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Abstract
The identification of factors associated with mental and
behavioural disorders in early childhood is critical both
for psychopathology research and the support of pri-
mary health care practices. Motivated by the Millen-
nium Cohort Study, in this paper we study the effect of a
comprehensive set of covariates on children’s emotional
and behavioural trajectories in England. To this end, we
develop a quantile mixed hidden Markov model for joint
estimation of multiple quantiles in a linear regression
setting for multivariate longitudinal data. The novelty
of the proposed approach is based on the multivariate
asymmetric Laplace distribution which allows to jointly
estimate the quantiles of the univariate conditional dis-
tributions of a multivariate response, accounting for
possible correlation between the outcomes. Sources of
unobserved heterogeneity and serial dependency due
to repeated measures are modelled through the intro-
duction of individual-specific, time-constant random
coefficients and time-varying parameters evolving over
time with a Markovian structure respectively. The infer-
ential approach is carried out through the construc-
tion of a suitable expectation–maximization algorithm
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without parametric assumptions on the random effects
distribution.
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1 INTRODUCTION

The occurrence of stressful life events, family environment and poverty is key contributing risk
factors to children’s emotional and behavioural disorders (Bradley & Corwyn, 2002; Flouri et al.,
2010; Goodman et al., 2003; Goodnight et al., 2012; Platt et al., 2016). Mental health problems at
an early age can create considerable distress for the child and the family and can have a significant
impact on the child’s social, emotional and psychological development. Therefore, accurate iden-
tification of mental disorders is important for psychologists and clinicians in order to reduce this
disruption, avoiding that psychological problems will persist into adulthood, and to better under-
stand the problem for timely treatment recommendations (Becker et al., 2004; Mathai et al., 2004;
Van der Meer et al., 2008). This is particularly for children facing major problems where, as risk
factors accumulate, emotional and behavioural problems tend to increase considerably (Trenta-
costa et al., 2008). In this context, one of the most widely and internationally used measure of
child mental health is provided by the Strengths and Difficulties Questionnaire (SDQ, see Good-
man, 1997; Goodman & Goodman, 2009). It offers a balanced coverage of children and young
people’s behaviours, emotions and relationships and it has been designed to measure children’s
emotional and behavioural problems in psychological research. SDQ outcomes are assessed by
diagnostic measures of child disorders, and collected by parent- and teacher-reported measures
of personal, emotional and social development. On one hand, internalizing behaviours are man-
ifested by inward symptoms such as being withdrawn, fearful or anxious; on the other hand,
externalizing behaviours are outward and may be described as aggressive, non-compliant, impul-
sive or fidgety. The SDQ score is the sum of the main caregiver’s responses to a series of items that
describe children’s internalizing and externalizing problems. This covers five different domains:
emotional symptoms, peer problems, conduct problems, hyperactivity and pro-social behaviour.
Each domain is measured by five items, for a total of 25 items. For each item, a score equal to 0 is
given if the response is not true, 1 if it is somewhat true and 2 if it is certainly true. The internaliz-
ing SDQ score is the sum of the scores for responses to the five items in the domains of emotional
and peer problems while the externalizing SDQ score is the sum of responses to the five conduct
problems and hyperactivity items. Therefore, both SDQ scores range from 0 to 20 (for further
details refer to www.sdqinfo.com).

In this paper we focus on emotional and behavioural disorders of children who participated
in the Millennium Cohort Study (MCS), which is a longitudinal birth cohort study following chil-
dren born in the United Kingdom (UK), providing multiple measures of the cohort members’
physical, socio-emotional, cognitive and behavioural development over time. An extensive litera-
ture has examined and documented the effect of mother’s characteristics, neighbourhood context
and family risk factors on children’s trajectories SDQ scores collected by the MCS (see, e.g. Alfò
et al., 2021; Flouri & Sarmadi, 2016; McMunn et al., 2012; Tzavidis et al., 2016; Wickham et al.,
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2017). Thanks to the longitudinal structure of the cohort data, these studies can shed light on the
evolution of SDQ scores over time and on how they are affected by risk factors and other family
and child characteristics.

The analysis of SDQ data poses crucial challenges for statistical modelling. As shown in
Figure 1, the distributions of SDQ scores are non-negative, positively skewed and exhibit atyp-
ical values. Typically, linear random effect models (Diggle et al., 2002; Goldstein, 2011; Laird &
Ware, 1982; Lindsey, 1999) have been implemented with much of the focus being univariate and
centred on the conditional mean of the distribution given a set of covariates. Nevertheless, mod-
elling the conditional mean may not offer the best summary as linear models perform badly with
non-Gaussian data. Moreover, it is possible that the effect of certain risk factors on the SDQ scores
is not the same across the SDQ distribution. Indeed, there is empirical evidence to suggest that
socio-economic and parental factors have a more pronounced effects at the top end where chil-
dren display a high, perhaps abnormal, level of adjustment problems than at the bottom end of
the distribution (see e.g. Kiernan & Huerta, 2008; Tzavidis et al., 2016). It is therefore important
to identify the predictors of children’s disorders, not only at the average but more importantly, in
the upper part of the SDQ distribution as this relates to high-risk youths having elevated levels of
mental health and conduct problems.

In this context, a quantile regression approach can be more appropriate for getting a complete
picture of the entire conditional distribution of children’s difficulties than ordinary regression
around the mean. Quantile regression provides a way to model the conditional quantiles of a
response variable with respect to a set of covariates and may reveal how their effect varies at
different parts of the response distribution. Quantile regression methods have become widely
used in literature because they are suitable in those situations where skewness, fat-tails, outliers,
truncation, censoring and heteroscedasticity arise, and they have been implemented in a wide
range of different fields, both in a frequentist paradigm and in a Bayesian setting. For a detailed
review and list of references see Koenker (2005) and Koenker et al. (2017).

Owing to the longitudinal structure of the MCS cohort data (measurements recorded on the
same individuals), the potential association between dependent observations should be taken into

F I G U R E 1 Histogram for Strengths and Difficulties Questionnaire internalizing (left) and externalizing
(right) problems scores
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account in order to provide correct inference. Within the quantile regression literature, random
effects models have been presented to accommodate time-constant, within-subject correlation
and between subject heterogeneity: Liu and Bottai (2009) and Geraci and Bottai (2014) proposed
to add time-constant individual-specific random coefficients in the regression model to capture
unobserved heterogeneity. However, when analysing internalizing and externalizing problems, it
is reasonable to expect that individual temporal trajectories of SDQ scores vary from child to child.
Figure 2 shows the individual trajectories of SDQ scores for a random subset of children, where
the overall trend, as estimated by a local polynomial regression, is shown in red along with the
95% confidence bands (highlighted in grey). While the general trend is relatively constant over
time, individual trajectories show rapid changes, especially ‘U’-shaped curves for externalizing
score measurements. For example, trajectories for children exposed to ‘high risk’ circumstances
may become less salient with age, whereas for children at ‘low risk’, they could become more
salient as they make the transition into adolescence. This possibly translates to decreasing and
increasing intercepts in the dynamics of SDQ levels that require specific modelling tools. In this
case, time-constant random effects can lead to biased estimates (Bartolucci & Farcomeni, 2009;
Farcomeni, 2012) meanwhile, their temporal evolution can be better captured by the introduction
of time-dependent intercepts.

To account for serial heterogeneity, Farcomeni (2012) suggested the use of hidden Markov
models (HMMs). In such a context, a latent homogeneous Markov chain is defined in order to
capture the temporal evolution of unobserved heterogeneity and state-dependent parameters are
introduced to account for response variability due to time-varying omitted covariates. To handle
longitudinal data where both time-constant and time-varying sources of unobserved heterogene-
ity are present, it is possible to consider the well-known mixed hidden Markov models (MHMMs,
see Altman, 2007). The MHMM is obtained by combining the features of HMMs and mixed effects
models, encompasses linear mixed models and HMMs as it accommodates time-constant and
time-varying sources of variability jointly. In the application of quantile regression to longitudinal
data, Marino et al. (2018) introduced a mixed hidden Markov quantile regression model for lon-
gitudinal continuous responses, extending the linear quantile mixed model of Geraci and Bottai

F I G U R E 2 Individual trajectories for a random subsample of 30 children for Strengths and Difficulties
Questionnaire internalizing (left) and externalizing (right) problems [Colour figure can be viewed at
wileyonlinelibrary.com]
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(2014) and the linear quantile HMM of Farcomeni (2012). These proposals are, however, designed
for univariate dependent variables and consequently, they do not account for the dependence
structure between multiple outcomes of interest measured longitudinally.

Another important aspect when analysing SDQ scores concerns the dependence structure
between mental and behavioural problems. In the literature, Lilienfeld (2003), Liu (2004),
Cicchetti and Toth (2014) and Alfò et al. (2021) have given empirical proof of the existence
of correlation between SDQ scores, which places children at a greater risk of developing
internalizing–externalizing comorbidity. In this case, univariate approaches completely ignore
the correlation structure between children outcomes; by contrast, a multivariate analysis would
be able to identify the underlying drivers that affect changes in each of the distribution of the SDQ
scores and, at the same time, give valuable insight about the correlation among children disorders.

When multivariate response variables are concerned, however, the univariate quantile regres-
sion method does not straightforwardly extend to higher dimensions since there is no ‘natural’
ordering in a p-dimensional space, for p> 1. As a consequence, the search for a satisfactory notion
of multivariate quantile has led to a flourishing literature on this topic despite its definition is
still a debatable issue (see Alfò et al., 2021; Chakraborty, 2003; Charlier et al., 2020; Chavas, 2018;
Hallin et al., 2010; Koenker et al., 2017; Kong & Mizera, 2012; Merlo et al., 2021; Stolfi et al., 2018
and the references therein for relevant studies). Recently, Petrella and Raponi (2019) generalized
the AL distribution inferential approach of the univariate quantile regression to a multivariate
framework by using the multivariate asymmetric Laplace (MAL) distribution defined in Kotz
et al. (2012). By using the MAL distribution as a likelihood based inferential tool, the authors
sidestep the problem of defining the quantiles of a multivariate distribution, and instead imple-
ment joint estimation for the univariate quantiles of the conditional distribution of a multivariate
response variable given covariates, accounting for possible correlation among the responses.

In this paper, we generalize the work of Petrella and Raponi (2019) by introducing a MHMM
to the longitudinal data setting. From a methodological point of view, we develop a quantile mixed
hidden Markov model (QMHMM) to jointly estimate the quantiles of the univariate conditional
distributions of a multivariate response, accounting for the dependence structure between the
outcomes. This is a flexible approach as time-constant unobserved heterogeneity is described via
individual-specific random coefficients while temporal effects are captured through state-specific
parameters that evolve over time depending on a hidden Markov chain. In order to prevent incon-
sistent parameter estimates due to misspecification of the random effects distribution, we adopt
the non-parametric maximum likelihood (NPML) approach of Lindsay (1983) where the distri-
bution is left unspecified and approximated by a multivariate discrete finite mixture distribution
estimated from the data. Within this scheme, our modelling framework reduces to a multivariate
finite mixture of HMM quantile regressions.

As in Petrella and Raponi (2019), we propose to estimate the model parameters through max-
imum likelihood (ML) by implementing a suitable expectation–maximization (EM) algorithm,
which exploits the Gaussian-mixture representation of the MAL distribution where both the
hidden Markov chain and the random effects parameters are treated as missing data. Using sim-
ulation experiments we assess the validity of the proposed methodology by considering different
data generating processes.

From an applied standpoint, the proposed method is then used to model the quantiles of
the conditional distributions of SDQ scores of children in England by using the MCS data. Our
approach allows to (i) jointly study the effect of demographic and socio-economic risk factors
on internalizing and externalizing disorders in childhood, (ii) investigate whether their effect
is more pronounced for children experiencing high levels of disorders (i.e., high quantiles) and
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(iii) account for the association between SDQ scores and unobserved heterogeneity sources by
including into the model time-constant subject-specific random coefficients, without parametric
assumptions, and time-dependent random intercepts.

With respect to existing approaches in the literature, the introduced QMHMM can be thought
of as a generalization of the univariate QMHMM of Marino et al. (2018) to multivariate longitudi-
nal data. Furthermore, our approach differs substantially from the ones in Kulkarni et al. (2019)
and Alfò et al. (2021). The authors consider, respectively, univariate quantile and M-quantile
(Breckling & Chambers, 1988) regression models with outcome-specific random effects, where
the dependence between responses is captured by time-constant outcome-specific random coeffi-
cients. To the best of our knowledge, this is the first attempt to simultaneously estimate multiple
conditional quantiles for multivariate longitudinal outcomes, that include both time-constant and
time-varying random effects.

The rest of the paper is organized as follows. In Section 3, we introduce the proposed QMHMM
regression framework. In Section 2 we describe the MCS data. Section 4 illustrates the EM-based
ML approach to estimate model parameters together with M-step updates in closed form. In
Section 5 we discuss the empirical application while Section 6 summarizes our conclusions. All
proofs are presented in Appendix A, while the simulation study is presented in Appendix B.

2 THE MCS DATA

The MCS study (http://www.cls.ioe.ac.uk) is a longitudinal, nationally representative study that
follows the lives of around 19,000 young people born across UK in 2000–2002. The MCS is
designed to provide data about children living and growing up in each of the four countries of the
UK namely, England, Wales, Scotland and Northern Ireland, especially for sub-groups of children
living in advantaged and disadvantaged circumstances, for children of ethnic minorities and those
living in Scotland, Wales and Northern Ireland. In addition to children, it provides data about
their families and the broader socio-economic context in which the children live and grow up.

The MCS population is defined as all children born between 1 September 2000 and 31 August
2001 (for England and Wales), and between 24 November 2000 and 11 January 2002 (for Scot-
land and Northern Ireland), living in the UK at age 9 months, and whose families were eligible to
receive child benefits. In order to meet the principle of adequately representing disadvantaged and
ethnic minority children, the population was stratified by UK country. For England, the popula-
tion was stratified, via the stratification of electoral wards extant on 1 April 1998, into three strata.
The first stratum (ethnic stratum) is composed of children living in wards where the proportion of
ethnic minorities was at least 30% in the 1991 Population Census. The second one (disadvantaged
stratum) was based on the Child Poverty Index, recording the proportion of children, in a ward
whose families received means-tested benefits. The cut-off value to define a disadvantaged ward
was 38.4% receiving such benefits, corresponding to the poorest 25% wards in England and Wales
in 1998. The third one (advantaged stratum) consists of all other children. For Wales, Scotland
and Northern Ireland, there were just the disadvantaged and advantaged strata. MCS wards were
randomly selected within each stratum and country; then a list of all children turning 9 months
old during the survey window and living in the selected wards was created. The MCS sample
members were first surveyed when they were around 9 months of age, and cohort members con-
tinue to remain eligible to be surveyed if they remain living in or returning to the UK. Follow-ups
have currently been conducted at 3, 5, 7, 11, 14 and 17 years of age. The main data collection from
parents at the first survey was by a face-to-face computer assisted interview and self-completion
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(CAPI and CASI). The full set of questions, typically lasting 70–75 min went to a main informant,
almost always the mother, and a shorter set of questions, taking around 30 min went to the main
informant’s partner. For further details, please refer to the technical report of Plewis et al. (2007)
and studies of Connelly and Platt (2014) and Joshi and Fitzsimons (2016). This study is widely
regarded as the basis of the most reliable estimates of cognitive development problems in young
people and it has been thoroughly investigated in the fields of child psychology and pedagogy:
see, among others, the works of Griffiths et al. (2011), Goodman and Goodman (2011), Tzavidis
et al. (2016), Bell et al. (2019), Ahn et al. (2018) and Alfò et al. (2021).

In order to analyse the impact of child and mother personal characteristics, neighbourhood
context and family risk factors on children disorders, the following set of predictors is considered.
ALE 11 measures the number, out of 11 events, of potentially stressful life events experienced
by the family between two consecutive sweeps. The events, classified on the basis of the scale
proposed by Tiet et al. (1998), are family member died, negative change in financial situation,
new step-parent, sibling left home, child got seriously sick or injured, divorce or separation, fam-
ily moved, parent lost job, new natural sibling, new stepsibling and mother diagnosed with or
treated for depression. SED 4 measures the household’s socio-economic disadvantage condition
by combining information on overcrowding (more than 1.5 people per room excluding the bath-
room and kitchen), not owning a home, receipt of means-tested income support and income
poverty. Mother’s personal characteristics and distress psychological indicators are included such
as maternal education (no qualification (baseline), university degree or General Certificate of
Secondary Education (GCSE)) and maternal depression, Kessm, measured by the Kessler score
and diagnosed by a doctor. Furthermore, child’s age in years, centred around the mean, age year
scal, the quadratic effect of child’s age, age2 year scal, ethnicity (non-white (baseline) or white)
and gender (female (baseline) or male) were included in the model. Finally, three explanatory
variables evaluate the area characteristics. IMD is a time varying variable which measures neigh-
bourhood deprivation by the index of multiple-deprivation score. A design variable which allows
for the stratification of the MCS sampling design: the stratification variable of the MCS consists
of three categories, namely the advantaged stratum (baseline category), the ethnic stratum, eth
stratum and the disadvantaged stratum, dis stratum. To allow for comparison, the considered
predictors are the same as those in Tzavidis et al. (2016).

The data that we use in this paper are SDQ internalizing, SDQInt, and SDQ externalizing,
SDQExt, scores recorded on children who were observed at all measurement occasions, that is, the
considered sample consists of N = 5342 units and Ti = T = 3, for all i = 1, … , N. As is custom-
ary in child psychology, SDQ scores are treated as though they are continuous variables. Table 1
presents the main descriptive statistics of continuous and categorical variables considered in the
sample. The average values of ALE 11, SED 4 and Kessm are 1.405, 0.555 and 2.597 but, there are
cases with much higher scores as demonstrated by their maximum values. 43% of children have
mothers who hold a degree and 48% have mothers with GCSE or other qualification. Around
50% of children are males and, in relation to ethnicity, 89% of members are white. The sample
also includes 8.2% and 38% of families from the ethnic and disadvantaged strata respectively. Fur-
thermore, the empirical correlation between SDQInt and SDQExt equals to 0.369. As expected,
internalizing and externalizing problems are positively correlated, justifying the joint modelling
approach we adopt in this paper.

This exploratory analysis and all the preliminary considerations raised in the introduction
suggest that a QMHMM that accounts for time-constant and time-dependent unobserved het-
erogeneity sources offers an approach to modelling the data. In order to account for the data
features and provide correct statistical inferences, the modelling approach we propose defines a



424 MERLO et al.

T A B L E 1 Summary statistics for the Millennium Cohort Study (MCS) data

Variable Minimum First quartile Median Meana Third quartile Maximum

SDQInt 0 1 2 2.493 4 19

SDQExt 0 2 5 5.144 7 20

ALE 11 0 1 1 1.405 2 7

SED 4 0 0 0 0.555 1 4

Kessm 0 0 2 2.597 4 24

Degree 43.429

GCSE 47.997

White 89.012

Male 50.337

IMD 1 3 6 5.619 8 10

Eth stratum 8.199

Dis stratum 38.132

aMeans for dummy variables are reported in %.

joint quantile regression for multivariate longitudinal data to study the effects of environmen-
tal, parental and child factors across different quantiles of the SDQ distributions. This can offer a
more complete picture of the determinants of children’s problems useful for clinicians and educa-
tionalists, in order to design programs preventing the onset of psychopathologies and addressing
the incidence of disorders in early childhood.

3 METHODOLOGY

Let Yit = (Y (1)
it , … ,Y (p)

it ) be a continuous p-variate response variable vector and Xit =
(X (1)

it , … ,X (k)
it ) be a k-dimensional vector of explanatory variables for subject i = 1, … , N and

time occasion t = 1, … ,Ti. Let 𝝉 = (𝜏1, … , 𝜏p) denote p quantile indexes with 𝜏j ∈ (0, 1), for
j = 1, … , p and let Sit(𝝉), i = 1,… ,N, t = 1, … ,Ti be a homogeneous, first-order, aperiodic and
irreducible hidden Markov chain defined over a discrete states space  = {1, … ,M} with initial
and transition probabilities denoted by q = (q1, … , qM) and Q = {qjk} over  ×  common to all
subjects respectively. Finally, let bi(𝝉) be a time-constant, subject-specific, random effects matrix
having distribution fb(⋅ |Xit, 𝝉) with support , where E(bi(𝝉)) = 0 is used for parameter identifi-
ability. We assume that the 𝜏jth quantile of each of the jth components of Yit can be modelled as
a function of explanatory variables. Let 𝜷(𝝉) = (𝜷1(𝝉), … , 𝜷p(𝝉)) be the k × p matrix of unknown
quantile regression coefficients. Then, the QMHMM is defined as follows:

Yit = Xit𝜷(𝝉) + Zitbi(𝝉) + Wit𝜶Sit (𝝉) + 𝜀it(𝝉) (1)

where Zit is a subset of Xit, Wit is a further subset of Xit whose effects are assumed to vary over time,
𝜀it(𝝉) denotes a p-dimensional vector of error terms with univariate component-wise quantiles (at
fixed levels 𝜏1, … , 𝜏p respectively) equal to zero and where the coefficients matrix 𝜶Sit(𝝉) evolves
over time according to the hidden Markov chain, Sit(𝝉), and takes one of the values in the set
{𝜶1(𝝉), … ,𝜶M(𝝉)}. In particular, the parameters bi(𝝉), i = 1, … ,N, and {𝜶1(𝝉), … ,𝜶M(𝝉)} are
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designed to account for within-individual dependence by considering unobserved time-constant
and time-varying sources of unobserved heterogeneity respectively.

Our objective is to provide joint estimation of the p quantiles of the univariate conditional
distributions of Yit taking into account for potential correlation among the dependent variables.
The QMHMM framework is based on the following central assumptions, which are standard in
mixed effects models. The random effects bi(𝝉) are independent of the hidden Markov chain,
Sit(𝝉), as they are meant to capture different unobserved characteristics, and furthermore, it is
assumed that the covariates Xit are uncorrelated with bi(𝝉), that is fb(⋅ |Xit, 𝝉) = fb(⋅ | 𝝉). Regard-
ing the longitudinal responses, they must satisfy the contemporary dependence and conditional
independence conditions. The former states that for the ith subject at time t, the distribution of
Yit, given the state variables (Si1(𝝉), … , SiTi(𝝉)) and the time-constant individual-specific ran-
dom effects bi(𝝉), depends only on the current state Sit(𝝉); the latter entails that the responses
(Yi1, … ,YiTi ) are conditionally independent, given the hidden state occupied at time t by Sit(𝝉)
and the individual-specific random coefficients bi(𝝉). These assumptions imply that the following
equality holds:

fY(yit |yi1∶t−1, xi1∶t−1, si1∶t,bi, 𝝉) = fY(yit |xit, sit,bi, 𝝉) (2)

where yi1∶t−1 and xi1∶t−1 represent the history of the responses and the observed covariates for the
ith subject up to time t − 1, respectively, and si1∶t is the individual sequence of states up to time t.

Generalizing the approach of Petrella and Raponi (2019), for the model in (1) we consider the
MAL distribution, (𝝁,D�̃�,D𝚺D), (see Kotz et al., 2012) having density function:

fY(yit |xit, sit,bi, 𝝉) =
2 exp{(yit − 𝝁it)′D−1𝚺−1�̃�}

(2𝜋)p∕2|D𝚺D|1∕2

(
m̃it

2 + d̃

)𝜈∕2

K𝜈

(√
(2 + d̃)m̃it

)
, (3)

where the location parameter 𝝁it is defined by the MHMM:

𝝁it = 𝝁(sit,bi, 𝝉) = Xit𝜷(𝝉) + Zitbi(𝝉) + Wit𝜶sit (𝝉), (4)

D�̃� is the skew parameter with D = diag[d1, … , dp], dj > 0 and �̃� = [𝜉1, 𝜉2, … , 𝜉p]′ having
generic element 𝜉j =

1−2𝜏j

𝜏j(1−𝜏j)
, j = 1, … , p. 𝚺 is a p × p positive definite matrix such that 𝚺 = 𝚲𝚿𝚲,

with 𝚿 being an unstructured correlation matrix of dimension p and 𝚲 = diag[𝜎1, … , 𝜎p], with
𝜎2

j = 2
𝜏j(1−𝜏j)

, j = 1,… , p. Moreover, m̃it = (yit − 𝝁it)′(D𝚺D)−1(yit − 𝝁it), d̃ = �̃�
′𝚺−1�̃�, and K𝜈(⋅)

denotes the modified Bessel function of the third kind with index parameter 𝜈 = (2 − p)∕2.
One of the key benefits of the MAL distribution is that, using Equations (1) and (3), and follow-

ing Kotz et al. (2012), Y ∼ (𝝁,D�̃�,D𝚺D) can be written as a location-scale mixture, having
the following representation:

Y = 𝝁 + D�̃�C̃ +
√

C̃D𝚺1∕2Z (5)

where Z ∼ p(0p, Ip) denotes a p-variate standard normal distribution and C̃ ∼ exp(1) has a
standard exponential distribution, with Z being independent of C̃. In particular, the constraints
imposed on �̃� and 𝚲 represent necessary conditions for model identifiability for any fixed quan-
tile level 𝜏1, … , 𝜏p and guarantee that 𝝁( j)

it is the 𝜏jth conditional quantile function of Y ( j)
it given

Sit(𝝉) and bi, for j = 1, … , p. As shown in Petrella and Raponi (2019), using this approach we
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are able to conduct inference on the quantiles of the univariate conditional distributions of Yit
simultaneously, taking into account the possible correlation between the outcomes. For a given
quantile level 𝝉 , following Kotz et al. (2012) and by simple calculations it is possible to show that
the covariance matrix of Y can be written as:

S = D(�̃��̃�′ + 𝚲𝚿𝚲)D, (6)

where the off-diagonal elements of S provide an indirect measure of association between the
outcomes.

Two remarks are also noteworthy regarding the methodology introduced above. First, our
model can be thought of as an extension to multivariate longitudinal data of: (i) the linear quan-
tile hidden Markov model by Farcomeni (2012) when Wit = 1 and bi(𝝉) = 0 for all i = 1, … , N
and t = 1, … ,Ti; (ii) the linear quantile mixed model (LQMM) proposed in Geraci and Bottai
(2014) when there is only one state of the hidden Markov chain, that is, M = 1. Second, the pro-
posed approach differs substantially from the ones by Kulkarni et al. (2019) and Alfò et al. (2021).
In the former, the authors consider univariate quantile regression models where the dependence
across time and responses is captured by time-constant outcome-specific normally distributed
random coefficients. In the latter, the proposed method targets a different set of location param-
eters, that is, the M-quantiles (Breckling & Chambers, 1988) of the distribution of the dependent
variables, which are more difficult to interpret than quantiles. The authors then define univari-
ate M-quantile (Breckling & Chambers, 1988) regression models with outcome-specific random
effects, where dependence between outcomes for each unit is introduced by assuming correlated,
subject-specific random effects in the univariate models.

Estimation of model parameters can be pursued using a ML approach. To ease the nota-
tion, unless specified otherwise, hereinafter we omit the quantile levels vector 𝝉 , yet all model
parameters are allowed to depend on the p quantile indexes. Thus, let us denote by 𝚽𝝉 =
(𝜷,D,𝚿,𝜶1, … ,𝜶M ,q,Q) the set of model parameters. Given the modelling assumptions intro-
duced so far, the observed data likelihood is defined by:

L(𝚽𝝉 ) =
N∏

i=1
∫

{∑
Ti

[ Ti∏
t=1

fY(yit |xit, sit,bi)

]
qsi1

Ti∏
t=2

qsit−1sit

}
fb(bi) dbi. (7)

The maximization of the likelihood in Equation (7) generally may prove to be excessively cum-
bersome because it involves a multidimensional integral over the random coefficient distribution
fb(⋅) and a summation over MTi terms for each unit. In addition, the choice of an appropri-
ate distribution for the random effects is not straightforward. Ideally fb(⋅) should be data driven
and resistant to misspecification (Marino & Farcomeni, 2015), otherwise an incorrect distribu-
tional assumption for the random effects has unfavourable influence on statistical inferences
(see Agresti et al., 2004; Maruotti, 2011; Neuhaus et al., 2013). In the next section, we discuss
how we specify the random effects distribution and how we may avoid evaluating the integral in
Equation (7) for ML estimation.

3.1 Specification of the random coefficient distribution

In the literature, typically the Gaussian distribution is a convenient choice for fb(⋅) from a
computational point of view. In this case, we may approximate the integral in Equation (7) using
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Gaussian quadrature or adaptive Gaussian quadrature schemes (see Crowther et al., 2014; Pin-
heiro & Chao, 2006; Rabe-Hesketh et al., 2005). A disadvantage of such approaches lies in the
required computational effort, which is exponentially increasing with the number of the random
parameters. For this reason, potential alternatives proposed the use of simulation methods such
as Monte Carlo and simulated ML approaches (McCulloch, 1997). However, for samples of finite
size and short individual sequences, these methods may not provide a good approximation of the
true mixing distribution (Alfò et al., 2017). As a robust alternative to the Gaussian choice, the
multivariate symmetric Laplace or multivariate Student t distributions have been considered by
Geraci and Bottai (2014) and Farcomeni and Viviani (2015). However, a parametric assumption
on the distribution of the random coefficients could be rather restrictive and misspecification of
the mixing distribution can lead to biased parameter estimates (see Alfò & Maruotti, 2010). Fol-
lowing Marino et al. (2018), in this work we exploit the approach based on the non-parametric
maximum likelihood (NPML) estimation of Laird (1978) and extend it to the multivariate con-
text. In particular, we do not parametrically specify fb(⋅) but we approximate it by using a discrete
distribution defined on G < N multivariate locations, bg(𝝉), with associated probabilities defined
by:

𝜋g(𝝉) = Pr(bi(𝝉) = bg(𝝉)), (8)

with 𝜋g ≥ 0, ∀g = 1, … , G and
∑G

g=1 𝜋g = 1. More concisely, we can write:

bi(𝝉) ∼
G∑

g=1
𝜋g(𝝉)𝛿bg (𝝉), (9)

where 𝛿𝜃 is a one-point distribution putting a unit mass at 𝜃. With this approach, the paramet-
ric problem is thus converted to a semiparametric one, where bg(𝝉) and 𝜋g(𝝉) define the discrete
probability distribution of the random effects defined on G distinct support points. In this con-
text, time-constant unobserved heterogeneity in the data is represented by a finite mixture with
unknown proportions 𝜋g(𝝉) and locations bg(𝝉) common to all subjects in the gth group. Since
locations and masses are completely free to vary over the corresponding support, this is a flexible
method that can readily accommodate a wide range of shapes, including fat-tailed and asym-
metric distributions, and it is more robust against deviations from model assumptions. For the
interested reader, a detailed survey about this method can be found in Aitkin and Alfó (1998),
Alfò and Aitkin (2000), Aitkin and Alfò (2003), Alfò et al. (2017, 2021) and Merlo et al. (2021), for
example.

In this setting, the observed data likelihood in Equation (7) reduces to:

L(𝚽𝝉 ) =
N∏

i=1

G∑
g=1

{∑
Ti

[ Ti∏
t=1

fY(yit |xit, sit,bg)

]
qsi1

Ti∏
t=2

qsit−1sit

}
𝜋g, (10)

where 𝚽𝝉 = (𝜷,D,𝚿,b1, … ,bG, 𝜋1, … , 𝜋G,𝜶1, … ,𝜶M ,q,Q) denotes the vector of model
parameters and fY(yit |xit, sit,bg) represents the response distribution of unit i being in the state
sit at time t and belonging to the gth component of the finite mixture, which is assumed to follow
the MAL black as in Equation (3) with location parameter given by:

𝝁it = 𝝁(sit,bg, 𝝉) = Xit𝜷(𝝉) + Zitbg(𝝉) + Wit𝜶sit(𝝉). (11)
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By looking at the likelihood in Equation (10), one can see that it resembles the likelihood of
a finite mixture of HMM models with G homogeneous sub-populations where the presence of
latent time-constant heterogeneity is described by discrete multivariate random effects. From the
estimation perspective, locations bg and corresponding probabilities 𝜋g are unknown parameters
which need to be estimated along with other model parameters. The number of mixture com-
ponents G is unknown, and it is usually treated as fixed and estimated via penalized likelihood
criteria (see e.g. Böhning, 1999). Furthermore, as an important by-product, the computational
complexity of the likelihood evaluation in Equation (10) is of linear order with respect to G, which
greatly facilitates the implementation of EM-type algorithm, as is described in the following
section.

4 MAXIMUM LIKELIHOOD ESTIMATION AND
INFERENCE

As mentioned in the previous sections, the MAL density represents a convenient tool to jointly
model the univariate quantiles of the conditional distribution of a multivariate response variable
in a quantile regression framework. In this section we introduce a ML approach to estimate and
make inference on model parameters and build a suitable EM algorithm (Dempster et al., 1977).
We will show that the M-step update of all model parameters can be easily obtained in closed
form, hence reducing the computational burden of the algorithm compared to direct maximiza-
tion of the likelihood in Equation (10). Specifically, we derive the EM algorithm by exploiting the
Gaussian location-scale mixture representation in Equation (5) of the MAL distribution under
the constraints on �̃� and 𝚲.

4.1 The EM algorithm

The EM algorithm alternates between an expectation (E) step, which defines the expectation
of the complete log-likelihood evaluated of the current parameters estimates, and a maxi-
mization (M) step, which computes parameter estimates by maximizing the expected com-
plete log-likelihood obtained in the E-step. The complete log-likelihood, the expected complete
log-likelihood function and the optimal parameter estimators are given below in the following
propositions.

Given the representation in Equation (10), let us denote by wig the indicator variable that is
equal to 1 if the ith unit belongs to the gth component of the finite mixture, and 0 otherwise.
Similarly, let uitj be equal to 1 if unit i is in state j at time t and 0 otherwise; let vitjk be equal to
1 if unit i is in state j at time t − 1 and in state k at time t, and 0 otherwise. Finally, we denote
by zitjg the indicator of the ith individual being in state j at time t and coming from the gth com-
ponent of the mixture. The expected complete data log-likelihood is presented in the following
proposition.

Proposition 1 For any fixed 𝝉 = (𝜏1, … , 𝜏p), G mixture components and M hidden states, the
complete data log-likelihood function is proportional to:

𝓁c(𝚽𝝉 ) ∝
N∑

i=1

{ G∑
g=1

wig log 𝜋g +
M∑

j=1
ui1j log qj +

Ti∑
t=2

M∑
j=1

M∑
k=1

vitjk log qjk
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− 1
2

Ti log |D𝚺D| + Ti∑
t=1

M∑
j=1

G∑
g=1

zitjg(Yit − 𝝁it)′D−1𝚺−1�̃�

− 1
2

Ti∑
t=1

M∑
j=1

G∑
g=1

zitjg
1

C̃itjg
(Yit − 𝝁it)′(D𝚺D)−1(Yit − 𝝁it)

−1
2
�̃�
′𝚺−1�̃�

Ti∑
t=1

M∑
j=1

G∑
g=1

zitjgC̃itjg

}
, (12)

where C̃itjg is a latent variable that follows an exponential distribution with parameter 1.

In the E-step of the algorithm, the presence of the unobserved indicator variables wig, uitj, vitjk
and zitjg is handled by taking their conditional expectation given the observed data and the current
parameter estimates. Calculation of such quantities may be addressed via an adaptation of the
forward and backward variables; see Welch (2003). Similarly, the conditional expectations of 1

C̃itjg

and C̃itjg are considered.
For the implementation of the algorithm, forward and backward variables are defined for the

longitudinal measures. We define the probability of observing the partial sequence ending up in
state j at time t, given the gth component, as:

ait( j, g) = f (yi1∶t, Sit = j|bg) and ai1( j, g) = qjf (yi1|Si1 = j,bg). (13)

The quantity ait( j, g) can be rewritten using the following recurrence relationship:

ait( j, g) =
M∑

h=1
ait−1(h, g)qhjf (yit |Sit = j,bg). (14)

Backward variables are defined as the probability of the longitudinal sequence from time t + 1
to the last available observation Ti, conditional on being in state j at time t, given the gth
component:

bit( j, g) = f (yit+1∶Ti
|Sit = j,bg) and biTi ( j, g) = 1. (15)

Accordingly, the backward variable bit( j, g) can be rewritten as:

bit( j, g) =
M∑

k=1
bit+1(k, g)qjk f (yit+1 |Sit+1 = k,bg). (16)

Finally, the expected values of wig,uitj, vitjk and zitjg can be computed as:

ŵig =
𝜋g
∑M

j=1aiTi( j, g)∑G
g=1𝜋g

∑M
j=1aiTi ( j, g)

,

ẑitjg =
ait( j, g)bit( j, g)𝜋g∑G

g=1
∑M

j=1ait( j, g)bit( j, g)𝜋g
,
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ûitj =
G∑

g=1
ẑitjg,

v̂itjk =
∑G

g=1ait−1( j, g)qjkf (yit |Sit = k,bg)bit(k, g)𝜋g∑G
g=1

∑M
j=1

∑M
k=1ait−1( j, g)qjkf (yit |Sit = k,bg)bit(k, g)𝜋g

. (17)

By substituting the corresponding posterior expectations in Equation (17) into the complete data
likelihood in Equation (12), the expected complete data log-likelihood function is provided in the
following proposition.

Proposition 2 For any fixed 𝝉 = (𝜏1, … , 𝜏p), G mixture components and M hidden states, the
expected complete data log-likelihood function is proportional to:

(𝚽𝝉 ) ∝
N∑

i=1

{ G∑
g=1

ŵig log 𝜋g +
M∑

j=1
ûi1j log qj +

Ti∑
t=2

M∑
j=1

M∑
k=1

v̂itjk log qjk

− 1
2

Ti log |D𝚺D| + Ti∑
t=1

M∑
j=1

G∑
g=1

ẑitjg(Yit − 𝝁it)′D−1𝚺−1�̃�

− 1
2

Ti∑
t=1

M∑
j=1

G∑
g=1

ẑitjg ̂̃zitjg(Yit − 𝝁it)′(D𝚺D)−1(Yit − 𝝁it)

−1
2
�̃�
′𝚺−1�̃�

Ti∑
t=1

M∑
j=1

G∑
g=1

ẑitjg ̂̃citjg

}
, (18)

where

̂̃citjg =
( m̃itjg

2 + d̃

) 1
2

K𝜈+1

(√
(2 + d̃)m̃itjg

)
K𝜈

(√
(2 + d̃)m̃itjg

) , ̂̃zitjg =
(

2 + d̃
m̃itjg

) 1
2

K𝜈+1

(√
(2 + d̃)m̃itjg

)
K𝜈

(√
(2 + d̃)m̃itjg

) − 2𝜈
m̃itjg

,

(19)
with

m̃itjg = (yit − 𝝁it)′(D𝚺D)−1(yit − 𝝁it), d̃ = �̃�
′𝚺−1�̃�. (20)

Therefore, the EM algorithm can be implemented as follows:
E-step: At rth iteration of the algorithm, let �̂�(r−1)

𝝉 denote the current parameter estimates.
Then, conditionally on the observed data and �̂�(r−1)

𝝉 , calculate the conditional expectations in
Equations (17) and (19). We denote such quantities ŵ(r)

ig , ẑ(r)itjg, û(r)
itj , v̂(r)itjk, and ̂̃c(r)itjg, ̂̃z

(r)
itjg.

M-step: Use ŵ(r)
ig , ẑ(r)itjg, û(r)

itj , v̂(r)itjk, and ̂̃c(r)itjg, ̂̃z
(r)
itjg to maximize (𝚽𝝉 | �̂�(r−1)

𝝉 ) with respect to 𝚽𝝉 , and
obtain the update parameter estimates. Based on the introduced modelling assumptions, the max-
imization can be partitioned into orthogonal subproblems, that is, the maximization with respect
to the fixed, hidden Markov chain and discrete mixing distribution parameters can be performed
separately. The initial probabilities qj, transition probabilities qjk and mixing proportions 𝜋g are
estimated by:
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q̂(r)
j =

∑N
i=1û(r)

i1j

N
, q̂(r)

jk =

∑N
i=1

∑Ti
t=1v̂(r)itjk∑N

i=1
∑Ti

t=1
∑M

k=1v̂(r)itjk

, �̂�
(r)
g =

∑N
i=1ŵ(r)

ig

N
. (21)

If we let Sit = j, this implies that 𝜶sit = 𝜶j and the M-step updates of model parameters 𝜷, bg, 𝜶j,
𝚺 and D, are given in the following proposition.

Proposition 3 The values of 𝜷, bg, 𝜶j, 𝚺 and D maximizing Equation (18) are:

�̂�
(r) =

( N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ(r)itjg
̂̃z(r)itjgX′

itXit

)−1 ( N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ(r)itjg
̂̃z(r)itjgX′

itỸit

−
N∑

i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

z(r)itjgX′
it�̃�

′D(r−1)

)
, (22)

where Ỹit = Yit − Zitb̂
(r−1)
g − Wit�̂�

(r−1)
j .

b̂
(r)
g =

( N∑
i=1

Ti∑
t=1

M∑
j=1

ẑ(r)itjg
̂̃z(r)itjgZ′

itZit

)−1 ( N∑
i=1

Ti∑
t=1

M∑
j=1

ẑ(r)itjg
̂̃z(r)itjgZ′

itỸit −
N∑

i=1

Ti∑
t=1

M∑
j=1

z(r)itjgZ′
it�̃�

′D(r−1)

)
,

(23)
where Ỹit = Yit − Xit�̂�

(r) − Wit�̂�
(r−1)
j .

�̂�
(r)
j =

( N∑
i=1

Ti∑
t=1

G∑
g=1

ẑ(r)itjg
̂̃z(r)itjgW′

itWit

)−1 ( N∑
i=1

Ti∑
t=1

G∑
g=1

ẑ(r)itjg
̂̃z(r)itjgW′

itỸit −
N∑

i=1

Ti∑
t=1

G∑
g=1

z(r)itjgW′
it�̃�

′D(r−1)

)
,

(24)
where Ỹit = Yit − Xit�̂�

(r) − Zitb̂
(r)
g .

�̂�(r) = 1∑N
i=1Ti

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ(r)itjg
̂̃z(r)itjgD̂−1(r−1)(Yit − �̂�

(r)
it )

′(Yit − �̂�
(r)
it )D̂

−1(r−1)

+ 1∑N
i=1Ti

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ(r)itjg
̂̃c(r)itjg�̃��̃�

′ − 2∑N
i=1Ti

D̂−1(r−1)
N∑

i=1

Ti∑
t=1

G∑
g=1

M∑
j=1

ẑ(r)itjg(Yit − �̂�
(r)
it )

′�̃�
′
, (25)

where �̂�(r)
it = Xit�̂�

(r) + Zitb̂
(r)
g + Wit�̂�

(r)
j .

Finally, the elements dj, j = 1, … , p of the diagonal scale matrix D are estimated by:

d̂
(r)
j = 1∑N

i=1Ti

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
k=1

ẑ(r)itkg𝜌𝜏(Y
( j)
it − �̂�

( j)
it

(r)), (26)

where 𝜌𝜏(⋅) is the quantile check function of Koenker and Bassett (1978):

𝜌𝜏(u) = u(𝜏 − 1(u < 0)) (27)

and �̂�
( j)
it

(r) is the jth element of the vector �̂�(r)
it .
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The E- and M-steps are alternated until convergence, that is when |�̂�(r)
𝝉 − �̂�(r−1)

𝝉 | is
smaller than a predetermined threshold. In this paper, we set this convergence criterion
equal to 10−6.

Because both the number of components of the finite mixture and hidden states of the Markov
chain are unknown a-priori, we select the optimal value of G and M using the BIC (Schwarz,
1978):

BIC(G,M) = −2𝓁(�̂�𝝉 ) + log(N)𝜈f , (28)

where 𝓁(�̂�𝝉 ) is the observed data log-likelihood in Equation (10) in correspondence of the ML
estimate of 𝚽𝝉 , N is the number of observed individuals and 𝜈f denotes the number of free model
parameters in𝚽𝝉 . Following Marino et al. (2018), to avoid convergence to local maxima and better
explore the parameter space, for fixed 𝝉 , G and M, we fit the QMHMM using a multiple ran-
dom starts strategy with 50 different starting points and retain the solution corresponding to the
maximum likelihood value. We then repeat this procedure for a grid of values of G and M, and
select the best combination of the pair (G, M) corresponding to the lowest BIC value. The valid-
ity of the proposed EM algorithm and model selection procedure have been assessed using also a
simulation exercise (see Appendix B).

Standard errors of model parameters are computed using a non-parametric block bootstrap.
That is, by re-sampling individuals with replacement and retaining the corresponding sequence of
measurements to preserve the within individual dependence structure (see Geraci & Bottai, 2014;
Marino & Farcomeni, 2015; Marino et al., 2018 for example). We refit the model to H bootstrap
samples and approximate the standard error of each model parameter with the square root of the
variance of the matrix:

Ĉov(�̂�𝝉 ) =

√√√√ 1
H − 1

H∑
h=1

(�̂�(h)
𝝉 −𝚽𝝉 )(�̂�

(h)
𝝉 −𝚽𝝉 )′, (29)

where �̂�(h)
𝝉 is the set of parameter estimates for the hth bootstrap sample and𝚽𝝉 denotes the mean

of the model parameters over bootstrap iterations. The standard errors are given by the diagonal
elements of Ĉov(�̂�𝝉 ).

5 ANALYSIS OF THE MILLENNIUM COHORT STUDY DATA

In this section, we analyse internalizing and externalizing data on disorders of children collected
in the MCS dataset. We are interested in investigating the impact of environmental, parental and
child factors across both the distributions of SDQ scores. In order to account for all the data
features described in Section 2, we consider a bivariate QMHMM with time-varying random
intercepts and constant random slopes specified for age to jointly model internalizing and exter-
nalizing disorders. We fitted the proposed model at quantile levels 𝝉 = (0.25, 0.25), 𝝉 = (0.50, 0.50),
𝝉 = (0.75, 0.75) and 𝝉 = (0.90, 0.90). Considering the 75th and 90th percentiles puts emphasis on
children with more severe problems generally associated with higher levels of SDQ scores. We
estimated the QMHMM for a varying number of hidden states (M = 1, … , 8) and mixture compo-
nents (G = 1, … , 8) employing the multi-start strategy described in Section 4, and then selected
the optimal value of the pair (G, M) corresponding to the lowest BIC value. Following Marino
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et al. (2018), to enhance model interpretability and produce meaningful results, we retain only
those solutions ensuring 𝜋g > 0.05 for g = 1, … , G and qj > 0.05 for j = 1, … , M.

In addition to the proposed model, we compare our methodology with two well-known uni-
variate alternatives for modelling longitudinal data: (i) the linear random effects model (LREM)
for the mean with time-constant random intercepts; (ii) the LQMM of Geraci and Bottai (2014)
with time-constant random intercepts, at quantile levels 𝜏, 0.25, 0.50, 0.75 and 0.90. Specifically,
the two models are estimated on SDQInt and SDQExt scores independently. The reason why we
consider the LREM is because it is a popular model for targeting the conditional expectation of the
response given the explanatory variables. While it produces efficient results when the normality
assumptions hold, the LREM could potentially miss out important information related to other
parts of the distribution of the outcome. In this case, the conditional mean may not offer the best
summary; by contrast, the LQMM with a random-intercept specification has a correlation struc-
ture that is simple to estimate while allowing for modelling the entire conditional distribution of
the outcome. However, both models are using a univariate approach, which completely disregards
the possible dependence between the SDQ scores, and assume time-constant random intercepts.
In contrast, the proposed model allows to: (i) study the magnitude and direction of the depen-
dence structure between the responses at different quantile levels of interest; (ii) give additional
insight into the evolution of the SDQ scores over time and the presence of serial heterogeneity
between subjects.

5.1 Results

We start by commenting on the QMHMM results. Table 2 reports point estimates of model param-
eters for the two outcomes and standard errors (in parentheses) based on B = 1000 bootstrap
re-samples. Parameter estimates are displayed in boldface when significant at the standard 5%
level. As one can see, the model selection procedure described in Section 1 leads to an increas-
ing number of mixture components G equal to 3, 5, 5 and 5, and a decreasing number of hidden
states M equal to 5, 4, 3 and 3 at quantile levels (0.25, 0.25), (0.50, 0.50), (0.75, 0.75) and (0.90,
0.90) respectively. The chosen values for G and M confirm the presence of constant and serial
latent heterogeneity in the data, and support the exploratory analysis of individual SDQ trajecto-
ries in Figure 2. Moreover, they allow us to classify children based on the intensity of mental and
behavioural problems.

The second crucial finding is that the coefficient estimates vary with the quantile level 𝝉 and
the effect of the covariates appears to be more pronounced at the right tail of the distribution of
the responses. In particular, increasing adverse life events, socio-economic disadvantage, mater-
nal depression and low maternal education are statistically associated with both SDQ scores and
their impact increases when looking at the upper tail compared to the lower tail of the distribu-
tion. This indicates that an unstable and fragmented family environment has a greater adverse
impact on children facing more problems. Regarding income, there is evidence that poorer chil-
dren are more likely to suffer from both physical and mental health problems (Currie, 2009),
hence the role of family income is likely to be concentrated at low incomes (see Fitzsimons
et al., 2017). Moreover, maternal depression has a more pronounced effect at the top end where
children display critical levels of adjustment problems than at the bottom end of the distribu-
tion (see Kiernan & Huerta, 2008). These considerations suggest that low socioeconomic status
creates stress within the household, causing poorer child health. In relation to gender, males
present lower internalizing problems at low quantiles compared to females, while the estimated
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effect is statistically significant and positive at 𝝉 = (0.9, 0.9). On the other hand, ethnicity and
ethnic stratification variables do not appear to be associated with the responses at the 25th
percentiles.

By looking at the fixed parameter estimates for the SDQExt, we observe that, in contrast with
internalizing scores, boys present more externalizing problems than girls (Flouri & Sarmadi,
2016) and the effect is more exacerbated in the right tail of the distribution. In general, girls are at
lower risk of behavioural problems than boys which experience an increased risk for conduct and
hyperactivity problems (Carona et al., 2014). Stressful life events, socio-economic disadvantage,
maternal depression and maternal education are all significantly associated with internalizing
scores. The effect of the covariates is not uniform across quantiles but it is more apparent as the
quantile level increases. Moreover, the impact of such variables is more pronounced, across the
distribution, on externalizing than on internalizing scores. This is consistent with other studies
on behaviour disorders in child psychopathology claiming that poverty and material deprivation
and education are more strongly related with children’s externalizing problems compared with
internalizing problems (see Costello et al., 2003; Dearing et al., 2006). Overall, point estimates of
regression coefficients are consistent with child development theory, as well as with the results
discussed in Tzavidis et al. (2016) and Alfò et al. (2021).

In order to highlight the practical relevance of the proposed methodology, we compare our
findings with the parameter estimates of the univariate LREM and LQMM reported in Table 3.
At first, we observe that the LQMM results are generally in line with our findings, except for
𝜏 = 0.25. We notice that the estimated parameters for the SDQExt are greater than those for the
SDQInt scores and the effect of the considered covariates increases moving towards the right tail
of the conditional distribution of each outcome, especially at the 90th percentile. Consistently
with the QMHMM, mother’s education and family environmental risk factors are important for
predicting emotional and behavioural disorders in early childhood. Furthermore, males typi-
cally present higher SDQInt and SDQExt problems than females whereas, contrary to the results
obtained from the QMHMM, lower SDQInt scores are generally associated with white children.
Point estimates of the LREM and the LQMM at the median are not similar due to the asymme-
try in SDQ distributions. This is consistent with the graphical analysis in Figure 1, and highlights
the importance of considering a quantile regression approach to assess the heterogeneous impact
of risk factors across the distribution of children’s psychopathologies. To further show that mod-
elling the conditional mean is an unreasonable approach, Figure 3 presents normal probability
plots of level 1 and level 2 residuals of the fitted LREM models. These reveal the presence of
potentially influential observations in the data, indicate severe departures from the Gaussian
assumption of the random-intercepts model for both SDQ outcomes and show that residuals are
skewed.

In addition to that, both the LQMM and LREM analyse children’s disorders by fitting two uni-
variate models separately and hence, they disregard the possible association between the SDQ
scores. In contrast, one of the main benefits of the proposed multivariate approach is the possi-
bility to study the magnitude and direction of the dependence structure between the responses
at different quantile levels of interest. Following Kotz et al. (2012), we can compute the correla-
tion between SDQ scores using Equation (6) and understand whether their association structure
becomes stronger for children with more pronounced problems. In particular, the estimated cor-
relation coefficient, r12, reported in Table 2 gives a measure of tail correlation and, consistently
with the recent work of Alfò et al. (2021), it indicates that internalizing and externalizing disor-
ders are positively associated and this association increases with the quantile level 𝝉 . From the
median to the 90th percentile, the estimated coefficient rapidly increases from 0.211 to 0.738,
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F I G U R E 3 Normal probability plots of level 1 (first column) and level 2 (second column) residuals from
the linear random effects model for Strengths and Difficulties Questionnaire internalizing (first row) and
externalizing (second row) problems

which suggests that children with high levels of internalizing SDQ scores are more likely to
experience or develop externalizing problems, and vice versa. Hence, children may present a
constellation of symptoms comprised of both disorders which is aggravated in disadvantaged
ones by the accumulation of risk factors. This finding is also in line with the existence of posi-
tive covariation among psychiatric diagnoses (see Cicchetti & Toth, 2014; Lilienfeld, 2003; Liu,
2004).

To further justify our empirical strategy, we conclude the analysis by reporting selected
diagnostics for the fitted QMHMM. First, Figure 4 shows the estimated marginal cumula-
tive density functions of the discrete random slopes for both SDQ outcomes. In both plots,
it is clear that the estimated distribution functions depart substantially from the Gaussian
distribution, having pronounced asymmetries. Hence, the underlying assumption of normally
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F I G U R E 4 Estimated cumulative density function of the discrete random slopes for Strengths and
Difficulties Questionnaire internalizing (left) and externalizing (right) problems scores, at the 0.25 (black), 0.50
(red), 0.75 (blue) and 0.90 (orange) quantile levels [Colour figure can be viewed at wileyonlinelibrary.com]

distributed random intercepts in the LQMM and LRE models is inappropriate. In contrast,
the considered discrete mixture approach for the random effects distribution is more flexible
and is able to accommodate possible departures from the Gaussianity assumption (Alfò et al.,
2017).

Second, Tables 2 and 4 summarize the estimated random intercepts 𝜶, initial and transition
probabilities of the hidden Markov chain. Inference about the hidden Markov process gives addi-
tional insight into the evolution of the SDQ scores over time and the serial heterogeneity between
subjects. In this application, the states are not only a tool for modelling time dependence but also
have a practical meaning. The transition matrices describe how, and how frequently, children
move from low to high level of disorders and the random intercepts 𝜶 correspond to different
severities of disorders in children. At first, it is worth noting that the estimated state-dependent
intercepts 𝜶, tend to increase when moving from lower to upper quantiles resulting in higher lev-
els of children’s disorders. For 𝝉 = (0.25, 0.25) (Panel A), the initial probability distribution defined
on  is relatively uniformly distributed and the probability of not moving from states 1 and 4 is
also very high, that is, q̂11 = 0.991 and q̂44 = 0.993 respectively. This implies that almost every
child in the lower tail of the outcomes distributions starts and maintains low-level disorders over
time. If any transition is observed, units tend to move towards states 1 and 4 with lower intercepts
and a reduction in juvenile developmental disorders with temporary jumps to moderate values
of disorders. For 𝝉 = (0.50, 0.50) (Panel B), by looking at the initial probabilities one can see that
half of the units (q̂3 = 0.415) start the study with low values of emotional and behavioural dis-
orders and transitions between states are unlikely. When 𝝉 = (0.75, 0.75) (Panel C), the majority
of children start with moderate values of developmental difficulties (q̂1 + q̂2 > 0.80) and transi-
tions to more severe disorders are more frequent. Finally, by looking at the right tail of the SDQ
score distributions, 𝝉 = (0.90, 0.90) (Panel D), we conclude that, among those children with high
problems, states 2 and 3 are associated with even higher incidence of disorders. Around 60% of
children start the study in state 1 and 91% remain within the same class, with temporary changes
towards more severe level of emotional and behavioural disorders.

http://wileyonlinelibrary.com
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T A B L E 4 Initial probabilities, q, and transition probabilities, Q, estimates for different quantiles

1 2 3 4 5

Panel A: 𝝉 = (0.25, 0.25)

q 0.201 (0.017) 0.111 (0.013) 0.269 (0.017) 0.165 (0.017) 0.254 (0.020)

1 0.991 (0.016) 0.000 (0.000) 0.000 (0.000) 0.009 (0.004) 0.000 (0.029)

2 0.000 (0.002) 0.883 (0.044) 0.007 (0.019) 0.110 (0.008) 0.000 (0.012)

3 0.000 (0.000) 0.089 (0.012) 0.723 (0.032) 0.000 (0.000) 0.187 (0.014)

4 0.003 (0.015) 0.004 (0.042) 0.000 (0.001) 0.993 (0.009) 0.000 (0.013)

5 0.096 (0.003) 0.016 (0.009) 0.027 (0.029) 0.029 (0.000) 0.832 (0.034)

Panel B: 𝝉 = (0.50, 0.50)

q 0.287 (0.019) 0.160 (0.016) 0.415 (0.018) 0.138 (0.014)

1 0.863 (0.036) 0.034 (0.034) 0.071 (0.007) 0.032 (0.024)

2 0.053 (0.017) 0.850 (0.038) 0.000 (0.000) 0.096 (0.013)

3 0.006 (0.031) 0.000 (0.000) 0.967 (0.013) 0.027 (0.034)

4 0.049 (0.015) 0.015 (0.024) 0.067 (0.011) 0.868 (0.036)

Panel C: 𝝉 = (0.75, 0.75)

q 0.541 (0.021) 0.293 (0.017) 0.165 (0.015)

1 0.942 (0.011) 0.006 (0.020) 0.052 (0.029)

2 0.072 (0.004) 0.825 (0.024) 0.103 (0.020)

3 0.185 (0.010) 0.109 (0.015) 0.707 (0.031)

Panel D: 𝝉 = (0.90, 0.90)

q 0.606 (0.015) 0.152 (0.011) 0.242 (0.014)

1 0.913 (0.008) 0.067 (0.025) 0.019 (0.019)

2 0.292 (0.007) 0.605 (0.026) 0.103 (0.012)

3 0.147 (0.004) 0.099 (0.015) 0.754 (0.022)

6 CONCLUSIONS

Longitudinal data allow us to understand the evolution of a certain phenomenon over time. In
this context, it becomes of crucial importance to determine an appropriate modelling framework
to assess the effects of unobserved factors and hidden heterogeneity which can be either time
invariant or time varying; ignoring these factors may induce bias and lead to invalid conclusions.
Moreover, the literature on this topic which is traditionally focused on the conditional mean,
might not provide a good summary of the response distribution. To account for the complex data
structure, this work generalizes the multivariate quantile approach of Petrella and Raponi (2019)
for the analysis of multivariate longitudinal data by combining the features of quantile regres-
sion and MHMMs (Altman, 2007). The proposed model allows for the quantile-specific effects to
be quantified and also permits joint modelling of several outcomes. The model further allows for
different sources of heterogeneity to be distinguished, that is, between individual heterogeneity
and time heterogeneity are modelled through the state-specific effects. In order to avoid possibly
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misleading inferences caused by erroneous assumption on the random effects distribution, we
rely on the NPML estimation theory and we approximate this distribution by a multivariate
discrete latent variable.

As illustrated in the real data application, the proposed method models simultaneously the
quantiles of children’s emotional and behavioural disorders as a function of demographic and
socio-economics risk factors. The results show that behavioural and emotional difficulties are
mainly affected by the family poverty conditions and mother’s characteristics. Such effects are
much stronger in the upper tail of the response distribution, that is, for those children experi-
encing more severe internalizing and externalizing problems. In addition, the analysis reveals
moderate levels of codependency between internalizing and externalizing disorders, that cannot
be detected by univariate models.

The methodology can be further extended to allow for a non-homogeneous hidden Markov
process where transition probabilities are allowed to depend on covariates. Finally, the hidden
Markov chain implicitly assumes that the sojourn time, that is, the number of consecutive time
points that the process spends in a given state, is geometrically distributed. As a further gener-
alization of this work one may consider a semi-Markov process which is designed to relax this
condition by allowing the sojourn time to be modelled by more flexible distributions.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available at https://urldefense.com/v3/
__http://www.cls.ioe.ac.uk__;!!N11eV2iwtfs!s7vhACgBsnIamFuRrItB5EicSzWAyp9h86KEo7gs7
tiIK2yVDpumqSvzQYIkanc6xQKVJYRDUafRBSWDLQ$.

ORCID
Luca Merlo https://orcid.org/0000-0001-5267-5390

REFERENCES
Agresti, A., Caffo, B. & Ohman-Strickland, P. (2004) Examples in which misspecification of a random effects dis-

tribution reduces efficiency, and possible remedies. Computational Statistics & Data Analysis, 47(3), 639–653.
Ahn, J.V., Sera, F., Cummins, S. & Flouri, E. (2018) Associations between objectively measured physical activity

and later mental health outcomes in children: findings from the UK Millennium Cohort Study. Journal of
Epidemiology and Community Health, 72(2), 94–100.

Aitkin, M. & Alfó, M. (1998) Regression models for binary longitudinal responses. Statistics and Computing, 8(4),
289–307.

Aitkin, M. & Alfò, M. (2003) Longitudinal analysis of repeated binary data using autoregressive and random effect
modelling. Statistical Modelling, 3(4), 291–303.

Akaike, H. (1998) Information theory and an extension of the maximum likelihood principle. In: Parzen, E.,
Tanabe, K., Kitagawa, G. Eds. Selected papers of Hirotugu Akaike. Springer Series in Statistics. New York, NY:
Springer, pp. 199–213.

Alfò, M. & Aitkin, M. (2000) Random coefficient models for binary longitudinal responses with attrition. Statistics
and Computing, 10(4), 279–287.

Alfò, M. & Maruotti, A. (2010) Two-part regression models for longitudinal zero-inflated count data. Canadian
Journal of Statistics, 38(2), 197–216.

Alfò, M., Salvati, N. & Ranallli, M.G. (2017) Finite mixtures of quantile and M-quantile regression models. Statistics
and Computing, 27(2), 547–570.

Alfò, M., Marino, M.F., Ranalli, M.G., Salvati, N. & Tzavidis, N. (2021) M-quantile regression for multivariate longi-
tudinal data with an application to the Millennium Cohort Study. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 70(1), 122–146.

Altman, R.M. (2007) Mixed Hidden Markov models: an extension of the Hidden Markov model to the longitudinal
data setting. Journal of the American Statistical Association, 102(477), 201–210.

https://urldefense.com/v3/__http://www.cls.ioe.ac.uk__;!!N11eV2iwtfs!s7vhACgBsnIamFuRrItB5EicSzWAyp9h86KEo7gs7tiIK2yVDpumqSvzQYIkanc6xQKVJYRDUafRBSWDLQ$
https://urldefense.com/v3/__http://www.cls.ioe.ac.uk__;!!N11eV2iwtfs!s7vhACgBsnIamFuRrItB5EicSzWAyp9h86KEo7gs7tiIK2yVDpumqSvzQYIkanc6xQKVJYRDUafRBSWDLQ$
https://urldefense.com/v3/__http://www.cls.ioe.ac.uk__;!!N11eV2iwtfs!s7vhACgBsnIamFuRrItB5EicSzWAyp9h86KEo7gs7tiIK2yVDpumqSvzQYIkanc6xQKVJYRDUafRBSWDLQ$
https://urldefense.com/v3/__http://www.cls.ioe.ac.uk__;!!N11eV2iwtfs!s7vhACgBsnIamFuRrItB5EicSzWAyp9h86KEo7gs7tiIK2yVDpumqSvzQYIkanc6xQKVJYRDUafRBSWDLQ$
https://orcid.org/0000-0001-5267-5390
https://orcid.org/0000-0001-5267-5390


MERLO et al. 441

Bartolucci, F. & Farcomeni, A. (2009) A multivariate extension of the dynamic logit model for longitudinal data
based on a latent Markov heterogeneity structure. Journal of the American Statistical Association, 104(486),
816–831.

Becker, A., Hagenberg, N., Roessner, V., Woerner, W. & Rothenberger, A. (2004) Evaluation of the self-reported SDQ
in a clinical setting: do self-reports tell us more than ratings by adult informants? European Child & Adolescent
Psychiatry, 13(2), ii17–ii24.

Bell, S.L., Audrey, S., Gunnell, D., Cooper, A. & Campbell, R. (2019) The relationship between physical activity,
mental wellbeing and symptoms of mental health disorder in adolescents: a cohort study. International Journal
of Behavioral Nutrition and Physical Activity, 16(1), 138.

Böhning, D. (1999) Computer-assisted analysis of mixtures and applications: meta-analysis, disease mapping and
others, vol. 81. Hertfordshire: CRC Press.

Bradley, R.H. & Corwyn, R.F. (2002) Socioeconomic status and child development. Annual Review of Psychology,
53(1), 371–399.

Breckling, J. & Chambers, R. (1988) M-quantiles. Biometrika, 75(4), 761–771.
Carona, C., Moreira, H., Silva, N., Crespo, C. & Canavarro, M.C. (2014) Social support and adaptation outcomes in

children and adolescents with cerebral palsy. Disability and Rehabilitation, 36(7), 584–592.
Chakraborty, B. (2003) On multivariate quantile regression. Journal of Statistical Planning and Inference, 110(1–2),

109–132.
Charlier, I., Paindaveine, D. & Saracco, J. (2020) Multiple-output quantile regression through optimal quantization.

Scandinavian Journal of Statistics, 47(1), 250–278.
Chavas, J.-P. (2018) On multivariate quantile regression analysis. Statistical Methods & Applications, 27(3), 365–384.
Cicchetti, D. & Toth, S.L. (2014) A developmental perspective on internalizing and externalizing disorders.

Internalizing and Externalizing Expression of Dysfunction, 2, 1–19.
Connelly, R. & Platt, L. (2014) Cohort profile: UK Millennium Cohort Study (MCS). International Journal of

Epidemiology, 43(6), 1719–1725.
Costello, E.J., Compton, S.N., Keeler, G. & Angold, A. (2003) Relationships between poverty and psychopathology:

a natural experiment. Journal of the American Medical Association, 290(15), 2023–2029.
Crowther, M.J., Look, M.P. & Riley, R.D. (2014) Multilevel mixed effects parametric survival models using adaptive

Gauss–Hermite quadrature with application to recurrent events and individual participant data meta-analysis.
Statistics in Medicine, 33(22), 3844–3858.

Currie, J. (2009) Healthy, wealthy, and wise: socioeconomic status, poor health in childhood, and human capital
development. Journal of Economic Literature, 47(1), 87–122.

Dearing, E., McCartney, K. & Taylor, B.A. (2006) Within-child associations between family income and external-
izing and internalizing problems. Developmental Psychology, 42(2), 237.

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–38.

Diggle, P., Diggle, P.J., Heagerty, P., Liang, K.-Y., Heagerty, P.J., Zeger, S. et al. (2002) Analysis of longitudinal data.
Oxford: Oxford University Press.

Farcomeni, A. (2012) Quantile regression for longitudinal data based on latent Markov subject-specific parameters.
Statistics and Computing, 22(1), 141–152.

Farcomeni, A. & Viviani, S. (2015) Longitudinal quantile regression in the presence of informative dropout through
longitudinal-survival joint modeling. Statistics in Medicine, 34(7), 1199–1213.

Fitzsimons, E., Goodman, A., Kelly, E. & Smith, J.P. (2017) Poverty dynamics and parental mental health:
determinants of childhood mental health in the UK. Social Science & Medicine, 175, 43–51.

Flouri, E. & Sarmadi, Z. (2016) Prosocial behavior and childhood trajectories of internalizing and externalizing
problems: the role of neighborhood and school contexts. Developmental Psychology, 52(2), 253.

Flouri, E., Tzavidis, N. & Kallis, C. (2010) Area and family effects on the psychopathology of the Millennium Cohort
Study children and their older siblings. Journal of Child Psychology and Psychiatry, 51(2), 152–161.

Geraci, M. & Bottai, M. (2014) Linear quantile mixed models. Statistics and Computing, 24(3), 461–479.
Goldstein, H. (2011) Multilevel statistical models, vol. 922. John Wiley & Sons.
Goodman, R. (1997) The strengths and difficulties questionnaire: a research note. Journal of Child Psychology and

Psychiatry, 38(5), 581–586.



442 MERLO et al.

Goodman, A. & Goodman, R. (2009) Strengths and difficulties questionnaire as a dimensional measure of child
mental health. Journal of the American Academy of Child & Adolescent Psychiatry, 48(4), 400–403.

Goodman, A. & Goodman, R. (2011) Population mean scores predict child mental disorder rates: validating SDQ
prevalence estimators in Britain. Journal of Child Psychology and Psychiatry, 52(1), 100–108.

Goodman, R., Ford, T., Simmons, H., Gatward, R. & Meltzer, H. (2003) Using the strengths and difficulties question-
naire (SDQ) to screen for child psychiatric disorders in a community sample. International Review of Psychiatry,
15(1–2), 166–172.

Goodnight, J.A., Lahey, B.B., Van Hulle, C.A., Rodgers, J.L., Rathouz, P.J., Waldman, I.D. et al. (2012) A
quasi-experimental analysis of the influence of neighborhood disadvantage on child and adolescent conduct
problems. Journal of Abnormal Psychology, 121(1), 95.

Griffiths, L.J., Dezateux, C. & Hill, A. (2011) Is obesity associated with emotional and behavioural prob-
lems in children? Findings from the Millennium Cohort Study. International Journal of Pediatric Obesity,
6(supplement 3), e423–432.

Hallin, M., Paindaveine, D., Šiman, M., Wei, Y., Serfling, R., Zuo, Y. et al. (2010) Multivariate quantiles and
multiple-output regression quantiles: from L1 optimization to halfspace depth. The Annals of Statistics, 38(2),
635–703.

Joshi, H. & Fitzsimons, E. (2016) The Millennium Cohort Study: the making of a multi-purpose resource for social
science and policy. Longitudinal and Life Course Studies, 7(4), 409–430.

Kiernan, K.E. & Huerta, M.C. (2008) Economic deprivation, maternal depression, parenting and children’s
cognitive and emotional development in early childhood. The British Journal of Sociology, 59(4), 783–806.

Koenker, R. (2005) Quantile regression. Cambridge: Cambridge University Press.
Koenker, R. & Bassett, G. (1978) Regression quantiles. Econometrica: Journal of the Econometric Society, 46(1),

33–50.
Koenker, R., Chernozhukov, V., He, X. & Peng, L. (2017) Handbook of quantile regression. Boca Raton, FL: CRC

Press.
Kong, L. & Mizera, I. (2012) Quantile tomography: using quantiles with multivariate data. Statistica Sinica, 22,

1589–1610.
Kotz, S., Kozubowski, T. & Podgorski, K. (2012) The Laplace distribution and generalizations: a revisit with applica-

tions to communications, economics, engineering, and finance. Berlin∕Heidelberg: Springer Science & Business
Media.

Kulkarni, H., Biswas, J. & Das, K. (2019) A joint quantile regression model for multiple longitudinal outcomes.
AStA Advances in Statistical Analysis, 103(4), 453–473.

Laird, N. (1978) Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American
Statistical Association, 73(364), 805–811.

Laird, N.M. & Ware, J.H. (1982) Random-effects models for longitudinal data. Biometrics, 38(4), 963–974.
Lilienfeld, S.O. (2003) Comorbidity between and within childhood externalizing and internalizing disorders:

reflections and directions. Journal of Abnormal Child Psychology, 31(3), 285–291.
Lindsay, B.G. (1983) The geometry of mixture likelihoods: a general theory. The Annals of Statistics, 11(1), 86–94.
Lindsey, J.K. (1999) Models for repeated measurements. Oxford: Oxford University Press.
Liu, J. (2004) Childhood externalizing behavior: theory and implications. Journal of Child and Adolescent Psychi-

atric Nursing, 17(3), 93–103.
Liu, Y. & Bottai, M. (2009) Mixed-effects models for conditional quantiles with longitudinal data. The International

Journal of Biostatistics, 5(1), 1–24.
Marino, M.F. & Farcomeni, A. (2015) Linear quantile regression models for longitudinal experiments: an overview.

Metron, 73(2), 229–247.
Marino, M.F., Tzavidis, N. & Alfò, M. (2018) Mixed hidden Markov quantile regression models for longitudinal

data with possibly incomplete sequences. Statistical Methods in Medical Research, 27(7), 2231–2246.
Maruotti, A. (2011) Mixed hidden Markov models for longitudinal data: an overview. International Statistical

Review, 79(3), 427–454.
Mathai, J., Anderson, P. & Bourne, A. (2004) Comparing psychiatric diagnoses generated by the strengths and

difficulties questionnaire with diagnoses made by clinicians. Australian & New Zealand Journal of Psychiatry,
38(8), 639–643.

McCulloch, C.E. (1997) Maximum likelihood algorithms for generalized linear mixed models. Journal of the
American Statistical Association, 92(437), 162–170.



MERLO et al. 443

McMunn, A., Kelly, Y., Cable, N. & Bartley, M. (2012) Maternal employment and child socio-emotional behaviour
in the UK: longitudinal evidence from the UK Millennium Cohort Study. Journal of Epidemiology and
Community Health, 66(7), e19.

Merlo, L., Petrella, L. & Raponi, V. (2021) Forecasting VaR and ES using a joint quantile regression and its
implications in portfolio allocation. Journal of Banking & Finance, 133, 106248.

Merlo, L., Maruotti, A. & Petrella, L. (2021) Two-part quantile regression models for semi-continuous longitudinal
data: a finite mixture approach. Statistical Modelling, 1471082X21993603.

Neuhaus, J.M., McCulloch, C.E. & Boylan, R. (2013) Estimation of covariate effects in generalized linear mixed
models with a misspecified distribution of random intercepts and slopes. Statistics in Medicine, 32(14),
2419–2429.

Petrella, L. & Raponi, V. (2019) Joint estimation of conditional quantiles in multivariate linear regression models
with an application to financial distress. Journal of Multivariate Analysis, 173, 70–84.

Pinheiro, J.C. & Chao, E.C. (2006) Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel
generalized linear mixed models. Journal of Computational and Graphical Statistics, 15(1), 58–81.

Platt, R., Williams, S.R. & Ginsburg, G.S. (2016) Stressful life events and child anxiety: examining parent and child
mediators. Child Psychiatry & Human Development, 47(1), 23–34.

Plewis, I., Calderwood, L., Hawkes, D., Hughes, G. & Joshi, H. (2007) Millennium cohort study: technical report on
sampling. London: Centre for Longitudinal Studies.

Rabe-Hesketh, S., Skrondal, A. & Pickles, A. (2005) Maximum likelihood estimation of limited and discrete
dependent variable models with nested random effects. Journal of Econometrics, 128(2), 301–323.

Schwarz, G. (1978) Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Stolfi, P., Bernardi, M. & Petrella, L. (2018) The sparse method of simulated quantiles: an application to portfolio

optimization. Statistica Neerlandica, 72(3), 375–398.
Tiet, Q.Q., Bird, H.R., Davies, M., Hoven, C., Cohen, P., Jensen, P.S. et al. (1998) Adverse life events and resilience.

Journal of the American Academy of Child & Adolescent Psychiatry, 37(11), 1191–1200.
Trentacosta, C.J., Hyde, L.W., Shaw, D.S., Dishion, T.J., Gardner, F. & Wilson, M. (2008) The relations among

cumulative risk, parenting, and behavior problems during early childhood. Journal of Child Psychology and
Psychiatry, 49(11), 1211–1219.

Tzavidis, N., Salvati, N., Schmid, T., Flouri, E. & Midouhas, E. (2016) Longitudinal analysis of the strengths
and difficulties questionnaire scores of the Millennium Cohort Study children in England using M-quantile
random-effects regression. Journal of the Royal Statistical Society: Series A (Statistics in Society), 179, 427–452.

Van der Meer, M., Dixon, A. & Rose, D. (2008) Parent and child agreement on reports of problem behaviour
obtained from a screening questionnaire, the SDQ. European Child & Adolescent Psychiatry, 17(8), 491–497.

Welch, L.R. (2003) Hidden Markov models and the Baum-Welch algorithm. IEEE Information Theory Society
Newsletter, 53(4), 10–13.

Wickham, S., Whitehead, M., Taylor-Robinson, D. & Barr, B. (2017) The effect of a transition into poverty on child
and maternal mental health: a longitudinal analysis of the UK Millennium Cohort Study. The Lancet Public
Health, 2(3), e141–e148.

Yu, K. & Zhang, J. (2005) A three-parameter asymmetric laplace distribution and its extension. Communications
in Statistics—Theory and Methods, 34(9–10), 1867–1879.

How to cite this article: Merlo, L., Petrella, L. & Tzavidis, N. (2022) Quantile mixed
hidden Markov models for multivariate longitudinal data: An application to children’s
Strengths and Difficulties Questionnaire scores. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 71(2), 417–448. Available from: https://doi.org/10.1111/rssc.
12539

APPENDIX A

Proof of Proposition 1 Under the constraints imposed on �̃� and 𝚲, the representation in
Equation (5) implies that:

Y | C̃ = c̃ ∼ p(𝝁 + D�̃�c̃, c̃D𝚺D), C̃ ∼ exp(1). (A1)
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This implies that the joint density function of Y and C̃ is:

fY,C̃(y, c̃) =
exp

{
(y − 𝝁)′D−1𝚺−1�̃�

}
(2𝜋)p∕2|D𝚺D|1∕2

(
c̃−p∕2 exp

{
−1

2
m̃
c̃
− 1

2
c̃(d̃ + 2)

})
. (A2)

Then, the complete log-likelihood function (up to additive constant terms) can be written
as follows:

log 𝓁c(𝚽𝝉 |y, x, c̃, s,b) =
N∑

i=1

{ G∑
g=1

wig log 𝜋g +
M∑

j=1
ui1j log qj +

Ti∑
t=2

M∑
j=1

M∑
k=1

vitjk log qjk

+
Ti∑

t=1

M∑
j=1

G∑
g=1

zitjg log fY,C̃(yit, c̃it |xit, Sit = j,bg)

}
. (A3)

By substituting Equations (A2) in (A3), we obtain:

𝓁c(𝚽𝝉 ) =
N∑

i=1

{ G∑
g=1

wig log 𝜋g +
M∑

j=1
ui1j log qj +

Ti∑
t=2

M∑
j=1

M∑
k=1

vitjk log qjk

− 1
2

Ti log |D𝚺D | + Ti∑
t=1

M∑
j=1

G∑
g=1

zitjg(Yit − 𝝁it)′D−1𝚺−1�̃�

− 1
2

Ti∑
t=1

M∑
j=1

G∑
g=1

zitjg
1

C̃itjg
(Yit − 𝝁it)′(D𝚺D)−1(Yit − 𝝁it)

−1
2
�̃�
′𝚺−1�̃�

Ti∑
t=1

M∑
j=1

G∑
g=1

zitjgC̃itjg

}
. (A4)

▪

Proof of Proposition 2 The E-step of the EM algorithm considers the conditional expectation of
the complete log-likelihood function given the observed data and the current parameter
estimates �̂�(r−1)

𝝉 . The conditional expectations of wig, uitj, vitjk and zitjg can be computed using
standard arguments in the HMM literature as shown in Equation (17). To compute the
conditional expectation of C̃ and C̃−1, in the E-step of the EM algorithm, C̃ is treated as an
additional latent variable and, hence, not observable. Using the joint distribution of Y and
C̃ derived in Equation (A2) and the MAL density of Y given in Equation (3), we have that:

fC̃(C̃ |Y = y) =
fC̃,Y(c̃, y)

fY(y)
=

c̃−p∕2
(

2+d̃
m̃

)𝜈∕2
exp

{
− m̃

2c̃
− c̃(2+d̃)

2

}
2K𝜈

(√
(2 + d̃)m̃

) , (A5)

which corresponds to a generalized inverse Gaussian (GIG) distribution with parameters
𝜈, 2 + d̃, m̃i, that is,1

fC̃(C̃ |Y = y) ∼ GIG(𝜈, d̃ + 2, m̃). (A6)

It follows that

E[C̃ | ⋅] = (
̂̃m

2 + ̂̃d

) 1
2 K𝜈+1

(√
(2 + ̂̃d) ̂̃m

)
K𝜈

(√
(2 + ̂̃d) ̂̃m

) (A7)

1The pdf of a GIG(p, a, b) distribution is defined as fGIG(x; p, a, b) =
(

a
b

)p∕2

2Kp(
√

ab)
xp−1e−

1
2 (ax+bx−1), with a > 0, b > 0 and p ∈ .
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and

E[C̃−1 | ⋅] = (
2 + ̂̃d
̂̃m

) 1
2 K𝜈+1

(√
(2 + ̂̃d) ̂̃m

)
K𝜈

(√
(2 + ̂̃d) ̂̃m

) − 2𝜈
̂̃m
. (A8)

Denoting the two conditional expectations in (A7) and (A8) by ̂̃c and ̂̃z respectively,
concludes the proof. ▪

Proof of Proposition 3 Imposing the first-order conditions on (18) with respect to each com-
ponent of the set 𝚽𝝉 , gives the parameter estimates in Equations (21), (22) and (25).
However, there is not closed formula solution to update the elements of the scale matrix D;
hence, the M-step update requires using numerical optimization techniques to maximize
Equation (18). A considerable disadvantage of this procedure is the necessary high compu-
tational effort which could be very time-consuming. For this reason, we utilize a simpler
estimator for the scale parameters dj, j = 1, … , p which follows directly from the fact that
all marginals of the MAL distribution are univariate AL distributions (see Marino et al.,
2018; Yu & Zhang, 2005):

d̂j =
1∑N

i=1Ti

N∑
i=1

Ti∑
t=1

G∑
g=1

M∑
k=1

ẑitkg𝜌𝜏(Y ( j)
it − �̂�

( j)
it ). (A9)

▪

APPENDIX B

In this appendix we conduct a simulation study to evaluate the finite sample properties of the
proposed method and show that the introduced methodology represents a valid procedure to
estimate the quantile regression coefficients. This simulation exercise addresses the following
questions. First, we consider different distributional choices for the error term to study the perfor-
mance of the model in the presence of non-Gaussian errors. Second, we evaluate the robustness
of the non-parametric approach to non-Gaussian distributions for the subject-specific, random
coefficients. Finally, we analyse the performance of penalized likelihood criteria in selecting the
optimal number of mixture components G and hidden states M.

We consider two sample sizes N = (100, 200) and two longitudinal lengths Ti = T = (5, 10),
for all i = 1, … , N, for a continuous response variable of dimension p = 2 and two explana-
tory variables X (1)

it ∼  (0, 1) and X (2)
it ∼ Ber(0.5). The observations are generated from a two state

homogeneous Markov chain, that is, M = 2, using the following data generating process:

Yit = Xit𝜷 + Zitbi + Wit𝜶Sit + 𝜀it. (A10)

Regarding the hidden Markov chain, the simulation scheme is similar to the one adopted by
Marino et al. (2018). The true values of the fixed, 𝜷, state dependent parameters,𝜶 = (𝜶1, … ,𝜶M)
and the initial probabilities, q, and transition probabilities, Q, are given by, respectively:

𝜷 =

(
2 −0.8

−1.4 3.0

)
, 𝜶 =

(
5 −2
−5 2

)
, Q =

(
0.8 0.2
0.2 0.8

)
, q =

(
0.7 0.3

)
. (A11)
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We consider a time-varying random intercept by setting Wit = 1 and a random slope Zit = X (1)
it .

Hence, bi are time-constant random slopes that capture individual departures from the marginal
effect 𝜷. For each sample size, two different simulation scenarios for the error distributions and
for the random coefficients distributions are considered:

1. ( − ): bi represent i.i.d. draws from a standard bivariate Gaussian with

variance–covariance matrix, 𝛀 =
(

1 0.25
0.25 1

)
and the error terms, 𝜀it, are generated from

a bivariate Normal random variable with zero mean vector and variance–covariance matrix
equal to �̃�;

2. ( −  ): bi are sampled from a bivariate Student t with three degrees of freedom, centred

around zero and scale matrix 𝛀 =
(

1 0.25
0.25 1

)
while, 𝜀it are generated from a bivariate

Student t distribution with three degrees of freedom, zero mean and scale matrix �̃�.

Each simulation scenario is repeated twice by generating the errors 𝜀it with low
(
�̃� =(

1 0.3
0.3 1

))
and high

(
�̃� =

(
1 0.8

0.8 1

))
correlation between the responses of unit i at a given

time t.
To fit the proposed model, we consider a varying number of mixture components

G = (2, … , 10) and retained the model with the lowest BIC value. We analyse three different
quantile levels: in the first case, we assume 𝝉 = (0.50, 0.50); in the second one, we set 𝝉 = (0.25,
0.25) and in the third, we set 𝝉 = (0.75, 0.75). For each model, we carry out B = 250 Monte Carlo
replications and report the following indicators. The average relative bias (ARB) defined as:

ARB(�̂�𝝉 ) =
1
B

B∑
b=1

(�̂�(b)𝝉 − 𝜃𝝉 )
𝜃𝝉

× 100, (A12)

where �̂�
(b)
𝝉 is the estimated parameter at quantile level 𝝉 for the bth replication and 𝜃𝝉 is the cor-

responding ‘true’ value of the parameter. Second, the root mean square error (RMSE) of model
parameters averaged across the B simulations:

RMSE(�̂�𝝉 ) =

√√√√ 1
B

B∑
b=1

(�̂�(b)𝝉 − 𝜃𝝉 )2. (A13)

Tables A1 and A2 report the results for the fixed parameters 𝜷 and state-specific coefficients 𝜶.
As can be noted, the proposed model under the normal and the Student t error distributions is

able to recover the true fixed parameters and state-dependent intercept values for both low (Panels
A) and high (Panels B) degree of dependence. Not surprisingly, the bias effect is quite small when
we analyse the median levels (see columns 1 and 4). As the quantile levels become more extreme
(see columns 2, 3, 5 and 6), the ARB slightly increases but it still remains reasonably small. Such a
differences are due to the reduced amount of information in the tails of the distribution. However,
both the ARB and the RMSE tend to decrease with increasing sample sizes and number of mea-
surement occasions. Also, under the scenario where bi ∼ 2(0,𝛀) and 𝜀it ∼ 2(0, �̃�), the heavier
tails of the Student t contribute to higher ARB and RMSE especially at the 25th and 75th per-
centiles. Concerning the hidden process, it is worth noting that we observe sensible differences in
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T A B L E A1 Average relative bias (ARB) and root mean square error (RMSE) (in brackets) for longitudinal
and state-parameter estimates with a sample size N = 100 and length of longitudinal sequences T = 5

( − ) ( −  )

𝝉 (0.50, 0.50) (0.25, 0.25) (0.75, 0.75) (0.50, 0.50) (0.25, 0.25) (0.75, 0.75)
Panel A: 𝜌12 = 0.3

𝛽11 0.386 (0.114) 0.316 (0.110) 0.470 (0.116) −0.310 (0.168) −0.325 (0.175) −0.214 (0.174)

𝛽12 0.716 (0.122) 1.317 (0.123) 0.912 (0.125) 0.951 (0.158) 0.313 (0.166) 0.871 (0.173)

𝛽21 −0.281 (0.071) 0.942 (0.081) −2.603 (0.091) 0.546 (0.075) 2.137 (0.102) −1.752 (0.100)

𝛽22 −0.019 (0.073) −0.652 (0.091) 0.838 (0.089) 0.044 (0.083) −1.354 (0.111) 1.163 (0.103)

𝛼11 −0.028 (0.057) −0.252 (0.063) 0.017 (0.070) 0.033 (0.058) −0.201 (0.078) 0.535 (0.091)

𝛼12 0.397 (0.052) 0.387 (0.069) 0.042 (0.062) −0.180 (0.068) 1.215 (0.082) −1.459 (0.093)

𝛼21 −0.165 (0.074) −0.034 (0.082) −0.096 (0.080) 0.179 (0.081) 0.763 (0.113) 0.066 (0.097)

𝛼22 −0.120 (0.075) −0.057 (0.083) 0.293 (0.084) 0.011 (0.078) −1.862 (0.108) 0.795 (0.095)
Panel B: 𝜌12 = 0.8

𝛽11 0.281 (0.113) 0.178 (0.111) 0.294 (0.116) −0.339 (0.179) −0.668 (0.185) −0.655 (0.188)

𝛽12 0.951 (0.126) 1.170 (0.127) 0.700 (0.128) 1.413 (0.165) 1.876 (0.180) 1.946 (0.173)

𝛽21 −0.522 (0.073) 2.041 (0.087) −3.086 (0.091) 0.282 (0.075) 3.756 (0.108) −3.297 (0.113)

𝛽22 0.175 (0.074) −1.205 (0.094) 1.502 (0.094) −0.106 (0.081) −2.019 (0.119) 1.717 (0.119)

𝛼11 −0.054 (0.055) −0.438 (0.073) 0.168 (0.068) 0.012 (0.063) −0.695 (0.094) 0.813 (0.097)

𝛼12 0.302 (0.052) 1.255 (0.078) −0.434 (0.067) 0.050 (0.068) 1.997 (0.093) −2.190 (0.099)

𝛼21 −0.031 (0.071) 0.170 (0.083) −0.383 (0.077) 0.028 (0.086) 1.068 (0.121) −0.582 (0.118)

𝛼22 −0.211 (0.076) −0.457 (0.081) 1.068 (0.081) 0.012 (0.082) −2.349 (0.115) 1.873 (0.112)

terms of efficiency for the state dependent parameters 𝜶. Given the true values of Q and q, most of
the units are in the first state of the latent Markov chain, sharing the common intercept value 𝜶1.
Hence, the intercept corresponding to the second state𝜶2 is estimated with lower precision due to
lack of transitions from one state to the other. However, when the number of repeated measure-
ments increases, we observe more frequent transitions towards the second state with the effect of
reducing the RMSE. Again, such difference is more evident in the tails of the distribution. These
findings are generally consistent with the ones in Marino et al. (2018).

To evaluate the performance of the model selection procedure described in Section 4, we
considered the same simulation experiment with N = 200, T = 10, M = 2, 𝝉 = (0.50, 0.50) and
B = 100. Following Marino et al. (2018), for each of the simulated datasets we fit the QMHMM
for G = (2, … , 8) and M = (2, … , 4), and select the optimal value of the pair (G, M) by using
the AIC (Akaike, 1998) and BIC in Equation (28). Because the time-constant random slopes bi
in Equation (A10) are generated from continuous distributions, we only report the distribution
of absolute frequencies of the hidden states M selected by the two penalized likelihood criteria.
Table A3 summarizes the results.

As one can see, the BIC works well and outperform the AIC, with an average of correctly
identified number of hidden states of more than the 80% across all simulation scenarios and
levels of correlation. Furthermore, regardless of the distributional assumptions on the random
slopes or on the error terms, the BIC captures the serial heterogeneity in the data in a more
parsimonious manner compared to the AIC, hence offering easier interpretation about unob-
served heterogeneity.
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T A B L E A2 Average relative bias (ARB) and root mean square error (RMSE) (in brackets) for longitudinal
and state-parameter estimates with a sample size N = 200 and length of longitudinal sequences T = 10

( − ) ( −  )

𝝉 (0.50, 0.50) (0.25, 0.25) (0.75, 0.75) (0.50, 0.50) (0.25, 0.25) (0.75, 0.75)

Panel A: 𝜌12 = 0.3

𝛽11 0.173 (0.077) 0.008 (0.075) −0.004 (0.075) 0.098 (0.118) −0.076 (0.120) −0.010 (0.120)

𝛽12 −0.432 (0.076) −0.273 (0.076) 0.031 (0.076) −1.486 (0.107) −0.503 (0.109) −1.429 (0.106)

𝛽21 −0.291 (0.042) 1.947 (0.056) −2.187 (0.055) −0.108 (0.044) 1.628 (0.060) −2.230 (0.066)

𝛽22 0.066 (0.036) −1.013 (0.056) 1.052 (0.055) −0.098 (0.043) −1.165 (0.069) 1.280 (0.070)

𝛼11 −0.096 (0.032) −0.197 (0.041) 0.241 (0.041) 0.030 (0.035) −0.278 (0.047) 0.551 (0.057)

𝛼12 0.116 (0.032) 0.409 (0.041) −0.657 (0.039) 0.062 (0.036) 1.425 (0.059) −1.398 (0.063)

𝛼21 −0.038 (0.037) 0.262 (0.052) −0.296 (0.047) 0.061 (0.039) 0.666 (0.067) −0.349 (0.058)

𝛼22 −0.040 (0.038) −0.862 (0.047) 0.372 (0.042) −0.021 (0.038) −1.695 (0.067) 1.568 (0.070)

Panel B: 𝜌12 = 0.8

𝛽11 0.040 (0.075) −0.028 (0.078) −0.028 (0.079) 0.280 (0.123) −0.113 (0.125) −0.055 (0.119)

𝛽12 −0.117 (0.075) 0.151 (0.080) 0.156 (0.077) −1.511 (0.115) −0.685 (0.112) −0.718 (0.116)

𝛽21 −0.385 (0.044) 3.246 (0.070) −3.284 (0.070) −0.048 (0.051) 4.132 (0.087) −4.411 (0.085)

𝛽22 0.080 (0.045) −1.532 (0.072) 1.500 (0.070) −0.036 (0.051) −1.968 (0.088) 2.047 (0.089)

𝛼11 −0.040 (0.035) −0.703 (0.058) 0.594 (0.052) 0.031 (0.037) −0.993 (0.075) 0.942 (0.077)

𝛼12 0.159 (0.036) 1.878 (0.059) −1.637 (0.055) −0.006 (0.036) 2.839 (0.080) −2.511 (0.080)

𝛼21 −0.028 (0.039) 0.666 (0.058) −0.702 (0.062) 0.054 (0.042) 1.031 (0.084) −0.950 (0.077)

𝛼22 0.045 (0.037) −1.822 (0.057) 1.933 (0.061) −0.074 (0.044) −2.590 (0.084) 2.615 (0.081)

T A B L E A3 Absolute frequency distributions of the selected hidden states M via AIC and BIC, with a
sample size N = 200 and length of longitudinal sequences T = 10, over B = 100 Monte Carlo replications

𝝆12 = 0.3 𝝆12 = 0.8

Correlation ( − ) ( −  ) ( − ) ( −  )

Scenario AIC BIC AIC BIC AIC BIC AIC BIC

M

2 20 67 79 92 33 68 92 96

3 34 22 19 8 36 25 6 4

4 46 11 2 0 31 7 2 0


