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Abstract The Water Framework Directive (WFD) recog-
nizes benthic macroinvertebrates as a good biological qual-
ity element for transitional waters as they are the most ex-
posed to natural variability patterns characteristic of these
ecosystems, due to their life cycles and space-use behavior.
In this paper we consider the performance of three multi-
metric indices (namely M-AMBI, BITS and ISS) based on
benthic macroinvertebrates abundances, aiming at assessing
the ecological status of lagoons and likely to respond dif-
ferently to different sources of stress and natural variability.
In order to investigate the possible contrasting behavior of
the three multimetric indices, we propose a Bayesian hierar-
chical model in which they are jointly modeled as functions
of abiotic covariates, external anthropogenic pressure indi-
cators and lagoon effects. The proposed model is applied to
data from three lagoons in Apulia and assessed using mul-
tiple diagnostic tools. The joint sensitivity of lagoon quality
evaluations to available covariates is thus investigated.
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1 Introduction

Lagoons represent important and fragile ecotone ecosystems
(Basset et al., 2013) in the coastal landscape, however their
geographic position along the coast and their close relation
with terrestrial ecosystems make these environments espe-
cially vulnerable to anthropogenic pressures (Viaroli et al.,
2005; Ji and Chang, 2005). The need to act has been ac-
knowledged by politicians and legislation has been adopted
to stop further deterioration and restore lagoons healthy state.
The Water Framework Directive (WFD, 2000/60/EC) requires
EU Member States to assess the ecological status of each
water body in Europe and to ensure a sustainable manage-
ment such that good ecological quality of all water bodies
will be obtained by 2015. Lagoons can be clustered into
types (Basset et al., 2006; Lucena-Moya et al., 2009), which
display several different internal gradients of physical con-
ditions and hence of the biota associated with them. Here the
ecological status of aquatic ecosystems is defined in terms of
the quality of the biological community, as well as the sys-
tems’ hydrological and chemical characteristics. Environ-
mental indices are a common tool used to communicate the

overall status of environmental systems (Sadiq and Tesfamariam,

2008; Su et al., 2012). Several simple indicators as the Shannon-
Wiener index, the Margalef index and the AMBI index ac-
count for the composition and abundance of biological com-
munities and are widely used in the ecological literature.
Multimetric indices, combining simple indices as multiple
sources of information, focus on benthic macroinvertebrates
which are known to be sensitive to both natural and anthro-
pogenic pressures (Borja et al., 2011; Marchini and Mar-
chini, 2006). In this paper, we will focus on three multi-
metric indices: M-AMBI (Muxika et al., 2007; Borja et al.,
2004), BITS (Mistri and Munari, 2008) and ISS (Basset et al.,
2012). The so called a priori approach to lagoon classifi-
cation by multimetric ecological quality indices was intro-
duced in Borja et al. (2000) and used in Borja et al. (2004)
and Basset et al. (2012). According to some reference sam-
ples, the authors choose boundary values of the indices to
define ecological status classes and classify the lagoons ac-
cording to these values. However the proposed indices are
likely to respond differently to different sources of stress and
natural variability components, adding uncertainty to result-
ing classifications. An alternative more objective a poste-
riori approach is based on classification boundaries set ac-
cording to linear mixed models taking lagoons variability
into account (Barbone et al., 2012). As multi-stressors can
commonly act on the same lagoon, both approaches are leav-
ing anyway some degree of uncertainty in the ecological
status classification by different multi-metric indices, with
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a same lagoon classifiable into different ecological quality
classes using different metrics. In order to emphasize clus-
ters of ecosystems resulting from the integration of differ-
ent multimetric indices, a multivariate Bayesian hierarchical
model was recently proposed (Arima et al., 2013) in which
four multimetric indices are jointly modelled through a mul-
tivariate normal mixture accounting for the dependence on
relevant abiotic covariates. Here we use a statistical model
linking values of three multimetric ecological quality in-
dices to indicators of water parameters and anthropogenic
pressures, with the purpose of properly understanding what
drives indices to disagree in classifying the ecological sta-
tus of lagoons. A Bayesian hierarchical model, allowing for
the inclusion of multiple sources of information and external
prior knowledge, is adopted to produce a sensitivity analy-
sis, i.e. to quantify the effects of input variables as abiotic
covariates and indicators of anthropogenic pressures on the
different performance of multimetric ecological quality in-
dices (Piffady et al., 2013).

The paper is organized as follows: in Section 2 we de-
scribe the design of the experiment leading to data on ben-
thic macroinvertebrates, chemical and physical water param-
eters and expert’s opinion evaluations of external anthro-
pogenic pressures. In the same section we introduce the no-
tation and define a multivariate hierarchical modelling strat-
egy, including some details on the actual implementation of
the estimation algorithms, model choice and assessment is-
sues. Section 3 is devoted to describe some general results
and discuss the sensitivity of lagoon ecosystems evaluations
to available abiotic information. In Section 4 we conclude
with a brief discussion and directions for future work.

2 Materials and methods

In order to reveal environmental conditions determining dis-
crepant evaluations of the ecological quality of lagoon ecosys-
tems we considered a database gathering biological data from
8 sampling campaigns at 15 monitoring stations with abiotic
information characterizing times and sites. Such data require
the formulation of a multivariate model to estimate the ef-
fects of water parameters and pressure gradients on multi-
metric indices, considering correlated responses and lagoon
effects. Model parameter estimates summarize the sensitiv-
ity of the biotic evaluations of lagoons’ quality to abiotic
features of the ecosystems.

2.1 Experimental design and data structure

Data on benthic macroinvertebrates colonizing various habi-
tat types were collected in 3 transitional water ecosystems
in Apulia, Italy: namely Alimini, Lesina and Varano. Four
seasonal field sampling campaigns were performed for each

of the two years 2008 and 2009 in the three ecosystems.
On the whole, 15 monitoring sites were considered in the
three lagoons. For each sampling site three replicates of ben-
thic samples were collected by manual Reineck box-corer
(0.03 m2) in Alimini and an Ekman-Birge grab in Lesina
and Varano. In the laboratory, samples were sorted under
a stereomicroscope, identified to the lowest possible taxo-
nomic level, counted, measured individually (total length for
most taxa) and weighted. For each lagoon, the macroben-
thic community was examined in order to build two of the
most common indices proposed in the Water Framework Di-
rective and a new index for benthic assessment. The multi-
metric indices M-AMBI (Muxika et al., 2007), BITS (Mistri
and Munari, 2008), and ISS (Basset et al., 2012) were cal-
culated at the replicate level. Chemical and physical water
parameters (water temperature, dissolved oxygen, salinity,
pH and chlorophyll) were monitored at each station. Ex-
perts’ opinion evaluations of four external anthropogenic
pressures (agricultural diffuse inputs, domestic discharges,
industrial discharges and fin fisheries) were also made avail-
able at each monitoring station; quantifications were given
according to a score scale ranging from 0 (no pressure) to 3
(intense pressure).

2.2 Some data summaries

The three biotic indices have different theoretical range and
are usually considered in association with boundaries de-
fined in the literature. Within the mentioned a priori ap-
proach boundaries allow to classify lagoon ecosystems in
five quality categories (bad, poor, moderate, good, high),
though they do not necessarily correspond to discontinu-
ities in the data, as Fig. 1 shows for the benthic samples
described in section 2.1. In some circumstances M-AMBI,
BITS and ISS can be in disagreement and lead to contrast-
ing assessments of the ecological status of the same ecosys-
tem. The relation among the three indices for the data at
hand is expressed in Fig. 2: M-AMBI and ISS have stronger
linear correlation (R ~ 0.84), M-AMBI has higher variabil-
ity for increasing values of BITS (R ~ 0.25), while BITS
and ISS show a weaker dependence (R ~ 0.25) and a clus-
ter of records with large values of BITS and small values
of ISS (area B in Fig. 2). In general terms we can con-
firm that while M-AMBI and ISS convey similar informa-
tion, BITS does not. In Fig. 2 points/records within areas
A and B correspond to discrepant values for M-AMBI and
BITS and for BITS and ISS respectively. Due to the stochas-
tic relation among the three multimetric indices, their use in
association with standard boundaries can lead to contrast-
ing ecosystem classifications. In Fig. 2 areas in red corre-
spond to both indices assigning the same ecologic class to
the sites, but the majority of observed records fall outside
these areas. It is very evident that the “high” BITS category
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Fig. 1 Distributions of the biotic multimetric indices with standard classification boundaries.
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Fig. 2 Joint distributions of pairs of multimetric indices with standard classification boundaries. Areas A and B contain clusters of observation

with contrasting behavior of two indices.

corresponds to a very variable behavior of both M-AMBI
and ISS. Exploratory attempts to uncover abiotic features
of lagoons producing ambiguous ecosystem quality assess-
ments with the three indices only provided a weak evidence
for a direct relation of M-AMBI and ISS with both oxygen
content and water pH that is not observed for BITS (full re-
sults of the exploratory data analysis are available from the
authors upon request).

2.3 Joint model for lagoon ecological quality indices

The possible contrasting behaviour of the three multimet-
ric indices is analyzed in the context of Bayesian hierarchi-
cal models. As the indices have different theoretical ranges
(see section 2.2), in order to compare the influence of each
explanatory variable the three response variables were stan-
dardized. Explanatory variables were also standardized in
order to avoid dimensional issues and focus on the gradi-
ents of the three responses along their joint variation. Stan-
dardization of both response and explanatory variables leads
to a model that lends itself to analyze the sensitivity of the
multimetric quality indices to water parameters and anthro-
pogenic pressures. Standardized values of the indices are
jointly modeled as functions of water parameters, expert’s

opinion on external anthropogenic pressures and lagoon ef-
fects. Here the following notation is adopted: r =1,...,R is
a replicate of a biotic record taken at time t = 1,...,7 and
location s = 1,...,n; within lagoon / = 1,. .., L. Specifically
we have R = 3 replicates, T = 8 time points, L = 3 lagoons
with n; = 6,6, 3 monitoring stations respectively for Lesina,
Varano and Alimini. The response vector y,;, contains stan-
dardized values of the three multimetric indices M-AMBI,
BITS and ISS for each replicate, while the P-dimensional
vector X,y contains standardized values of P explanatory
variables for each monitoring station and every time point.
Vectors y,.q and X, are related by the following expression:

Yist = 13a+Bthl + 13Wl + €51 (1)

where « is the intercept term, B is a 3 x P matrix of index-
specific regression coefficients that measure the effect of
each abiotic covariate on every multimetric index, 13 is a
unit vector, w; is a random lagoon effect (/ = 1,...,L) and
€151 1S a 3-dimensional correlated random error vector. At
the second hierarchical level independent fixed and random
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effects are specified as follows:

o ~N(0,0.01)

bj, ~N(0,0.01)

wi ~ N(hy, T)
€151 ~ N3(0, T¢) )

where j = 1,2,3 for M-AMBI, BITS and ISS and the cor-
relation between the three indices is accounted for by the
unstructured precision matrix 7. Here we adopt a Bayesian
approach and estimate model parameters by a Markov chain
Monte Carlo (McMC) posterior simulation algorithm. Then
a third hierarchical level is specified for random effects hy-
perparameters:

1, ~ N(0,0.01)
T, ~ Gamma(0.01,0.01)
T ~ Wishart(Z,5) 3)

where I is the identity matrix.

Notice that the three lagoons are geographically well
separated and most likely independent and the small number
of monitoring stations within each lagoon (3 to 6) does not
allow the estimation of lagoon-specific spatial covariances.
Simple forms of temporal autocorrelation or seasonality are
even more hardly detectable with only 8 time points and ex-
ploratory data analysis didn’t show any kind of longitudinal
trend. Then only random effects of the lagoons are consid-
ered and no spatial and time effects are taken into account in
the model specification.

Posterior simulations were implemented using the JAGS
software (Plummer, 2003) with 2 chains with different start-
ing points (the code can be obtained from the authors upon
request). For each chain, we allowed 250000 iterations with
100000 samples of burn-in and used the remaining 150000
iterations thinned by 20 for posterior estimation. Chain con-
vergence was ascertained by visual inspection of standard
convergence diagnostic tools, such as trace plots and au-
tocorrelation plots. Notice that the conjugate nature of this
multivariate response model makes Gibbs sampling fully ef-
ficient and simulations running in real-time on a standard
personal computer.

2.4 Model assessment and sensitivity analysis

Once the model was estimated, we quantified the influence
of each explanatory variable on the three indices jointly.
Most traditional methods produce influence coefficients for
each predictor-output combination, usually not allowing joint
evaluation. Typically when response and explanatory vari-
ables are standardized we compare the absolute values of
model coefficient estimates i.e. |ij| 2 @jp,| where j=1,2,3

for MAMBI, BITS and ISS and p,p’ =1,..., P refer to ex-
planatory variables. Here to measure the joint sensitivity of
response to explanatory variables we compare the norm of
estimated coefficient vectors Bp accounting for the residual
correlation between response variables (see Brynjarsdottir
and Gelfand, 2013, for details):

I, =b)T,'b, )

where b, is the p-th column of B with p=1,...,P. If I, >
Iy then the three indices are jointly more sensitive to (or in-
fluenced by) the p-th explanatory variable than to the p’-th.
Notice that in the Bayesian McMC approach samples from
the posterior distribution of (4) are available for inferential
purposes. Furthermore in Brynjarsdéttir and Gelfand (2013)
it is shown that if a prior on the model inputs X is given,
comparison of P > 2 inputs using the I, criterion gives the
same results as comparison of marginal conditional vari-
ances of the inverse predictive distributions of the inputs,
in the spirit of Clark ef al. (2013).

In order to check the model distributional assumptions
and evaluate its goodness-of-fit we consider some posterior
predictive approaches based on summaries of the density
f(y™P|y). Predictions y"” reflect the expected observations
after replicating our experiment in the future, having already
observed y and assuming that the model is true. If the model
is appropriate for describing the observed data, then vec-
tors y and y"°P will be close. Hence a comparison of these
two vectors provides information concerning the model fit.
We consider summary statistics D(y, ) which play the role
of tests for checking model assumptions and measure dis-
crepancies between the data and the model (Gelman et al.,
1996). Assessment of the posterior distributions of D(y, 8)
and D(y"?, ) provides individual and overall goodness-of-
fit measures that can be summarized graphically or using
tail area probabilities called posterior predictive p-values
(Meng, 1994) defined as

PPPV = P(D(y'*",0) > D(y,0)|y) o)

Since PPPV’s are nothing but probabilities, values around
0.5 indicate that the distribution of the replicated and ob-
served data are close, while values around O or 1 indicate a
severe difference between them. When the summary statistic
D(y, 0) is ancillary, the distribution of the PPPV’s is almost
uniform (Gelman et al., 1996). In the following we use tail
area probabilities in order to assess the model distributional
assumption of normality and to evaluate the model ability to
predict some aspects of interest for our application.

Residual analysis is used to check the model structural
assumptions of normality and homoscedasticity, evaluating
the deviations of the predicted residuals with respect to their
observed counterparts. Residuals are defined as

ri=yi—E(Y[0) (6)
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while r{” are residuals based on predictive values y;”. In
order to evaluate the discrepancies between observed and
predicted values under the fitted model, we will use the fol-
lowing posterior predictive p-values

PPPV; = P(ri" > rily) = P(y;" > yily) 7)

Since the residuals are ancillary statistics, we expect that the
PPPV’s follow a uniform distribution.

3 Results

While the posterior estimate of the common intercept pa-
rameter ¢ obtained by the McMC simulations from the mul-
tivariate continuous response model has value —0.499 with
strictly negative 95% credibility interval (—0.80,—0.198),
table 1 shows the posterior estimates of index-specific re-
gression coefficients and the corresponding 95% credibil-
ity intervals. Abiotic indices and expert’s opinion evalua-
tions of four external anthropogenic pressures (due to the
presence of agricultural inputs, domestic discharges, indus-
trial discharges and fisheries) have been considered as ex-
planatory variables. Estimates corresponding to strictly pos-
itive or negative 95% credibility intervals are highlighted in
red. First we report about overall effects shared by the three
multimetric quality indices. pH and the severity of domes-
tic discharges positively influence the average value of the
three indices. On the other hand the average value of the
indices decreases when the pressure of industrial discharges
and the amount of chlorophyll increase. The expected effects
of agricultural inputs and of salinity are probably masked by
the presence of other informative predictors (as the pressure
of domestic discharges and the amount of dissolved oxy-
gen). Domestic and diffuse agricultural discharges, as far as
mainly characterized by organic and inorganic inputs, are
likely to have idiosyncratic impacts at the community and
ecosystem levels in lagoon ecosystems, being strongly af-
fected by the overall abiotic context (e.g., oxygen concen-
tration and hydrodynamics) and differing among biological
quality elements.

Turning to effects that differentiate the behavior of the
BITS index with respect to M-AMBI and ISS, we have that
the pressure of fisheries has a negative influence on the aver-
age value of M-AMBI and ISS but but does not affect BITS
which is inversely proportional to the amount of dissolved
oxygen. On the other hand, the amount of dissolved oxy-
gen positively affects M-AMBI and ISS. This is probably
due to an increasing oxygen content causing an increase in
the number of species and in the size structure, but reducing
the number of families. Water temperature negatively influ-
ences the BITS index but it is not relevant for the other two
indices. The sign and significance of the effects of pressures
and abiotic variables are all supported by sound ecological
knowledge and have plausible interpretation.

Figure 3 shows the posterior distribution of the correla-
tion coefficients between the three indices: the model con-
firms a known higher correlation between M-AMBI and ISS
and a lower correlation of these two with BITS. The model
provides estimates of lagoon effects corresponding to higher
values of the three indices at Alimini and Lesina, possibly
due to Varano being deeper and more eutrophic. Consider-
ing the lagoon effects within the model improves the overall
fit in terms of DIC (the chosen model DIC is 488.699 while
the DIC of an alternative model without lagoon-specific ran-
dom effects is 498.300).

In order to quantify the influence of explanatory vari-
ables on the three indices jointly, we computed the influ-
ence measures in Equation (4). Figure 4 shows the 95%
credibility intervals of these influence measures. Agricul-
ture is the least influential variable while the pressure due to
the fishery activity is the most relevant. Oxygen and Cloro-
phyll have very similar effects on the joint sensitivity of
the three indices: I,,, = 0.135 (0.050,0.267), I;, = 0.124
(0.058,0.216). The influence measures are in substantial agree-
ment with the marginal estimates in Table 1 in terms of both
the sign and the absolute value of the estimates.

Model distributional assumptions and goodness-of-fit have
been checked using posterior predictive p-values. First, in
order to evaluate the discrepancies between observed and
predicted values under the fitted model, we used the poste-
rior predictive p-values defined in Equation (7). Since the
residuals are ancillary statistics, we expect that the PPPV’s
follow a uniform distribution. Figure 5 shows the posterior
predictive p-values computed for each multimetric index with
the proposed model: the three distributions are acceptably
uniform and their averages are all around the desired value
of 0.5, suggesting a good fit of the proposed model to the
available data.

In order to evaluate the normality assumption, we check
that the posterior distribution of the residuals is approxi-
mately normal with zero mean. Figure 6 shows the distri-
butions of the posterior MC means of the residuals for each
index and the 95% credibility intervals for their mean: all
intervals contain the value zero. The Shapiro-Wilk test does
not lead to reject the assumption of normality of the residu-
als for the three indices, with p-values respectively equal to
0.724,0.191,0.751 for M-AMBI, BITS and ISS.

The assumption that the error precision matrix 7¢ is un-
structured and equal between lagoons was assessed compar-
ing the proposed model with an alternative one with lagoon-
specific precision matrices in (2) and (3), i.e. modeling the
error term in Equation (1) as €, ~ N3(0,7;¢), with T} ¢ =
T;¢l where I is a 3 x 3 unit diagonal matrix. The chosen
model DIC is 488.699 while the DIC of the alternative model
is 771.125.

Once model assumptions are validated, we use posterior
predictive p-values to evaluate the model ability to predict
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Fig. 3 Boxplots of the estimated posterior distribution of the correlation between indices.

Table 1 Posterior estimates of index-specific regression coefficients and 95% credibility intervals for model (1). Estimates corresponding to strictly

positive or negative credibility intervals are highlighted in red.

M-AMBI
Water temperature -0.028 (-0.195, 0.141)
Dissolved oxygen 0.149  (0.020, 0.280)
Salinity -0.017  (-0.219, 0.196)
pH 0.238  (0.136, 0.337)
Chlorophyll -0.207  (-0.303, -0.113)
Agricultural inputs -0.000  (-0.134, 0.134)
Domestic discharges 0.258 (0.131,0.384)
Industrial discharges -0.313  (-0.458, -0.168)
Fisheries -0.438  (-0.645, -0.235)

BITS ISS
-0.217  (-0.396, -0.041) -0.038  (-0.203, 0.130)
-0.220  (-0.356, -0.085) 0.167  (0.039, 0.298)
0.148  (-0.061, 0.370) -0.025  (-0.228, 0.190)
0.160  (0.057,0.264) 0.217  (0.119, 0.318)
-0.259  (-0.363, -0.157) -0.211  (-0.305, -0.114)
-0.028  (-0.166, 0.109) 0.069  (-0.064, 0.200)
0.225  (0.092,0.357) 0.252  (0.128, 0.375)
-0.253  (-0.405, -0.102) -0.215  (-0.356, -0.069)
-0.093  (-0.300, 0.115) -0.433  (-0.635,-0.232)

relevant aspects of the process under investigation. Among
the main goals of our model is investigating the variability
of the multimetric indices and the correlation between them.
Hence we define PPPV’s using the variance of each index
and the correlation between pairs of indices as the summary
function D in (5). The left panel of Figure 6 shows the dis-
tributions of the posterior predicted variances of each multi-
metric index with the observed variances corresponding to
the red lines. M-AMBI and ISS have posterior predicted
variances almost centered around their observed counterpart
and the right tail area probabilities, corresponding to the
PPPV’s are around 0.5. On the other hand the variance of
BITS is slightly overestimated by the model, corresponding
to a tail area probability equal to 0.736, though this behav-
ior is not to be considered so extreme as to worry about the
capability of the model to capture the variability of the data.
The right panel of Figure 6 shows the posterior predicted
correlations between pairs of indices: all predictive distribu-
tions are centered around the observed correlations and all
the tail area probabilities are around 0.5 (0.511, 0.431,0.534
respectively for M-AMBI, BITS and ISS).

4 Concluding remarks and directions for future work

In this paper we compare the performance of three benthic

macroinvertebrates-based multimetric indices (M-AMBI, BITS

and ISS) in describing the ecological status of three lagoons
in Apulia. We investigate the joint behavior of the indices
and evaluate their different responses to sources of stress
and natural variability, in order to highlight inconsistencies
among multimetric indices in assessing the ecological sta-
tus. A Bayesian hierarchical model has been used as a nat-
ural parametrization of the ecological process. The indices
have been jointly modeled as function of abiotic covariates
and indicators of external anthropogenic pressures. The pro-
posed machinery is at the same time easily understood by
practitioners and very rich in terms of interpretative tools
that are obtained as by product for model assessment and
sensitivity analysis.

A comparative analysis of the responses of the three in-
dices to different stressors supports the original assumption
of the paper that different multi-metric indices have differ-
entiated responses to external stressors. However, the close
agreement between M-AMBI and ISS responses to the tested
natural and anthropogenic sources of variation strongly sup-
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ports the accuracy of the two metrics in evaluating lagoon
ecological status. In fact, these two multi-metric indices show
significant and coherent responses to the same group of tested
sources of variation, all of them related to anthropogenic
pressures, even though they rely on different types of data,
i.e., taxonomic-based data the M-AMBI and body-size based
data the ISS. The close agreement, even though not perfect,
observed between M-AMBI and ISS and the independence
of the data sets on which they are based suggest that the ac-
curacy in the ecological status evaluation might be increased
by integrating the indices in a joint Bayesian classification
model as proposed in (Arima ef al., 2013). On the other
hand, the responses of BITS to natural stress agents do not

fully support its integration in the model and suggests pos-
sible refinements of the model based classification integrat-
ing multi-metric indices for the evaluation of the ecological
status of lagoon ecosystems. Future work will be devoted
to plan deeper studies, possibly involving non-aggregated
abundances, defining a sampling scheme that allows to study
the effect of spatial variation inside lagoons and to evaluate
their evolution in time. For such a larger database the pro-
posed model could easily be extended including a spatio-
temporal term wyg With Wy ~ Nz, (Ky, 72 H(¢) "), where
w; = (Wi, ..., wrn)'. Here TV;% and H(¢y) are the process
variance component and spaceitime structured correlation
matrix at the /-th lagoon, [ =1, ..., L. This model, allowing
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some insight on the spatial dependence within lagoons, may
help to clarify the role of local effects, currently completely
ignored, in determining multimetric indices and subsequent
lagoon classification.
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