 4.5 and 4.6,

the large deformations induced in the cables and the deck may give hardening or softening behavior,

depending on the direction of the load forcing the bridge. As highlighted in Figs 5.20 and 5.21, in the

flutter motion the structural nonlinear modeling shows smaller amplitudes of oscillation with respect to

the response of the linear model. At the mid-span, where the cables stiffness contribution is more relevant,

these differences have been quantified in ≈ 24% for the maximum torsional rotation ϕ3 and ≈ 49% for

the vertical bending displacement u2, whereas lower gaps, ≈ 14% and 24.5% for ϕ3 and u2, respectively,

have been estimated at the quarter-span.



Chapter 6

Aeroelastic Response

In this chapter, the aeroelastic response in the post-flutter regime is investigated by coupling the

unsteady nonlinear aerodynamics of the GBB developed in Section 3.2.2.1 and Section 3.2.2.3 with the

nonlinear parametric structural model presented in Chapter 4. Both quasi-steady (QS) and unsteady

(US) nonlinear aerodynamics are adopted and the influence of the modeled nonlinearities on the flutter

boundary is determined. The Limit Cycle Oscillations (LCOs) occurring in the post-critical wind speed

regimes are compared and the differences between the two modeling approaches are highlighted.

The continuation of the LCOs is then performed through numerical FE simulations and the stable

bifurcation branch, showing the evolution of the maximum amplitude of the LCO with the free-stream

velocity U , is determined assuming the fully nonlinear structural model and the nonlinear quasi-steady

and unsteady aerodynamics. A reduced-order linearized model of suspension bridge is then coupled with

the quasi-steady aerodynamics and path following of the stable and unstable branches is performed.

Finally, in the last Section, the effects of nonuniform spatial wind distributions on the critical flutter

condition are estimated together with the aeroelastic response to a nonuniform (in time and space) gust

load.

6.1 Quasi-Steady Nonlinear Aerodynamic Loading

Analysis of the post-critical flutter response of suspension bridges is performed by adopting nonlinear

quasi-steady aerodynamics, and the limit cycle oscillations occurring in the post-flutter range are then

investigated. The quasi-steady theory is used primarily in the time domain but it is worth noticing

that such a theory is only applicable at high values of reduced velocities Ur, that is when a low-frequency

dynamics are involved in the aeroelastic response and no added mass effects are induced. This formulation

can be referred to as the case of unsteady aerodynamics when K → 0.

Within the quasi-steady formulation, the dimensionless aerodynamic loads are expressed as

D̆(x, t) = F δ CD (αE) , L̆(x, t) = F δ CL (α
E) , M̆(x, t) = F δ2 CM (αE) . (6.1.1)

where, as discussed in Chapter 2, the effective dynamic total angle of attack αE(x, t) is defined as

αE(x, t) = ᾱ+ ϕo3(x) + ϕ3(x, t)−
∂tu2(x, t) +

B
4 ∂tϕ3(x, t)

U + ∂tu1(x, t)
(6.1.2)

and the nonlinear expressions (5.2.10) of the aerodynamic coefficients of the GBB deck cross section are

adopted.

87
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The analysis of the nonlinear aeroelastic response was performed for selected values of the wind speed U

and iterated until the condition leading to a stable LCO was detected. In particular, according to the ULF

approach described in Chapter 4, the nonlinear equilibrium under the action of the static aerodynamic

loads was first calculated by solving the system of PDEs (5.2.11) and assuming the expression (5.2.12) of

the static aeroelastic loads. By introducing the vector of the dynamic total aeroelastic loads as

f̆AE(x, t) = −D̆(x, t)ē1 + L̆(x, t)ē2 , c̆AE(x, t) = M̆(x, t)ē3 (6.1.3)

the dynamic aeroelastic equations (5.2.13) are adopted and the response to a perturbation (initial con-

dition) of the aeroelastic equilibrium is then evaluated in terms of the time evolution of the incremental

states v±i (x, t), ui(x, t), ϕi(x, t), ∂tv
±
i (x, t), ∂tui(x, t), ∂tϕi(x, t) with i = 1, 2, 3.

In Figures 6.1 the time histories of the pre-critical response in terms of the deck vertical and horizontal

displacements and the rotation at the mid-span are shown. The aerodynamic loads in the pre-critical

flutter regime are such that the vertical and torsional oscillations die out rapidly whereas the nonlinear

drag does not seem to give a significative contribution to the dynamics of the system.
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Fig. 6.1: Time histories of the incremental vertical u2 and horizontal u1 displacements and torsional
rotation ϕ3 at the mid-span. pre-critical response at U = 40 m/s and for an initial angle of attack
ᾱ = 0◦.

The first LCO is found at a critical wind speed of U cr
l ≈ 56.5 m/s for the linearized structural model

and U cr
nl ≈ 52.8 m/s by adopting the fully nonlinear structural model, implying that the quasi-steady

nonlinear aerodynamics modeling predicts a loss of aeroelastic stability of the bridge at a value about
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12.9% and 13.6%, for the two structural models respectively, lower than the critical velocity estimated

by adopting linear unsteady aerodynamics.

The results of the post-critical flutter response of the bridge are presented in Fig. 6.2 and Fig. 6.3

where the vertical and torsional limit cycles are shown. The main effect of the structural nonlinearities

is to bring forward the rise of LCO. In 6.4 the LCO frequencies are compared for the cases of linear and

nonlinear structural models. As shown in the figures, the amplitudes of the maximum torsional rotation ϕ3
during the post-critical LCO are larger than 10◦ and rise up as the wind velocity increases. Therefore the

geometrically exact structural modeling and the nonlinear aerodynamic characterization at high angles

of attack carried out in the present work are fully justified.
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Fig. 6.2: Time histories of the incremental vertical u2 and horizontal u1 displacements and torsional
rotation ϕ3 at the mid-span. LCO at U = 62 m/s and for an initial angle of attack ᾱ = 0◦.

Quasi-periodic responses, characterized by low-frequency amplitude modulation, are found at higher

values of the post-critical wind speed. In Fig. 6.5 the time history and the frequency spectrum of the

nonlinear quasi-periodic response are shown for U = 70 m/s where the modulation frequency of f1 = 0.042

Hz superimposed on the carrier frequency of f2 = 0.216 Hz.

The time-dependent response of the bridge, assuming the proposed nonlinear structural model, is

evaluated at the post-flutter wind speed of U = 60 m/s and the stress-state induced by large-amplitude

LCO is reported in Figs. 6.6 and 6.7 where the components of the total stress resultants in the cables

and the deck are given in their dimensional form. In particular, notice that the maximum axial force in

the cables, is registered at the anchorages (x = 0, l), is of N̆+ ≈ 3.75× 108 N; since the area of the cables

cross section, for the case study, is Ac = 0.47347 × 106 mm2, an estimation of the maximum tension

induced in a the cables in post-critical oscillation can be then f ≈ 790 N/mm2. This value is still lower
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Fig. 6.3: Phase portrait of the incremental vertical displacement u2 and velocity ∂tu2 and torsional rotation
ϕ3 and angular velocity ∂tϕ3 at the mid-span. LCO at U = 62 m/s and for an initial angle of attack
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Fig. 6.4: FFT of the flutter response for the linear and nonlinear structural models. LCO at U = 62 m/s
and for an initial angle of attack ᾱ = 0◦.

than the characteristic tensions of the steel usually employed in suspensions cables design, i.e. at the yield

strength f0.2 ≥ 1180 N/mm2 and the ultimate value fu ≥ 1570 N/mm2, the linear elastic constitutive

laws assumed in the modeling are still valid also in the post-flutter oscillation regime.
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Fig. 6.5: Post-flutter quasi-periodic response (U = 70 m/s), time histories of the torsional rotation ϕ3 of
the bridge deck quarter-span and frequency spectrum.
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Fig. 6.6: Time histories of the maximum values of the total shear Q̆2(0, t), bending moment M̆1(0.04 l, t),
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6.2 Unsteady Nonlinear Aerodynamic Loading

An important step in the nonlinear aeroelastic modeling of suspension bridges is to account also for

the unsteady effects, due to the instantaneous variation of the wind angle of attack, in the aerodynamic

description of the self-excited aeroelastic loads as discussed in Sections 2.3.3 and 2.3.5. The natural

extension of this process is to consider unsteady aerodynamic loads based on a nonlinear functional form

of the indicial functions described in Section 2.3.5. However, such a formulation implies the evaluation of

convolutional integrals that are nonlinearly dependent on the aerodynamic states ξ and cannot be treated

by the same added-states approach used for the linear case.

Nevertheless, the first step towards the fully nonlinear aerodynamic formulation is that of considering

the nonlinearities due to flow separation at high angles of attack by assuming the nonlinear expressions

of the static coefficients and their slope rather than their value at the mean angle of attack ᾱ. Thus, the

aeroelastic equilibrium is evaluated at the effective angle of attack

αE(x, t) = ᾱ+ ϕo3(x) + ϕ3(x, t)−
∂tu2(x, t) +

B
4 ∂tϕ3(x, t)

U + ∂tu1(x, t)
(6.2.1)

whereas only the instantaneous variation from such equilibrium is assumed to be linear thus the Duhamel

convolution integral is still valid and the added state formulation described in Section 2.3.4 can be adopted.

The equations governing the aeroelastic equilibrium as well as the motion of the bridge together with

the added state equations giving the unsteady aerodynamics are those summarized in Section 5.2.3. The

indicial formulation of the unsteady drag, lift, and moment is briefly reported here

D(x, t) = F δ
∑
ξ

cξD

[
Φξ

D(0)ξ(x, t) +
N∑

k=1

b̂ξD,ka
ξ
D,kW

ξ
D,k (x, t)

]
,

L(x, t) = F δ
∑
ξ

cξL

[
Φξ

L(0)ξ(x, t) +

N∑
k=1

b̂ξL,ka
ξ
L,kW

ξ
L,k (x, t)

]
,

M(x, t) = F δ2
∑
ξ

cξM

[
Φξ

M(0)ξ(x, t) +
N∑

k=1

b̂ξM,ka
ξ
M,kW

ξ
M,k (x, t)

]
.

(6.2.2)

As detailed in Section 3.2.2.3, only the contribution of the flutter derivatives covering an important role

in the aeroelastic behavior of suspension bridges, that is, Hi, Ai (i = 1, 2, 3, 4), P5 and P6 was retained.

Thus, by recalling the relations between the coefficients cξj of the indicial formulation and the values of

the aerodynamic coefficients Cj (Eq. (3.2.23)) and the slopes ∂αCj (Eq. (3.2.24)) of the static curves at

the mean value of the angle of attack αw, it turns out that only 3 of the 5 coefficients cξj are independent;

in particular, the following relationships hold

cu̇2

L = cϕ3

L +
cu̇1

D

2
, cu̇2

M = cϕ3

M . (6.2.3)

Therefore, the expressions of the indicial coefficients cξj depending on the nonlinear curves of the static

coefficients and their slopes, read

cu̇1

D = −2CD (αE) , cϕ3

L = −∂αCL|αE , cu̇2

L = −∂αCL|αE − CD (αE) , cu̇2

M = cϕ3

M = ∂αCM |αE , (6.2.4)

where, from the expressions of the static coefficients curves given by 5.2.10, their slopes, as a function of

the effective angle of attack αE, can be written as
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∂αCL|αE = 6.357− 5.179αE − 328.172αE2 − 10.703αE3 + 3930.9αE4 ,

∂αCM |αE = 1.138− 1.535αE − 81.01αE2 + 18.242αE3 + 1245.16αE4 ,
(6.2.5)

while the considered nonlinear expression of the drag coefficient reads

CD(αE) = 0.0695 + 0.1332αE + 4.7033αE2 − 1.1667αE3 − 24.1297αE4 . (6.2.6)

According to the updated Lagrangian formulation adopted in this work, the simulations are performed

by first evaluating the nonlinear aeroelastic equilibrium at a selected value of the free-stream speed U , then

the time-dependent simulations are carried out by solving simultaneously equations (5.2.13) and (5.2.15)

for an assigned initial condition perturbing the aeroelastic equilibrium state. Only the fully nonlinear

structural model is employed in the calculations.

The first periodic oscillation, leading the bridge to a LCO, is found at a wind speed Ucr = 58.2

m/s, slightly lower (≈ 4.8%) of that estimated assuming linear unsteady aerodynamic loads. In Fig. 6.8

the LCOs at a post-critical speed U = 62 m/s obtained assuming the unsteady and the quasi-steady

(discussed in Section 6.1) nonlinear aerodynamics are compared. In the same figure, the post-flutter

divergent response obtained assuming a linear unsteady modeling is superposed. While the nonlinear

representation of the aerodynamic loading is capable of capturing the limit cycle, adopting a linearized

form of the loading a linear flutter-like behavior is predicted with an unboundedly growing oscillating

response. Figure 6.8 also shows the frequency spectrum during the post-critical oscillation, it appears

that the dynamics of the bridge described by the linear unsteady aerodynamics is dominated by one

main frequency (f = 0.254 Hz) while using the nonlinear representation of the aerodynamic loading, the

presence of the super-harmonics is very distinct. The three-dimensional configuration of the suspension

bridge during the LCO at U = 62 m/s is then shown in Fig. 6.9.

Quasi-periodic responses, characterized by a low-frequency amplitude modulation, are found at higher

values of the post-critical wind speed. In Fig. 6.10 the time history and the frequency spectrum of the

modulated LCO are shown for U = 80 m/s.

From Fig. 6.11 one can observe that the two dynamics - those of the unsteady and quasi-steady loading

- occur at slightly different frequencies (fUS = 0.272 Hz and fQS = 0.261 Hz) as shown in Fig. 6.8, with

the dynamic effective angle of attack in phase with the corresponding loading. Obviously the frequency

of the drag coefficient is twice the frequency of the oscillating lift and aerodynamic moment coefficients.

In Figure 6.12 the cyclic variation of the aeroelastic loads with the effective angle of attack αE, nor-

malized with respect to the wind dynamic pressure ( 12ρU
2B for drag and lift, and 1

2ρU
2B2 for the

aerodynamic moment), shows the aerodynamic hysteresis occurring during the post-critical LCO. The

power spent by the aerodynamic loads during a stable LCO and shown in Fig. 6.13 can be calculated as

PAE(t) =

∫ l

0

[
D(x, t)u1(x, t) + L(x, t)u2(x, t) +M(x, t)ϕ3(x, t)

]
dx (6.2.7)

and the work performed during one period is

WAE =

∫ TLCO

0

PAE(t) dt . (6.2.8)

Thus, at post-flutter speed at U = 62 m/s, for which the corresponding LCO (shown in Fig. 6.8) has

frequency fUS
LCO = 0.272 Hz, the work of the aerodynamic loads during one period TLCO = 3.68 s turns out

to be WAE ≈ 1.463× 106 J.

This parameter represents an important indicator of the amount of energy extracted from the airstream

by the structure in the elastic deformation process. During one cycle of vibration, the aerodynamic forces
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Fig. 6.8: Post-flutter LCO (U = 62 m/s), time histories of the vertical incremental displacement u2 and
torsional rotation ϕ3 of the bridge deck and frequency spectrum.

Fig. 6.9: Three-dimensional views of the aeroelastic configuration during the post-flutter LCO at U = 62
m/s.
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Fig. 6.10: Post-flutter quasi-periodic response (U = 80 m/s), time histories of the torsional rotation ϕ3
of the bridge deck quarter-span and frequency spectrum.

perform work on the bridge, converting aerodynamic energy into kinetic and strain energy. The system

is oscillating in a stable LCO, therefore, the interaction between structural deflections and aerodynamic

forces is such that the oscillating bridge absorbs energy from the airstream, and releases to the airstream

an equivalent amount. Therefore, the kinetic and strain energies are traded so that the total energy in

the system is invariant. This is different from the linear post-flutter condition where the airstream energy

is such that creates a situation in which a disturbance can grow unbounded with time. One could use

this information to evaluate the possibility of controlling the bridge deformation during its oscillations

by means of active controls, as the excess energy from the airstream, that could lead into an aeroelastic

instability, need to be absorbed and dissipated.

Considerations on the Aeroelastic Modeling

From the analyses performed in the previous sections, one can conclude that the structural geometric

nonlinearities influence the aeroelastic stability of suspension bridges such that flutter occurs at lower

values of the free-stream speed U (a reduction of about 6%) when compared to the linearized structural

model. On the other hand, a quasi-steady nonlinear aerodynamics, leading the bridge to LCOs in post-

flutter regime, implies a further reduction of the critical wind speed of about 13% with respect to the

flutter speed calculated in the context of linear aerodynamics. Furthermore, the results illustrate that the

unsteady nonlinear aerodynamic modeling, is less conservative than the quasi-steady formulation with

an higher critical speeds (about 10% more than QS nonlinear model) and smaller LCO amplitudes.
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Fig. 6.11: Effective angle of attack and quasi-steady (grey line) and unsteady (black line) lift, moment,
and drag coefficients in a post-flutter LCO.
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Fig. 6.12: Vertical deck displacement and torsional rotation and normalized unsteady lift and moment
during the post-critical LCO at U = 62 m/s.
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6.3 Continuation of the LCO

The investigation of the post-flutter scenario is performed in the context of a quasi-steady nonlinear

aerodynamic modeling and the post-critical analysis has been carried out according to various strategies.

By considering the geometrically exact structural model, a straightforward brute-force approach has

been adopted and it consists of considering a speed past the Hopf bifurcation point at which the stable

LCO is found by time integration of the aeroelastic governing equations. The speed is varied and the

initial conditions are considered as the values reached by the state variables at the steady-state LCO at

the previous speed. Furthermore, the one-parameter continuation of these LCOs is performed and the

bifurcation diagrams, featuring both the stable and unstable branches, are obtained with a reduced-order

linearized model of suspension bridge. The approach to the computation of the LCOs and the bifurcation

behavior of the nonlinear aeroelastic response here pursued is based on a pseudo-arclength continuation

strategy. A Matlab-based continuation toolbox (COCO) [80, 81] has been employed. Figure 6.14 describes

the flow-chart of the continuation procedure performed by the toolbox in order to path follow the periodic

orbits representing the LCO attained by the wing in the post-flutter regime.

Generate the aeroelastic ODEs system (Galerkin ) and

Compute the periodic solution ( stable point) 

Assign the vector field F

and 

the Jacobian J

Path-follow the given initial

periodic orbit (LCO)  varying the 

control parameter U

Obtain the 

response curve

x = F(x,U)

J = ∂xF(x,U)

˙

Fig. 6.14: Flow chart of the continuation procedure performed by COCO [80].

In Fig. 6.15 the results of the time-marching (TM) simulations in the context of finite element (FE)

discretization (COMSOL Multiphysicsr [56]) are superimposed to the full continuation of the LCO

adopting a linearized structural model. The dots representing the stable bifurcation branch determined

with the fully nonlinear model were obtained by evaluating the maximum LCO amplitude at several

values of the post-critical wind speed U . The resolution of the points extracted by TM simulations for

wind speeds U close to the critical value is strongly affected by the step size chosen to discretize the

range of variation of U . In fact, in the neighborhood of the Hopf bifurcation point where the tangent to

the stable branch curve becomes vertical, a tiny variation in velocity is required moving backward from

a stable LCO at higher values of U in order to continue on the stable LCO solution.

Figures 6.16 and 6.17 display the post-critical stable and unstable flutter behavior, represented for

selected values of the structural damping ratio ζ and the initial wind angle of attack ᾱ. The damping

ratio contributes significantly to increase the flutter speed, i.e. the Hopf bifurcation point shifts toward

higher speeds and affects also the position of the fold points. Interestingly the value of the displacement

at the folds are similar independently of the value of the structural damping. Similar conclusions can

be reached for the cases displayed in Figure 6.17 where the bifurcation diagrams are proposed for three

values of the initial angle of attack ᾱ. The numerical results in the neighborhood of the folds should be
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carefully considered since the bifurcations occur at very high torsional angles, where the aerodynamic

characteristics of the bridge section turn out to be quite uncertain.
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Fig. 6.16: Bifurcation diagrams for selected values of the damping ratio ζ. Stable branches (solid lines)
and unstable branches (dashed lines).

The continuation results here obtained show a full sensitivity of the flutter and post-flutter behavior

with respect to significant parameters such as structural damping and initial angle of attack. The uncer-

tainties inherent in these parameters are such that these types of sensitivity studies should be a necessary

part of the aerodynamic stability assessment of a new bridge design.
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6.4 Nonuniform Wind Distributions

A formulation for the study of the aeroelastic response of suspension bridges to distributed wind gusts

is presented in this section. The wind gust loads can be treated as a random (spectral turbulence) or

discrete event. For random gusts, typical spectral models include the von Kármán and Dryden turbulence

models [82]. While spectral-type gusts are determined by a random process having a wide range of

wavelengths, those belonging to t he group of discrete gusts feature a single gust of predetermined

magnitude and shape. In the present investigation the bridge response to gusts is calculated based on

various gust models, albeit they are all discrete. On the other hand, the procedure presented herewith

is general and spectral gust distributions can be adopted in conjunction with the presented aeroelastic

model.

The gust loading signature adopted for the analysis is the 1-COSINE gust distribution in time and with

a Gaussian spatial distribution along the bridge span (see Fig. 6.18) represented through the function

Υg(x) = ϑ exp
[
− (x−µ l)2

2(σ l)2

]
, where ϑ, µ and σ are the characteristic parameters of the Gaussian-type

function and H(t) is the Heaviside function. The study of the response to the gust is conducted in

a speed range in which no dynamic aeroelastic instability is encountered, hence the dynamic response

of the bridge does not affect its flutter characteristics. As discussed in Section 2.1, the wind gust can

be defined as a time-dependent component ug(x, t) of the wind velocity (see Eq. (2.1.1)). In the plane

orthogonal to the bridge span direction e3, the dimensionless gust speed vector ug(x, t) is defined as

ug(x, t) = ug(x, t)e1 + wg(x, t)e2 (6.4.1)

which can be written in terms of the assumed Gaussian spatial distribution as ug(x, t) = Υg(x)ũg(t) and

the time-dependent part ũg of the gust function is then expressed by the following 1-COSINE function

ũg(t) =
1
2u

o
g

(
1− cos

πt

tg

)(
H (t)−H (t− 2tg)

)
(6.4.2)

The parameter tg represents the gust traveling time, that is, the time employed by the gust to transit

through the deck width B and can be evaluated as tg := B/uog. By defining the maximum intensity uog of

the horizontal component ug(x, t) of the gust speed as proportional to the intensity U of the free-stream

velocity through the coefficient cg, (u
o
g := cg U), and by identifying the direction of ug(x, t) through the

angle of attack αg, the dimensionless peak value w̄o
g = wo

g/ (l ω̄) of the gust speed vertical component

wg(x, t) can be evaluated as

w̄o
g = cg Ū tanαg . (6.4.3)

The unsteady aerodynamic loads for the considered incompressible flow regime are expressed in terms

of the indicial function derived from the aerodynamic admittances produced for the GBB deck cross

section and already discussed in the previous sections. In addition, in order to evaluate the aeroelastic

response to gusts of arbitrary distribution and shape, the concept of another indicial function, commonly

referred to as the Küssner function [46] associated with the gust penetration effects, is used. Likewise the

Wagner function, also this function is expressed in terms of Bessel’s functions. The approximation derived

by von Kármán and Sears [47] can be also used effectively. This function expresses the corresponding

variation of the lift coefficient induced by a change in the angle of attack due to the penetration in a

unit-speed gust [75]. Following [75], the contribution in the aerodynamic lift force due to the effect of a

vertical component of the wind gust wg(x, t) is defined by the function L̆g and can be expressed as

L̆g(x, t) = Ff Ū
∂CL

∂αE

∫ t

0

∂tΨ(t− τ)wg(x, τ)dτ (6.4.4)
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where Ff = 1
2ρB l/ρA

d, δ = B/l and ∂CL/∂α
E is the static lift curve slope coefficient [rad−1] whose

expression, derived from (5.2.10), is

∂CL

∂αE
= 6.357− 5.179αE − 328.172αE2 − 10.703αE3 + 3930.898αE4

(6.4.5)

evaluated at αE(x) = ᾱ+ ϕo3(x). In Eq. (6.4.4), Ψ(t) = 1−
∑2

k=1Ake
−B̂kt is the Küssner function where

B̂k = 2(Ū/δ)Bk and A1 = 0.5, A2 = 0.5, B1 = 0.13, B2 = 1. Since the gust load L̆g(x, t) is of circulatory

nature, in the case of incompressible flow, it acts on the quarter chord point of the deck section and the

moment generated with respect to the elastic center can be written in nondimensional form as:

M̆g(x, t) =
δ

4
L̆g(x, t) . (6.4.6)

The contribution of the unsteady aerodynamic loads (6.4.4) and (6.4.6) related to the gust effect is then

introduced in the bridge aeroelastic governing equations (5.2.13) by the vectors f̆AE = −D̆(x, t)ē1 +(
L̆(x, t) + L̆g(x, t)

)
ē2 and c̆AE =

(
M̆(x, t) + M̆g(x, t)

)
ē3.

To overcome the calculation of the convolution integral by which the gust load is expressed, according

to the formulation described in Section 2.3.2, the added aerodynamic state Gk(t) is introduced and (6.4.4)
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can be written as

L̆g(x, t) = Ff Ū
∂CL

∂αE
Υg(x)

2∑
k=1

AkB̂kGk(t) . (6.4.7)

The system of ODEs governing the evolution in time of the added aerodynamic states Gk(t) is given

by

∂tG1(t) = w̃g(t)− B̂1G1(t) ,

∂tG2(t) = w̃g(t)− B̂2G2(t) .
(6.4.8)

which, unlike the case of the self-excited aerodynamic loads (see Eqs. (5.2.15)) are not coupled with the

aeroelastic governing equations (5.2.13).

6.4.1 Numerical Results

Parametric studies are carried out to investigate the aeroelastic behavior of a typical long-span bridge to

a traveling 1-COSINE gust load. The numerical investigation shows also the capability of the parametric

model to enable sensitivity analyses suitable for structural optimizations. The elastogeometric properties

of the deck-girder of the Runyang bridge reported in the [14] are summarized in Section 4.2.

6.4.1.1 Energy Equivalence of the Wind Speed Spatial Distributions

The wind spatial distribution effects the critical flutter speed are studied next. Consistently with the

assumption made for the gust modeling, a Gaussian distribution Υ (x) = ϑ exp
[
− (x−µ l)2

2(σ l)2

]
of the wind

speed is considered. By assuming UG(x) = Ū Υ (x), the wind profiles are defined so as to have the same

energy content as the uniform distribution. Therefore, to perform parametric analyses by varying µ and

σ in the Gaussian function, the amplitude ϑ is calculated according to the condition∫ l

0

Υ (x)2 dx = 1 (6.4.9)

where the two sides of equation (6.4.9) represent the normalized kinetic energy of the Gaussian and the

uniform wind distribution, respectively.

6.4.1.2 Flutter Assuming Uniform and Nonuniform Wind Speed

Time-dependent simulations were then performed by assuming the Gaussian distribution of the wind

field across the bridge span. Two main velocity profiles were investigated, a symmetric shape centered

about the bridge mid-span, that is µ = 0.5, and a nonsymmetric shape with maximum speed value at the

quarter-span, µ = 0.25. From these two spatial distributions, the critical flutter speed U cr was evaluated

by varying the parameter σ that regulates the amplitude of the Gaussian bell-shape. In particular, for each

set of parameters (µ, σ) adopted, the amplitude ϑ was evaluated accordingly to the energy equivalence

relationship (6.4.9). In Fig. 6.20, the ratio between the flutter speed of the nonuniform and uniform wind

U cr/U cr
uni is reported for increasing values of σ and the spatial distributions at selected values of σ are

included in the insets.

Flutter resulted from a coupled flexural-torsional skew-symmetric mode, thus, as shown in Fig. 6.20,

the way the energy is transferred to the structural system can lead to an increase of about 10% with
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Fig. 6.20: Flutter speed versus the parameter σ of the Gaussian function for a symmetric (µ = 0.5) and
non symmetric (µ = 0.25) wind spatial distribution.

respect to the case when the bridge is under uniform flow conditions. The analyses were performed

considering the same amount of energy, and while for a restricted range of wind distribution conservative

results are obtained by using a uniform flow spatial distribution, the analysis shows that there is a wide

range of σ for which non-conservative predictions are expected. Indeed, it is shown that aerodynamic

loads having a peak where the flutter (skew-symmetric) mode has its crest, can be less conservative than

the uniform case. One can see that, a symmetric spatial distribution of the aerodynamic loads implies a

higher critical flutter speed, which occurs when the energy is transferred to the structure from a Gaussian

load concentrated at the mid-span (low values of σ), and slightly lower critical speed (< 1%) for a more

uniform distribution, σ > 0.45.

6.4.1.3 Aeroelastic Response to a Nonuniform Gust

Further analyses were carried out to study the behavior of the bridge to an incoming vertical gust.

The response in the transient part of the time histories of the motion induced in the bridge was analyzed.

In order to focus the study only on the effects of the spatial distribution of the load induced by the gust,

the free-stream speed U is assumed uniformly distributed across the bridge span. U is adopted as unique

reference speed in the analyses since the vertical component wg of the gust speed is directly dependent

on it (i.e., w̄o
g = cgŪ tanαg). A gust angle of attack αg = 2.5◦ is assumed in the calculations and a 25%

increase of the free-stream speed U is considered for the evaluation of the gust speed intensity, cg = 1.25.

Also in this case, a Gaussian function is chosen to describe the spatial distribution of the gust loads;

in particular, according to the criterion expressed in (6.4.9), the same content in energy of the uniform

counterpart is assumed.

The incremental vertical displacement u2 and torsional rotation ϕ3 induced by the gust load at the

deck mid-span are shown in Fig. 6.21 for a wide range of wind speeds. The figures represent the maximum

amplitudes of the kinematic variables during the transient response assuming symmetric Gaussian (µ =

0.5) and nonsymmetric Gaussian (µ = 0.25) gusts compared with the response to a uniform gust. As

expected, at the mid-span, the major differences (indicated in the figure insets with ∆[%]) occur for the

symmetric case, 40-50% for ϕ3 and higher than 100% for the vertical displacement u2. Such a behavior

strongly depends on the speed regime as shown in the insets of Fig. 6.21. From results not displayed here,

similar behavior occurs for the response at the quarter-span to a nonsymmetric gust load.
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Fig. 6.21: Maximum vertical displacement and torsional rotation at the deck mid-span for increasing
free-stream wind speed U , σ = 0.2.
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Fig. 6.22: Maximum vertical displacement and torsional rotation at the deck mid-span versus time for
increasing wind speeds U , σ = 0.2

The evolution in time of the maximum response shown in Fig. 6.21 is reported in Fig. 6.22. The

observed anticipation of the peak at the increase of the wind speed is related to the definition itself of the

gust traveling time tg that governs the dynamics of the induced aerodynamic loads, inversely proportional

to U , tg = B/ (cgU).

Figure 6.23 shows the position of the amplitude of ϕmax
3 along the bridge nondimensional span sweeping

the parameter µ at a selected wind speed and value of σ. The analysis shows the capability of the proposed

parametric aeroelastic model to investigate the maximum effect of the gust while varying its peak position

across the bridge span and allows to predict where the maximum response is attained.

In Fig. 6.24 the increment of the maximum torsional rotation ϕ3 with respect to the value attained

for a uniform gust ϕuni3 is evaluated for several values of σ, parameter that regulates the width of the

bell-shape Gaussian distribution. The results refer to the bridge mid-span for a gust with µ = 0.5 and to

the quarter-span for µ = 0.25, more precisely, where the maximum effect of the gust speed distribution

is expected. The curves depend nonlinearly on σ, showing a peak at σ ≈ 0.15 and a convergence to the

response for the uniform case for σ > 1. The maximum amplitudes ϑ of the Gaussian energy-equivalent

distributions for the assumed σ are depicted in the insets.

The effect of the gust traveling time in the transient response of the bridge is also studied. The amount

of energy contained in the gust is kept constant by uncorrelating the wind speed and tg. This implies
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that a reduction of traveling time corresponds to a higher power content of the gust. For a fixed value of

the free-stream speed U , the variation of the maximum amplitude of the kinematic reference parameters

is investigated when increasing the value of tg. Figure 6.25 shows that the maximum deformation occurs

for a particular selected value of tg, representing the time that the gust takes to transit through the

bridge deck. While the energy content is the same in all cases, for different Gaussian distributions, the

time tg affects the way the flow transfers its energy to the structure. The maximum deformation occurs

when the energy is transferred quite rapidly, however, lower deformation occurs if the gust transition

on the bridge is either too fast or too slow, as indicated in Fig. 6.26. Figure 6.25 also illustrates that a

symmetric Gaussian distribution is capable of exciting the bridge structural modes more effectively than

an asymmetric or a uniform gust. Indeed, in this case an overall higher deformation in the vertical and

torsional degrees of freedom is obtained.
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Chapter 7

Conclusions

The proposed work is devoted to the development of advanced analytical and numerical tools enabling

investigations into the nonlinear static and dynamic aeroelastic response of suspension bridges. Two dis-

ciplines are integrated within this interdisciplinary work. Computational fluid-dynamic-based evaluations

of viscous aerodynamic loads around bluff-bodies are coupled with a geometrically exact nonlinear struc-

tural model of long-span suspension bridges so as to construct fluid-structure interaction reduced-order

models.

The nonlinear aerodynamic characteristics of the boxed sharp-edge cross section of the Danish Great

Belt Bridge were investigated by using two state-of-the-art computational tools. FLUENTr by ANSYS,

a CFD tool enabling to determine the approximate solution of the unsteady RANS equations accounting

for turbulence effects by the k-ϵ method, and the discrete-vortex method employed in DVMFLOWr, a

Navier-Stokes solver specifically developed for external flows past two-dimensional bodies of arbitrary

shape. The grid-free nature of the computational method employed by DVMFLOWr enables computa-

tionally efficient simulations around stationary and moving bodies. DVMFLOWr was then selected as

the primary candidate to evaluate the nonlinear indicial functions needed to perform dynamic aeroelastic

investigations of the bridges within a reduced-order framework.

Frequency-domain representation of the aerodynamic loads in terms of flutter derivatives were com-

puted for selected values of the initial angle of attack. Consequently, indicial functions were derived for

these angles and incorporated into the proposed ROM model. The two formulations, in the frequency and

time domains, inherently consider viscous effects including flow separation and boundary layer thickening,

whose contribution to the dynamic behavior of the bridges can be remarkable.

A geometrically exact parametric model of suspension bridges was formulated and the nonlinear equa-

tions of motion were obtained via a Lagrangian formulation. The nonlinear system of partial differential

equations governing the equilibrium and dynamic aeroelastic response of suspension bridges was solved via

a FE discretization considering the structural and aerodynamic characteristics of two case-study bridges,

the Runyang and the Hu Men suspension bridges. An initial modal analysis was carried out to compare

the natural frequencies evaluated by the proposed model with literature results. A good agreement was

found for both case studies. Parametric analyses were performed to highlight the influence of the cable

geometric stiffness in the nonlinear equilibrium and dynamic response of the bridge. The characteristic

mechanical asymmetry is exhibited as a softening or a hardening behavior depending on whether the

loads are upward or downward. This is due to loss of tension or to increase of tension in the suspension

cables. This nonlinear mechanical feature due to the suspension cables turns out to affect significantly

the aeroelastic limit states.

The developed reduced-order models of the nonlinear aerodynamic loads for the GBB section, both in

the frequency and time domains, were integrated in the fully nonlinear parametric structural model. Static

(divergence) and dynamic (Hopf) bifurcation analyses were carried out to investigate the occurrence of

109
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torsional divergence and flutter. The eigenvalue problem, obtained by linearization about the prestressed

configuration, induced by dead and aeroelastic loads, was solved. The determined bifurcation diagrams

showed the high sensitivity of the bridge flexural-torsional frequency in the neighborhood of the critical

condition. These studies have also shown the sensitivity of the critical condition with respect to the

stiffness bridge properties (namely, the elastic torsional and bending stiffness, the elastogeometric stiffness

of the suspension cables) and the initial wind angle of attack. The complete parametric model here

developed has demonstrated high flexibility, since it can be used to perform sensitivity analyses for

inherently nonlinear nonconservative problems.

The development of the frequency- and time-domain representations of the aerodynamic loads enables

the solution of the coupled fluid-flow and structural problems, and the characterization of the static and

dynamic behavior of the selected bridges. The formulation proposed in this Dissertation has a general

value. For example, steady, quasi-steady and unsteady aerodynamic models can be integrated within the

same approach. In addition time- and space-dependent loading due to disturbances, such as gust loads,

are accounted for. This is straightforward using a similar framework adopted to implement the unsteady

aerodynamic loads through the indicial formulation.

Finally, the proposed mixed PDE-ODE aeroelastic governing equations are expressed in a form that

is amenable to further nonlinear dynamic investigations. The model was used to construct bifurcation

diagrams, Hopf and fold bifurcations were found for the long-span bridges under investigation. The Hopf

bifurcations were found to be supercritical and the branches of limit cycles characterizing the post-flutter

response terminate at fold bifurcations where the loss of local attractors occurs.

To the best of the author’s knowledge the currently available instruments used in the design phases

of these structures are relatively simplified and ignore the complexities inherently present in suspension

bridges and their dynamic interactions with self-excited forces. Neglecting the nonlinear characteristics,

either of the structural or aerodynamic nature, can lead to erroneous solutions. When predictions are not

conservatives, catastrophic failures might occur with significant losses.
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The following points offer the major highlights of this research.

• The aerodynamics of typical deck cross sections have been fully described through CFD simulations by

the use of a mesh-free discrete-vortex method implemented in the software DVMFLOW. The viscous

effects and the flow separation characterizing such a sharped-edge boxed sections have been captured

and included in the time- and frequency-domain description of the aeroelastic loads.

• The static curves of the aerodynamic coefficients have been evaluated for a wide range of angles of

attack where the nonlinear effects turned out to be indeed relevant. The dynamic aeroelastic loads

have been described in the frequency domain through the use of the flutter derivatives evaluated in

the present work at several angles of attack. The unsteady aerodynamic loads have been then derived

in the time domain through an indicial approach by determining the indicial functions obtained from

the aeroelastic derivatives.

• A fully nonlinear parametric model of suspension bridges has been derived and first validated by pre-

liminary analyses characterizing the static and modal characteristics of two existing bridges. Torsional

divergence and flutter phenomena have been investigated through the proposed model assuming the

aerodynamic characteristics available in the literature for these bridges and showing the capability of

the model to carry out sensitivity analyses to investigate the influence of the structural and aerody-

namic parameters on the critical condition.

• The nonlinear aerodynamics derived in the present work for the considered bridge deck cross section

have been coupled with the structural model and critical and post-critical responses have been de-

termined. Post-critical LCOs have been investigated accounting for both nonlinear quasi-steady and

nonlinear unsteady aerodynamics and the differences highlighted.

• Nonuniform spatial wind distributions have been modeled and the effects of the flow nonuniformity on

the critical flutter condition have been highlighted. Time and spatial nonuniform gusts have been stud-

ied and the transient part of the dynamic response to the loads induced by them has been investigated

through parametric analyses.

• Path following of the LCOs has been carried out by determining the stable supercritical bifurcation

branches for the fully nonlinear model whereas both stable and unstable branches have been explored

in the context of a reduced-order model of suspension bridges through the use of an ad hoc continuation

code.
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Major findings of this research are also summarized.

• The aerodynamics of suspension bridges deck sections are to be described in a wide range of wind

angles of attack in order to capture the characteristic nonlinearities arising from flow separation in the

post-stall flow regime. The nonlinear dependence of the aerodynamic loads from the mean angle of

attack has been demonstrated to be of fourth- and fifth-order for the drag and the lift and aerodynamic

moment, respectively.

• The static and dynamic response of suspension bridges are strongly affected by the geometric nonlinear-

ities induced by the cables stiffness contribution, showing hardening or softening behaviors depending

on the direction of the loads. A fully nonlinear modeling is required for the correct description of

the aeroelastic response of these structures and, consequently, for the evaluation of the aerostatic and

aerodynamic stability limit states.

• The complete aeroelastic model obtained by coupling the structural and aerodynamic models in the

form of the nonlinear partial-differential equations and the added states ordinary-differential equations.

These equations, cast in nondimensional form and in first-order formulation in terms of time derivatives,

are implemented in the computational platform COMSOL [56] using the PDE-mode feature and the

space-time integration is numerically performed by using the finite element method.

• The structural and aerodynamic main parameters, such as the damping ratio, stiffness ratios, pre-

stressed configurations (given by gravitational or aeroelastic loads), and mean wind angle of attack,

may influence the critical condition and the proposed parametric model, allowing for sensitivity non-

linear analyses, straightforward tool for the investigation of these phenomena.

• The aerodynamic nonlinearities govern the post-flutter aeroelastic response, thus the only way to

investigate the post-critical dynamics of the bridge is through a nonlinear aerodynamic modeling of the

aeroelastic loads represented in the time domain. The present work proposed both a quasi-steady and

an unsteady nonlinear aerodynamic formulation for suspension bridges and highlighted the importance

and main differences using the two formulations.

- The structural geometric nonlinearities influence the aeroelastic stability of suspension bridges and

flutter might occur at lower values of the free-stream speed when compared with the case assuming

a linearized structural model. This reduction amounts to about 10%.

- A quasi-steady nonlinear aerodynamic formulation can predict LCOs in the post-flutter regime.

Such a formulation also leads to further reduction of the critical wind speed of about 15% with

respect to the flutter speed calculated in the context of linear aerodynamics.

- Unsteady nonlinear aerodynamic modeling is less conservative than the quasi-steady formulation

entailing slightly higher critical speeds (about 10% more than the QS nonlinear model) and smaller

LCO amplitudes.

• The modeled nonuniform spatial wind distributions have proved effects of the flow nonuniformity

on the critical flutter condition. Simulations with uniform and nonuniform flow spatial distributions

with equivalent energy showed that one should cautiously consider a uniform flow distribution when

examining the flutter behavior of these large structures since there is a large range of nonuniform

distributions leading to lower flutter speed predictions. Thus the practitioner should investigate the

flutter boundary for free-stream velocities that are impacting the bridge span nonuniformly.

• The behavior of the bridge to a traveling vertical gust with time and spatial nonuniform distributions

has been also investigated with the objective of evaluating the maximum structural deformations oc-

curring during the dynamic transient responses. Also in this case the analysis revealed that asymmetric

loading can induce vertical and torsional deformations significantly different that those associated with

uniform gust loading. As such, the bridge can reach earlier its ultimate limit states under transient

loading with catastrophic consequences. It is imperative to add considerations of nonuniformity of
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the flow and gust during the aeroelastic design of long-span structures, particularly in the design of

suspension bridges.

• Path following of the LCOs has been instrumental for determining the stable supercritical bifurcation

branch for the fully nonlinear model whereas both stable and unstable branches have been explored in

the context of a reduced-order model of suspension bridges through the use of an ad hoc continuation

code; the role of uncertain parameters such as the structural damping ratio and the initial wind angle

of attack have been studied.
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