
Sapienza University of Rome

Department of Computer Science

PhD Thesis

Network Performance Analysis throughNetwork Performance Analysis through
Boolean Network Tomography andBoolean Network Tomography and

Parallelization of Fundamental OperationsParallelization of Fundamental Operations
in Numerical Linear Algebrain Numerical Linear Algebra

Candidate: Advisor:
Viviana Arrigoni prof. Annalisa Massini

In partial fulfillment of the requirements for the degree of Doctor of Philosophy - XXXIII cycle
Academic year 2019-2020



Thesis defended on 8th July 2021
in front of a Board of Examiners composed by:

Prof. Maurizio Bonuccelli (chairman)
Department of Computer Science
University of Pisa, Italy

Prof. Dario Catalano
Department of Mathematics and Computer Science
University of Catania, Italy

Prof. Andrea Marin
Department of Environmental Sciences, Informatics and Statistics
Ca’ Foscari, University of Venice, Italy

External reviewers:

Prof. Francesco Lo Presti
Civil Engineering and Computer Engineering Department
Tor Vergata University of Rome, Italy

Prof. Simone Silvestri
Computer Science Department
University of Kentucky, Lexington, KY, USA

Prof. Murat Manguoğlu
Department of Computer Engineering
Middle East Technical University, Ankara, Turkey

Thesis committee:

Prof. Annalisa Massini (Advisor)
Prof. Novella Bartolini
Prof. Adolfo Piperno

Network Performance Analysis through Boolean Network Tomography and
Parallelization of Fundamental Operations in Numerical Linear Algebra

Ph.D. thesis. Sapienza University of Rome

©2021, Viviana Arrigoni. All rights reserved

This thesis has been typeset by LATEX.

Version July 2021

Author’s email: arrigoni@di.uniroma1.it

arrigoni@di.uniroma1.it


to my family



iv

Abstract

This thesis collects, in a unified framework, two cores, reflecting the dual nature of my
research activity. During my Ph.D., I had the chance to explore different branches of
knowledge in Computer Science, and this thesis focuses on the two disciplines where my work
was more fertile, that are respectively Boolean Network Tomography and Numerical Linear
Algebra and High Performance Computing. Despite these two branches are orthogonal to one
another in the fields of application of this thesis, they share a common ground as numerical
Linear Algebra is often evoked for solving problems in Optimization, Graph Theory and
Compressed Sensing, that are in turn exploited in Boolean Network Tomography with the
scope of analysing network performance. In addition, both two disciplines share a multi-
disciplinar background; the first one, in terms of the combinatorial and probabilistic analysis
that is usually required to interpret data acquired through Boolean Network Tomography
techniques, the second one for its vast field of application, including Engineering and scientific
modelling of complex systems.



Contents

Introduction 1
I Network Performance Analysis through Boolean

Network Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
II Parallelization of Fundamental Operations in

Numerical Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Acronyms 4

I Network Performance Analysis through Boolean Network To-
mography 5

1 Introduction to Part I 6
1.1 Preliminaries in Boolean Network Tomography . . . . . . . . . . . . . . . . 7

2 Fundamental Identifiability Bounds in Boolean Network Tomography 11
2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Bounding identifiability . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 General network monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Arbitrary routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Design via Incremental Crossing Arrangement (ICA) . . . . . . . . . 17
2.4.3 Consistent routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Bound Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Tightness Evaluation on Real Topologies . . . . . . . . . . . . . . . . 25

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Resources Bounds for Identifiability in Boolean Network Tomography 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 General network monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Arbitrary Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Consistent routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Benchmark heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.A An analogy with separating systems . . . . . . . . . . . . . . . . . . . . . . 41



4 Failure Localization through Progressive Network Tomography 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Bayesian utility of path probing . . . . . . . . . . . . . . . . . . . . . 47
4.4 Stochastic optimization of PMP . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 The PoPGreedy approach . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 Optimality approximation . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Failure centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.1 Centrality-based Utility . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Probing Algorithm with Centrality: FaCeGreedy . . . . . . . . . . . 60

4.6 Dynamic Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.2 Benchmark solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.A Derivation of the minimum value of U(a|OT ) subject to P (Z|OT ) ∈ (0, 1) . 72

II Parallelization of Fundamental Operations in Numerical Lin-
ear Algebra 75

5 Introduction to Part II 76
5.1 Preliminaries in Numerical Linear Algebra and HPC . . . . . . . . . . . . . 77

6 Efficiently Parallelizable Strassen-Based Multiplication of a Matrix by its
Transpose 82
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 AtA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 AtA in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.3 Space complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.4 Cache Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Parallel AtA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.1 Preliminary phase: task assignment . . . . . . . . . . . . . . . . . . 90
6.4.2 Shared-memory AtA . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.3 Distributed-memory AtA . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.3 Sequential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.4 Shared memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.5 Distributed memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 A Hybrid Solver for Quasi-Block Diagonal Linear Systems 106
7.1 Introduction and preliminary notions . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 Preconditioned Jacobi for Quasi-Block Diagonal Linear Systems . . . . . . . 110

7.3.1 Algorithm convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 111



7.4 Hybrid Preconditioned Jacobi Implementation . . . . . . . . . . . . . . . . 111
7.4.1 Technical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.5.2 HPJ vs Sequential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.5.3 HPJ vs Intel MKL PARDISO . . . . . . . . . . . . . . . . . . . . . . 116

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Conclusions 119

Acknoledgements 120

Bibliography 122



1

Introduction

This thesis is divided into two parts. In the first part, we propose novel results in the context
of Boolean Network Tomography. We briefly introduce them in Section I, and we show
further detailed insights in Chapter 1. The second part of this thesis provides algorithmic
and implementation solutions to fundamental problems of numerical Linear Algebra and
High Performance Computing. We devote Section II to presenting the research scenario
where these results belong, and Chapter 5 to a thorough introduction of such topics

I Network Performance Analysis through Boolean
Network Tomography

Network management is a challenging task due to lack of centralized control and as a
consequence of heterogeneous technologies employed in networks. In decentralized networks,
commercial and administrative factors often preclude different organizations from sharing
topology and performance information, causing limitations to the possibility of cooperating
for an effective network management able to guarantee Quality of Service (QoS), Service
Level Agreement (SLA) verification, malicious traffic prevention, [99]. On the other hand,
as distributed systems are a pillar framework for telecommunication networks, network
applications, real-time process control and parallel computation, it is crucial to guarantee
their reliability. However, this is usually a difficult endeavour, since their complex and
heterogeneous architectures and communication mechanisms hinder a comprehensive abil-
ity to deploy and monitor the underlying networks. Network Tomography refers to the
methodology of inferring properties of a network by means of end-to-end measurements. In
analogy with tomographic techniques used in medicine, Network Tomography uses end-to-end
measurements scanning the inner part of the network to retrieve information about the
internal nodes and links without direct inspections [141]. End-to-end measurements do not
rely on administrative access privileges, and are agnostic to network heterogeneity, [83]; as a
matter of fact, they do not hinge on specific operating systems, hardware, communication
protocols etc., that instead represent constraining specifications for classical monitoring
systems. For these reasons, data provided by end-to-end measurements is easily accessible
and may be collected passively (by observing existing traffic flow data) or actively (by
injecting trackable monitoring packets which are served as regular users traffic). Network
tomography techniques can be classified depending on the objective metrics inference: in the
first part of this thesis we focus on Boolean Network Tomography (BNT), a field of network
tomography where link, node and path metrics have a binary classification. In particular, we
tackle the problem of node identification and failure detection through binary measurements
taken along paths between peripheral nodes. Chapter 1 introduces this topic in detail and
affords background notions that will recur throughout the first part of this thesis.

By means of simple examples, we highlight challenges and goals related to obtaining
and interpreting performance data acquired through techniques of BNT. Specifically, we
show that the number of possible admissible classifications is potentially exponential. In this
context, we will introduce a key concept in Boolean Network Tomography, identifiability,



II Parallelization of Fundamental Operations in
Numerical Linear Algebra 2

that refers to the possibility of inferring with certainty the binary status (failed/working) of
a node by means of end-to-end paths. Driven by these motivations, in Chapters 2 and 3,
we provide fundamental bounds to the number of identifiable nodes in a network, taking
into account QoS requirements, including routing and path length. The bounds proved in
these chapters allow to evaluate the performance of a given monitoring scheme, to size the
monitoring system in terms of the number of resources to allocate, and to extract guidelines
for designing the most suitable topologies for failure localization. In addition, we also define
an algorithmic approach for path deployment that meets the bounds tightly.

Our topology-agnostic bounds are fundamental descriptors of the theoretical limits
of network identifiability when specific resources are available. In Chapter 4 instead, we
move on to the problem of detecting failed nodes in a network by optimizing the available
resources. We pursue this goal by defining a stochastic maximization problem that can
be synthesized as follows: given a network and paths defined by an uncontrollable routing
scheme, find the maximum number of defective nodes with the least number of path probes
(i.e., limiting the injected traffic as much as possible). To solve this problem, we define a
greedy algorithm based on a Bayesian analysis that is able to retrieve all the information
that can be possibly obtained using Boolean Network Tomography (i.e., probing all available
paths), by scheduling only a small portion of path probes. In addition, our algorithm uses
the probabilistic analysis that is carried out throughout the scheduling phase, to return a
failure probability distribution on the nodes of the given network.

II Parallelization of Fundamental Operations in
Numerical Linear Algebra

The second part of this thesis is devoted to my research in the field of Numerical Linear Alge-
bra and super-computing. Numerical Linear Algebra algorithms are often evoked in the most
disparate fields (including Computer Vision, Computer Graphics and Geometry processing,
as well as in simulations of complex scientific and engineering systems) as they provide
fast solutions to problems whose symbolic counterparts have prohibitive computational
costs. Despite its long history, dating back to the 1940s, many researchers still devote their
efforts to devising efficient numerical algorithms, and to providing fast, parallel implementa-
tions that should have the ability to adapt to the growing industry of High Performance
Computing (HPC) architectures. In this thesis, we focus on the parallel implementation
of fundamental operations of numerical Linear Algebra: matrix multiplications and linear
solvers. These operations often represent a bottleneck when they are included in more
complex frameworks, specially when realized exploiting distributed architectures, because of
the strong dependence between data, that implies inherent communication overhead. Part
II of this thesis is dedicated to this topic, that is introduced in detail in Chapter 5, where
we also provide fundamental background knowledge on the problems that shall be tackled in
the second part of this thesis.

In Chapter 6, we extensively study solutions for the matrix multiplication ATA. This
operation appears as an intermediate step in several applications, including base orthonor-
malization, least-square problem and singular value decomposition. The chapter collects a
number of significant results: first of all, we introduce AtA, a sequential algorithm, applica-
ble to any matrices, whose computational complexity is reduced with respect to other known
algorithms. In addition, we describe in detail a shared-memory and a distributed-memory
implementations for ATA, optimizing memory storage requirements and minimizing the
communication cost.

In Chapter 7, we provide an efficient solution for specific linear systems arising from
simulations of complex systems modelled by Finite Element Methods. Their evolutionary
process is captured by large systems of differential equations, that are not solvable analyti-



II Parallelization of Fundamental Operations in
Numerical Linear Algebra 3

cally. To study their behaviour, numerical approaches integrating multiple linear systems
are usually exploited. In this chapter, we provide an implementation of a MPI/OpenMP
hybrid solver for systems that we call Quasi-Block Diagonal (QBD). We take advantage of
the shape of these systems in order to wisely distribute input data, so that communication
is maximally reduced, making the solver almost embarrassingly parallel.

All the results collected in this thesis are formally proved and validated by means of
experimental comparisons with state-of-the-art benchmark solutions. Most of them have
been published in prestigious venues ( [16], [5], [6], [8], [9]), and another one has been recently
accepted as a conference paper ( [7]). A summary on the literature related to each topic
faced in this thesis is reported in every chapter.



4

Acronyms

BNT Boolean Network Tomography.

FaCeGreedy Failure Centrality Greedy.

GE Gaussian Elimination.

HPC High Performance Computing.

HPJ hybrid preconditioned Jacobi.

ICA Incremental Crossing Arrangement.

PDEs Partial Differential Equations.

PoPGreedy Posterior Probability Greedy.

QBD Quasi-Block Diagonal.

QoS Quality of Service.

SLA Service Level Agreement.



5

Part I

Network Performance Analysis
through Boolean Network

Tomography



6

Chapter 1

Introduction to Part I

Access to the Internet has dramatically changed the way people live worldwide. In every
moment, it is possible to check on one’s bank account, communicate with people living
thousands of kilometers away, share contents, read the latest news, buy and sell items from
e-commerce sites. The Internet has evolved from a small tightly controlled network serving
only a few users in the late 1970s to be an immense multilayered collection of heterogeneous
platforms in recent years, [99]. The evolution is still an active process: it is estimated
that in 2019 the Internet users were 4.1 billions, reflecting a 5.3% increase with respect to
2018, [22]. In the same year, the number of active, mobile-broadband subscriptions per
100 inhabitants continued to grow strongly, with an 18.4% year-on-year growth, and with
almost the entire world population living within reach of a mobile network, [22]. Behind
this stands a massive network whose progressive and enormous growth is characterized by
lack of centralized control and heterogeneous hardware and software components. Therefore,
the Internet can be seen as a network of networks, each belonging to some commercial or
government company and connected (directly or indirectly) with the others by means of
several kinds of devices and communication technologies. Such companies and organizations
have administrative access to only a small fraction of the network’s internal nodes, whereas
commercial factors often prevent them from sharing internal properties data (e.g., network
topology and performance), [2]. As a consequence, making quantitative assessment of a
network performance at a wider level is impracticable, but at the same time it is a crucial
task for guaranteeing quality of service (QoS), verifying Service Level Agreements (SLAs),
improving network management, enabling dynamic routing, and filtering anomalous or mali-
cious traffic. The fact that many researches working for online retailers and advertisement
companies (including Google and YouTube), in addition to research centres (e.g., CAIDA -
Cooperative Association for Internet Data Analysis, website [26]) are devoted to developing
Internet maps and networking tools is emblematic, [40, 75,101].

Network Tomography was born with the wider goal of assessing topological and perfor-
mance properties of a network by means of end-to-end measurements that do not rely on
administrative access privileges, and hence, that are easily available. The term tomography
was first introduced in this context by Y. Vardi in [141], because of the analogy between
network inference through end-to-end paths scanning the internal components of the network
and medical tomography1. Network Tomography takes up the challenge coming with the
heterogeneous and largely unregulated structure of the Internet, and with the reluctance of
cooperation of individual servers and routers to share structural and performance information,

1tomography: any of several techniques for creating three-dimensional images of the internal
structure of a solid object by analyzing the propagation of waves of energy, such as x-rays or seismic
waves, through the object, [110]



1.1 Preliminaries in Boolean Network Tomography 7

to infer the internal behavior and topology of the network.
Applications of Network Tomography include network topology discovery [29,32,42,52], es-

timation of the complete set of end-to-end measurements from an incomplete set, [30], deriva-
tion of path-level network parameters from measurements made on individual links/nodes,
[141], and inference of link and node metrics through end-to-end measurements, that is
the subject of this thesis. Possible link and node metrics that can be inferred through
Network Tomography include delays due to congested links/nodes ( [43, 44, 115]), packet
losses ( [45,59,117,118]), due to defectiveness of network links or nodes, links bandwidth
estimations ( [87, 90, 126]). We talk about delay tomography, loss tomography or band-
width tomography, respectively, [77]. Network tomography principles have been intelligently
adopted in [147] to monitor city traffic and localize vehicles without GPS. Conversely, it
exploits just a limited number of cameras placed at road intersections to measure car end-to
end traveling times. Depending on whether explicit monitoring measurements are required,
Network Tomography can be classified as active or passive; in the first case, monitoring
messages are probed in the network in order to measure the characteristic of monitoring
paths. In the second case, this is done through the analysis of passive traffic data flows.

In this thesis, we use Boolean Network Tomography (BNT) for detecting defective nodes
in a network. In Boolean Network Tomography, pioneered by Duffield et. al. [46], a binary
value is assigned to the outcome of measurement path probes and to links/nodes of the
network. BNT is not only conveniently applied for inherently binary metrics inference (as
for the scenario envisioned in this thesis where a node is either defective or working), but
also for continuously valued metrics (such as link delay inference) where a threshold might
be conveniently defined in order to divide the domain into two intervals corresponding to
a binary classification (as for example in [74, 106]). This application of Network Tomog-
raphy does not only provide solutions to problems related to the Internet network, but
also represents a powerful tool for network maintenance, that allows to avoid expensive
and possibly dangerous direct inspections on nodes when network cover vast geographical
areas or when natural cataclysms cause node faults. Nodes and link failure detection
through Boolean Network Tomography also represents a robust alternative to other network
monitoring systems: complex and heterogeneous networks (including the Internet, hybrid
optical/copper networks, future cellular networks, and distributed cloud networks) come
with bugs and configuration errors in various customer software and network functions that
often induce “silent failures”. Such phenomena are hardly detected by traditional network
monitoring approaches based on pervasively deployed monitoring agents (e.g., SNMP) or
pervasively supported network protocols (e.g., traceroute), and are only detectable from
end-to-end connection states, [83]. In addition, in multi-domain systems some nodes might
not be cooperative, and they can block frequent traceroute requests. Despite managers of
autonomous networks have direct access to all the internal devices of the systems, they can
still use Network Tomography for detecting and localizing possible vulnerabilities that a
network outsider might infer via end-to-end paths.

In the following section, we introduce basic notions in Boolean Network Tomography. In
particular, we introduce the concept of node identifiability, that is crucial for the purpose of
this thesis. Together with providing fundamental insights on BNT, we show the challenges
related to gaining a comprehensive knowledge of the state of the nodes (failed/working) of a
network by means of measurement paths.

1.1 Preliminaries in Boolean Network Tomography
The goal of BNT is to use end-to-end measurement paths to assess the binary state of the

internal nodes of a network. A network can be modelled with a graph G = (V,E) where V



1.1 Preliminaries in Boolean Network Tomography 8

is the set of nodes and E is the set of edges. Measurements are taken by probing monitoring
packets through paths that traverse nodes in V . We call P the set of all monitoring paths.
Each path p ∈ P can be represented as the set of nodes it traverses. In Boolean Network
Tomography, the outcome of a path probe has a binary value, working or failed. A path
is working if packets probed along it are correctly received by the end node of the path.
In contrast, we say that a path is failed if packet losses occur within its nodes. A path is
working if all the nodes it traverses are working, whereas it fails if at least one of the nodes
it traverses is defective. This concept can be formally described as a system of Boolean
equations, as follows. Let us give a Boolean value to the state of paths and nodes; in
particular, we use 0 for ’working’ and 1 for ’failed’. We denote with yi the binary value of
the outcome of path pi, i.e.:

yi =
{

0 if path pi is working,
1 otherwise

Similarly, we denote with xj the binary value of the state of node vj . We define the path
matrix of a network the matrix M ∈ {0, 1}|P |×|V | such that mi,j = 1 if node vj belongs
to path pi, mi,j = 0 otherwise. Hence we can define a system of Boolean linear equations
relating paths and nodes’ states together as follows:

yi =
|V |∨
j=1

mi,jxj , ∀i ∈ {1, . . . , |P |} (1.1)

where ∨ is the logical OR operator. The system in Equation 1.1 is consistent (i.e., admits
one and only one solution) if and only if all equations are linearly independent. If this is not
the case, the number of solutions is potentially exponential, and in particular it is given by
the number of failing paths (i.e., paths pi s.t. yi = 1) multiplied by the exponential of the
number of nodes that each such path traverses and that do not appear in any other equation
where the known term is 0. Concisely, the number of possible solutions is O(

∑|P |
i=1 yi · 2|pi|).

This number can be limited if we have knowledge on the number of failed nodes (i.e., if
we are also given the equation

∑
j=1,...,|V | xj = k, for some natural k ≤ |V |). The simple

network in Figure 1.1 can help us understand the growth of the solution space of the system
in Equation 1.1. The system 1.1 for this example is the following:

y1 = x1 ∨ x5 ∨ x6 ∨ x2

y2 = x1 ∨ x5 ∨ x6 ∨ x9 ∨ x11 ∨ x3

y3 = x1 ∨ x5 ∨ x8 ∨ x7 ∨ x4

y4 = x2 ∨ x10 ∨ x3

y5 = x2 ∨ x6 ∨ x8 ∨ x12 ∨ x4

y6 = x3 ∨ x11 ∨ x12 ∨ x4

We shall consider different failing scenarios.
Scenario 1. Firstly, let us assume the simple case where we have knowledge of the number
of failed nodes, and let us consider the case where only one node fails. If we probe all
available paths, p1, . . . , p6, and if all paths work except for path p3, then we know that all
nodes are working, except for node v7. This is because v7 is the only node that is being
traversed by p3 alone. If any other node laying on path p3 failed, we would have observed
failure of other paths, too.
Scenario 2. Again, let us consider the same scenario where we know that only one node
in the network is defective, and assume that by probing all available paths, we observe that
paths p1, p2 and p3 fail. In this case, we can limit the possible failure set to nodes v1 and
v5, but we cannot claim with certainty which of the two nodes failed.



1.1 Preliminaries in Boolean Network Tomography 9

Scenario 3. The capability of detecting failed nodes may be further limited when multiple
failures occur concurrently. Assume we know that two nodes are defective, and again paths
p1, p2 and p3 fail. Then we have multiple possible failing scenarios that equivalently justify
the observations, and that are given by the following sets of possibly failed nodes: {v1, v5},
{v1, v7}, {v1, v9}, {v5, v7}, {v5, v9}.
Scenario 4. Finally, assume that knowledge on the number of defective nodes is not
given, and again assume that paths p1, p2 and p3 fail. The family of the possible failure
sets (i.e., set of possibly failed nodes) that implies failure of these paths is: {v1}, {v5},
{v1, v5}, {v1, v7}, {v1, v9}, {v5, v7}, {v5, v9}, {v1, v5, v7}, {v1, v5, v9}, {v1, v7, v9}, {v5, v7, v9}
and {v1, v5, v7, v9}. If all nodes are equally likely to fail, and if there is no evidence on the
most probable number of failures, all these possible solutions are equally likely to be correct.

The concept of identifiability, introduced in [65], represents the capability of assessing
without ambiguity the state of the nodes in a network. More specifically, we say that a node
is k-identifiable if, when it fails, its state can be inferred by means of end-to-end paths when
k failures occur in the network. We give the following formal definitions:

Definition 1.1.1. A node v is 1-identifiable with respect to P if the set of paths that traverse
it is different from the set of paths traversing every other node.

Definition 1.1.2. Given a set of measurement paths P , two failure set F1 and F2 are
distinguishable with respect to P if exists at least a path p ∈ P that fails under only one
failure set, either F1 or F2.

Definition 1.1.3. A node v is k-identifiable with respect to P is for any couple of failure
sets F1 and F2 with |Fi| ≤ k, i = 1, 2 and F1 ∩ {v} 6= F2 ∩ {v} (i.e., one including v and
one not including it), F1 and F2 are distinguishable with respect to P .

These concepts will be recalled in Chapter 2, where we will provide equivalent definitions
based on combinatorial properties of identifiable nodes. Observe that 1-identifiability is a
special case of k-identifiability, and that verifying k-identifiability requires exploring the
subset of 2V that includes sets of paths of size from 1 to k. Furthermore, it is easy to see
that k-identifiability implies l-identifiability for all l ∈ {1, . . . , k}.

Node identifiability is hardly satisfied by network topologies and routing schemes. In
the example of Figure 1.1, all nodes, except for v1 and v5, are 1-identifiable, whereas no
node is k-identifiable, with k ≥ 2. Also knowledge on the number of failures is an infor-
mation that is hardly available, despite such knowledge narrows down the solution space,
as we have seen in the small example reported in this section. Nevertheless, even when

Figure 1.1



1.1 Preliminaries in Boolean Network Tomography 10

knowledge on the number of failed nodes is provided, the system in Equation 1.1 admits
possibly exponentially-many solutions. The solution space can be limited by deploying more
monitoring paths, nevertheless this is not always feasible. Furthermore, in [65], He et. al.
prove that optimal monitor placement for node identifiability maximization is a NP-hard
problem. For all these reasons, Boolean Network Tomography comes with great challenges
when it is applied to networks where there is no room for active interventions, and when
prior observations on the nodes’ probability of failure are not available.
In this thesis, we provide theoretical bounds on network identifiability with different con-
straints on network resources and properties. Afterwards, we shall study how nodes state
inference can be achieved with an intelligently chosen subset of all available paths. We also
study a probabilistic model to expand BNT potential informativeness.
In this chapter and in the chapters that follow we refer to node failure identifiability and
detection. We point our that all definitions and results collected in this thesis are also valid
for link identifiability and link failure localization.



11

Chapter 2

Fundamental Identifiability
Bounds in Boolean Network
Tomography

In this chapter, we provide upper-bounds on the maximum number of identifiable nodes,
given the number of monitoring paths and different constraints on the network topology, the
routing scheme, and path length. These upper bounds represent a fundamental limit on
identifiability of failures via Boolean Network Tomography. In this chapter, we also provide
an algorithmic approach to the design of network topologies and path deployment that meet
the discussed limits, under various network settings. Through analysis and experiments we
demonstrate the tightness of the bounds and efficacy of the design insights for engineered
as well as real networks. The contributions reported in this chapter are published in [16],
where we extended the results published in [17].

2.1 Motivations
The capability to assess the states of network nodes in the presence of failures is

fundamental for many functions in network management, including performance analysis,
route selection, and network recovery. In modern networks, the traditional approach of
relying on built-in mechanisms to detect node failures is no longer sufficient, as bugs and
configuration errors in various customer software and network functions often induce “silent
failures” that are only detectable from end-to-end connection states [83]. Boolean Network
Tomography (BNT) [46] is a powerful tool to infer the states of individual nodes of a network
from binary measurements taken along selected paths. We consider the problem of Boolean
Network Tomography in the framework of graph-constrained group testing [31]. Classic
group testing [11,39] studies the problem of identifying defective items in a large set S by
means of binary measurements taken on subsets Si ⊆ S (i = 1, . . . ,m). Close to the problem
of group testing, Boolean Network Tomography aims at identifying defective network items,
i.e. nodes or links, in a large set S including all the network components, by performing
binary measurements over subsets Si, i.e., monitoring paths. As in graph-based group
testing, the composition of the testing sets conforms to the structure of the network.

In this chapter, we consider the problem of maximizing the number of nodes whose states
can be uniquely determined from binary measurements on a given number of monitoring paths.
While the literature presents several works addressing the above optimization by considering
different ways to deploy the monitors [65,93] or routing packets [31,93], researchers agree
on the computational hardness of the general problem and propose heuristic approaches



2.2 Related work 12

providing lower bounds. Unlike previous work, we focus on deriving easily computable
theoretical upper bounds. In formulating these bounds, we consider that monitoring paths
are constrained not only by the network topology, but also by the routing scheme adopted in
the network, and by additional requirements in case of passive monitoring, i.e. monitoring
paths coinciding with service related paths. Knowledge of such theoretical bounds allows us
to: (i) evaluate the performance of a given monitoring system and the room of improvement
in a specific network setting, (ii) size the monitoring system (make decisions concerning
how many monitors, how many paths, and related length) and (ii) extract guidelines for
designing the most suitable topologies for failure localization. In addition, in this Chpater
we give a formalization the Incremental Crossing Arrangement (ICA) procedure to generate
monitoring schemes and underlying topologies that meet the bounds tightly, giving insights
on which topology is the most suitable for failure localization.

The main contributions of this chapter are the following:

• We upper-bound the maximum number of identifiable nodes with a given number
of monitoring paths, in the following scenarios: (1) paths between arbitrary nodes
under arbitrary routing (Theorem 2.4.1); (2) paths between arbitrary nodes under
consistent routing (Theorem 2.4.2).

• We provide the Incremental Crossing Arrangement (ICA) algorithm, which allows
topology design meeting the proposed bounds.

• We give insights on the design of topologies and monitoring schemes to approximate
the bounds, grounded upon the bound analysis.

• We demonstrate the tightness of the upper bounds by providing constructive ap-
proaches and comparisons with the results of known heuristics [65] on engineered as
well as real network topologies.

• Through experiments, we compare the bounds in different scenarios to evaluate the
impact of the routing scheme, the number of monitoring paths, and the maximum
path length on the number of identifiable nodes.

2.2 Related work
The early works in Boolean Network Tomography focused on best-effort inference. For

example, Duffield et al. [41, 46] and Kompella et al. [83] aimed at finding the minimum set
of failures that can explain the observed measurements, and Nguyen et al. [106] aimed at
finding the most likely failure set that explains the observations.

Later, the identifiability problem attracted attention. Ma et al. characterized in [92]
the maximum number of simultaneous failures that can be uniquely localized, and then
extended the results in [94] to characterize the maximum number of failures under which
the states of specified nodes can be uniquely identified as well as the number of nodes whose
states can be identified under a given number of failures. The work described in this chapter
provides topology specific relationship of inclusions for the set of identifiable nodes. In
contrast to [94], we provide fundamental bounds that are topology agnostic, i.e., only based
on the number of monitoring paths and high level routing consistency properties.

The related optimization problems have also been studied. The problem of optimally
placing monitors to detect failed nodes via round-trip probing was introduced and proven
to be NP-hard by Bejerano et al. in [18]. The work by Cheraghchi et al. [31] aimed at
determining bounds on the minimum number of monitoring paths to uniquely localize
failures, where paths are defined by random walks in the network graph and the maximum
number of simultaneous failures (also called identifiability index) is constrained. These
studies are orthogonal to ours, as we aim at bounding the number of identifiable nodes,



2.3 Problem formulation 13

Notation Description
P Set of m monitoring paths P = {p1, . . . , pm}

p, p̂ ∈ P Monitoring path as a set or a list of nodes, respectively
b(v) Binary encoding of node v with respect to P
b(v)|i i-th element of b(v) (equal to 1 if and only if v ∈ pi, to 0 otherwise)
χ(v) Crossing number of node v with respect to a set of paths P
PF Incident set of paths of a failure set F
I(p) Set of identifiable nodes traversed by path p
M(p̂) Path matrix of path p̂
B(k) {b ∈ {0, 1}m, s.t. ∑m

i=1 b|i = k}, k = 1, . . . ,m
BV Set of binary encodings of a set of nodes V

Table 2.1. Notation table.

within a given identifiability index, given the number of monitoring paths. Moreover we
emphasize the impact of the routing scheme on the achievable failure identifiability.

For monitoring paths that start/end at monitors, Ma et al. [93] proposed polynomial
time heuristics to deploy a minimum number of monitors to uniquely localize a given number
of failures under various routing constraints. When monitoring is performed at the service
layer, He et al. [65] proposed service placement algorithms to maximize the number of
identifiable nodes by monitoring the paths connecting clients and servers.

Differently from Boolean Network Tomography, robust network tomography aims at
inferring fine-grained performance metrics (e.g., delays) of non-failed links under failures.
For robust network tomography, Tati et al. [135] proposed a path selection algorithm to
maximize the expected rank of successful measurements subject to random link failures, and
Ren et al. [119] proposed algorithms to determine which link metrics can be identified and
where to place monitors to maximize the number of identifiable links, subject to a bounded
number of link failures.

Robust network tomography has also been studied under settings not limited to failures
[66,89], to study the identifiability of additive link metrics under topology changes.

2.3 Problem formulation
We model the network as an undirected graph G = (V, E), where V is a set of nodes,

and E is the set of links. According to the needs of the discussion, a path p defined on G is
represented as either a set of nodes p, or as an ordered sequence of nodes p̂.

Each node may be in working or failed state. Without loss of generality, we assume
that links do not fail and model network links through logical nodes so that a link failure
corresponds to the failure of a logical node. The set of all failed nodes, denoted by F ⊆ V ,
defines the state of a network, and is called failure set. We assume that node states
cannot be measured directly, but only indirectly via monitoring paths. The state of a path is
working if and only if all traversed nodes (including endpoints) are in working state. Let P
be a given set of m monitoring paths. We call the incident set of v the set of paths traversing
v and denote it with Pv ⊆ P . We define with χ(v) , |Pv|, the crossing number of node v,
i.e., is the number of monitoring paths traversing v. We also denote the incident set of paths
of a failure set F with PF , ∪vi∈FPvi .

The characteristic vector1 of Pv with respect to the set of paths P = {p1, . . . , pm}, is
1A characteristic vector (or indicator vector) of a subset S of an ordered set of m elements



2.3 Problem formulation 14

hereby denoted with b(v) and called the binary encoding of v. It holds that v ∈ pi if and only
if the i-th element of its binary encoding is equal to 1, i.e., b(v)|i = 1. Note that multiple
nodes may have the same binary encoding.

Observation 2.3.1. The crossing number χ(v) of node v is equal to the number of ones in
b(v), i.e., χ(v) =

∑m
i=1 b(v)|i.

2.3.1 Identifiability
The concept of identifiability refers to the capability of inferring the state of individual

nodes from the state of the monitoring paths. Informally, we say that a node v is 1-identifiable
with respect to a set of paths P , if its failure and the failure of any other node w cause
the failure of different sets of monitoring paths in P , i.e. v and w have different incident
sets. This concept can be extended to the case of concurrent failures of at most k nodes,
where a node is k-identifiable in P if any two sets of failures F1 and F2 of size at most k,
which differ at least in v (i.e., one contains v and the other does not), cause the failures
of different paths, namely F1 and F2 have different incident sets, i.e. PF1 6= PF2 . In the
following, we reformulate the concept of k-identifiability (reported in Definition 1.1.3 and
firstly introduced by He et al. in [65]) in terms of the concepts introduced in this chapter:

Definition 2.3.1. Given a set of paths P and a node vi ∈ V , vi is called k-identifiable
with respect to P when for any failure sets F1 and F2 such that F1 ∩ {vi} 6= F2 ∩ {vi}, and
|Fj | ≤ k (j ∈ {1, 2}), it holds that2:

∨
vs∈F1

b(vs) 6=
∨
vz∈F2

b(vz).

The following Lemma derives from Definition 2.3.1, considering the special case of k = 1.

Lemma 2.3.1. A node vi is 1-identifiable with respect to P if and only if b(vi) 6= 0, and
∀vj 6= vi, b(vj) 6= b(vi), i.e., its binary encoding is not null and not identical with that of
any other node.

We clarify that, in agreement with Lemma 2.3.1, a node with null encoding cannot be
1-identifiable, because it is impossible to assess its status, working or failed, based only on
the status of the monitoring paths.

2.3.2 Bounding identifiability
The set of monitoring paths P is usually the result of design choices related to topology,

monitor placement, routing scheme, etc. Given a collection of candidate path sets P under
all possible designs3, the question is: how well can we monitor the network using path
measurements in P and which design is the best? Using the notion of k-identifiability, we
can measure the monitoring performance by the number of nodes that are k-identifiable
with respect to P ∈ P, denoted by φk(P ), and formulate this question as an optimization:
ψk(P) , maxP∈P φk(P ).

Although extensively studied [18,31,65,93], the optimal solution is hard to obtain due to
the (exponentially) large size of P, and heuristics are used to provide lower bounds. There
is, however, a lack of general upper bounds. In this chapter we establish upper bounds on
ψk(P) in representative scenarios.

Note that, as discussed in [65], Definition 2.3.1 implies that if v is k-identifiable with
respect to P for any k ≥ 1, then v is also 1-identifiable with respect to P . It follows that

P = {p1, p2, . . . , pm} is a binary vector with ‘1’ only in the positions of the elements of P that are
included in S.

2With ”
∨

” we refer to the element-wise logical OR.
3For example, P may be the class of path sets of given cardinality, or paths of a given length

between given sources and each of multiple candidate destinations.



2.4 General network monitoring 15

ψ1(P) ≥ ψk(P). Therefore, in the sequel, we look for upper bounds on ψ1(P), simply
denoted by ψ(P), where we will replace P by specific parameters in each network setting.
Knowledge of these upper bounds is key to understanding the fundamental limits of Boolean
Network Tomography, and gives insights on the optimal network design to facilitate network
monitoring.

In the following, we shortly call the 1-identifiable nodes “identifiable”.

2.4 General network monitoring
In this section we study the number of identifiable nodes of a general network of

which we know the number of nodes and monitoring paths, without assuming any specific
interconnecting topology. The following study provides bounds of general validity, although
more refined bounds can be provided when more topological details are available. After
the introduction of these bounds we give guidelines for the design of high identifiability
topologies. We remark that in providing these guidelines we neglect other requirements
(besides those related to routing and hop count for QoS), for example cost, technology
constraints and more advanced performance requirements of such networks, which can be
considered in a more technology and topology specific future study. In the following, we
consider a collection P of candidate path sets of known cardinality m ≥ 1, between any
endpoints. We analyze ψ(P) in two cases: (i) arbitrary routing and (ii) consistent routing.

2.4.1 Arbitrary routing
Identifiability bound

We hereby consider bounds on node identifiability which are valid regardless of the
specific routing scheme being adopted. We refer to this scenario as arbitrary routing.

Proposition 2.4.1. Given a network with n nodes, and m monitoring paths pi, i = 1, . . . ,m,
we denote with I(pi) the set of identifiable nodes traversed by pi and with di ≤ n the length
of pi in number of nodes. It holds that |I(pi)| ≤ min{di; 2m−1}.

Proof. By Lemma 2.3.1, in order for a node to be identifiable, its binary encoding must
be unique. Since all the nodes traversed by path pi have a ‘1’ in the i-th position of their
binary encoding, the number |I(pi)| of identifiable nodes traversed by pi is upper-bounded
by the number of different sequences of m bits (binary encodings), where the i-th bit is a
‘1’, which is 2m−1, and of course, by the length di.

Theorem 2.4.1 (Identifiability under arbitrary routing with known average path length).
Given a network with n nodes, and m arbitrary routing paths with average length d̄ ≤ n, the
maximum number of identifiable nodes in the network satisfies:

ψAR(m,n, d̄) ≤ min
{
imax∑
i=1

(
m

i

)
+
⌊
Nmax −

∑imax
i=1 i ·

(
m
i

)
imax + 1

⌋
;n
}
,

where imax = max{k |
∑k
i=1 i ·

(
m
i

)
≤ Nmax},

and 4 Nmax = m ·min{d̄; 2m−1}.

Proof. The number |I(pi)| of identifiable nodes traversed by a path pi of length di, i ∈
{1, . . . ,m}, is bounded as described by Proposition 2.4.1. Consequently, the number of
identifiable nodes is also bounded from above as follows: | ∪mi=1 I(pi)| ≤

∑m
i=1 |I(pi)| ≤∑m

i=1 min{di; 2m−1} ≤ m ·min{d̄; 2m−1} = Nmax.
4By definition Nmax is an integer number.



2.4 General network monitoring 16

Since we used the union bound to calculate Nmax, this value considers some encodings
multiple times when the related node belongs to more than one path. This happens, according
to Observation 2.3.1, χ(v) times for each node v.

It follows that the number of distinct encodings is maximized when we minimize the
number of encoding replicas and therefore the crossing number of the related nodes. This
is achieved, within the limits of the path length, when we have

(
m
1
)

nodes with crossing
number equal to 1 (counted only once in Nmax),

(
m
2
)

nodes with crossing number equal to
2 (counted twice in Nmax), and so forth, until the total number of encodings (counting the
replicas) is Nmax.

More formally, let imax = max{k |
∑k
i=1 i ·

(
m
i

)
≤ Nmax}. For each i ≤ imax, we have(

m
i

)
nodes with crossing number equal to i, i.e., traversed by i paths. Considering that the

remaining Nmax −
∑imax
i=1 i ·

(
m
i

)
encodings will have at least (imax + 1) digits equal to ‘1’ and

thus are counted at least (imax + 1) times in Nmax, the number of distinct encodings out of
the Nmax encodings is upper-bounded by:

ψAR(m,n, d̄) ≤
∑imax
i=1
(
m
i

)
+
⌊
Nmax−

∑imax
i=1

i·(m
i )

imax+1

⌋
.

Considering also that the number of identifiable nodes cannot exceed n, we have the final
bound of the theorem.

We underline that Theorem 2.4.1 provides a topology-agnostic bound, i.e., a theoretical
limit which is valid for any topology and only considers the number of nodes, the number of
monitoring paths, and the average path length5. When the monitoring paths are known,
the bound of Theorem 2.4.1 is useful to quantitatively evaluate the margin for improvement
of the identifiability using another set of monitoring paths with the same cardinality and
average length.

We also observe that knowledge of the path lengths is not a requirement for the use of the
proposed bound. More specifically when path lengths are unknown, we have Nmax = m ·2m−1,
and imax = m, and Theorem 2.4.1 reduces to the following corollary for unbounded path
length.

Corollary 2.4.1 (Identifiability under arbitrary routing and unbounded path length). Given
a network with n nodes and m monitoring paths, the maximum number of identifiable nodes
satisfies:

ψAR(m,n) ≤ min{n; 2m − 1}.

Despite the simplicity of the bound of Corollary 2.4.1, we underline that the bound value
is achieved tightly by specifically designed topologies for which routing and path lengths
are not constrained. Even in the case in which the average length of monitoring paths is
not known a priori, the routing scheme or QoS requirements limiting the hop count of the
monitoring paths may imply an upper bound on the path length, dmax. For example, in the
case of shortest path routing, the value of dmax is upper bounded by the diameter of the
network. The value of dmax can be used to derive a variation of the bound, ψAR(m,n, dmax),
on the number of identifiable nodes, since d̄ ≤ maxi{di} ≤ dmax.

Corollary 2.4.2 (Identifiability under arbitrary routing and bounded maximum path length).
Given a network with n nodes, and m arbitrary routing paths with maximum length dmax, the
maximum number of identifiable nodes in the network, ψAR(m,n, dmax), is upper-bounded as
in Theorem 2.4.1, except that Nmax is now defined as: Nmax = m ·min{dmax; 2m−1}.

5As the constraints imposed by the topology of the network and path routing are not taken into
account in this theorem, its validity holds also for any group testing problem where m groups of
known average size are used to inspect the state of n elements.



2.4 General network monitoring 17

2.4.2 Design via Incremental Crossing Arrangement (ICA)
The proof of Theorem 2.4.1 suggests a technique to build a network topology G = (V,E)

and related monitoring paths P with maximum identifiability, where |P | = m. We call this
technique Incremental Crossing Arrangement (ICA).

ICA, the idea. The technique works by generating node encodings in increasing order
of crossing number with respect to the m monitoring paths in use, until the number of
generated encodings reaches the bound defined in Theorem 2.4.1. Monitoring paths must be
designed so as to traverse nodes according to the generated encodings: path pi traverses any
node v for which b(v)|i = 1, ∀i ∈ {1, . . . ,m}. The network topology is then constructed by
considering a node for each of the generated Boolean encodings, and adding links between
any pair of nodes appearing sequentially in any path.

ICA in details. Algorithm 1 formalizes the incremental crossing arrangement design,
used to determine the binary encodings of the identifiable nodes.

As we consider m paths, the node encodings will be sequences of m bits in B , {0, 1}m.
We also denote with B|i ⊂ B the set of m-digits binary encodings having a 1 in the i-th
position, i.e., B|i = {b ∈ B s.t. b|i = 1}. The nodes corresponding to encodings of B|i will
be monitored (at least) by path pi. Moreover, we denote with B(k) ⊂ B the set of all binary
encodings having exactly k digits equal to 1, therefore B(k) , {b ∈ B s.t.

∑m
i=1 b|i = k}.

The nodes corresponding to encodings in B(k) have crossing number equal to k.
Finally, given a generic set of binary encodings B ⊆ B, we denote with `i(B) the number

of encodings of B having a one in the i-th position: `i(B) , |B ∩ B|i|. The value of `i(B)
represents the length of a path pi traversing all the nodes in B ∩ B|i, exactly once.

Without loss of generality, we consider paths of balanced length, i.e. we set the length
di of path pi to a value di ∈ {bd̄c, bd̄c+ 1} (lines 2 - 4).

The incremental crossing arrangement approach incrementally generates the solution set
BV by including all the encodings of B(i), i = 1, . . . , imax + 1 corresponding to nodes with
crossing number lower than or equal to imax. It then considers some encodings with (imax + 1)
digits equal to one. For this purpose it generates a family F of subsets in B(imax + 1), i.e.,
F ⊆ 2B(imax+1) (line 7) whose elements B are such that `k(B ∪ BV ) ≤ dk. The algorithm
then looks for a maximal cardinality set B∗ in the family F and adds it to the solution BV ,
s.t. BV = ∪imax+1

k=1 B(k) ∪ B∗. Notice that the maximality of the cardinality of B∗ implies
that no encoding with (imax + 1) digits equal to one can be added to the set BV without
violating the path length constraint `k(BV ) ≤ dk for some path k = 1, . . . ,m, or without
removing at least one encoding already in BV .

The procedure described so far is sufficient to produce a network topology with m paths
of average path length d̄ meeting the bound of Theorem 2.4.1. In the produced topology,
there can be values of k ∈ {1, . . . ,m} for which `k(BV ) < dk and, more precisely, given the
balanced path length, `k(BV ) = dk−1, corresponding to paths longer than strictly necessary
to identify n nodes, i.e., overlength paths. Overlength paths cannot traverse nodes with the
same encoding without compromising the achievement of maximum identifiability. Therefore,
in order for the average path distance to meet the value d̄, we proceed as follows, with a
procedure that we call Path Completion. First, we observe that under ICA, the bound on the
minimum number of monitoring paths can sometimes be met tightly even when the average
path length is slightly lower than the given d̄. This condition is verified when the ratio inside
the floor operator of the bound expression of Theorem 3.3.1 is not integer. Nevertheless,
the same bound can still be met tightly with the exact average length provided as input,
by operating as follows: let S ⊂ {1, . . . ,m} be the set of overlength path indexes, namely
S , {k, s.t. `k(BV ) = dk− 1}. It holds |S| =

[
m ·D −

∑imax
i=1 i ·

(
m
i

)
mod (imax + 1)

]
, hence

the number of overlength paths is lower than or equal to imax.
We choose an encoding b′ ∈ BV ∩ B(imax + 1− |S|) such that b′|k = 0,∀k ∈ S, and such



2.4 General network monitoring 18

that
(∨

k∈S ek ∨ b′
)
/∈ BV , where ek is an m-dimensional identity vector with all zeroes but

a one in the k-th position6. Then we remove b′ from the solution set BV and replace it with
b′′ ,

∨
k∈S ek ∨ b′, i.e., with a new encoding b′′ such that b′′|k = 1,∀k ∈ S, and b′′|k = b′|k

otherwise.

Algorithm 1 Incremental Crossing Arrangement
Input: m and d̄.
Output: A set of encodings BV which can be mapped onto a topology graph
G = (V,E), with m paths of average length d̄, such that ψAR(m, d̄ corresponding
nodes are identifiable.

1: Compute Nmax and imax according to Theorem 2.4.1 and ψ∗AR(m, d̄) ,∑imax
i=1
(m
i

)
+⌊

Nmax−
∑imax

i=1 i·(m
i )

imax+1

⌋
2: Compute m1 , m · (d̄− bd̄c) ;
3: for i = 1, . . . ,m1 do set di = bd̄c+ 1
4: for i = m1 + 1, . . . ,m do set di = bd̄c
5: BV = ∅
6: for i = 1, . . . , imax do BV = BV ∪ B(i)
7: Calculate the family F defined as
F , {B : B ⊆ B(imax + 1) ∧ `k(B ∪BV ) ∈ [dk − 1, dk], ∀k = 1, . . . ,m}

8: Choose B∗ = arg maxB∈F |B|
9: BV = BV ∪B∗

10: if ∃k ∈ {1, . . . ,m} s.t. `k(BV ) = dk − 1 then
11: Perform path completion and update BV
12: Return BV

ICA: Example A (where path completion is not necessary). Figure 2.1 shows an example
of a topology generated by means of incremental crossing arrangement. We are given m = 4
nodes and d̄ = 4.75. Applying Algorithm 1, we have Nmax = m · d̄ = 19 and imax = 2. We
set di = 5,∀i = 1, 2, 3 and d4 = 4 (lines 2 - 4). According to ICA, we first generate all the
encodings of B(1) and in B(2) and set BV = {1000, 0100, 0010, 0001, 1100, 1010, 1001, 0110,
0101, 0011} (line 6). Then we start generating some encodings in B(3) = B(imax + 1) until
no other encoding can be added without violating the path length constraint (lines 7 - 9),
obtaining BV = {1000, 0100, 0010, 0001, 1100, 1010, 1001, 0110, 0101, 0011, 1110}, where
each encoding corresponds to a node of the graph G. The number of generated encodings is
11, that is the value of ψAR for the given input. Then we define the corresponding monitoring
paths, by letting path pi traverse all the nodes whose encoding has a 1 in the i-th position, in
arbitrary order, ∀i ∈ {1, . . . ,m}. Finally, we design the underlying topology by connecting
each pair of nodes appearing in a sequence in any of the paths, as shown in Figure 2.1.

ICA: Example B (with path completion). Figure 2.2 shows another example of a topology
generated by means of incremental crossing arrangement. We are given m = 4 and d̄ = 5. To
meet the requirement on average length, we set di = 5 ∀i = 1, . . . , 4 (lines 2 - 4). According
to ICA (line 6), we first generate all the encodings of B(1) and B(2) and set BV = {1000,
0100, 0010, 0001, 1100, 1010, 1001, 0101, 0011}. Then we choose one of the possible B∗
((lines 7 - 9)), for instance B∗ = 1110, obtaining BV = {1000, 0100, 0010, 0001, 1100,

6We can always find an encoding b′ with the described properties because BV contains all
the encodings of B(imax + 1 − |S|) and not all the encodings b of the set B(imax + 1) for which
b|i = 1, ∀i ∈ S.



2.4 General network monitoring 19

Figure 2.1. ICA execution on Example A. Solid lines represent graph edges.

1010, 1001, 0101, 0011, 1110}
Finally, we observe that `4(BV ) = 4 < d4. We then perform the path completion

procedure (line 11) and choose one of the encodings b′ in BV ∩ B(imax + 1− |S|) = B(2) for
which b′|4 = 0 and b′ ∨ e4 /∈ BV . One encoding that satisfies this condition is b′ = 1100. We
replace b′ with b′′ = 1101 and obtain the set of encodings {1000, 0100, 0010, 0001, 1101,
1010, 1001, 0101, 0110, 0011, 1110}, each corresponding to a node of the graph G. Again,
the number of generated encodings corresponds to ψAR in Theorem 2.4.1 for the given input.
Then we define the corresponding monitoring paths, by letting path pi traverse all the nodes
whose encoding has a 1 in the i-th position, in arbitrary order, ∀i ∈ {1, . . . ,m}. Finally, we
design the underlying topology by connecting each pair of nodes appearing in a sequence in
any of the paths, obtaining the topology of Figure 2.2.

Figure 2.2. ICA execution on Example B. Solid lines represent graph edges.

It is worth observing the following.



2.4 General network monitoring 20

Observation 2.4.1. ICA produces a network topology and related monitoring paths such
that all nodes have a crossing number lower than or equal to (imax + 1).

When knowledge of d̄ is not available, and instead we limit the paths length to be at
most dmax, Algorithm 1 can be simplified allowing the following changes: the number of
paths m is computed as in Theorem 3.3.1 (line 1). To all nodes, we initially assign di = dmax
(lines 2-4). The algorithm continues as it is until the condition that some paths satisfy
`k(BV ) = dmax − 1 is met (line 11). When dmax is used, path completion is not required,
and for such paths we simply set dk = `k(BV ). The returned set of encodings BV can be
mapped onto a topology graph where all n nodes are identifiable by using m paths with
maximum path length dmax.

Tightness of the bound on identifiability under arbitrary routing
In this section we show that the bound given by Theorem 2.4.1 can be achieved tightly

for a specific family of topologies, namely those constructed via ICA.

Proposition 2.4.2 (Tightness of Theorem 2.4.1). For any number m of monitoring paths
with average length d̄ ∈ (0, 2m−1], there exists a set P of m paths, such that the number of
identifiable nodes equals the bound given in Theorem 2.4.1:

ψ∗AR(m, d̄) =
imax∑
i=1

(
m

i

)
+
⌊
Nmax −

∑imax
i=1 i ·

(
m
i

)
imax + 1

⌋
.

Proof. We give an existence proof by showing that we can build the paths of the proposition
by means of the ICA technique. We need to show that the number of identifiable nodes
obtained through ICA is equal to the one provided by the bound of Theorem 2.4.1. We
denote with B(i) the set of m-digit encodings with i digits equal to one. ICA initially
generates all the encodings of B(i), for i = 1, . . . , imax. As a consequence, notice that each
path will traverse at least d(imax) ,

∑imax−1
i=0

(
m−1
i

)
identifiable nodes. In fact, the encodings

of the nodes of I(pi) (identifiable nodes traversed by path pi), must have a ‘1’ in the i-th
position. Therefore the number of distinct encodings corresponding to nodes of I(pi) is at
least equal to the number of binary sequences of (m − 1) elements, with up to (imax − 1)
ones, which is d(imax).

Under ICA, each path also traverses other nodes with crossing number equal to (imax +1).
Each of these nodes will appear in exactly (imax + 1) paths. The number of such nodes is

therefore given by
⌊∑m

k=1
(dk−d(imax))

(imax+1)

⌋
.

Hence, ICA generates the set of node encodings BV including the following:

•
(
m
i

)
encodings corresponding to nodes with crossing number equal to i, for i = 1, . . . imax,

and

•
⌊∑m

k=1
(dk−d(imax))

(imax+1)

⌋
encodings corresponding to nodes with crossing number equal to

(imax + 1).

ICA constructs the set BV in a way that each encoding corresponds to a unique node,
and the nodes are traversed by paths of average length d̄, guaranteeing identifiability of all
the nodes corresponding to the generated encodings.

In order to show that the number of identifiable nodes is equal to the one provided by
the bound of Theorem 2.4.1, we need to prove that

⌊∑m

k=1
(dk−d(imax))

(imax+1)

⌋
=
⌊
Nmax−

∑imax
i=1

i·(m
i )

(imax+1)

⌋
,

which holds because
∑m
k=1 dk = m · d̄ = Nmax, and m · d(imax) = m ·

∑imax−1
i=0

(
m−1
i

)
=∑imax

i=1 i ·
(
m
i

)
, which can easily be proven by expanding the binomial coefficients.



2.4 General network monitoring 21

Notice that the proposition requires d̄ ≤ 2m−1 as a higher value would require the
generation of at least a path to traverse different nodes with the same encoding, losing
identifiability with respect to the bound value.

2.4.3 Consistent routing
Identifiability bound

As we discussed in Section 2.4.1, when monitoring paths can be routed arbitrarily, the
number of identifiable nodes may be exponential in the number of monitoring paths. In
contrast, the adoption of specific routing schemes may affect the identifiability of nodes.

In the following we study the impact of consistent routing schemes.

Definition 2.4.1. A set of paths P is consistent if ∀p, p′ ∈ P and any two nodes u and v
traversed by both paths (if any), p and p′ follow the same sub-path between u and v.

Note that routing consistency implies that paths are cycle-free. Figure 2.2 is an example
of non-consistent routing. For example paths p1 and p3 choose different routes to go from
node 1110 to node 1010, across nodes 1001 and 0011, respectively. An example of consistent
routing of monitoring paths is instead given in Figure 2.3.

We observe that routing consistency is satisfied by many practical routing protocols,
including but not limited to shortest path routing (where ties are broken with a unique
deterministic rule), and by many emerging routing techniques. For instance, routing
consistency may be the result of QoS policies, aiming at balancing traffic along several lines,
such as in the case of fat-tree based data center topologies, largely is discussed in [16].

We define the path matrix of p̂i as a binary matrix M(p̂i), in which each row is the
binary encoding of a node on the path, and rows are sorted according to the sequence p̂i.
Notice that by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.

Lemma 2.4.1. Under the assumption of consistent routing, if any two different rows of the
matrix M(p̂i) are equal, then the corresponding nodes are not 1-identifiable.

Proof. Under consistent routing, the path p̂i cannot contain any cycle, so every row of M(p̂i)
corresponds to a different node. If two different nodes have the same binary encoding, by
Lemma 2.3.1, the two nodes are not identifiable.

Definition 2.4.2. A column M(p̂)|∗,k (k = 1, . . . ,m) of a path matrix M(p̂) has consecutive
ones if all the “1”s appear in consecutive rows, i.e., for any two rows i and j (i < j), if
M(p̂)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma 2.4.2. Under the assumption of consistent routing, all the columns in all the path
matrices have consecutive ones.

Proof. The assertion is true for M(p̂i)|∗,i since it contains only ones. Let us consider
column M(p̂i)|∗,j , with j 6= i. Assume by contradiction that there are two rows k1 < k2 s.t.
M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with k1 < h < k2 for which M(p̂i)|h,i = 0.
Let v1, v2, and vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and M(p̂i)|h,∗,
respectively. Then the paths p̂i and p̂j traverse both nodes v1 and v2 following different
paths, of which only p̂i traverses node vh, in contradiction with consistent routing.

Lemma 2.4.3. Given m > 1 consistent routing paths, each path pi having length di,
the maximum number of different encodings in the rows of M(p̂i) is upper-bounded by
min{di; 2 · (m− 1)}.



2.4 General network monitoring 22

Proof. While the number of different encodings appearing in the rows of M(p̂i) is trivially
bounded by di, it can even be lower. By considering each column of M(p̂i) separately we
observe the following. First, column M(p̂i)|∗,i contains only ones. Second, for any column
M(p̂i)|∗,j with j 6= i, it holds, by Lemma 2.4.2, that it has consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k 6= M(p̂i)|r,k. Due to Lemma
2.4.2 any column of M(p̂i) can have up to two flips or it would interrupt a sequence of ones,
violating Lemma 2.4.2. In fact, if the column starts with a ‘0’ in the first row, it can flip
from ‘0’ to ‘1’ in row r1 and then back in row r2, with r2 > r1, but if it flips from ‘1’ to
‘0’ it cannot flip back in a successive column. If instead the column starts with a ‘1’ in the
first row, it can only flip once. In order to have a change in the encoding contained in any
two successive rows r − 1 and r of the matrix M(p̂i), i.e., M(p̂i)|r−1,∗ 6= M(p̂i)|r,∗, there
must be at least a column that flips in r. The number of columns that can flip is m− 1 and
each of them can flip at most twice. The number of different rows of M(p̂i) is therefore
upper-bounded by the smallest between the path length di and 2 · (m− 1).

〈0010〉
〈0110〉
〈1110〉

〈1100〉
〈1000〉

〈1011〉

〈0100〉

〈0011〉〈0001〉 〈1001〉

p1
p2
p3
p4

Figure 2.3. Consistent routing paths identifying all nodes of the network.

In the example of Figure 2.3 routing is consistent and each column flips at most twice,
so the number of different rows is lower than, or equal to 2 · (m − 1) = 6. For instance,
considering M(p̂3), we observe only 4 < 6 flips:

M(p̂3) =



flips b1 b2 b3 b4

0 0 0 1 0
1 0 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1


Theorem 2.4.2 (Identifiability with consistent routing). Given n nodes, and a set P
of m > 1 consistent routing paths, with average path length d̄, the maximum number of
identifiable nodes ψCR, for any G and any location of the path endpoints, is upper-bounded
as in Theorem 2.4.1,

ψCR(m,n, d̄)≤min
{
imax∑
i=1

(
m

i

)
+
⌊
Nmax −

∑imax
i=1 i ·

(
m
i

)
imax + 1

⌋
;n
}
,

where imax = max{k |
∑k
i=1 i ·

(
m
i

)
≤ Nmax}, except that Nmax is now defined as: Nmax =

m ·min{d̄ ; 2 · (m− 1)}.

Proof. The proof follows the same arguments used to prove Theorem 2.4.1, concerning the
minimization of the number of ones in the node encodings to reduce the number of repeated
encodings among the different path matrices. Nevertheless, due to routing consistency, the
value of Nmax is now the sum of the bound value of Lemma 2.4.3, for each path.



2.4 General network monitoring 23

We underline that the setting of Nmax is the fundamental aspect which makes Theorem
2.4.2 and Theorem 2.4.1 different from each other. While in Theorem 2.4.1 Nmax can be as
high as m · 2(m−1), i.e., exponential in the number of paths m, in Theorem 2.4.2 Nmax can
never be higher than 2m · (m− 1), i.e. quadratic in the number of paths.

When the individual path length is not known, nor is the average path length, but the
path length is upper-bounded by dmax, we have the following Corollary of Theorem 2.4.2.

Corollary 2.4.3 (Identifiability under consistent routing, and bounded maximum path
length). Given a network and a set P of m > 1 consistent routing paths with maximum
length dmax, the maximum number of identifiable nodes in the network is upper-bounded as
in Theorem 2.4.1, except that Nmax is now defined as: Nmax = m ·min{dmax; 2 · (m− 1)}.

We remark that prior knowledge of the monitor path length is not a necessary requisite
for the usage of the bounds of Theorem 2.4.2 and Corollary 2.4.3. When unknown, the value
of dmax can be replaced with any upper bound, for instance with the number of nodes in the
network or with the diameter of the network, in the case of shortest path consistent routing.

Tightness of the bound and design insights
It must be noted that in generating node encodings ICA does not ensure the existence

of a consistent routing solution, therefore, differently from the case of arbitrary routing, it is
not always applicable to produce tight topologies. Nevertheless, some topologies generated
by ICA, for certain values of m, n and d̄, achieve the bound of Theorem 2.4.2 also in the
case of consistent routing.

For example, we use ICA to generate the topology shown in Figure 2.4, that we name
half-grid.

t1, t2 t3 t4 t5 t6 t7 t8

s8

s7

s6

s5

s4

s3

s2

s1

Figure 2.4. An example of half-grid graph.

We consider m = 8 paths. The figure highlights the source si and destination ti of
any path pi, i = 1, . . . ,m, where di = 8 for all paths, hence d̄ = m = 8. Observe that the
half-grid satisfies the condition of routing consistency, and all the n =

(8
1
)

+
(8

2
)

= 36 nodes
are identifiable. In agreement with Observation 2.4.1, the maximum crossing number in
this topology is equal to imax = 2. Such a topology can be constructed for any m paths,
n = m · (m+ 1)/2 nodes and di = m. In the resulting half-grid, routing is consistent and all
the nodes are identifiable. Moreover, we observe that some modified half-grid topologies,
using path length in the range [m,m+ 3], with average d̄ ≤ m2+3m−6

m , may still meet the
bound when we add some new nodes (up to (m− 2)) with crossing number equal to 3 along
the diagonal of the grid7 . More specifically, in Figure 2.5, we modified the half-grid of

7The requirement d̄ ≤ m2+3m−6
m

comes from a simple counting argument on the modified half-grid
topology with the maximum number of additional nodes along the diagonal. The top and bottom
path of the half grid would have length m + 1, the second and second to last paths would have



2.4 General network monitoring 24

t1, t2 t3 t4 t5 t6 t7 t8

s8

s7

s6

s5

s4

s3

s2

s1

Figure 2.5. An example of half-grid graph with two additional nodes.

Figure 2.6. A topology that meets the bound of Theorem 2.4.2 with m = 7 and d̄ = 82
7 ,

and dmax = 12.

Figure 2.4, by adding two new nodes (the two red nodes of the figure) using m = 8 paths,
numbered as above, and d1 = . . . = d6 = 9, d7 = d8 = 8, meaning that d̄ = 70

8 = 8.75.
Again, it holds that routing is consistent and that the bound of Theorem 2.4.2 is achieved
tightly, as ψCR =

(8
1
)

+
(8

2
)

+
⌊ 6

3
⌋

= 38.
It remains open to find the general family of topologies that can achieve the bound in

Theorem 2.4.2. However, half-grid based topologies are not the only ones that can achieve
the bound. In fact, we observe that there are other topologies meeting the bound tightly,
for settings where the average length of the paths is d̄ > m2+3m−6

m (a requirement for the
tightness of modified half-grid topologies). An example is given in Figure 2.6 where ICA is
used for m = 7 consistent routing paths, each with length 12, except for one that has length
10, thus d̄ = 82

7 and dmax = 12. All the 39 nodes in the figure are identifiable, and so the
bound of Theorem 2.4.2 is achieved tightly and with nodes whose crossing number is always
lower than or equal to 3. We observe that under this setting of number of paths and path
length, i.e., where d̄ ≥ m+ 3, a (modified) half-grid could not meet the bound tightly, unless
violating routing consistency.

length m + 2 and all the other paths would have length m + 3 thus enabling the identification of
the m− 2 additional nodes along the diagonal.



2.5 Performance evaluation 25

2.5 Performance evaluation
To evaluate the tightness of the proposed upper bounds, we compare them with lower

bounds obtained by known heuristics on real network topologies.

2.5.1 Bound Analysis
We analyze the tightness of the upper bound in Theorems 2.4.1 and 2.4.2. In Figure 2.7

the upper bounds (UB) computed as in Theorems 2.4.1 and 2.4.2 are shown together with a
lower bound (LB) obtained by considering a half-grid, and placing monitoring endpoints
as in Section 2.4.3. We remark that in the computation of the bounds for these plots, we
consider n = 78 nodes, paths of equal length, such that d̄ = dmax = 12, while we vary the
number of paths m.

Notice that the upper bounds given by Theorems 2.4.1 and 2.4.2 for dmax = 12 are the
same for m = 2, 3, that is when min{di; 2m−1} = min{di; 2 · (m−1)}, and for m ≥ 7, that is
the threshold above which it holds that min{di; 2 · (m− 1)} = di = 12. This result highlights
how consistent routing reduces the maximum number of identifiable nodes.

The figure also shows the identifiability of the modified half-grid topology, (see Figures
2.4 and 2.5). Notice that, as we pointed out in Section 2.4.3, the bound on the number of
identifiable nodes under the assumption of consistent routing (Theorem 2.4.2) is tight on
the modified half grid topologies when m satisfies m2+3m−6

m ≥ di (that in this example is
when m ≥ 10). The green triangle in the figure represents the number of identifiable nodes
for the topology shown in Figure 2.6.

In Figure 2.8, we also consider a scenario with n = 78 nodes and we show how the bound
of Theorem 2.4.2 varies with the number of monitoring paths m and the maximum path
length dmax. For small values of dmax the bound has an almost linear growth with m. For
larger values of dmax the bound shows two regions: an initial super-linear growth for small
values of m, and a linear growth for large values of m. The figure also shows that while the
number of paths m has a major impact on the number of identifiable nodes, the length of the
monitoring paths has a significant impact only when dmax is small, and diminishing impact
otherwise. It must be noted that the bound of Theorem 2.4.2 increases with the value of
dmax, as long as we have dmax ≤ 2 · (m− 1) because the optimal number of identifiable nodes
is also increasing.

2.5.2 Tightness Evaluation on Real Topologies
For the next experiment we consider two real physical layer networks, US Signal and

Uninett, both available in the Topology Zoo archive [82]. US Signal is a fiber optical

2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

Figure 2.7. Bounds of Th. 2.4.1 and Th.
2.4.2, and LB for n = 78, dmax = 12.

5 10 15 20
0

20

40

60

80

Figure 2.8. Bound of Th. 2.4.2, for n = 78,
and different values of dmax.



2.6 Conclusions 26

network in the USA (n = 63 nodes and 133 edges), whereas Uninett is an existing Internet
topology located in Norway (n = 69 nodes and 98 edges). We underline that the choice of
sampling the network at any layer of the protocol stack influences the capability of BNT
to identify failures. In particular, BNT techniques identify node failures at the same level
of representativeness of the topology sampling. Namely, if a node of the topology hides
details of the underlying network layer topology, the identification of a failure on that node
may reflect one or more failures in the portion of the lower layer topology. Notice also that
communication network topologies may be only partially available when obtained by means
of measurements such as traceroute, as underlined in [1]. Also in this case, BNT techniques
ensure failure isolation, under the limits described above, to the extent in which the same
paths are used for both topology discovery and failure detection. In the experiments of
Figures 2.9 and 2.10 we simulate a server positioning problem where we use the heuristic
Greedy for Identifiability (GI) proposed in [65] to determine the location of the server which
optimizes node identifiability, given the position of m clients. By considering one client
per service, GI deploys a fixed number of paths m such that at each step the number of
identifiable nodes is maximized. In the experiments, we run 20 trials for each value of m.
We remark that this experiment provides a lower bound, possibly loose, on the achievable
number of identifiable nodes, for varying m. We compare this lower bound to the upper
bounds given by Theorems 2.4.1 and 2.4.2 with both dmax and d̄, where the value of dmax
has been set based on the paths chosen by the GI heuristic (i.e., in a range between 2 and
5). The paths placed by GI follow a deterministic shortest path routing scheme, that is a
special case of consistent routing.

2.6 Conclusions
In this chapter, we consider the problem of maximizing the number of nodes whose states

can be identified via Boolean Network Tomography. By combinatorial analysis we derive
upper bounds on the number of identifiable nodes under different assumptions, including
general routing (arbitrary and consistent) as well as QoS requirements (path lenghts).
These bounds show the fundamental limits of failure identifiability via Boolean Network
Tomography in both real and engineered networks. The bound analysis gives new insights
for the design of topologies with high identifiability in different network scenarios, and in
particular we propose a polynomial-time algorithm, called ICA, that takes into consideration
such constraints to design a network that meets the bounds for the case of arbitrary routing.
Through analysis and experiments we evaluate the tightness of the bounds and demonstrate
the efficacy of the design insights for engineered as well as real networks.

5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

GI

Figure 2.9. Upper bounds of Th.s 2.4.1
and 2.4.2 and lower bound of GI on US
Signal topology.

5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

GI

Figure 2.10. Upper bounds of Th.s 2.4.1
and 2.4.2 and lower bound of GI on
Uninett topology.



27

Chapter 3

Resources Bounds for
Identifiability in Boolean
Network Tomography

In Boolean Network Tomography (BNT), node identifiability is a crucial property that
reflects the possibility of unambiguously classifying the state of the nodes of a network
as working or failed through end-to-end measurement paths. In this chapter, we extend
the analysis introduced in Chapter 2, and we provide theoretical bounds on the minimum
number of measurement paths that are necessary to guarantee identifiability of a given
number of nodes. The bounds take into consideration two different classes of routing schemes
(arbitrary and consistent routing) as well as quality of service (QoS) requirements. We
formally prove the tightness of such bounds for the arbitrary routing scheme, and we show
that the algorithmic approach for network topology design introduced in Chapter 2 works in
this context, too. Due to the computational complexity of the optimal solution, we evaluate
the tightness of our lower bounds by comparing their values with an upper bound, obtained
by a state-of-the-art heuristic for node identifiability. For our experiments we run extensive
simulations on both synthetic and real network topologies, for which we show that the two
bounds are close to each other, despite the fact that the provided lower bounds are topology
agnostic.
The results shown in this chapter are published in [5].

3.1 Introduction
With the massive growth of the Internet, localizing node failures has become a crucial

task. Single organizations have direct access only to limited portions of the internal nodes
of the network, and they hardly collaborate in sharing internal performance observations
because of commercial conflicts. With similar motivations as those listed in Chapter 2,
in the work described in this chapter, we provide topology-agnostic lower-bounds to the
minimum number of measurement paths which are necessary to guarantee identifiability to
a desired number of nodes. Such bounds represent the dual solution to the optimization
problem studied in Chapter 2 ( [16]), where we introduced upper-bounds to the maximum
number of identifiable nodes given a number of monitoring paths. In contrast with existing
literature, we propose theoretical lower-bounds that cannot be violated, independently of
the specific characteristics of the topology. The bounds formulations are only based on the
number of nodes to identify, on high level routing consistency properties (arbitrary and
consistent routing), and on QoS requirements, expressed in terms of maximum allowed path



3.2 Problem formulation 28

Notation Description
P Set of m monitoring paths P = {p1, . . . , pm}

p ∈ P Monitoring path as list of nodes
b(v) Binary encoding of node v wrt P
b(v)|i i-th element of b(v) (equal to 1 iff v ∈ pi, to 0 otherwise)
χ(v) Crossing number of node v wrt a set of paths P
PF Incident set of paths of a failure set F
I(p) Set of identifiable nodes traversed by path p
M(p) Path matrix of path p
B(k) {b ∈ {0, 1}m, s.t. ∑m

i=1 b|i = k}, k = 1, . . . ,m
BV Set of binary encodings of a set of nodes V

Table 3.1. Notation table.

length. Motivated by the need to complement the analysis of [16], our bounds are a useful
tool to measure the capability of a monitored topology to efficiently identify the status of its
components. Implementing a monitoring system comes with the cost of installing monitors
on the nodes of a network and of traffic caused by path probing; with this work, we aim at
providing fundamental guidelines and minimal requirements for achieving the desired level
of network identifiability (e.g., number of identifiable nodes).
We hereby list the major contributions presented in this chapter.

• We study theoretical bounds on the minimum number of paths to deploy in a network
for identifying a desired number of nodes. The bounds do not depend on specific
network topologies (i.e., they are topology agnostic bounds).

• We adapt the Incremental Crossing Arrangement (ICA) algorithm (Algorithm 1), to
the scenario studied in this chapter, and we use it to prove tightness of the proposed
bounds.

• We evaluate the tightness of our bounds on both synthetic and real network topologies.
For this purpose we compare the bounds with the results of a state-of-the-art greedy
algorithm, hereby referred to as Greedy for Identifiability (GI), for maximizing network
identifiability by means of client-to-server probing paths [65].

3.2 Problem formulation
We represent a network as a undirect graph G = (V,E), where V is the set of the nodes

of G and E is the set of its edges. Each node v is either in working or failed state. In
Table 3.1 we sum up the notation that will be used throughout this chapter. The state
of the nodes is assessed indirectly by a set of monitoring paths, P := {p1, . . . , pm}, each
being represented as the ordered sequence of nodes it traverses. Node failures cause paths
disruption: when a path traverses a failed node, its communication is interrupted. On the
other hand, paths traversing only working nodes are working. Each node v may be labeled
with a binary encoding of length m, b(v) ∈ {0, 1}m \ 0m, where b(v)|i = 1 if v is traversed
by path pi, b(v)|i = 0 otherwise. We call crossing number of a node v, χ(v), the number
of paths that traverse v, i.e., the number of 1s in its binary encoding (χ(v) =

∑m
i=1 b(v)|i).

For each path pi we define a path matrix as a binary matrix M(pi), in which each row is
the binary encoding of a node on the path, and rows are sorted according to the sequence
pi. Notice that by definition M(pi)|∗,i has only ones, i.e., M(pi)|r,i = 1, ∀r. We call the



3.3 General network monitoring 29

incident set of v the set of paths traversing v and denote it with Pv ⊆ P .
We call failure set of a network, F , the set of all failed nodes. Here, we assume that nodes
fail one at a time, and therefore that |F | = 1. In such a context, we focus on the property
of 1-identifiability. With reference to [17], we give the following definition following from
Lemma 2.3.1:

Definition 3.2.1. A node vi is 1-identifiable with respect to P = {p1, . . . , pm} if b(vi) 6= 0m
and if for all vj 6= vi, b(vi) 6= b(vj), i.e., its binary encoding is not null and not identical to
that of any other node.

Node identifiability allows non ambiguous node state assessment by means of end-to-end
measurement paths. We highlight that in order to be identifiable, a node must be monitored
at least by one path. For this reason, a node whose binary encoding is null cannot be
identifiable. In this chapter, we give bounds on the minimum number of paths that are
needed for letting n ≤ |V | nodes be 1-identifiable under arbitrary and consistent routing
schemes.

3.3 General network monitoring
Similarly to how we did in Chapter 2, we now study the number of paths to place in

a general network of which we know the number of nodes and monitoring paths, without
assuming any specific interconnecting topology. In the following, we consider a collection
P of candidate path sets of known cardinality m ≥ 1, between any endpoints. We analyze
ψ(P) in two cases: (i) arbitrary routing and (ii) consistent routing.

3.3.1 Arbitrary Routing
In this section we study the minimum number of monitoring paths that can be employed

to identify n nodes in a network under arbitrary routing. We say that paths follow an
arbitrary routing scheme if they do not traverse a node more than once, but they can cross
each other non-restrictively.
In Section 3.2, we explained that nodes can be represented with binary encodings depending
on what paths traverse them. In addition, we noticed that, in order for nodes in a network
to be identifiable, they must have all different encodings. Since the number of different
binary encodings of length m, excluding the string 0m, is 2m − 1, the following holds:

Proposition 3.3.1. The minimum number of monitoring paths to place in order to identify
n nodes under arbitrary routing is mAR

min = dlog2(n+ 1)e.

The bound represented by mAR
min does not take into consideration the length of the paths

involved. The length of a path pi is the number of nodes it traverses, di (di = |{v ∈ V :
b(v)|i = 1}|). When constraints to the paths length are given, for instance by defining an
upper bound to the maximum length, di ≤ dmax, or to the average path length, 1

m

∑
i di ≤ d̄,

the bound of Proposition 3.3.1 may change. In order to discuss the bound on the minimal
number of paths under path length constraints, we observe the following facts:

Observation 3.3.1. The number of distinct binary strings in {0, 1}m with k 1s and m− k
0s (with 0 < k ≤ m) is

(
m
k

)
. Out of them, there are

(
m−1
k−1

)
strings where the i−th digit is

1. In our context, this means that a path can traverse at most
(
m−1
k−1

)
nodes having crossing

number k in order to guarantee identifiability, that is when all encodings are distinct.

Observation 3.3.2. The maximum length di of a path pi is di =
m−1∑
i=0

(
m−1
i

)
= 2m−1. In

fact, the maximum number of identifiable nodes using m path under arbitrary routing is
n = 2m − 1 (see Proposition 3.3.1). The statement follows from Observation 3.3.1.



3.3 General network monitoring 30

These observations are illustrated in Figure 3.1. In this simple example we have n = 7
nodes. Assuming arbitrary routing, m = log2(8) = 3 monitoring paths are enough to identify
all nodes. Each path p1, p2, p3 traverses

(
m−1
k−1

)
=
( 2
k−1
)

nodes v with crossing number
χ(v) = k ∈ {1, . . . ,m}, and the length of each path is 2m−1 = 4.

Figure 3.1. Arbitrary routing example.

In Theorem 3.3.1 we provide a lower bound to the number of paths to place in order to
identify n nodes in a network, in the case a path length constraint is given.
Theorem 3.3.1. The minimum number of paths mAR,dmax

min of maximum path length dmax to
identify n nodes under arbitrary routing is the solution of the following problem:

minms.t.

⌊
l(imax+1) ·m
imax + 1

⌋
+

imax∑
i=1

(
m

i

)
≥ n, (3.1a)

where imax = max
{
j :

j∑
i=1

i ·
(
m

i

)
≤ m ·D

}
, (3.1b)

D = min
{
dmax, 2m−1} , (3.1c)

and l(imax+1) = D −
imax−1∑
i=0

(
m− 1
i

)
. (3.1d)

Proof. In order to minimize the number of paths, we want to have as many distinct encodings
as possible with the minimum number of 1s. This fact translates into a strategy that consists
in incrementally increasing the crossing number of the monitored nodes until the fixed
average path length dmax allows it or until there is no way that paths traverse more nodes
without violating identifiability, equation (3.1c) (see Observation 3.3.2).
The quantity imax in Equation (3.1b) says that paths can be placed in such a way that
the nodes they traverse are all distinct nodes with crossing number o < χ(v) ≤ imax. The
quantity m ·D is a loose upper-bound to the maximum number of nodes traversed by m
paths, where nodes with crossing number j are counted j times, as j paths traverse them.
Depending on the value l(imax+1) in Equation (3.1d), some more paths with crossing number
(imax + 1) may be traversed. Notice that l(imax+1) represents the number of nodes of crossing
number (imax +1) that each path p can traverse considering that it traversed all distinct nodes
with crossing number ≤ imax (see Observation 3.3.1). Extended to all m paths,

⌊
l(imax+1)·m

(imax+1)

⌋
in Equation (3.1a) is the number of distinct nodes with crossing number (imax + 1) that can

be traversed by m paths of length l(imax+1) +
imax−1∑
i=0

(
m−1
i

)
.



3.3 General network monitoring 31

Constraints on paths length are usually imposed by QoS requirements and influence
substantially the minimum amount of paths needed to identify a certain number of nodes. In
a network where shortest path routing schemes are applied, the value of dmax is the diameter
of the network. Differently, multi-service networks serve for more than a single service, to
which a number of clients access. Each service is characterised by a different service level
agreement (SLA) that regulates the routing scheme to adopt as well as the reserved portion
of the network. QoS requirements may also vary for each service. In this scenario, paths
lengths may be different from one another depending on what service a path belongs to.
Information about paths lengths for different services in multi-service networks justifies the
introduction of the notion of average path length of a network, d̄. Furthermore, average
path length can be easily computed when the network topology and the routing scheme
implemented on it are known.

Corollary 3.3.1. The bound of Theorem 3.3.1 holds also when we consider the average
path length, d̄, or an upper-bound to it, instead of dmax. The statement of Theorem 3.3.1
only changes in Equation (3.1c), where the value of d̄ is to be substituted to dmax. We call
such bound mAR,d̄

min .

The bound of Theorem 3.3.1 suggests that the number of nodes that m monitoring paths
can identify grows with the path length, (Equation (3.1b)). Nevertheless, we can show that
the growth stops for dmax > 2m−1.

Corollary 3.3.2. The number of nodes that m paths can identify grows with dmax as long
as dmax ≤ 2m−1.

Proof. In Observation 3.3.1 we point out that, given a set of m paths, each of them can
traverse at most

(
m−1
k−1

)
nodes with crossing number χ(v) = k. The maximum value for χ(v)

is m, and therefore the maximum path length for a path is
m−1∑
i=0

(
m−1
i

)
= 2m−1. This fact

motivates the expression in Equation (3.1b).

We highlight that knowledge of path length does not necessarily imply explicit knowledge
of the paths - in terms of what nodes they traverse.

Adapting Incremental Crossing Arrangement (ICA)
In this section, we see how ICA in Algorithm 1 can be adapted to the scenario considered

in this chapter, where we are not given the number of measurement paths, but instead we
have as a input parameter the number of nodes we want to identify. We shall then use the
adapted version of ICA to show the tightness of the bounds of Theorem 3.3.1.

In order to adapt Algorithm 1 to design a network topology and routing scheme where
the number of nodes to identify is given, it is enough to apply the following changes:

• Input: n, number of nodes to identify, and d̄, average path length.

• Output: A set of encodings BV which can be mapped onto a topology graph
G = (V,E) where all |V | = n nodes are identifiable by using mminAR,dmax paths with
average length d̄.

• line 1: Compute m according to Theorem 3.3.1 and Corollary 3.3.1.

Tightness of the bound under arbitrary routing In this section we show that
the bound given by Theorem 3.3.1 can be achieved tightly for a specific family of topologies
constructed via Incremental Crossing Arrangement (ICA) (Algorithm 1).



3.3 General network monitoring 32

Proposition 3.3.2. [Tightness of Theorem 3.3.1]
For any n ∈ Z+ (positive integer) and d̄ > 0, there exists a set P of m monitoring paths

with average length d̄, such that m is the solution of the problem in Equations (3.1a) to
(3.1d).

Proof. We recall that the Incremental Crossing Arrangement (ICA) algorithm builds a
topology by creating nodes with unique encodings, in increasing order of crossing number,
up to possibly (imax + 1).

To prove the proposition, we need to show that the minimum number of monitoring
paths required to identify n nodes is provided in Theorem 3.3.1. ICA initially generates all
the encodings of B(i), for i = 1, . . . , imax. As a consequence, it follows from Observation 3.3.1
that each path will traverse at least d(imax) ,

∑imax−1
i=0

(
m−1
i

)
identifiable nodes. In fact, the

encodings of the nodes of I(pi) (identifiable nodes traversed by path pi), must have a ”1”
in the i-th position. Therefore the number of distinct encodings corresponding to nodes of
I(pi) is at least equal to the number of binary sequences of (m− 1) elements, with up to
(imax − 1) ones.

Under incremental crossing arrangement, each path also traverses other nodes with
crossing number equal to (imax + 1). Each of these nodes will appear in exactly imax + 1 paths.

The number of such nodes is therefore given by
⌊∑m

k=1
(dk−d(imax+1))
imax+1

⌋
.

In conclusion, with this construction, ICA generates the following number of node
encodings:

•
(
m
i

)
encodings corresponding to nodes with crossing number equal to i, for i =

1, . . . , imax, and

•
⌊∑m

k=1
(dk−d(imax))
imax+1

⌋
encodings corresponding to nodes with crossing number equal to

(imax + 1).

The number of generated encodings does not change if ICA applies the path completion
procedure, which consists in a replacement of an encoding b′ ∈ ∪imax

i=1B(i) with an encoding
b′′ ∈ B(imax + 1). In both cases, ICA constructs the set BV in a way that each encoding
corresponds to a unique node, and the nodes are traversed by paths of average length d̄,
guaranteeing identifiability of all the nodes corresponding to the generated encodings.

In order to show that the number of paths provided by Theorem 3.3.1 is enough to identify
at least n nodes in the network, we need to prove that

⌊∑m

k=1
(dk−d(imax1))
imax+1

⌋
=
⌊
l(imax+1)·m
imax+1

⌋
.

This holds because
∑m
k=1(dk − d(imax)) =

∑m
k=1 dk −m · d(imax), that is equal to l(imax+1) ·m

in Equation (3.1d), being d̄ = 1
m

∑m
k=1 dk.

Notice that Proposition 3.3.2 requires d̄ ≤ 2m−1 as having longer paths would require at
least a path to traverse different nodes with duplicate encodings, losing identifiability with
respect to the bound value.

While Proposition 3.3.2 gives a characterization of sufficient conditions for building a
network topology achieving the bound, we note that there exist topologies that do not meet
the conditions, but still achieve the bound.

Observation 3.3.3. The statement of Proposition 3.3.2 holds also when dmax is given instead
of d̄. In fact this simply translates into the more general scenario where initially di = dmax is
assigned to all paths and where path completion is not performed. Indeed, path completion
does not serve for identifiability increase, but only to meet the input condition on the average
path length.



3.3 General network monitoring 33

3.3.2 Consistent routing
As we have seen in Theorem 3.3.1, given a number of nodes to identify, the number

of required paths can be logarithmic in the number of nodes. Nevertheless the bound of
Theorem 3.3.1 is achieved only when the routing scheme allows paths to traverse arbitrary
sequences of nodes.

If routing needs to meet additional requirements, the theoretical bound given by Theorem
3.3.1 can be increased.

We now consider the impact of the routing scheme on the identifiability of nodes via
Boolean tomography. In the sequel, we assume that paths satisfy the following property of
routing consistency.

Definition 3.3.1. A set of paths P is consistent if ∀p, p′ ∈ P and any two nodes u and v
traversed by both paths (if any), p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many practical routing protocols,
including but not limited to shortest path routing (where ties are broken with a unique
deterministic rule). Note that routing consistency implies that paths are cycle-free. In the
following, we recall from [16] necessary for the proof of Theorem 13.3.2, where we provide
the bound on the minimum number of paths under consistent routing.

Definition 3.3.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path matrix M(p) has consecutive
ones if all the “1”s appear in consecutive rows, i.e., for any two rows i and j (i < j), if
M(p)|i,k = M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

We recall, as proved in Lemma 2.4.2 in Chapter 2, that under the assumption of consistent
routing, all the columns in all the path matrices have consecutive ones. Furthermore, in
Lemma 2.4.3, we showed that given m = |P | > 1 consistent routing paths, each path pi
having length di, the maximum number of different encodings in the rows of M(pi) is
upper-bounded by min{di; 2 · (m− 1)}.

We show these results, formally proved in Chapter 2 ( [16]), by the simple example of
Figure 3.2, where all nodes are 1-identifiable under consistent routing. Routing consistency
is verified as the i-th column of all path matrices M(pi) is 1.

Figure 3.2. Consistent routing example.

Theorem 3.3.2. The minimum number of paths mCR,dmax
min of maximum path length dmax to

identify n nodes under consistent routing is the solution of the problem of Theorem 3.3.1,
where Equation (3.1c) reads:

D = min {dmax, 2 · (m− 1)} . (3.2)



3.3 General network monitoring 34

Proof. The proof is analogous to the one of Theorem 3.3.1. The only difference in this case
is that D = min {dmax, 2 · (m− 1)}, because of Lemma 2.4.3.

The same considerations on the knowledge of the average path lengths for Theorem 3.3.1
hold for Theorem 3.3.2:

Corollary 3.3.3. When d̄ is known, the optimal solution mAR,dmax
min of the problem in The-

orem 3.3.1, is a lower bound to the minimum number of paths to identify n nodes, if we
substitute dmax with d̄ in Equation (3.2). We call mCR,d̄

min the bound computed with d̄.

Corollary 3.3.4. The bound provided in Theorem 3.3.2 may be achieved by allowing the
maximum value for the crossing number of a node to be 3.

Proof. We need to prove that the maximum value of imax is 2 under the assumption of
consistent routing. Let us assume that d̄ ≥ 2 · (m− 1), and therefore that D = 2 · (m− 1).

Recall that imax = max
{
j :

j∑
i=1

i ·
(
m
i

)
≤ m ·D

}
. For j = 2 and ∀m ≥ 2, it holds that

2∑
i=1

i ·
(
m

i

)
= m+ 2m(m− 1)

2 = m2 < 2m · (m− 1),

whereas for j = 3:

3∑
i=1

i ·
(
m

i

)
= m2 + 3(m− 2)(m− 1)m

6

= m3 −m2

2 +m > 2m · (m− 1) ∀m.

Since
N∑
i=1

i ·
(
m
i

)
is a growing function of N , imax is at most 2.

Case of study: grid networks
The bound provided in Theorem 3.3.2 is tight on square grid networks with n2 nodes,

using 2n − 1 paths of maximum length dmax = n. By contradiction, assume dmax = n
and mCR,dmax

min = 2n − 2. It is easy to see that imax = 1 ∀n ∈ N, n > 2. Therefore
l(imax+1) = n− 1 and the number of nodes that may be identified with m = 2n− 2 paths is
(n− 1)2 + 2n− 2 = n2 − 1 < n2. An example of such topology and of paths placement is in
Figure 3.3.

Figure 3.3. 3× 3 grid network.



3.4 Experimental Results 35

3.4 Experimental Results
We evaluate the tightness of the bounds proposed in the previous sections in comparison

to with the results obtained by a state-of-the-art heuristic ( [65]). For this purpose we
run experiments on synthetic as well as real network topologies, implemented in Matlab.
First, in Figures 3.4 and 3.5 we show the trend of the bounds on the minimum number of
paths for the identification of n nodes, for the two cases of arbitrary and consistent routing,
respectively (i.e., bounds of Theorems 3.3.1 and 3.3.2), under varying n, and path length
dmax. Observe that the dependence on the path length of the values of mAR,dmax

min and mCR,dmax
min

is stronger for smaller values of dmax. This is an expected behaviour, as in Equation (3.1d),
it holds that D = 2m−1 for all values of dmax ≥ 2m−1. As a result, for all such values of dmax,
the minimum number of paths needed to identify n nodes is the same. This phenomenon is
more evident in the case of consistent routing (Figure 3.5) because D = min{dmax, 2 · (m−1)}
(see Equation (3.2)), and therefore D = 2 · (m− 1) for all dmax ≥ 2 · (m− 1).

3.4.1 Topologies
We hereafter list the topologies (synthetic and real) used in our evaluation:

1. Random Geometric (RG) graphs. RG graphs are synthetic topologies [64] built
as follows: n nodes are placed in a unit square and a link is added between any pair
of nodes whose distance is lower than or equal to a threshold parameter ρ > 0. In our
experiments, we generate random coordinates (xi, yi) for each node vi and we vary
the value of ρ. This model well simulates ad-hoc wireless networks.

2. Jellyfish topology. Introduced in [129], Jellyfish are emerging data centre topologies
which offer high throughput and capacity, high scalability and failure resiliency. The
internal nodes of the Jellyfish (nodes with degree strictly greater than one) are network
switches, whereas leaf nodes are servers.

3. US Signal. This is the real topology of a fiber optical network in the USA. This
topology was made available in the Topology Zoo archive [82], and is composed of 63
nodes and 133 edges.

4. Uninett. This is an existing Internet topology located in Norway. It has 69 nodes
and 98 edges. It was also taken from the Topology Zoo archive [82].

5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

Figure 3.4. Bound of Th. 3.3.1 mAR,dmax
min ,

varying paths lengths.

5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

Figure 3.5. Bound of Th. 3.3.2 mCR,dmax
min ,

varying paths lengths.



3.4 Experimental Results 36

10 20 30 40 50 60 70 80
0

10

20

30

40

50
GI

(a) RG graph, ρ = 0.1.

10 20 30 40 50 60 70 80
0

10

20

30

40

50
GI

(b) RG graph, ρ = 0.2.

10 20 30 40 50 60 70 80
0

10

20

30

40

50
GI

(c) RG graph, ρ = 0.3.

10 20 30 40 50 60 70 80
0

10

20

30

40

50
GI

(d) Jellyfish topology.

5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50
GI

(e) US Signal.

5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50
GI

(f) Uninett.

Figure 3.6. Number of paths to identify variable numbers of nodes on different topologies.
dmax = 4.

3.4.2 Benchmark heuristic
In order to evaluate the tightness of our bound, we use a state-of-the-art greedy for

identifiability (GI) proposed in [65], as a benchmark for comparisons, and we adapt it to our
scenario. GI was originally proposed as an algorithm to place servers for addressing Quality
of Service (QoS) and failure identifiability requirements in a joint manner. Given multiple
services, and related client sets, the algorithm finds the most suitable server location, among
those satisfying QoS requirements, to optimize failure identifiability. The selected server
locations are such that the client-to-server paths form several intersecting trees, one for each
service, where servers are located at the roots and clients are located at the leaves. GI uses
a greedy approach that iteratively selects a number of server positions, one for each service,
such that the identifiability obtained by the adopted client-to-server paths, is maximized at
each iterative step. The authors prove that the number of paths placed by this heuristic is a



3.4 Experimental Results 37

constant approximation of the optimal solution.
In our experiments we modify the GI approach to obtain an upper bound to the number

of paths that are necessary to uniquely identify the state of a given number of nodes n. In
particular, in order to ensure maximum flexibility to the choice of the set of monitoring
paths we consider only one client for each server, and a number of paths that is equal to
the number of deployed servers. Moreover, we relax the quality of service requirements to
obtain all the server locations which are at a distance lower than or equal to dmax from the
client. The algorithm ends as soon as the selected paths are sufficient to identify the desired
number of nodes n.

In our implementation of GI communication between any two endpoints is obtained
through a shortest path routing algorithm. The adoption of a deterministic tie breaking
rule ensures that the obtained routing scheme is deterministic. In order to prevent the use
of degenerate paths (i.e., paths traversing only one node), servers are never located on the
same node as the related client.

In order to boost identifiability of the greedy approach, we consider a preliminary phase
where a set of paths is deployed according to a greedy for node coverage approach. This
coverage phase is also common to [103], and is motivated by the observation that greedy
for identifiability approaches select short paths in the early iterations, to obtain maximum
identifiability, which prevents further identification in the later steps of the algorithm, due to
insufficient node coverage, an issue that is easily solved by letting the algorithm use longer
paths in the early execution steps.

3.4.3 Tests
The bounds of Theorems 3.3.1 and 3.3.2 are compared with the results obtained by GI,

which provides an upper bound to the minimum number of paths that are necessary to
uniquely identify the state of a given number of nodes n. We carry out two different sets
of experiments. In the first set, the maximum path length is fixed, dmax = 4, whereas the
number of nodes to be identified is variable. Figure 3.6 shows the curves of the number of
paths necessary to identify an increasing number of nodes for GI with respect to the bounds.
The bounds are also evaluated with the average path length resulting from the path choices
of GI. Each figure represents the experiment on a different topology. For random topologies
(random geometric graphs and jellyfish topologies), we generate graphs of 100 nodes. GI is
then run on all such topologies with an increasing number of nodes to identify (from 10 to
80). For the fiber and the internet topologies instead, the number of nodes to identify goes
from 10 to 60, being 63 and 69, respectively, the total number of nodes of the networks.
A similar setting was also implemented in the second set of experiments, depicted in
Figure 3.7. For these experiments, curves represent how the number of paths necessary
to identify a fixed number of nodes n changes depending on different values of dmax. For
random topologies, n = 80, whereas for US Signal and Uninett, n = 60. Also in this case,
we generated random topologies having 100 nodes.
Tests on random topologies have been executed by generating 20 different graphs of each
type. Shades and bars in the curves of random topologies represent the standard deviation of
the mean number of paths used by GI and of the bounds with variable average path length, d̄
(Figures 3.6a-3.6d and Figures 3.7a-3.7d). In contrast, shades and bars in the curves related
to real topologies (US Signal and Uninett, Figures 3.6e and 3.6f and Figures 3.7e and 3.7f)
represent the standard deviation of the mean number of paths used by a randomized version
of GI where routing consistency is still satisfied. We tested on random geometric graphs
with different values of ρ (0.1, 0.2, 0.3) in order to analyse the goodness of our bounds
on graphs with different properties. When generating random geometric graphs, there is
no guarantee that the resulting graph is connected, unless ρ =

√
2 (in this case, the RG

graph is a clique, being
√

2 the maximum distance between two nodes in an unit square).
Experimentally speaking, we encountered non-connected graphs only for ρ = 0.1. When this



3.4 Experimental Results 38

3 4 5 6 7
0

20

40

60

GI

(a) RG graph, ρ = 0.1, n = 80.

3 4 5 6 7
0

20

40

60

GI

(b) RG graph, ρ = 0.2, n = 80.

3 4 5 6 7
0

20

40

60

GI

(c) RG graph, ρ = 0.3, n = 80.

3 4 5 6 7
0

20

40

60

GI

(d) Jellyfish topology, n = 80.

3 4 5 6 7
0

20

40

60
GI

(e) US Signal, n = 60.

3 4 5 6 7
0

20

40

60
GI

(f) Uninett, n = 60.

Figure 3.7. Number of paths to identify n nodes with variable values of dmax on different
topologies.

event occurs, we link together the least number of nodes belonging to different connected
components that are the closest (by means of the Euclidean distance), until the graph is
connected. Variations of ρ have a great impact on the structure of the resulting graph. The
characteristics of the set of 20 random geometric graphs generated with 100 nodes, with
respect to different values of ρ are summed up in Table 3.2. Figure 3.8 shows an example of
how different values of ρ change the structure of a random geometric graph with 100 nodes.

Notice that, when ρ increases, so does the average node degree, whereas the network
diameter decreases correspondingly. When the maximum path length is fixed to 4 (Figures
3.6a-3.6c), different values of ρ do not imply sensible differences in the performance of GI,
whose trend corresponds to the one of our bounds. This confirms the fact that our bounds
do not depend on topology structures that can be extremely different. On the other hand,
when the maximum path length is variable (Figures 3.7a-3.7c), we can observe the following
facts: first of all, in order to test for dmax = 7, it is necessary to set the condition that the



3.4 Experimental Results 39

ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.3∗
∂min 1 2.1 7.25 6.35
∂max 7.75 18.8 34.2 33.2
∂avg 3.28 10.31 20.99 20.65
δ 39.3 9.75 6.45 7

Table 3.2. Average properties of 20 random geometric graphs of 100 nodes for different
values of ρ. Here ∂min/max/avg are the mean minimum, maximum and average degrees
of the nodes. δ is the average diameter of the graph.

(a) ρ = 0.1 (b) ρ = 0.2 (c) ρ = 0.3

Figure 3.8. Random geometric graphs with 100 nodes having the same geometric coordi-
nates, built with different values of ρ.

graph diameter δ is greater or equal to 7. In our experiments, this condition is always met
for ρ = 0.1 and 0.2, whereas the same does not hold for ρ = 0.3 (see Table 3.2, column
ρ = 0.3, where δ < 7). In Table 3.2, the column ρ = 0.3∗ corresponds to random geometric
graphs with ρ = 0.3 that satisfy the condition δ ≥ 7. We generated graphs satisfying this
condition for the experiments in Figure 3.7c. Figures 3.7a-3.7c show that our bounds are
closer to the curves representing the performance of GI when ρ = 0.2. As a matter of fact,
when ρ = 0.3, the average distance between nodes (in number of hops) is smaller, and
the graph diameter is never greater than 7, our maximum path length. As a consequence,
nodes are highly connected on average. For this reason, despite the greater path length
availability, only a very few paths reach the maximum path length. On the other hand, after
the coverage phase, more shorter paths are needed in order to guarantee that n = 80 nodes
are identifiable, implying that the average path length decreases, as we can observe by the
growing trend of the curves mAR,d̄

min and mCR,d̄
min . On the other hand, for ρ = 0.1, a few nodes

have a high centrality, whereas most of the nodes have degree 2, meaning that the majority
of the network nodes are distributed in chains. As node identifiability holds when nodes
have unique encodings, e.g., different sets of paths crossing them, chains are structures that
are hard to identify by means of monitoring paths, and large path length do norepresent an
advantage for this specific structure. When ρ = 0.2, the resulting graphs are not star-shaped,
but at the same time long paths are available, showing their stronger identification power.
On jellyfish topologies (Figures 3.6d and 3.7d), our bounds are very close to the results
obtained by GI, with negligible differences between the curves. One of the properties of
jellyfish topologies is that servers can reach one another with shorter paths with respect to
other topologies for data centres (e.g., fat trees), [129], for this reason the curves of our bounds
are tighter for smaller values of dmax in Figure 3.7d. Despite this, in both configurations
(Figures 3.6d and 3.7d) the curves representing the results of GI scale analogously with our



3.5 Conclusions 40

bounds.
The results shown in this section highlight that our bounds are very close to the number of
monitoring paths that a greedy algorithm would use in order to guarantee nodes identifiability.
We stressed our experiments to evaluate our bounds on synthetic networks with very different
structures and connectivity properties. Experiments show that the bounds presented in this
work represent a very trustful estimation of the number of paths for node identifiability on
Jellyfish topologies, as well as on real internet and fiber optical networks. In addition, we
can also observe that knowledge of d̄ can be used to provide tighter bounds, specially when
there are few paths of length dmax in the network.

3.5 Conclusions
In this chapter we provide theoretical lower bounds on the minimum number of monitoring

end-to-end paths necessary to achieve the desired level of identifiability in a network in terms
of identifiable nodes. We study how the routing scheme affects the bound values by giving
two different formulations, for arbitrary and consistent routing, respectively. We also study
how requirements on the maximum and average path length affect the bound formulation,
highlighting the dependence of the minimal number of required paths on QoS constraints.
We carried out an extensive set of experiments on synthetic and real topologies to evaluate
the tightness of the proposed lower-bounds. The synthetic topologies that we used are
commonly employed for modelling ad-hoc wireless networks and data centers, whereas the
real networks are an internet and a optical fiber network located in Norway and in the
USA. We used a state-of-the-art algorithm for network identifiability maximization via path
deployment to obtain feasible solutions as upper bounds of the optimum and evaluate the
tightness of the proposed lower bound. We show that the provided bounds provide a high
approximation in all the performed experiments.



41

Appendix

3.A An analogy with separating systems
Separating systems were introduced by Renyi in [120] in the context of Information

Theory. In this section, we analyse the analogy that holds between separating systems and
sets of paths guaranteeing node identifiability under arbitrary routing, and between their
cardinality.

Definition 3.A.1. Let H be a finite set of elements. The family A ⊆ 2H is a separating
system if for every x, y ∈ H, x 6= y, there is a set S ∈ A such that x ∈ S ∧ y 6∈ S or
x 6∈ S ∧ y ∈ S.

We can translate Definition 3.A.1 in the scenario of measurement paths by considering
H = V , set of nodes in the network, and A = P ⊆ 2V \∅, set of paths, each being represented
as the set of nodes it traverses. We have seen in Definition 3.2.1 that a set of nodes is
identifiable if all such nodes have different binary encodings, and none of them is 0m. In
the scenario of separating systems, this means that every two nodes are identifiable if there
exists at least one set S (i.e., one path p) that contains one and only one of such two nodes
(i.e., if their binary encoding differs in at least one bit). Therefore, the property of a family
of sets to be a separating system, corresponds to saying that such sets represent paths that
ensure identifiability to the nodes they traverse. In contrast to Definition 3.A.1, from which
it trivially follows that an empty set is a separating system, we exclude empty paths (i.e.,
paths not traversing any node) from our arguments. In [81], Katona addresses the problem
of finding minimum size of a separating system, and in [68] a strengthening of the main
theorem shown in [81] and reported in Theorem 3.A.1, is proved. We denote with m(n, k)
the smallest size of a separating system A ⊆ 2[n] of sets of size k.

Theorem 3.A.1. For k < n/2, m(n, k) is equal to the smallest natural m, for which there
exist natural numbers j < m− 1 and a <

(
m
j+1
)

such that:

j∑
i=0

i

(
m

i

)
+ a(j + 1) ≤ km,

j∑
i=0

(
m

i

)
+ a = n.

(3.3)

This result is analogous to our result in Theorem 3.3.1, shifted by one, as a consequence
of the fact that we exclude nodes of binary encoding 0m. First of all, notice that the
condition k < n/2 is justified by our result in Corollary 3.3.1, where we upper-bound dmax
with 2m−1 as mmin = dlog2(n+ 1)e, and therefore 2m−1 = 2log2(n+1)−1 = (n+ 1)/2. Then
we observe that the role of j in Theorem 3.A.1 is the same of imax in Theorem 3.3.1, with
the only difference being that imax ≤ m − 1, whereas the term bl(imax+1) ·m/(imax + 1)c in
Theorem 3.3.1 represents the size of a proper subset of the (imax + 1)-uples out of m elements,
and therefore it satisfies the condition on variable a in Theorem 3.A.1.



42

Chapter 4

Failure Localization through
Progressive Network
Tomography

In this chapter, we tackle the problem of localizing network failures by means of end-
to-end monitoring paths. In contrast with the previous chapters, where we gave topology
agnostic bounds on the number of identifiable nodes in the network, here we face the problem
of detecting node faults under given failure scenarios. Boolean Network Tomography falls
short of providing efficient failure identification in real scenarios, due to the large combinato-
rial size of the solution space, especially when multiple failures occur concurrently. First, we
consider a static failure scenario. In this context, we aim at minimizing the number of probes
to obtain failure identification. To face this problem we propose a progressive approach to
failure localization based on stochastic optimization, whose solution is the optimal sequence
of monitoring paths to probe. We address the complexity of the problem by proposing a
greedy strategy in two variants: one considers exact calculation of posterior probabilities of
node failures, given the observation, whereas the other approximates these values by means
of a novel failure centrality metric. Secondly, we adapt these two strategies to a dynamic
failure scenario where nodes states can change throughout a monitoring period. By means of
numerical experiments conducted on real network topologies, we demonstrate the practical
applicability of our approach. Our performance evaluation evidences the superiority of
our algorithms with respect to state of the art solutions based on classic Boolean Network
Tomography as well as approaches based on sequential group testing.
Part of the results shown in this Chapter were recently submitted and accepted by IEEE
International Conference on Computer Communications (INFOCOM), [6], drafted in collab-
oration with prof. Annalisa Massini, prof. Novella Bartolini and Sc. Federico Trombetti,
and soon to be published.

4.1 Introduction
As discussed in Section 1.1, a major challenge of localizing failed nodes in a network

by means of binary measurements comes from the fact that observations of the outcome of
monitoring paths (working/failed) induce a system of Boolean equations that is commonly
under-determined, hence allowing multiple solutions [106]. Moreover, exact assessment of the
status of each network component is not always achievable if monitors can only be deployed
on a given subset of nodes, and routing of probing paths is not controllable. In addition,
as discussed in Chapters 2 and 3, when the number of potentially concurrent failures is



4.1 Introduction 43

unbounded, maximum identification of failed components may require an enormous number
of monitoring paths and related probes [16,17], which severely limits the applicability of the
approach.

However, we notice that executing the probing activity in a progressive manner, according
to which the next probing path is selected on the basis of the information obtained from
the previous probes, is particularly helpful in reducing the number of required probes to
assess the status of the network under a specific failure scenario. According to this approach,
hereby referred to as progressive BNT, the outcome of any new network measurement is used
to simplify the problem instance. In fact, we observe that if a monitoring path is traversed
successfully, we can ascertain the status of all the traversed components as working. In
contrast, if a monitoring path fails, it certainly contains at least a failed component. It follows
that, depending on the current observation scenario, monitoring a path may contribute
valuable knowledge to different degrees. To measure the incremental value of monitoring
paths in a progressive probing activity, we introduce a new notion of path utility which takes
account of the added failure localization information with respect to the previously obtained
network assessment. By using the information obtained by monitoring a given subset of the
available paths, we can calculate the posterior expectation of the utility of monitoring any
of the paths which have not been probed yet. By applying a Bayesian approach we are able
to design a stochastic optimization problem which maximizes the expected utility over a
progressive monitoring activity. We formulate a dynamic programming approach to derive
the optimal progressive policy to maximize failure identification. However, we point out that
the aforementioned optimization is computationally intractable for two reasons. The first
reason is the large size of the state space representation, where each path may contribute
different pieces of information, depending on its outcome. The second reason is because the
computation of the posterior probabilities of a path to work properly, is exponential in the
number of paths composing the network. In order to cope with the described complexity we
propose a simplified approach based on two fundamental pillars.

On the one hand, rather than resorting to dynamic programming which would require
the exploration of exponentially-many intermediate states in the progressive execution of
the probing activity, we propose a greedy approach, called Posterior Probability Greedy
(PoPGreedy), that selects the path that more likely contributes disambiguation of the state
of a large number of network components.

On the other hand we approximate the posterior probability of a path failure by means
of a polynomially computable approximation metric, to which we refer with the name of
failure centrality. Failure centrality of a node reflects the probability that a node is broken,
based on the currently available observation. We call this approach Failure Centrality Greedy
(FaCeGreedy)

In order to measure the failure localization capability of the proposed approaches and
be able to provide a quantitative evaluation, we introduce four novel metrics to measure the
accuracy in properly localizing working as well as failed nodes. We compare FaCeGreedy and
PoPGreedy both in terms of failure detection performance and related execution time. The
experiments show that FaCeGreedy provides an excellent approximation of the stochastic
optimization approach, in a negligible time. Instances that require an execution time of a
week for the exact optimization, are solved in a matter of minutes by FaCeGreedy.

We also compare the performance of FaCeGreedy with algorithms for failure assessment
based on classic BNT approaches. Simulations show that, as expected, FaCeGreedy has
superior performance as it localizes more failures with fewer probing paths than BNT
approaches.

To complete our analysis, we compare FaCeGreedy with AdaptiveFinder [80], a state
of the art solution based on sequential group testing, and with AdaptivePathConstruction
(APC), [103], a routing-constraint algorithm, also based on sequential group testing, for
link failure detection. We recall that, being a group testing solution and not a network
tomography approach, AdaptiveFinder has much more freedom than FaCeGreedy in selecting



4.2 Related Work 44

the composition of the probing sets in terms of network components. Despite the higher
flexibility in selecting testing sets, AdaptiveFinder performs worse than FaCeGreedy when
the number of paths is given, and during its progressive execution. APC instead investigates
on the state of the network by means of end-to-end paths that are given as an input,
similarly to our scenario. We translate the link failure problem into a problem of node
failure localization. The experiments show that in all the experimented settings, setting the
number of tests to the minimum required by FaCeGreedy to localize all the failed nodes,
AdaptiveFinder only localizes about half of the failed components. AdaptiveFinder requires
many more probing sets than FaCeGreedy to correctly localize all the failures. In addition,
although APC works well on small networks where only few nodes fail, it performs worse
than FaCeGreedy when large networks are involved and many multiple failures occur, as it
requires up to three times more path probes than FaCeGreedy. Finally, we also show that the
approach introduced in this chapter may be easily extended to deal with dynamic changes
within the network. This evolution to our original approach comes with low computational
cost. Our original contributions are the following:

• We formulate the problem of progressive network tomography in terms of stochastic
optimization and Bayesian analysis.

• We give an exact solution approach and discuss its complexity, motivating the need to
resort to polynomial heuristic approaches.

• We formulate a novel failure centrality metric to approximate the failure probability of a
node, given the observation of the outcome of a given set of probing paths.

• We formulate four novel metrics to quantitatively measure the capability of a monitoring
algorithm to properly localize network failure and reduce the localization uncertainty.

• We propose two greedy approaches, called PoPGreedy and FaCeGreedy, based on Bayesian
utility maximization.

• We prove optimality approximation for PoPGreedy.

• By means of simulations conducted on real network topologies, we compare FaCeGreedy
and PoPGreedy against classic Boolean Tomography approaches, as well as approaches
based on sequential group testing, showing that the our solutions outperform the others
in all the performance metrics, and in all the considered scenarios.

• We show computational inexpensive altered versions of PoPGreedy and FaceGreey
(DPoPGreedy and DFaCeGreedy) to deal with dynamic changes.

4.2 Related Work
Network tomography employs path probing to localize network failures. Network

tomography techniques are broadly categorized in two families depending on the metric
of interest for the inspection, additive or non-additive. An additive metric establishes a
linear relationship between the measurement of a path and measurements of individual
links and nodes composing the path. Along this line of research, Tati et al. [135] proposed
a path selection algorithm to improve link metric identifiability, by maximizing the rank
of successful measurements subject to random link failures. The work of Ren et al. [119]
proposed algorithms to determine which link metrics can be identified and where to place
monitors to maximize the number of identifiable links, subject to a bounded number of link
failures. Additive metric tomography was also studied in [66, 89], to identify of additive link
metrics under topology changes.

In contrast, non-additive tomography refers to non linear relationships between the path
and its component metrics. The most relevant examples are those related to congestion



4.2 Related Work 45

or failure localization, where the dominant factor of a path state is the state of its worst
performing component. In this thesis, we focus on the second of the aforementioned families,
namely on the case of non-additive tomography, and more specifically Boolean Network
Tomography.

The early works on this topic focused on best-effort inference. For example, Duffield
et al. [41, 46] and Kompella et al. [83] aimed at finding the minimum set of failures that
can explain the observed measurements, and Nguyen et al. [106] aimed at finding the most
likely failure set that explains the observations. Later, the identifiability problem attracted
attention. Ma et al. characterized in [92] the maximum number of simultaneous failures
that can be uniquely localized, and then extended the results in [94] to characterize the
maximum number of failures under which the states of specified nodes can be uniquely
identified as well as the number of nodes whose states can be identified under a given
number of failures. In contrast to [94], the work in [16, 17] provide fundamental bounds
that are topology agnostic, i.e., only based on the number of monitoring paths and high
level routing consistency properties. The related optimization problems have also been
studied under different formulations. For instance, the work by Bejerano et al. in [18]
formulates the problem of optimally placing monitors to detect failed nodes via round-trip
probing and demonstrate its NP-hardness. The work by Cheraghchi et al. [31] formulates
the identifiability problem for a graph-based group-testing framework, where the test sets
are constrained by the topology. Nevertheless, in the addressed framework the test sets are
not end-to-end paths, but just connected components determined by random walks on the
monitored network graph.

Ma et al. [93] proposed polynomial time heuristics to deploy a minimum number of
monitors to uniquely localize a given number of failures under various routing constraints.
When monitoring is performed at the service layer, He et al. [65] proposed service placement
algorithms to maximize the number of identifiable nodes by monitoring the paths connecting
clients and servers. In [136], Tati et. al. tackle the problem of selecting paths under network
failures by maximizing the robustness against failures under a budget constraint on probing
cost, assuming a known failure distribution. They also propose a reinforcement learning
algorithm to pick a set of robust paths while learning path robustness. Differently, in this
chapter we perform path selection for failure identification rather than for robust paths
discovery.

Boolean Network Tomography suffers from two problems which severely limit its practical
applicability to real settings. A first limitation is in the usual assumption of knowing an
upper bound on the number of congested or failed links. Such a limitation is mostly due
to the size explosion of the candidate failure set scenarios. Most of the proposed works
are not designed to work under an unbounded number of failing components. Second, the
cited works aim at designing monitoring paths so as to ensure node failure identifiability,
according to the definition given in [92], under any failure scenario that meet the above
mentioned constraint on the number of failed elements.

Unlike these works we do not assume any bound on the number of failures and we focus
on actual node state identification rather than on identifiability. In fact, we observe that
by monitoring paths in a real failure scenario, it is possible to identify the state of network
components that are not theoretically identifiable in all failure scenarios as prescribed in [92],
but are so in the considered real case setting.

With a similar goal, the authors of [108] model the tomography problem as a Markov
Decision Process, and solve it with a Q-learning technique. The actions of the decision
process are related to the diagnosis of the congestion status of individual links. The work
in [95] also utilizes machine learning techniques based on neural networks to infer a network
topology from incrementally selected paths, with the purpose to predict the performance of
paths that are not directly probed.

We adopt incremental path selection, with the purpose of identifying the state of
individual network components on known topology networks. Based on the information



4.3 Problem Formulation 46

progressively gathered, the instance of the failure identification problem is updated and
reduced.

One approach towards this the same goal is the algorithm AdaptiveFinder [80], which
considers progressive monitoring of graph-based test groups. We consider this proposal
as a benchmark for performance comparisons against our own approach. AdaptiveFinder
considers a network graph, and creates arbitrary sets of connected network components to
determine the next paths to test according to a progressive approach. Unlike this work
we consider testing sets which are end-to-end monitoring paths, where pairs of monitors
are connected by a series of nodes that strictly follows the routing protocol in use by the
considered network. Similarly, Adaptive Path Constraction (APC), [103], is a group-testing
routing-constraint algorithm for detecting link failures by means of BNT techniques, that
aims at minimizing the number of path probes. Differently from our Bayesian approach, in
APC the choice of the next path to probe follows a binary search based idea. As we will
see in Section 4.7 thanks to the incremental knowledge constructed through our Bayesian
decision support, our approach overcomes the limitation imposed by the routing algorithm
and provides superior performance than the AdaptiveFinder and APC approaches.

In this chapter, we also take into account dynamic changes in the nodes of the network,
and we show how our two proposed algorithms can be adapted to an online setting where
a network outsider wants to infer the state of the nodes continuously. The problem of
detecting failures occurring dynamically within a network attracted attention in recent years.
A large portion of the available literature focuses on specific networks (e.g., data centres [10]
and Wireless Sensor Networks (WSNs) [79,102,121,134]). In [70], Huang et. al. highlight
practical issues when tomography techniques are used to infer link degradation within a
network. Their approach is divided into an initial offline phase (a set of paths covering the
network is selected), followed by an online phase (where monitor nodes periodically probe
measurements along the defined paths in order to track possible changes in the performance
of the links). In [74], Johnsson et. al. propose a two-step algorithm to interpret and analyze
the outcome of path probes in order to detect and localize failures. Differently from these
works, we consider path selection to be the key part of the online phase: we not only provide
a way to interpret data, but also we show how to obtain the most informative data.

4.3 Problem Formulation
We consider a network modeled as a graph G = (V,E), and a set of monitor nodes

VM ⊆ V (shortly called monitors). For each ordered pair (i, j) of monitors in VM we
consider a unique monitoring path whose sequence of nodes is only determined by the
routing algorithm in use. We consider uncontrollable routing, (see [92]), i.e., monitoring
paths are determined by the routing protocol used by the network, not controllable by the
monitors. Routing between the monitors i and j is not necessarily symmetric, but is assumed
to be deterministic, and known. We shortly denote with m̂ the set of nodes traversed by the
monitoring path m. We refer to M as to the set of monitoring paths available for probing
the network.

By probing the paths of M it is possible to obtain indirect information on the state
of the traversed nodes. Both working and failed paths provide helpful information for the
state assessment of the network components. In particular, all the nodes of a working paths
must be properly functioning, whereas a non working path must contain at least a broken
component. By probing paths in a sequence, it is possible to determine the most suitable
choice for the next path to probe, on the basis of the information gathered so far. We
address the problem of designing a Progressive Monitoring Policy (PMP), i.e., a sequence of
paths to be probed one by one, such that we can identify the status of the largest number of
nodes, in the minimum number of steps (number of paths). We refer to this problem as the
PMP problem.



4.3 Problem Formulation 47

Table 4.3.1. Summary of notations

Notation Description
m̂ set of nodes traversed by path m ∈M
Si state of node vi (failed if Si = 0, working otherwise)
Zj state of path mj (failed if Zj = 0, working otherwise)
Zo

j observed (tested) state of path mj

A A , {a1, a2, . . . , a|M|}: set of monitoring decisions
T ⊆M set of tested monitoring paths
R =
M\ T

set of not yet tested monitoring paths

F ⊆ T set of failed tested monitoring paths
OT set of observed outcomes of paths in T

In the following, we denote with Sv the event ‘node v works’, and S̄v the event ‘node v is
broken’. If no information is available concerning the distribution of failures in the network,
it is reasonable to assume uniform probability of node failures, namely that all nodes have
equal prior probability p to be damaged, that is P (S̄i) = p for all i ∈ V , while we denote
with P (Si) = (1− p) the prior probability that i is a working node. A path fails if at least
one of its nodes fails, while a path works if all of its node work. Unlike classic tomography
approaches, we do not assume any prior knowledge of the exact number of failed nodes.

Classic approaches to Boolean Network Tomography adopt the concept of k-identifiability
[16, 17, 92], which refers to the capability of inferring the state of individual nodes from the
state of the monitoring paths. A node v is k-identifiable in M if any two sets of failing
nodes F1 and F2 of size at most k, which differ at least in v (i.e., one contains v and the
other does not), cause the failures of different subsets of paths in M. The concept of
k-identifiability assumes knowledge of an upper bound k to the number of occurring failures,
and characterizes nodes regardless of their status, failed or working, but only in terms of
whether their status can be uniquely inferred by observing the outcome of the monitoring
paths of M. However, our setting is characterized by (1) absence of a bound on the number
of simultaneous failures, (2) uncontrollable position of monitor nodes and (3) given routing
algorithm. In such a setting, the PMP problem is particularly challenging as no node is
guaranteed to be identifiable according to classic tomography. We note that, especially for
large values of k, k-identifiability of a node is an unlikely condition that is hardly verified in
real networks.

4.3.1 Bayesian utility of path probing
Let Zj be the event that path mj ∈M properly works, and Z̄j the event that path mj

fails. Under the assumption of uniform probability of node failures a prior estimate of the
state probability of path mi ∈M is P (Zi) = (1− p)|m̂i|, and P (Z̄i) = 1− P (Zi).

In our problem setting, the state of the network can only be observed by probing moni-
toring paths in a sequence of monitoring interventions. We denote by A , {a1, a2, . . . , a|M|}
the set of possible monitoring decisions, where decision ai implies monitoring the network
through path mi.

We denote by T ⊆ M the already monitored paths. We denote with Zoi the outcome
of the probing activity along path mi, for any mi ∈ T . Knowledge of the outcome of the
paths in T constitutes a source of additional information OT , {Zoj |mj ∈ T } that can be
used to produce a better — a posteriori — estimate, of the network status. We denote
with R the current residual set of paths, i.e., paths which have not been monitored yet,
namely R ,M\ T . By knowing the values of the random variables in OT we can update
the posterior estimate of the state probability of any path mi ∈ R, which is P (Zi|OT ).

We note that the outcome of any monitoring path is as informative as it contributes



4.3 Problem Formulation 48

v1 v2
w

(a) Original topology

v1 v2

(b) Pruned topology

Figure 4.3.1. Removal of a working node (in green)

identification of the status of individual network components, or decreases the size of the
identification problem instance. More specifically, we observe that monitoring working
or non-working paths contributes useful information for failure identification in different
manners.
Information obtained by monitoring working paths: If a probed path works then all its
traversed nodes work as well. After the observation of a working path, the current instance
of the failure identification problem can be reduced by considering a logical representation
of the network graph constructed by pruning the working nodes and short circuiting the
incident edges, as in Figure 4.3.1. We call m(T ) and m̂(T ) the path m in the pruned logical
graph, after testing the paths of T , and the set of nodes that the pruned path traverses,
respectively. Similarly, the residual set of paths to be monitored R may be reduced as well
when any two paths mi and mj traverse the same set of nodes after pruning working nodes,
namely when m̂(T )

i = m̂
(T )
j , after pruning, as in Figure 4.3.2. Likewise, paths consisting only

of nodes which have been found to be working, will be removed as well, as a consequence of
the pruning of all their nodes.

v1 v2 v3 v4 v5

m2
m1

(a) Original topology

v3 v4 v5

m12

(b) Pruned topology

Figure 4.3.2. Merge of paths after node pruning

For this reason, the utility deriving from probing a working path is set proportional to
its number of nodes. More precisely, the utility of probing a path m(T )

i (obtained as a logical
representation of mi after pruning all the working nodes) is proportional to the amount of
newly found working nodes |m̂(T )

i |. In addition to this we notice that the longer a working
path is, the smaller the search area for locating failed nodes will be. In particular, by pruning
certainly working nodes, it may also happen that some non-working nodes are identified
by exclusion, namely because they belong to non-working paths, already monitored, which
identify subsets of candidate non-working nodes, reduced to size one after pruning the newly
found working nodes. We define as F (m,T )

1 the set of failed paths mi which have already
been monitored (i.e. mi ∈ T ) and have length equal to 1 after node pruning resulting
from path m being working. Hence, we consider another additive term, to the utility of
monitoring working paths, i.e. |F (m,T )

1 |. Consider the example of Figure 4.3.3. Assume that
the monitoring activity starts by probing path m2 first, which is found to be non-working,
hence m2 is inserted in T . Then the monitoring activity proceeds by considering path m1
which is properly working. Knowledge of the outcome of m1 allows us to assess the status of
the nodes vi, with i = 1, . . . , 5, as working. As a consequence these nodes are all pruned, and
can be removed by all the non working paths included in T . Due to the pruning of v4 and
v3 the length of the already monitored path m2 reduces to 1 in the logical representation of
the network graph with pruned components, which implies |m̂(T )

2 | = 1. Hence, m(T )
2 turns

to be a failing path of one only node, v6, whose state must be failed, by exclusion.
Finally, we notice also that it never happens that working nodes are discovered by



4.3 Problem Formulation 49

v6

v1 v2 v3 v4 v5

m2
m1

Figure 4.3.3. Identification by exclusion

exclusion as they must belong to working paths, in which case they would have already been
pruned1.
Information obtained by monitoring non-working paths: When probing paths fail, we also
have relevant information on the network status. A failing path corresponds to a subset
of nodes containing at least a failed node. When a path failure occurs, the nodes of the
path must undergo additional monitoring, i.e. probing intersecting paths, to obtain precise
failure identification. Indeed, short failed paths allow to localize node failures more precisely
than long ones. Moreover, finding failed nodes, or set of nodes containing at least a failure,
suggests not to probe paths that, containing at least a failed node, will certainly fail if probed.
In the example of Figure 4.3.4 we consider a scenario in which, after some probing activity
(not shown in the figure), v5 is found to be properly functioning. Nevertheless, by observing
the failure of monitoring along path m1 we assess the failure of node v4 This suggests the
removal of path m3 from the set of monitoring paths, as its failure can be deduced from the
failure of the included nodes v4 which is known to be broken. As a consequence, whenever
a monitoring path mi fails, the monitoring problem can be simplified by removing all the
paths m including the entire set of nodes of the failed path mi, i.e. the set {mj |m̂j ⊇ m̂i}.
Additionally, we note that after pruning nodes, we may end up with some degenerate paths
with cardinality one. If this occurs, the probing of these paths gives direct information on
the node states, both if the path works and if it does not. While this situation is already
considered in the utility of working paths, to take it into account also for the case of a non
working path mi, we consider a further information utility component, in the form of an
additive term b1/|m̂(T )

i |c which is equal to one only if path m
(T )
i traverses one only node,

and is zero otherwise.

v5

v1 v2 v3 v4

m3
m2
m1

(a) Original topology

v1 v2 v3 v4

(b) Pruned paths

Figure 4.3.4. Pruning of monitoring paths

In conclusion, every time we have certainty of the state of a node (either working or
broken), we prune the node (if it works) or the paths including it (if it does not work).
When a certain path m is probed, if m(T ) works, then all of its sub-paths certainly work as
well (i.e., paths m′ s.t. m̂′(T ) ⊆ m̂(T )). If m(T ) fails, then all of its super-paths are failing,
too (i.e., paths m′ s.t. m̂(T ) ⊆ m̂′(T )). When the status of non tested paths can be assessed
with certainty due to the described pruning actions on the logical graph, we do not consider
them for successive probes, and the set of available actions A is updated consequently.

In summary, if we make decision ai corresponding to monitoring path mi, the information
1Discovery of working node by exclusion may instead happen if there is knowledge of the number

of failed nodes, which is not considered here.



4.4 Stochastic optimization of PMP 50

utility is proportional to |m̂(T )
i |+ |F

(mi,T )
1 | if the path mi works, and to b1/|m̂(T )

i |c otherwise.
We can then formulate the information utility function, for each decision ai ∈ A as follows:

λ(ai|Zi) =

 |m̂
(T )
i |+ |F

(mi,T )
1 | if Zi = 1⌊

1
|m̂(T )

i
|

⌋
if Zi = 0 (4.1)

Correspondingly, we calculate the following expectation of conditional utility given the
observation:

U(ai|OT ) = λ(ai|Zi)P (Zi|OT ) + λ(ai|Z̄i)P (Z̄i|OT ) (4.2)

As the available paths may give a different contribution to the identification task, some of
them may become redundant, depending on the probing order, which brings our attention
to determine an efficient progressive monitoring policy, i.e. to solve the PMP problem.
Formally, a PMP policy is a sequence of monitoring actions of A. In the following we aim at
defining a PMP policy which maximizes the number of nodes whose state is identified, i.e.
the utility defined above.

4.4 Stochastic optimization of PMP
We consider a decision process, in the discrete time, which may end when one of the

following conditions occurs:

• Every node status is known

• There are no more paths to monitor (each of the remaining path cannot add any
information on the node states)

• The maximum number of probing steps has been reached.

At each step, the process may make one of the decisions in A, whose utility depends
on the outcome of the related monitoring path. The number of steps before termination is
uncertain. An upper bound is given by the number of monitoring paths N . We recall that
we do not assume symmetric routing, i.e. the upper bound on the number of monitoring
paths is given by the number of ordered pairs of monitoring nodes N = VM · (VM − 1).

Considering the discussion made in Section 4.3.1, we formulate the failure identification
problem in terms of stochastic optimization. At the n-th step, the state of the decision
process is given by the set O(n)

T , which reflects the observations made until step n, provides
the current knowledge of the status of network components at step n and determines the
future action utility values, according to Equation 4.2.

As actions cannot be repeated in consecutive monitoring steps, we denote the actions
available at step n, A(O(n)

T ), shortly as follows: A(n) , A(O(n)
T ) = {ai : mi ∈ R(n)}, where

R(n) is the set of monitoring paths which have not been tested yet at the n-th step.
We seek a decision policy that maximizes the expected sum of the utilities incurred by

its decisions. The optimal decision policy depends on the utilities, on the number of steps
taken to assess the state of the network, and our confidence that obtaining such information
through monitoring is actually possible.

Let V (O(n)
T , n) denote the expected information (utility) that will be obtained by the

optimal decision policy (e.g. nodes still to be assessed), starting from the observation O(n)
T at

step n. If we choose action ai the expected gain at the following step is given by Equation 4.2.
Now, let EU (O(n)

T , n) be the optimal remaining utility, after step n+ 1, given a monitoring
decision in state O(n)

T . EU (O(n)
T , n) describes the optimal decision policy utility after step

n+1 and so it is stated in terms of V (O(n+1)
T , n+1). In particular, given that the monitoring



4.4 Stochastic optimization of PMP 51

path selected at step n is the one pointed by action a(n) = a∗i , corresponding to path mi∗ ,
we have

EU (O(n)
T , n|a∗i ) = P (Zi∗) · V (O(n)

T ∪ {Zi∗ = 1}, n+ 1)+

+P (Z̄i∗) · V (O(n)
T ∪ {Zi∗ = 0}, n+ 1).

By the principle of optimality (Bellman equation) we have the following:

V (O(n)
T , n) =

= max
ai∈A(n)

{
P (Zi∗) ·

(
|m̂(T )

i |+ |F
(mi,T )(n)
1 |+ V (O(n)

T ∪ {Zi∗}, n+ 1))
)

+

+ P (Z̄i∗) ·
(⌊

1
|m̂(T )

i |

⌋
+ V (O(n)

T ∪ {Z̄i∗}, n+ 1))
)}

.

While the equation suggests the use of a dynamic programming approach, over a finite hori-
zon, to solve the PMP problem, we underline the following challenges. (1) The computational
complexity in the calculation of the posterior probability P (Zi|OT ) is exponential in the
number of paths. (2) There is the well known curse of dimensionality in the representation of
the state space of the process, which needs to take account of the outcome of each monitored
path. In fact, we note that it is not sufficient to represent the state with the vector of the
identified node status, because of the possibility to have delayed assessment of broken nodes,
that must be considered to properly calculate the utility terms expressed by Equation 4.2 for
the case of working paths. Therefore non working monitored paths must be part of the state
representation. Working monitored paths must also be stored in the state representation, to
determine the available decisions. Hence the state space of the process is exponential in the
number of paths.

We will devote the next sections to polynomial approaches to the design of efficient PMP
policies and to metrics to quantitatively measure such efficiency.

4.4.1 The PoPGreedy approach
A Bayesian greedy strategy to monitoring path selection and probing is one that progres-

sively selects the next path based on the current utility maximization rule and updates the
overall observation for the next step. Initially (at step 0) OT = ∅, therefore the calculation
of the initial action utility is based on prior probabilities as follows:

U (0)(ai) = λ(ai)P (Zi) + λ(ai)P (Z̄i). (4.3)

Hence, at step 0, the Bayesian strategy consists in selecting the action that maximizes the
utility based on prior knowledge:

a(1) = arg max
ai∈A

U (0)(ai).

Anytime a new path is monitored, it produces an outcome which requires the update of the
current estimate of path failure probabilities.

At step n + 1 the Bayesian strategy selects the action a(n+1) that maximizes the
expectation of the utility given the current observation:

a(n+1) = arg max
ai∈A(n)

U (n)(ai|O(n)
T )

The testing procedure is described in Algorithm 2. Given a graph G representing the
network topology, a set of paths M and a prior probability of node failure p, the algorithm
returns the posterior probability of failure of all nodes as is obtained after probing at most
K paths in M and a related ranking.



4.4 Stochastic optimization of PMP 52

At each iteration the algorithm selects the path m with maximum expected utility (ties
are broken by considering a priority based on the path index, i.e. if mi and mj , with i < j
have the same utility, the algorithm selects mi). Depending on the outcome of the test,
either the set of failed paths (if m failed) or the set of working nodes (otherwise) is updated,
together with actions corresponding to testing non visited super-paths and sub-paths of
a failing/working paths, respectively (lines 17 and 21). We refer to this approach as to
PoPGreedy (Posterior Probability Greedy), and detail it in Algorithm 2.

Algorithm 2 PoPGreedy
Input: G = (V,E): graph representing a network topology.
M: set of walkable paths in the network.
p: initial probability of node failures.
K: maximum number of path probes.
Output: sorted sequence of nodes depending on their probability of failure: Vf .

1: W = ∅ (set of working nodes)
2: T = ∅ (set of tested paths)
3: F = ∅,F ⊆ T (set of failed paths)
4: R =M\ T (set of non visited paths)
5: A(0) = {a1, . . . , a|M|}
6: OT = ∅
7: for i = 1, . . . ,K do
8: a(i) = arg max

a∈A(i−1)
U(a|OT )

9: if U(a(i)|OT ) = 0 then
10: return list of nodes sorted by P (S̄v|OT ), Vf

11: T ← T ∪ {mi}
12: R ← R \ {mi}
13: test mi

14: if mi fails then
15: F ← F ∪ {mi}
16: OT = OT ∪ (Z̄i)
17: A(i) ← A(i−1) \ ({ai} ∪ {aj : m̂(T )

i ⊆ m̂(T )
j })

18: else
19: W ←W ∪ {m̂i}
20: OT = OT ∪ (Zi)
21: A(i) ← A(i−1) \ ({ai} ∪ {aj : m̂(T )

j ⊆ m̂(T )
i })

An example of execution of PoPGreedy: We show an example of execution on the
network represented in Figure 4.4.1. We assume priori probability p = 0.1 and let node v9
be the only failed node in the network. Nodes v1, v2, v3 and v4 are monitors, and consider
undirected paths. We consider the 6 monitoring paths shown in the figure.

- Step 1: The paths that maximize utility at the first iteration are m3, m5 and m6. For the
tie breaking rule we choose path m3. The path works. Hence R =M\{m3}, OT = {Z3}
and the set of working nodes W = {1, 4, 7, 8}. It results that a4 = arg maxa∈A u(a|OT ),
u(a4|OT ) = 2.187.

- Step 2: Test m4, R = R\{m4}. The path fails, therefore F = {m4} and OT = OT ∪ Z̄4.
It holds that a1 = arg maxa∈A, with u(a1|OT ) = 1.1358.



4.4 Stochastic optimization of PMP 53

- Step 3: Test m1, R = R \ {m1}. The path works, hence: W = W ∪ m̂
(T )
1 and

OT = OT ∪ Z1. At this point, it results that u(a2|OT ) = 1.278, while u(a6|OT ) = 0. By
knowing that m4 failed while node v2 works, we can claim with certainty that m6 will
also fail, as it steps onto all the remaining nodes of m4.

- Step 4: Test m2, R = R \ {m2}. The path works, hence: W = {1, 2, 3, 4, 5, 6, 7, 8} and
OT = OT ∪ Z2. The utility of the two non visited paths, m5 and m6 is zero, therefore
the execution is over. The algorithm returns the failure probabilities: P (S̄9|OT ) = 1,
P (S̄10|OT ) = 0.1 and P (S̄v|OT ) = 0 for all the other nodes.

It must be noted that, although the algorithm leaves some uncertainty on the state assessment
of node v10 this is due to the impossibility of obtaining certain status identification for v10
with the available paths. None of the existing paths can disambiguate the status of such a
node as the only paths traversing it fail because of the failure of node v9.

v6

v1 v2

v3

v4

v5

v7

v8

v9

v10

m1

m2

m3

m4

m5

m6

Figure 4.4.1. Example topology with a failure in v9

4.4.2 Optimality approximation
The definition of utility of an action given prior observations (Equation 4.1) can be

extended in order to characterize the utility of a set of actions (corresponding to the utility
of probing a set of distinct paths, T ) as follows:

λ({a(1), . . . , a(|T |)}, OT ) =
∣∣∣∣∣ ⋃
mi∈T \F

m̂i

∣∣∣∣∣+
∣∣∣∣∣ ⋃
mi∈T \F

F (m,T )
1

∣∣∣∣∣+ FT ,

where FT := {w ∈ V : P (S̄w|OT ) = 1} is the set of detected failed nodes by probing
paths T . This definition allows us to formulate the problem of assessing the maximum
number of node states with K path probes as a formal maximization problem:

max
A(T )⊆A

λ(T |OT )

s.t. |T | ≤ K
(4.4)

where A(T ) = {a(1), . . . , a(|T |)}. Constant approximations for deterministic optimization
problems where the objective function has properties of monotonicity and submodularity
were proved in [104]. More recently, the concept of adaptive monotonicity and submodularity,
originally introduced in [60] and lately revised in [53], extended such properties to the context
of stochastic optimization problems, that is where our scenario belongs. In a stochastic
maximization problem, the function to be maximized depends on a set of observations OT
on the state of the elements of the ground set, in our case, the state of paths in M. In this
context, greedy policies choose at each step the action that maximizes the expected value of
the utility, that is known with certainty only after tests take place. Notice that PoPGreedy



4.4 Stochastic optimization of PMP 54

in Algorithm 2 follows the Adaptive Greedy Algorithm structure shown in [60]. Before
reporting the definitions of adaptive monotonocity and submodularity, we give definition of
conditional expected marginal benefit ( [60]). In the following definitions, X is a finite set of
elements.

Definition 4.4.1. Let Y ⊂ X and let x ∈ X \Y . The conditional expected marginal benefit
of x with respect of a function f having observed OY is:

∆(x|OY ) := E[f(Y ∪ {x}, OY )− f(Y,OY )], (4.5)

where by OY we mean the restriction of the observations OX to the subset Y .

Definition 4.4.2. A function f : 2X × OX → R is adaptive monotone if ∀x ∈ X and
∀Y ⊆ X it holds that ∆(x|OY ) ≥ 0.

Definition 4.4.3. A function f : 2X × OX → R is adaptive submodular if ∀Z ⊆ Y ⊂ X
and ∀x ∈ X \ Y we have ∆(x|OZ) ≥ ∆(x|OY ).

In our scenario, the ground set X is the set of all possible actions A on paths M, and
the state of a path is either normal or defective (or equivalently, 1 or 0). Paths’ states
can be assessed only through observations on path probes. Observe that the definition of
conditional expected marginal benefit corresponds to the definition of expected utility given
in Equation 4.2:

∆(a|OT ) =(∣∣∣m̂ ∪ ⋃
mi∈T \F

m̂i

∣∣∣∣∣+
∣∣∣F (m,T )

1 ∪
⋃

mi∈T \F

F (mi,T )
1

∣∣∣∣∣+ |FT |
)
P (Z|OT )

+
(∣∣∣ ⋃

mi∈T \F

m̂i

∣∣∣+

∣∣∣∣∣∣
⋃

mi∈T \F

F (m,T )
1

∣∣∣∣∣∣+ |FT |+
⌊

1
|m̂(T )|

⌋)
P (Z̄|OT )

−
∣∣∣ ⋃
mi∈T \F

m̂i

∣∣∣− ∣∣∣ ⋃
mi∈T \F

F (m,T )
1

∣∣∣− |FT | =
= (|m̂(T )|+ |F (m,T )

1 |)P (Z|OT ) +
⌊

1
|m̂(T )|

⌋
P (Z̄|OT ) =

= U(ai|OT ).

For adaptive monotone and submodular functions, solutions achieved by greedy poli-
cies are constant approximations to the optimal solutions ( [60], [53]). While it is trivial
to prove adaptive monotonicity for our utility function, we can exhibit an example (de-
picted in Figure 4.4.2) showing that λ is not adaptive submdular. Assume p = 0.1 is
the a priori node failure probability and let T = {m1} and T ′ = {m1,m2}, with F =
{m1,m2}. Then P (Z3|OT ) = 1− 1−(1−p)2−(1−p)4+(1−p)5

1−(1−p)4 = 0.638, which leads to U(a3|OT ) =
|m̂(T )

3 |P (Z3|OT ) = 1.2766, whereas P (Z3|OT ′) = 1− 1−(1−p)2−2(1−p)4+2(1−p)5

1−2(1−p)4+(1−p)5 = 0.789, and
hence U(a3|OT ′) = |m̂(T ′)

3 |P (Z3|OT ′) = 1.578, which is greater than U(a3|OT ).
When the objective function of a maximization problem is not adaptive submodular, as for
our definition of utility, it is still possible to study an approximation of the solution obtained
by a greedy policy with respect to the optimal one by bounding the adaptive submodularity
ratio γOT ,k(λ, p), with a scalar α ∈ (0, 1]. The resulting approximation is:

λavg(πG) ≥
(

1− exp
(
−αK

h

))
λavg(π∗) (4.6)



4.4 Stochastic optimization of PMP 55

v6

v1 v2 v3 v4

v5

m3
m2
m1

Figure 4.4.2. Example showing non adaptive submodularity of f .

where λavg(πG/π∗) are the average quantity of information gained by the greedy and the
optimal policies πG and π∗, respectively. Parameters K and h are the constraint to the
maximum number of tests and the height of the decision tree of policy π∗, respectively. This
result, together with the definition of adaptive submodular ratio, was recently proposed
in [57].

Upper-bound to adaptive submodularity ratio
The goal of this section is to exhibit a scalar α > 0 such that∑

m∈M
P (m ∈ T π)∆(a|OT )

∆(π|OT ) ≥ α. (4.7)

The adaptive submodularity ratio is upperbounded by 1 and it is equal to 1 if and only if λ
is adaptive submodular. Here T π is the set of paths chosen by a policy π, whereas OT is a
set of partial observations over a set of path T . It holds that:∑

m∈M
P (m ∈ T π)∆(a|OT )

∆(π|OT ) ≥ α⇒ (4.8)∑
m∈M

P (m ∈ T π)∆(a|OT )∑
m∈M

P (m ∈ T π)∆(a|OT ′)
≥ α (4.9)

where OT ′ is the set of observations such that the next path chosen by policy π is m, and
T ⊂ T ′. From the discussion in [57], it holds that the inequality 4.8 can be equivalently
expressed as follows:∑

m∈M
P (m ∈ T π)∆(a|OT ) ≥ α

∑
m∈M

P (m ∈ T π)∆(a|OT ′)∑
m∈M

P (m ∈ T π)da(α) ≥ 0, (4.10)

where da(α) = ∆(a|OT ) − α∆(a|OT ′) ≡ U(a|OT ) − αU(a|OT ′). To prove the previous
relation, we want to show that for every a ∈ A (action corresponding to probing path m such
that m 6∈ T ′) it holds that da(α) ≥ 0. Among all path choices, we just need to study the
contribution of those such that da(1) < 0. Therefore, we exclude all actions corresponding to
the following sets of paths from our analysis: i) all paths m ∈ T ′ that were already tested; ii)
all paths for which it holds that P (Z|OT ′) = 0 or 1 (as in such case, da(α) = U(a|OT ) ≥ 0);
iii) all paths such that P (Z|OT ) = 0 or 1, as this implies P (Z|OT ′) = 0 or 1 respectively,
and therefore da(1) = 0; iv) paths m such that U(a|OT ) ≥ U(a|OT ′). For all the listed
cases, da(1) ≥ 0. We study the maximum difference (i.e., the maximum value of |da(α)|
with da(α) < 0) that may occur between U(a|OT ) and U(a|O′T ) for all other paths.

In order to accomplish to this task, we need to study the smallest non-zero value of
U(a|OT ), ∆min, and the greatest value of U(a|OT ′), ∆′max. By choosing α = ∆min

∆′max
, the

relation in Equation 4.10 holds always.



4.4 Stochastic optimization of PMP 56

Smallest value of U(a|OT ) P (Z|OT ) is positive and minimum when every node v of
m is traversed by failing paths of length 2. This is because the probability of failure of a
node v is directly proportional to the number of failing paths traversing it and inversely
proportional to the number of nodes traversed by such paths. Nevertheless, observe that
if even just one of such paths had length 1 (i.e., it would only pass through a node of m),
then the probability of failure of m would be 1 and its utility would be 0; this situation
would fall into the set iii. of paths that we exclude from this analysis. Hence, when a node
is traversed only by failing paths of length 2, its failure probability is maximal and therefore
its working probability is minimal, excluding the case where P (Z|OT ) = 0. We call Pmin
such value of P (Z|OT ). In this case, U(a|OT ) = (|m̂(T )|+ |F (m,T )

1 |)Pmin. Notice that this
expression exhibits explicit growing dependency of U(a|OT ) on |F (m,T )

1 |. In Appendix 4.A
we show that (|m̂(T )|+ |F (m,T )

1 |)Pmin is indeed the smallest value of U(a|OT ) subject to
P (Z|OT ) ∈ (0, 1) despite the presence of the term |F (mi,T )

1 |. Let us study now how U(a|OT )
changes with respect to |m̂|. Note that U(a|OT ) grows linearly with |m̂| if P (Z|OT ) is fixed.
Nevertheless, if we consider the case where every node of m(T ) is traversed by some failing
paths of length 2, then the contribution given by each node to the decrease of P (Z|OT )
is greater than adding 1 to |m̂|, i.e., one such node would contribute to the exponential
decrease of P (Z|OT ), while it would make |m̂| increase just by 1. This consideration emerges
explicitly in the equations that follow. The path working probability P (Z|OT ) = Pmin is
equal to:

Pmin =
∏
v∈m̂

P (Sv|OT ) =

=
∏
v∈m̂

1− p

1−
∂v+1∑
i=2

(−1)i(1− p)i
(
∂v

i−1
) ≥

≥
[
1− p

1−
∂max+1∑
i=2

(−1)i(1− p)i
(
∂max

i−1
)]|m̂| ≥

≥
[
1− p

1−
∂max+1∑
i=2

(−1)i(1− p)i
(
∂max

i−1
)]|m̂max|

where ∂v is the number of failing paths traversing v, ∂max is the biggest among them and
|m̂max| is the length of the longest path. Notice that ∂max ≤ |F (m,T )

1 |. The denominator
appearing in the last expression can be written as follows:

1−
∂max+1∑
i=2

(−1)i(1− p)i
(
∂max
i− 1

)
=

1 + (1− p) ·
∂max∑
i=1

(−1)i(1− p)i
(
∂max
i

)
=

1 + (1− p) ·
∂max∑
i=1

(p− 1)i
(
∂max
i

)
= [Newton’s binomial]

1 + (1 + p) · [(p− 1 + 1)∂max − 1] =
1 + (1− p)(p∂max − 1).

(4.11)

Therefore the minimum value of U(a|OT ), ∆min is:



4.4 Stochastic optimization of PMP 57

∆min = (|m̂(T )|+ |F (m,T )
1 |)

∏
v∈m̂

1− p

1 + (1− p)(p∂v − 1)

≥ (|m̂(T )|+ |F (m,T )
1 |)

[
1− p

1 + (1− p)(p∂max − 1)

]|m̂max|

.

(4.12)

Notice that we are excluding from our analysis the case |m̂(T )| = 1, that is the only
situation in which the second term of the utility

⌊
1

|m̂(T )|

⌋
is non zero: as a matter of fact,

Equation 4.12 proves that the larger the path length, appearing as the exponent of Pmin,
the smaller is ∆min. To recap, the smallest value of U(a|OT ) is achieved when path m(T ) is
long and all of its nodes are traversed by failing paths of length 2.

Greatest value of U(a|OT ′) From the situation described above, we can analyse what
is the greatest value of U(a|OT ′). First of all, observe that ∀T , T ′ such that T ⊂ T ′ it holds
that |m̂(T )| ≥ |m̂(T ′)|. As a consequence, it holds that U(a|OT ′) > U(a|OT ) if and only
if P (Z|OT ′) is sufficiently larger than P (Z|OT ). In general, P (Z|OT ′) > P (Z|OT ) with
OT ⊂ OT ′ in two occasions: either because of the presence of some functioning paths in
T ′ \ T traversing m, or because it was possible to localize failures of paths traversing nodes
of m on some other nodes. In the first case it results that |m̂(OT ′ )| < |m̂(OT )|, therefore the
increase of P (Z|OT ′) could be contrasted by the decrease of |m̂(OT ′ )|, possibly resulting in
U(a|OT ) > U(a|OT ′). In the second case instead, it holds that |m̂(T )| = |m̂(T ′)|. Hybrid
situations may occur, too. We shall first consider the second case: assume it was possible
to assess as ”failed” all nodes not in m̂ appearing in the two-length paths traversing m.
Therefore, U(a|OT ′) becomes equal to |m̂(T ′)|(1− p)|m̂(T ′)|. Notice that this then this the
initial expected value of the utility function of a, when no observations were made. As a
matter of fact, the working probability of a node only grows when a working path traverses it
(and in such case it becomes 1). Now we can also consider the case in which |m(T ′)| is reduced
if some working path m′ partially covering nodes of m was tested. Assuming m(T ) is long
enough, we want to analyse the growing trend of |m̂(T ′)|(1− p)|m̂(T ′)|. Indeed, the first term
of this expression |m̂(T ′)| trivially grows linearly, whereas (1−p)|m̂(T ′)| decreases with |m̂(T ′)|.
The trend of their products depends on the value of p. Excluding the trivial cases where
p = 0 or 1, it is easy to prove analytically that the maximum value of |m̂(T ′)|(1− p)|m̂(T ′)|

is for |m̂(T ′)| = −
[

1
ln(1−p)

]
. Here n = [x] is the rounded natural value of x. Therefore

the maximum value of U(a|OT ′) is ∆′max = −
[

1
ln(1−p)

]
(1 − p)−

[
1

ln(1−p)

]
. Notice that the

maximum value of U(a|OT ′) is reached when F (m,T )
1 = ∅. Indeed, in case F (m,T )

1 6= ∅, the
working probability of m would decrease exponentially, at the face of a linear growth of the
deterministic multiplier (|m̂(T )|+ |F (m,T )

1 |), as explained in Appendix 4.A.

Solution approximation By choosing α = ∆min

∆′max
as discussed in the previous sections,

it holds that for all paths m and observations OT and OT ′ , dαm ≥ 0, implying soundness of
Equation 4.7. Given a lower bound to the adaptive submodularity ratio, we may use the
result shown in [57] to claim the following:
Proposition 4.4.1. If πG is the policy representing the adaptive greedy algorithm using K
steps, and λ : 2M ×OM → R≥0 is the utility function defined in Equation 4.4, then:

λavg(πG) ≥
(

1− exp
(
−αK

k

))
λavg(π∗)

where π∗ is the optimal policy, k is the number of steps that π∗ takes to reach convergence
and α = ∆min

∆′max
.



4.5 Failure centrality 58

Proof. The statement is a direct consequence of the following facts: i. λ is adaptive monotone.
ii. Theorem 1 in [57], reported in Equation 4.6. iii. PoPGreedy is an Adaptive Greedy
Algorithm.

Notice that α is dependent on controllable parameters ∂max and |m̂max| that do not
depend on the network topology but only on the routing paths choice.
When PoPGreedy is run on the simple example shown in Figure 4.4.1, only in two occasions it
happens that U(a|OT ) < U(a|OT ′). The one marking maximum difference holds for a = a5,
T = {m3,m4} and T ′ = {m1,m3,m4}, where U(a5|OT ) = 1.076 and U(a(5)|OT ′) = 1.278.
For this example, α = 0.842.

4.4.3 Computational Complexity
Theorem 4.4.1. The computational complexity of PoPGreedy (Algorithm 2) is O(K · |M| ·
2|F|), where K is the maximum number of path probes.

Proof. At each of the O(K) steps of the algorithm, expected utilities are updated (line 8).
This operations requires computing P (Z̄|OT ) for all paths that are not tested yet:

P (Z̄|OT ) = P (Z̄ ∧OT )/P (OT ). (4.13)

Observe that, when computing the joint probability of the outcomes of previously tested
paths, the contribution given by working paths simply results in pruning working nodes from
non working paths. Therefore, the joint probabilities in equation (4.13) may be computed
as follows:

P (OT ) = P
(∧

m∈F
Z̄om(T )

)
. (4.14)

The expression in the previous equation requires a number of addends that is exponential in
the number of failed paths (2|F|). Computing node failure probabilities (line 10) requires
the same number of operations. The final cost is O(K · |M| · 2|F|).

Even considering sporadic failures, it is hard to predict how much the exponential factor may
grow. Even within the same topology, the time required for computing the joint probability
P (OT ) is highly dependent on where failures occur: if highly connected nodes fail, the
number of failed paths may be big, which makes the computation of the failure probabilities
extremely time consuming.
The above reasoning motivates the use of polynomially computable metrics to approximate
the nodes’ conditioned failure probabilities. In the next section, we define a polynomially
computable centrality metric that captures the trend of how node failure probabilities are
influenced when conditioned by iterative observations on test outcomes.

4.5 Failure centrality
We hereby define the failure centrality of a node v given the observation OT .

Definition 4.5.1. The failure centrality of a node v given the observation OT is c(v|OT ) = 0
if v is traversed by some working paths in T , it is equal to the prior probability of failure if v
is not traversed by any path in T , otherwise c(v|OT ) = max{T1;T2}, where:

T1 =


∑

m∈M(T )
v ∩F

⌊
1

|m̂(T )|

⌋
|M(T )

v ∩ F|

 , (4.15)



4.5 Failure centrality 59

T2 = Pv +H(bPvc − 1) ·
(

1− ε

Pv
− Pv

)
, (4.16)

Pv = |M(T )
v ∩ F|

|
⋃

m∈M(T )
v ∩F

m̂(T )|
, (4.17)

where M(T )
v is the set of monitoring paths m(T ) crossing node v. H(x) is the Heaviside

function (H(x) = 0, if x < 0, and H(x) = 1 when x ≥ 0). ε > 0 is a small constant.

Node centrality is used to approximate the value of P (S̄v|OT ) in the calculation of the
posterior estimate of the state probability of any path mi ∈ R, which is P (Zi|OT ), that
may be time consuming. The possible values of c(v|OT ) span in the interval [0, 1] and, in
analogy with probabilities, c(v|OT ) = 0 means that the failure probability of node v is 0,
that is, v ∈W , whereas if c(v|OT ) = 1 implies that the node is broken.

In the following we give some observations and proposition to characterize the values of
the node failure centrality given the observation.

Observation 4.5.1. Firstly, observe that T1 ∈ {0, 1}. Indeed, for any failed path it holds
that |m̂(T )| ≥ 1, therefore the maximum value of the numerator in equation (4.15) is |Mv∩F|,
proving that T1 can not be greater than 1. When there is at least one path m s.t. |m̂(T )| = 1,
T1 = 1, otherwise T1 = 0.

Proposition 4.5.1. For all nodes v and observations OT it holds that 0 ≤ T2 < 1.

Proof. While it is trivially true that T2 ≥ 0, we prove that T2 cannot be greater than or
equal to 1. We observe that if Pv < 1, then T2 = Pv. When Pv = 1, T2 becomes 1 − ε,
while if Pv > 1, T2 = 1 − ε

Pv
, that is a monotonically growing function with a horizontal

asymptote in 1.

Proposition 4.5.2. Let v ∈ V be a node and OT the outcome of some path probes. If
c(v|OT ) = 1 =⇒ v is broken.

Proof. In Proposition 4.5.1 we prove that T2 < 1, hence c(v) = 1 ⇐⇒ T1 = 1. When there
is at least a failed path m traversing v such that |m̂(T )| = 1, the numerator num of T1 is
0 < num ≤ |Mv ∩ F| and therefore T1 = c(v|OT ) = 1. When this situation occurs, the
probability of failure of node v is indeed 1, as this means that the failure of path m is only
due to the failure of node v.

Proposition 4.5.3. Let v ∈ V be a k-identifiable node with respect to the set of paths T ,
where k is the number of failures in the network, and let OT be the outcomes of path probes
on T . If v is broken =⇒ c(v|OT ) = 1.

Proof. Since v is k-identifiable, this means that the set of paths crossing v is different from
the sets of paths crossing any other set of nodes of size at most k. In particular, it is different
from the set of paths crossing the other k − 1 broken nodes. Hence there must be at least
one path m that passes through v and not through any other failed node, and therefore
m̂(T ) = {v}. What is left to prove is that there is some set of observations OT that allows to
disambiguate v by finding out that indeed m̂(T ) = {v}. If |m̂(T )| = 1, then this is trivially
true. Also if k = 1, by definition, node v must be traversed by a set of paths different
than the set of paths traversing any other node laying in m; therefore there exist some
working path that passes through nodes in m̂ \ {v}. Otherwise, again from the definition
of k-identifiability, the failure of node v must produce different sets of failed paths than
the ones resulting from simultaneous failures of v and any other node in m̂ \ {v}. As a
consequence, there must be some working path passing through the nodes in m̂ \ {v} and
not through v, making it possible to verify through end-to-end monitoring measurements
that m̂(T ) = {v}, which results in T1 = c(v|OT ) = 1.



4.5 Failure centrality 60

To conclude the discussion on the formulation of the centrality, we comment on the
choice of term T2 in equation (4.16). This formulation is motivated by the observation that
node failure probabilities are directly proportional to the number of failed paths traversing
a node, and inversely proportional to the number of nodes w 6∈W being traversed by such
paths. This property is satisfied by both Pv and 1 − ε

Pv
. Furthermore, by experimental

observations, we noticed that P (S̄v|OT ) grows steeply with the number of terms Z̄i (where
v ∈ m̂(T )

i ) in OT when P (S̄i|OT )� 1, while it slowly converges to 1 for P (S̄v|OT ) . 1 for
increasing numbers of negative tests on paths passing through v. Similarly, T2 = Pv when
Pv < 1, while T2 = 1− ε

Pv
for Pv ≥ 1.

In order to tune the value of ε we observe that if q∗ = maxPv s.t.Pv < 1, then q∗ ≤ d−1
d ,

where d = |
⋃
m∈Mv

m̂(T )|. Therefore, for ε < 1− q∗, the growing trend of T2 would be still
satisfied when Pv exceeds 1.

4.5.1 Centrality-based Utility
Because of the dependencies among path failures, computing the joint probability P (OT )

requires teh computation of 2|F| addends. In order to reduce computational costs, we
approximate the probability that a path works, conditioned on the observation, as follows:

P̃c(Zi|OT ) =
∏

v∈m̂(T )
i

(1− c(v|OT )). (4.18)

Definition 4.5.2. The expected conditional utility based on failure node centrality is given
by the formula:

Uc(ai|OT ) = λ(ai|Zi)P̃c(Zi|OT ) + λ(ai|Z̄i)P̃c(Z̄i|OT ) (4.19)

if @ m′ ∈ F : m̂′(T ) ⊆ m̂
(T )
i . Otherwise Uc(ai|OT ) = 0. Here, λ(ai|Zi) is defined as in

equation (4.1) and P̃c(Z̄|OT ) = 1− P̃c(Z|OT ).

The condition that equation (4.19) is valid if @ m′ ∈ F : m̂′(T ) ⊆ m̂(T )
i serves to recognize

situations as the one described in Figure 4.3.4, where we observed that if a path fails, every
of its super-path is going to be failing, too. Thanks to prior observation we can assess the
state of such paths and therefore there is no need to probe them.

4.5.2 Probing Algorithm with Centrality: FaCeGreedy
Algorithm 2 may be adapted to use this metric instead of the exact conditional probability

by applying the following modifications:

• Input: change p for c as initial node centrality.

• Lines 8 and 9: substitute U(a|OT ) with Uc(a|OT ).

• Line 10: replace P (S̄v|OT ) with c(v|OT ).

We hereby call FaCeGreedy (Failure Centrality Greedy algorithm) the Algorithm 2 with
the modifications described above.

An example of execution of FaCeGreedy: By running FaCeGreey on the example in
Figure 4.4.1, with initial node centrality c = 0.1 and ε = 0.05, the path probe sequence is
the same as the one resulting by PoPGreedy, and final node centralities are c(v9|OT ) = 1,
c(v10|OT ) = 0.1 while c(v|OT ) = 0 ∀v ∈W .



4.6 Dynamic Failures 61

Computational Complexity
The computational complexity of Algorithm 2 changes when centrality and centrality-

based utility (Definitions 4.5.1 and 4.5.2) are implemented instead of probability and utility
(equation 4.2).

Theorem 4.5.1. The computational complexity of FaCeGreedy (Algorithm 2 with the
changes described above) is O(K · (|V | · |F|2 + |m̂max|)), where K is the maximum number
of path probes, V is the set of nodes of the network, F is the set of failing tested paths and
|m̂max| is the maximum path length.

Proof. The total number of tests is O(K). computing the centrality of a node v requires
scrolling the failed paths and searching for possible sub-paths in order to compute Pv
(equation (4.17)). This is comprehensive of computing |Mv ∩ F| in equation (4.15) and
requires O(|F|2) operations. This is done for all nodes v at each iteration. Computing the
centrality-based utility of a path requires a number of operations that is linear in the number
of nodes paths pass through. The overall cost of the algorithm is O(K · (|V | · |F|2 + |m̂max|)),
where |m̂max| is the maximum path length.

4.6 Dynamic Failures
In this section we show how the proposed algorithms can be used in dynamic scenarios,

where nodes’ states may change throughout the monitoring activity, working nodes may fail,
and broken nodes may be repaired. When we consider this scenario, past observations do
not guarantee certain information, in contrast with the static model that we adopted in the
previous sections. Furthermore, while in PoPGreedy and FaCeGreedy the path probe activity
would naturally stop when the expected utility function of non-tested path results to be 0, the
dynamic failure scenario that we are introducing can rather be classified as an infinite horizon
problem. We adapt PoPGreedy and FaCeGreedy to take into account the newly introduced
dependency on time by considering the following facts: i. we do not suppose to have any
knowledge about prior node failure probabilities nor on the maximum number of failures;
ii. we do not assume knowledge on the time required for a node to be fixed, nor on a node’s
life time. We call these dynamic-aware algorithms Dynamic PoPGreedy (DPoPGreedy) and
Dynamic FaCeGreedy (DFaCeGreedy). To model this scenario, we discretize time into the
intervals between path probes, and we assign to each node v a probability to transition from
working to failed (pW→F ) and a probability to transition from failed to working ((pF→W )
at each time step. We assume that it is more likely for a node to be fixed, rather than
for a node to fail (i.e., pW→F < pF→W ). We base our procedure on the observation that
information gained in the past progressively expires by the passing of the time. Because of
the computational complexity that would result in a Bayesian analysis where probabilities
are explicitly time-dependent, we consider the following simplified and easily computable
approach: we define a window that is the set of the last probed paths. We assume that the
width of the window `w is big enough to ensure at least network coverage. The window
slides progressively: at each time step the least recently probed path in the window is
removed from it, and a new path is probed and brought inside the window. We consider
valid the information obtained by the last `w path probes, whereas we consider previous
observations expired. DPoPGreedy and DFaCeGreedy work as their static counterparts
inside the window, unless a contradiction is detected. A contradiction inside a window
occurs when the joint probability of the last `w path probe outcomes is 0. This could happen
either because a path traversing working nodes fails, or because a super-path of a failed
path works. When this occurs, we locate the most recent path that causes a contradiction,
and we remove it together with all the older paths from the window, as the information they
provided is corrupted.



4.7 Experimental Results 62

4.7 Experimental Results
In the following we provide a performance evaluation of both the variants PoPGreedy

and FaCeGreedy of our approach, against state of the art solutions for classic Boolean
Network Tomography and sequential graph-based group testing. In the experiments we
assume cycle-free routing between monitor nodes. Our evaluation considers the following
metrics: Section 4.7.1. If not explicitly stated otherwise, initial failure probability and
centrality are set to 0.1.

4.7.1 Metrics
We consider the output of any of the probing algorithms in terms of the probability

associated to each node failure. We compare the performance of the heuristics with respect
to the results that would be obtained by using all the monitoring paths.

In the following, we call WM and BM the set of nodes correctly classified as working
(failure probability 0) and broken (failure probability 1), respectively when all paths of M
are probed. Bisognerebbe spiegare meglio che ”tutti i path” sono tutti i path che ad un
metodo è concesso provare. Per adaptive finder, si tratta di tutti i possibili path del grafo.
Similarly, we denote with Wh and Bh the same sets according to the classification made by
any of the heuristics h, which selects progressive monitoring policy, probing only a subset of
the paths in M.

We denote with aW , |Wh|/|WM| the accuracy of detection of working nodes, namely
the fraction of nodes classified as working by the heuristics, over the number of nodes
recognized as working when all available paths are probed.

Similarly we denote with aB , |Bh|/|BM| the accuracy of detection of broken nodes.
The next two metrics measure the correctness of the ranking Vf produced by the

heuristics to sort the nodes in terms of failure probability: R1 ,

∣∣Vf [1:k]∩F
∣∣

k , where F is the
set of failed nodes, k = |F |, and with Vf [1 : k] we denote the nodes in the first k positions
in the rank Vf , i.e. with highest failure probability; R2 , k

n−i+1 , where i is the index of a
failed node appearing in Vf . If k is the number of truly failed nodes, R1 counts how many
of those appear in the highest k positions in the ranking, while R2 says how many nodes’
state we should verify before finding all the failed nodes.

It holds that R1 ≤ 1 and R2 ≤ 1, and R1 = 1 when the top k positions are indeed
occupied by the truly failed nodes F ; R2 = 1 when the nodes whose failing probability is 1
appear in the top k positions of the rank Vf . Therefore, R1 = 1 ⇐⇒ R2 = 1. R1 metric is
similar to the recall metric of ML [114], but it evaluates probabilistic outcomes instead of
binary classifications. In addition to the metrics aW , aB , R1 and R2, we also consider the
number of probes required to reach convergence and the execution time, when comparing
our approaches to the previous solutions.

For evaluating DPoPGreedy and DFaCeGreedy, we use metrics that capture the ability
to detect node state changes, and metrics that measure the reliability of the classification
results step by step. For the first category, we compute the percentage of detected node
state changes in both ways (W → F and F →W ), and the time for detection in terms of
time stamps. For assessing the classification reliability in each sliding window, we use the
classical definitions of precision and recall:

P = tp

tp+ fp
, R = tp

tp+ fn

where tp (true positive) is the number of correctly classified nodes; fp (false positive) is the
number of nodes erroneously classified either as working or as failed; fn (false negative) is
the sum of the number of real working nodes that are not classified as working, and of the



4.7 Experimental Results 63

number of real failed nodes that are not classified as failed. Notice that the recall is similar
to R1, except that R1 evaluates probabilistic outcomes instead of binary classifications.

4.7.2 Benchmark solutions
To validate our approach we compare it with previous solutions based on classical Boolean

Network Tomography as well as an approach based on progressive graph-constrained group
testing. For the first set of benchmarks we consider the greedy for coverage, greedy for
identifiability and greedy for distinguishability (GC, GI, GD) heuristics defined in [65]. At
each iteration, the next path to probe among the available input paths is chosen as the
one that maximizes network coverage/identifiability/distinguishability, respectively. When
the greedy procedures meet some stopping criteria, node failure probabilities P (S̄v|OT ) are
computed and the outcome is evaluated in terms of the metrics described in Section 4.7.1.

Together with this, we compare our method to the adaptive, graph-constrained group
testing algorithm introduced in [80], to which we refer to as AdaptiveFinder, (AF). The
goal of AdaptiveFinder is to detect the set of defective items (nodes) in a graph with the
least number of probes. The main differences between our setting and the one adopted
by AdaptiveFinder are that, although graph-constrained, AdaptiveFinder is not routing-
constrained, meaning that monitoring probes are not limited to move along end-to-end
paths that are determined by the routing scheme implemented in the network, and given
as input (i.e., they can be trees or contain cycles); in addition, direct node inspection is
allowed through degenerate paths composed of only one node, meaning that all nodes are
monitoring nodes. These two facts result in a major flexibility of AdaptiveFinder, i.e. an
advantageous degree of freedom that is not available to our approach. Nevertheless, we
note that this constitute an unrealistic capability in a general network tomography scenario
and it is more expensive to implement on an actual network because it requires all nodes
of the network to be provided with a monitoring system software and also assumes fully
controllable routing. The set of paths available to our algorithm is limited to a small subset
of the possible paths that AdaptiveFinder is allowed to walk across. For these reasons,
accuracy metrics for AdaptiveFinder are taken with respect to the ground truth.

Notice that, because of the possibility of direct node inspection, there is no uncertainty in
the sets of nodes classified as failed by AdaptiveFinder, hence this algorithm is not susceptible
to lack of identifiability, that instead is an ascertained issue in network tomography. As
a consequence, when the algorithm is run until convergence and a maximum number of
recursive steps is not fixed, it manages to assess with certainty the state of all nodes, even
when they are not k−identifiable, being k the number of broken nodes. Finally, we also
compare our results with the Adaptive Path Construction (APC) algorithm, [103]. Similarly
to PoPGreedy and FaCeGreedy, APC investigates on the state of the network by means
of end-to-end monitoring paths that are given and determined by uncontrollable routing.
APC may be divided in two phases. In the first phase and differently from us, a greedy for
coverage is applied. The outcomes of the path probes used in this phase are then analysed,
and if they are not sufficient for identifying the status of all nodes, the adaptive group
testing phase is executed: the decision on the action to take at a certain step (i.e., the next
path to probe) follows the binary search idea: the path whose number of nodes is closer
to the half of the number of still unclassified nodes in the network is tested. The original
output of APC is the set of the failed nodes and of the candidate nodes (nodes that are not
classified as working and that might be failed). In PoPGreedy and FaceCeGreedy, these sets
correspond to the set of nodes whose failing probability/centrality is 1, and to the set of
nodes whose failing probability/centrality lies in (0, 1), respectively. In order to compare
APC in terms of the metrics introduced in Section 4.7.1, we compute the failure probability
of the nodes in the candidate set, we set to 1 the failure probability of the nodes in the
identified set, and as 0 the failure probability of all remaining nodes.



4.7 Experimental Results 64

4.7.3 Tests
We perform experiments by considering different settings. In particular, we show

experiments conducted on two different networks, an internet network in Europe, BICS [82],
and a fiber network topology of Minnesota [12]. We use the first network for understanding
thoroughly the behaviour of our algorithms and benchmark methods, and we see that such
considerations hold on the bigger network.
In Table 4.7.1 features of the two topologies are detailed (left) as well as networks’ features
taking into account monitor-to-monitor path choices. Table 4.7.1 details features of the
two topologies as well as networks’ features taking into account monitor-to-monitor path
choices. We use the smaller network, BICS, for running a thorough study of the behaviour
of our algorithms and benchmarks, before extending our conclusions to the case of the larger
Minnesota network. In the experiments, the set of candidate monitors is chosen randomly,
with several paths between the same monitor pairs, to ensure broad network coverage.

BICS MN
|V | 33 681
|E| 48 921
δmin 1 1
δmax 8 13
δavg 3 2.7

diameter 9 29
nδ=1 5 134

BICS MN
|V C | 33 450
|EC | 43 610
δMmin 1 1
δMmax 29 631
δMavg 9.9 60.7

longest path 9 27
|VM | 10 62
|M| 55 1996

Table 4.7.1. On the left: experimental settings. δ = node degree, nδ=1 = number of
dangling nodes (degree 1). On the right: path characteristics. V C is the set of covered
nodes; EC is the set of covered links; δMi = number of paths in M traversing node vi.

Experiments on BICS network

Figures 4.7.1 to 4.7.4 are related to the BICS network. All curves are averaged
on 20 experiments and show the value of the metrics defined in Section 4.7.1 on
PoPGreedy, FaCeGreedy and all benchmarks. Shades/bars depict standard deviation.
In the experimental configurations shown in Figures 4.7.1 and 4.7.2 all the approaches
stop either when they reach convergence or when they reach a maximum number of
path probes. Such bound is the number of path probes needed by PoPGreedy to
converge (i.e., expected utility is 0) for each experiment. In particular, in Figure 4.7.1,
we show the evolution of the metrics iterative-wise when four failures occur in the
network. In Figure 4.7.2 instead, we show how the aforementioned metrics, as well
as the elapsed times and the average number of tested paths, change for a growing
number of failed nodes (from 1 to 5 failures). Notice that FaCeGreedy and GC
always reach convergence before PoPGreedy (Figure 4.7.2f), but, while GC has poor,
non-improvable performance in terms of node classifications, FaCeGreedy, together
with PoPGreedy, always reach the same performances achieved by probing all paths
(see Figures 4.7.2a to 4.7.2d), that is the upper-bound to the ability of node states
assessment by means of end-to-end monitoring paths. Greedy identifiability and
greedy distinguishability instead stop before convergence for all tests. AdaptiveFinder
manages to converge with a very small number of paths only when a single failure



4.7 Experimental Results 65

1 5 15 25 35 450

.2

.4

.6

.8

1

?
?

?
?

?
?

?
?

? ? ? ? ? ? ?

# tested paths

a
W

? FaCe PoP GC
GI GD AF
APC

(a)

1 3 5 7 9 11 13 15 17 190

.2

.4

.6

.8

1

? ? ? ? ? ?
? ? ?

?
?

?

?

? ?

# tested paths

a
B

? FaCe PoP
GC GI
GD AF
APC

(b)

1 3 5 7 9 11 13 15 17 190

.2

.4

.6

.8

1

?
?

? ?
? ?

? ? ? ?
?

?
? ?

?

# tested paths

R
1

? FaCe PoP
GC GI
GD AF
APC

(c)

1 3 5 7 9 11 13 15 17 19
0

.2

.4

.6

.8

1

? ? ? ?
? ? ?

?
?

?
?

?
? ?

?

# tested paths

R
2

? FaCe PoP
GC GI
GD AF
APC

(d)

Figure 4.7.1. Metrics evolution, iteration-wise (BICS network with 4 failed nodes).
Bounded.

occurs in the network. In contrast, APC converges with a a similar number of
paths as FaCeGreedy. This is because the number of failures considered in this
experimental scenario is small, and the initial coverage phase implemented by APC
helps with the detection of many working nodes. Observing Figure 4.7.1 we can
notice that since the number of tests changes depending on where the 4 failed nodes
are located in the network, curves may be subject to oscillations at the end, as fewer
tests reach the highest numbers of tested paths. Within one single test, aW and aB
have a monotone growing trend, while R1 and R2 may oscillate: as a matter of facts,
during intermediate probes working nodes may gain a high failure probability (hence
moving to the top positions of the sorted node failure probability chart) and then
their failure probability goes abruptly to 0 when a working path traverse them. An
observable phenomenon is that aW curves are concave and they grow steeply with
the very first experiments, and become less steep when they approach the maximum
value (i.e., aW = 1). This is because of the sporadic failures scenario that we are
considering: failed nodes are a small percentage of the set of all nodes, and therefore
working paths are more likely to exist with respect to failing ones. Consequently,
correct working node classification is easier and faster to achieve within the first
tests. On the contrary, aB curves follow a convex function trend and in the first
tests they may be 0. This is because it takes a number of tests before a node can be
classified as failed (i.e., failure probability equal to 1).



4.7 Experimental Results 66

1 2 3 4 50

.2

.4

.6

.8

1 ? ? ? ? ?? ? ? ? ?

# failed nodes

a
W

? FaCe PoP GC
GI GD AF
APC

(a)

1 2 3 4 50

.2

.4

.6

.8

1 ? ? ? ? ?? ? ? ? ?

# failed nodes

a
B

? FaCe PoP GC
GI GD AF
APC

(b)

1 2 3 4 50

.2

.4

.6

.8

1 ? ? ? ? ?? ? ? ? ?

# failed nodes

R
1

? FaCe PoP GC GI
GD AF APC all

(c)

1 2 3 4 50

.2

.4

.6

.8

1 ? ? ? ? ?? ? ? ? ?

# failed nodes

R
2

? FaCe PoP GC GI
GD AF APC all

(d)

1 2 3 4 50

2

4

6

? ? ? ? ?? ? ? ? ?
# failed nodes

el
ap

se
d

tim
e

(s
) ? FaCe PoP

GC GI
GD AF
APC

(e)

1 2 3 4 50

5

10

15

20

? ? ? ? ?
? ? ? ? ?

# failed nodes

#
te

st
s

? FaCe PoP GC GI
GD AF APC

(f)

Figure 4.7.2. Tests on BICS network. Bounded

Similar considerations on the evolutionary curves hold for the experiments shown
in Figure 4.7.3. Figures 4.7.3 and 4.7.4 are again related to the BICS network. In this
experimental configuration, all methods stop either because the reach convergence,
or because they probe all available monitoring paths. The latter condition does not
hold for AdaptiveFinder, since it is not limited to move along given paths between
monitors. Except for greedy coverage, consistently with what we observed for the
previous set of experiments, AdaptiveFinder requires a greater number of tests
than those used by PoPGreedy and FaCeGreedy to converge (see Figure 4.7.4f),
while greedy identifiability and greedy distinguishability always probe all available



4.7 Experimental Results 67

1 5 15 25 35 45 550

.2

.4

.6

.8

1

?

??
?

??
?
?
???

????

# tested paths

a
W ? FaCe PoP

GC GI
GD AF
APC

(a)

1 5 15 25 35 45 550

.2

.4

.6

.8

1

?????????
?

?

?

?
??

# tested paths

a
B ? FaCe PoP

GC GI
GD AF
APC

(b)

1 5 15 25 35 45 550

.2

.4

.6

.8

1

?
?

??

?
?
??
??
?
??
??

# tested paths

R
1 ? FaCe PoP

GC GI
GD AF
APC

(c)

1 5 15 25 35 45 550

.2

.4

.6

.8

1

????
??
??
?
??
?
?
?
?

# tested paths

R
1 ? FaCe PoP

GC GI
GD AF
APC

(d)

Figure 4.7.3. Metrics evolution iteration-wise (BICS network with 4 failed nodes). Un-
bounded.

paths. When we do not give constraints on the maximum number of paths to probe,
AdaptiveFinder converges to the ground truth: it correctly classifies all nodes. We
stress that this is due to its possibility to monitor single nodes directly and to
its freedom to walk on the network without the restriction of moving along given
paths. Once again, PoPGreedy and FaCeGreedy achieve the same performance as
probing all paths would do, but testing with little portions of available monitoring
paths. This holds also for APC in this failure scenario. As expected, the average
elapsed time required by PoPGreedy considerably increases with the number of
failed nodes, even on a small network (see Figures 4.7.2e and 4.7.4e). High variance
is due to its exponentially dependence on the number of failed paths, amplifying the
discrepancy of when central or non central nodes fail. For this reason, in the next
set of experiments, we are not going to consider such method.

Minnesota

Figures 4.7.5 and 4.7.6 show our experiments on the Minnesota network. In
Figure 4.7.5, tests are run until convergence or until a maximum number of tests
K has been reached, whichever occurs earlier. In this case, the bound K is given
by the number of path probes needed by FaCeGreedy to converge. In contrast,
experiments in Figure 4.7.6 are run until convergence or until all available paths are



4.7 Experimental Results 68

1 2 3 4 50

.2

.4

.6

.8

1 ? ? ? ? ?? ? ? ? ?

# failed nodes

a
W

? FaCe PoP GC
GI GD AF
APC

(a)

1 2 3 4 50

.2

.4

.6

.8

1 ? ? ? ? ?? ? ? ? ?

# failed nodes

a
B

? FaCe PoP GC
GI GD AF
APC

(b)

1 2 3 4 50

.2

.4

.6

.8

1 ?
? ? ? ??
? ? ? ?

# failed nodes

R
1

? FaCe PoP GC
GI GD AF
APC all

(c)

1 2 3 4 50

.2

.4

.6

.8

1 ? ? ? ? ?
? ? ? ? ?

# failed nodes

R
2

? FaCe PoP GC
GI GD AF
APC all

(d)

1 2 3 4 50

1

2

3

? ? ? ? ?? ? ? ? ?
# failed nodes

el
ap

se
d

tim
e

(s
)

? FaCe PoP GC
GI GD AF
APC

(e)

1 2 3 4 50
10
20
30
40
50
60

? ? ? ? ?? ? ? ? ?

# failed nodes

#
te

st
s ? FaCe PoP GC

GI GD AF
APC

(f)

Figure 4.7.4. Tests on BICS network. Unbounded

probed. Again, we observe that GI and GD need to test all available paths and are
still unable to converge because of their inability to take account of the progressively
available information which can be obtained by probing the paths in a sequence.
In fact, in Figure 4.7.5, GI and GD use the same number of paths as FaCeGreedy
but with much inferior classification performance, whereas for the unbounded tests
in Figure 4.7.5, they reach the same performances of FaCeGreedy by probing all
available paths. On the other hand, FaCeGreedy is able to obtain full network
information by converging with less than 9% of all the available paths. As in the
previous experiments, CG is faster in covering the network, but performs poorly in



4.7 Experimental Results 69

5 10 15 20 25 30 35 40 450

.2

.4

.6

.8

1? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?

# failed nodes

a
W

? FaCe GC GI
GD AF APC

(a)

5 10 15 20 25 30 35 40 450

.2

.4

.6

.8

1? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?

# failed nodes

a
B

? FaCe GC GI
GD AF APC

(b)

5 10 15 20 25 30 35 40 450

.2

.4

.6

.8

1

? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

# failed nodes

R
1

? FaCe GC GI
GD AF APC
all

(c)

5 10 15 20 25 30 35 40 450

.2

.4

.6

.8

1

? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?

# failed nodes

R
2

? FaCe GC GI
GD AF APC
all

(d)

Figure 4.7.5. Tests on the Minnesota topology. Bounded.

terms of failure detection. Once again, in this configuration, in the unbounded case
of Figure 4.7.5, AF is able to correctly detect all the failures within the maximum
number of tests K only when the failure set is very small. In contrast, in the
unbounded scenario, AdaptiveFinder reaches convergence with a higher number
of tests than the ones required by FaCeGreedy (Figure 4.7.6e). Despite the good
performance of APC in the previous network, when APC is run on Minnesota and
when many failures occur, it reaches convergence with many more paths than the
ones used by FaCeGreedy (Figure 4.7.6e), and performs poorly in the bounded
tests (Figure 4.7.5). This is due to two factors: ensuring network coverage may be
convenient for small networks with a little number of failed nodes, but it is not as
effective in large networks with many failed nodes. Similarly, using a binary search
approach is not as convenient when many failures occur.

Together with the aforementioned metrics, we also study how different choices of
prior centrality values (c) may affect the performance of FaCeGreedy in terms of
aB. Figure 4.7.6f depicts how the accuracy of detection of broken nodes changes at
each iteration of FaCeGreedy for c = 0.05, 0.08, 0.1. For each experiment, 35 failed
nodes ( 8% of the total number of covered nodes) are generated. Despite curves vary
throughout intermediate iterations, and despite small differences in the final number
of tested paths FaCeGreedy is able to reach maximal accuracy (i.e., aB = 1) also for
under and over estimated choices of c (that is, c = 0.05 and c = 0.1) for all choices
of c, proving its consistency, and robustness against potentially wrong settings of



4.7 Experimental Results 70

5 10 15 20 25 30 35 40 450

.2

.4

.6

.8

1? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?

# failed nodes

a
W

? FaCe GC GI
GD AF APC

(a)

5 10 15 20 25 30 35 40 450

.2

.4

.6

.8

1? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?

# failed nodes

a
B

? FaCe GC GI
GD AF APC

(b)

5 10 15 20 25 30 35 40 450

.2

.4

.6

.8

1

? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

# failed nodes

R
1

? FaCe GC GI
GD AF APC

(c)

5 10 15 20 25 30 35 40 450

.2

.4

.6

.8

1

? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

# failed nodes

R
2

? FaCe GC GI
GD AF APC
all

(d)

5 10 15 20 25 30 35 40 45

200

400

600

|M|

? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?

# failed nodes

#
te

st
s ? FaCe GC GI

GD AF APC

(e)

0 40 80 120 160 2000

.2

.4

.6

.8

1

# tested paths

a
B

c = 0.05
c = 0.08
c = 0.1

(f)

Figure 4.7.6. Tests on the Minnesota topology. Unbounded

the prior probability or centrality of a node.

Experiments on Dynamic Failures

Figure 4.7.7 shows the average precision and recall of DPoPGreedy and DFaCe-
Greedy on the BICS network. We run the algorithms for 200 steps, and we consider
the window size `w to be 12. We compute the evaluation metrics at each time step,
from 13 to 200. In Table ..., we show the percentage of detected node state changes
and the average time for change detection. The experiments are leveraged on 200



4.8 Conclusions 71

13 37 61 85 109 133 157 181 200
0

.2

.4

.6

.8

1

steps

pr
ec

isi
on

DFaCe
DPoP

(a)

13 37 61 85 109 133 157 181 200
0

.2

.4

.6

.8

1

steps

re
ca

ll

DFaCe
DPoP

(b)

Figure 4.7.7. Precision and Recall of DFaCeGreedy and DPoPGreedy.

%F→W %W→F tF→W tW→F
PoP 82.3 (±15.6) 89.7 (±9.1) 6.6 (±2.4) 12.7 (±6.3)
FaCe 56.7 (±21.5) 89.7 (±13.6) 14.0 (±8.7) 14.5 (±7.6)

Table 4.7.2. Average percentages of detected state changes and average time for change
detection, and their standard deviation.

experiments, and standard deviations are provided between parenthesis.

4.8 Conclusions

Boolean Network Tomography (BNT) provides the design of end-to-end moni-
toring paths to ensure network failure localization. However, when the number of
concurrent failures is unknown, BNT techniques hit the snag of the huge dimension
and intractability of the solution space. With this work we propose a progressive
approach to failure localization in the challenging scenario where failures may occur
in an unknown and unbounded number. A set of monitoring paths is probed in a
progressive manner, and decisions on which path to probe are made on the basis
of a Bayesian approach which optimizes the expected value of the failure related
information that can be obtained by incrementally monitoring new paths. To face
the complexity of calculating posterior failure probabilities at each monitoring step,
we propose a failure centrality metric, computable in polynomial time, which reflects
the likelihood of a node to be the site of a failure. We use such a metric to guide
decision making and provide a conclusive assessment of the state of network compo-
nents. By means of numerical experiments conducted on synthetic as well as real
network topologies, we demonstrate the practical applicability of our approach. The
experiments show that our approach outperforms state of the art solutions based on
classic Boolean Network Tomography as well as approaches based on progressive
group testing.



72

Appendix

4.A Derivation of the minimum value of U(a|OT ) subject
to P (Z|OT ) ∈ (0, 1)

In Section 4.4.2 we discuss what is the minimum value of U(a|OT ) subject to
P (Z|OT ) ∈ (0, 1). First of all, notice that when |m̂(T )| > 1, the second component of
U(a|OT ), that is b 1

|m̂(T )|cP (Z̄|OT ), is equal to 0. We can observe from Equation 4.12
that ∆min decreases exponentially with |m̂|, and therefore, ∃n0 ∈ N such that
∀ |m̂(T )| ≥ n0, U(a|OT ) decreases with |m̂(T )|. Such n0 is −

[
1

ln(Pmin)

]
, that is 0 for

all p ∈ (0, 1). Therefore the decreasing trend of ∆min holds for all possible values
of |m̂(T )|. For this reason, for our analysis we legitimately consider the second
component of U(a|OT ) to be zero. In Section 4.4.2, we claim that the minimum
non-zero value of P (Z|OT ) is Pmin = ∏

v∈m̂(T )
1− p

1+(1−p)(p∂v−1) . As a matter of fact,

the probability of failure of a path is the product of the conditional probability
of failure of its nodes, P (S̄v|OT ). Such probability depends on the number of
failing paths traversing each node v, on their lengths and on their intersections. In
particular, it is easy to see that the shorter the failing paths traversing the node and
the least the cardinality of their intersections, the more P (S̄v|OT ) grows. Therefore,
the limit situation that we are seeking for occurs indeed when each node of m(T ) is
traversed by a large number of failing paths of length 2, i.e., paths passing through
v and another node that is not in m̂(T ). When such condition holds though, then
the set of all such 2-length paths is the set F (m,T )

1 , as if m works, it would not
only be possible to classify all of its nodes as working, but also all of the other
nodes of such 2-length paths as failed. Therefore, in this situation it holds that
U(a|OT ) = (|m̂(T ) + |F (m,T )

1 |)Pmin := ∆min. We wonder if it is possible to get a
smaller value of such U(a|OT ) in a situation where Pmin is sacrificed for a slightly
higher value of P (Z|OT ), but where at the same time |F (m,T )

1 | = 0. The next-most
smaller value of P (a|OT ) such that Fm,(T )

1 = ∅ results when all nodes v of m̂ are
traversed by paths of length 3, that only intersect in v and such that the two
remaining nodes are not in m̂(T ). In this situation, if m works, all nodes it traverses
would be identified as working, but none of the nodes of the original 3-length paths
that are not in m̂(T ) would be uniquely identified, hence F (m,T )

1 = ∅. We call P3
such probability. It holds that:

P3 =
∏

v∈m̂(T )

1− p

1−
∂v∑
i=1

(−1)i+1(1− p)2i+1(∂v

i

)



4.A Derivation of the minimum value of U(a|OT ) subject to P (Z|OT ) ∈ (0, 1) 73

=
∏

v∈m̂(T )

1− p

1− (1− p)
∂v∑
i=1

(−1)i+1(1− p)2i(∂v

i

)
=

∏
v∈m̂(T )

1− p

1 + (1− p)
∂v∑
i=1

(−1)i(1− p)2i(∂v

i

)
=

∏
v∈m̂(T )

1− p

1 + (1− p)
∂v∑
i=1

(−1)i[(1− p)2]i
(∂v

i

)
=

∏
v∈m̂(T )

1− p

1 + (1− p)
∂v∑
i=1

[−(1− p)2]i
(∂v

i

)
[Newton’s binomial] =

∏
v∈m̂(T )

1− p

1 + (1− p)[(1− (1− p)2)∂v − 1]

=
∏

v∈m̂(T )

1− p

1 + (1− p)[(1− 1 + 2p− p2)∂v − 1]

=
∏

v∈m̂(T )

1− p

1 + (1− p)[(2p− p2)∂v − 1] .

Hence the resulting conditional expected marginal benefit is U(a|OT ) = |m̂(T )|P3 =:
∆3.
We see now that ∆min < ∆3 for growing values of |F (m,T )|. Asymptotically speaking,
we can assume without loss of generality that ∂v = ∂w ∀v, w ∈ m̂(T ). Since∑
v ∂v = |F (m,T )|, it results that ∂v = |F(m,T )|

|m̂(T )| . We show that ∆min
∆3

< 1 for growing
values of |F (m,T )|.

∆min

∆3
=
|m̂(T )|+ |F (m,T )|

[
1− p

1+(1−p)(p∂v−1)

]|m̂(T )|

|m̂(T )|
[
1− p

1+(1−p)[(2p−p2)∂v−1]

]|m̂(T )|

= |m̂
(T )|+ |F (m,T )|
|m̂(T )|

[
1 + (1− p)(p∂v − 1)− p

1 + (1− p)(p∂v − 1) · 1 + (1− p)[(2p− p2)∂v − 1]
1 + (1− p)[(2p− p2)∂v − 1]− p

]|m̂(T )|

= |m̂
(T )|+ |F (m,T )|
|m̂(T )|

[
p∂v (1− p)(2− p)∂v + p

(2− p)∂v [p∂v (1− p) + p]

]|m̂(T )|

≤ 1

this is true ∀|m̂(T )| if and only if |F (m,T )| is sufficiently large and

p∂v (1− p)(2− p)∂v + p

(2− p)∂v [p∂v (1− p) + p] ≤ 1

which is always true for p ∈ (0, 1), as it holds if and only if

p∂v (1− p)(2− p)∂v + p ≤ (2− p)∂v [p∂v (1− p) + p]
⇐⇒ p ≤ (2− p)∂vp

⇐⇒ (2− p)∂v ≥ 1 since p ∈ (0, 1)



4.A Derivation of the minimum value of U(a|OT ) subject to P (Z|OT ) ∈ (0, 1) 74

⇐⇒ ∂v = |F
(m,T )|
|m̂(T )|

≥ 0.

Therefore ∆min
∆3

→ 0 for growing values of |F (m,T )
1 | and it is < 1 for |F (m,T )

1 |
sufficiently large and ∀|m̂T | and ∀p ∈ (0, 1). This proves that the minimum value of
U(a|OT ) subject to P (Z|OT ) 6= 0, 1 is indeed ∆min = (|m̂(T )|+ |F (m,T )

1 |) ∏
v∈m̂

1−
p

1+(1−p)(p∂v−1) .



75

Part II

Parallelization of Fundamental
Operations in Numerical Linear

Algebra



76

Chapter 5

Introduction to Part II

Having robust and reliable tools for fast computing is a very common and relevant
concern in the most disparate applications in Computer Science, scientific and engi-
neering modelling. Two main factors contribute to this purpose: algorithms having
low computational and communication costs, and the availability of architectures for
high performance computing. A wide set of problems relies more or less explicitly
on numerical Linear Algebra in order to simplify problems whose symbolic solution
would be prohibitively expensive in terms of computational cost. For this reason
numerical Linear Algebra is continuously evoked in numerical Calculus in order to
solve scientific and engineering problems as fast as possible. Pioneered by celebrated
mathematicians such as Alan Turing, [139], John Von Neumann, [105], James H.
Wilkinson, [143] and Alston S. Householder, [69], Numerical Linear Algebra was
born with the purpose of implementing solutions to problems in continuous mathe-
matics on the earliest computers. In recent years, with the favour of the growth of
computational power of super computers, the research in numerical Linear Algebra
has greatly evolved. This fact has allowed to widen knowledge and experimental
possibilities in a great number of fields where Mathematical Analysis cannot be used
in practice because of the size of the data and of the hardness of finding an analytic
solution. Some peculiar examples of fields of science whose advances are partially
made possible by research in Numerical Linear Algebra and High Performance Com-
puting (HPC), are Meteorology (including weather forecasting, seismic phenomena
simulations, wind and ocean waves predictions), Astrophysics (e.g., protoplanetary
systems and galaxies modelling, simulating evolution of stars), Biology (e.g., model-
ing large bio-molecular systems, simulating bio-molecular reactions, understanding
organ functions), just to cite a few.
Two pillars of numerical Linear Algebra are matrix multiplications and linear solvers,
as they recur in several contexts. One example is Geometry processing for Computer
Graphics, where 3D surfaces are discretized and represented as meshes on which
differential operators (e.g., gradient, divergence and Laplacian) are computed on the
simplexes of the graph resulting from the mesh. These operators are approximated
by adjacency matrices that are usually very large and sparse, and that are applied to
functions by means of classical matrix multiplications. Again in Geometry processing,
Ovsjanikov et. al. in [107] were the first to phrase functional maps between mani-
folds in terms of systems of linear equations to search for correspondences between



5.1 Preliminaries in Numerical Linear Algebra and HPC 77

non-Euclidean domains, allowing efficient point-to-point recognition of remeshed
versions of 3D surfaces. In Computer Vision, and in particular in Convolutional
Neural Networks (CNN), a great number of matrix convolutions are computed in
order to extract features from images.
As already mentioned, another vast field of application of numerical Linear Algebra
and HPC is system simulation. Observations on scientific phenomena (spanning
from meteorology and astrophysics, to biological and chemical processes) and on
engineering systems (such as vehicles, medical engines and building structures)
are modelled by means of systems of either ordinary (ODEs) or partial (PDEs)
differential equations. Finding an analytic solution to large systems of ODEs and
PDEs is unfeasible, and instead numerical approximation methods are adopted.
Some of these, as Domain Decomposition Method, Finite Element Method (FEM),
Finite Difference Method (FDM), consist in transforming the systems of differential
equations into linear systems, that can be readily solved by linear solvers coming
from Linear Algebra.

Together with the formalization of algorithmic techniques for solving analyti-
cal problems, efficient parallel implementations that are frequently adapted to the
growing industry of computers and clusters architectures, represent a major field of
research for accelerating the solution of the aforementioned problems.

In this thesis, we focus on parallel implementations of basic matrix operations
and linear solvers, because, as we have seen, they appear as intermediate steps
integrated within complex frameworks in systems modelling and simulations and in
several areas of Computer Science. In addition, we describe what we believe is the
most appropriate parallel paradigm for implementing each operation.

In the following Section, we report some preliminary concepts in Numerical
Linear Algebra that will be used throughout Part II of this thesis.

5.1 Preliminaries in Numerical Linear Algebra and HPC

Firstly, we shall recall that the multiplication between two matrices A ∈ Rm×n

and B ∈ Rn×p results in a matrix C ∈ Rm×p such that ci,j = 〈ai,:,b:,j〉, with
i = 1, . . . ,m and j = 1, . . . , p, being ci,j the entry of C with coordinates (i, j),
whereas ai,: and b:,j are the i-th row and the j-th column of matrices A and
B, respectively. The operation 〈., .〉 is the scalar product, that is well defined as
ai,:,b:,j ∈ Rn. It is easy to see that the computational cost of the standard matrix
multiplication is cubic in the matrices’ dimensions, O(m · n · p). Trivially, if the
matrices are square, i.e., A,B ∈ Rn×n, the computational cost becomes O(n3).
The first to break the O(n3) operation count for matrix multiplication was Strassen
in 1969, [133]. While the naive matrix multiplication between two 2× 2 matrices A
and B requires the following 8 products:

c1,1 = a1,1b1,1 + a1,2b2,1

c1,2 = a1,1b1,2 + a1,2b2,2

c2,1 = a2,1b1,1 + a2,2b2,1

c2,2 = a2,1b1,2 + a2,2b2,2



5.1 Preliminaries in Numerical Linear Algebra and HPC 78

where C = AB, Strassen’s algorithm only uses the following 7 multiplications:

m1 = (a1,1 + a2,2)(b1,1 + b2,2)
m2 = (a2,1 + a2,2)b1,1
m3 = a1,1(b1,2 − b2,2)
m4 = a2,2(b2,1 − b1,1)
m5 = (a1,1 − a1,2)b2,2
m6 = (a2,1 + a1,1)(b1,1 + b1,2)
m7 = (a1,2 − a2,2)(b2,1 + b2,2)

that are eventually summed up to recover the product matrix C:

c1,1 = m1 +m4 −m5 +m7

c1,2 = m3 +m5

c2,1 = m2 +m4

c2,2 = m1 −m2 +m3 −m6.

By generalization of 2× 2 matrices to matrices of any size, divided in 2× 2 blocks,
Strassen’s algorithm applies the 7 product computation recursively. The compu-
tational cost of Strassen’s algorithm on matrices of size n therefore is O(nlog2 7) ∼
O(n2.81). Strassen’s algorithm is celebrated also for being cache oblivious, as it
can be implemented efficiently without requiring knowledge of specific memory and
block size. After Strassen’s results, others have provided algorithms with progres-
sively lower computational costs. In 1987, Coppersmith and Winograd proposed
an algorithm reducing the computational cost of generic matrix multiplications
to O(22.38), [33]. This bound has been further improved in the last ten years by
Stothers in 2010, [131], Williams in 2012 [144] and Le Gall in 2014 [58]. Currently
the best bound belongs to Josh Alman and Virginia Vassilevska Williams, and is
2ω, with ω = 2.3728596, [3]. Despite the great efforts put for pushing this bound,
these results are of purely theoretical interest and not usable in practice, as they
are valid only for inputs beyond any practical size and because they exhibit serious
numerical instability problems, [19,125]. In this thesis, we show an algorithm that
uses Strassen’s procedure for the ATA matrix multiplication. The algorithm can be
easily converted for shared and distributed architectures, and exhibits advantageous
performance also on small sized matrices.

Another topic of interest in this thesis is the solution of systems of linear equa-
tions, Ax = b. As we have seen in this chapter, they are a pillar to many applications
in science and engineering. Recall that a system has one and only one solution
if and only if the coefficient matrix A is non-singular, meaning that it is square
and its determinant is non-zero. Depending on the properties of the matrix A,
that can be either structural (the matrix is sparse or dense) or mathematical (A is
symmetric, positive-definite, orthogonal, etc.), different algorithms can be applied
to solve the system Ax = b. Despite the vast literature, solving a linear system
can still be challenging for a number of reasons: if the system is very sensitive to
small perturbations in the input that may be caused by round-off errors (inherently



5.1 Preliminaries in Numerical Linear Algebra and HPC 79

introduced in the systems when it is solved by a computer) it might be necessary to
study preconditioning techniques to avoid error explosion and decrease sensitiveness;
when a linear system is very large, providing a proper, scalable implementation that
uses parallel architectures optimizing memory usage and limiting communication is
a strategic task; because of the size of the input and of possible lack of desirable
properties of the coefficient matrix, some problems require ad-hoc solutions in terms
of algorithmic procedures and data structures.

Algorithms for solving linear systems can be divided into two categories: direct and
iterative solvers. Direct solvers produce exact solutions to linear systems (excluding
round-off), whereas iterative solvers generate a sequence of improving approximate
solutions: given a linear system Ax = b, the idea is to define a matrix M, such that
the system x = x(I −M−1A) + M−1b is equivalent to Ax = b, being I the identity
matrix. The matrix B := I −M−1A is known as iteration matrix. Solutions are
progressively updated as x(k+1) = Bx(k) + M−1b for any initial guess solution x(0).
An iterative method converges if and only if the spectral ray of B is less than 1.
Formally, limk→∞ x(k) = x, ∀x(0) ⇐⇒ ρ(B) < 1, where x is the exact solution to
Ax = b, [61]. Depending on the problem that is to be solved, one may choose to
implement a direct or an iterative solver. As we shall detail in Chapter 7, direct
solvers are preferable over iterative on dense systems, whereas direct solvers are
commonly applied for solving sparse systems. A system is sparse when its coefficient
matrix is a sparse matrix, i.e., if for each of its row and column the number of entries
that are non-zero is O(1).

We hereby list some of the most well-known linear solvers.

Gaussian Elimination/LU decomposition Given a linear system Ax = b, this
direct method consists in repeatedly updating the rows of the augmented
matrix (A|b) by summing them to the non-zero scalar multiple of other rows.
The scalars are called multipliers. This procedure provides an equivalent
system A′x = b′, where the coefficient matrix is upper triangular. In the
LU-decomposition, the Gaussian Elimination is applied only to the coefficient
matrix A, that is decomposed as the product of a lower-triangular and a
upper-triangular matrix (A = LU), where L is the matrix of the multipliers.
This technique can be applied to any coefficient matrix, even to non-square
ones.

Cholesky Decomposition It is a direct method for solving systems of linear equa-
tions Ax = b where A is a positive-definite matrix. It consists of decomposing
the coefficient matrix as the produce of a lower triangular matrix and its
transpose, A = LLT .

Jacobi algorithm This procedure falls in the class of iterative methods. The linear
system is written in a form where each i−th equation is solved by its i−th
variable, xi. Starting from an initial solution guess, x(0), the method consists
in using the progressively updated solution x(k) to derive a more accurate
solution x(k+1) by plugging the values of x(k) in to the right-hand side of the
equations written as described above. It can be expressed in matrix form by
defining the iteration matrix B := I −D−1A, where D is the diagonal of A.



5.1 Preliminaries in Numerical Linear Algebra and HPC 80

A sufficient condition for convergence is that the coefficient matrix is strictly
diagonally dominant. A detailed version of this method is in Chapter 7.

Gauss-Seidel algorithm This iterative method is very similar to Jacobi, ex-
cept that in this algorithm, newly computed entries of the updated solution
x

(k+1)
1 , . . . , x

(k+1)
i−1 are immediately plugged into the variables appearing in

the i−th equation, ∀i. In matrix form, it can be described by the equation
x(k+1) = L−1(b−Ux(k)), where L is the lower triangular part of A, and U is
its strictly upper triangular part.

Krylov subspace methods In [84], Krylov proved that the inverse of a matrix
A can be expressed as a linear combination of its powers. This result has
inspired a new way of designing iterative algorithms, that aims at searching
for the solution of linear systems Ax = b in the Krylov subspace of size r,
Kr(A, b) = {I,Ab,A2b, . . . ,Ar−1b}. Chronologically, the first such method
was the Conjugate Gradient (CG) algorithm, that is applicable to positive def-
inite matrices, and that is generalized by the biconjugate gradient (BiCG) and
more recently by the biconjugate gradient stabilized (BiCGSTAB) methods, to
work stably also on non self-adjoint matrices. Other methods, such as GMRES
and MINRES, search for a solution in Kr(A, b) by iteratively minimizing the
norm of the residual ||Ax(k) − b||, [123].

Incomplete factorizations Matrix factorizations can be used for solving linear
systems Ax = b by decomposing the coefficient matrix into the product
of matrices that have mathematical or structural properties that ease the
solution of the system. The LU factorization and the Cholesky decomposition
described above are two examples. Nevertheless, decomposing a sparse matrix
rarely results in the product of two sparse matrices. In order to prevent this,
incomplete factorizations may be employed. The Incomplete LU factorization
(ILU) factorizes a sparse matrix A into the product of a sparse lower triangular
matrix L and a sparse upper triangular matrix U such that R = LU −A
satisfies certain constraints, such as having zero entries in some locations,
[123]. Similarly, the Incomplete Cholesky Decomposition (ICHOL) consists
in computing a sparse, positive definite matrix A as the product of a sparse
lower triangular matrix L and its transpose such that A ≈ LTL, where L has
a 0 wherever A has one, [61].

In this thesis, we focus on a class of linear systems that we call Quasi-Block
Diagonal (QBD), and we show how these systems can be conveniently implemented
on distributed architectures with negligible communication cost.

To complete our introduction to the second part of this thesis, we briefly describe
the parallel programming models and architectures that we exploit to implement
our numerical algorithms.

High performance computing (HPC) is the ability to process data and perform
complex calculations at high speeds. This is achieved by running programs in parallel
architectures where possibly numerous nodes work together to complete one or more
tasks simultaneously. In the second part of this thesis, we implement well-engineered



5.1 Preliminaries in Numerical Linear Algebra and HPC 81

numerical algorithms on clusters of multi-cored nodes. A simplified view of this
architecture is depicted in figure 5.1.1. Compute nodes are connected with one
another via a high speed interconnect network. Nodes do not share a common
memory, and therefore they need to exchange messages through the network lines
in order to cooperate, synchronize and share data. The Message Passage Interface

HIGH SPEED INTERCONNECT NETWORK

N1 N2 Nk

CPU 

CPU 

CPU 

L1 L2

…

…

L3

Figure 5.1.1. Cluster of multi-cored nodes.

(MPI), [137], is a standardized and
portable message-passing standard that
allows distributed processors to commu-
nicate with one another, and provides
user friendly and portable libraries sup-
porting SPMD/MIMD parallelism. In
this thesis, we rely on MPI for distribut-
ing jobs among different nodes. Each
distributed node can in turn contain mul-
tiple cores, i.e, be a multiprocessor. In
a multiprocessor system all processes on
the various CPUs share a unique logi-
cal address space, which is mapped on a
physical memory that is shared among
the processors. To exploit the computa-
tional power of multiprocessors, the soft-
ware needs to be implemented in a multi-
threading fashion, i.e., a parallel com-
pute model whereby a primary thread
forks a specified number of sub-threads
and the system divides a task among

them. Threads then run concurrently. To handle multi-threading, in this thesis we
rely on the Open Multi-Processing API (OpenMP, [34]). We also exploit the Intel
Math Kernel Libraries (MKL, [55]) multi-thread optimization of standard software
libraries for numerical Linear Algebra, as BLAS and LAPACK. In MKL, cluster
versions of numerical Linear Algebra routines are also available to take advantage of
MPI parallelism in addition to single node parallelism from multi-threading.



82

Chapter 6

Efficiently Parallelizable
Strassen-Based Multiplication
of a Matrix by its Transpose

The multiplication of a matrix by its transpose, ATA, appears as an intermediate
operation in the solution of a wide set of problems. In this chapter, we propose
a new cache-oblivious algorithm (AtA) for computing this product, based upon
the classical Strassen algorithm as a sub-routine. In particular, we decrease the
computational cost to 2/3 the time required by Strassen’s algorithm, amounting
to 14

3 n
log2 7 floating point operations. AtA works for generic rectangular matrices,

and exploits the peculiar symmetry of the resulting product matrix for saving
memory. In addition, we provide an extensive implementation study of AtA in a
shared memory system, and extend its applicability to a distributed environment.
To support our findings, we compare our algorithm with state-of-the-art solutions
specialized in the computation of ATA, as well as with solutions for the computation
of the general ATB product applied to this problem. Our experiments highlight
good scalability with respect to both the matrix size and the number of involved
processes, as well as favorable performance for both the parallel paradigms and the
sequential implementation, when compared with other methods in the literature.
The work presented in this chapter has been made in collaboration with Filippo
Maggioli (M.Sc.), to whom goes the merit for code optimization, shared-memory
implementations and with whom I worked on the algorithmic analysis, prof. Annalisa
Massini and prof. Emanuele Rodolà. The results shown in this chapter has been
recently accepted as a class A conference paper, [7].

6.1 Introduction

Matrix multiplication is a fundamental operation in Linear Algebra and high-
performance computing, as it appears as an intermediate step in a wide set of
problems. Many researchers have devoted their efforts to the algorithmic aspects of
matrix multiplication, with the aim of improving the computational cost of existing
algorithms and to devise and implement new solutions for parallel architectures.
Designing a distributed algorithm for matrix multiplication is a challenging task,



6.1 Introduction 83

due to the inherent dependence of the data scattered in the system’s distributed
memory, and due to the overhead due to the communication cost of assembling the
resulting product matrix.

The product of a matrix by its transpose, ATA (as well as AAT ), is a particular
matrix multiplication involved in several applications. For example, computing
AAT is a straightforward, yet effective, method to check for orthogonality or
to project vectors onto the space spanned by the columns of A. This product,
in fact, is repeatedly computed in the Gram-Schmidt algorithm for vector basis
orthogonalization, where A is the progressively built projection matrix. One way
to solve the least squares problem of under and over determined linear systems
Ax = b, is to solve the associated system of normal equations, obtained by left-
hand multiplying the original system by AT , thus obtaining a square linear system
ATAx = ATb. Also, the Singular Value Decomposition (SVD) of a matrix A
can be computed by studying the eigenproblem for ATA and AAT . Furthermore,
the product of a matrix by its transpose commonly arises in discrete exterior
calculus and discrete differential geometry. One example is given by the discrete
heat kernel K(t) = ΦE(t)ΦT , with E(t) = exp(−Λt) being a diagonal matrix, so
that K(t) = (ΦE(t)1/2)(ΦE(t)1/2)T can be efficiently computed [146]. Many other
applications of the product ATA are described in [132], together with its properties
such as positive semi-definiteness.

In this work, we consider the multiplication between AT and A, where A may
have any size and shape. We rely on a recursive approach that, as described in [109],
is virtually tuning free and avoids the significant tuning efforts that are required by
iterative blocked algorithms to achieve near-optimal performance. Our contribution
is threefold.

• First, we introduce AtA (Section 6.3), a cache-oblivious algorithm for computing
ATA that requires 2/3n(log2 7)+1/3n2 multiplications. We exploit the self-similarity
of the ATA product with its sub-problems and the Strassen’s algorithm, that is
recursively applied to possibly rectangular matrices, without introducing addi-
tional computational and space cost, deriving from dynamic peeling and padding,
as in [72,138]. As an ideal extension, and differently from the approach presented
in [47], our algorithm is not restricted to work on a specific algebraic field (i.e., C
or any other finite field). We prove that AtA exhibits high efficiency for both
memory and time, and show that the computational complexity of our algorithm
does not hide large constant factors, making it efficiently implementable. Besides,
we provide the overall asymptotic computational complexity. We also describe
our implementation of Strassen’s algorithm, and compare its performance with
that of the Intel MKL BLAS gemm routine for matrix multiplication.

• Second, we describe AtA-S, our multi-threaded implementation of AtA for a
shared memory system, relying on OpenMP (Section 6.4.2). Our implementation
is dual-phase: in the first part of AtA-S, a scheduler simulating the recursion
of AtA assigns different tasks to each thread in such a way that the compute
phase can be carried out in perfect parallelism by preventing memory collisions.
Performance evaluation shows that our implementation outperforms the multi-
threaded Intel MKL BLAS routines (e.g. syrk for symmetric rank-K update) on
large matrices, even when using Intel processors.



6.2 Related work 84

• Finally, we extend our approach for shared memory systems to distributed
systems, leveraging the standard message-passing paradigm MPI. Our distributed
algorithm AtA-D allows the distribution of the computational effort among a
larger number of processes (Section 6.4.3). This is particularly convenient on
very large matrices that require a prohibitive computation time.

To validate the effectiveness of our algorithms, we study their performance by running
a set of tests on dense matrices of variable size (Section 6.5). We analyse different
metrics for evaluating the scalability of our parallel implementation, and compare
our results with benchmark solutions for distributed systems. We run tests on a
cluster of multi-core nodes endowed with 2× 8 core Intel Xeon E5-2630v3 processors,
2.4 Ghz, 4 GB RAM/core.

6.2 Related work

Nowadays, matrix multiplication is still a hot topic in HPC and numerical
algorithmics. In 1969, Strassen [133] was the first to reduce the computational
complexity of the standard matrix multiplication from O(n3) to O(nlog2 7) ∼ O(n2.81).
More recently, Coppersmith and Winograd [33] devised an algorithm for matrix
multiplication running in ∼ O(n2.38) time. In the last decade, this limit has been
improved first by Stothers [131], then by Williams in [144], and finally by Le Gall
in [58]. The latter works make use of algebraic tensors that, despite the elegance of
the resulting method, are still hardly used in practice as they come at the cost of
very large hidden constants and frequent memory access.

Several authors have designed hybrid algorithms, deploying Strassen’s multi-
plication in conjunction with conventional matrix multiplication, to overcome the
overhead of Strassen’s algorithm on small matrices, see, e.g., [20,24,25,67,72]. Huss-
Lederman et al. [72] propose two techniques, known as dynamic peeling and static
padding, in order to apply Strassen’s algorithm to odd-sized matrices. Thottethodi
et al. [138] propose two strategies to optimize memory efficiency in Strassen, using a
quad-tree decomposition of the matrices, and select the recursion truncation point
to minimize padding and peeling without affecting performance.

Many researchers have proposed a parallel implementation of Strassen’s algorithm.
In [91], Luo and Drake explored Strassen-based parallel algorithms that use the
communication patterns known for classical matrix multiplication. They considered
using a classical 2D parallel algorithm and using Strassen locally. They also consid-
ered using Strassen at the highest level and performing a classical parallel algorithm
for each sub-problem generated. In [63], the above approach is improved using a more
efficient parallel matrix multiplication algorithm running on a more communication-
efficient machine. They obtained better performance results compared to a purely
classical algorithm for up to three levels of Strassen’s recursion. In [85], Strassen’s
algorithm is implemented on a shared-memory machine. The trade-off between
available parallelism and total memory footprint is found by distinguishing between
partial and complete evaluation of the algorithm, i.e., breadth-first and depth-first
traversal of the recursion tree. In [35], Strassen’s algorithm is extended to deal
with rectangular and arbitrary-size matrices. Their approach leverages on a suitable
combination of Strassen’s with ATLAS and GotoBLAS, and achieves up to 30%/22%



6.2 Related work 85

speed-up versus ATLAS/GotoBLAS alone on high-performance single processors.
Other parallel approaches [38, 71, 130] have used more complex parallel schemes
and communication patterns, and consider at most two steps of Strassen. In [13], a
parallel algorithm based on Strassen’s fast matrix multiplication, Communication
- Avoiding Parallel Strassen (CAPS), is described. The authors present both a
computational and a communication cost analysis of the algorithm, and show that it
matches the communication lower bounds described in [14]. This work is extended
in [37] to handle rectangular matrices (CARMA). More recently, Kwasniewski et
al. [86] proposed a near optimal algorithm for matrix multiplication that models the
matrix multiplication dependencies by the red-blue pebble game [73] to derive an
I/O optimal schedule, improving the performance of previous works.

Both Strassen’s algorithm and AtA fall into the class of recursive blocked
algorithms. The work in [51] proves the effectiveness of this kind of algorithms
for dense Linear Algebra. The work in [49] introduces FRPA, an interface for
implementing recursive problems in parallel that gets as an input the recursive
problem, and handles parallelization and auto-tuning automatically. Similarly to our
approach, Charara et al. [28] propose block recursive matrix multiplication and linear
solver algorithms. They show how recursion enhances data reuse and concurrency
in GPUs. Differently from the work presented in this chapter, they specialize on
triangular matrices. In [27], the authors also adapt this blocking strategy to handle
batched operations on small matrix sizes (up to 256) to stress the register usage
and maintain data locality. In [109], Elmar and Bientinesi introduce ReLAPACK,
a collection of recursive algorithms for dense Linear Algebra. While this work
corroborates the recursive approach that we implement in our algorithms, it does
not provide a routine specialized in the ATA product for general matrices. Instead,
they propose a routine for the same multiplication only on triangular matrices.
We highlight that the solutions proposed for the multiplication of a matrix by its
transpose on triangular matrices (TRSYRK) is useful for many applications but
cannot be applied on general matrices.

Although much research has been devoted to optimizing the implementation of
parallel matrix multiplication, very few solutions have been proposed for the ATA
multiplication. In [47], Dumas et al. propose an algorithm for the product AAT

whose computational complexity is improved by a constant factor with respect to
previously known reductions. Unfortunately, this approach is applicable only to
matrices lying in fields where skew-orthogonal matrices exist (e.g., C and finite fields
of prime characteristics), which is not the case for R and Q, that instead are important
in many applications, such as the study of embedded systems, computational
geometry and system simulations.

Except for some sporadic attempts to implement a method for distributing in
a balanced way the workload for matrix multiplication among processes with the
MapReduce programming model [76, 116], the approach that we implement here for
the distributed parallel model has barely been investigated.



6.3 AtA 86

6.3 AtA

In this section, we describe our sequential recursive algorithm for the matrix
multiplication ATA, dubbed AtA, and we provide implementation details. We
remark that our solution also works for the product AAT product. Yet, when
row-major order is the default layout for array storage, the ATA multiplication is in
practice harder to perform, as memory access is inherently column-wise, hence not
cache friendly. Since AtA includes calls to Strassen for generic matrix multiplications,
we also outline a time and space efficient implementation for this algorithm.

6.3.1 AtA in detail

Let A ∈ Rm×n be a rectangular matrix. The idea behind AtA is the following:
at each recursive step, matrix A is divided into four sub-matrices as follows:

A =
[
A1,1 A1,2
A2,1 A2,2

] A1,1 = A0:m1,0:n1 ∈ Rm1×n1

A1,2 = A0:m1,n1:n ∈ Rm1×n2

A2,1 = Am1:m,0:n1 ∈ Rm2×n1

A2,1 = Am1:m,n1:n ∈ Rm2×n2

(6.1)

being m1
def=

⌊
m
2
⌋
, m2

def=
⌈
m
2
⌉
, n1

def=
⌊
n
2
⌋
, n2

def=
⌈
n
2
⌉
. We address to sub-matrices

of a matrix A as to indexed sub-blocks (Ai,j) or with line and column intervals
(Ar1:r2,c1:c2).

The product matrix C = ATA is also split into four sub-matrices, resulting in
the following:

C1,1 = AT
1,1A1,1 + AT

2,1A2,1 ∈ Rn1×n1 ,

C1,2 = AT
1,1A1,2 + AT

2,1A2,2 ∈ Rn1×n2 ,

C2,1 = AT
1,2A1,1 + AT

2,2A2,1 ∈ Rn2×n1 ,

C2,2 = AT
1,2A1,2 + AT

2,2A2,2 ∈ Rn2×n2 .

(6.2)

Both C1,1 and C2,2 consist of two addends that are, in turn, the left hand product of a
matrix by its transpose. Hence, four recursive calls are employed to compute the sub-
products AT

1,1A1,1 and AT
2,1A2,1 to obtain C1,1, and AT

1,2A1,2 and AT
2,2A2,2 to obtain

C2,2. Since for any matrix A the product ATA is symmetric, at each recursive step
only the lower triangular part of the product matrix is computed, low(Ci,i), i = 1, 2.
As for component C2,1, in order to compute its two terms in the sum, we implement
the generalized Strassen’s algorithm for non-square matrices. The sub-matrix C1,2
is equal to CT

2,1, and therefore must not be explicitly computed. In Algorithm 3 we
provide the pseudo-code of AtA. The base case occurs when the number of entries of
the sub-matrix fits in the cache. In that case, the multiplication is performed by the
BLAS function for ATA, ?syrk, where the character ? represents a generic data type
in accordance with standard notation used in manuals, [55]. In Algorithm 3, we also
sketch our implementation of Strassen: before the actual recursive Strassen algorithm
is called (Strassen), in FastStrassen we conveniently prepare an environment
for memory efficiency by pre-allocating the memory for Strassen’s algorithm, as
explained in Section 6.3.3. The reduced number of multiplications in Strassen’s
algorithm is achieved by computing more matrix additions. In our implementation of



6.3 AtA 87

Strassen, matrix additions are performed by calling the BLAS routine ?axpy (which
performs the vector addition y = αx + y). The base-case condition in Strassen is
analogous to the one of AtA. When the base-case condition holds, we call the BLAS
routine ?gemm for the generic ATB multiplication. To handle odd-sized matrices,
we do not implement notorious strategies such as peeling or padding, since these are
known for introducing computational and memory overhead. Instead, we manage
sums between matrices of discordant size by conveniently applying the BLAS routine
?axpy for array sums, so that it simulates padding of an extra 0 column or row, by
excluding the last row and/or column of a sub-matrix from the sum.

AtA and FastStrassen are designed to be efficient alternatives to the BLAS
routines ?gemm and ?syrk. Thus, they perform the same operations, respectively
C = αATB +βC and C = αATA +βC. However, we avoid introducing the scaling
factor β from our algorithms for clarity of exposure, since C can be simply scaled
before applying the algorithms.

Algorithm 3 AtA - Serial

Input: A ∈ Rm×n,C ∈ Rn×n, α ∈ R
Output: Lower triangular part of C = αAT ·A + C

1: procedure AtA(A, C, α)
2: if m× n ≤ cache size then
3: C← C+ blas ?syrk(A, α);
4: return;
5: else
6: Initialize pointers to Ai,j and Ci,j , i, j = 1, 2;
7: AtA (A1,1,C1,1, α);
8: AtA (A2,1,C1,1, α);
9: AtA (A1,2,C2,2, α);

10: AtA (A2,2,C2,2, α);
11: FastStrassen (A1,2, A1,1, C2,1, α);
12: FastStrassen (A2,2, A2,1, C2,1, α);

Input: A ∈ Rm×n,B ∈ Rm×k,C ∈ Rn×k, α ∈ R
Output: C = αAT ·B + C

1: procedure FastStrassen(A, B, C, α)
2: Allocate M = 0n×k/2;
3: Allocate P = 0m×n/2;
4: Allocate Q = 0m×k/2;
5: Strassen(M, P, Q, A, B, C, α);



6.3 AtA 88

6.3.2 Computational Complexity

The idea behind Strassen’s algorithm is to perform a 2× 2 matrix multiplication
using 7 multiplications instead of 8, as required by naive matrix multiplication [133].
Nevertheless, Strassen’s algorithm involves 18 sums between sub-matrices. The
following holds:
Proposition 6.3.1. The computational complexity of Strassen’s algorithm, TS(n),
is the following:

TS(n) = 7TS
(
n

2

)
+ 18

(
n

2

)2
≈ 7nlog2 7. (6.3)

Proof. At each recursive step, Strassen’s algorithm makes 7 recursive calls and 18
sums. Therefore:

TS(n) = 7TS
(
n

2

)
+ 18

(
n

2

)2
=

= 7kTS
(
n

2k
)

+
k−1∑
i=0

18 · 7i
(

n

2i+1

)2
=

[for k = log2(n) and by geometric sums]

= nlog2 7 + 6n2
(
1− nlog2

7
4
)

= 7nlog2 7 − 6n2.

In Algorithm 3, there are four recursive calls to AtA on basically halved dimen-
sions, two calls to FastStrassen and 3 sums. Thus, we can derive the recurrence
function for AtA runtime depending on the input size n:
Proposition 6.3.2. The computational complexity of AtA (Algorithm 3), T (n), is
the following (Equation 6.4):

T (n) = 4T
(
n

2

)
+ 2TS

(
n

2

)
+ 3

(
n

2

)2
≈ 2

3TS(n). (6.4)

Proof. AtA makes 4 recursive calls to itself on halved matrix size, 2 calls to Strassen,
and 3 sub-matrix sums, hence:

T (n) = 4T
(
n

2

)
+ 2TS

(
n

2

)
+ 3

(
n

2

)2
=

=4kT
(
n

2k
)

+ 2
k−1∑
i=0

4iTS
(

n

2i+1

)
+ 3

k−1∑
i=0

4i
(

n

2i+1

)2

[for k = log2 n, by Prop. 6.3.1 and geometric sums]

= 14
3 n

log2 7 + 3
4n

2 log2 n−
11
3 n

2 ≈ 2
3TS(n).

In particular, by considering only the first two terms of the recurrence relation, the
number of multiplications performed by AtA is 2/3nlog2 7 + 1/3n2.

The overall computational complexity of AtA reduces the one of the general
matrix multiplication ATA, amounting to n2(n+ 1), and of Strassen’s algorithm
naively applied for computing ATA, that would require the same number of products
as for the general matrix multiplication, and only 16 sums instead of the 18 matrix
additions in the original Strassen’s formulation.



6.3 AtA 89

6.3.3 Space complexity

Algorithm 3 can be implemented with only constant additional memory by replac-
ing lines 11-12 with calls to ?gemm, but at the cost of losing performance improvement.
The implementation we propose here, instead, relies on the FastStrassen function,
which allows for the searched reduction of computational complexity.

At each recursive step, pointers to the current portions of A and C are initialized
so that, when the condition for base-case occurs, the matrix multiplications are
carried out on the correct sub-matrices of A, and stored in the corresponding
locations in C.

In AtA, Strassen’s algorithm for general matrix multiplication is called twice.
One drawback of the naive Strassen implementation is the great amount of memory
allocated at each recursive step to store the results of the intermediate matrix
additions required by the algorithm. In order to avoid frequent memory allocations
and releases, we call recursive Strassen (Strassen) on pre-allocated matrices, M, P
and Q (FastStrassen). The size of such matrices is sufficiently large to store all
intermediate matrix operation results throughout the recursive calls. In fact, given
a n × n matrix, at each recursive step we halve both the dimensions, considering
the ceiling of the result when matrices have odd sizes. By doing so, the amount of
memory used by the algorithm when the base case is reached is

log2 n∑
i=1

(n+ log2 n)2

4i = (n+ log2 n)2
(1

3 −
4

3n2

)
≤ n2

2 (6.5)

which, multiplied by the three supporting matrices M, P and Q, results in a total
of 3

2n
2. Although the overall space complexity of Strassen does not change, we are

able to save time for memory allocation at each recursive step. Consequently, the
space complexity of AtA is S(n) = 3

2n
2.

In Section 6.5, we show that Strassen’s algorithm benefits from the described
strategy for memory allocation.

6.3.4 Cache Complexity

In this section, we show the cache complexity of AtA. We assume the ideal cache
model and we denote with M the cache size, and with b the size of the cache line.

Proposition 6.3.3. The cache complexity of AtA, CAtA(n;M, b), is the same as
the cache complexity of Strassen, CS(n;M, b) = Θ(1 + n2/b + nlog2(7)/b

√
M), [56].

Proof. We prove the thesis by induction. First, we observe that CAtA(2;M, b) =
6CS(1;M, b) ≤ 7CS(1;M, b) = CS(2;M, b). Assuming as inductive hypothesis that
CAtA(n/2;M, b) ≤ CS(n/2;M, b), it holds that:

CAtA(n;M, b) = 4CAtA(n/2;M, b) + 2CS(n/2;M, b)
≤ 6CS(n/2;M, b) ≤ 7CS(n/2;M, b) = CS(n;M, b).

Furthermore, notice that: CS(n/2;M, b) ≤ CAtA(n;M, b) ≤ CS(n;M, b). Hence, the
thesis holds.



6.4 Parallel AtA 90

6.4 Parallel AtA

Our algorithm for the ATA product, AtA, can be conveniently parallelized to
work on both shared and distributed-memory systems. We will refer to our shared
and distributed-memory algorithms for ATA as AtA-S and AtA-D, respectively.
Our parallel implementations of AtA take advantage of the recursive nature of
AtA to distribute tasks (and possibly data) to different processes in an efficient way.
To do so, an initial phase that implements a scheduler covering the recursion tree
of AtA is integrated in both parallel algorithms. In this way, we assign a task to
each different parallel process, as we explain in Section 6.4.1. After this preliminary
phase, each process knows which sub-problem it has to solve.

Algorithm 4 RecursiveGEMM

Input: A ∈ Rm×n,B ∈ Rm×k,C = 0n×k
Output: C = AT ·B

1: procedure RecursiveGEMM(A, B, C)
2: if m× n+m× k ≤ cache size then
3: C+ = blas ?gemm(AT , B);
4: return;
5: Initialize pointers to Ai,j , Bi,j and Ci,j , i, j = 1, 2;
6: RecursiveGEMM(A1,1, B1,1, C1,1);
7: RecursiveGEMM(A2,1, B2,1, C1,1);
8: RecursiveGEMM(A1,1, B1,2, C1,2);
9: RecursiveGEMM(A2,1, B2,2, C1,2);

10: RecursiveGEMM(A1,2, B1,1, C2,1);
11: RecursiveGEMM(A2,2, B2,1, C2,1);
12: RecursiveGEMM(A1,2, B1,2, C2,2);
13: RecursiveGEMM(A2,2, B2,2, C2,2);

6.4.1 Preliminary phase: task assignment

Usually, recursive algorithm are parallelized with a fork-join paradigm, according
to their natural behaviour: at each recursive call, a new thread is created to
accomplish that call. However, repeatedly creating and killing threads introduces
a non-negligible overhead, specially when it happens as a nested procedure. A
parallelized for loop approach can usually improve this thread start-up overhead.
For this reason, rather than addressing the problem by distributing recursive calls
between newly created threads, we simulate the behaviour of a fork-join algorithm to
determine, for each thread, on which sub-matrices it must work. This is particularly
useful to generalize our approach to both shared memory and distributed settings.

Building the task tree

To conveniently distribute tasks among P parallel processes collaborating to
compute ATA, in the first phase of our algorithms, each process builds the recursion



6.4 Parallel AtA 91

tree of a modified version of AtA, that we shall call AtANaive, and explores a
part of it with a breadth-first search (BFS). AtANaive considers classic recursive
general matrix multiplication instead of Strassen, and can be easily implemented
by modifying lines 11 and 12 in Algorithm 3 to call RecursiveGEMM instead of
Strassen. RecursiveGEMM, summarized in Algorithm 4, is a recursive algorithm
for the naive general matrix multiplication. The reasons behind this choice will
be explained later in this section. We define the task tree, denoted with T , to be
the sub-tree of the recursion tree of AtA, obtained by spanning the latter with a
BFS, that is interrupted as soon as T counts P leaves, labeled from 0 to P − 1.
Both AtA-S and AtA-D implement the task tree, but with two main differences.
The first one concerns the way matrix A is divided among processes: in the shared-
memory approach, matrix A is tiled so that each thread writes on a specific memory
portion, thus avoiding memory collisions and enforcing embarrassing parallelism.
In the distributed-memory environment, there is no need to handle data collisions,
hence we can assign tasks only focusing on workload balance. The second difference
concerns the role of the leaves and of the inner nodes of T : in AtA-D each node
of T corresponds to a task, each assigned to only one process, whereas in AtA-S
only leaf nodes correspond to actual computation. The parallel computation in
AtA-D begins with performing tasks laying in the leaves of T . In particular, the
p-th leaf corresponds to the task that process p has to fulfil. In AtA-D, each leaf
task contains directives on both the computational and communication activity that
is due to the corresponding process. Specifically, a leaf task t provides the following
information:

1. t.computationType: Which type of computation process p has to carry out.
It can be either a ATA or a ATB multiplication;

2. t.X.offset and t.X.q, with X ∈ {A,B,C}, q ∈ {m,n}: The row and column
offsets as well as the size of the sub-matrices of A and C process p has to work
on;

3. t.father: The father process that sends sub-matrices of A to its children
(during the distribution phase), and to which process p has to send the result
of the task that was assigned to it or, if p is the father, the information on its
children’ tasks (during result retrieval).

Inner nodes of T instead, represent tasks concerning data distribution and retrieval,
possibly involving sums of sub-matrices of C = ATA, and consequent communication
(point 3 of the previous list), and are executed by a subset of processes. In contrast,
in AtA-S only leaf nodes of T correspond to a task, whereas inner nodes are ignored,
as no communication is involved. For the same reason, leaf tasks only include
information about what kind of computation the corresponding threads have to
carry out and on the sub-matrices they have to work on (points 1 and 2 of the
previous list).

Load Balancing

The recursion tree of AtA-D is created so that, at each level, given P available
processes, α · P processes compute a general ATB matrix multiplication; for the



6.4 Parallel AtA 92

remaining (1 − α) · P processes, a task for a ATA multiplication is assigned to
them. Here, α ∈ (0, 1) is a parameter for balancing the workload among distributed
processes, as the computational complexity of a ATA product is lower than the one
of ATB. Since the computational cost of AtA is 2/3 the one of FastStrassen,
and because in AtA there are four recursive calls to AtA itself, and two calls to
FastStrassen, the optimal value for the balancing factor should be set to α = 3/7.
However, since the task tree T is built by calling RecursiveGEMM instead of
FastStrassen, the number of multiplications carried out in T to perform ATB is
twice the one needed to compute ATA. In accordance, we set α = 1/2. This task
division is repeated recursively at each level, by progressively decreasing the number
of available processes, P . As anticipated, the number of recursive parallel steps
depends on P , and also by the scalar α. In particular, for α = 0.5, the number of
parallel levels in the task tree, ` is given by the following expression:

`(P ) =


0 if P = 1
1 if 2 ≤ P ≤ 6

1 + k + sign
(
P
4 mod 8max{k;1}

)
if P > 6

(6.6)

where k = max
{
k ∈ N : P/4

8k ≥ 1
}

and sign(x) is the sign function, returning 0 for
x = 0 and 1 for x > 0. Indeed, when AtA-D is called on P processes, P/2 of them
are going to compute C2,1; out of them, P/4 processes compute AT

1,2A1,1, whereas
the remaining P/4 are in charge for AT

2,2A2,1 (see Equation 6.2). These tasks are in
turn distributed among 8 processes each, recursively (corresponding to the eight



6.4 Parallel AtA 93

p
0
:
A

T
A

( C
=

A
T
A
)

p
5
:
A

T
A

( C
n 2
:n

,
n 2
:n

=
A

T n 2
:n

,
n 2
:n
A

n 2
:n

,
n 2
:n

)

p
1
5
:
A

T
A

( C
n 2
:n

,
n 2
:n

=
A

T 3
n 4
:n

,
n 2
:n
A

3
n 4
:n

,
n 2
:n

)
A

T
B
( C

3 4
n
:n

,
5 8
n
:
3 4
n
=

A
T 0
:n

,
3 4
n
:n
A

0
:n

,
5 8
n
:
3 4
n

)

p
5
:
A

T
A

( C
n 2
:n

,
n 2
:n

=
A

T n 2
:
3
n 4
,
n 2
:n
A

n 2
:
3
n 4
,
n 2
:n

)
A

T
B
( C

3 4
n
:n

,
n 4
:
3 8
n
=

A
T 0
:n

,
3 4
n
:n
A

0
:n

,
n 4
:
3 8
n

)

p
4
:
A

T
A

( C
n 2
:n

,
n 2
:n

=
A

T 0
:
n 2
,
n 2
:n
A

0
:
n 2
,
n 2
:n

)

p
1
4
:
A

T
A

( C
n 2
:n

,
n 2
:n

=
A

T n 4
:
n 2
,
n 2
:n
A

n 4
:
n 2
,
n 2
:n

) A
T
B
( C

n 4
:
n 2
,
n 8
:
n 4

=
A

T 0
:n

,
n 4
:
n 2
A

0
:n

,
n 8
:
n 4

)

p
4
:
A

T
A

( C
n 2
:n

,
n 2
:n

=
A

T 0
:
n 4
,
n 2
:n
A

0
:
n 4
,
n 2
:n

)
A

T
B
( C

n 2
:
3 4
n
,
n 4
:
3 8
n
=

A
T 0
:n

,
n 2
:
3 4
n
A

0
:n

,
n 4
:
3 8
n

)

p
3
:
A

T
A

( C
0
:
n 2
,0
:
n 2

=
A

T n 2
:n

,0
:
n 2
A

n 2
:n

,0
:
n 2

)

p
1
3
:
A

T
A

( C
0
:
n 2
,0
:
n 2

=
A

T 3
n 4
:n

,0
:
n 2

A
3
n 4
:n

,0
:
n 2

)
A

T
B
( C

3 4
n
:n

,
3 8
n
:
n 2

=
A

T 0
:n

,
3 4
n
:n
A

0
:n

,
3 8
n
:
n 2

)

p
3
:
A

T
A

( C
0
:
n 2
,0
:
n 2

=
A

T n 2
:
3
n 4
,0
:
n 2

A
n 2
:
3
n 4
,0
:
n 2

)
A

T
B
( C

3 4
n
:n

,0
:
n 8

=
A

T 0
:n

,
3 4
n
:n
A

0
:n

,0
:
n 8

)

p
2
:
A

T
A

( C
0
:
n 2
,0
:
n 2

=
A

T 0
:
n 2
,0
:
n 2
A

0
:
n 2
,0
:
n 2

)

p
1
2
:
A

T
A

( C
0
:
n 2
,0
:
n 2

=
A

T n 4
:
n 2
,0
:
n 2
A

n 4
:
n 2
,0
:
n 2

)
A

T
B
( C

n 2
:
3 4
n
,
3 8
n
:
n 2

=
A

T 0
:n

,
n 2
:
3 4
n
A

0
:n

,
3 8
n
:
n 2

)

p
2
:
A

T
A

( C
0
:
n 2
,0
:
n 2

=
A

T 0
:
n 4
,0
:
n 2
A

0
:
n 4
,0
:
n 2

)
A

T
B
( C

3 4
n
:n

,
n 2
:
5 8
n
=

A
T 0
:n

,
3 4
n
:n
A

0
:n

,
n 2
:
5 8
n

)

p
1
:
A

T
B

( C
n 2
:n

,0
:
n 2

=
A

T n 2
:n

,
n 2
:n
A

n 2
:n

,0
:
n 2

)

p
1
1
:
A

T
B

( C
3
n 4
:n

,
n 4
:
n 2

=
A

T n 2
:n

,
3
n 4
:n
A

n 2
:n

,
n 4
:
n 2

)
A

T
B
( C

3 4
n
:n

,
n 8
:
n 4

=
A

T 0
:n

,
3 4
n
:n
A

0
:n

,
n 8
:
n 4

)

p
1
0
:
A

T
B

( C
n 2
:
3
n 4
,
n 4
:
n 2

=
A

T n 2
:n

,
n 2
:
3
n 4

A
n 2
:n

,
n 4
:
n 2

)
A

T
B
( C

n 2
:
3 4
n
,
n 8
:
n 4

=
A

T 0
:n

,
n 2
:
3 4
n
A

0
:n

,
n 8
:
n 4

)

p
9
:
A

T
B

( C
3
n 4
:n

,0
:
n 4

=
A

T n 2
:n

,
3
n 4
:n
A

n 2
:n

,0
:
n 4

)
A

T
A
( C

3 4
n
:n

,
3 4
n
:n

=
A

T 0
:n

,
3 4
n
:n
A

0
:n

,
3 4
n
:n

)

p
1
:
A

T
B

( C
n 2
:
3
n 4
,0
:
n 4

=
A

T n 2
:n

,
n 2
:
3
n 4

A
n 2
:n

,0
:
n 4

)
A

T
B
( C

n 4
:
n 2
,0
:
n 8

=
A

T 0
:n

,
n 4
:
n 2
A

0
:n

,0
:
n 8

)

p
0
:
A

T
B

( C
n 2
:n

,0
:
n 2

=
A

T 0
:
n 2
,
n 2
:n
A

0
:
n 2
,0
:
n 2

)

p
8
:
A

T
B

( C
3
n 4
:n

,
n 4
:
n 2

=
A

T 0
:
n 2
,
3
n 4
:n
A

0
:
n 2
,
n 4
:
n 2

)
A

T
A
( C

n 2
:
3 4
n
,
n 2
:
3 4
n
=

A
T 0
:n

,
n 2
:
3 4
n
A

0
:n

,
n 2
:
3 4
n

)

p
7
:
A

T
B

( C
n 2
:
3
n 4
,
n 4
:
n 2

=
A

T 0
:
n 2
,
n 2
:
3
n 4

A
0
:
n 2
,
n 4
:
n 2

)
A

T
A
( C

n 4
:
n 2
,
n 4
:
n 2

=
A

T 0
:n

,
n 4
:
n 2
A

0
:n

,
n 4
:
n 2

)

p
6
:
A

T
B

( C
3
n 4
:n

,0
:
n 4

=
A

T 0
:
n 2
,
3
n 4
:n
A

0
:
n 2
,0
:
n 4

)
A

T
A
( C

0
:
n 4
,0
:
n 4

=
A

T 0
:n

,0
:
n 4
A

0
:n

,0
:
n 4

)

p
0
:
A

T
B

( C
n 2
:
3
n 4
,0
:
n 4

=
A

T 0
:
n 2
,
n 2
:
3
n 4

A
0
:
n 2
,0
:
n 4

)
A

T
B
( C

n 2
:
3 4
n
,0
:
n 8

=
A

T 0
:n

,
n 2
:
3 4
n
A

0
:n

,0
:
n 8

)

F
ig

ur
e

6.
4.

1.
A

tr
ee

of
16

pr
oc

es
se

s
di

st
rib

ut
in

g
a

m
at

rix
A
∈
R
n
×
n
.

Bo
xe

d
la

be
ls

on
th

e
rig

ht
-h

an
d

sid
e

ar
e

th
e

le
af

no
de

s
of

th
e

tr
ee

ge
ne

ra
te

d
by

A
tA

-S
,c

or
re

sp
on

di
ng

to
co

m
pu

ta
tio

n
ta

sk
s

as
sig

ne
d

to
co

rr
es

po
nd

in
g

pr
oc

es
se

s
in

th
e

le
ft-

ha
nd

siz
e

le
af

la
be

ls.



6.4 Parallel AtA 94

recursive calls of RecursiveGEMM). This splitting is repeated until possible (i.e.,
until P/4/8k ≥ 1). If by doing so, all P/4 processes are used (i.e., P/4 is a multiple of 8k,
for some k), all processes work on equally sized matrices. Otherwise, some processes
will further split their tasks to smaller matrices, resulting in an additional parallel
level. We say that the last parallel level is complete when all leaves corresponding to
ATA tasks are grouped in bunches of 6 siblings, and when all leaves corresponding
to ATB tasks are grouped in bunches of 8 siblings.

The task tree for AtA-S is quite different. In order to avoid concurrent overlap-
ping writes, input matrices are tiled in horizontal and vertical blocks, as depicted
in Figure 6.4.2. This way, we ensure that each thread computes a different Ci,j .
With this new scheme, we make three recursive calls to AtA (instead of 6) and four
recursive calls to FastStrassen (instead of 8). Therefore, the number of parallel
levels in AtA-S, given P threads, is the following:

`(P ) =


0 if P = 1
1 if P = 2, 3

1 + k + sign
(
P
2 mod 4max{k;1}

)
if P > 3

(6.7)

with k = max
{
k ∈ N : P/2

4k ≥ 1
}

. In Figure 6.4.1, we show an example of the
task tree with 16 processes for AtA-D, and the leaf nodes of the task tree for AtA-S
(boxed).

Naive matrix multiplication over Strassen

In our parallel algorithms, we do not rely on Strassen for general ATB matrix
multiplication when building the recursion tree, that instead is created by simulating
AtANaive. This is done with the goal of optimizing the resources of distributed
architectures, as the naive general matrix multiplication algorithm does not allocate
the additional memory required by Strassen, resulting in a faster memory manage-
ment. Furthermore, Strassen’s algorithm would possibly cause a hardly manageable
workload unbalance between processes implementing an ATA multiplication, and
those that would be in charge of computing the intermediate matrix sums appearing
in Strassen’s algorithm. However, Strassen’s algorithm can still be used at leaf-level
computation.

6.4.2 Shared-memory AtA

A shared-memory parallel algorithm for the ATA multiplication represents a
faster alternative to the distributed-memory approach when run on local machines,
rather than on clusters of nodes.

For our shared-memory implementation of the ATA product, we rely on OpenMP
to efficiently distribute the workload between threads. Each thread simulates the
recursion of AtANaive as described in Section 6.4.1. The workload is distributed
so that each thread writes in a different memory location, hence there is no need of
handling data hazards of any kind. Instead, the problem is divided in a fashion that
makes it embarrassingly parallel. We shall refer to our multi-threaded algorithm for
ATA as to AtA-S.



6.4 Parallel AtA 95

AtA-S in detail

Let us denote with P the number of available threads. Our algorithm for multi-
threaded machines, AtA-S, can be divided into two phases. During the first phase,
one task is assigned to each thread by simulating the recursion of AtANaive, as
described in Section 6.4.1. In order to prevent memory collisions and to achieve
embarrassing parallelism, tasks are organized so that each thread writes on a different
and disjoint memory location. This is done by dividing the resulting matrix C into
four blocks, as shown in Section 6.3, whereas A is tiled vertically or horizontally,
instead of in 2×2 blocks (see Figure 6.4.2). This procedure avoids concurrent writing
management and relies on the equality:

Ci,j = Ai,1B1,j + Ai,2B2,j = Ai,∗B∗,j , (6.8)

for i, j = 1, 2. Such instruction and data assignment allows for a faster execution,
since threads never need to synchronize.

During the second phase of AtA-S, each thread retrieves its task from the
tree T , specifying which routine (either AtA or FastStrassen) the corresponding
thread must call, and on which sub-matrices of A and C it must operate. Since the
sub-problems are disjoint, at the end of the computation each thread only needs to
synchronize with the others, then the algorithm stops. In Algorithm 5 we provide
the pseudo-code of AtA-S.

Algorithm 5 AtA-S- Shared

Input: A ∈ Rm×n
Output: Lower triangular part of C = AT ·A

1: procedure AtA-S(A)
2: Generate tree T ;
3: parfor each leaf-node v of T do
4: Get task t from node v;
5: if t.computationType = ATA then
6: Ct.C.offset = ATA(At.A.offset);
7: else if t.computationType = ATB then
8: Ct.C.offset = ATB(At.A.offset, At.B.offset);
9: end parfor

Computational Complexity of AtA-S

?? We study the time complexity T (n, P ) of AtA-S to perform the multiplication
ATA on a n× n matrix A and distributing the workload between P processes.

At first, the algorithm needs to generate the task tree and each process has to
retrieve its task. These procedures have the same complexity as a BFS visit on a
tree with P leaves, hence O(P ).

The time complexity of the second step corresponds to the one of the most
expensive leaf task, which appears at the end of a path of RecursiveGEMM calls.



6.4 Parallel AtA 96

At level l, the size of the product matrix C is reduced to a block of size n/2l × n/2l,
resulting from a multiplication between n/2l × n and n × n/2l matrices. Thus, the
total complexity is reduced by 4`(P ), being `(P ) the number of levels in the task
tree. Hence the total complexity of the algorithm is:

T (n, P ) = O(P ) +O

( 1
4`(P )n

log2 7
)
. (6.9)

Notice that `(P ) is a discrete, non injective function. Hence, especially with few
processes, the speedup behaves like a step function. Despite this behaviour, `(P ) ≈
log4 P , meaning with large number of processes we achieve a theoretical linear
speedup.

Figure 6.4.2. Example of multiplication with vertical/horizontal tiling, instead of the
standard 2× 2 blocks.

6.4.3 Distributed-memory AtA

Modern computers are equipped with an ever-increasing number of cores inside
CPU chips. However, when it comes to massive volumes of data, computationally
intensive tasks such as matrix multiplication are simply prohibitive, even for the
most recent 16- or 32-cores chipsets, and even with hyper-threading capabilities.
Distributed parallelism plays a crucial role in this setting, as it allows to distribute
the workload between multiple machines. In such an environment, providing fast dis-
tributed algorithms for operations in Linear Algebra, including ATA multiplication,
is a key task to limit bottlenecks.

In this section, we describe a distributed algorithm for ATA, that works for any
matrix size and with arbitrarily many processes and cores. We shall refer to this
algorithm as AtA-D. AtA-D follows a distribute-compute-retrieve paradigm, as
initially the input matrix A is stored on the root process only, and distributed to
other processes according to their tasks. Finally, the resulting matrix C = ATA is
retrieved back by the root process. We implement a parallel communication scheme
to limit data transfer overhead.

AtA-D in detail

Let P be the number of distributed processes. In AtA-D, each process p first
builds the task tree T as described in Section 6.4.1. To understand in detail how T is
used in AtA-D, we shall refer to the example of Figure 6.4.1. As we said, each node
represents a task, but only tasks contained in leaf nodes correspond to an actual
matrix multiplication. Inner nodes instead represent tasks assigned only to the



6.4 Parallel AtA 97

fathers of the nodes branching out of them, and they are necessary to retrieve and
combine the portions of the result matrix scattered among different processes, and
eventually to send them, level by level, up to the root process, p0. In the example of
Figure 6.4.1, T is the task tree for P = 16 processes on a square matrix. Leaf nodes
are generated so that processes p0, p1 and p6 . . . , p11 share the workload to compute
C2,1. The remaining half of the processes is devoted to compute C1,1 and C2,2. If
the number of distributed processes is not enough to make a complete level, as in this
example, instead of calling multiple tasks on different tiles of the matrices, processes
perform either a ATA or a ATB operation on vertically and horizontally tiled
sub-matrices at the leaf-level. For instance, observe the first batch of sibling-leaves in
Figure 6.4.1. To compute Cn

2 :n,0: n
2

= AT
0: n

2 ,
n
2 :nA0: n

2 ,0: n
2
, AtANaive would perform

8 recursive calls to ATB; in AtA-D, each of these calls is served by one distributed
process, if available. When this is not the case, as in the example that we are
considering, processes p0, p6, p7, p8 divide A0: n

2 ,
n
2 :n and A0: n

2 ,0: n
2

in vertical tiles so
as to compute the related portions of C as depicted in Figure 6.4.2.

When the computation is over, partial results are collected by the fathers of
each group of siblings (processes pi, i = 0, . . . , 5 in the example of Figure 6.4.1).
This operation is iterated by traversing the tree up to its root, p0, and allows for
a convenient parallel communication reducing data transfer overhead. In order to
optimize the communication and to reduce the exchanged data volume, we encode
the sub-matrices resulting from ATA operations as packed lower triangular matrices.
Nevertheless, the entire operation, once it returns to the root process, still produces
a standard square matrix. In Algorithm 6, we provide the pseudocode of AtA-D.
In line 11, if the process has to fulfill a ATB task, it sends to its father the entire
sub-matrix Ct.C.offset; otherwise, it only sends low(Ct.C.offset). In lines 7 and
9, ATA and ATB may refer to AtA or blas ?syrk, and to FastStrassen or
blas ?gemm, respectively. As we shall see in Section 6.5, the real benefit of using
our implementation of AtA and FastStrassen arises on matrices with larger size,
therefore they are favourable when handling larger volumes of data.

Computational and Communication Complexity of AtA-D

In contrast to parallel algorithms for distributed matrices, AtA-D does not
include any communication between processes at computation time, as the input
matrix is scattered among distributed processes so that they own the exact portions
of A on which they have to operate. In AtA-D, the computational cost on a matrix
of size n and with P processes, C(n, P ), depends on the number of recursive levels
that can be layered with the available resources, having fixed the load balancing
parameter α. For α = 0.5, the computational complexity of AtA-D is given by
the time for computing ATB on matrices of size at most n/2`(P ) × n/2`(P )−1, that
is O

(
(n/2`(P ))2 · n/2`(P )−1

)
, where `(P ) is the number of parallel levels defined in

Equation 6.6.
We can express the communication cost for matrix distribution and result retrieval

in terms of latency and bandwidth costs of a distributed algorithm, denoted with
L(n, P ) and BW (n, P ), respectively, using the same definitions introduced in [15]
and adopted also in [86]. Latency cost is the communicated message count, whereas



6.5 Performance Evaluation 98

bandwidth is expressed in terms of communicated words count. Messages and words
counts are computed along the critical path of the distributed algorithm, as defined
in [145]. In AtA-D, this corresponds to the sequence of communication operations
carried out by the root process p0. The number of exchanged messages sent along
the critical path is given by the number of children of process p0, at each level. In
our implementation, after the first parallel level, p0 works on a ATB task and shares
its workload with 7 other processes at each parallel level. When the compute phase
is over, at each level l ∈ {2, . . . , `(P )} process p0 collects partial results from its
(at most) seven children; at level l = 1, it retrieves the entire matrix C = ATA by
combining together the results of its five siblings. This operation is carried out both
for data distribution and result collection. Hence, L(n, P ) = O(2[7 · (`(P )− 1) + 5]).

During the data distribution phase, message size (i.e., portions of input matrix A)
decreases when descending from the root down to the leaves of T . In the first level, p0
distributes two matrices of size n/2× n/2 to the the other process that is in charge to
carry out ATB tasks, and one sub-matrix of the same size to each of its four siblings
that have to compute ATA. For each level l ∈ {2, . . . , `(P )}, the root process sends
matrices of size n/2l to at most 7 other processes. Hence, during the distribution
phase, BW (n, P ) is O(5 (n/2)2 + 7 ·∑`(P )

l=2 (n/2l)2) = O(5(n/2)2 + 7/12n2(1− 1/4`(P )−2)).
During the result retrieval phase, when traversing the path from leaves up to the root,
message size (i.e., portions of resulting matrix C) increases. In this phase, similar
considerations as for the distribution phase hold. By considering that processes
sending symmetric portions of C only store its lower triangular (low(C)), it holds that
the bandwidth during this phase amounts to O((n/2)2+4(n(n+2)/8)+7·∑`(P )

l=2 (n/2l)2) =
O((n/2)2 +n(n+2)/2+7/12n2(1−1/4`(P )−2). Hence, the total bandwidth is BW (n, P ) ≤
6(n/2)2 + n(n+2)

2 +7/6n2(1−1/4`(P )−2). From this analysis, we see that computation has
the prominent role in time complexity T (n, P ) = C(n, P )+L(n, P )+BW (n, P ). This
fact will be confirmed by our experimental results, presented in Section 6.5, where
we see how increasing the matrix sizes provides an always increasing benefit in using
the distributed algorithm, proving that communication cost L(n, P ) +BW (n, P ) is
absorbed by the computational cost, C(n, P ), for growing values of n.

6.5 Performance Evaluation

We evaluate the performance of our algorithms with an extensive set of experi-
ments over multiple benchmarks.

6.5.1 Experimental Setup

All tests reported in this section were run on TeraStat1, a cluster of 12 compute
nodes, each equipped with 2 sockets of Intel Xeon E5-2630v3 8 cores, 2.4 Ghz, 4 GB
RAM per core.

We test our algorithms and benchmark solutions on square and tall matrices,
generated randomly. We carry out experiments in both single and double floating
point precision, to highlight the fact that our algorithm achieves good performance
in both settings.

1https://www.dss.uniroma1.it/en/node/6554



6.5 Performance Evaluation 99

Algorithm 6 AtA-D- Distributed

Input: A ∈ Rm×n
Output: Lower triangular part of C = AT ·A

1: procedure AtA-P(A)
2: Generate tree T
3: for each node v of T in the path from my leaf to the root do
4: Get my task t from node v;
5: if v is a leaf then
6: if t.computationType = ATA then
7: Ct.C.offset = ATA(At.A.offset);
8: else if t.computationType = ATB then
9: Ct.C.offset = ATB(At.A.offset, At.B.offset);

10: if t.father 6= my ID then
11: Send Ct.C.offset to t.father;
12: else
13: Receive Cchildren.t.C.offset from my children;
14: Sum over the sub-matrices and store result in C;

In the tests, we exploit the Intel Math Kernel Library (MKL) both by integrating
BLAS routines for basic matrix operations, and for the validation of the proposed
algorithms through performance comparisons with shared and distributed memory
parallel benchmark solutions. MKL is a framework that includes routines and
functions optimized for Intel and compatible processor-based computers, and provides
C/C++ interfaces and the acceleration of libraries for Linear Algebra (including
BLAS and ScaLapack) within several third-party math libraries. [55, 142].

6.5.2 Metrics

To compare the performance of our algorithms against benchmark methods, we
use the average elapsed time in seconds, and the effective GFLOPs. Effective GFLOPs
is a measure for comparing classical and fast matrix multiplication algorithms. For
classical algorithms, which perform 2n3 floating point operations, Equation 6.10
gives the actual GFLOPs; for fast matrix multiplication algorithms, it gives the
performance relative to classical algorithms, but does not accurately represent the
number of floating point operations performed [37]. For fair comparisons, we calculate
the metrics as:

effective GFLOPs = rn3

execution time in seconds · 109 (6.10)

where r = 1 when we test algorithms specifically built for the ATA product, whereas
r = 2 when algorithms for the general matrix multiplication are tested.



6.5 Performance Evaluation 100

2.5
K 5K 7.5

K
10
K

12
.5K15

K

17
.5K20

K

22
.5K25

K

0

100

200

300

400

? ? ? ? ? ? ?
?

?
?

matrix size

tim
e

(s
)

?AtA
MKL dsyrk

(a) Elapsed time.

2.5
K 5K 7.5

K
10
K

12
.5K15

K

17
.5K20

K

22
.5K25

K

50

60

? ? ? ? ? ? ? ? ? ?

matrix size

eff
ec

tiv
e

G
FL

O
P

s ?AtA
MKL dsyrk

(b) Effective GFLOPs.

Figure 6.5.1. AtA vs Intel MKL dsyrk

2.5
K 5K 7.5

K
10
K

12
.5K15

K

17
.5K20

K

22
.5K25

K

0

200

400

600

800

? ? ? ? ? ? ?
?

?
?

matrix size

tim
e

(s
)

? Strassen
MKL dgemm

(a) Elapsed time.

2.5
K 5K 7.5

K
10
K

12
.5K15

K

17
.5K20

K

22
.5K25

K

50

60

?
?

? ?
? ? ? ? ? ?

matrix size

eff
ec

tiv
e

G
FL

O
P

s ? Strassen
MKL dgemm

(b) Effective GFLOPs.

Figure 6.5.2. FastStrassen vs Intel MKL dgemm.

6.5.3 Sequential

Figures 6.5.1 and 6.5.2 show the execution time and effective GFLOPs of the
sequential AtA and FastStrassen routines, respectively. Their performance is
compared to the Intel MKL counterparts: dsyrk and dgemm. The experiments
are carried out on matrices of growing matrix size (from 2.5 · 103 to 2.5 · 104),
and run on a single Intel core. The time difference between our solutions and the
ones implemented by Intel MKL grows with the matrix size, reflecting the lower
computational cost of our approach. Figure 6.5.2 shows how Strassen’s algorithm
benefits from the pre-memory-allocation strategy described in Section 6.3.3.

6.5.4 Shared memory

For evaluating the shared memory parallel implementation of the ATA product,
AtA-S, we compare it against the Intel MKL implementation of the BLAS routine
ssyrk, for single precision symmetric rank-K update. For both methods, we always
use a 16 thread setup, and we analyse the execution time and the effective GFLOPs
(Equation 6.10 with r = 1) while varying the number of available cores. In light of



6.5 Performance Evaluation 101

the sequential experiments shown in Figures 6.5.1 and 6.5.2, we compare AtA-S and
MKL ssyrk on larger matrices, where tests highlight more interesting results. In
particular, we run experiments on square matrices of size 3 ·104×3 ·104, 4 ·104×4 ·104

and on tall matrices of size 6 · 104 × 5 · 103.

2 4 6 8 10 12 14 16
0

50

100

?
? ? ? ? ? ? ?

number of cores, P

tim
e

(s
)

?AtA-S
MKL ssyrk

(a) Elapsed time, A ∈ R30K×30K .

2 4 6 8 10 12 14 16
0

500

1,000

1,500

?
? ?

? ? ? ? ?

number of cores, P

eff
ec

tiv
e

G
FL

O
P

s

?AtA-S
MKL ssyrk

(b) EGs, A ∈ R30K×30K .

2 4 6 8 10 12 14 16
0

100

200

300

?
? ? ? ? ? ? ?

number of cores, P

tim
e

(s
)

?AtA-S
MKL ssyrk

(c) Elapsed time, A ∈ R40K×40K .

2 4 6 8 10 12 14 16
0

500

1,000

1,500

?
? ?

? ? ? ? ?

number of cores, P

eff
ec

tiv
e

G
FL

O
P

s

?AtA-S
MKL ssyrk

(d) EGs, A ∈ R40K×40K .

2 4 6 8 10 12 14 16
0

2

4

6

?
? ?

? ? ? ? ?

number of cores, P

tim
e

(s
)

?AtA-S
MKL ssyrk

(e) Elapsed time, A ∈ R60K×5K .

2 4 6 8 10 12 14 16
0

500

1,000

1,500

?
? ?

? ? ? ? ?

number of cores, P

eff
ec

tiv
e

G
FL

O
P

s

?AtA-S
MKL ssyrk

(f) EGs, A ∈ R60K×5K .

Figure 6.5.3. Experimental results of AtA-S and Intel MKL BLAS dsyrk in terms of
elapsed time in seconds (first row) and effective GFLOPs (second row), varying the
number of available cores S on fixed matrix sizes and with a 16 threads configuration.

Figure 6.5.3 summarizes our results. As anticipated by the study of the compu-
tational complexity, the execution time is reduced by 1/4 at each complete parallel
level. Figures 6.5.3a-6.5.3e show how our algorithm can compete with the MKL
implementation when the core availability is large, and that significantly outper-
forms the Intel implementation in the P ≤ 10 cores setup. Furthermore, we show



6.5 Performance Evaluation 102

in Figures 6.5.3b-6.5.3f that AtA-S is capable not only of accomplishing a large
amount of floating point operations per second, but also that its performance growth
rate is consistent with the step-wise behaviour of the time complexity studied in
Section ??. This justifies sporadic thinnings in performance gap between the two
methods. From Figure 6.5.3, we can observe that the performance of both methods
stall when more than 8 cores are used. Indeed, multi-threaded MKL automatically
chooses the optimal number of threads (in our architecture, this corresponds to 16
threads). For a fair comparison, we use the same setup in AtA-S. Performance
scales with the number of available cores, but, when hyper-threading is enabled, 8
cores are enough to reach the 16-thread plateau. Therefore, performance cannot
increase significantly for P > 8.

6.5.5 Distributed memory

To complete our performance evaluation, we also compare our implementation
for distributed architectures of AtA, AtA-D, with fast distributed algorithms for
matrix multiplication. We recall that AtA-D differs from standard methods for
distributed matrix multiplication, as it does not perform computations on distributed
matrices. Instead, in AtA-D the input matrix A is only stored by the root process,
p0, that first distributes it among other processes cooperating to perform the ATA
product, and then collects the partial result of each process to combine them. This
approach makes our method unsuitable for distributed chains of operations, since for
every operation, the matrix must be repeatedly scattered and gathered back, thus
introducing communication overhead, but our results highlight that it is an efficient
alternative for distributing single ATA operations. At the current state-of-the-art,
there are a variety of methods for multiplying distributed matrices, but in the most
recent literature there are three algorithms which stand out:

1. Intel MKL ScaLapack p?syrk: the Math Kernel Libraries (MKL) are an
optimized collection of tools for sequential and parallel computing in Numerical
Linear Algebra. In particular, ScaLapack is library of high-performance
dense Linear Algebra routines for parallel distributed-memory machines. In
ScaLapack, distributed processes are organized in 2D grids of size mP×nP = P .
For each value of P , we set optimalmP and nP by calling MPI Dims create. We
analyse the execution time required to perform the ATA matrix multiplication
by the built-in ScaLapack function pdsyrk, and the time to retrieve the result
of the operation.

2. CAPS2: the Communication-Optimal Parallel Algorithm for Strassen’s Matrix
Multiplication [13] is a distributed algorithm for general square matrix multi-
plications AB. Soon after CAPS, the same authors proposed CARMA [37],
that also handles rectangular matrices. Nevertheless, it was not possible to
test this method as it relies on Cilk Plus, a tool for parallel computing now
marked as deprecated [111].

3. COSMA3: differently from CAPS, this communication-optimal algorithm for
2https://github.com/lipshitz/CAPS/
3https://github.com/eth-cscs/COSMA

https://github.com/lipshitz/CAPS/
https://github.com/eth-cscs/COSMA


6.5 Performance Evaluation 103

general matrix multiplication does not rely on Strassen’s algorithm, instead,
it uses red-blue pebble game to precisely model the matrix multiplication
dependencies. In [86], the authors show that COSMA outperforms all previously
proposed frameworks for general matrix multiplication. It also works for
multiplication on transposed matrices, and therefore we test it to perform
ATB products.

8 16 24 32 40 48 56 642−2
2−1

1
2

22
23
24
25
26
27

?
?

? ?
? ? ? ? ? ? ? ? ? ?

?

number of processes, P

tim
e

(s
)

? AtA-D (AT A)
MKL pdsyrk(AT A)
CAPS(AB)
COSMA(AT B)

(a) Elapsed time. A,B ∈ R10K×10K .

8 16 24 32 40 48 56 64102

103

104

??
????????????

?

number of processes, P

eff
ec

tiv
e

G
FL

O
P

s

?AtA-D (AT A)
MKL pdsyrk(AT A)
CAPS(AB)
COSMA(AT B)

(b) EGs. A,B ∈ R10K×10K .

8 16 24 32 40 48 56 64
2

22
23
24
25
26
27
28
29

210

? ?
? ? ? ? ? ? ? ? ? ? ? ?

?

number of processes, P

tim
e

(s
)

? AtA-D (AT A)
MKL pdsyrk(AT A)
CAPS(AB)
COSMA(AT B)

(c) Elapsed time. A,B ∈ R20K×20K .

8 16 24 32 40 48 56 64101

102

103

? ?
? ? ? ? ? ? ? ? ? ? ? ?

?

number of processes, P

eff
ec

tiv
e

G
FL

O
P

s

? AtA-D (AT A)
MKL pdsyrk(AT A)
CAPS(AB)
COSMA(AT B)

(d) EGs. A,B ∈ R20K×20K .

8 16 24 32 40 48 56 64
0

5

10

15

20

?

?
? ? ? ? ? ? ? ? ? ? ? ? ?

number of processes, P

tim
e

(s
)

? AtA-D (AT A)
MKL pdsyrk(AT A)
COSMA(AT B)

(e) Elapsed time. A,B ∈ R60K×5K .

8 16 24 32 40 48 56 64

103

104

?

?
?

? ? ? ? ? ? ? ? ? ? ?
?

number of processes, P

eff
ec

tiv
e

G
FL

O
P

s

? AtA-D (AT A)
MKL pdsyrk(AT A)
COSMA(AT B)

(f) EGs. A,B ∈ R60K×5K .

Figure 6.5.4. Experimental results of AtA-D, Intel MKL ScaLapack pdsyrk, CAPS and
COSMA in terms of elapsed time in seconds (first row) and effective GFLOPs (second
row), varying the number of distributed processes P on fixed matrix sizes.

To simulate massively distributed architectures, in our experiments, we reserve
only one core per distributed process. As a consequence, each process has small



6.5 Performance Evaluation 104

n SM (16 cores) DM (96 cores) Speedup
30K 45.16 s 21.24 s 2.13
40K 106.19 s 43.96 s 2.42
50K 221.63 s 81.77 s 2.71
60K 863.32 s 129.08 s 6.69

Table 6.5.1. Comparing shared memory (SM) and distributed memory (DM) implementa-
tions of ATA on very large square n× n matrices.

memory availability (4GB RAM/core).

The results of our experiments for the distributed-memory solution are shown in
Figure 6.5.4. In Figures 6.5.4a,6.5.4c and 6.5.4e, marked lines represent the compute
time of all considered methods. The shaded areas above the curves describing
AtA-D and pdsyrk represent the additional time required for communication, i.e.,
for retrieving the resulting matrix to the root process. We consider two groups of
square matrices, having size 104 and 2 · 104 (Figures 6.5.4a, 6.5.4b and 6.5.4c, 6.5.4d,
respectively), and one set of tall matrices of size 6 · 104 × 5 · 103. Because CAPS
does not operate on rectangular matrices, we could not test it on the latter set of
experimental configurations. As we can observe from Figure 6.5.4, scalability of
AtA-D is nonlinear and it rather follows an almost-stepwise trend with respect to
P . This is a consequence of Equation 6.6, that shows how some values of P allow
for a more effective and balanced workload between processes. This is evident for
small values of P (when a greater availability of processes weighs significantly on the
workload of each process), as well as for P = 64. Despite the different nature of the
parallelism implemented in AtA-D with respect to the benchmark methods analysed
in this section, our experiments corroborate the efficiency of the task distribution
implemented in AtA-D.

Finally, in order to study the scalability of AtA-D with respect to AtA-S, and
to validate the possibility of integrating the two methods, we compare AtA-S and
AtA-D on very large matrices of growing size and report results in Table 6.5.1.
AtA-S works on 16 cores with 16 threads, whereas AtA-D works on 6 distributed
nodes, each equipped with 16 cores, for a total of 96 cores. Each node executes a
distributed process calling either AtA-S for ATA-type products, or parallel MKL
dgemm for ATB-type multiplications. The times reported in Table 6.5.1 for AtA-
D also include communication time (for distributing data and collecting results).
Speed-up is computed as TSM/TDM , where TSM and TDM are the execution times
of the shared and the distributed-memory algorithms, respectively. In accordance
with our computational and communication cost analysis (Section 6.4.3), the speed-
up of AtA-D over AtA-S increases when the size of the input matrix increases,
as the computation cost overwhelms the communication overhead. Furthermore,
the shared-memory implementation suffers when considering larger matrices, since
frequent memory access slows down execution (two 60K × 60K matrices require
57 GB out of the 64 GB available on the test machine), consequently decreasing
performance. This is highlighted by the results of Table 6.5.1, where we can observe



6.6 Conclusions 105

that 60K × 60K matrices require high computation time, dominated by time for
memory management.

6.6 Conclusions

In this chapter we proposed AtA, an algorithm for the ATA product, that
reduces the computational complexity of commonly employed algorithms, and
that is conveniently implementable in practice on matrices defined on arbitrary
domains and of any size and aspect ratio. The computational cost of AtA benefits
from the fast matrix multiplication introduced by Strassen’s algorithm, and is
cache-oblivious. We show that AtA can be efficiently implemented in shared and
distributed memory environments. In the shared memory implementation of AtA,
tasks are assigned to parallel threads so that they work in perfect parallelism. Our
theoretical analysis is supported by experiments that prove the excellent performance
of our implementations in comparison with state-of-the-art counterparts.



106

Chapter 7

A Hybrid Solver for Quasi-Block
Diagonal Linear Systems

In this chapter we present a linear solver for a class of sparse linear systems
that we call Quasi-Block Diagonal (QBD). The solver implements a preconditioned
version of the Jacobi iterative algorithm for linear systems on a system supporting
a hybrid shared and distributed memory parallelism. Together with proofs of the
convergence property of our preconditioned algorithm, we provide experimental
results carried out on a cluster of multi-threaded nodes, and we validate them by
means of comparisons with the multi-threaded linear solver for cluster interface
implemented in the Intel MKL library. The results presented in this chapter are
published in [8] and [9].

7.1 Introduction and preliminary notions

Implementing fast linear solvers is an evergreen task in numerical Linear Algebra,
as it appears as an intermediate step in a number of wider problems. Linear
systems Ax = b, where A is the coefficient matrix, may have some structural and
mathematical properties that can be conveniently exploited. For this reason, many
algorithms have been devised in order to take advantage of the characteristics of A
for accelerating the solution of the linear system and to make them applicable on
HPC architectures. A very characterizing feature of matrices is their number of zero
entries. Depending on this, a matrix may be classified either as dense or as sparse.

Definition 7.1.1. A matrix A ∈ Kn×n is sparse if its number of non-zero entries
is O(n).

Intuitively, a matrix is sparse if the majority of its entries is zero. The non-zero
entries of a sparse matrix are its sparsity pattern. In order to spare memory, sparse
matrices are usually represented using sparse formats instead of classic full 1/2-D
arrays. Depending on the sparsity pattern of the matrix, it is crucial to use the best
fitting format in order to use memory devices efficiently. We hereby list some well
known sparse formats that we will be using in this chapter. In the following, nz is
the number of non zero entries of a sparse matrix, A.



7.1 Introduction and preliminary notions 107

• Coordinate (COO). The coordinate format stores the non zero entries of
A in a nz × 3 array, C such that ck,0 = ai,j , ck,1 = i and ck,2 = j.

• Compressed Sparse Row (CSR). This format uses three arrays: M , I
and E. In M the non zero elements of A are stored, row-wise. I represents
the indexes of the first element of each row, i.e., I(k) = k̂, where M(k̂) is the
first non zero entry of A in row k. Finally, E is the column indexes array,
meaning that E(k) is the column index in A of M(k).

• Compressed Sparse Column (CSC). Analogous to CSR format, except
that the role of rows and columns is swapped.

• Ellpack (ELL). The Ellpack format stores A with two 2D arrays, M and I.
The i-th row of M is filled in with all the non zero elements of the corresponding
rows of A. The original column index of all such entries are stored in the i-th
row of I.

There is not an universal format that is convenient for all possible sparsity patterns,
and researchers decide which format to use depending on specific data. For instance,
COO is advantageous when A is very sparse and its sparsity pattern does not
present any particular structure. CSR and CSC are also good for generic sparse
matrices and they do not store any unnecessary element, and they are preferred for
accessing the rows and columns efficiently, respectively; yet they lack in efficiency
as acceding to data requires a double addressing. The Ellpack format instead may
waste data storage when the number of non zero elements per row of A varies
significantly. On the other end, it is more efficient when the number of non zero
elements of A is balanced among its rows. More sparse formats are described in [122].

Sparse matrices arise from problems in several fields, including circuit simulations,
power network analysis and graph theory, as well as from the discretization of
partial differential equations (PDEs) when modelling phenomena spanning the
widest scientific range, including meteorology, fluid dynamics and complex biological
processes. In engineering, Finite Element Model (FEM) (see e.g., [50, 88, 123])
is widely used to model structural components of vehicles, big infrastructures,
prostheses, etc., and reproduces these objects through matrices depicting their
physical and mechanical structures. Such matrices are usually very large and
sparse, and denser blocks are distributed along their diagonal, without any other
specific assumption on their sparsity pattern; we refer to them as Quasi-Block
Diagonal (QBD) matrices. They represent the coefficient matrices of the PDEs that
model the systems under study, and that are discretized and solved numerically
integrating multiple large, sparse linear systems. In this chapter, we present a hybrid
implementation of preconditioned Jacobi to solve QBD linear systems. The Jacobi
algorithm belongs to the class of iterative linear solvers. In contrast to direct solvers,
where an exact solution is computed, iterative solvers produce a sequence of solutions
that converge to the exact one. The most commonly used direct solvers are the
Gaussian Elimination (GE) and the Cholesky factorization. They are mainly used
when the coefficient matrix A of the linear system to solve is dense. This is because
such factorizations usually affect the sparsity pattern of A causing a phenomenon



7.1 Introduction and preliminary notions 108

known as fill-in, that is when some operation transforms a sparse matrix into a full
one. This is an effect that must be avoided in order to take advantage of the large
number of zero entries of a matrix, [62].
The advantages of iterative algorithms for solving linear systems are that they avoid
fill-in, and that they can be interrupted when the desired solution accuracy is reached.
The work presented in [123] represents an extensive study on iterative algorithms
for numerical Linear Algebra. Some iterative methods are able to reach solution
convergence only when the coefficient matrix of the linear system to be solved has
some specific mathematical properties. This is also the case of the Jacobi algorithm,
where it is required that the coefficient matrix is strictly diagonally dominant:

Definition 7.1.2. A matrix A = (ai,j) ∈ Rn×n is strictly diagonally dominant if
for all i ∈ {1, . . . , n} it holds that

|ai,i| >
n∑
j=1
j 6=i

|ai,j |,

i.e., the absolute value of the diagonal entry of each row is greater than the sum of
the absolute values of the off-diagonal entries of the row.

The Jacobi algorithm works as follows: let Ax = b a linear system where the
coefficient matrix A ∈ Rn×n is strictly diagonally dominant. Let x(0) ∈ Rn be an
initial guess for the solution of the system (e.g., x(0) = 0). Repeat until convergence:

x
(k)
i = 1

ai,i

bi − n∑
j=1
j 6=i

ai,jx
(k−1)
j

 (7.1)

for all i = 1, . . . , n. Each x(k) = (x(k)
1 , . . . , x

(k)
n ) is an approximated solution to the

linear system Ax = b and is a refinement of the previous approximated solution.
If ε > 0 is the desired solution accuracy, the iterative procedure is interrupted
when ‖x(k) − x(k−1)‖ < ε. Observe that the Jacobi algorithm does not alter the
sparsity pattern of the original matrix A; furthermore, it is a very good candidate
for parallelization due to being inherently divisible into parallel tasks, [98]
In the work described in this chapter, we implement a preconditioned version of
the Jacobi algorithm. Preconditioning a matrix, or a linear system, means to apply
some operation on the linear system that ease its solution by guaranteeing efficiency
properties. Our preconditioning phase is inspired by the factorization computed in
the Spike algorithm, that is instead applied on banded matrices (see Section 7.2).
This preliminary operation is particularly convenient for QBD matrices, that can
then be stored very efficiently, reducing memory requirements. The solver here
presented is implemented using a parallel hybrid approach that combines together
distributed and shared memory paradigms and is run on a cluster.

The distributed-memory model is managed by the MPI (Message Passing Inter-
face) library that allows distributed and independent parallel processes to cooperate
and to synchronize through communication, [137]. Each distributed process runs



7.2 Related Work 109

on a multi-core system where parallel operations are supported by the OpenMP
API [34].

The multi-processor system is a particularly suitable environment for our appli-
cation, since most operations can be computed in perfect parallelism and communi-
cation is limited to a small amount of data. Comparisons with other parallel solvers,
provided by high-performance libraries (Intel MKL and PARDISO), are reported to
validate our software.

7.2 Related Work

Linear solvers for sparse matrices have been under investigation for long years.
Iterative methods are particularly convenient for sparse linear systems, since they do
not alter their sparsity patterns: Jacobi and Gauss-Seidel algorithms, together with
Krylov subspaces-based methods (e.g., CG, MINRES, GMRES, etc. see e.g., [123])
have been used, modified and adapted to specific problems in numerous occasions,
see e.g., [21, 124, 128]. Direct solvers may be adapted in order to make them
more suitable for sparse matrices, as for instance ILU and IChol factorizations
(see e.g., [123]). A direct-method approach is used also in Spike algorithm, that
inspired the preconditioning phase of the solver here proposed. Spike was introduced
in [113] and [112] and it is a hybrid solver for sparse and dense banded linear
system. Although several promising preconditioners for sparse, non symmetric and
indefinite linear systems have been developed, see e.g., [54], the one introduced in
Spike algorithm properly fits our problem.

In [100] a multi-threaded version of Spike was implemented for shared-memory
architectures using OpenMP and offering a competitive alternative to BLAS LU-
based solver. A different multi-threaded implementation is described in [23] and
compared to PARDISO routines for direct solvers. In [97] the Spike family of
solvers is combined with the general sparse solver PARDISO to produce a fast,
robust hybrid software, PSpike, and compared with some direct and iterative solver
packages. A hybrid approach is instead introduced in [96]. An extensive analysis of
different approaches to perform the factorization phase of Spike is given in [48]. Our
solver uses the matrix splitting shown in [23] for preconditioning, and then solves the
preconditioned linear system using the Jacobi algorithm, that is suitably implemented
in hybrid multi-processors/threading architectures, see also [127]. Another class
of sparse matrices are almost block diagonal matrices, that were described in [4]
and arise in discretizations of boundary value problems for ordinary differential
equations (BVODEs) and of related partial differential equations (PDEs). They
can be interpreted as block banded matrices, and therefore they have a less general
sparsity pattern than QBD matrices, defined in Section 7.3.

The fastest linear solvers are implemented in routines provided by high-performance
Linear Algebra libraries. Some of them also supply implementations for parallel
environments. In particular we compare our hybrid solver with Intel MKL PARDISO
routines for cluster interfaces (see [55]).



7.3 Preconditioned Jacobi for Quasi-Block Diagonal Linear Systems 110

7.3 Preconditioned Jacobi for Quasi-Block Diagonal Lin-
ear Systems

Before describing the idea of our parallel implementation, we give the definition
of Quasi-Block Diagonal (QBD) matrices and we introduce the notion of D-sparse
matrices.

Definition 7.3.1. (D-sparse matrix) Let D ∈ Rn×n = diag(D0, . . . ,Dk−1) be a
block diagonal matrix. We say that a matrix R ∈ Rn×n is D-sparse if it is sparse
and if its sparsity pattern does not overlap the one of D, that is ri,j 6= 0 implies
di,j = 0 ∀i, j ∈ {1, . . . , n}.

Definition 7.3.2. (Quasi-Block Diagonal matrix) Let R and D ∈ Rn×n be a
D-sparse and a block diagonal matrix, respectively. A quasi-block diagonal matrix
A ∈ Rn×n is a matrix defined as A = D + R.

A simple example of how quasi-block diagonal matrices are split in a block
diagonal matrix and a D-sparse matrix, is given in Figures 7.3.1a, 7.3.1b and 7.3.1c.

(a) A = D + R. (b) D.

(c) R. (d) S = D−1A = I + D−1R = I + G.

Figure 7.3.1. Sparsity patterns and splittings.

The parallel implementation that we propose uses preconditioned Jacobi to solve
linear systems Ax = b, where matrix A is quasi-block diagonal. As described in [23],
we precondition the linear system Ax = b, where A = D + R, by left-multiplying
both sides of the system by D−1. The resulting system is (I + D−1R)x = D−1b,
that we can write in compact form as Sx = f , denoting S = D−1A = I + D−1R,
and f = D−1b. The sparsity pattern of S for the example in Figures 7.3.1a-7.3.1c
is shown in Figure 7.3.1d. We denote as G the matrix D−1R = S − I, and we



7.4 Hybrid Preconditioned Jacobi Implementation 111

observe that matrix G is D-sparse and its nonzero entries are distributed in small
sub-columns having the same column indexes as the nonzero entries of R. Usually S
is sparser than A, in particular when R is very sparse and its elements have common
column indexes. The Jacobi algorithm is implemented to solve the transformed
system Sx = f .

7.3.1 Algorithm convergence

In the algorithm we propose, we conveniently apply the Jacobi method to the
preconditioned system Sx = f . To guarantee the convergence of the method, matrix
S has to be strictly diagonally dominant, as we prove in Proposition 7.3.1. A more
detailed proof of this result is in [36]. In the following, given a matrix M, we denote
with mi,j the element of row i and column j.

Proposition 7.3.1. If A = D + R is strictly diagonally dominant, also S =
D−1A = D−1(D + R) is strictly diagonally dominant.

Proof. First, observe that all diagonal elements of matrix S are equal to 1: si,i = 1,
∀i = 1, . . . , n. Hence, we have to show that ||D−1R||∞ < 1. In order to do so,
denoting with di,j and d̃i,j the elements of D and D−1 respectively, we can write:

n∑
k=1

|d̃i,k| ·
(
|dk,k| −

n∑
j=1
j 6=k

|dk,j |
) ≤ 1 ∀i = 1, . . . , n. (7.2)

Considering matrix G(= S− I), for all i, j ∈ {1, . . . , n}, i 6= j, it holds that:

|si,j | = |gi,j | =

∣∣∣∣∣
n∑

k=1

d̃i,krk,j

∣∣∣∣∣ .
Summing on j, we can write the following inequality:

n∑
j=1
j 6=i

|si,j | ≤
n∑

k=1

|d̃i,j | ·
n∑

j=1
j 6=i

|ri,j |

 . (7.3)

Since A is by hypothesis strictly diagonally dominant, so is D, and therefore
n∑

j=1

|rk,j | < |dk,k| −
n∑

j=1
j 6=i

|dk,j |. (7.4)

Combining inequalities (7.2), (7.3) and (7.4), the thesis follows.

7.4 Hybrid Preconditioned Jacobi Implementation

Our solver implements preconditioned Jacobi in a hybrid distributed and shared
memory fashion. We shall refer to it as to hybrid preconditioned Jacobi (HPJ).
The distributed memory parallelism is managed by the MPI library that allows
distributed and independent parallel processes to cooperate and to synchronize
through communication. The execution of each process is accelerated by deploying



7.4 Hybrid Preconditioned Jacobi Implementation 112

Figure 7.4.1. Matrix A partitioned horizontally into A0, A1 and A2, where Ai = Di+Ri,
for i = 0, 1, 2.

multi-threading, enabled by the OpenMP API.
Let Ax = b be the quasi-block diagonal linear system to solve. HPJ works when the
input problem is assigned to distributed processes as follows: the coefficient matrix
A is partitioned horizontally in P rectangular sub-matrices, where P is the number
of distributed processes. We shall call Ap (and, consequently, Dp and Rp) the p-th
sub-matrix of A, p ∈ {0, 1, . . . , P − 1}. Similarly, let us call bp the portion of the
vector of known terms b having the same row indexes as Ap, and let us define fp
analogously. The cuts are made along the diagonal blocks of A, and hence of D. In
the simple example of Figure 7.4.1 and in the discussion that follows in this section,
the number of partitions is the same as the number of blocks, hence each partition
has exactly one block. More general configurations will be taken into account in
Section 7.5, where we shall discuss about experimental results. Three phases may
be distinguished in HPJ: I. Preconditioning, II. Communication and III. Solving
phases. We shall now describe them in detail.

I. Preconditioning phase As explained in Section 7.3, the first step to execute
is the preconditioning D−1Ax = D−1b. The particular shape of the precondi-
tion matrix allows to compute D−1 explicitly in a convenient way. We use the
fact that the inverse of a block diagonal matrix D = diag(D0,D1, . . . ,DP−1) is
again a block diagonal matrix, composed of the inverse of each block, that is
D−1 = diag(D−1

0 ,D−1
1 , . . . ,D−1

P−1). This property allows to perform matrix inver-
sion explicitly and in perfect parallelism without the need for distributed processes
to communicate. Because of this, we choose to compute D−1 explicitly instead of
integrating the preconditioning process inside the Jacobi algorithm. This choice
is corroborated by the fact that also the matrix multiplication G = D−1R can be
carried out in perfect parallelism: thanks to the sparsity patterns of D and R, it
holds that G = [G0; G1; . . . ; GP−1] where Gp = D−1

p Rp. The last operation of this
phase is the matrix-vector product, fp = D−1

p bp. Integrating the preconditioning
process inside the solver is usually more advisable than inverting the precondition
matrix explicitly, as this is usually a more complex operation. Indeed, a well chosen
precondition matrix commonly induces easily-solvable linear systems that are solved
multiple times within the the overall framework. In our case though, the whole



7.4 Hybrid Preconditioned Jacobi Implementation 113

preconditioning phase (including matrix inversion) can be carried out by distributed
processes in a perfectly parallel and independent way, without the need for communi-
cation. This is rarely the case in general scenarios. Besides, once the preconditioning
phase is over, all processes can safely de-allocate D, D−1 and R.

Figure 7.4.2 depicts this phase for the simple example of Figure 7.4.1.

Figure 7.4.2. After partitioning A, each process p is in charge of computing Gp and fp
independently. The sparse format used to store G is a simplified Ellpack format, see
Section 7.4.1.

II. Communication phase After the preconditioning phase, distributed processes
are ready to solve the preconditioned linear system. Each process p computes xp,
that is the portion of the approximated solution x having the same rows as Gp.

Since R and G are D-sparse, the column indexes of Gp do not intersect the row
indexes of xp, meaning that the approximated solution xp depends on components
of x that are not in xp and that are going to be computed by other processes. For
this reason, before applying the Jacobi algorithm, communication among process
must be established: depending on the nonzero column indexes of Gp, each process
p sends an integer to all other processes as follows: if the indexes of some nonzero
columns of Gp are in the same range as the rows of block Dq, process p sends to
process q an integer ncolsqp saying how many columns of Gp lay on the q-th block,
and an array of length ncolsqp containing the indexes of such columns. In this way,
processor q is aware of what entries of xq it must send to processor p at each Jacobi
iteration. This preliminary communication phase is depicted in Figure 7.4.3 for the
example of Figure 7.4.1.

If, contrarily, none of the column indexes of Gp is in the same range as the row
indexes of block Dr, process p sends −1 to process r; this means that none of the
entries of xr appears in the equations that process p has to solve, and process r will
not have to send anything to process p during the Jacobi iterations.

III. Solving phase When solving a portion of the approximated solution by
implementing the Jacobi algorithm, each process p computes x

(k+1)
p = fp −Gpx|(k)

Gp
,

being x|Gp the vector of the components of the approximated solution x having the
same indexes as those of the columns of Gp.



7.4 Hybrid Preconditioned Jacobi Implementation 114

Figure 7.4.3. Processes tell each other what are the indexes of the component of the
approximated solution that they are going to be needing at each iteration of the Jacobi
algorithm.

During each iteration, processes properly exchange the updated values of the
approximated solution and the partial errors, ε(k+1)

p = ||x(k+1)
p − x

(k)
p ||. In this way

all distributed processes can compute the global error ε(k+1) =
√∑P−1

p=0 ε
(k+1)2
p so

that they meet the stopping criteria at the same iteration: the algorithm stops either
when ε(k+1) is below a threshold t or when the maximum number of iterations is
reached. For all our testes, we set t = 10−15 and the maximum number of iterations
to be 1000. A scheme representing the solving phase for our example is depicted in
Figure 7.4.4.

Figure 7.4.4. Each process p computes its portion of solution, xp. Then processes
exchange the components of xp depending on the information established during the
communication phase.

7.4.1 Technical details

In our solver we apply the Intel MKL LAPACK and CBLAS OpenMP-threaded
routines dgesv and dgemv in order to compute D−1

p and fp = D−1
p bp, respectively.

This can be done because matrices Dp are stored as a dense matrix. Matrices Rp are



7.5 Performance Evaluation 115

instead stored in coordinates format, whereas matrices Gp use a modified Ellpack
format, where the column indexes matrix is an array that only has as many rows as
the number of diagonal blocks that process p stores. Because of the different and
specific sparse formats that we adopted, we implemented the matrix multiplication
Gp = D−1

p Rp with the OpenMP directives (#pragma omp).

7.5 Performance Evaluation

We have tested our solver on randomly generated strictly diagonally dominant,
quasi-block diagonal matrices. We compared the execution time required to compute
a solution having order of 10−16 precision with the sequential version of the algorithm,
and with Intel MKL PARDISO routines for cluster interfaces.

7.5.1 Experimental setup

Performance have been tested on ’Galileo’ [140], installed in CINECA (Bologna,
Italy - IBM NeXtScale, Linux Infiniband Cluster consisting of 360 nodes 2 x 18-cores
Intel Xeon E5-2697 v4 (Broadwell) processors (2.30 GHz), and 15 nodes 2 x 8-cores
Intel Haswell (2.40 Ghz) processors (endowed with 2 NVIDIA K80 GPUs, that we
do not use in our implementation). In our tests, we generate P = k2 distributed
processes for different values of k. We involve k cluster compute nodes, and k tasks
per node, each using 4 cores for multi-threading.

7.5.2 HPJ vs Sequential

We assess the performance of HPJ in terms of speed-up and efficiency, with
respect to the sequential version of HPJ, that is, HPJ run with only one MPI process,
and with the LAPACK dgesv function for solving general linear systems provided
by Intel MKL. These two benchmarks are run using 4 cores. We compute the
speed-up as the ratio Ts/Tp, where Ts and Tp are the execution times required by
the sequential and the parallel implementations, respectively. Efficiency is computed
as S/P , where S is the speed-up and P is the number of distributed processes,
since we are running sequential preconditioned Jacobi and dgesv with 4 cores. For
both batches of experiments, the average execution time is computed on randomly
generated quasi-block diagonal linear systems of size n = 104. The number of
diagonal blocks is randomly chosen in the range {25, . . . , 100}; the size of each
block ranges in the set {100, 200, 300, 400}. We generate random row and column
coordinates for the non zero entries of matrix R.

The outcomes of the first set of experiments, comparing HPJ and the sequential
preconditioned Jacobi, are shown in Figures 7.5.1 (a) and (b). Speed-up is super-
linear when the number of MPI processes P is 4 and 9, and goes slightly below the
linear trend for P = 16, where the efficiency is 0.83.

In Figures 7.5.2 (a) and (b), we show the speed-up and the efficiency of HPJ
with respect to the Intel MKL implementation of the LAPACK dgesv routine.

The phenomenal performance of HPJ in this case are due to the fact that LAPACK
does not provide sparse formats for storing sparse matrices; as a consequence, its
performance is poor on quasi-block diagonal linear systems. In both experiments,



7.5 Performance Evaluation 116

4 9 16

Number of processes, P

4

6

8

10

12

14

16
S

p
e
e
d
-u

p

Speed-up hybrid vs sequential PJ

(a)

4 9 16

Number of processes, P

0

0.5

1

1.5

E
ff
ic

ie
n
c
y

Efficiency hybrid vs sequential PJ

(b)

Figure 7.5.1. Speed-up (a) and efficiency (b) of hybrid vs sequential preconditioned Jacobi.

4 9 16

Number of processes, P

0

100

200

300

400

500

600

700

S
p
e
e
d
-u

p

Speed-up HPJ vs Intel MKL dgesv

(a)

4 9 16

Number of processes, P

0

10

20

30

40

50

60

70
E

ff
ic

ie
n
c
y

Efficiency HPJ vs Intel MKL dgesv

(b)

Figure 7.5.2. Speed-up (a) and efficiency (b) of HPJ versus Intel MKL dgesv.

super-linearity is also a consequence of the greater memory availability of our hybrid
solver, since it is run on more than one compute node, as explained in Section 7.5.1.

7.5.3 HPJ vs Intel MKL PARDISO

We have compared our solver HPJ with Intel MKL PARDISO, that is a software
package of the Intel MKL library for solving large sparse linear systems Ax = b. The
Intel MKL library provides routines for cluster interfaces that integrate PARDISO
functions and that follow a hybrid MPI/OpenMP approach. In particular, we
used the cluster sparse solver routine for symbolic factorization, numerical
factorization, solution retrieval and termination. PARDISO allows to store data
either with CSC or CSR sparse formats. We opted for the second, as it is favourable
when row-major is the default layout for array storage, that it the case of our
implementation. The cluster sparse solver routine supports both distributed
(d) and non distributed (nd) inputs. In the first case, matrix A is partitioned among
distributed processes. In the non distributed fashion instead, the MPI master process
(the one having rank = 0) is the only one to read the whole matrix and to manage
workload distribution among processes. Both configurations were compared with
HPJ. We used the MPI timer to track the execution time for computation steps. In



7.5 Performance Evaluation 117

100000 200000 300000

Matrix size, n

0

10

20

30

40

S
p
e
e
d
-u

p
 H

P
J
 v

s
 P

A
R

D
IS

O

Speed-up, P = 36

HPJ vs PARDISO (nd)

HPJ vs PARDISO (d)

(a)

100000 200000 300000

Matrix size, n

0

10

20

30

40

50

60

S
p
e
e
d
-u

p
 H

P
J
 v

s
 P

A
R

D
IS

O

Speed-up, P = 49

HPJ vs PARDISO (nd)

HPJ vs PARDISO (d)

(b)

100000 200000 300000

Matrix size, n

0

50

100

150

S
p
e
e
d
-u

p
 H

P
J
 v

s
 P

A
R

D
IS

O

Speed-up, P = 81

HPJ vs PARDISO (nd)

HPJ vs PARDISO (d)

(c)

Figure 7.5.3. Speed-up of HPJ vs distributed (d) and non-distributed (nd) Intel MKL
PARDISO for P = 36 (a), P = 49 (b) and P = 81 (c) MPI processes on matrix sizes
105, 2 · 105 and 3 · 105.

cluster sparse solver, this corresponds to the time for numerical factorization,
backward substitution and iterative refinement. In our experiments, we set two
steps of iterative refinement. Initially, the nested dissection algorithm from the
METIS package is used for reordering the input matrix in order to reduce the
amount of fill-in during the numerical factorization phase.1 Figures 7.5.3(a-c) show
the speed-up of HPJ with respect to Intel MKL PARDISO in both the distributed
and non-distributed fashion. We show how the speed-up changes varying the matrix
size, n, for different numbers of MPI processes, (P = 36, 49, 81). In this set of
experiments, when quasi-block diagonal random matrices of size n are generated,
the number of diagonal blocks ranges in the set {n/1000, . . . , n/500}, and the size
of each block in the set {500, 600, 700, 800, 900, 1000}. We generate random row and
column coordinates for the non zero entries of matrix R. For every interval of row
indexes defined by the row indexes of each diagonal block, we generate a random
number of non zero entries of R in the set {25, 40, 55, 70, 85, 100}.

The average execution times of HPJ and Intel MKL PARDISO are barely
comparable, and the latter suffers from poor scalability. This fact holds for both
distributed and non distributed configurations and is supported by the technical
description of Intel PARDISO for clusters package, given in [78], where it is shown
how PARDISO scaling factor is low when the number of threads dedicated to each
MPI process is small. In that work, the authors tested the Intel PARDISO for
clusters solver on two smaller matrices, with 15.7 · 106 and 12 · 106 non zero entries,
and on a larger one, having 5 · 108 non zero entries, and they analyse the behaviour
of the solver for different numbers of threads per MPI process. Only one MPI
process per compute node is generated. A configuration with 4 threads per process
(that is the same one adopted in our experiments) is considered too, and results in
a low speed-up (approximately, the value of the speed-up is 9 and 12 on 16 MPI
processes on the two smaller matrices, and less than 4 on 16 MPI processes for
the larger linear system). The number of non zero elements of our largest matrices
ranges between 9 · 107 and 1.5 · 108, hence our experiments represent an intermediate
situation between the two scenarios considered in [78]). Performance improves when
all the available threads in each compute nodes are activated, suggesting that the

1More details on Intel MKL cluster sparse solver available op-
tions can be found on page: https://software.intel.com/en-us/
mkl-developer-reference-c-cluster-sparse-solver-iparm-parameter

https://software.intel.com/en-us/mkl-developer-reference-c-cluster-sparse-solver-iparm-parameter
https://software.intel.com/en-us/mkl-developer-reference-c-cluster-sparse-solver-iparm-parameter


7.6 Conclusions 118

best configuration for Intel MKL PARDISO to set up is to reserve an entire compute
node per MPI process. HPJ, instead, does not suffer from this drawback, as it does
not require such a large hardware availability to achieve high performance.

7.6 Conclusions

In this chapter we proposed a hybrid MPI/OpenMP parallel solver for clusters
of multi-threaded processors, that uses preconditioned Jacobi to solve sparse linear
systems and is particularly suitable for quasi-block diagonal matrices, that commonly
emerge from finite element analysis. The preconditioned linear system has provable
convergence properties. In our implementation, the preconditioning phase is exe-
cuted in perfect parallelism among processes, and independent computations are
accelerated by using OpenMP for multi-threading. Furthermore, the solving phase
implies a negligible communication cost. To reduce the memory storage consumption,
we used specific sparse matrix formats that allow to exploit the specific pattern of
non-zero elements of quasi-block diagonal matrices. Our hybrid implementation was
tested against the analogous sequential version and the dgesv routine implemented
in the Intel MKL library, revealing impressive performance and exceptional scal-
ability. Comparisons with solvers provided by the high performance library Intel
MKL PARDISO show that our solver is the fastest in all considered experimental
configurations.



119

Conclusions

This thesis tackles two major topics: node identifiability and failure identification
in communication networks in the context of Boolean Network Tomography (Part I),
and high performance computing solutions to some standard problems of Numerical
Linear Algebra (Part II).

The first part of the thesis analyses the problem of evaluating network perfor-
mance in terms of node failure detection by means of end-to-end measurements. This
technique allows to gain knowledge on the state of the network while avoiding the
obstacles due to commercial factors, that often prevent private organizations from
sharing sensitive data on their portion of the Internet network. In addition, analysing
end-to-end measurements also provides a convenient solution for communication
networks maintenance to restrict the possible area of malfunctions, limiting expensive
direct investigations when networks are distributed in vast geographical areas and
when cataclysms and accidents causing network faults make human intervention too
dangerous.

Firstly, we showed fundamental background on BNT techniques. We introduced
the property of node identifiability, that is the capability of a node to be uniquely
identified as ’failed’, given a set of measurement paths. In Chapters 2 and 3, we
studied a primal-dual optimization problem on the maximum number of nodes that
can be identified given a certain number of paths, and on the minimum number of
paths that need to be placed in order to make a desired number of nodes identifiable.
We took into account different constraints, including the average and the maximum
path length, and the general routing scheme adopted. We proposed an algorithm for
generation of a regular topology that proves the tightness of both lower and upper
bounds under arbitrary routing.

After the formulation of theoretical bounds on node identifiability, the thesis tack-
les the problem of node failure detection under uncontrollable routing (Chapter 4).
We provided a greedy algorithm based on a Bayesian approach, that has the goal of
providing maximal information on the network (in terms of failed nodes) by probing
the least number of paths. The performance of this algorithm is naturally and
inherently upper-bounded by Boolean Network Tomography limits (i.e., probing all
available paths). Our tests show how this limit is always reached by probing a very
small percentage of the total set of measurement paths. The decision on the paths
to test is driven by stochastic metrics, that have provable optimal approximations
and that are easily computable. We also extend our results by considering possible
dynamic changes in the network.

The results provided in the first part of this thesis leave room for further deepen-



7.6 Conclusions 120

ing: in the study our bounds on node identifiability, we neglect other requirements,
besides those related to routing and hop count for QoS, for example cost, technology
constraints and more advanced performance requirements of such networks, which
could be considered in a future study, with a more technology and topology specific
point of view. The node failure scenario that we consider is generic and agnostic.
In some cases though, as for instance when geological or human disasters occur,
prior failure probability might not be considered distributed uniformly among nodes.
Also, our approach for failure detection can be adapted to take into account different
specifications, as peer-to-peer communication, client-server architectures, three-tier
networks.

The second part of this thesis describes algorithms and parallel implementations
for two major issues in Numerical Linear Algebra. In fact, numerical algorithms have
a vast field of application in applied Science and Engineering, and often represent a
bottle-neck in complex systems simulations.

In Chapter 6, we introduced an algorithm for computing the matrix product
ATA, that is an intermediate operation in several problems in Linear Algebra and
Differential Geometry. The algorithm is cache-oblivious and based on Strassen’s
algorithm for matrix multiplications. The computational cost of the algorithm
reduces the cost of the naive ATA multiplication. We provide scalable, shared and
distributed implementations of the algorithm that makes use of routines integrated in
state-of-the-art libraries for Linear Algebra. Thanks to the minimization of memory
allocation and communication between distributed processes, our implementation
outperforms the state-of-the-art counterparts represented by the MKL library by
Intel and other pieces of research solutions.

In Chapter 7 we describe a linear solver for systems of equations that come
from system simulations in Engineering, whose coefficient matrix is said quasi-block
diagonal. The linear solver uses preconditioned Jacobi for taking advantage of the
shape of the systems, and uses ad-hoc sparse formats for saving memory storage
requirements. We have developed a hybrid implementation that combines together
both the distributed and shared memory approaches. Despite the hardness related
to distributing tasks and elaborating data between independent processes in linear
solvers, we showed how to minimize data exchange between distributed components
by taking advantage of the sparsity pattern of quasi-block diagonal systems. As
a result, our tests show optimal memory use and outstanding performance when
compared with routines for sparse linear solvers integrated in state-of-the-art libraries
for cluster interfaces.



121

Acknowledgements

I would like to express my gratitude to my advisor Prof. Annalisa Massini for her
endless support, her tireless mentoring and for encouraging my personal growth. I
am deeply grateful to Prof. Novella Bartolini for her extremely valuable guidance and
assistance. The profound knowledge that they shared with me and their sympathetic
advice have been indispensable for the success of my Ph.D. and for my entry into
the world of Research.

I would like to extend my sincere thanks to Prof. Volker Mehrmann for his
inspiring assistance during my visiting at the TU Berlin.

I would like to offer my special thanks to the external reviewers, Prof. Simone
Silvestri, Prof. Francesco Lo Presti and Prof. Murat Manguoğlu, for their comments
and meticulous suggestions that helped me improve the quality of my work.

I am thankful to my beloved family for their unconditioned love and immense
support.

I am sincerely and enormously grateful for and to all my old and new people that
were next to me during my Ph.D. To my loved ones, my friends and my colleagues
go my most heart-felt affection and gratitude.



122

Bibliography

[1] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On the bias of traceroute
sampling: Or, power-law degree distributions in regular graphs. J. ACM, 56(4),
July 2009.

[2] A. Adams, T. Bu, T. Friedman, J. Horowitz, D. Towsley, R. Cáceres, N. G.
Duffield, F. Lo Presti, S. B. Moon, and V. Paxson. The use of end-to-end
multicast measurements for characterizing internal network behavior. IEEE
Communications magazine, 38(5):152–159, 2000.

[3] J. Alman and V. V. Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 522–539. SIAM, 2021.

[4] P. Amodio, JR Cash, G. Roussos, RW Wright, G. Fairweather, I. Gladwell, GL.
Kraut, and M. Paprzycki. Almost block diagonal linear systems: sequential
and parallel solution techniques, and applications. Numerical linear algebra
with applications, 7(5):275–317, 2000.

[5] V. Arrigoni, N. Bartolini, and A. Massini. Topology agnostic bounds on
minimum requirements for network failure identification. IEEE Access, 9:6076–
6086, 2021.

[6] V. Arrigoni, N. Bartolini, A. Massini, and F. Trombetti. Failure localization
through progressive network tomography. In IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications (INFOCOM 2021), 2021.

[7] V. Arrigoni, F. Maggioli, A. Massini, and E. Rodolà. Efficiently parallelizable
strassen-based multiplication of a matrix by its transpose. submitted to
conference, 2021.

[8] V. Arrigoni and A. Massini. Hybrid solver for quasi block diagonal linear
systems. In International Conference on Parallel Processing and Applied
Mathematics, pages 129–140. Springer, 2019.

[9] V. Arrigoni and A. Massini. Solving Quasi Block Diagonal Linear Sys-
tems. https://womencourage.acm.org/2019/wp-content/uploads/2019/
07/womENcourage_2019_paper_60.pdf, 2019. Online; accessed 2 January
2021.

https://womencourage.acm.org/2019/wp-content/uploads/2019/07/womENcourage_2019_paper_60.pdf
https://womencourage.acm.org/2019/wp-content/uploads/2019/07/womENcourage_2019_paper_60.pdf


Bibliography 123

[10] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H.H. Liu, J. Padhye, B.T. Loo,
and G. Outhred. 007: Democratically finding the cause of packet drops. In
15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI) 18), pages 419–435, 2018.

[11] G. K. Atia and V. Saligrama. Boolean compressed sensing and noisy group
testing. IEEE Trans. on Inf. Theory, 58(3), March 2012.

[12] Aurora Fiber Optic Networks. Last accessed November 26, 2019.

[13] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Communication-
optimal parallel algorithm for Strassen’s matrix multiplication. In Proceedings
of the 24th Annual Symposium on Parallelism in Algorithms and Architectures,
SPAA’12, pages 193–204. ACM, 2012.

[14] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and
communication costs of fast matrix multiplication. In Proceedings of the 23rd
Annual Symposium on Parallelism in Algorithms and Architectures, SPAA’11,
pages 1–12. ACM, 2011.

[15] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and
communication costs of fast matrix multiplication. Journal of the ACM
(JACM), 59(6):1–23, 2013.

[16] N. Bartolini, T. He, V. Arrigoni, A. Massini, F. Trombetti, and H. Kham-
froush. On fundamental bounds on failure identifiability by boolean network
tomography. IEEE/ACM Transactions on Networking, 2020.

[17] N. Bartolini, T. He, and H. Khamfroush. Fundamental limits of failure
identifiability by boolean network tomography. In IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, pages 1–9, 2017.

[18] Y. Bejerano and R. Rastogi. Robust monitoring of link delays and faults in IP
networks. In IEEE INFOCOM, 2003.

[19] A. R. Benson and G. Ballard. A framework for practical parallel fast matrix
multiplication. ACM SIGPLAN Notices, 50(8):42–53, 2015.

[20] A.R. Benson and G. Ballard. A framework for practical parallel fast matrix
multiplication. In Proceedings 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. PPoPP’15, pages 42–53, 2015.

[21] D. P. Bertsekas and J. N. Tsitsiklis. Some aspects of parallel and distributed
iterative algorithms—a survey. Automatica, 27(1):3–21, 1991.

[22] M. D. Bogdan. Measuring digital development: Facts and figures 2019, 2019.

[23] E. S. Bolukbasi and M. Manguoglu. A multithreaded recursive and nonrecursive
parallel sparse direct solver. In Advances in Computational Fluid-Structure
Interaction and Flow Simulation, pages 283–292. Springer, 2016.

[24] R.P. Brent. Algorithms for matrix multiplication, 1970.



Bibliography 124

[25] R.P. Brent. Error analysis of algorithms for matrix multiplication and triangular
decomposition using Winograd’s identity. Numerische Mathematik, 16:145–156,
1970.

[26] Cooperative Association for Internet Data Analysis. Available: CAIDA.

[27] A. Charara, D. Keyes, and H. Ltaief. Batched triangular dense linear algebra
kernels for very small matrix sizes on gpus. ACM Transactions on Mathematical
Software (TOMS), 45(2):1–28, 2019.

[28] A. Charara, H. Ltaief, and D. Keyes. Redesigning triangular dense matrix
computations on gpus. In European Conference on Parallel Processing, pages
477–489. Springer, 2016.

[29] J. Chen, X. Qi, and Y. Wang. An efficient solution to locate sparsely congested
links by network tomography. In 2014 IEEE International Conference on
Communications (ICC), pages 1278–1283. IEEE, 2014.

[30] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraic approach to
practical and scalable overlay network monitoring. In Proceedings of the
2004 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 55–66, 2004.

[31] M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama. Graph-contrained
group testing. In IEEE Trans. on Inf. Theory, number 1, 2012.

[32] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang. Maxi-
mum likelihood network topology identification from edge-based unicast mea-
surements. ACM SIGMETRICS Performance Evaluation Review, 30(1):11–20,
2002.

[33] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 1–6, 1987.

[34] L. Dagum and R. Menon. Openmp: An industry-standard api for shared-
memory programming. IEEE Comput. Sci. Eng., 5(1):46–55, January 1998.

[35] P. D’Alberto and A. Nicolau. Adaptive strassen’s matrix multiplication. In
Proceedings 21st International Conference on Supercomputing, pages 284–292.
ACM, 2007.

[36] N. D’Alessandro. Comparison of direct and iterative methods applied to almost
block diagonal matrices, master thesis, computer science department, sapienza
university of rome, italy. 2019.

[37] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger. Communication-optimal parallel recursive rectangular matrix
multiplication. In 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, pages 261–272. IEEE, 2013.



Bibliography 125

[38] F. Desprez and F. Suter. Impact of mixed-parallelism on parallel implementa-
tions of the Strassen and Winograd matrix multiplication algorithms. Concurr.
Comput.: Pract. Exper., 16(8):771–797, 2004.

[39] R. Dorfman. The detection of defective members of large populations. The
Annals of Mathematical Statistics, 1943.

[40] B. Du, M. Candela, B. Huffaker, A. C. Snoeren, and K. C. Claffy. Ripe ipmap
active geolocation: mechanism and performance evaluation. ACM SIGCOMM
Computer Communication Review, 50(2):3–10, 2020.

[41] N. G. Duffield. Network tomography of binary network performance charac-
teristics. IEEE Trans. on Inf. Theory, 52, 2006.

[42] N. G. Duffield, J. Horowitz, F Lo F. Presti, and Don Towsley. Multicast
topology inference from measured end-to-end loss. IEEE Transactions on
Information Theory, 48(1):26–45, 2002.

[43] N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Network delay to-
mography from end-to-end unicast measurements. In Thyrrhenian Internatinal
Workshop on Digital Communications, pages 576–595. Springer, 2001.

[44] N. G. Duffield and F. Lo Presti. Network tomography from measured end-to-
end delay covariance. IEEE/ACM Transactions On Networking, 12(6):978–992,
2004.

[45] N. G. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Inferring link loss using
striped unicast probes. In Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No. 01CH37213), volume 2,
pages 915–923. IEEE, 2001.

[46] N.G. Duffield. Simple network performance tomography. In ACM IMC, 2003.

[47] J. Dumas, C. Pernet, and A. Sedoglavic. On fast multiplication of a matrix by
its transpose. In Proceedings of the 45th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’20, page 162–169, New York, NY, USA,
2020. Association for Computing Machinery.

[48] V. Eijkhout and R. van de Geijn. The spike factorization as domain decom-
position method; equivalent and variant approaches. In High-Performance
Scientific Computing, pages 157–169. Springer, 2012.

[49] D. Eliahu, O. Spillinger, A. Fox, and J. Demmel. Frpa: A framework for
recursive parallel algorithms. Technical report, University of California at
Berkeley Berkeley United States, 2015.

[50] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast
iterative solvers: with applications in incompressible fluid dynamics. Oxford
University Press, USA, 2014.



Bibliography 126

[51] E. Elmroth, F. Gustavson, I. Jonsson, and B. K̊agström. Recursive blocked
algorithms and hybrid data structures for dense matrix library software. SIAM
review, 46(1):3–45, 2004.

[52] B. Eriksson, G. Dasarathy, P. Barford, and R. Nowak. Toward the practical
use of network tomography for internet topology discovery. In 2010 Proceedings
IEEE INFOCOM, pages 1–9. IEEE, 2010.

[53] H. Esfandiar, A. Karbasi, and V. Mirrokni. Adaptivity in adaptive submodu-
larity. arXiv preprint arXiv:1911.03620, 2019.

[54] M. Ferronato, C. Janna, and G. Pini. A generalized block fsai preconditioner
for nonsymmetric linear systems. Journal of Computational and Applied
Mathematics, 256:230–241, 2014.

[55] Developer Reference for Intel® Math Kernel Library C. 2019.

[56] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In 40th Symp. Foundations of Computer Science (FOCS), pages
285–297. IEEE, 1999.

[57] K. Fujii and S. Sakaue. Beyond adaptive submodularity: Approximation
guarantees of greedy policy with adaptive submodularity ratio. In International
Conference on Machine Learning, pages 2042–2051, 2019.

[58] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
39th International Symposium on Symbolic and Algebraic Computation, page
296–303, 2014.

[59] D. Ghita, H. Nguyen, M. Kurant, K. Argyraki, and P. Thiran. Netscope:
Practical network loss tomography. In 2010 Proceedings IEEE INFOCOM,
pages 1–9. IEEE, 2010.

[60] D. Golovin and A. Krause. Adaptive submodularity: Theory and applications
in active learning and stochastic optimization. Journal of Artificial Intelligence
Research, 42:427–486, 2011.

[61] G. H. Golub et al. Milestones in matrix computation: the selected works of
Gene H. Golub with commentaries. Oxford University Press, 2007.

[62] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.). Johns
Hopkins University Press, USA, 1996.

[63] B. Grayson, A. Shah, and R. van de Geijn. A high performance parallel
Strassen implementation. Parallel Processing Letters, 6:3–12, 1995.

[64] P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity in
wireless networks. In Stochastic analysis, control, optimization and applications,
pages 547–566. Springer, 1999.

[65] T. He, N. Bartolini, H. Khamfroush, I. Kim, L. Ma, and T. La Porta. Service
placement for detecting and localizing failures using end-to-end observations.
In IEEE ICDCS, 2016.



Bibliography 127

[66] T. He, A. Gkelias, L. Ma, K. K. Leung, A. Swami, and D. Towsley. Robust
and efficient monitor placement for network tomography in dynamic networks.
IEEE/ACM Transactions on Networking, 25(3):1732–1745, June 2017.

[67] N.J. Higham. Exploiting fast matrix multiplication within the level 3 BLAS.
ACM Trans. Math. Softw., 16(4):352–368, 1990.

[68] É. Hosszu, J. Tapolcai, and G. Wiener. On a problem of rényi and katona.
2013.

[69] A. S. Householder. Numerische Mathematik, volume 8. Springer-Verlag, 1966.

[70] Y. Huang, N. Feamster, and R. Teixeira. Practical issues with using network
tomography for fault diagnosis. ACM SIGCOMM Computer Communication
Review, 38(5):53–58, 2008.

[71] S. Hunold, T. Rauber, and G. Runger. Combining building blocks for parallel
multi–level matrix multiplication. Parallel Computing, 34:411–426, 2008.

[72] S. Huss-Lederman, E.M. Jacobson, A. Tsao, T. Turnbull, and J.R. Johnson.
Implementation of strassen’s algorithm for matrix multiplication. In Proceedings
ACM/IEEE Conference on Supercomputing, 1996.

[73] H. Jia-Wei and H. T. Kung. I/o complexity: The red-blue pebble game. In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Com-
puting, STOC ’81, page 326–333, New York, NY, USA, 1981. Association for
Computing Machinery.

[74] A. Johnsson, C. Meirosu, and C. Flinta. Online network performance degrada-
tion localization using probabilistic inference and change detection. In 2014
IEEE Network Operations and Management Symposium (NOMS), pages 1–8.
IEEE, 2014.

[75] R. K. Jones, F. Alizadeh-shabdiz, E. J. Morgan, and M. G. Shean. Server for
updating location beacon database, August 2008.

[76] M. Kadhum, M. H. Qasem, A. Sleit, and A. Sharieh. Efficient mapreduce
matrix multiplication with optimized mapper set. In Computer Science On-line
Conference, pages 186–196. Springer, 2017.

[77] G. Kakkavas, D. Gkatzioura, V. Karyotis, and S. Papavassiliou. A review
of advanced algebraic approaches enabling network tomography for future
network infrastructures. Future Internet, 12(2):20, 2020.

[78] A. Kalinkin and K. Arturov. Asynchronous approach to memory management
in sparse multifrontal methods on multiprocessors. Applied Mathematics, 2013,
2013.

[79] A.R. Kamal, C.J. Bleakley, and S. Dobson. Failure detection in wireless sensor
networks: A sequence-based dynamic approach. ACM Transactions on Sensor
Networks (TOSN), 10(2):1–29, 2014.



Bibliography 128

[80] A. Karbasi and M. Zadimoghaddam. Sequential group testing with graph
constraints. In 2012 IEEE information theory workshop, pages 292–296. Ieee,
2012.

[81] G. Katona. On separating systems of a finite set. Journal of Combinatorial
Theory, 1(2):174–194, 1966.

[82] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
internet topology zoo. IEEE Journal on Selected Areas in Communications,
29(9):1765–1775, 2011.

[83] R. R. Kompella, J. Yates, A. Greenberg, and A. Snoeren. Detection and
localization of network black holes. IEEE INFOCOM, 2007.

[84] A. N. Krylov. On the numerical solution of equation by which are determined
in technical problems the frequencies of small vibrations of material systems.
Izvestiia Akademij nauk SSSR, (4):491–539, 1931.

[85] B. Kumar, C.-H. Huang, R. Johnson, and P. Sadayappan. A tensor product
formulation of Strassen’s matrix multiplication algorithm with memory re-
duction. In Proceedings Seventh International Parallel Processing Symposium,
pages 582–588, 1993.

[86] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele, R. Solcà, and T. Hoefler.
Red-blue pebbling revisited: Near optimal parallel matrix-matrix multiplica-
tion. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[87] K. Lai and M. Baker. Measuring link bandwidths using a deterministic model
of packet delay. In Proceedings of the conference on applications, technologies,
architectures, and protocols for computer communication, pages 283–294, 2000.

[88] M. G. Larson and F. Bengzon. The finite element method: theory, imple-
mentation, and applications, volume 10. Springer Science & Business Media,
2013.

[89] H. Li, Y. Gao, W. Dong, and C. Chen. Taming both predictable and unpre-
dictable link failures for network tomography. IEEE/ACM Transactions on
Networking, 26(3):1460–1473, June 2018.

[90] M. Li, Y-L. Wu, and C-R. Chang. Available bandwidth estimation for the
network paths with multiple tight links and bursty traffic. Journal of Network
and Computer Applications, 36(1):353–367, 2013.

[91] Q. Luo and J. Drake. A scalable parallel Strassen’s matrix multiplication
algorithm for distributed-memory computers. In Proceedings ACM Symposium
on Applied Computing, SAC’95, pages 221–226, 1995.

[92] L. Ma, T. He, A. Swami, D. Towsley, K. K. Leung, and J. Lowe. Node Failure
Localization via Network Tomography. In ACM IMC, 2014.



Bibliography 129

[93] L. Ma, T. He, A. Swami, D. Towsley, and K.K. Leung. On optimal monitor
placement for localizing node failures via network tomography. Elsevier
Performance Evaluation, 91:16–37, September 2015.

[94] L. Ma, Ting He, Ananthram Swami, Don Towsley, and Kin K. Leung. Net-
work capability in localizing node failures via end-to-end path measurements.
IEEE/ACM Transactions on Networking, June 2016.

[95] L. Ma, Z. Zhang, and M. Srivatsa. Neural network tomography.
arXiv2001.02942,cs.NI, 2020.

[96] M. Manguoglu. A domain-decomposing parallel sparse linear system solver.
Journal of computational and applied mathematics, 236(3):319–325, 2011.

[97] M. Manguoglu, A. H. Sameh, and O. Schenk. Pspike: A parallel hybrid sparse
linear system solver. In European Conference on Parallel Processing, pages
797–808. Springer, 2009.

[98] A. Margaris, S. Souravlas, and M. Roumeliotis. Parallel implementations of
the jacobi linear algebraic systems solve. arXiv preprint arXiv:1403.5805,
2014.

[99] C. Mark, A. O. Hero III, Nowak Robert, and B. Yu. Internet tomography.
IEEE Signal Processing Magazine, 19(3):47–65, 2002.

[100] K. Mendiratta and E. Polizzi. A threaded spike algorithm for solving general
banded systems. Parallel Computing, 37(12):733–741, 2011.

[101] R. Mok, V. Bajpai, A. Dhamdhere, and K. Claffy. Revealing the load-balancing
behavior of youtube traffic on interdomain links. In Passive and Active
Measurement Conference (PAM), Mar 2018.

[102] T. Muhammed and R.A. Shaikh. An analysis of fault detection strategies
in wireless sensor networks. Journal of Network and Computer Applications,
78:267–287, 2017.

[103] M. Mukamoto, T. Matsuda, S. Hara, K. Takizawa, F. Ono, and R. Miura.
Adaptive boolean network tomography for link failure detection. In 2015
IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 646–651. IEEE, 2015.

[104] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the
maximum of a submodular set function. Mathematics of operations research,
3(3):177–188, 1978.

[105] J. Von Neumann and H. H. Goldstine. Numerical inverting of matrices of high
order. Bulletin of the American Mathematical Society, 53(11):1021–1099, 1947.

[106] N.X. Nguyen and P. Thiran. The boolean solution to the congested IP link
location problem: Theory and practice. In IEEE INFOCOM, 2007.



Bibliography 130

[107] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas. Func-
tional maps: a flexible representation of maps between shapes. ACM Transac-
tions on Graphics (TOG), 31(4):1–11, 2012.

[108] S. Pan, P. Li, D. Zeng, S. Guo, and G. Hu. A Q -learning based framework for
congested link identification. IEEE Internet of Things Journal, 6(6):9668–9678,
2019.

[109] E. Peise and P. Bientinesi. Algorithm 979: recursive algorithms for dense
linear algebra—the relapack collection. ACM Transactions on Mathematical
Software (TOMS), 44(2):1–19, 2017.

[110] J. P. Pickett. The American heritage dictionary of the English language.
Houghton Mifflin Harcourt, 2018.

[111] Intel Cilk Plus. 2009. Last accessed 07-01-2021.

[112] E. Polizzi and A. Sameh. Spike: A parallel environment for solving banded
linear systems. Computers & Fluids, 36(1):113–120, 2007.

[113] E. Polizzi and A. H. Sameh. A parallel hybrid banded system solver: the spike
algorithm. Parallel computing, 32(2):177–194, 2006.

[114] D. M. Powers. Evaluation: from precision, recall and f-measure to roc, in-
formedness, markedness and correlation. 2011.

[115] F. Lo Presti, N. G. Duffield, J. Horowitz, and D. Towsley. Multicast-based
inference of network-internal delay distributions. IEEE/ACM Transactions
On Networking, 10(6):761–775, 2002.

[116] M. H. Qasem, A. A. Sarhan, R. Qaddoura, and B. A. Mahafzah. Matrix
multiplication of big data using mapreduce: a review. In 2017 2nd Interna-
tional Conference on the Applications of Information Technology in Developing
Renewable Energy Processes & Systems (IT-DREPS), pages 1–6. IEEE, 2017.

[117] Y. Qiao, J. Jiao, Y. Rao, and H. Ma. Adaptive path selection for link loss
inference in network tomography applications. PloS one, 11(10):e0163706,
2016.

[118] Y. Qiao, G. Wang, X-S Qiu, and R. Gu. Network loss tomography using link
independence. In 2012 IEEE Symposium on Computers and Communications
(ISCC), pages 000569–000574. IEEE, 2012.

[119] W. Ren and W. Dong. Robust network tomography: k-identifiability and
monitor assignment. In IEEE INFOCOM, 2016.

[120] A. Rényi. On random generating elements of a finite boolean algebra. Acta
Sci. Math. Szeged, 22(75-81):4, 1961.

[121] A. Roy, P. Kar, S. Misra, and M.S. Obaidat. D3: Distributed approach for the
detection of dumb nodes in wireless sensor networks. International Journal of
Communication Systems, 30(1):e2913, 2017.



Bibliography 131

[122] Y. Saad. Sparskit: a basic tool kit for sparse matrix computations-version 2.
1994.

[123] Y. Saad. Iterative Methods for Sparse Linear Systems: Second Edition. Society
for Industrial and Applied Mathematics, 2003.

[124] Yousef Saad and Henk A Van Der Vorst. Iterative solution of linear systems
in the 20th century. Numerical Analysis: Historical Developments in the 20th
Century, pages 175–207, 2001.

[125] A. Schönhage. Partial and total matrix multiplication. SIAM Journal on
Computing, 10(3):434–455, 1981.

[126] P. Selin, K. Hasegawa, and H. Obara. Available bandwidth measurement tech-
nique using impulsive packet probing for monitoring end-to-end service quality
on the internet. In The 17th Asia Pacific Conference on Communications,
pages 518–523. IEEE, 2011.

[127] A. Shi, W. Shen, Y. Li, L. He, and D. Zhao. Implementation and analysis
of jacobi iteration based on hybrid programming. In 2010 International
Conference On Computer Design and Applications, volume 2, pages V2–311.
IEEE, 2010.

[128] V. Simoncini and D. B. Szyld. Recent computational developments in krylov
subspace methods for linear systems. Numerical Linear Algebra with Applica-
tions, 14(1):1–59, 2007.

[129] A. Singla, C-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data
centers randomly. In Presented as part of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), pages 225–238,
2012.

[130] F. Song, J. Dongarra, and S. Moore. Experiments with Strassen’s algorithm:
From sequential to parallel. In Proceedings Parallel and Distributed Computing
and Systems, (PDCS), 2006.

[131] A. J. Stothers. On the complexity of matrix multiplication. Journal of
Complexity, 19:43–60, 2003.

[132] G. Strang. Linear Algebra and Its Applications, Fourth Ed. Thomson
Brooks/Cole, 2006.

[133] V. Strassen. Gaussian elimination is not optimal. Numerische mathematik,
13(4):354–356, 1969.

[134] R.R. Swain, P.M. Khilar, and S.K. Bhoi. Heterogeneous fault diagnosis for
wireless sensor networks. Ad Hoc Networks, 69:15–37, 2018.

[135] S. Tati, S. Silvestri, T. He, and T. La Porta. Robust network tomography in
the presence of failures. In IEEE ICDCS, 2014.



Bibliography 132

[136] S. Tati, S. Silvestri, T. He, and T. La Porta. Robust network tomography
in the presence of failures. In 2014 IEEE 34th International Conference on
Distributed Computing Systems, pages 481–492. IEEE, 2014.

[137] CORPORATE The MPI Forum. Mpi: A message passing interface. In Proceed-
ings of the 1993 ACM/IEEE Conference on Supercomputing, Supercomputing
’93, page 878–883, New York, NY, USA, 1993. Association for Computing
Machinery.

[138] M. Thottethodi, S. Chatterjee, and A.R. Lebeck. Tuning strassen’s matrix
multiplication for memory efficiency. In SC’98: Proceedings of the 1998
ACM/IEEE Conference on Supercomputing, pages 36–36. IEEE, 1998.

[139] A. M. Turing. Rounding-off errors in matrix processes. The Quarterly Journal
of Mechanics and Applied Mathematics, 1(1):287–308, 1948.

[140] UG3.3: GALILEO UserGuide. 2018. Last accessed 11 Jan 2019.

[141] Y. Vardi. Network tomography: Estimating source-destination traffic in-
tensities from link data. Journal of the American statistical association,
91(433):365–377, 1996.

[142] E. Wang, Q. Zhang, B. Shenand G. Zhang, X. Lu, Q. Wu, and Y. Wang.
Intel math kernel library. In High-Performance Computing on the Intel® Xeon
Phi™, pages 167–188. Springer, 2014.

[143] J. H. Wilkinson. The algebraic eigenvalue problem, volume 87. Clarendon
press Oxford, 1965.

[144] V.V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In
Proceedings Forty-fourth Annual ACM Symposium on Theory of Computing,
page 887–898, 2012.

[145] C-Q. Yang and B. P. Miller. Critical path analysis for the execution of parallel
and distributed programs. In The 8th International Conference on Distributed
Computing Systems, pages 366–373. IEEE, 1988.

[146] W. Zeng, R. Guo, F. Luo, and X. Gu. Discrete heat kernel determines discrete
riemannian metric. Graphical Models, 74(4):121–129, 2012.

[147] R. Zhang, S. Newman, M. Ortolani, and S. Silvestri. A network tomogra-
phy approach for traffic monitoring in smart cities. IEEE Transactions on
Intelligent Transportation Systems, 19(7):2268–2278, 2018.


	Introduction
	Network Performance Analysis through Boolean Network Tomography
	Parallelization of Fundamental Operations in Numerical Linear Algebra

	Acronyms
	I Network Performance Analysis through Boolean Network Tomography
	Introduction to Part I
	Preliminaries in Boolean Network Tomography

	Fundamental Identifiability Bounds in BNT
	Motivations
	Related work
	Problem formulation
	Identifiability
	Bounding identifiability

	General network monitoring
	Arbitrary routing
	Design via Incremental Crossing Arrangement (ICA)
	Consistent routing

	Performance evaluation
	Bound Analysis
	Tightness Evaluation on Real Topologies

	Conclusions

	Resources Bounds for Identifiability in BNT
	Introduction
	Problem formulation
	General network monitoring
	Arbitrary Routing
	Consistent routing

	Experimental Results
	Topologies
	Benchmark heuristic
	Tests

	Conclusions
	An analogy with separating systems

	Failure Localization through Progressive Network Tomography
	Introduction
	Related Work
	Problem Formulation
	Bayesian utility of path probing

	Stochastic optimization of PMP
	The PoPGreedy approach
	Optimality approximation
	Computational Complexity

	Failure centrality
	Centrality-based Utility
	Probing Algorithm with Centrality: FaCeGreedy

	Dynamic Failures
	Experimental Results
	Metrics
	Benchmark solutions
	Tests

	Conclusions
	Derivation of the minimum value of U(a|OT) subject to P(Z|OT)(0,1)


	II Parallelization of Fundamental Operations in Numerical Linear Algebra
	Introduction to Part II
	Preliminaries in Numerical Linear Algebra and HPC

	Efficiently Parallelizable Strassen-Based Multiplication of a Matrix by its Transpose
	Introduction
	Related work
	AtA
	AtA in detail
	Computational Complexity
	Space complexity
	Cache Complexity

	Parallel AtA
	Preliminary phase: task assignment
	Shared-memory AtA
	Distributed-memory AtA

	Performance Evaluation
	Experimental Setup
	Metrics
	Sequential
	Shared memory
	Distributed memory

	Conclusions

	A Hybrid Solver for Quasi-Block Diagonal Linear Systems
	Introduction and preliminary notions
	Related Work
	Preconditioned Jacobi for Quasi-Block Diagonal Linear Systems
	Algorithm convergence

	Hybrid Preconditioned Jacobi Implementation
	Technical details

	Performance Evaluation
	Experimental setup
	HPJ vs Sequential
	HPJ vs Intel MKL PARDISO

	Conclusions

	Conclusions
	Acknoledgements
	Bibliography


