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Abstract. A portfolio insurance strategy is a dynamic hedging process aiming to limit downside risk during a market downturn

and allow the investor to obtain an equity market participation in the upside market. The biggest potential risk of implementing

a portfolio insurance strategy is the so-called cash-in risk, i.e., the risk that the underlying asset registers huge drops before the

portfolio can be rebalanced. In such cases, the value of the insured portfolio would fall below the floor (the insured capital), and

the consequence is that the portfolio is fully monetized, not allowing the investor to recover the capital initially invested. First, this

paper reviews the main properties of the most important allocation algorithm, the so called Constant Proportion Portfolio Insurance

(CPPI), and how the cash-in risk embedded with this allocation strategy can be modeled and hedged. Secondly, it describes the

main extensions of CPPI proposed in the literature to improve its capability to reduce cash-in risk.
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1. Introduction

Portfolio insurance strategies were first introduced in Rubinstein and Leland (1976), after the collapse of stock
markets (the New York Stock Exchange’s Dow Jones Industrial Average and the London Stock Exchange’s FT 30)
which implied the pension funds withdrawal. In particular, the authors noted ex-post that the presence of an insurance
could have convinced the investors to not leave the market, guarantying them the opportunity to take advantage of
the rise of the same, an event that really happened just a couple of years later. According to Perold and Sharpe
(1988), portfolio insurance strategies can be classified into three different categories: the option-based strategies,
the option-duplicating strategies and the derivative-independent strategies. The main approach related to the first
class of strategies is the so called Option-Based Portfolio Insurance, which consists of buying a zero-coupon bond
with maturity equal to the investment time horizon plus an option written on a risky asset. The option-duplicating
strategy is an approach where the option is replicated with a self-financing strategy, in order to overcome the lack
of liquid options for long maturities. However, the low interest rate levels which have characterized the markets
in the recent years are reducing the available risk budgets significantly, forcing practitioners to rethink at how to
build their portfolios, in order to offer both a sustainable equity market participation and a capital protection for the
initial investment. In this direction, one choice consists in considering dynamic risk management tools to protect
portions of the initial investment by dynamically allocating both in risky and riskless assets. In this framework the
Constant Portfolio Portfolio Insurance (CPPI) is one of the most used approaches. The CPPI method is obtained by
rebalancing an initial portfolio at each observation time, evaluating a present value of the aspired capital protection
and then investing the available risk budget into risky assets, while investing the remaining part of the portfolio in
risk-free assets. Despite a significant simplicity and a remarkable ease of implementation, the CPPI strategy suffers a
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fundamental drawback represented by the risk that, after a severe market draw-down, the risk budget erases. This event
is the so-called cash-in risk and it has mainly two consequences: (i) the remaining portfolio value is shifted entirely
into the riskless asset and it might not guarantee at maturity the capital initially invested and, (ii) the reduction to zero
of the equity market participation in case of subsequent rises of the risky asset. The paper is structured as follows: in
Section 2 we recall the main concept related to OBPI strategy; in Section 3 we provide an in-depth analysis of CPPI
strategy by reviewing all the ways in which cash-in risk can be modeled and hedged; in Section 4 we describe the
main extensions of the CPPI strategies, i.e. the Time Invariant Portfolio Protection (TIPP) and the Variable Proportion
Portfolio Insurance (VPPI), whose aim is to reduce the probability of cash-in event; in Section 5 we focus on an
alternative way, more recently introduced, to hedge cash-in risk, based on the use of options; Section 6 concludes.

2. Option based Porfolio Insurance strategies

The Option-based Portfolio Insurance strategy (OBPI) is a methodology characterized by ensuring a minimal
terminal portfolio value. Along the lines of Bertrand and Prigent (2005), it is possible to define the OBPI portfolio
process V OBPI =

{
V OBPIt

}
t∈[0,T ]

, with initial value V OBPI0 , as follows

V OBPIt = qBt + pC(t, St,K), (1)

where q ≥ 0 represents the number of riskless asset purchased by the investor to protect the capital initially invested,
C(t, St,K) is the price of the call option, written on the risky asset St, having strike price K and maturity T and
p ≥ 0 is the number of call that can be acquired at time t = 0, given the risk budget. The strategy is relatively
simple to implement since it is static, i.e. no trading occurs in (0, T ). From eq. (1) it is straightforward to show that
K represents the wealth that the investor wishes to recover at maturity T . However, it may happen that European
options, whose strike price is exactly equal to the amount of wealth to be immunized, are not traded on the market.
This implies that the investor must synthetically replicate the payoff at maturity of the option by means of a hedging
strategy. Perfect hedging can be achieved only by assuming that the market is complete. However, it is well known that
there exist various sources of market incompletness, in terms of stochastic volatility and trading restrictions, making
the contingent claim payoff not attainable. This implies that the standard OBPI approach is not always viable, and
explains why dynamic Portfolio Insurance strategies as CPPI, which will be introduced in Section 3, have become
promiment among practioners.

3. The Constant Proportion Portfolio Insurance

The objective of the Constant Proportion Portfolio Insurance (CPPI) investors is twofold: partecipating in the
upside potential of the risky reference portfolio, e.g. a market index, and at the same time ensuring that the value
of the portfolio at maturity V CPPIT is higher than a guaranteed amount G (V CPPIT ≥ G). The guarantee G is
defined as a proportion (PL) of the initially invested amount V CPPI0 . These two goals are realized by dinamically
allocating between a risk-free asset and an equity portfolio. In order to define the CPPI portfolio process we begin
by specifing the so called floor F , representing the lowest acceptable value for the portfolio. The floor Ft is given by
Ft = FT (1 + r)−(T−t) where FT = G and r is the risk-free interest rate. The next step is to compute the cushion Ct,
which is the difference between the portfolio value Vt and the floor Ft. The exposure to the risky asset Et is given by
product between the cushion Ct and the multiplier m. Since the strategy is self-financing, the remaining part of the
portfolio, i.e. V CPPIt − Et, is invested into the risk-free asset. Then, the proportion of wealth invested to the risky

2



asset for each instant of time t ∈ [0, T ] can be written as

αCPPIt = min

{
m(V CPPIt − Ft)

V CPPIt

, LEV

}
, (2)

βCPPIt = 1− αCPPIt . (3)

As shown in eq. (2) to avoid excessive equity exposure, Et is bounded to be at most LEV · V CPPIt . We start
by considering the case in which CPPI portfolio is continuously rebalanced, meaning that the Exposure Et and the
investment in the riskless assetBt are continuously adjusted. The main properties and the structure of continuous-time
CPPI allocation strategy, which will be summarized in Section 3.1, have been extensively studied in Black and Perold
(1992).

3.1 CPPI with continuous rebalancing

In order to define the continuous-time CPPI portfolio process, we begin by specifing the so-called floor process
F = {Ft}t∈[0,T ] whose dynamic is dFt = rFtdt with initial value F0 = G · PL · e−rT . Then we define the process
V CPPI =

{
V CPPIt

}
t∈[0,T ]

with initial value V CPPI0 , representing the portfolio value associated to CPPI strategy,
namely V CPPIt = αCPPIt St + βCPPIt Bt, where αCPPIt (resp. βCPPIt ) is depicted in eq. (2) (resp. eq. (3)).
Maintaining the assumption that the strategy is self-financing, the dynamics of V CPPIt is dV CPPIt = αCPPIt dSt +

βCPPIt dBt. Moreover, assumining that St follows a geometric Brownian motion, i.e. dSt = µStdt + σStdW
P
t ,

where W = {Wt}t∈[0,T ] is a standard Brownian motion with respect to the real world measure P, µ ∈ R s.t. µ >

r ≥ 0 and σ ∈ R+, Black and Perold (1992) explicitly derived the SDE satisfied by the cushion process given by
C = {Ct}t∈[0,T ], given by

dCt
Ct

= (r +m(µ− r))dt+mσdW P
t . (4)

From eq. (4), it is straightforward to show that the CPPI portfolio value is

Vt = PL ·G+
G− PL · e−r(T−t)

Sm0
exp

{(
r −m

(
r − σ2

2

)
− m2σ2

2

)
t

}
Smt , t ∈ [0, T ]. (5)

Eq. (5) illustrates that within this framework, CPPI portfolio is equivalent to taking a long position in a zero-coupon
bond with nominal value PL · G in order to guarantee the capital at maturity, and investing the remaining part into a
risky asset which has m times the excess return of S and is perfectly correlated with S. Moreover, it shows that the
portfolio protection is efficient almost surely: the terminal value of the CPPI strategy is higher than the guarantee with
probability one, regardeless of multiplier value. Indeed, the expected value of a CPPI-insured portfolio at maturity is
equal to

E[VT ] = PL ·G+G · (1− PL · e−rT ) exp {(r +m(µ− r))T} . (6)

which is always greater or equal with respect to the amount of capital that the investor wishes to recover at the end of
the investment time horizon. Actually, the possibility of reaching the floor is widely recognized by CPPI managers:
there is a non zero probability that, during a sudden downside movement of the underlyng asset, the fund manager will
not have time to readjust the portfolio, which then goes crashing through the floor. This implies that the remaining
portfolio value will be shifted entirely on the risk-free asset. Hence, it is no longer ensured that the strategy outperforms
the prescribed floor. As mentioned in Section 1, this risk is known in literature as cash-in risk. Measuring the risk
that the CPPI strategy is less than the floor is of practial importance for at least two reasons. Firstly, a CPPI strategy
is combined with a guaranteed for the investor: even if the floor has been broken, the CPPI issuer has to pay the
guaranteed amount FT . Since during the investment time period the CPPI has fallen below the Floor, i.e. VT < Ft,
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the issuer has to pay out more than the CPPI is actually worth. For this reason, an additional option can be added.
Such an option is exercised if the value of the CPPI is below the floor. Secondly, CPPI strategies can be used to
protect return guarantees which are embedded in unit-linked life insurance contracts. In this case the maturity might
be interpreted as the time of retirement and the guarantee is interpreted as the amount which is at least needed by the
insured. A formal proof that there exist only two sources for gap risk is given in Schied (2013). The first source of
gap risk, extensively studied in Balder et al. (2009), is represented by discrete rebalancing of the CPPI portfolio. The
second source of gap risk, modeled for the first time by Cont and Tankov (2009), is given from the fact that price of
the underlying risky asset may experience downward jumps.

3.2 CPPI with discrete time rebalancing

Let τ denote a sequence of equally spaced instants of time belonging to the interval [0, T ], i.e.

τ = {t0 = 0 < t1 < · · · < tn−1 = T} , (7)

where tk+1 − tk = T
n for k = 0, . . . , n − 1. We impose the rescrition that trading is only possible immediately

after tk ∈ τ . This implies that the number of shares held in the risky asset is constant over the interval (tk, tk+1]

for k = 0, . . . , n − 1. However, the portion of CPPI portfolio invested in risky asset changes as risky asset price
fluctuates. Thus, it is necessary to consider the number of shares held in the risky asset φ(S) and the number of risk-
free bond φ(B). Along the lines of Balder et al. (2009), we indicate by φτ = (φ(S),τ , φ(B),τ ) a discrete time CPPI if,

for t ∈ (tk, tk+1] and k = 0, . . . , n− 1, φ(S),τ
t := max

{
mCτtk
Stk

, 0
}

, where the cushion is given by

Cτtk+1
= Cτt0

min{ν,k+1}∏
i=1

(
m

Sti
Sti−1

− (m− 1)

)
, (8)

with
ν := min

{
tk ∈ τ |V τtk −G ≤ 0

}
, (9)

and ν =∞ if the minimum is not attained. Within this framework, the authors quantify the gap risk by computing the
following quantities:

1. the local shortfall probability, PLSF := P(V τtk+1
≤ Ftk+1

|V τtk > Ftk) = N (−d2),

where d2 =
ln m
m−1 +(µ−r)Tn−

σ2

2
T
n

σ
√

T
n

,

2. the shortfall probability, PSF := 1− (1− PLSF )n,

3. the expected shortfall, ES := E[G− V τT |V τT ≤ G] = G+ (V0 − F0)

[
En1 + e−r

T
nE2

erT−En1
1−E1e

−r T
n

]
where

E1 := meµ
T
nN (d1)− er Tn (m− 1)N (d2),

E2 := er
T
n [1 +m(e(µ−r)Tn − 1)]− E1.

with d1 := d2 + σ
√

T
n .

Within this framework, two different solutions have been proposed to ensure the effectiveness of CPPI strategy. The
first one is the following: given an estimate for µ and σ, it is possible to determine the value of the multiplier m and
the number of rebalances n of φ(S) and φ(B) over the investment time horizon such that the probability of falling
below the guarantee G is bounded above a confidence level γ. The second one has been proposed by Bertrand and
Prigent (2016) and it is based on large deviations methods that the authors use to estimate the possible losses between
two consecutive trading dates.
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3.3 CPPI in presence of jumps in asset prices

As mentioned in Section 3.1, the second alternative to model cash-in risk is to allow for jumps in the risky
asset dynamics without relaxing the continuous trading assumptions. CPPI strategies with the presence of jumps in
stock prices were considered for the first time by Prigent and Tahar (2005) in a jump-diffusion model with finite
intensity activity. However, the approach by Prigent and Tahar (2005) is to consider as a slight modification of the
CPPI strategy, which incorporates extraguarantee whenever the value of the portfolio falls below the floor value. The
first study devoted to quantify cash-in risk embedded in CPPI strategies, by considering a more general framework
including infinite activity jumps and stochastic volatility, is given by Cont and Tankov (2009). The reason behind
the introduction of these types of models is to highlight that cash-in risk cannot be attributed exclusively to trading
restriction, because this could give the wrong impression that this risk can be eliminated by more frequent rebalancing:
as argued in Cont and Tankov (2009), by considering price jumps, there exists a non-negligible residual cash-in risk
for CPPI even in the presence of continuous trading.
As in Section 3.1, suppose a continuous time market model. Hence, we have to consider a filtered probability space
(Ω,F ,F = {Ft}0≤t≤T ,P) with two F-adapted processes describing the evolution for the riskless asset B, and the
risky asset S. We assume that r is constant over the investment time horizon [0, T ]. Then, B has the following
deterministic evolution dBt = rBtdt, with B0 = b. In this case we assume that the price process for the risky asset S
is dSt = St−dZt where Z is a possible discontinous driving process, modeled as semimartingale. Moreover, in order
to ensure the positivity of the price process, we assume that ∆Zt > −1. In a continuous-time setting the stopping time
defined in eq. (9) becomes ν = inf {t ≥ 0, Vt ≤ Ft}. If t < ν, the CPPI strategy is self-financing and the portfolio
value satisfies

dVt = m(Vt− − Ft)
dSt
St−

+ (Vt− −m(Vt− − Ft))
dBt
Bt

, (10)

which implies the following dynamic for the cushion

dCt
Ct−

= mdZt + (1−m)rdt. (11)

Introducing the discounted cushion C∗t = Ct
Bt

and applying Itô formula, we find

dC∗t
C∗t−

= m(dZt − rdt). (12)

Defining Lt = L0 +
∫ t

0
dZs − rt, eq. (12) can be rewritten as dC∗t

C∗t−
= mdLt or, equivalently, C∗t = C0E(mL)t

where E denotes the stochastic (Doléans-Dade) exponential defined by dE(mL)t
E(mL)t−

= mdLt. If ν ≥ t, according to the
definition of CPPI strategy, the value of the portfolio is entirely invested into the risk-free asset, in order to prevent
further losses. This means that, when ν ≥ t, the value of C∗t remains constant. Then, for any t ∈ [0, T ] we introduce
a new process C̃t defined as the stopped process of C∗ such that C̃t = C∗t∧ν , where t ∧ ν := min {t, ν} and it can be
explicitly written as

C̃t = C∗0E(mL)t∧ν . (13)

Hence, the CPPI portfolio may fall below the floor, even if the exposure and the investment in the riskless asset are
adjusted at continuous time. This is due to the fact that the stochastic exponential defining the process in eq. (13)
can become negative in presence of negative jumps of sufficient size of stock price. Within this framework, Cont and
Tankov (2009) quantify in a meaningful way the cash-in risk by establishing a direct relation between the value of the
multiplierm and the risk of the insured portfolio. This allows to choose the multiplier based on the risk tolerance of the
investor. In particular, the authors provide a Fourier transform method to compute the losses distribution and various
risk measures (e.g., Value-at-Risk, expected loss, or the probability of loss) over a given time horizon. Moreover, they
extend the framework described in this Section adding stochastic volatility.
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4. Some extensions of CPPI allocation strategy

In order to mitigate the cash-in risk embedded into CPPI strategy, several solutions have been proposed. In
particular, the financial literature derived mainly two extensions of CPPI allocation algorithm. The first modification,
proposed by Estep and Kritzman (1988), is the so-called Time-Invariant Portfolio Protection (TIPP), and it is based on
the same rules as the CPPI allocation algorithm except for the floor computation. In fact, in this case, it is no longer
linked to the risk-free interest rate but to the value of the portfolio itself. The second modification, proposed by Lee
et al. (2008) is the so-called Variable Proportion Portfolio Insurance (VPPI), and it concerns how the multiplier is
set. In the standard CPPI, the multiplier is fixed at t = 0, based on the investor’s risk aversion, and remains constant
throughout the investment time horizon. Instead, the VPPI allows the multiplier to vary over time according to specific
factors, such as the volatility of the risky asset underlying the strategy. In what follows, we will discuss how these new
strategies affect the amount invested into risky assets over time and, consequently, their ability to guarantee at least
PL ·G at maturity and an equity market participation in the event of a bull markets.

4.1 Time Invariant Portfolio Protection (TIPP)

Standard results about CPPI strategies are based on the assumption that the floor Ft evolves just like the riskless
asset. However this assumption is quite stringent, since it makes the CPPI performances highly price dependent;
any gains at a particular point in time can be lost if the underlying asset price falls. To address this, Estep and
Kritzman (1988) proposed the time-invariant portfolio protection (TIPP), i.e. a modified version of CPPI which has a
ratchet mechanism, able to lock-in a proportion of the upside performance. In particular, this mechanism consists in a
stochastic time-varying definition of the floor. The TIPP floor Ft is defined as the maximum between the usual CPPI
floor and a percentage of the historical maximum portfolio value. The new floor F̃t satisfies

F̃t = max

{
Ft, PL · sup

s≤t
Vs

}
, ∀t ∈ [0, T ], (14)

where PL is the protection level. In this way, the floor jumps up with the portfolio value in order to reduce the risky
asset allocation when the market peaks. This new floor adjustment has some consequences on the allocation of the
risky asset over time, especially in a market scenarios in which the risk-free interest rates are very low and sudden
rises and falls of the risky asset might occur. Such a background sheds light on one of the main issues related to the
use of CPPI: when the value of the risky asset increases, the CPPI portfolio value increases accordingly. If the level
of the risk-free interest rate is low, then the growth rate of the CPPI portfolio will be higher than the corresponding
growth rate of the floor. This implies that, after a very short period, there is no longer a significant protection of the
portfolio. Such a drawback is overcome by the TIPP allocation strategy, thanks to dynamics in eq. (14). Indeed, the
growth rate of the TIPP floor can be considered comparable to the portfolio in each instant of time, even if the growth
of the market index is sustained. As a consequence, the TIPP exposure to the risky asset will be in general lower than
the CPPI ones, and it will change more smoothly over time, furnishing a better downside protection to the investor.
Hovewer, in case of favourable market conditions, the overall return of the TIPP strategy will be general lower w.r.t.
the standard CPPI one. This is in line with the empirical analysis carried out by Dichtl et al. (2017), in which the
authors conclude that TIPP cannot be seen as an improved CPPI, since it exhibits a significantly inferior performance
for all applied performance measures, even if it can furnish better protection against cash-in risk.

4.2 Variable Proportion Portfolio Insurance (VPPI)

Instead of continuously rebalancing the floor, it is likewise reasonable to make the multiplier dynamic. This change
makes the CPPI a Variable Proportion Portfolio Insurance, the so called VPPI. One of the main reasons to consider
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such an extension is to allow the investor to better adapt his portfolio strategy to market fluctuations better. Suppose,
for example, that for the first year of a global management period of five years, the anticipation on the stock index is
that there may be sudden significant drops. In this case, at t = 0, the investor has to choose a relatively low multiplier.
However, suppose substantial rises will occur in the future. In that case, the exposure corresponding to a small value
of the multiplier initially chosen will not provide the opportunity to benefit from a bullish market. On the contrary, if
the initial value of the multiplier is relatively high, sudden significant drops will imply that the portfolio may break
through the floor value, meaning that, at maturity, the investor might only recover PL ·G. The possibility of reducing
the multiple during the investment period can prevent such an unfavorable event. This extension of the classical CPPI
allocation strategy was introduced for the first time by Lee et al. (2008). In order to keep the simplicity of the model,
the authors proposed a particular kind of VPPI strategy, the Exponential Proportion Portfolio Insurance (EPPI), where
the multiplier changes according to the following criteria. In t = 0 the investor has to fix not a reference price for the
risky asset underlying the strategy. Such a reference price is the value of the risky asset before the portfolio rebalance,
S(0). If the value of the risky asset after the portfolio rebalancing, S(1) is different from S(0), the multiplier changes
according to the following rule

mt = η + exp

{
a ln

(
S(1)

S(0)

)}
, (15)

where η > 1 is an arbitrary constant, and ea ln S(1)

S(0) is the so called dynamic multiple adjustment factor (DMAF), with
a > 1. The parameter a acts as the magnifier of the DMAF. More precisely, it is set greater than 1 for the enlargement
effect on the number of holding shares when the stock price goes up, and the shrinkage effect on the number of
holding shares when the stock price goes down w.r.t. the reference stock price S(0). Thus, including a DMAF into
the multiplier could create a higher convex nature of the strategy, i.e. when the stock price goes up, the mechanism of
the EPPI strategy creates more number of holding shares to perform an upside capture; whereas when the stock price
goes down, the strategy creates lesser number of holding shares to provide a downside protection. However, the EPPI
strategy is not the only extension of the CPPI, which allows for a dynamic multiplier. Indeed, a wide range of models
has been proposed directly linked to a risk management approach. In particular, the baseline assumption of these kinds
of models is to fix the multiplier at each rebalancing date by considering a local quantile guarantee condition posed
by

Ptk(Ctk+1
> 0|Ctk > 0) ≥ 1− ε, (16)

where Ptk(·) denotes the conditional probability with respect to Ftk and the parameter ε denotes some exogenously
specified upper bound on the local shortfall probability. We further observe that

Ptk(Ctk+1
> 0|Ctk > 0) = Ptk

(
mtk

Stk+1

Stk
− (mtk − 1) > 0

)
. (17)

Eq.(17) implies an upper bound m̄tk on the admissible multiplier, i.e. a gap control affords to limit the multiplier at
tk by m̄tk . Denoting by F̃tk the marginal distribution function of the standardized simple return

Stk+1

Stk
− 1, the upper

bound is given by

m̄tk =

∣∣∣∣∣Etk
[
Stk+1

Stk

]
− 1 +

√√√√V artk

[
Stk+1

Stk

]
F̃−1
tk

(ε)

∣∣∣∣∣
−1

. (18)

The condition in eq. (18) is used in Hamidi et al. (2009), who estimate the conditional upper multiplier by means of
the Value at Risk (VaR). In particular, they resort to eight different methods of VaR calculations: one non-parametric
method using the historical simulation approach; three parametric methods based on distributional assumptions:
namely, the normal VaR, the RiskMetrics VaR based on the normal distribution, and the GARCH VaR based on
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the Student-t distribution; four semi-parametric methods using quantile regression to estimate the conditional au-
toregressive VaR (CAViaR): namely, the symmetric Absolute Value CAViaR, the Asymmetric Slope CAViaR, the
IGARCH(1,1) CAViaR, and the Adaptive CAViaR. Afterwards, Hamidi et al. (2014) proposed a generalization of this
class of models in which the conditional multiplier is based on a coherent risk measure, the expected shortfall. In this
case, they estimate the conditional upper bound for the multiplier m̄tk using a Dynamic AutoRegressive Expectile
(DARE) model.

5. Hedging gap risk embedded through options

Another way to hedge gap risk embedded in portfolio insurance strategies is to use options. Let us consider the
Vanilla options written on the CPPI portfolio as an example. For instance, taking a long position on an at-the-money
put option on the CPPI portfolio with a strike price at least equal to the minimum value that the investor requires
at maturity is a natural way to hedge gap risk. Similarly, taking a long position on an at-the-money call Option on
the CPPI portfolio is a natural way to invest in a CPPI portfolio, preserving the capability to not purse forward the
investment in the case of closed out. The first option pricing model on the CPPI strategy was proposed by Escobar et
al. (2011), and it was generalized by Wang and Tsoi (2013).

5.1 Modeling option on CPPI

As described in Section 3.2, a possible way to model gap risk is to allow for trading of the CPPI portfolio only on
specific dates. For this reason, Escobar et al. (2011) in order to develop a pricing formula for European option written
on CPPI, decided to model the risky asset underlying the strategy using a geometric Brownian motion, restricting
trading to discrete-time. The discrete time process describing the evolution of the risky asset under the risk neutral
probability measure Q is

Stk
Stk−1

= exp

{(
r − σ

2

)
∆t+ σWtk

}
, (19)

where Wti ∼ N(0,∆t) and τ , as in eq. (7), is a sequence of equally spaced instants of time of the interval [0, T ], i.e
τ = {t0 = 0 < t1 < · · · < tN−1 < TN = T} and ∆t = T

n for k = 1, . . . , N − 1. Within this framework the value
V τtk+1

of the CPPI portfolio is

V τtk+1
= er(tk+1−min{ν,k+1})

(
(V0 − F0)

min{ν,k+1}∏
i=1

(
m

Sti
Sti−1

− (m− 1)er∆t

)
+ Ftmin{ν,k+1}

)
, (20)

where ν given in eq. (9) is the first time the portfolio value breaks through the floor. In order to compute the price of the
European option, the authors first derived the price of discrete time CPPI by making the following assumption. Since
the CPPI strategy is by definition self-financing, then under the risk-neutral probability measure the expected terminal
portfolio value is EQ[VT ] = erTV0. However, for the investor the value of the CPPI strategy is not equal to V0. As
pointed out in Section 3.1, the CPPI is sold as a product with a capital guarantee; this means that the issuer of the CPPI
should guarantee a payoff equal to or greater than the floor and therefore has to carry the gap risk. Consequently, the
payoff at maturity of the discrete CPPI is

CPPIT = max {VT , FT } . (21)

Then, the expected value at maturity of the strategy is composed of two parts

EQ[CPPI] = EQ[CPPIT |C1] + EQ[CPPIT |C2], (22)
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where EQ[CPPIT |C1] (resp. EQ[CPPIT |C2]) is the expected value of the portfolio at maturity when the portfolio
does not fall below the floor (resp. the expected value of the portfolio when the CPPI has fallen below the floor) over
[0, T ]. When the underlying risky asset follows the process depicted in eq. (19), both of them can be evaluated in
closed form. Indeed, the authors proved that:

EQ[CPPIT |C1] = F0N (s2)N + (V0 − F0)[mN (s1)− (m− 1)N (d2)]N , (23)

EQ[CPPIT |C2] = F0(1−N (s2)N ), (24)

where s1 =
lnm−ln(m−1)+σ2

2 ∆t

σ
√

∆t
and s2 = s1−σ∆t. In order to compute the price of the European option on discrete

CPPI, the authors distinguish two cases. The first case is when the strike price,K, is equal to the value of the guarantee
at maturity FT . In this case, the option on CPPI ends up in the money at maturity T if the strategy has not defaulted
until maturity, i.e. Cτtk+1

> 0, k = 1, . . . , N − 1. Then, a portfolio composed by the option on a CPPI with K = FT

and a zero coupon bond with nominal valueK, is exactly equal to a CPPI with floor F . For this reason whenK = FT ,
the price of the call option on CPPI with discrete rebalancing is exacty equal to the difference between the expected
value of discrete CPPI in t = 0 given by eq. (23) and F0:

Ct = (V0 − F0)[mN (s1)− (m− 1)N (s2)]N . (25)

The second case is when the strike price is greater than the guarantee amount at maturity (K ≥ FT ). In this more
general case the option ends up in the money at maturity T if the CPPI has not fallen below the floor in tk, k =

1, . . . , N − 1, and if the value VT is greater than the strike price K. For this reason the option pricing formula defined
in eq. (25) becomes:

Ct = e−rTEQ

[(
FT −K + (V0 − F0)

N∏
i=1

(me(r−σ22 )∆t+σWti − (m− 1)er∆t)

)+ N−1∏
i=1

1{Vtl>Ftl}

]
. (26)

In this more general case, the option price on discrete CPPI, as well as very useful sensitivities like Delta, Gamma,
Vega, Rho and Theta, can be obtained by using Monte Carlo simulations in eq. (26). As explained in Section 3, the
second source of gap risk for CPPI strategy can be modeled by adding jumps into the dynamic of the underlyng risky
asset. Because of this, an alternative way to price European option on CPPI is to come back to a continuous time setting
and to consider a jump diffusion model for the dynamics of the underlying risky asset. The first work in this direction
is provided by Wang and Tsoi (2013). In particular, they developed a (semi-)closed formula to price European option
written on CPPI strategy when the underlying risky asset evolves according to the model of Merton (1976). Moreover,
since in a jump diffusion setting the market is not complete, the payoff of these particular contingent claims is no more
attainable. For this reason the authors developed a particular hedging strategy for this kind of model, the so-called
mean-variance hedging.

5.2 Structured product written on GMEE-CPPI

The use of options linked to portfolio insurance strategies can be considered a suitable way to obtain a downside
protection when the underlying risky asset has experienced heavy losses during the investmente time horizon. How-
ever, this method is unable to offer an equity market participation in the event that, after a severe market draw-down,
the risky asset recover nicely. To overcome the latter scenario, Di Persio et al. (2021) introduced a modified version of
the the standard CPPI, by defining a minimum threshold which is always invested in the risky asset. They called this
new kind of strategy CPPI with guaranteed minimum equity exposure (GMEE-CPPI). In particular, they introduced
the GMEE αmin with 0 ≤ αmin ≤ 1 in eq. (2) obtaining

αt := max

{
min

{
m(V CPPIt − Ft)

V CPPIt

, L

}
, αmin

}
. (27)
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Thanks to equation (27), the equity participation will never go below αmin even in case of a severe market drop,
but, at the same time, it would mean that this adjusted CPPI allocation implemented in a real portfolio might not be
able to protect the invested capital. For this reason the authors introduced a new structured product consisting in a
combination of a CPPI strategy and an OBPI one. In particular, this new strategy can be summarized into the following
key points: (i) a significant proportion of the initial portfolio value is invested in time-congruent zero coupon bond
following the classical OBPI approach described in Section 2. (ii) the remaining part of the portfolio is put into an
exotic call option linked to a GMEE-CPPI strategy where the CPPI portfolio has an equity index as risky asset. This
innovative method overcome at the same time to different problems inasmuch the use of the OBPI is able to drastically
reduce the cash-in risk and the use of GMEE-CPPI as underlying risky asset is able to ensure some equity market
participation.

6. Conclusion and further research

In the present paper, we have reviewed the main properties of Portfolio Insurance strategies and the main risk
embedded in these particular kinds of dynamic hedging processes, the so-called cash-in risk. We focus on modeling
and hedging cash-in risk embedded in the prominent portfolio insurance strategy, the Constant Proportion Portfolio
Insurance (CPPI). First of all, we introduce the main properties of the CPPI strategy within three different frameworks.
In particular, we consider the CPPI strategy when the underlying risky asset follows (i) a geometric Brownian motion,
(ii) a more general jump-diffusion process, and (iii) a geometric Brownian motion restricting trading to discrete-time.
We provide an in-depth analysis of how cash-in risk can be modeled and hedged for each setting mentioned above.
Then, we analyze the most important modifications of the CPPI strategy designed to reduce the probability of cash-in
risk. The first one is obtained by considering a stochastic time-varying definition of the floor process, the so-called
Time-Invariant Portfolio Protection (TIPP). The second one is obtained by varying the multiplier over time according
to market fluctuations, the so-called Variable Proportion Portfolio Insurance (VPPI). Lastly, we have reviewed an-
other way to hedge gap risk based on the use of options linked to CPPI strategy. Within this framework, we analyze
a two-step principal protection strategy obtained by combining a modification of the CPPI, the so-called CPPI with
guaranteed minimum equity exposure, and a classical OBPI. As discuss in Section 5.2, this novel approach introduced
for the first time in Di Persio et al. (2021), represents a concrete innovation in the literature related to portfolio protec-
tion strategies. In particular, the authors provided historical simulations showing how the risk-return profile changes,
according to the market environment, and describing the option price behaviors under different frameworks, namely,
when the underlying is a pure risky asset, a CPPI strategy, or a CPPI–GMEE based one. The authors argued that this
new method provides a valuable compromise between a pure risky asset investment strategy and a traditional CPPI
one. In fact, it ensures avoiding the cash-in risk, although it is rather more expensive than the options on standard
CPPI. Along this line of research, further contributions could be made by including more structured derivatives eval-
uated concerning general stochastic volatility models, with the presence of jumps. Moreover, other inputs for further
research can be represented by furnishing a sensitivity analysis of the CPPI-GMEE approach w.r.t. to changes of mar-
ket parameters and a comparison between options on CPPI with options on other dynamic asset allocation strategies,
such as the VolTarget ones, also allowing the CPPI-GMEE to have lock-in elements.
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