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Hypotheses testing in mixed-frequency volatility
models: a bootstrap approach

Test d’ipotesi nei modelli di volatilita a frequenza mista:
un approccio bootstrap

Vincenzo Candila, Lea Petrella

Abstract It is widely recognized that standard likelihood—based inference suffers
from the presence of nuisance parameters. This problem is particularly relevant in
the context of Mixing—Data Sampling (MIDAS) models, when volatility forecasting
is the research topic and where often covariates’ data are sampled at a different (usu-
ally lower) frequency than the asset returns. In this framework, testing the signifi-
cance of the MIDAS terms brings together the presence of nuisance parameters that
under the null hypothesis are not identifiable. This circumstance interferes with the
asymptotic distribution of the common statistical tests employed in this framework.
In particular, the asymptotic distribution is no more a x> distribution. The present
paper proposes a bootstrap likelihood ratio (BLR) test to overcome this problem,
simulating the likelihood ratio test distribution. Using a Monte Carlo experiment,
the proposed BLR test presents quite good performances in terms of the test’s size
and power.

Abstract E’ ampiamente riconosciuto che gli approcci inferenziali basati sulla
massima verosimiglianza soffrano della presenza di nuisance parameters. Questo
problema ¢ particolarmente rilevante nel contesto di modelli Mixing—Data Sam-
pling (MIDAS), usati nell’ambito delle previsioni di volatilita. In questo framework,
testare la significativita dei termini MIDAS comporta la gestione dei nuisance pa-
rameters che, sotto 'ipotesi nulla, sono non identificabili. Questa circostanza in-
terferisce con la distribuzione asintotica dei test statistici comunemente usati in
questo ambito. In particolare, la distribuzione asintotica non risulta piu essere una
x2. Il presente lavoro propone un bootstrap likelihood ratio (BLR) test per super-
are questo problema, simulando la distribuzione del likelihood ratio test. Attraverso
una simulazione Monte Carlo, il test BLR proposto presenta ottime performance, in
termini di size e potenza.

Key words: Likelihood ratio test, MIDAS, nuisance parameter, bootstrap.

Vincenzo Candila, MEMOTEF Department, Sapienza University of Rome, Italy, e-mail: vin-
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1 Introduction

The financial econometrics literature has paid particular attention to the estimation
of asset returns volatility during the last four decades. In this framework, empiri-
cal evidences suggest that the volatility has a slow—moving feature around which
the conditional second moments of returns oscillate. Starting from this characteris-
tic, a new type of volatility models, based on the decomposition of volatility into
two components, namely a short and a long—run component, has been proposed (for
more details, see the review of Amado et al., 2019). At the same time, it is quite
common in financial data analysis that observations came at a different frequency
(usually lower) than the returns’ ones. The Mixing—Data Sampling (MIDAS) meth-
ods proposed by Ghysels et al. (2007) are designed to solve this problem. When the
MIDAS techniques are applied within the GARCH framework, the long—run com-
ponent of the models can depend on variables observed at different frequencies than
daily (see, for example, Engle et al. (2013) and Conrad and Kleen (2020)). Recently,
the MIDAS methods have also been applied in the quantile regression framework to
forecast the Value—at—Risk (Candila et al., 2020).

Unfortunately, as stated in Ghysels et al. (2007), testing the null hypothesis of no
influence of the MIDAS component can be problematic since the weights associated
with each realization of the low—frequency variable, seen as nuisance parameters,
are not identifiable. This circumstance has a fundamental impact on the asymptotic
distribution of the commonly used tests, like the Wald or the Likelihood Ratio (LR)
tests (see Hansen (1996) and Andrews (2001) for a complete survey on this topic).

In the context MIDAS variables within a volatility model, our paper aims at in-
vestigating the profitability of using a bootstrap LR (BLR) test where the distribu-
tion of the test is obtained using a suitable bootstrap procedure. Resorting to the
bootstrap to derive the LR test distribution is not new at all: see, for instance, the
contributions of Di Sanzo (2009) and Busetti and Di Sanzo (2012). But this is the
first time the BLR test is used within the volatility models employing MIDAS com-
ponents.

In terms of results, the size and power of the proposed BLR are calculated
through an extensive Monte Carlo experiment in a GARCH model framework. Com-
paring the results with the standard LR test, the BLR appears to have an empirical
size closer to the nominal one and quite good empirical power.

The rest of the paper is as follows: Section 2 illustrates the models and the pro-
posed BLR test, while Section 3 presents the Monte Carlo experiment.

2 Bootstrap Likelihood Ratio test

Let r;; be the log—return of an asset representing the first log—difference of the clos-
ing prices for the day 7 in the period (week or month) . Then, let us consider the
formalization of the GARCH-MIDAS model proposed by Engle et al. (2013):
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Tip = O-i,tei,t =/ T X gi,tei,h with = 17' o 7NI and = 17' o 7T7 (1)

where, o;; representing the conditional standard deviation at day 7 and period ¢,
consists of two (multiplicative) components: 7; and g;,. In particular, 7; is defined
as the long—run component of the volatility at period ¢ and g;, the short-run term
at day i for period ¢. Moreover, N = Z,Tzl N; is the total number of days considered
with N; being the number of days in the period 7. In Eq. (1), &, is the iid innovation

term, with E (8”) =0and E (85,) = 1, and with a finite fourth moment.

Following the common dynamics specifications of the short— and the long—run
components proposed in the GARCH-MIDAS literature, we consider for g;, the
unit-mean reverting GJR-GARCH(1,1) process given by:

(”i—l,z)2

T

gis=(1—a=7/2=B)+(a+71(, , q)) +Bgi @
where 1) is an indicator function and & > 0; B>0;y>0a+B+7y/2<1.
The component 7; is:
K
m=exp|m+0Y S(@)MV, ], (3)

k=1

where m € R, 6 € R represents the response to the one—sided filter of the past K
realizations of the MIDAS terms i.e. the low—frequency variable MV, through the
weighting function & (®). The most common used & (@) in this context is the Beta
function:

(k/K)> (1 —k/K)*>!
=1 /K= (1= j/K)e!

Under this configuration, the parameter space is then ® = {a,v,,m,0, 0,0, }.
Given K and a distributional assumption for &;; in (1) it is possible to calculate the
maximum likelihood (ML) estimator for ®.

In order to test the significance of the MIDAS component in (3), the following
null hypothesis is considered:

O (w) = 4

H()IG:O. (5)

Typically, one can evaluate such a null using the a Wald or a LR test. We focus on
this latter case. Let @, be the ML estimate of ® under the null 6 = 0, that is the

“restricted” model. The correspondent log—likelihood at @0 is denoted by ¢ (@0)

Let © be the ML estimate of ® under the alternative 6 # 0 i.e. in the “unrestricted”
model. The corresponding log-likelihood at O is denoted by ¢ (@) . The LR test is:

LR=2 [e(@) —e(éo)} . (6)

Assuming a significance level ¢, test statistic in (6) should reject Hy when
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LR > CVy, (7

where CV,, is the (1 — ot)th quantile of the LR distribution under the null. Under
some regularity conditions, it can be shown that the LR test follows asymptotically
a Chi—square (x?) distribution. In our context, since under the null hypothesis in (5)
the parameters ®; and @, in (4) are not identified, the distribution of LR in (6) is
no more a x> distribution. For this reason, here we propose a bootstrap procedure
to simulate the distribution of LR test (6) under the null (5). The proposed BLR
procedure is as follows:

1.

2,

Estimate the unrestricted and restricted models. Compute the LR statistic as in

Eq. (6).

Let 0;; be the estimated volatility obtained from the restricted model. Compute
the standardized residuals a, under the null, fori=1,--- N, andt =1,---,T,
that is:

&= =

[

Let €', be the bootstrap residual, obtained from resampling with replacement
from the standardized residual series €.

. Compute the bootstrap replicates of r;;, denoted by r},, through:

Tyl ?
P - 5 . .
rf?‘l":o'i'_-i‘ef‘f” for I:I:‘“"JNE and I"‘L"':T?

where G}, is the bootstrap volatility:

o S R
ci,f i T‘I ng._”

with the long—run term under the null identified as 7' = exp (#) and the short—run
term as

r;-’_“dl

)) @""Eﬁwl,n

8= (1 —a—?/z—ﬁ) + (&4—?-1(
t

where &, 7, E and 7 are the ML estimates of the restricted model. In order to

obtain (recursively) the bootstrap realizations of r, for the N days, start the pro-

cedure with G}, = 0j;. Finally, estimate the restricted and unrestricted models

on the series r;,. Hence, calculate the LR on the bootstrap returns r;,, denoted by

LR".

. Repeat the previous step B times, obtaining (LR*(”, o LR*B) ), which is the

bootstrap distribution of LR.

. The estimate of (the bootstrap) CVy, based on (LR’““), cowi FRHE )) and labelled

as CV «» 18 obtained as the 1 — & quantile of the bootstrap distribution of LR,

Finally, the null in (5) is rejected through the BLR test if LR > CJ‘:’Q.
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3 Monte Carlo Experiment

In this section, we consider a Monte Carlo experiment to learn about the profitability
of using the BLR test when testing MIDAS components. For this goal, we generate
R samples of data from the following data generating process (DGP):

ri"[:\/ﬁczxgi"[Si’[, Wlth l.:17"‘,]\/17 and tzl,"',T, (8)
where:

&~ iid l‘(7), 9

K
T = exp (mo + 6y Z (Sk((!))MV,k> , (10)

k=1

(ri14)” .
) Bogien (1D

8it = (1—060—?’0/2—&))4-(0!0+?ﬁ'1(r,.71,f<0) :
In Eq. (9), the error term &;; follows a standardized Student’s ¢ distribution with 7 de-
grees of freedom which allows for fat tails of real financial asset returns. We assume
that the simulated stationary variable MV, follows an AR(1): MV; = @MV,_| + ¢,
with ¢ =0.7.

Using the R package rumidas (Candila, 2021), the DGP in (9) is simulated R =
250 times, according to two sample sizes: N = {500,1000}. The true values of the
parameters are:

{op=0.01,7 = 0.1, B = 0.9,mp = —1, 030 = 1.1}

The parameter of interest 6 has instead the following values: 6y = {0,0.5,1}.

The results of our experiment are illustrated in Table 1, where the estimated prob-
abilities of rejecting the null across the R replicates are reported. More in detail,
Panel A shows the empirical sizes for the BLR and the LR tests that is the occurrence
of null rejection when the null is true. The results of the LR test are evaluated using
the x distribution. Independently of the significance level adopted (0.01, 0.05, and
0.1) and of the sample length, the empirical size of the BLR appears much more in
line with the actual size. When the null is false, as in Panels B and C, both the tests
appear to have reasonable powers. These results support the use of the proposed
BLR test instead of the LR one when mixed frequency models are employed.
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