
Providing Transaction Class-Based QoS in in-Memory Data Grids Via Machine
Learning

Pierangelo Di Sanzo, Francesco Maria Molfese, Diego Rughetti, Bruno Ciciani
DIAG, Sapienza University of Rome

Abstract—Elastic architectures and the so-called ”pay-as-
you-go” resource pricing models offered by many cloud infras-
tructure providers may seem the right choice for companies
dealing with data centric applications characterized by high
variable workload. In such a context, in-memory transactional
data grids have demonstrated to be particularly suited for
exploiting advantages provided by elastic computing platforms,
mainly thanks to their ability to be dynamically (re-)sized
and tuned. Anyway, when specific QoS requirements have
to be met, this kind of architectures are complex to be
managed without the stand of mechanisms supporting run-time
automatic sizing/tuning of the data platform and the underlying
(virtual) hardware resources provided. In this paper, we present
a neural network-based self-regulating architecture where an
in-memory data grid is automatically tuned in order to provide
transaction class-based QoS while minimizing the cost of
the computing infrastructure. We also present some results
showing the effectiveness of our architecture, which has been
evaluated on top of Future Grid IaaS Cloud using Red Hat
Infinispan in-memory data grid and the TPC-C benchmark.

I. INTRODUCTION

Today the availability of cloud infrastructures is constantly
increasing thanks to the presence in the market of even more
cloud providers, which also offer diversified and higly cus-
tomizable architectures. Additionally, even more companies
are investing in cloud technologies for its own private data
centers.

A potentially disruptive feature of cloud architectures is
the elasticity, i.e. the amount and the type of used (virtual)
computing resources can be very rapidly changed. E.g.
current technologies allow to start-up a number of new
virtual servers, and to add them to an existing server pool,
in less then a minute. Nowadays, most of cloud providers
adopt the so-called ”pay-as-you-go” pricing model, where
users pay on the basis of the actual usage of resources (e.g.
on the basis of the usage time, the amount of stored data,
etc). As a consequence, the possibility to (re-)configure on-
demand this kind of architectures allows to extremely reduce
computing infrastructure costs incurred by companies. In-
fact, the amount of used resources could be constantly
regulated over time, on the basis of the current workload,
in a way to exploit only those actually required in order to,
e.g., meet pre-established Service Level Agreement (SLAs).

When dealing with data management systems, particularly
with those characterized by high dynamic workload, the
last generation of in-memory transactional data grids (such
as Red Hat Infinispan [1], VMware vFabric GemFire [2],
Oracle Coherence [3] and Apache Cassandra [4]) have re-
vealed to be good candidates for taking advantage of elastic

architectures. In fact, these products allow fast resizing of
the data platform in terms of number of cache servers,
being able to re-distribute data object among them (also on
the basis of differentiated data placement policies) without
requiring any specific human action. Additionally, they offer
a set of configuration parameters (such as the data object
replication degree, i.e the number of replicas to be stored for
any data object) allowing to tune the data platform in order
to achieve the expected (tradeoff between) performance and
fault tolerance level.

Anyway, establishing the amount of resources to be used,
as well as the optimal data platform configuration, in order
to achieve a given performance level is hard to be performed
by humans. The complexity of this task is particularly
exacerbate by the fact that performance indicators (e.g.
system throughput, transaction response time) typically show
non-linear dependencies with respect to data platform con-
figuration parameters (e.g. number of used cache servers,
data object replication degree),

In this paper we present a neural network-based architec-
ture which automatizes the resizing/configuration of an in-
memory transactional data grid deployed on top of a elastic
cloud architecture. Particularly, the resizing/configuration
process is driven by the need for both: (1) meeting explicit
transaction class-based SLAs and (2) exploiting the minimal
amount of (virtual) hardware resources in order to minimize
the total infrastructure cost. The architecture that we present
has been designed leveraging some results presented in
[5], where neural networks have been exploited to predict
the expected system throughput and the average transaction
response time as a function of three system configuration
parameters, i.e. the number of clients, the number of cache
servers and the data object replication degree. Essentially,
the study cited above acts as a proof-of-concept for the
architecture we present in this paper. In fact, we consider a
more complex scenario where we deal with transaction class-
based QoS and a dynamic workload profile. Particularly, we
assume that, in addition to variation of the overall transaction
arrival rate, also the arrival rate of each transaction class may
vary over the time, exactly as is the case of many real life
transactional applications.

Our architecture leverages a neural network-based ap-
proach, where neural networks are used to predict trans-
action response times for each transaction class featuring
the system workload. We note that the response time of a
given transaction class may be also affected by (the number
and the profile of) concurrent transactions belonging to other

transaction classes. Thus, the mix of concurrent transactions
has to be accounted for in order to make reliable predictions.
In our approach, we train the neural networks using samples
including measurements of system workload parameters
related to all transaction classes and of parameters describing
the current system configuration.

In this paper we also present a real implementation of our
architecture, which we built on top of Infinispan in-memory
data grid. Finally, in order to demonstrate the effectiveness
of our architecture, we present results of an experimental
study we carried out on top of Future Grid IaaS Cloud [6] ,
where we used an implementation of the TPC-C benchmark.

The remainder of this paper is structured as follows. We
discuss related work in Section II. A brief introduction on
in-memory transaction data grids and a brief recall on neural
networks are provided in Section III and in Section IV,
respectively. Details on our architecture are described in
Section V. Finally, we depict and discuss results of the
experimental study in Section VI.

II. RELATED WORK

While the attempt to develop self-regulation mechanisms
for optimizing performance of in-memory transactional data
grid is quite recent, various proposals have been instead
presented in the general context of parallel and distributed
systems. Several proposals leverage control theory tech-
niques. Most of these assume linear performance models,
which are dynamically updated at run-time when the system
shifts from one operating point to another. These proposals
include, e.g., first-order auto-regressive models aimed to al-
locate computing power (in terms of number of CPU) to Web
servers [7]. Further, linear multi-input-multi-output models
have been exploited in multi-tier systems [8] to manage
different kinds of resources, as well as to manage CPU
allocation for minimizing interferences on the same physical
node between virtual machines [9]. With respect to solutions
based on adaptive linear models, our architecture is expected
to identify the optimal configuration also in presence of non-
linear dependencies between system performance indicators
and data platform configuration parameters (which is what
typically happens in real cases).

Moving to the context of multi-tier architectures in cloud
environments, machine learning has been used for dynam-
ically resizing the number of back-end servers, as in [10],
[11], [12], [13]. Anyway, none of them targets in-memory
data grids, but they address traditional data base management
systems, which are not suitable to deployed on top of elastic
cloud architectures. Additionally, proposed solutions mostly
target processing of complex queries on relational data. Our
approach is not biased towards read-only accesses, thus
resulting more general. Finally, in our work, we also deal
with the more general and scalable case of partial replication
of data objects, instead to limit our study to the case of full
replication.

The work presented in [14] leverages a mixed methodol-
ogy where analytical modeling and machine learning pre-

dictors are exploited to tune in-memory data grids. The
analytical model used in this work requires knowledge of the
specific algorithms used by the data platform for managing
local transaction concurrency and distributed data synchro-
nization. Conversely, our approach is completely black-box,
i.e. no knowledge about internals of the in-memory data
grid is required. Further, the work in [14] only deals with
full replication of data objects.

Finally, the work presented in [15] depicts algorithms
aimed to self-tune distributed transactional data manage-
ment systems, specifically targeting the case of in-memory
transactional data grids. Also in this case, tuning leverages
an hybrid approach which combines analytical performance
models and local exploration. The latter is aimed to progres-
sively enhance the accuracy of the analytical model. Also in
this case, differently from our work, it does not exploit a pure
black-box approach. Additionally, the proposed solution has
been evaluated through simulation. Conversely, we tested
our architecture on top of a real cloud infrastructure.

III. OVERVIEW ON TRANSACTIONAL IN-MEMORY DATA
GRIDS

Transactional in-memory data grids act as a dis-
tributed/replicated cache memory for applications, providing
a basic programming interface for storing and retrieving
data objects, including PUT and GET methods. These plat-
forms hide away to programmers all issues concerning data
distribution and replication, providing a number of setting
parameters allowing to change the configuration of the data
platform, such as the number of used cache servers, the data
object replication degree, the transaction isolation level, etc.
With respect to traditional database management systems,
a key feature of this kind of platforms is that data storing
operations (e.g. transaction commit operations) execute data
updates only in main memory, without performing any kind
of operation on stable storage. After an update operation is
terminated, data, if needed, are asynchronously moved to
stable storage. On one hand, this entails a drastic reduction
of the transaction commit time (thus of the transaction
response time) with respect to the case of executing update
operations on stable storage. Additionally, this extremely
simplifies operations as adding/removing cache servers. In
fact, all operations requiring synchronous data transfer be-
tween servers (such as the server state transfer operation)
only involve data which are stored in main memory, so
that these operations become extremely fast and simple to
be performed. Essentially, this feature makes an in-memory
data grid particularly suited to exploit elastic architectures
offered by cloud environments. On the other hand, the main
drawback arising from executing data update operations only
in main memory is that the system reliability is reduced with
respect to the case of performing data updates also on stable
storage. To cope with this issue, these data platforms allow
to tune the number of used cache servers and the data object
replication degree, so that the desired reliability level can be
achieved. Anyway, as we already hinted in Section I, modifi-

cations to the data platform configuration typically affect the
system performance according to non-linear dependencies,
so that deciding the optimal data platform configuration
becomes a non-trivial task.

IV. NEURAL NETWORKS RECALL

A neural network is a machine learning method [16] pro-
viding the ability to approximate various kinds of functions,
including real-valued ones. Inspired to the neural structure
of the human brain, a neural network consists of a set
of interconnected processing elements which cooperate to
compute a specific function, so that, provided a given input,
the neural network can be used to calculate the output of
the function. By relying on a learning algorithm, the neural
network can be trained to approximate an unknown function
f exploiting a data set {(i,o)} (training set), which is
assumed to be a statistical representation of the function
f such that, for each element (i,o), o = f{i}+ δ, where δ
is a random variable (also said noise).

V. THE SELF-CONFIGURING ARCHITECTURE

In this section we describe the self-configuring architec-
ture. Firstly, we focus on the target system model. After,
we formally define the optimization problem addressed by
our architecture and then we describe the neural network-
based performance prediction scheme. Finally, we focus
on the self-configuration scheme exploited by a controller
(integrated within our architecture), which is in charge of
dynamically modifying the data platform configuration as
a response to modifications of the workload profile of the
application.

A. Target System Model

We assume an in-memory transactional data grid where
up to nmax homogeneous (in terms of computing resources)
cache servers can be used. We denote with n the number of
servers actually exploited at a given time. n can be changed
over the time, given the constraint 1 ≤ n ≤ nmax. A
load balancer ensures uniform workload distribution on all
n cache servers. A number of data objects are stored across
the cache servers, and g is the data object replication degree
(of any data object), where we have the constraint g ≤ n.
Replicas of the same data object are stored in different cache
servers. Positioning of data objects (and of their replicas)
depends on a data distribution function that we assume to
provide uniform usage of memory across all the n cache
server.

In order to ensure a desired reliability/availability level,
we assume that user can establish the minimum number of
replicas gmin for any data object that have to be maintained
by (different) cache servers. Finally, as data objects can
be replicated (thus giving rise to an increase of required
memory), we assume to have, as a further constraint, the
maximum amount of memory mmax that can be used to
store data objects (and their replicas) on each cache server.
The value of mmax can be established by user (e.g. on

the basis of a percentage of the total amount of available
memory on a cache server, or in a way to guarantee that a
given amount of memory on any cache server is available
for other tasks). We denote with m the actual amount of
used memory to store (replicas of) data objects on any cache
server at a given time. On each cache server there are k
active threads (parallelism level) for executing transactions,
where k can be changed over the time, given the constraint
1 ≤ k ≤ kmax, assuming that kmax is the maximum number
of threads that can be used on a cache servers.

Finally, we assume that the workload profile of the
application running on top of the data platform includes
c transaction classes. The overall transaction arrival rate
is denoted with λ. The transaction arrival rate of any
transaction class i, with 1 ≤ i ≤ c, is a fraction fi of λ, thus
having

∑c
i=1 fi = 1. Both λ and any fi, with 1 ≤ i ≤ C,

can change over the time.

B. Optimization Problem

Because we aim to ensure transaction class-based QoS,
we assume that for each transaction class i a given SLA,
expressed in terms of maximum average transaction response
time rmax

i , has to be met. We denote with ri the average
transaction response time provided by the system for the
transaction class i.

We define the optimization problem addressed by our self-
configuring architecture as:

min(n)



ri ≤ rmax
i , ∀i : 1 ≤ i ≤ c

1 ≤ n ≤ nmax

gmin ≤ g ≤ n

1 ≤ k ≤ kmax

m ≤ mmax

(1)

which establishes in a formal way that we want to
minimize the cost of the infrastructure (in terms of number
of cache servers) given that a set of constraints, in particular
including SLAs for all transaction classes, are not violated.

C. Performance Prediction Scheme

As we hinted before, the self-configuring architecture ex-
ploits a prediction scheme providing the expected transaction
response time of each transaction class i depending on a set
of system parameters. According to the system model we
presented above, parameters that can affect the transaction
response times are n, g, k, λ and f1, ..., fc. Thus, the
aim of our neural network-based prediction scheme is to
provide predictions of the average transaction response time
of each transaction class by capturing their dependencies on
the above set of parameters. To this aim, all the aforesaid
parameters are used as input to the neural network, which

outputs the expected values of r1, ..., rc. Accordingly, the
neural network is in charge of calculating the function

(r1, ..., rc) = f(n, g, k, λ, f1, ..., fC) (2)

The neural network is trained exploiting a set of samples
(training set) of real measurements of the input and output
parameters. Each sample includes a value for each input
parameters of the function 2 (thus identifying a given data
platform configuration and a given workload profile) and the
associated values of the output parameters measured on the
system. As for collecting samples and training the neural
network, they can be done both in advance (i.e. during
an initial phase specifically prescribed for executing the
application in order to accomplish these tasks), or during the
actual execution of the application (in a way to incrementally
gather on-line samples and incrementally train the neural
network). We will provide further details on these issues in
Section VI-B

D. Controlling the Data Platform Configuration

We note that some of the input parameters of our predic-
tion scheme, i.e. n, g and k, can be adjusted by reconfiguring
the data platform. Conversely, this can not be done for other
parameters, i.e. λ and f1, ..., fC , because they depend on
external factors. In our architecture, a controller is used to
re-size/configure the data platform by modifying parameters
n, g and k. The controller takes as input the values of
rmax
1 , .., rmax

c and works on a periodic basis, where T
is the (tunable) length of a period. Along each period, the
controller measures the average values of λ and f1, ..., fc. In
our architecture we suppose that T is small enough such that
average values of parameters defining the workload profile
slowly change with respect to T . Thus, we assume that, in
a majority of cases, measures of values along a period can
be used as sufficiently accurate prediction of the workload
profile in the next period. At the end of each period, the
controller tries to solve the problem 1. Specifically, for
each combination of values of n, g and k which do not
violate constraints of the problem 1, it provides the measured
average values of parameters defining the workload profiles
as input to the neural network in order to achieve the
predicted transaction response times (i.e. the outputs of
Function 2). We note that the problem 1 includes a constraint
on the amount of required memory m for storing data objects
on any cache server, which must be at most equal to mmax.
When the data platform configuration changes, the amount
of memory which will be required on a cache server can
be estimated by simply measuring the current amount of
memory, say ma, required on a cache server and on the
basis of the current number of cache servers, say na, and the
current data object replication degree, say ga. Specifically,
if in the next configuration the number of cache servers and
the data object replication degree will be equal to nb and gb,
respectively, the amount of memory mb that will be required

on any cache server can be estimated as

mb =
ma · na

ga
· g

b

nb
(3)

Thus, the controller uses the above equation to exclude all
combinations of values of n and g for which the memory
constraint of the problem 1 is violated.

Once collected results, the controller decides for the
optimal data platform configuration, i.e. it evaluates, between
all the admitted combinations of values of n, g and k, which
one minimizes n. Finally, it reconfigures the data platform
according to the selected configuration.

A picture representing all components of our architecture
and their interactions is shown in Figure 1.

We conclude this section by discussing the tuning of T .
We observe that, assuming an in-memory transactional data
grid deployed on top of mainstream cloud infrastructures,
resizing the data platform in terms of number of cache
servers and modifying the data object replication degree
typically may requires a time in the order of one or more
minutes. In our architecture, the length of T should be
not less than the time required by the system, after any
modification to its configuration, for both reaching stability
and getting sufficiently accurate statistics on transaction
response times (for deciding the next optimal configuration).
Thus, typically, a length of T significantly lower than 5
minutes could not be sufficient to these aims. Adding to that,
the value of T mainly depends on the specific application
and how quickly modifications of workload (to which the
system is expected to react) occur. As an example, assuming
enterprise applications such as e-commerce ones, values of
T in the order of 20 minutes could be adequate to react
to workload fluctuations typically associated to variations of
number of users along a day.

VI. EXPERIMENTAL STUDY

In this section we discuss an experimental study we car-
ried out to evaluate the effectiveness of the self-configuring
architecture we presented in this paper. We first describe the
experimental setting, then we discuss the achieved results.

A. Experimental Setting

In our study we used an implementation of the TPC-C
benchmark running on top of Infinispan in-memory data
grid, which has been instrumented for integrating an im-
plementation of the controller described in Section V-D. An
overview of the TPC-C benchmark and of Infinispan are
provided ahead in this section. As for the implementation
of the neural network, we used an acyclic feed-forward
full connected network [17], that we coded leveraging on
FANN open-source libraries (version 2.2.0) [18]. To train the
network we used the back-propagation algorithm [17]. We
observed that, generally, best predictions were achieved with
a number of hidden nodes between 32 and 64, performing
a number of iterations of the back-propagation algorithm
between 3200 and 6400.

Figure 1: Reference architecture.

We performed our tests on top of Future Grid IaaS Cloud,
where we used a cluster of 20 machines all equipped with
an Intel Xeon X5570 @2.93 GHz quad-core processor, 2
GB of RAM and Centos 5.7 operating system.

1) TPC-C benchmark: The TPC-C is a benchmark pro-
posed by the Transaction Processing Performance Council
for comparing performance of OLTP systems. It simulates
an online store where users execute orders and payments of
products. TPC-C assumes a client-server architecture where
clients execute transactions against a database. Transactions
with five different profiles (transaction classes) are executed
by clients, performing the following actions: entering new
orders (New-Order transaction), recording payments (Pay-
ment transaction), checking the status of orders (Order-
Status transaction), delivering orders (Delivery transaction)
and checking the level of product stock (Stock-Level trans-
action). Because TPC-C has been originally designed for
database management system-based architecture, in our ex-
periments we used a porting of TPC-C where data are
instead hosted in an in-memory transactional data grid. In
order to test the ability of our architecture to re-configure
the system as a response to workload variations, in our
experiments we changed over the time both the overall
transaction arrival rate (that we denoted with λ in our system
model) and the composition of the workload in terms of mix
of transaction classes (in our system model we denoted with
fi the fraction of transactions of class i). Particularly, we

used f1 to denote the fraction of New-Order transaction, f2
for Payment transaction, f3 for Order-Status transaction , f4
for Delivery transaction and f5 for Stock-Level transaction.

As for SLAs, we used the average transaction response
times of each transaction class. Anyway, in our architecture
also other metrics, as the percentile, can be used by simply
changing the metric observed by the controller and used to
train the neural network.

2) Infinispan: Infinispan is an open source in-memory
transactional data grid by JBoss/Red Hat. Data objects can
be distributed and replicated across an arbitrary number of
cache servers. Anyway, Infinispan exposes a key-value store
data model, hiding to programmers all issues concerning
data distribution and replication. Commit operation of a
transaction is executed only in-memory, without involving
stable storage. The two-phase commit protocol is used to
preserve data consistency, involving in the commit operation
all cache servers which store replicas of data objects mod-
ified by the committing transaction. In order to overcome
limitations due to size of memory, data objects can be
asynchronously moved to stable storage after the commit
operation. Infinispan allows dynamic resizing of the data
platform in terms of cache servers, supporting run-time
join/leave of cache servers and taking care of re-distributing
(replicas of) data objects according to the new size of the
data platform. Anyway, originally no possibility to vary
at run-time the data object replication degree was offered,
which was therefore statically defined at start-up time. This
facility is instead provided by more recent beta releases, as
the 5.2.0.Beta2. In order to exploit the key-value data model
offered by Infinispan, the original database schema of the
TPC-C has been re-designed in order to fit such a kind of
data model. As a final remark, we note that our experimental
study is not aimed to evaluate/compare the performance of
our system when running TPC-C. Instead, it focuses on
the evaluation of the our self-configuring architecture to re-
configure the system as a response to workload variations
while minimizing the cost of infrastructure without violating
SLAs. Thus, modifications we carried out to the system
architecture of our experimental study with respect to the
original TPC-C requirements do not affect our actual objec-
tives.

B. Presentation of Tests and Results

Given the hardware features of our cluster, in our tests
we set nmax = 20, and we decided to limit the amount of
memory reserved for storage of data objects to 1 GB per
machine, in a way to ensure that the remaining 1 GB was
available to other tasks. Thus we set mmax = 1GB. As for
kmax, we set kmax = 16. Concerning the transaction arrival
rate, we observed that the maximum sustainable value by
the system was, in any case, less then 1000 transactions per
seconds. Thus, in our tests, we varied λ between 10 and 1000
transaction per seconds. Finally, as for transaction class mix,
we used reference values established by TPC-C, introducing
variations to the fraction of each transaction class as follows:

New-Order transaction and Payment transaction (i.e. f1 and
f2) between 0.2 and 0.6, while Order-Status transaction,
Delivery transaction and Stock-Level transaction (i.e. f3, f4
and f5) between 0.02 and 0.2.

In all our tests we observed that by using five different
neural networks, each one calculating the average transaction
response time of a single transaction class i (i.e. each neural
network calculates the function ri = f(N,G, λ, f1, ..., fC)),
the average prediction error (calculated for all transaction
classes) was always reduced with respect to the case where
we used a single neural network with five different outputs
(each one for a single transaction classes, according to the
Function 2). Thus we decided to always use a quintuple of
different neural networks.

We trained the neural networks using 200 samples we
gathered while randomly varying parameters n, g, k, λ, and
f1, ...,f5 within the associated intervals as defined above.
Then, we evaluated the average approximation error by
comparing predictions of neural networks with respect to
real values we measured for 600 different data platform con-
figurations and workload profiles. The errors we measured
for the five neural networks were 20%, 12%, 13%, 19% and
11%, respectively. In Figure 2 we show dispersion charts
representing the correlation between the average transaction
response times as predicted by the neural networks and as
measured on the system. We recall that a lower prediction
error corresponds to a higher concentration of points along
the diagonal straight line evidenced in the graphs. Due
to space constraints, we only show the cases of Payment
transaction and Order-Status transaction (since in our tests
they were transactions with highest response time).

In order to show the ability of our architecture to re-
configure the data platform, we present a test where we
run TPC-C by initially setting n = 2, g = 1, k = 4,
λ = 50tx/sec., f1 = 0.4, f2 = 0.4, f3 = 0.08, f4 = 0.06
and f5 = 0.06. As for SLAs, we set rmax

i = 0.5sec for
1 ≤ i ≤ 5. Finally, we set gmin = 1 and T = 300sec.. With
this configuration, the /average transaction class response
times as measured by the controller after the first period were
(expressed in seconds) r1 = 0.348, r2 = 0.959, r3 = 1.912,
r4 = 0.421, r5 = 0.313, while m was about 535MB
(in our tests, we observed that the required memory for
storing all data objects, excluding their replicas, was about
1.066GB). In this case, the configuration decided by the
controller was n = 7, g = 6 and k = 4 (we note that,
in the previous configuration both constraints r2 ≤ rmax

2

and r3 ≤ rmax
3 were violated). With the new configuration,

the controller measured, at the end of the subsequent period,
r1 = 0.013, r2 = 0.177, r3 = 0.344, r4 = 0.039, r5 = 0.02,
and m = 913MB. We can observe that all these values
satisfy constraints of the optimization problem. In order to
verify the optimality of the choice executed by the controller,
we checked if there were, for the same workload profile,
other possible configurations with n < 7 and for which
all constraints were satisfied. We note that, according to
constraint mmax = 1GB, no configurations where g = n

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 500000 1e+06 1.5e+06 2e+06

pr
ed

ic
te

d
(µ

se
c.

)

measured (µsec.)

Payment Transaction Average Response Times

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 500000 1e+06 1.5e+06 2e+06

pr
ed

ic
te

d
(µ

se
c.

)

measured (µsec.)

Order Status Transaction Average Response Times

Figure 2: Neural networks prediction accuracy evaluation.

(i.e. with full replication) were possible (because with full
replication the memory requested on each cache server to
store data objects and their replicas was equal to 1.066GB,
thus violating constraint m ≤ mmax). Conversely, for all
configurations such that g < n, the constraint m ≤ mmax

was not violated (in the worst case, i.e. with n = 6 and
g = 5, m was equal to 888MB). Thus, we measured
the average transaction response times only for admitted
configurations, i.e. such that n < 7 and g < n. We
observed that, in any of these configurations, the maximum
sustainable value of λ for the data platform was equal to
43 transactions/sec. I.e., with higher values of λ the system
in a short time reached the saturation point, giving rise to
transaction response times which constantly increased. This
confirmed us the optimality of the choice of the controller.

We continued to execute the test by modify SLAs. Specif-
ically, we set rmax

i = 0.15sec for 1 ≤ i ≤ 5, thus entailing a
violation of the constraint r3 ≤ rmax

3 (we recall that in the
last configuration decided by the controller r3 was equal
to 0.344sec.). After this modification, the configuration
decided by the controller at the end of the next period was
n = 16, g = 15 and k = 6. Hence, next measures of
the average transaction response times were r1 = 0.012,
r2 = 0.090, r3 = 0.126, r4 = 0.016, r5 = 0.02, and m

was equal to 998MB. We can observe that, again, none of
these values violates related constraints. For evaluating the
optimality of the decision, also in this case we measured
the average transaction response times for configurations
for which n < 16 and g < n. We note that, as for the
required memory, also for all these configurations in the
worst case, i.e. with n = 15 and g = 14, m was equal to
994MB. Additionally, for these configurations we observed
that, fixed the number of cache servers, say j, the minimum
value of r3 (which was the only one violating the associated
SLA in the current configuration) was achieved with a data
object replication degree equal to j − 1 for any j. This can
be justified by the fact that the higher replication degree
is the less remote accesses to data objects are required by
transactions (because the probability to find a local replica
of the accessed data object is greater). Anyway, this is
not generally true as concerns the response time of the
commit operation of transactions, because the probability
that more cache servers are involved in a commit operation
is higher when the replication degree is higher. However, in
our case, being r3 the average transaction response time of
Order-Status transaction, which is a read-only transaction, no
write operations on any (remote) cache server are executed
at commit time. In Figure 3 we show values of r3 we
measured for all configurations such that 7 ≤ n ≤ 15 and
for which g was equal to n − 1. As we can see, value of
r3 progressively decreases as the number of cache servers
increases. However, in any case the constraint r3 ≤ rmax

3 is
violated. Again, this confirms the optimality of the decision
taken by the controller.

Finally, we changed the transaction mix, thus setting
f1 = 0.2, f2 = 0.4, f3 = 0.18, f4 = 0.16 and f5 = 0.06.
Using this mix, the new average transaction response times
were r1 = 0.016, r2 = 0.091, r3 = 0.152, r4 = 0.018,
r5 = 0.017. Again, the constraint r3 ≤ rmax

3 is violated.
In this case, the controller did not find a configuration for
which all constraints were satisfied. Specifically, none of the
possible configurations was expected to satisfy the constraint
r3 ≤ rmax

3 . In our implementation no action is carried out by
the controller in these cases, because these situations are out
of the main scope of our work. Anyway, in order to validate
the prediction of the controller, we measured the average
transaction response times also for the configurations that we
did not check before, i.e. from 17 up to 20 cache servers.
Firstly, we recall that, also in these cases, configurations
with full replication were not possible due to the memory
constraint. Additionally, among the above configurations,
also for those with g = n−1 the constraint m < mmax was
not satisfied. In fact, in the best case, i.e. with n = 17 and
g = 16 the estimated amount of required memory was equal
to 1.003GB. As for other admitted configurations, i.e. with
g < n−1, we measured higher average transaction response
times with respect to the last configuration decided by the
controller (i.e. n = 16, g = 15 and k = 6). This can be
due to the fact that with the above-mentioned configurations
for which g < n − 1 a higher fraction of operations of

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

7 8 9 10 11 12 13 14 15A
ve

ra
ge

 T
ra

ns
ac

tio
n

R
es

po
ns

e
T

im
e

(s
ec

.)

Number of Cache Servers

Order Status Transaction

Figure 3: Average Order Status transaction response times
vs. number of cache servers.

transactions requires remote accesses to data objects with
respect to the case with n = 16, g = 15. Thus, this
confirmed us the proper prediction of the controller.

VII. CONCLUSIONS

In this paper we presented a self-configuring architec-
ture tailored for in-memory transactional data grids. These
data platforms have revealed particularly suited for taking
advantage from both elastic cloud architectures and the
so-called ”pay-as-you-go” pricing model offered by cloud
infrastructure providers. The goal of our architecture is guar-
anteeing that SLAs established for each transaction class of
an application are not violated, and that, at the same time, the
minimum amount of (virtual) hardware resources are used by
the system in order to minimize the infrastructure cost. Our
architecture exploits a neural network-based performance
predictor, which provides estimations of transaction response
times depending on the application workload profile and
the configuration of the data platform. We evaluated the
effectiveness of our approach through an experimental study
we conducted on top of a real cloud infrastructure. Generally,
our approach is simple to use and, being completely black-
box, it can be easily exploited without requiring detailed
expertise about internals of system. As a future direction
of our work, we planned to also investigate other kind of
scenarios where the initial training of neural networks is not
possible, or only a partial training is possible. This can be the
case of many real scenarios where, e.g., it could be complex
to simulate the behavior of users in order to generate the
expected workload profiles. In this case, the training set
could be built while the application runs, so that the neural
networks are incrementally trained. An initial exploration
phase, where system configurations are randomly selected,
could be exploited. Additionally, run-time prediction error
measurements could be used to trigger new training phases
of the neural networks using training sets with new samples
gathered at-run time. Issues to be explored in this kind of

scenarios include, e.g., effective techniques to perform the
initial exploration of the configuration space, as well as for
avoiding that continuous updates to neural networks may
lead to unstable behavior of the controller, such as continu-
ous oscillations along a set of data platform configurations,
which may cause instability of the system. Finally, we note
that in our system model we did not assumed the presence
of specific performance optimization mechanisms which can
be exploited in in-memory transactional data grids. These in-
clude, e.g., mechanisms leveraging transaction migration for
exploiting data locality (as proposed in [19]), or placement
of replicas of data objects on the basis of locality patterns in
data accesses of transactions (see, e.g., [20]). Addressing the
presence of these kinds of optimizations could be a further
extension of our work.

REFERENCES

[1] Red Hat / JBoss. JBoss Infinispan. http://www.jboss.org/
infinispan, 2011.

[2] WMware. VMware vFabric GemFire. http:
//www.vmware.com/products/application-platform/vfabric-
gemfire/overview.html.

[3] Oracle. Orache Coherence. http://www.oracle.com/
technetwork/middleware/co-herence/overview/index.html,
2011.

[4] Avinash Lakshman and Prashant Malik. Cassandra: a decen-
tralized structured storage system. SIGOPS Oper. Syst. Rev.,
44, 2010.

[5] Pierangelo Di Sanzo, Diego Rughetti, Bruno Ciciani, and
Francesco Quaglia. Auto-tuning of cloud-based in-memory
transactional data grids via machine learning. In Proceedings
of the 2nd IEEE Symposium on Network Cloud Computing
and Applications, NCCA. IEEE Computer Society, December
2012.

[6] https://portal.futuregrid.org.

[7] Zhikui Wang, Xiaoyun Zhu, and Sharad Singhal. Utilization
and slo-based control for dynamic sizing of resource parti-
tions. In DSOM, 2005.

[8] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu,
Mustafa Uysal, Zhikui Wang, Sharad Singhal, and Arif Mer-
chant. Automated control of multiple virtualized resources.
In Proceedings of the 4th ACM European Conference on
Computer Systems, EuroSys ’09, 2009.

[9] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-
clouds: managing performance interference effects for qos-
aware clouds. In Proceedings of the 5th European Conference
on Computer Systems, EuroSys ’10, 2010.

[10] Jin Chen, G. Soundararajan, and C. Amza. Autonomic provi-
sioning of backend databases in dynamic content web servers.
In Proceedings of the International Conference on Autonomic
Computing, ICAC ’06, pages 231–242, Washington, DC,
USA, 2006. IEEE Computer Society.

[11] Saeed Ghanbari, Gokul Soundararajan, Jin Chen, and Cris-
tiana Amza. Adaptive learning of metric correlations for
temperature-aware database provisioning. In Proceedings of
the International Conference on Autonomic Computing, ICAC
’07, pages 26–, Washington, DC, USA, 2007. IEEE Computer
Society.

[12] Rahul Singh, Upendra Sharma, Emmanuel Cecchet, and
Prashant Shenoy. Autonomic mix-aware provisioning for
non-stationary data center workloads. In Proceedings of the
International Conference on Autonomic Computing, ICAC
’10, pages 21–30, New York, NY, USA, 2010. ACM.

[13] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Junichi Tate-
mura, Calton Pu, and Hakan HacigümüŞ. Activesla: a
profit-oriented admission control framework for database-
as-a-service providers. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, New York, NY,
USA, 2011. ACM.

[14] Diego Didona, Paolo Romano, Sebastiano Peluso, and
Francesco Quaglia. Transactional auto scaler: elastic scaling
of in-memory transactional data grids. In Proceedings of the
9th International Conference on Autonomic Computing, ICAC
’12, pages 125–134, New York, NY, USA, 2012. ACM.

[15] Diego Didona, Pascal Felber, Diego Harmanci, Paolo Ro-
mano, and Joerg Schenker. Identifying the optimal level
of parallelism in transactional memory systems. In Proc.
International Conference on Networked Systems, NETYS.
Springer, 2013.

[16] Tom M. Mitchell. Machine Learning. McGraw-Hill, New
York, 1997.

[17] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc.,
New York, NY, USA, 1 edition, 1997.

[18] http://leenissen.dk/fann/wp/.

[19] Danny Hendler, Alex Naiman, Sebastiano Peluso, Francesco
Quaglia, Paolo Romano, and Adi Suissa. Exploiting local-
ity in lease-based replicated transactional memory via task
migration. CoRR, abs/1308.2147, 2013.

[20] João Paiva, Pedro Ruivo, Paolo Romano, and Luı́s Rodrigues.
Autoplacer: Scalable self-tuning data placement in distributed
key-value stores. In Presented as part of the 10th Interna-
tional Conference on Autonomic Computing, pages 119–131,
Berkeley, CA, 2013. USENIX.

