
Unknown Input Observer design for coupled PDE/ODE linear systems

Andrea Cristofaro† and Francesco Ferrante‡

Abstract— The problem of unknown input observer design
is considered for coupled PDE/ODE linear systems subject to
unknown boundary inputs. Assuming available measurements
at the boundary of the distributed domain, the synthesis of the
observer is based on geometric conditions and Lyapunov meth-
ods. Numerical simulations support and validate the theoretical
findings, illustrating the robust estimation performances of the
proposed unknown input observer.

I. INTRODUCTION

A. Background and motivation

The dynamics of several complex physical processes is
described by partial differential equations, modelling the
evolution of spacial distributed phenomena. Examples may
be found in hydraulic networks [1], multiphase flow [2],
transmission networks [3], road traffic networks [4] or gas
flow in pipelines [5].
Actuators and sensors are typically placed at the bound-
ary of the domain, while the state variables are neither
directly controlled nor measured in the interior. Classical
problems such as feedback control or state estimation be-
come particularly interesting and challenging in this context,
leading to the interest for design of boundary controllers
and boundary observers. Among the wide range of systems
governed by PDEs, hyperbolic systems encountered a major
interest from the control community. In this regard, suffi-
cient conditions for controllability and observability of first-
order hyperbolic systems are discussed in [6]. The stability
problem for boundary control in hyperbolic systems has
been largely explored; see for instance [7] [8] [9] and the
references therein. The boundary observability of infinite
dimensional linear systems has been formally investigated in
[10] using semigroups defined on Hilbert spaces. Observer
design for linearized first-order hyperbolic systems based
on Lyapunov methods has been addressed in [11], where
exponential convergence is guaranteed using boundary in-
jections. For quasilinear first-order hyperbolic systems, the
tasks of boundary stabilization and state estimation have been
considered in [12].
In some cases, e.g. in the presence of processes having
both a distributed and a finite-dimensional behavior, the
partial differential equations may be entangled with ordinary
differential equations. Typically, such interconnection takes
place at the boundary of the space domain, with the output
of the ODEs providing dynamic boundary conditions for
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the PDEs. A LMI-based approach to boundary observer
design for conservation laws with static and asymptotically
stable dynamic boundary control is proposed in [13]. A
design procedure for backstepping observers is proposed in
[14] based on the solution of an auxiliary set of PDEs for
computing a suitable change of coordinates. A thoughtful
stability analysis is presented in [15] introducing cross-terms
defined through supplementary integral states, while non-
diagonal Lyapunov functionals are considered in [16] for
coupled systems of scalar PDEs and ODEs and in [17] for
more general systems.

B. Contributions

Adopting a setting similar to [13], [17], the problem
of observer design in the presence of unknown inputs is
considered in this paper. Assuming that partial measurements
are available at both boundary points of the domain, the goal
is to design a full state, i.e. infinite-dimensional, observer
with the property of providing an estimation error completely
decoupled from the unknown inputs. In the literature, esti-
mators with such property are referred to as Unknown Input
Observers (UIO) and have been recognized as an excellent
tool for robust estimation and fault diagnosis [18], [19], [20].
In the infinite-dimensional context, the problem of UIO de-
sign has been previously investigated in [21] from an abstract
viewpoint. The construction proposed in the paper hinges
upon the validity of some geometric conditions, and involves
the combined use of left and right boundary outputs in order
to guarantee an exponentially stable error dynamics. Unlike
in the finite-dimensional case, Unknown Input Observers
for coupled PDEs/ODEs shows an interesting new feature:
the finite-dimensional part of the observer is allowed to be
not internally stable, whereas stabilization is provided by
the interconnection with the infinite-dimensional part, i.e.
through the right boundary output injection.
An extensive numerical simulation study is provided to high-
light this and other features of the proposed UIO, and show
the robust estimation accuracy as compared to a Luenberger-
like observer.

C. Notation

The sets R≥0 and R>0 represent the set of nonnegative
and positive real scalars, respectively. The symbols Sn+ and
Dn+ denote, respectively, the set of real n × n symmetric
positive definite matrices and the set of diagonal positive
definite matrices. For a matrix A ∈ Rn×m, A> denotes
the transpose of A and when n = m, He(A) = A + A>.
Given two matrices A and B, A ⊕ B denotes the block
diagonal matrix with matrices A and B on its diagonal.



For a symmetric matrix A, positive definiteness (negative
definiteness) and positive semidefiniteness (negative semidef-
initeness) are denoted, respectively, by A � 0 (A ≺ 0) and
A � 0 (A � 0). Given A,B ∈ Snx+ , we say that A � B
(A � B) if A − B � 0 (A − B � 0). Given A ∈ Snx+ ,
λmax(A) and λmin(A) stand, respectively, for the largest
and the smallest eigenvalue of A. In partitioned symmetric
matrices, the symbol • stands for symmetric blocks. Given
x, y ∈ Rn, we denote by 〈x, y〉Rn the standard Euclidean
inner product. Let U ⊂ R, V ⊂ Rn, and f : U → V , we
denote by ‖f‖L2 = (

∫
U
|f(x)|2dx)

1
2 the L2 norm of f . In

particular, we say that f ∈ L2(U ;V ) if ‖f‖L2 is finite.
Given f, g ∈ L2(U ;V ), 〈f, g〉L2 :=

∫
U
〈f(x), g(x)〉Rndx.

Let U ⊂ R be open and V be a linear normed space,

H1(U ;V ) :=
{
f ∈L2(U ;V ) :f is absolutely continuous on U,
d

dz
f ∈ L2(U ;V )

}
where d

dz stands for the weak derivative of f . The symbol
Ck(U ;V ) denotes the set of class k functions f : U → V .
Let I ⊂ R, φ : I → H1(U ;V ), t ∈ I , and z? ∈ U . We
denote by (φ(t))(z?) ∈ V the value of φ(t) taken at z = z?.
Let X and Y be linear normed spaces, U be an open subset
of X , f : U → Y , and x ∈ U , we denote by Df(x) the
Fréchet derivative of f at x.

D. Preliminary results and definitions

In this paper, we consider linear abstract dynamical sys-
tems of the form:

ẋ = A x (1)

where x ∈ Z is the system state, Z is the state space that we
assume to be a Hilbert space equipped with the inner product
〈·, ·〉Z , and A is a linear operator on Z . In particular, we
consider the following notion of solution for (1).

Definition 1 Let I ⊂ R≥0 be an interval containing zero.
A function ψ ∈ C0(I,Z) is a solution to (1) if for all t ∈ I∫ t

0

ψ(s)ds ∈ dom A , ψ(t) = ψ(0) + A

∫ t

0

ψ(s)ds

Moreover, we say that ψ is maximal if its domain cannot be
extended and it is complete if sup I =∞. ◦

We say that (1) is well-posed if for any ξ ∈ Z , there exists
a unique maximal solution ϕ to (1) such that ϕ(0) = ξ.

Definition 2 We say that (1) is globally exponentially stable
if there exist λ, κ > 0 such that any maximal solution ϕ to
(1) is complete and satisfies the following bound:

‖ϕ(t)‖Z ≤ κe−λt‖ϕ(0)‖Z ∀t ∈ domϕ

Theorem 1 (Global Exponential Stability) Let (1) be
well-posed. Assume that there exists a Fréchet differentiable
functional V : Z → R and positive scalars α1, α2, α3, and
p such that the following items hold:

(i) For all x ∈ Z

α1‖x‖pZ ≤ V (x) ≤ α2‖x‖pZ
(ii) For all x ∈ dom A

DV (x)A x ≤ −α3‖x‖pZ
Then, (1) is globally exponentially stable.

II. PROBLEM STATEMENT AND SOLUTION OUTLINE

A. Problem Setup

Let Ω := (0, 1), we consider a system of nx linear
1-D conservation laws with dynamic boundary conditions
formally written as:

∂tx(t, z) + Λ∂zx(t, z) = 0 (t, z) ∈ R≥0× Ω

x(t, 0) = Mχ(t) ∀t ∈ R≥0
χ̇(t) = Aχ(t) +Bu(t) + Ew(t) ∀t ∈ R≥0
y1(t) = Cx(t, 0) ∀t ∈ R≥0
y2(t) = Nx(t, 1) ∀t ∈ R≥0

(2)
where ∂tx and ∂zx denote, respectively, the derivative of
x with respect to “time” and the “spatial” variable z,
(z 7→ x(·, z), χ) ∈ L2(0, 1;Rnx) × Rnχ is the system state,
u ∈ Rnu is a known boundary input, w ∈ Rnw is an
unknown boundary input and y = [y1 y2] ∈ Rny1+ny2 is
a measured output. We assume that the matrices Λ ∈ Dnx+ ,
M ∈ Rnx×nχ , A ∈ Rnχ×nχ , B ∈ Rnχ×nu , E ∈ Rnχ×nw ,
C ∈ Rny1×nx and N ∈ Rny2×nx are given.
The goal is to design an observer providing an exponentially
convergent estimate (z 7→ x̂(·, z), χ̂) of the state (z 7→
x(·, z), χ), irrespectively of the unknown input w.

B. Outline of the Proposed Observer

We propose an unknown input observer of the following
form

∂tx̂(t, z) + Λ∂zx̂(t, z) = 0 (t, z) ∈ R≥0× Ω
x̂(t, 0) = Mχ̂(t) ∀t ∈ R≥0
ψ̇(t) = Fψ(t) +RBu(t) +Ky1(t)

+L(y2(t)− ŷ2(t))
∀t ∈ R≥0

χ̂(t) = ψ(t) +Hy1(t) ∀t ∈ R≥0
ŷ2(t) = Nx̂(t, 1) ∀t ∈ R≥0

where matrices F,R,K,H,L are to be designed. At this
stage, define the following two estimation errors εx := x− x̂
and εχ := χ−χ̂. The dynamics of these errors are as follows:

∂tεx(t, z) + Λ∂zεx(t, z) = 0
εx(t, 0) = Mεχ(t)
ε̇χ(t) = −Fψ(t) +Guu(t)

+Gww(t) +Gχχ(t)− LNεx(t, 1)

(t, z) ∈ R≥0× Ω
(3a)

where:
Gu := (I −R−HCM)B

Gw := (I −HCM)E

Gχ := (A−HCMA−KCM)

(3b)



Paralleling the literature of unknown input observers [18],
[22], in the result given next we propose a selection of the
observer gains R,F , and K enabling to decouple the error
dynamics (3a) from the input u and the state χ.

Proposition 1 Let K1 ∈ Rnχ×ny1 and select:

R = (I −HCM) (4a)
K = K1 +K2, K2 = FH (4b)
F = A−HCMA−K1CM (4c)

Then, the error dynamics (3a) turn into:

∂tεx(t, z) + Λ∂zεx(t, z) = 0 (t, z) ∈ R≥0× Ω
εx(t, 0) = Mεχ(t) ∀t ∈ R≥0
ε̇χ(t) = Fεχ(t) +REw(t)− LNεx(t, 1) ∀t ∈ R≥0

(5)

Proof: The result can be easily proven by noticing that
the selection of the matrices R,K, and F in (4) implies that
matrices Gu and Gχ in (3b) are zero.
As a second step, to decouple the error dynamics (5) from
the unknown input w, we select R, or actually H , such that

RE = (I −HCM)E = 0

To ensure that a feasible solution for the above identity exists,
we consider the following assumption:

Assumption 1 The matrix CME is full column rank.

Indeed, as long as the following assumption is in force,
CME is left invertible and one can pick:

H = E((CME)>CME)−1(CME)> (6)

This selection ensures that the matrix Gw in (3b) vanishes.
Namely, the error dynamics are totally decoupled from the
unknown input w. In particular, under (4) and (6) the error
dynamics read:

∂tεx(t, z) + Λ∂zεx(t, z) = 0 (t, z) ∈ R≥0× Ω
εx(t, 0) = Mεχ(t) ∀t ∈ R≥0
ε̇χ(t) = Fεχ(t)− LNεx(t, 1) ∀t ∈ R≥0

(7)

C. Abstract Formulation of the Error Dynamics

To analyze the error dynamics (7), we reformulate those
as an abstract differential equation on the Hilbert space

Z := L2(0, 1;Rnx)× Rnχ

endowed with the following inner product:

〈(f1, f2), (g1, g2)〉Z := 〈f1, g1〉L2 + 〈f2, g2〉Rnχ (8)

In particular, let X := H1(0, 1;Rnx) × Rnχ ⊂ Z . Define
D := {(εx, εχ) ∈ X : εx(0) = Mεχ} and consider the fol-
lowing operator:

A : dom A → Z

(εx, εχ) 7→
(
−Λ d

dz 0
0 F

)(
εx
εχ

)
+

(
0

−LNεx(1)

)
(9)

where dom A := D. Then, the error dynamics can be for-
mally written as the following abstract differential equation
on the Hilbert space Z(

ε̇x
ε̇χ

)
= A

(
εx
εχ

)
(10)

Invoking the results given in [17, Section III.A], the error

system (7) can be proven to be well posed on the state space
Z . This statement is made more precise in the result given
next.

Theorem 2 [17] System (10) is well-posed and its maximal
solutions are complete. �

The following detectability property is instrumental to de-
cide the approach for designing the observer gain matrices.
In particular, while stability of the observer is essentially
granted under the validity of such property, in the opposite
case the observer synthesis requires an additional effort.

Property 1 [Detectability] Let us assume that the expres-
sion of H in (6) is well defined, and set R = (I −HCM)
accordingly. The pair (RA,CM) is detectable. �

III. STABILITY ANALYSIS OF THE ERROR DYNAMICS

The analysis of the stability of the error system depends on
whether the Property 1 holds or not. Therefore, we analyze
the two cases separately.

A. Stability with detectability

The following result provides sufficient conditions for the
design of the proposed observer when Property 1 holds.

Theorem 3 Assume that Property 1 is fulfilled. System (10)
is globally exponentially stable if there exist µ ∈ R>0, P ∈
Dnx+ , Q ∈ S

nχ
+ ,K1 ∈ Rnx×nx and L such that the following

matrix inequality is satisfied:[
−e−µΛP −QLN
• He(F>Q) +M>ΛPM

]
≺ 0 (11)

with F = RA−K1CM .

Proof: For all (εx, εχ) ∈ Z , let us introduce the
candidate Lyapunov functional

V (εx, εχ) :=

∫ 1

0

e−µzε>x (z)Pεx(z)dz + ε>χQεχ (12)

In particular, observe that for all (εx, εχ) ∈ Z one has

α1‖(εx, εχ)‖2Z ≤ V (εx, εχ) ≤ α2‖(εx, εχ)‖2Z (13)

where

α1 := λmin

([
Pe−µ 0
• Q

])
, α2 := λmax

([
P 0
• Q

])
(14)



are strictly positive. Moreover, it can be easily shown that
for all (εx, εχ) ∈ Z:

(hx,hχ)7→DV (εx, εχ)

(
hx
hχ

)
= 2

(∫ 1

0

e−µzε>x (z)Phx(z)dz

+ε>χQhχ
)

Thus, for all (εx, εχ) ∈ dom A :

DV (εx, εχ)A

(
εx
εχ

)
=− 2

∫ 1

0

e−µzε>x (z)ΛP
d

dz
εx(z)dz

+ ε>χ He(QF )εχ

− 2ε>χQLNεx(1)

Integrating by parts, for all (εx, εχ) ∈ dom A one gets:

DV (εx, εχ)A

(
εx
εχ

)
=

∫ 1

0

εx(z)
εx(1)
εχ

>Ψ(z)

εx(z)
εx(1)
εχ

 dz
where for all z ∈ [0, 1]

Ψ(z) :=

 −µe−µzΛP 0 0
• −e−µΛP −Q>LN
• • He(QF ) +M>ΛPM


The latter, by using (11) shows that for all (εx, εχ) ∈ dom A

DV (εx, εχ)A

(
εx
εχ

)
≤ −α3||(εx, εχ)‖2Z (15)

where:
α3 := |λmax (Ψ(1)) |

By the virtue of (13) and (15), Theorem 1 and Theorem 2
ensure that (10) is globally exponentially stable. This ends
the proof.

Remark 1 When µ is fixed, condition (11) can be cast into
a linear matrix inequality (LMI) via the following invertible
change of variables: Y = QK1 and J = QL. In this sense,
the observer gains L and K1 can be efficiently designed via
the solution to an LMI coupled with a line search on the
scalar µ.

Remark 2 It can be noticed that a somewhat trivial solution
to the previous matrix inequality can always be found setting
L = 0. In other words, in the case of detectability of
(RA,CM), there is no need to use the right boundary output
y2 in the observer design. On the other hand, by tuning the
gain L, the observer performance can be improved.

B. Stability without detectability

When Property 1 does not hold, we can directly set
K1 = 0, and consider the following more sophisticated
Lyapunov functional proposed in [17]:

W (εx, εχ) :=

∫ 1

0

[
εx(z)
εχ

]> [
e−µzP T>

• Q

] [
εx(z)
εχ

]
dz

(17)

Accordingly, we can derive a sufficient stability condition
based on the following matrix inequalities:[

e−µP T>

• Q

]
� 0 (18)

Φ(1) ≺ 0 (19)

where Φ is defined in (16) (at the top of the next page).

Theorem 4 Let F = RA and R = I − HCM , where
H is selected as in (6). The error dynamics are globally
exponentially stable if there exist µ ∈ R>0, P ∈ Dnx+ , T ∈
Rnχ×nx , Q ∈ S

nχ
+ , and L ∈ Rnχ×ny2 can be found such

that matrix inequalities (18) and (19) are satisfied.

Proof: The proof follows the same lines as the proof
of Thereom 3. In particular, let, for all (εx, εχ) ∈ Z , W be
defined as in (17). Then, for for all (εx, εχ) ∈ Z one has:

β1‖(εx, εχ)‖2Z ≤W (εx, εχ) ≤ β2‖(εx, εχ)‖2Z (20)

where

β1 := λmin

([
Pe−µ T>

• Q

])
, β2 := λmax

([
P T>

• Q

])
(21)

are strictly positive due to (18). Then, as shown in [17] for
all (εx, εχ) ∈ dom A :

DW (εx, εχ)A

(
εx
εχ

)
=

∫ 1

0

εx(z)
εx(1)
εχ

>Φ(z)

εx(z)
εx(1)
εχ

 dz
(22)

where, for all z ∈ [0, 1], Φ(z) is defined in (16). At this
stage notice that from (19), the following chain of matrix
inequalities holds:

Φ(0) � Φ(z) � Φ(1) ≺ 0 ∀z ∈ [0, 1].

Therefore, for all z ∈ [0, 1], Φ(z) ≺ 0, there exists β3 > 0
such that:

Φ(z) � −β3I ∀z ∈ [0, 1] (23)

in particular
β3 = |λmax (Φ(1)) |

Combining (22) and (23) gives for all (εx, εχ) ∈ dom A :

DW (εx, εχ)A

(
εx
εχ

)
≤ −β3‖(εx, εχ)‖2Z (24)

Thanks to (20) and (24), Theorem 1 ensures that (10) is
globally exponentially stable. This concludes the proof.

Remark 3 Differently from (11), when µ is fixed (18) cannot
be cast into a linear matrix inequality (LMI) via a simple
change of variables. This is due to the presence of the cross
term introduced in the Lyapunov functional (17). A specific
approach to get an LMI-based design algorithm from (18)
has been proposed recently in [23].



Φ(z) =

−µe−µzΛP −T>LN T>F
• −ΛPe−µz −ΛT> −N>L>Q
• • He(QF + TΛM) +M>ΛPM

 (16)

IV. NUMERICAL EXAMPLE

In this section, we showcase the application of the pro-
posed observer in a numerical example. In particular, we
select:

A =

 0 1 0
−1 0 0
0 0 0

 , B = 0, E =

 0
0
1

 ,
M =

[
1 1 1
0 1 0

]
, Λ =

[ √
2 0

0 2

]
, C =

[
1 0

]
and consider the scenario without detectability discussed in
Section III-B. From (6) one gets H = [0 0 1]

>
. Hence

using (4) with K1 = 0 yields:

R =

 1 0 0
0 1 0
−1 −1 0

 , F =

 0 1 0
−1 0 0
1 −1 0

 ,K2 = 0

Notice that the pair (RA,CM) is not detectable. This can be
checked by using the PBH-test of observability. In particular,
if one denotes:

O(s) :=

[
RA− sI
CM

]
=


−s 1 0
−1 −s 0
1 −1 −s
1 1 1

 ∀s ∈ C

Then, it follows that rankO(±j) = 2, showing that
(RA,CM) is not detectable. This prevents one from us-
ing Theorem 3 to design an unknown input observer. To
overcome this problem, we consider the additional boundary
measurement y2 defined in (2) with N = I and make use of
Theorem 4 to design the observer. By relying on the approach
outlined in [23], the following feasible solution to (18) and
(19) is obtained:

L =

 0.02904 −0.01437
0.002278 0.2589
0.3725 −0.2736

 , µ = 1, P =

[
157.5 0

0 104.1

]
,

T =

 −99.98 2.941
−90.95 −79.97
−92.64 6.472

 , Q =

 913.5 312.8 267.2
312.8 907.9 269
267.2 269 284.8


To validate our theoretical findings, next we present some
simulations of the proposed observer1. In these simulations
the unknown input w(t) = sin(2t) is considered and initial
conditions are taken as follows:

x1(0, z) = 0.5(sin(2πz)− 1) ∀z ∈ [0, 1]
x2(0, z) = 0.5(sin(4πz)− 1) ∀z ∈ [0, 1]
χ(0) = (1,−1, 0.5)
x̂(0, z) = 0 ∀z ∈ [0, 1]
χ̂(0) = 0

(25)

1Numerical integration of hyperbolic PDEs is performed via the use of
the Lax-Friedrichs (Shampine’s two-step variant) scheme implemented in
Matlab R© by Shampine [24].
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Fig. 1. Evolution of the estimation error εx from the initial condition in
(25).
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Fig. 2. Evolution of the state χ (solid line) and of its estimate χ̂ (dashed
line) from the initial condition in (25).

Exponential state reconstruction is confirmed by Fig. 1,
and Fig. 2 where the evolution of εx and of the states χ and
χ̂, respectively, are reported. To emphasize the benefit of the
proposed methodology in the presence of unknown inputs,
in Fig. 3 we report the evolution of the squared norm of
the estimation error (εx, εχ) for the proposed observer and
for the standard Luenberger-like observer proposed in [23].
Fig. 2 clearly points out that due to the unknown input w, a
Luenberger-like observer is not effective in this case.

V. CONCLUSIONS AND DISCUSSION

Design of unknown input observers (UIO) for coupled
PDE/ODE linear systems subject to unknown boundary
inputs has been addressed in this paper. The structure of
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Fig. 3. Evolution of ‖(εx, εχ)‖2Z for the proposed observer (solid line)
and for a standard Luenberger-like observer (dashed line).

the proposed UIOs is analogous to their finite-dimensional
version, and the interconnection with the system to be esti-
mated is made by means of injection of the boundary outputs.
The synthesis of observer parameters and gains is based on
geometric conditions and Lyapunov methods. An interesting
feature of the considered infinite-dimensional UIO is that,
even though the finite-dimensional part lacks of detectability
in some cases, the complete error system may still be made
exponentially stable. Properties and performances of the
observer are exploited through extensive simulations.

The interest in considering UIOs lies on their robust
estimation capabilities on the one side and, on the other side,
on their suitability for generating fault detection/isolation
filters. In this regard PDE systems with dynamic boundary
conditions, which fall in the setup considered in this paper,
are prone to actuator faults as many other controlled physical
processes. In order to detect the faults, and identify the
faulty actuators, a bank of unknown input observers can be
designed with the aim of generating complementary residual
signals giving information on the occurrence and the location
of the faults. This can be done, for example, by decoupling
the error from selected inputs only or by projecting the output
of the error system on prescribed directions.

The application of the proposed infinite-dimensional UIO
to fault diagnosis in coupled PDE/ODE linear systems is
object of ongoing research.
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