REGULARIZING EFFECT OF THE INTERPLAY BETWEEN COEFFICIENTS IN SOME NONLINEAR DIRICHLET PROBLEMS WITH DISTRIBUTIONAL DATA

DAVID ARCOYA, LUCIO BOCCARDO, LUIGI ORSINA

Abstract

We prove that the solution u of the Dirichlet problem (1.1) below has exponential summability under the only assumption that there exists $R>0$ such that $|F(x)|^{2} \leq R a(x)$; furthermore we prove the boundedness of u under the slightly stronger assumption that there exists $R>0$ such that $|F(x)|^{p} \leq R a(x), p>2$.

1. Introduction and statement of the results

In this paper, we study the existence of regular (with respect to the summability or boundedness) weak solutions of the problem

$$
\begin{equation*}
u \in W_{0}^{1,2}(\Omega):-\operatorname{div}(M(x, \nabla u))+a(x) u=-\operatorname{div}(F) . \tag{1.1}
\end{equation*}
$$

where Ω is a bounded set in \mathbb{R}^{N} and $-\operatorname{div}(M(x, \nabla u))$ is a classical nonlinear differential operator, defined by a Carathéodory function $M(x, \xi)$ satisfying, for some $0<\alpha \leq \beta$, and for almost every x in Ω,

$$
\left\{\begin{array}{l}
M(x, \xi) \xi \geq \alpha|\xi|^{2}, \quad|M(x, \xi)| \leq \beta|\xi|, \quad \forall \xi \in \mathbb{R}^{N}, \tag{1.2}\\
{[M(x, \xi)-M(x, \eta)](\xi-\eta)>0, \quad \forall \xi, \eta \in \mathbb{R}^{N}, \quad \xi \neq \eta .}
\end{array}\right.
$$

Our key assumption is that the function $a(x)$ and the vector-valued function $F(x)$ are such that

$$
\begin{gather*}
0 \leq a(x) \in L^{1}(\Omega) \tag{1.3}\\
\exists R>0 \text { such that }|F(x)|^{2} \leq R a(x) . \tag{1.4}
\end{gather*}
$$

The existence of bounded solutions for (1.1) can be proved, without assumption (1.4), if $|F|$ belongs to $L^{m}(\Omega)$, for some $m>N$. This is a consequence of the positivity of a (assumption (1.3)) and of Stampacchia-type estimates (see [12]): see the Appendix. Note that, in our case, since a belongs to $L^{1}(\Omega)$ it follows from (1.4) that $|F|$ belongs to $L^{2}(\Omega)$, so that (once again by the fact that a is positive), existence of a solution u in $W_{0}^{1,2}(\Omega)$ can be proved using classical arguments (see the first part of Theorem 2.1 in Section 2 and the Appendix). We shall prove in the second part of the cited theorem that $e^{q u^{2}}-1$ belongs to $W_{0}^{1,2}(\Omega)$ for every $q<\frac{\alpha}{R}$.

This result must be compared with the corresponding one in [1] where the same problem is studied replacing the term $-\operatorname{div}(F)$ with function source $f(x) \in L^{1}(\Omega)$. In this case, existence of a bounded solution in $W_{0}^{1,2}(\Omega)$, and not only an exponentially summable one, is obtained showing the regularizing effect of the term $a(x) u$ when condition (1.4) holds true. Recents works studying this effect can be found in [2] (see also $[5,6,7,9,10,11])$.

In the case of problem (1.1), the boundedness of solutions under assumption (1.4) (as it happens for Lebesgue data in [1]) remains as an open question. We prove in Theorem 3.1 of Section 3 that solutions are bounded under a slightly stronger assumption on F, namely that

$$
|F(x)|^{p} \leq R a(x), \quad \text { for some } p>2 .
$$

On the other hand, in Section 4, working in the radial case, we give an example of a function a and a vector-valued function F satisfying (1.4) such that the corresponding problem (1.1) has a bounded solution, and not only an exponentially summable one.

In order to prove the cited theorems we follow an approximation method, that is we approximate the vector-valued function F by a sequence of bounded vector-valued functions F_{n} for which there is a solution u_{n} in $W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ of the problem by the results of the Appendix. Since u_{n} belongs to $L^{\infty}(\Omega)$, this will allow us to use either exponential, or power-like, test functions in the problem.

Throughout the paper, we will use the following functions of one real variable, depending on a parameter $k>0$:

$$
T_{k}(s)=\max (-k, \min (s, k)), \quad G_{k}(s)=s-T_{k}(s)=(|s|-k)_{+} \operatorname{sgn}(s) .
$$

2. Exponential estimates

Theorem 2.1. If assumptions (1.2), (1.3) and (1.4) hold true, then there exists $u \in$ $W_{0}^{1,2}(\Omega)$ solving (1.1); i.e., satisfying that

$$
\int_{\Omega} M(x, \nabla u) \nabla \varphi+\int_{\Omega} a(x) u \varphi=\int_{\Omega} F(x) \nabla \varphi, \quad \forall \varphi \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega) .
$$

Furthermore, for every $q<\frac{\alpha}{R}$,

$$
\begin{equation*}
\mathrm{e}^{q u^{2}}-1 \in W_{0}^{1,2}(\Omega) . \tag{2.1}
\end{equation*}
$$

Proof. Let $\left\{F_{n}\right\}$ be a sequence of $L^{\infty}(\Omega)$ functions, strongly convergent to F in $\left(L^{2}(\Omega)\right)^{N}$, and such that

$$
\begin{equation*}
\left|F_{n}\right| \leq|F|, \quad \forall n \in \mathbb{N} \tag{2.2}
\end{equation*}
$$

For instance, it is possible to choose

$$
F_{n}(x)=\left\{\begin{array}{cl}
F(x), & \text { if }|F(x)| \leq n, \\
n \frac{F(x)}{|F(x)|}, & \text { if }|F(x)|>n .
\end{array}\right.
$$

Note that, as a consequence of (2.2), if F satisfies (1.4), then every function F_{n} satisfies also assumption (1.4) with the same constant R.

Since $\left|F_{n}\right|$ belongs to $L^{\infty}(\Omega)$, for every n in \mathbb{N}, by the results in the Appendix there exists a solution u_{n} of the problem

$$
\begin{equation*}
u_{n} \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega):-\operatorname{div}\left(M\left(x, \nabla u_{n}\right)\right)+a(x) u_{n}=-\operatorname{div}\left(F_{n}\right) \tag{2.3}
\end{equation*}
$$

We now choose u_{n} as test function in (2.3). Using (1.2), and the fact that the sequence $\left\{F_{n}\right\}$ is bounded in $\left(L^{2}(\Omega)\right)^{N}$ thanks to (1.4) (recall that a belongs to $L^{1}(\Omega)$), we obtain

$$
\begin{aligned}
\alpha \int_{\Omega}\left|\nabla u_{n}\right|^{2} & \leq \int_{\Omega} M\left(x, \nabla u_{n}\right) \nabla u_{n}+\int_{\Omega} a(x) u_{n}^{2} \\
& =\int_{\Omega} F_{n}(x) \nabla u_{n} \leq \frac{1}{2 \alpha} \int_{\Omega}\left|F_{n}(x)\right|^{2}+\frac{\alpha}{2} \int_{\Omega}\left|\nabla u_{n}\right|^{2}
\end{aligned}
$$

from which it follows that the sequence $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1,2}(\Omega)$, as well as that

$$
\begin{equation*}
\int_{\Omega} a(x) u_{n}^{2} \leq C . \tag{2.4}
\end{equation*}
$$

Since the sequence $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1,2}(\Omega)$, then, up to subsequences, u_{n} converges to some function u weakly in $W_{0}^{1,2}(\Omega)$ and almost everywhere.

A consequence of the almost everywhere convergence of u_{n} to u is that the sequence $\left\{a(x) u_{n}\right\}$ converges almost everywhere to $a(x) u$. Let now E be a measurable subset of Ω; we then have, if $k>0$, and recalling (2.4),

$$
\begin{aligned}
\int_{E} a(x)\left|u_{n}\right| & =\int_{\left\{\left|u_{n}\right|<k\right\} \cap E} a(x)\left|u_{n}\right|+\int_{\left\{\left|u_{n}\right| \geq k\right\} \cap E} a(x)\left|u_{n}\right| \\
& \leq k \int_{E} a(x)+\frac{1}{k} \int_{\Omega} a(x) u_{n}^{2} \leq k \int_{E} a(x)+\frac{C}{k} .
\end{aligned}
$$

Let now $\varepsilon>0$, and let first k large enough so that $\frac{C}{k} \leq \frac{\varepsilon}{2}$, and then meas (E) small enough in order to have

$$
\int_{E} a(x) \leq \frac{\varepsilon}{2 k} .
$$

We have therefore proved that if meas (E) is small enough, then

$$
\int_{E} a(x)\left|u_{n}\right| \leq \varepsilon, \quad \forall n \in \mathbb{N}
$$

that is to say, the sequence $\left\{a(x)\left|u_{n}\right|\right\}$ is uniformly equi-integrable. Thus, by Vitali theorem, we have that

$$
a(x) u_{n} \quad \text { strongly converges to } a(x) u \text { in } L^{1}(\Omega) .
$$

Since the principal part of the differential operator is nonlinear, we need more information on the sequence $\left\{u_{n}\right\}$. It would be possible to use a result on the almost everywhere convergence of $\left\{\nabla u_{n}\right\}$, proved in [3], but we prefer to give below a simple (thanks to our assumptions) self-contained proof.

Let now φ be a function in $W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$, and choose $u_{n}-\varphi$ as test function in (2.3). We obtain

$$
\int_{\Omega} M\left(x, \nabla u_{n}\right) \nabla\left(u_{n}-\varphi\right)+\int_{\Omega} a(x) u_{n}\left(u_{n}-\varphi\right)=\int_{\Omega} F_{n} \nabla\left(u_{n}-\varphi\right) .
$$

Adding and subtracting the term

$$
\int_{\Omega} M(x, \nabla \varphi) \nabla\left(u_{n}-\varphi\right),
$$

we arrive at

$$
\begin{aligned}
\int_{\Omega} & {\left[M\left(x, \nabla u_{n}\right)-M(x, \nabla \varphi)\right] \nabla\left(u_{n}-\varphi\right)+\int_{\Omega} M(x, \nabla \varphi) \nabla\left(u_{n}-\varphi\right) } \\
& \quad+\int_{\Omega} a(x) u_{n}\left(u_{n}-\varphi\right)=\int_{\Omega} F_{n} \nabla\left(u_{n}-\varphi\right) .
\end{aligned}
$$

Dropping the first term, which is positive thanks to (1.2), and using the weak convergence of u_{n} to u in $W_{0}^{1,2}(\Omega)$, the almost everywhere convergence of u_{n} to u, and the
strong convergence of $a(x) u_{n}$ in $L^{1}(\Omega)$, as well as the strong convergence of F_{n} to F in $\left(L^{2}(\Omega)\right)^{N}$, we obtain
$\int_{\Omega} M(x, \nabla \varphi) \nabla(u-\varphi)+\int_{\Omega} a(x) u(u-\varphi) \leq \int_{\Omega} F(x) \nabla(u-\varphi), \quad \forall \varphi \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$.
We now follow [4]: let $k>0$, let $t \neq 0$, let ψ in $W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$, and choose $\varphi=$ $T_{k}(u)-t \psi$ in the above identity. We obtain
$\int_{\Omega} M\left(x, \nabla\left(T_{k}(u)-t \psi\right)\right) \nabla\left(G_{k}(u)+t \psi\right)+\int_{\Omega} a(x) u\left(G_{k}(u)+t \psi\right) \leq \int_{\Omega} F(x) \nabla\left(G_{k}(u)+t \psi\right)$.
Letting k tend to infinity, using that u belongs to $W_{0}^{1,2}(\Omega)$, that $a(x) u G_{k}(u) \geq 0$, and that $G_{k}(u)$ tends to zero, we arrive at

$$
t \int_{\Omega} M(x, \nabla(u-t \psi)) \nabla \psi+t \int_{\Omega} a(x) u \psi \leq t \int_{\Omega} F(x) \nabla \psi
$$

Dividing by $t>0$ and then letting t tend to zero, we obtain that

$$
\int_{\Omega} M(x, \nabla u) \nabla \psi+\int_{\Omega} a(x) u \psi \leq \int_{\Omega} F(x) \nabla \psi
$$

while dividing by $t<0$ and then letting t tend to zero, we obtain

$$
\int_{\Omega} M(x, \nabla u) \nabla \psi+\int_{\Omega} a(x) u \psi \geq \int_{\Omega} F(x) \nabla \psi
$$

so that

$$
\int_{\Omega} M(x, \nabla u) \nabla \psi+\int_{\Omega} a(x) u \psi=\int_{\Omega} F(x) \nabla \psi, \quad \forall \psi \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)
$$

that is, u is a solution of (1.1).
Now, let $t>0$ and choose $\left(\mathrm{e}^{t u_{n}^{2}}-1\right) \operatorname{sgn}\left(u_{n}\right)$ as test function in (2.3). Note that such a choice is allowed since u_{n} belongs to $L^{\infty}(\Omega)$. We obtain

$$
2 t \int_{\Omega} M\left(x, \nabla u_{n}\right) \nabla u_{n}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}+\int_{\Omega} a(x)\left|u_{n}\right|\left(\mathrm{e}^{t u_{n}^{2}}-1\right)=2 t \int_{\Omega} F_{n}(x) \nabla u_{n}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}
$$

Using Young inequality in the right hand side, as well as (1.4), we have that, for some $B>0$,

$$
\begin{aligned}
2 t \int_{\Omega} F_{n}(x) \nabla u_{n}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}} & \leq 2 t B \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}+\frac{2 t}{4 B} \int_{\Omega}\left|F_{n}(x)\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}} \\
& \leq 2 t B \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}+\frac{t R}{2 B} \int_{\Omega} a(x)\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}
\end{aligned}
$$

Using (1.2) in the left hand side we have that

$$
2 t \int_{\Omega} M\left(x, \nabla u_{n}\right) \nabla u_{n}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}} \geq 2 t \alpha \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}
$$

so that, putting the inequalities together, we have that

$$
2 t(\alpha-B) \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}+\int_{\Omega} a(x)\left[\left|u_{n}\right|\left(\mathrm{e}^{t u_{n}^{2}}-1\right)-\frac{t R}{2 B}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}\right] \leq 0
$$

which can be rewritten as

$$
\begin{equation*}
2 t(\alpha-B) \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}+\int_{\Omega} a(x)\left|u_{n}\right|\left[\mathrm{e}^{t u_{n}^{2}}\left(1-\frac{t R}{2 B}\right)-1\right] \leq 0 \tag{2.5}
\end{equation*}
$$

Let now $0<\delta<1, B=(1-\delta) \alpha$, and t such that $\frac{t R}{2 B}=1-\delta$, that is $t=\frac{2(1-\delta)^{2} \alpha}{R}$; with this choice of B and t, (2.5) becomes

$$
\begin{equation*}
\frac{4 \delta(1-\delta)^{2} \alpha^{2}}{R} \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}+\int_{\Omega} a(x)\left|u_{n}\right|\left[\delta \mathrm{e}^{t u_{n}^{2}}-1\right] \leq 0 . \tag{2.6}
\end{equation*}
$$

Let now $T=\sqrt{\frac{-\log (\delta)}{t}}$, and note that

$$
\delta \mathrm{e}^{t u_{n}^{2}}-1 \geq 0 \quad \text { on the set }\left\{\left|u_{n}\right| \geq T\right\} .
$$

We therefore have that
$\frac{4 \delta(1-\delta)^{2} \alpha^{2}}{R} \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}}+\int_{\left\{\left|u_{n}\right| \geq T\right\}} a(x)\left|u_{n}\right|\left[\delta \mathrm{e}^{t u_{n}^{2}}-1\right] \leq \int_{\left\{\left|u_{n}\right|<T\right\}} a(x)\left|u_{n}\right|\left[1-\delta \mathrm{e}^{t u_{n}^{2}}\right]$,
which then yields, dropping a positive term,

$$
\frac{4 \delta(1-\delta)^{2} \alpha^{2}}{R} \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}} \leq T \int_{\left\{\left|u_{n}\right|<T\right\}} a(x) \leq T \int_{\Omega} a(x)=C(a, \alpha, R, \delta),
$$

that is

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}} \leq C(a, \alpha, R, \delta) . \tag{2.7}
\end{equation*}
$$

Let now $q>0$ such that $2 q<t$. Then

$$
|s|^{2} \mathrm{e}^{2 q s^{2}} \leq C(q)|s| \mathrm{e}^{t s^{2}},
$$

for every s in \mathbb{R}, since the function $s \mapsto|s| \exp \left[(2 q-t) s^{2}\right]$ is bounded, being $2 q-t<0$. Thus, we have that

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right|^{2} \mathrm{e}^{2 q u_{n}^{2}} \leq C(q) \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}},
$$

which, together with (2.7), implies that

$$
\int_{\Omega}\left|\nabla\left(\mathrm{e}^{q u_{n}^{2}}-1\right)\right|^{2} \leq C(q) \int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|u_{n}\right| \mathrm{e}^{t u_{n}^{2}} \leq C(q, a, \alpha, R, \delta),
$$

thus proving

$$
\mathrm{e}^{q u_{n}^{2}}-1 \quad \text { is bounded in } W_{0}^{1,2}(\Omega),
$$

for every $q<\frac{t}{2}=\frac{(1-\delta)^{2} \alpha}{R}$. Choosing δ small enough, we have that q can be chosen any real number smaller than $\frac{\alpha}{R}$. Furthermore, the sequence $\left\{\mathrm{e}^{q u_{n}^{2}}-1\right\}$, which is bounded in $W_{0}^{1,2}(\Omega)$, weakly converges in the same space to some function v; since the function $s \mapsto \mathrm{e}^{q s^{2}}-1$ is continuous, the almost everywhere convergence of u_{n} to u implies that $v=\mathrm{e}^{q u^{2}}-1$, which then belongs to $W_{0}^{1,2}(\Omega)$ for every $q<\frac{\alpha}{R}$.

REmark 2.2. Note that if we improve the assumption on a to $a \in L^{\frac{N}{2}}(\Omega)$, then from (1.4) it follows that $|F| \in L^{N}(\Omega)$ and the exponential summability of u is proved in [12].

3. Bounded solutions

Theorem 3.1. If assumptions (1.2) and (1.3) hold true and there is $p>2$ such that

$$
\begin{equation*}
|F(x)|^{p} \leq R a(x), \tag{3.1}
\end{equation*}
$$

then there exists a solution $u \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ of (1.1).
Proof. As in the proof of Theorem 2.1, we consider the sequence $\left\{u_{n}\right\} \subset W_{0}^{1,2}(\Omega) \cap$ $L^{\infty}(\Omega)$ of solutions of (2.3). Recall that we have shown in the mentioned proof that $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1,2}(\Omega)$ and that, up to a subsequence, it converges almost everywhere to a solution u of (1.1). Thus, we only need to prove that $\left\{u_{n}\right\}$ is bounded in $L^{\infty}(\Omega)$.

Since u_{n} belongs to $L^{\infty}(\Omega)$, we can choose $\frac{p-2}{p}\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}} G_{k}\left(u_{n}\right)$ as test function in (2.3) to obtain, using twice Young inequality (once with exponents 2 and 2, and once with exponents $\frac{p}{2}$ and $\frac{p}{p-2}$) and (2.2):

$$
\begin{aligned}
\int_{\Omega} & M\left(x, \nabla u_{n}\right) \nabla G_{k}\left(u_{n}\right)\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}}+\frac{p-2}{p} \int_{\Omega} a(x)\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}} G_{k}\left(u_{n}\right) u_{n} \\
& =\int_{\Omega} F_{n}(x) \nabla G_{k}\left(u_{n}\right)\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}} . \\
& \leq \int_{\Omega}\left|F_{n}(x)\right|\left|\nabla G_{k}\left(u_{n}\right)\right|\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}} \\
& =\int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|\left|G_{k}\left(u_{n}\right)\right|^{\frac{1}{p-2}}\left|F_{n}(x)\right|\left|G_{k}\left(u_{n}\right)\right|^{\frac{1}{p-2}} \\
& \leq B \int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}}+\frac{1}{4 B} \int_{\Omega}\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}}\left|F_{n}(x)\right|^{2} \\
& =B \int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}}+\frac{1}{4 B} \int_{\left\{\left|u_{n}\right| \geq k\right\}}^{\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}}\left|F_{n}(x)\right|^{2} \cdot 1} \\
& \leq B \int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}}+\frac{1}{4 B} \int_{\left\{\left|u_{n}\right| \geq k\right\}}^{\left|G_{k}\left(u_{n}\right)\right|^{\frac{p}{p-2}}\left|F_{n}(x)\right|^{p}+\int_{\left\{\left|u_{n}\right| \geq k\right\}} C_{B, p}} .
\end{aligned}
$$

Using now (1.2) and that $G_{k}\left(u_{n}\right)$ has the same sign as u_{n}, we therefore deduce that

$$
\begin{aligned}
& (\alpha-B) \int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}}+\frac{p-2}{p} \int_{\Omega} a(x)\left|u_{n}\right|\left|G_{k}\left(u_{n}\right)\right|^{\frac{p}{p-2}} \\
& \quad \leq \frac{1}{4 B} \int_{\left\{\left|u_{n}\right| \geq k\right\}}\left|G_{k}\left(u_{n}\right)\right|^{\frac{p}{p-2}}|F(x)|^{p}+\int_{\left\{\left|u_{n}\right| \geq k\right\}} C_{B, p} .
\end{aligned}
$$

Choosing $B=\frac{\alpha}{2}$ and using (3.1) we thus obtain
$\frac{\alpha}{2} \int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}}+\int_{\left\{\left|u_{n}\right| \geq k\right\}} a(x)\left[\frac{p-2}{p}\left|u_{n}\right|-\frac{R}{2 \alpha}\right]\left|G_{k}\left(u_{n}\right)\right|^{\frac{p}{p-2}} \leq \int_{\left\{\left|u_{n}\right| \geq k\right\}} C_{\alpha, p}$.
Note that

$$
a(x)\left[\frac{p-2}{p}\left|u_{n}\right|-\frac{R}{2 \alpha}\right]\left|G_{k}\left(u_{n}\right)\right|^{\frac{p}{p-2}} \geq 0 \quad \text { if } \quad\left|u_{n}\right| \geq \frac{p}{p-2} \frac{R}{2 \alpha}=k_{0} .
$$

Thus, for $k \geq k_{0}$, the second integral is positive and we have

$$
\left.\left(\frac{p-2}{p-1}\right)^{2} \int_{\Omega}|\nabla| G_{k}\left(u_{n}\right)\right)\left.^{\frac{p-1}{p-2}}\right|^{2}=\int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}\left|G_{k}\left(u_{n}\right)\right|^{\frac{2}{p-2}} \leq \int_{\left\{\left|u_{n}\right| \geq k\right\}} C_{\alpha, p}
$$

Thus, by Sobolev inequality, we have

$$
\left.\left[\int_{\Omega} \mid G_{k}\left(u_{n}\right)\right)^{\frac{p-1}{p-2} 2^{*}}\right]^{\frac{2}{2^{*}}} \leq \int_{\left\{\left|u_{n}\right| \geq k\right\}} C_{\alpha, p}, \quad \forall k \geq k_{0}
$$

Let now $h>k$; since $\left|G_{k}\left(u_{n}\right)\right| \geq h-k$ on the set $\left\{\left|u_{n}\right| \geq h\right\}$ (which is contained in the set $\left\{u_{n} \geq k\right\}$), we have

$$
\begin{aligned}
(h-k)^{\frac{2(p-1)}{p-2}} \operatorname{meas}\left(\left\{\left|u_{n}\right| \geq h\right\}\right)^{\frac{2}{2^{*}}} & \leq\left[\int_{\left\{\left|u_{n}\right| \geq h\right\}}\left|G_{k}\left(u_{n}\right)\right|^{\frac{p-1}{p-2} 2^{*}}\right]^{\frac{2}{2^{*}}} \\
& \leq\left[\int_{\Omega}\left|G_{k}\left(u_{n}\right)\right|^{\frac{p-1}{p-2} 2^{*}}\right]^{\frac{2}{2^{*}}} \leq C_{\alpha, p} \operatorname{meas}\left(\left\{\left|u_{n}\right| \geq k\right\}\right)
\end{aligned}
$$

which can be rewritten as

$$
\operatorname{meas}\left(\left\{\left|u_{n}\right| \geq h\right\}\right) \leq \frac{C_{\alpha, p, N}}{(h-k)^{\frac{2^{*}(p-1)}{p-2}}} \operatorname{meas}\left(\left\{\left|u_{n}\right| \geq k\right\}\right)^{\frac{2^{*}}{2}}, \quad \forall h>k \geq k_{0}
$$

Since $\frac{2^{*}}{2}>1$, a result by Stampacchia (see [12]) yields that there exists $C>k_{0}$ such that meas $\left(\left\{\left|u_{n}\right| \geq C\right\}\right)=0$; thus, $\left|u_{n}\right| \leq C$ almost everywhere, and so $\left\{u_{n}\right\}$ is bounded in $L^{\infty}(\Omega)$. By the almost everywhere convergence of u_{n} to u, we conclude that u belongs to $L^{\infty}(\Omega)$.

Remark 3.2. Under the assumptions of Theorem 3.1, the proof of the the strong convergence of $a(x) u_{n}$ to $a(x) u$ in $L^{1}(\Omega)$ is easier. Indeed, since $\left\{u_{n}\right\}$ is bounded in $L^{\infty}(\Omega)$, we can use Lebesgue theorem instead of Vitali theorem.

4. The linear radial case - An example

Let us consider the linear equation

$$
\begin{equation*}
-\Delta U+\frac{A}{|x|^{2}} U=-\operatorname{div}\left(-\frac{B(|x|)}{|x|^{2}} x\right), \quad|x|<1 \tag{4.1}
\end{equation*}
$$

Here $A>0$ and B is a continuous and differentiable function on $[0,1]$; being continuous, B is bounded, and so there exists $B \geq 0$ such that $|B(|x|)| \leq B$. Thus, one has, if $a(x)=\frac{A}{|x|^{2}}$, and $F(x)=-\frac{B(|x|)}{|x|^{2}} x$, that

$$
|F(x)|^{2} \leq R a(x),
$$

with $R=\frac{B^{2}}{A}$, so that the data of the problem satisfy the assumptions of Theorem 2.1. Note that $|F|$ does not belong to $L^{N}(\Omega)$, so that Stampacchia type results cannot be applied.

Passing in radial coordinates, with $r=|x|$, one has that

$$
-\operatorname{div}\left(-\frac{B(|x|)}{|x|^{2}} x\right)=\frac{(N-2) B(r)}{r^{2}}+\frac{B^{\prime}(r)}{r} .
$$

We look for radial solutions U; i.e., satisfying

$$
-U^{\prime \prime}(r)-\frac{N-1}{r} U^{\prime}(r)+\frac{A}{r^{2}} U(r)=\frac{(N-2) B(r)}{r^{2}}+\frac{B^{\prime}(r)}{r} .
$$

Let now w be the solution of

$$
-w^{\prime \prime}(r)-\frac{N-1}{r} w^{\prime}(r)+\frac{A}{r^{2}} w(r)=\frac{(N-2) B(r)}{r^{2}},
$$

i.e., of the equation

$$
-\Delta w+a(x) w=\frac{(N-2) B(|x|)}{|x|^{2}}=f(x) .
$$

Since $|f(x)| \leq Q a(x)$, with $Q=\frac{B(N-2)}{A}$, by the results of [1] one has that w belongs to $L^{\infty}(\Omega)$, with $|w| \leq Q$. On the other hand, $U=u+w$, where, by difference, u is such that

$$
\begin{equation*}
-u^{\prime \prime}(r)-\frac{N-1}{r} u^{\prime}(r)+\frac{A}{r^{2}} u(r)=\frac{B^{\prime}(r)}{r} . \tag{4.2}
\end{equation*}
$$

We are going to prove that also u is a bounded function, so that (4.1) will have a bounded solution, and not only an exponentially summable one, as stated by Theorem 2.1. Therefore, the result of Theorem 2.1 may not be sharp; furthermore, we do not have an example of an equation with an unbounded solution.

As for equation (4.2), we look for solutions of the form

$$
u(r)=r^{\sigma} z(r), \quad \sigma=\frac{2-N+\sqrt{(N-2)^{2}+4 A}}{2} .
$$

Note that $\sigma>0$ (since $A>0$), and that

$$
\sigma(\sigma+N-2)=A
$$

Since

$$
u^{\prime}(r)=\sigma r^{\sigma-1} z(r)+r^{\sigma} z^{\prime}(r), \quad u^{\prime \prime}(r)=\sigma(\sigma-1) r^{\sigma-2} z(r)+2 \sigma r^{\sigma-1} z^{\prime}(r)+r^{\sigma} z^{\prime \prime}(r),
$$

substituting in the equation we arrive at

$$
-r^{\sigma} z^{\prime \prime}(r)-\frac{N+2 \sigma-1}{r} r^{\sigma} z^{\prime}(r)+\frac{A-\sigma(\sigma+N-2)}{r^{2}} r^{\sigma} z(r)=\frac{B^{\prime}(r)}{r},
$$

from which we obtain, since the third term vanishes by the choice of σ, and dividing by $-r^{\sigma}$,

$$
\frac{1}{r^{N+2 \sigma-1}}\left[r^{N+2 \sigma-1} z^{\prime}(r)\right]^{\prime}=z^{\prime \prime}(r)+\frac{N+2 \sigma-1}{r} z^{\prime}(r)=-\frac{B^{\prime}(r)}{r^{\sigma+1}} .
$$

Multiplying by $r^{N+2 \sigma-1}$, and integrating between 0 and r, we obtain

$$
r^{N+2 \sigma-1} z^{\prime}(r)=-\int_{0}^{r} \rho^{N+\sigma-2} B^{\prime}(\rho) d \rho,
$$

that is

$$
z^{\prime}(r)=-\frac{1}{r^{N+2 \sigma-1}} \int_{0}^{r} \rho^{N+\sigma-2} B^{\prime}(\rho) d \rho .
$$

Integrating again, this time between r and 1 , yields

$$
z(r)=\int_{r}^{1} \frac{1}{t^{N+2 \sigma-1}}\left(\int_{0}^{t} \rho^{N+\sigma-2} B^{\prime}(\rho) d \rho\right) d t
$$

Changing the order of integration leads to

$$
\begin{aligned}
z(r) & =\int_{0}^{1} \rho^{N+\sigma-2} B^{\prime}(\rho)\left(\int_{\max (r, \rho)}^{1} \frac{d t}{t^{N+2 \sigma-1}}\right) d \rho \\
& =\frac{1}{2-N-2 \sigma} \int_{0}^{1} \rho^{N+\sigma-2} B^{\prime}(\rho)\left[1-\max (r, \rho)^{2-N-2 \sigma}\right] d \rho
\end{aligned}
$$

Recalling the definition of u, we therefore have that

$$
(N+2 \sigma-2) u(r)=r^{\sigma} \int_{0}^{1} \rho^{N+\sigma-2} B^{\prime}(\rho)\left[\max (r, \rho)^{2-N-2 \sigma}-1\right] d \rho=\mathrm{I}+\mathrm{II}-\mathrm{III},
$$

where

$$
\begin{aligned}
& \mathrm{I}=r^{\sigma} \int_{0}^{r} \rho^{N+\sigma-2} B^{\prime}(\rho) r^{2-N-2 \sigma} d \rho=r^{2-N-\sigma} \int_{0}^{r} \rho^{N+\sigma-2} B^{\prime}(\rho) d \rho, \\
& \mathrm{II}=r^{\sigma} \int_{r}^{1} \frac{B^{\prime}(\rho)}{\rho^{\sigma}} d \rho, \mathrm{III}=r^{\sigma} \int_{0}^{1} \rho^{N+\sigma-2} B^{\prime}(\rho) d \rho .
\end{aligned}
$$

Integrating by parts, we thus have

$$
\begin{aligned}
\mathrm{I} & =\left.r^{2-N-\sigma} \rho^{N+\sigma-2} B(\rho)\right|_{0} ^{r}-(N+\sigma-2) r^{2-N-\sigma} \int_{0}^{r} \rho^{N+\sigma-3} B(\rho) d \rho \\
& =B(r)-(N+\sigma-2) r^{2-N-\sigma} \int_{0}^{r} \rho^{N+\sigma-3} B(\rho) d \rho .
\end{aligned}
$$

The first term is bounded by B; as for the second, we have

$$
\left|(N+\sigma-2) r^{2-N-\sigma} \int_{0}^{r} \rho^{N+\sigma-3} B(\rho) d \rho\right| \leq B(N+\sigma-2) r^{2-N-\sigma} \int_{0}^{r} \rho^{N+\sigma-3} d \rho=B,
$$

so that $\sqrt[I]{ }$ is bounded. Integrating again by parts, we also have

$$
\mathrm{II}=r^{\sigma} \int_{r}^{1} \frac{B^{\prime}(\rho)}{\rho^{\sigma}} d \rho=r^{\sigma} B(1)-B(r)+\sigma r^{\sigma} \int_{r}^{1} \frac{B(\rho)}{\rho^{\sigma+1}} d \rho .
$$

The first two terms are bounded; as for the third, again by the boundedness of B we have

$$
\left|\sigma r^{\sigma} \int_{r}^{1} \frac{B(\rho)}{\rho^{\sigma+1}} d \rho\right| \leq B \sigma r^{\sigma} \int_{r}^{1} \frac{d \rho}{\rho^{\sigma+1}}=B r^{\sigma}\left(\frac{1}{r^{\sigma}}-1\right) \leq B
$$

so that II is bounded. Finally, we have, integrating by parts

$$
\mathrm{III}=r^{\sigma} \int_{0}^{1} \rho^{N+\sigma-2} B^{\prime}(\rho) d \rho=r^{\sigma} B(1)-(N+\sigma-2) r^{\sigma} \int_{0}^{1} \rho^{N+\sigma-3} B(\rho) d \rho .
$$

The first term is bounded since $\sigma>0$, while for the second we have

$$
\left|(N+\sigma-2) r^{\sigma} \int_{0}^{1} \rho^{N+\sigma-3} B(\rho) d \rho\right| \leq B(N+\sigma-2) r^{\sigma} \int_{0}^{1} \rho^{N+\sigma-3} d \rho=B r^{\sigma}
$$

which is bounded since $\sigma>0$. Thus, also III is bounded.
Summing up, u is bounded, and so U is bounded (by some quantities depending on B and on A).

Appendix: existence for bounded data F

We prove here the existence of a solution of (1.1) if $|F|$ is a function in $L^{m}(\Omega)$, with $m>N(>2)$. First of all, let $a_{n}(x)=\min (a(x), n)$. Then, by a straightforward application of the results of [8] (note that the datum $-\operatorname{div}(F)$ belongs to the dual of $W_{0}^{1,2}(\Omega)$), there exists a solution u_{n} in $W_{0}^{1,2}(\Omega)$ of

$$
-\operatorname{div}\left(M\left(x, \nabla u_{n}\right)\right)+a_{n}(x) u_{n}=-\operatorname{div}(F) .
$$

Choosing u_{n} as test function, and using (1.2), as well as Young inequality, we have that

$$
\alpha \int_{\Omega}\left|\nabla u_{n}\right|^{2}+\int_{\Omega} a_{n}(x) u_{n}^{2}=\int_{\Omega} F(x) \nabla u_{n} \leq \frac{1}{2 \alpha} \int_{\Omega}|F(x)|^{2}+\frac{\alpha}{2} \int_{\Omega}\left|\nabla u_{n}\right|^{2},
$$

from which it follows that the sequence $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1,2}(\Omega)$. Furthermore, using Stampacchia's result (see [12]), and the fact that by (1.3) $a_{n} \geq 0$, one can prove that
the sequence $\left\{u_{n}\right\}$ is also bounded in $L^{\infty}(\Omega)$. Thus, up to subsequences, u_{n} converges to some function u in $W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$, weakly in $W_{0}^{1,2}(\Omega)$, *-weakly in $L^{\infty}(\Omega)$ and almost everywhere in Ω. Since $0 \leq a_{n}(x) \leq a(x) \in L^{1}(\Omega)$, the boundedness of $\left\{u_{n}\right\}$ in $L^{\infty}(\Omega)$, and its almost everywhere convergence to u allow us to apply Lebesgue theorem to prove that

$$
a_{n}(x) u_{n} \quad \text { strongly converges to } a(x) u \text { in } L^{1}(\Omega)
$$

In order to pass to the limit in the approximate equations, we will use Minty's trick: let φ in $W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$, and choose $u_{n}-\varphi$ as test function in the equation for u_{n}. We obtain

$$
\int_{\Omega} M\left(x, \nabla u_{n}\right) \nabla\left(u_{n}-\varphi\right)+\int_{\Omega} a_{n}(x) u_{n}\left(u_{n}-\varphi\right)=\int_{\Omega} F \nabla\left(u_{n}-\varphi\right)
$$

Adding and subtracting the term

$$
\int_{\Omega} M(x, \nabla \varphi) \nabla\left(u_{n}-\varphi\right)
$$

and using the fact that $M(x, \cdot)$ is monotone, we arrive, after passing to the limit, to

$$
\int_{\Omega} M(x, \nabla \varphi) \nabla(u-\varphi)+\int_{\Omega} a(x) u(u-\varphi) \leq \int_{\Omega} F \nabla(u-\varphi) .
$$

Choosing $\varphi=u-t \psi$, with $t \neq 0$ and ψ in $W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$, we thus have that

$$
t \int_{\Omega} M(x, \nabla(u-t \psi)) \nabla \psi+t \int_{\Omega} a(x) u \psi \leq t \int_{\Omega} F \nabla \psi
$$

Dividing by $t>0$ and letting t tend to zero, we arrive at

$$
\int_{\Omega} M(x, \nabla u) \nabla \psi+\int_{\Omega} a(x) u \psi \leq \int_{\Omega} F \nabla \psi
$$

while the reverse inequality can be obtained dividing by $t<0$, and then letting t tend to zero. Thus, we have proved that

$$
\int_{\Omega} M(x, \nabla u) \nabla \varphi+\int_{\Omega} a(x) u \varphi=\int_{\Omega} F(x) \nabla \varphi, \quad \forall \varphi \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)
$$

that is, problem (1.1) has a solution u belonging to $W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega)$.

Acknowledgments

We would like to thank the anonymous referee for the careful reading of the manuscript and for the many useful remarks.

References

[1] D. Arcoya, L. Boccardo. Regularizing effect of the interplay between coefficients in some elliptic equations. J. Funct. Anal., 268 (2015), 1153-1166.
[2] D. Arcoya, L. Boccardo. Regularizing effect of L^{q} interplay between coefficients in some elliptic equations. J. Math. Pures Appl. (9), 111 (2018), 106-125.
[3] L. Boccardo, F. Murat. Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. TMA, 19 (1992), 581-597.
[4] L. Boccardo, L. Orsina. Existence results for Dirichlet problems in L^{1} via Minty's lemma. Appl. Anal., 76 (2000), 309-317.
[5] S. Buccheri. Some nonlinear elliptic problems with $L^{1}(\Omega)$ coefficients. Nonlinear Anal., 177 (2018), 135-152.
[6] M. Degiovanni, M. Marzocchi. Quasilinear elliptic equations with natural growth and quasilinear elliptic equations with singular drift. Nonlinear Anal., 185 (2019), 206-215.
[7] S. Huang, Q. Tian, J. Wang, J. Mu. Stability for noncoercive elliptic equations. Electron. J. Differential Equations, (2016), Paper No. 242, 11.
[8] J. Leray, J.-L. Lions. Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France, 93 (1965), 97-107.
[9] Y. Mi, S. Huang, C. Huang. Combined effects of the Hardy potential and lower order terms in fractional Laplacian equations. Bound. Value Probl., (2018), Paper No. 61, 12.
[10] L. Moreno-Merida, M.M. Porzio. Existence and asymptotic behavior of a parabolic equation with L^{1} data. Asymptotic Analysis, 1 (2019), 1-17.
[11] F. Oliva. Regularizing effect of absorption terms in singular problems. J. Math. Anal. Appl., 472 (2019), 1136-1166.
[12] G. Stampacchia. Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.
D.A.: Departamento de Análisis Matemático, Universidad de Granada.

Email address: darcoya@ugr.es

L.B., L.O.: Dipartimento di Matematica, "Sapienza" Università di Roma.
Email address: boccardo@mat.uniroma1.it
Email address: orsina@mat.uniroma1.it

