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Abstract   

Like other spectroscopic methods XPS and AES show characteristic chemical shifts 
depending on the elemental matrix of a compound, however, a satisfactory rationalization of 
the variance of such values is often difficult. By an extension of a previous approach we 
present a theory in a unifying equation which combines several parameters - some of them 
resulting from DFT calculations - which influence the energy of the outgoing electrons and 
thereby seemingly the binding energy. By calculating Bader charges, atomic volumes and site 
potentials we have produced a data basis for a set of chalcogenides and halides of Ba, Zn, Pb 
and Cu to rationalize the spread of measured binding energies and Auger energies. It has 
thereby become possible to quantify different factors separately which bias the measurement 
of the kinetic energies of the outgoing core electrons, both the photo-emitted and the Auger 
electrons. Such an analysis can also trace special features of an open-shell configuration and 
even show up effects of a semiconductor-type. 

 

1 Introduction 

X-ray fluorescence (XFS) and X-ray photoelectron spectroscopy (XPS) together with Auger 
electron spectroscopy (AES) are well known analytical methods to explore the elemental 
composition of materials. Well tabulated characteristic X-ray or electron energies emitted by 
the material under inspection allow identifying the various atomic species more or less 
unambiguously, and the intensity of such emissions may well be used for quantification of the 
elements after calibration of the respective method. However, when looking up the energies in 
an atlas of XPS data we do not find discrete data but ranges of values depending on the 
oxidation state of the elements and of the type of compounds, i.e. the elemental association 
and the bonding type.  

An exact analysis of the kinetic energy of emitted electrons (Ek) by comparison with the 
excitation energy of the X-rays (hν), where Ek + Eb = hν, should give detailed information 
about the binding energy (Eb) in various energy levels in the electron shell of an atom, thereby 
characterizing unambiguously every element. The binding energy of the electrons in different 
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states (core-levels), i.e. the internal energy level from which the electron is finally transferred 
to the “exterior”, is to be measured with respect to some well-defined reference level. As for 
free atoms and molecules the natural reference level is the vacuum level of the spectrometer, 
and for metals the most easily accessible reference level is the Fermi level, i.e. the binding 
energy is measured with respect to the binding energy of a Fermi-level electron with the 
metallic sample and the spectrometer being under electrical equilibrium. As for insulating 
samples the problem of the reference level is complicated by charging of the sample under X-
ray irradiation and by the difficulty to localize the Fermi level within the energy band gap of 
the sample.  There are methods that can be applied to cope with these difficulties and to get 
reliable binding energy data also for insulating samples referenced to the Fermi level of the 
spectrometer, and this reference can be scaled against known binding energies to fix the zero 
point and the linearity of the energy scale. (For more details the interested reader may consult 
Ref.1a, chapter 2.6, pp. 303-326 or Ref. 1b, chapter 1). In a first step we may then assume that 
the binding energy of a core-electron will be given by the equation Eb

FL = hν – Ek
FL, where hν 

is the photon energy and Ek
FL

 is the kinetic energy of the photoelectron measured with respect 
to the spectrometer Fermi level. However, there are numerous effects which can influence the 
energy of the outgoing electron, and in applying this equation we thereby seemingly 
experience changes of the energy level of the respective core electron by them. 

It is well known that such core-level “shifts” of an atom result from so-called initial- and 
final-state effects [1a]. The relative contribution of the two effects is subtle and only partly 
experimentally accessible. According to Koopmans´ theorem we expect that the XPS spectra 
observed represent the electronic states of electrons in the atom before the photoemission 
process (initial state). The initial state effect (ISE) is first a static shift in the orbital energies 
in the ground state of the atom before core ionization due to a specific bonding situation of the 
atom, i.e. it has a direct relationship with the nature of the chemical bonds in which the atom 
is involved. But then the given electronic situation around the nucleus also affects the process 
of leaving of the electron induced by the impinging radiation. The number of electrons present 
and their kind of distribution in space will influence the shielding of the attractive force of the 
nucleus and thereby favour the ionization more or less. A change in the environment may 
modify the ground state valence charge of an atom and therefore the ability of the valence 
electrons to screen the final state hole. 

As a final state effect (FSE) we may first consider the “response” of the electronic system of 
the atom to the creation of a core hole by relaxation processes. This will transfer additional 
energy to the outgoing electron and seemingly reduce the binding energy. Further analysis is 
complicated by final state effects related to the degree to which the extra-atomic environment 
can polarize in response to the ionization of the atom concerned. During the photo-ionization 
process such changes in the electronic environment due to the creation of the core-level 
vacancy also play a large role in influencing the measured binding energy. We imagine that 
such a polarization is essentially a movement of electron charge towards the core-ionized 
atom in the final state, and this again influences the ionization process.  

Photoemission processes occur at time scales sufficiently slow to influence exiting electrons 
via attraction of the core-ionized atom (adiabatic limit), but there are also fast processes 
where the electron is emitted before the core-ionized atom relaxes (sudden limit). So, on the 
whole, for a correct interpretation of the measured values the perturbation of the electronic 
environment during the photoemission must be accounted for.  

This paper will therefore begin with a more detailed description of initial- and final-state 
effects and of the diverse factors of influence. Such introductions into the topic have been 
given in literature before [1-5]. To keep a long story a little shorter we will therefore explain 
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some items in more detail in appendices to promote understanding. In this paper we venture to 
include new results from DFT calculations giving charges, electron densities and site 
potentials in such detailed interpretations. We hope to show how electron densities or charges 
of the atoms and potentials created by the surroundings play an important role as initial state 
effects, and we will also discuss how they contribute to specific final state effects. We venture 
to describe how properties of the ligands will influence the final state in a forthcoming paper. 

2 Theory  

2.1 Initial and final state contributions 

The core-level binding energies are a most important fingerprint of the atoms in different 
environments. For an extensive discussion we refer to Ref. 1b (section 2). We present this 
survey on effects influencing XPS measurements of such binding energies by comparing the 
situation of an isolated atom in the gas phase with that of an atom embedded in chemical 
interactions in a solid. Fig.1 gives a schematic presentation of initial- and final-state effects 
for both cases in such a way as to show how the energy level of a core electron seemingly 
“moves” with respect to a chosen reference level by applying various corrections to eliminate 
different effects. (The height of the steps in the scheme is only qualitative in order to show the 
respective trend.) When “eliminating biases” produced by nucleus shielding, different electron 
densities, charges, site potentials etc. we should end up with the same energy of a specific 
core level in relation to our reference for both species, free atom and atom in the solid. As 
said before, the reference level for the gaseous species is the vacuum level and that for the 
solid is the Fermi level of the spectrometer, and this difference has also to be accounted for in 
the end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1 A pictorial description of the	contributions of initial and final state effects 
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Starting on the left side we describe the situation for the single atom. Given a certain 
excitation energy (hν) the measured kinetic energy of the leaving electron can be converted to 
a binding energy Eb(g)

VLexp = hν - Ek(g)
VLexp. However, this value is “wrong” by the amount to 

which the other electrons around this nucleus have shielded its attracting charge and thereby 
increased the kinetic energy of the photoelectron and seemingly decreased the binding energy. 
Therefore, we must add a first correction term (named k0Q0 for reasons described below) 
moving the energy level downwards and further away from our reference point. A second 
effect has also to be considered. The electronic system will subsequently relax when the core 
hole is produced, and the total energy change of the electronic system is added to the outgoing 
electron biasing our initial measurement in the same direction. So again we must add another 
term (named R1

aQ0, see below) to move the energy level downwards and give a higher 
binding energy. We have then arrived at the “true” energy of the core level E(c)g

theor and could 
define a” true” theoretical binding energy by its distance from our reference and consequently 
also a theoretical kinetic energy of the exiting photon Ek(g)

VLtheor. 

On the right side we start with the experimental result for the atom in a solid. We now 
measure in relation to the Fermi level, and - as said above - for the comparison with the single 
atom we have to relate this zero-level to the vacuum level used before by the so-called work 
function of the solid (Φ). Going to the left we see several steps downwards of which shielding 
effects by a different number of electrons compared to the single atom (kQ) and consequently 
also a different relaxation energy (R1

aQ) are again part of the story. We now have to consider 
relaxation effects induced by the polarization of the surrounding atoms (named Rea) which 
again accelerate the outgoing electron and - last not least - the Madelung potential induced at 
the site of the atom by the whole collective of atoms in the crystal as a “helping hand” for the 
emission in the case of a cationic species (or a slowdown effect for anionic ones). (The graph 
in Fig. 1 gives the situation for a cationic species with a negative value for VM.) The energy 
level (E(c)s

theor) which we now arrive at by all these “corrections” is the same as in the case of 
the free atom. We could calculate the experimental binding energy of an atom in the solid 
starting from the measured value for the free atom by moving in just these steps from left to 
right by first adding the different terms mentioned and then subtracting other terms again to 
go up all the steps reversely which bias the kinetic energy of the outgoing electron. The signs 
in this graph at the diverse steps refer to just this kind of process. 

The difference δ between the experimentally derived core level energies E(c)g
exp and E(c)s

exp 
represents the “chemical shift” of the atom embedded in the solid as compared to the free 
atom, and this is the information we are interested in when doing XPS. 

To give it a concise mathematical description the general expression of the binding energy 
referenced to the Fermi level for the creation of a core hole left behind photoemission of the 
electron orbital ci in a solid may be expressed as 
  
Eb(ci)

FL(atom/solid) = Eb(ci)
VL(free atom) + k0Q0 – kQ + VM - Φsolid – R(ci)         (1a) 

 
where Eb(ci)

VL(free atom) is the binding energy of the free atom referenced to the vacuum 
level [5].  Q0 and Q are the valence charges (in units of number of electrons) of the free atom 
in the gas phase and of the atom in the solid sample under study, k0Q0 (free atom) and kQ 
(atom/solid)  represent the contribution of the valence electrons to the core-ionization energy 
with the factors k0 and k that depend on the inverse of the valence shell radius of the free atom 
and the atom in the solid, respectively, and which may be seen as shielding constants between 
the nucleus and the leaving electron by the valence electrons. A more detailed explanation for 
the terms “k0Q0 – kQ” is given in a separate Appendix A in the Supplement. 
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There is an important connection between the parameters Q and k. A reduction of electron 
numbers due to electron transfer on bonding (Q0>Q) also leads to a contraction of the electron 
cloud in the cationic species. Since k =1/r, this means that k0 < k. So, the two effects are in a 
way counteracting. This will be discussed in more detail in paragraph 5.2. 
 
VM is the Madelung site energy (based on the charge Qcalc given by a different number of 
valence electrons as compared with the free atom (Q0 - Q = Qcalc), and Φsolid is the work 
function of the solid sample that must be added to have, to a good approximation, the binding 
energy referenced to the Fermi level of the solid sample which we assume to be in electrical 
equilibrium with the spectrometer. This term will be dealt with in an own section below 
(paragraph 5.4 and Appendix C in the Supplement). All these quantities described so far are 
related to the so-called initial state effects (ISE). 
Since we focus on charges calculated by DFT (Qcalc) and Madelung potentials based on just 
such charges, we may present Eq. (1a) also in a different form: 
 
Eb(ci)

FL(atom/solid) = Eb(ci)
VL(free atom) + Q0(k0–k) + kQcalc + VM – Φsolid – R(ci) (1b) 

 
where the term VM is negative for a cation or positive for an anion.  
 
The last term in these equations represents the relaxation energy which is to be respected 
when trying to calculate Eb of the atom in the solid from the binding energy of the core level 
ci in the free atom. In general relaxation energies contain an atomic and an extra-atomic part, 
so : R(ci) = Ra(ci) + Rea(ci), and these contributions to the photoelectron process are described 
as final state effects (FSE). 

Our equation describes the “movement” from the free atom to the one in the solid, as 
indicated in Fig.1, so the terms describing the relaxations should describe the “changes of 
relaxation during that movement”. The total relaxation contributions can be formulated as: 

RT(ci) = Ra(ci, free atom) + R(ci) = Ra(ci, free atom) + [Ra(Q) – Ra(Q0)] + Rea(ci, atom/solid).                               

                                                                                                                                          (1b´) 

The first part was “generated” by the relaxation of Q0 valence electrons and all the other core 
electrons. However, this first part must be omitted because we have already registered it as 
internal part of the measured Eb(ci)

VL. So this leaves us with R(ci) for the atom in the solid. 
We prefer to express such terms as product of the number of “acting” electrons times a 
relaxation per electron R1

a. These terms can be calculated when considering the change of the 
number of “acting” electrons when going from the free atom to the one in the solid: 

R(ci) = [Ra(Q) – Ra(Q0)] + Rea(extra-atomic) = - R1
a•(Q0-Q) + Rea(extra-atomic) = 

 = - R1
a•Qcalc + Rea(extra-atomic),                                                                                    (1b´´) 

 i.e. some of the atomic relaxation energy is lost for the cationic species because the valence 
electrons are Q and not Q0 as for the free atom. The full expression of equation (1a) will then 
be 

Eb(ci)
FL(atom/solid) =  

Eb(ci)
VL(free atom) + k0Q0 – kQ + [VM - Φsolid]+ R1

a•Qcalc - R
ea(extra-atomic)              (1c) 

 
or 
Eb(ci)

FL(atom/solid) =  

Jo
urn

al 
Pre-

pro
of



 6

Eb(ci)
VL(free atom) + Q0 (k0– k) +kQcalc + [VM - Φsolid] + R1

a•Qcalc - R
ea(extra-atomic)      (1d) 

 
A similar discussion as the one given in Appendix A (see Supplement) for the meaning of 
k0Q0 - kQ leads us to understand the difference of atomic relaxation energies Ra depending on 
which core level is ionized. It is known that the relaxation energy is small for orbitals whose 
principal quantum number n is smaller than that of the orbital from which photoemission 
takes place. The relaxation energy is not very large either for orbitals where the principal 
quantum number n equals that of the orbital from which the electron is emitted. This too is a 
consequence of the Gauss-theorem applied to the shell structure of the atom. When a charge 
outside a concentric sphere containing electrons is changed this will not influence the field 
inside the sphere. An exact evaluation of these differences is extremely difficult. We therefore 
adhere to the simple definition of a mean relaxation effect per electron. 

The Eqs.(1a and 1b) are a generalization and an extension of previous equations suggested by 
Broughton and Bagus [2a] and Fadley et al. [6]. In order to appreciate their approach we 
present it in a short form in Appendix A (in the Supplement). 
 
In Appendix B (Supplement) we present the application of Eq.(1b) to specific cases that may 
be of interest: a free atom, a free ion and an atom in the metallic state.  
 
In the next sections we will demonstrate how simple and effective the use of our Eq.(1c) can 
be. However, we have first to show how to calculate the final state effects, R(ci), by using the 
Auger parameter concept introduced by C.D. Wagner in 1972 [7]. It makes use of the 
experience that the kinetic energies of Auger electrons show even larger chemical shifts than 
the (ci) core electron binding energies. The analytical utility of the X-ray exited Auger 
transitions was first pointed out by Wagner [7], Castle and Epler [8] and Shirley [9a]. 
 
2.2 Auger parameter 
 
As mentioned before, the energies measured in the XPS experiment should be defined with 
respect to a known reference, i.e. vacuum or Fermi level, as shown in Fig.1. In the case of 
insulating and semiconductor-type solids a significant net positive charge accumulates on the 
surface and these “charging phenomena” make measurements difficult [1]. The C 1s binding 
energy (284.8 eV) from condensing background hydrocarbons onto a charged surface has 
been used for the Fermi level referencing of insulating and semiconducting samples. To cope 
with the charging phenomena C.D. Wagner defined a so-called Auger parameter α [3, 7] 
which he defined as the difference between the kinetic energies of the photoelectron and the 
accompanying Auger electron. It is based on the fact that there is a fixed difference between 
two line energies (Auger and photoelectron) of the same element in the same sample, and that 
charge corrections to the individual peak measurements and work function corrections are 
unnecessary because they cancel during the calculation. Furthermore, vacuum level data can 
directly be compared to Fermi level data. Later he found it more useful to calculate a so-called 
modified Auger parameter α´ merging the binding energy of a core level with the kinetic 
energy of an associated Auger electron as given by the general equation 
 
α' = Eb

FL(c1) + Ek
FL(c1c2c3) = Eb

VL(c1) +
 Ek

VL(c1c2c3)
     (2) 

 
where c1 represents an electron core orbital of a given atom (free atom, atom/metal, 
atom/solid), and c2 and c3 are two core electrons of the same atom. (As for the cases where c2 

and c3 may be a core electron and a valence electron, or two valence electrons, see comments 
in Ref. 3.)  This relation of energies related to different reference levels may at first seem 
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surprising. It must be kept in mind that according to the definition of kinetic energies and 
binding energies the work function cancels out when forming these sums. So, the kinetic 
energy of the Auger (c1c2c3) electron and the binding energy of a core electron of the atom 
under study, recorded in the same spectrum, are added together to obtain a quantity that does 
not depend on the reference level (the vacuum or the Fermi level) and, in the case of 
insulating or semiconductor-type solids, not on any charging phenomena either. 

A schematic presentation of the processes involved in a photoemission of a (c1) core-electron 
and in the Auger (c1c2c3) process is shown in Fig.2.  

                     

 

Fig.2 Schematic presentation of kinetic and binding energies involved in the photoemission of 
a (c1) core-electron and in the Auger (c1c2c3) process 
 
The kinetic energy of Auger electrons itself gives additional information on the chemical state 
of an atom. Wagner [7], Castle and Epler [8], and Shirley [9a] were the first authors who 
pointed out the analytical utility of the X-ray excited Auger transitions in XPS, having 
observed for several elements in different chemical states larger chemical shifts for the 
(c1c2c3) Auger electron kinetic energy with respect to the chemical shift of the (c1) core 
electron binding energy. The combination of Eb

FL(c1) and Ek
FL(c1c2c3) is therefore even more 

valuable. 

For present purposes we shall apply Eq.(2) to Ba, Pb, Zn and Cu compounds in which the 
outer orbitals c2 and c3 are the same (see Supplement).  
 
The kinetic energy of the Auger transition may be written as     

Ek
FL(c1c2c3) = Eb

FL(c1) - Eb
FL(c2) - Eb

FL(c3) – U(c2c3) 
      (3a) 

 
where U(c2c3) represents the effective repulsion energy between the c2 and c3 holes in the 

Jo
urn

al 
Pre-

pro
of



 8

final-state of the Auger process (see Fig.2). This quantity may be written to a good 
approximation as [3, 5]  
U(c2c3) = RT(c2) + RT(c3) – RT(c2c3) + Fa(c2c3)      (3b) 
 
The term Fa(c2c3) represents the LSJ-dependent bare repulsion energy between the c2 and c3 

electrons (holes), depending only on the atom and not on its chemical state. 
For the free atom the kinetic energy of the Auger transition and the effective repulsion energy 
between the c2 and c3 holes in the final state may be written as    

Ek
VL(c1c2c3)free atom = Eb

VL(c1)free atom - Eb
VL(c2)free atom - Eb

VL(c3)free atom – U(c2c3)free atom 
 (3c) 

 
and  
  
U(c2c3)free atom = Ra(c2, free atom) + Ra(c3, free atom) – Ra(c2c3, free atom) + Fa(c2c3) (3d) 
 
The Auger parameters for the atom in the solid under study, and for the free atom, according 
to Eq.(2) can be written as 
 
α'(atom/solid) = Ek

FL(c1c2c3) + Eb
FL(c1) = [Eb

FL(c1) - Eb
FL(c2)] +[ Eb

FL(c1) - Eb
FL(c3)] – U(c2c3) 

               (4a) 
and 
 
α' (free atom) = Ek

VL(c1c2c3)free atom + Eb
VL(c1)free atom = [Eb

VL(c1)free atom - Eb
VL(c2)free atom] + 

[Eb
VL(c1)free atom -  Eb

VL(c3)free atom] – U(c2c3)free atom      
              (4b) 
The difference between the binding energies of two deep core levels of the atom in two 
different chemical states is, to a good approximation, an atomic constant, i.e. the two levels 
have the same chemical shift that is independent from the chemical state [3].  Therefore 
assuming [Eb

FL(c1) - Eb
FL(c2)] = [Eb

VL(c1)free atom - Eb
VL(c2)free atom], and [Eb

FL(c1) -  Eb
FL(c3)] = 

[Eb
VL(c1)free atom -  Eb

VL(c3)free atom] we can write 
 
α'(atom/solid) - α'(free atom) = – U(c2c3) + U(c2c3)free atom      (5a) 
 
Considering the Eqs. (3b and 3d) we may write the Auger parameter shift as 
 
α'(atom/solid) - α'(free atom) = - RT(c2) - RT(c3) + RT(c2c3) + Ra(c2, free atom) + Ra(c3, free 
atom) – Ra(c2c3, free atom)           (5b) 

that according to the equation RT(ci) = Ra(ci, free atom) + R(ci) becomes 

α'(atom/solid) - α'(free atom) = - R(c2) - R(c3) + RT(c2c3) – Ra(c2c3, free atom)               (5c)       

Considering R(ci) =  [Ra(Q) – Ra(Q0)] + Rea(extra-atomic) = - R1
a•(Q0-Q) + Rea(extra-atomic) 

we see that R(c2) = R(c3) = R(c1) = - R1
a•(Q0-Q) + Rea(extra-atomic).                                                        

It is also evident that within the approximations discussed above the total relaxation energies 
are related to each other by the following relations   

RT(c1) = RT(c2) + A1(c1c2)  

RT(c1) = RT(c3) + A1(c1c3)                                

RT(c2) = RT(c3) + A1(c2c3)                     (5e) 
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where A1(c1c2), A1(c1c3) and A1(c2c3)  are atomic constants independent of the chemical state. 

The relaxation energies are dominated by classical Coulomb interaction so that we can assume 
that  

RT(c2c3) = 4 RT(c2) + A2(c2c3)         (5f)
                  

Ra(c2c3, free atom) = 4 Ra(c2, free atom)  + A2(c2c3)       (5g)                                                             

where A2(c2c3) is an atomic constant independent of the chemical state.  

The Auger parameter shift becomes 

α'(atom/solid) - α'(free atom) = 2 R(c1)         (6)
       

Finally, Eq.(6) shows that differences in the relaxation (or polarization) energy, which is a 
valuable piece of chemical information, can be obtained experimentally by using the Auger 
parameter shift between the two chemical states. 

 
2.3 Wagner plot 

The kinetic energy of the (c1c2c3 ; 
2S+1LJ ) Auger electron, the binding energy of the (c1) core 

electron, and the Auger parameter (c1, c1c2c3 ; 
2S+1LJ) can be displayed in a diagram called the 

Wagner plot (WP), which is of considerable analytical utility.  Such a kind of plot was first 
proposed by Wagner in 1979 [7], and such plots are widespread since [3-5]. Note that in this 
plot the abscissa, Eb

FL(c1), is oriented in the negative direction. (Under the approximations 
used to derive Eq.(6), it is evident that the Auger parameter for the atom under study could be 
calculated by adding the kinetic energy of the most intense and sharp (c1c2c3) Auger transition 
to the binding energy of a chosen c1 core level, Eb

FL (c1), depending on what is the most 
suitable core level accessible with the available X-ray source.)  

In case the relation [Eb
FL(c1) - Eb

FL(c2)] = const is not valid, as in case of P and S containing 
compounds - where the 2p core levels of S and P are spatially modified by alteration of the 
atomic environment and can only be considered core-like and not true core-type as the 1s 
electrons - a different approach is necessary to link the Auger parameter shift with the 
relaxation energy, as discussed in Ref. 3 and by Hohlneicher et al.[10]. 
 
The natural reference chemical state is, of course, the free atom state. To put the free atom 
data in the Wagner plot for the atom in solid compounds we move the free atom binding 
energy of the core electron and the kinetic energy of the Auger electron from the vacuum 
level to the Fermi level of the bulk metal according to Eq.(1a), considering k = k0,  Q = Q0,    
VM = 0, and R = 0 : 
 
Eb(c1)

FL(free atom) = Eb(c1)
VL(free atom) - Φmetal             (7a) 

 
Ek

FL(c1c2c3) (free atom) = Ek
VL(c1c2c3) (free atom) + Φmetal

         (7b) 
 
The following equations describe the rationale behind the Wagner plot and show how it can 
be used to estimate initial- and final-state effects.   
 
By using Eqs. (1b) and (6) [3-5] it is possible to demonstrate that  
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Ek

FL(c1c2c3) = I’ – 3Eb
FL(c1)             (8) 

where the quantity I’, called the initial state parameter, is given by the equation 
 
I’(atom/solid) = α'(free atom)  + 2[Eb

VL(free atom) + Q0(k0–k) + kQcalc + VM – Φsolid]    (9a) 
 
The initial state effect is due to the static situation of the system, i.e. the energy levels of the 
electron states in question before the excitation process which are influenced by internal 
mutual interaction of core and valence electrons on the one hand and by external effects such 
as charge formation and external potentials by chemical bonding on the other hand.  
 
Eq.(8) shows that a set of compounds, with similar initial-state effects at the core-ionized site, 
may be described in a Wagner plot by a straight line with a slope of -3 though, on account of 
the aforementioned inversion of the abscissa, it looks like a line having a slope of +3. 
The intercept of the straight line of Eq.(8) with the ordinate, calculated for a given chemical 
state as I’ = Ek

FL(c1c2c3) + 3Eb
FL(c0),  is given by the sum of two quantities separated out of 

Eq.(9a): {α'(free atom)  + 2 [Eb
VL(free atom) + k0Q0]}, which depends only on properties of 

the free atom, and 2 [– k Q0+ kQcalc + VM – Φsolid ], which depends only on the initial-state 
properties of the core-ionized atom in the solid under study.  
 
An experimental confirmation of the relation R(c2c3) ≈ 4 R (and of R = R(c2) = R(c3) = R(c1)) 
can be found in the Wagner plots of several elements drawn using the NIST database [11].  A 
common finding is that a class of compounds with similar initial-state contributions present 
Auger kinetic-energy shifts three times larger in size, and of opposite sign, compared to the 
binding energy shifts (see the WP for Ba, Pb, Zn and Cu compounds shown in Fig.4).  

The initial-state parameter of the free atom, referenced to the Fermi level, is obtained from 
Eq.(9a) considering that Q = Q0, k0 = k, VM = 0, and Φsolid = Φmetal 
 
I’(free atom) = α'(free atom)  + 2 Eb

VL(free atom)  – 2 Φmetal          (9b)                
 
The initial-state parameter shift of the atom in the solid compound with respect to the initial-
state parameter of the free atom is 
 
∆I’ = 2 [(k0Q0 + Φmetal) + kQcalc – k Q0 + VM – Φsolid ]                 (10)  
 
It is important to note that in a Wagner plot a set of compounds with the same relaxation 
energy (constant Auger-parameter values, see Eq.(6))  will be shown, according to Eq.(2), on 
a common line with a slope of -1, (again, apparently with a slope of +1). 
According to Eqs.(1b) and (6) the Auger-parameter shift (i.e. the final-state shift) with respect 
to the free atom is 
 
 ∆α' = 2 R = - 2 Qcalc•R1

a + 2 Rea(extra-atomic)                                    (11) 

The two quantities on the right side may be calculated using quantum-chemical and 
electrostatic models, and the results are found in good agreement with Auger parameter shifts 
[12, 13].            

(In previous work [12] an application of an electrostatic model for estimating Auger 
parameter shifts in an analysis of the local environment was presented. It could be shown that 
the calculated shifts (∆α') are a function of the number, local geometry and electronic 
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polarizability of nearest-neighbour atoms of the core-ionized one. This model describes the 
final-state polarization process at the core-ionized atom by a classical electrostatic calculation 
involving the total electric field “felt” by the ligands, i.e., the one generated by the central 
positive charge plus the one due to the induced dipole on the ligands in the first coordination 
shell. We will not go into further details here.)  

3 Preview 

We give a first résumé. As noticed above it will be difficult to extract values for several of the 
different terms in all these equations from XPS measurements. The definition of the Auger 
parameter and especially the use of Wagner plots allow us to separate initial and final state 
effects and to extract at least possible ranges of variation of binding energies and Auger 
energies influenced by them.  

Quantum chemical calculations give a possibility to estimate energy levels and their 
differences, and a comparison with measured binding energies may be helpful, at least on a 
relative scale. The work presented here focusses on the application of results of DFT 
calculations to quantify several of the terms in Eq.(1a) more accurately, and this pertains 
especially to the electron densities or charges (Q0 and Q) and the dimensions of electron 
clouds (as addressed in the k0 and k values). There is a strong debate whether DFT 
calculations are appropriate to calculate XPS spectra [2b]. We must emphasize that our 
approach is not to be compared with other results described in literature where DFT methods 
were used to define energies of electron core levels. They have been used successfully to 
study core-level spectroscopies and, especially, to determine the main XPS peaks of organic 
molecules. However, DFT is inherently a one electron configuration theory, and more 
complicated multiplets and multi-configurations are not easy to handle with such methods. 
We repeat that this is not the scope of our investigations. We only use DFT to estimate some 
of the parameters needed for the solution of our equation.  

Furthermore, we present values for Madelung site potentials resulting from the specific 
structures of compounds and the charges calculated from a Bader analysis of the electron 
densities. Thorough studies on the effect of Madelung energies on binding energies have been 
published before [14, 15], however, the authors have used formal oxidation states as charges 
for their calculations, and, consequently, they deplore many inconsistencies of their approach. 
It will be shown here that charges resulting from the Bader analysis of the electron 
distributions give far better consistencies with the variations of binding energies by Madelung 
effects. The subtle interaction of the different terms contributing to initial state effects can 
well be demonstrated by dint of such parameters. As a set of compounds for such a 
demonstration we have chosen the mono-chalcogenides and the di-halides of the main group 
element Ba and of Zn as representatives of closed shell configurations and of Pb because of 
its special electron configurations as ns2 element. Additionally, we have included compounds 
of the monovalent transition element Cu and then also compounds of divalent Cu as open 
shell representatives to show how specific electron configurations modify the general picture.  

4 Experimental 

All calculations within the Density Functional Theory formalism were performed using the 
VASP 5.2 package [16, 17] together with the projector-augmented-wave (PAW) method of 
Blöchl [18] and the GGA functional as proposed by Perdew, Burke and Enzerhof (PBE) [19]. 
In some cases we have also repeated the calculations using GW functionals as supplied with 
the VASP package to estimate the possible variations.  
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A cutoff of 550 eV for the expansion of the plane-waves basis set was defined, and the 
integration in the Brillouin zone was done over a Γ-centred mesh of equally spaced k-points 
within the irreducible part of the Brillouin zone using the Tetrahedron method with Blöchl 
corrections [20]. Convergence of the total energy in the calculated structures with the number 
of k-points has been checked. Atoms were allowed to relax to a residual force < 0.01 eV/Å. 
The subsequent Bader analysis was performed on a previously calculated charge density grid 
using the Bader Charge Analysis Code [21, 22].  

The same code also gives the volumes of the electron basins, a value which we have used to 
define a radius of the respective electron clouds which is needed for the k values in Eq.(1a) by 
approximating the volumes by a spherical form. The sum of the radii thereby calculated will 
eventually exceed typical atomic distances resulting from the fact that electron density is not 
spherically distributed and may in part bulge outside the interatomic connection vector. We 
feel that such k values nevertheless give a good estimate. 

The onsite-potentials were calculated using the Ewald-Bertaut method as implemented in the 
programme COUPOT [23]. The transition parameter defining the split between calculations in 
direct or reciprocal space was optimized so as to have an equal number of terms in both parts. 
Variations on further changing this procedure did not result in changes > 0.001 eV. 

When discussing the relation between the VM and the kQ terms in Eq.(1a) in the following 
paragraphs we show how the topology of the different structures influences this relation, and 
we introduce a so-called “geometric factor” GF characterizing the different crystal structures 
of our compounds generally given by GF = VM/q, q being the formal charge of the ion. We 
instead use the charge Qcalc = (Q0-Q) as calculated by DFT (see Eq.(1d) to calculate VM and 
then also to define this factor as GF = VM/Qcalc. The relation of GF to the usual terms used in 
the discussion of Madelung energies may be given as follows.  

The total Madelung factor (MF) of a structure is the sum of Partial Madelung factors (PMF) 
describing the contribution of the individual ions on different crystallographic sites, MF = 
ΣPMF. A “reduced” Partial Madelung factor is defined as PMF* = PMF/ Qcalc

2, and 
correspondingly a “reduced total Madelung factor” is given by MF* = Σ PMF*. It is common 
practice to relate these values to the shortest interatomic distance R. The relation between the 
local Madelung energy VM and PMF is given by  

PMF = -(R/2) • Qcalc •VM or (PMF/R) • (2/ Qcalc) = -VM = GF• Qcalc.                                    
(12a) 

Since PMF/ Qcalc
2 is PMF*, we can write  

(2/R) • PMF* = - GF.                                                                                      (12b) 

So, this geometric factor GF is a kind of short-hand notation of the topology of a structure 
scaled to the shortest interatomic distance and unit charges. 

The binding energies and the Auger energies used in this paper have been chosen from 
literature and from the NIST data base [11] as documented in the tables reported in the 
Supplement. Table 1 presents all calculated data used in the following discussions.  

Table 1 List of compounds and related data (Note that in the fifth column we report the 
product kQ with Q = Q0 – Qcalc.) 
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Com-
pound 

Cation 
charge 
Qcalc 

Cation 
volume 
(Å3) 

k= 
14.4/r 
(eV) 
(r in Å) 

 Madelung 
energy 
term at the 
cationic 
site (eV) 

Geometric 
factor GF Binding 

energy 
Eb (eV) 

Auger 
kinetic 
energy 
(eV) 

Auger 
para-
meter 

Δα´ 
WF 
(eV) 

kQ 
(eV) 

(eV) α´ (eV)   

    (eV)     

Zng     10.12       1028.9 974.4 2003.3 0   

Zns     9.73       1021.7 992.1 2013.8 10.5 4.45 

ZnO-w 1.2 10.31 10.67 8.53 -14.35 -11.96 1022.1 987.7 2009.8 6.5 5.79 

ZnO-s 1.16 10.62 10.56 8.87 -13.65 -11.77 1022.1 987.7 2009.8 6.5 5.79 

ZnS-w 0.81 13.24 9.81 11.67 -8.18 -10.23 1021.6 989.7 2011.3 8 5.26 

ZnS-s 0.80 13.45 9.76 11.71 -8.06 -9.95 1021.8 989.7 2011.3 8 5.26 

ZnSe-w 0.67 14.97 9.42 12.53 -6.5 -9.7 1022.0 989.5 2011.5 8.2 5.12 

ZnSe-s 0.65 15.11 9.39 12.68 -6.34 -9.75 1022.0 989.5 2011.5 8.2 5.12 

ZnTe 0.43 17.3 8.98 14.1 -3.85 -8.95 1021.6 991.3 2012.9 9.6 4.94 

ZnF2-r 1.46 8.15 11.53 6.23 -15.78 -10.81 1021.8 986.2 2008 4.7 7.84 

ZnF2-a 1.43 7.98 11.62 6.62 -15.25 -10.66  1021.8    986.2          2008     4.7 7.84 

ZnCl2 1.03 12.66 9.96 9.66 -7.71 -7.49 1023.7 986.2 2009.9 6.6 6.74 

ZnBr2 0.86 14.01 9.63 10.98 -6.44 -7.49 1023.4 987.3 2010.7 7.4 6.35 

ZnI2 0.64 16.01 9.21 12.53 -4.53 -7.08 1022.5 988.7 2011.2 7.9 5.88 

                        

Bag     5.83       788.7 576.8 1365.5 0   

Bas     5.84       780.6 601.0 1381.6 16.1 2.68 

BaO 1.48 25.13 7.93 4.1 -13.36 -9.03 779.4 597.8 1377.2 11.7 4.49 

BaS 1.42 28.91 7.56 4.38 -11.19 -7.88 779.3 599.2 1378.5 13.0 4.08 

BaSe 1.36 30.14 7.46 4.77 -10.38 -7.63   -   -   -   3.97 

BaTe 1.34 31.72 7.33 4.84 -9.63 -7.19   -   -   -   3.83 

BaF2 1.68 25.50 7.89 2.52 -14.72 -8.76 780.0 595.8 1375.8 10.3 6.62 

BaCl2 1.6 26.94 7.74 3.09 -11.92 -7.45 780.4 596.5 1376.9 11.4 5.69 

BaBr2 1.55 27.54 7.69 3.46 -11.03 -7.12   -   -   -   - 5.36 

BaI2 1.49 30.18 7.46 3.80 -9.86 -6.62   -   -   -   - 4.96 

                        

Pbg     8.18       144.3 81.3 225.6 0   

Pbs     7.3       136.7 96.3 233.0 7.4 3.89 

PbO-t 1.15 29.66 7.5 6.38 -11.85 -10.22 137.7 92.6 230.3 4.5 5.42 

PbS 1.02 25.11 7.93 7.77 -8.61 -8.44 137.5 94.6 232.05 6.45 6.5 

PbSe 0.81 27.84 7.66 9.12 -6.65 -8.21 137.6 94.8 232.35 6.8 4.79 

PbTe 0.63 29.88 7.48 10.25 -4.87 -7.73 137.25 95.5 232.7 7.1 4.62 

PbF2 1.56 22.45 8.23 3.62 -14.4 -9.12 138.5 90.6 229.1 3.5 7.5 

PbCl2 1.3 24.90 7.95 5.55 -9.97 -7.67 138.9 92.1 231.0 5.4 6.44 

PbBr2 1.16 27.21 7.72 6.48 -8.65 -4.79 138.8 92.6 231.4 5.8 6.07 

PbI2 0.93 28.67 7.58 8.11 -5.53 -5.95 138.35 93.4 231.7 6.1 5.62 

                        

Cug      13.4       939.7 900.7 1840.4 0   

Cus      10.18       932.63 918.6 1851.2 10.8 4.48 

Cu2O 0.52 14.48 9.52 4.57 -6.637 -12.76 932.18 917.0 1849.2 8.8 5.33 

Cu2S * 0.38 13.17 9.83 6.09 -3.93 -10.02 932.62 917.2 1849.8 9.4 5 
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Cu2Se * 0.26* 13.03* 9.87* 7.30* -1.91* -7.34* 932.5 917.8 1850.3 9.9 4.91 

Cu2Te 0.11 15.56 9.30 8.28 -0.835 -7.59 - - - - 4.79 

CuCl 0.58 15.45 9.35 3.91 -5.813 -10.02 932.34 915.2 1847.5 7.1 6.09 

CuBr 0.46 16.74 9.07 4.90 -4.431 -9.63 932.27 915.7 1848.0 7.6 5.83 

CuI 0.3 17.94 8.87 6.21 -2.654 -8.85 932.5 916.3 1848.8 8.4 5.5 

CuFeS2 0.55 13.35 9.79 4.40 -5.963 -10.84 932.14 918.0 1850.2 9.8 5.14 

CuO 0.96 11.02 10.43 10.85 -11.595 -12.08 933.76 917.6 1851.3 10.9 5.81 

CuS-1 0.46 14.46 9.53 14.68 -5 -10.86 932.2 918.1 1850.3 9.9 5.28 

CuS-2 0.51 13.69 9.70 14.5 -4.97 -9.74 932.2 918.1 1850.3 9.9 5.28 

CuSe-h-1 0.33 16.46 9.13 15.25 -3.613 -10.95 932.0 918.4 1850.4 10.0 5.14 

CuSe-h-2 0.38 15.44 9.32 15.10 -3.527 -9.28 932.0 918.4 1850.4 10.0 5.14 

CuSe-r-1 0.33 15.73 9.27 15.48 -3.734 -11.32 932.0 918.4 1850.4 10.0 5.14 

CuSe-r-2 0.39 15.33 9.35 15.5 -3.561 -9.13 932.0 918.4 1850.4 10.0 5.14 

CuTe 0.13    13.66 9.71 18.16 -0.380 -2.92 - - - - 4.96 

CuF2 1.29 9.76 10.86 7.71 -14.024 -10.87 936.38 915.4 1851.7 11.3 7.86 

CuCl2 0.84 13.84 9.67 11.22 -6.755 -8.04 935.3 915.1 1850.4 10.0 6.75 

CuBr2 0.66 15.19 9.37 12.56 -4.905 -7.43 934.5 916.1 1850.6 10.2 6.37 

Cu(OH)2 1.19 10.51 10.60 8.58 -13.815 -11.61 934.67 916.3 1850.9 10.5 6.66 

CuSO4 1.18 10.38 10.64 8.72 -13.09 -11.09 936.0 915.9 1851.9 11.5 6.69 
Cu3(PO4)2--
1 

1.13 
11.76 10.21 8.88 -14.616 -12.93 

 
935.85 915.8 

 
1851.6 11.2 6.39 

Cu3(PO4)2--
2 

1.11 
   11.83 10.19 9.07 -15.307 -13.79 

935.85 
915.8 

1851.6 
11.2 6.39 

Cu(NO3)2 1.12 11.18 10.38 9.13 -10.083 -9 935.51 915.0 1850.5 10.1 7.05 

 

w  wurtzite-type    s  sphalerite-type    r  rutile-type    a  α-PbO2-type   

h  hexagonal-type      r  orthorhombic-type  

-1 or -2    different sites in the same structure 

* arithmetic mean of many different sites in the same structure 

 - not available or modification unclear 

5  Discussion 

The influence of bonding type has long been discussed in XPS studies, (see  e.g. Ref.1b 
Chapter 3.1). All approaches consider the charges of the atoms or - more generally speaking - 
the degree of iconicity as an important factor, and this is verified in the following plot (Fig.3) 
where we show how measured binding energies in the form of Auger parameters and cation 
charges calculated by DFT correlate on a ∆EN scale using Pauling´s electronegativity values 
for the Zn compounds under study. To demonstrate the “accuracy” of Auger parameters we 
give mean values and variations for the Zn Auger parameters found in literature for the 
respective Zn compounds. (We have assembled XPS data from literature for all compounds 
discussed in this paper in a Supplement to show how the values may vary depending on 
measuring conditions. We have also selected data from this list which we believe to be more 
reliable for our investigations.) Furthermore, the plot shows how little calculated Bader 
charges change on using different potentials in the DFT calculations (GGA and GW). The 
influence of charge as the result of ∆EN on the Auger parameters is clearly seen, however, the 
correlation is not univariate or linear. 
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Fig. 3 Auger parameters and Bader charges plotted vs. electronegativity differences for Zn 
compounds. Triangles give calculated charges of the Zn cations for GW and GGA potentials, 
circles give mean Auger parameters, squares describe the spread of data in literature. The 
right scale gives the Bader charges and the left one the Auger parameters in eV (see text). 

 

In the following paragraphs we will therefore examine Wagner plots of Ba, Zn, Pb and Cu 
compounds and then analyse initial and final-state effects in more detail in view of the results 
of our DFT calculations. It will become evident how the outcome of such calculations 
contributes to a deeper understanding of the measured values of binding energies.  

5.1 A first overview by Wagner plots 

The plots in Fig.4 (a-e) give an overview of the measured XPS data in the form of Wagner 
plots for Ba, Zn, Pb and Cu compounds. (The data for Cu have been expanded to other than 
chalcogenides and halides in order to demonstrate the striking difference between Cu(I) and 
Cu(II) compounds.) All data on the Eb

FL(c0) core-electron binding energy, the Auger electron 
Ek

FL(c1c2c3) kinetic energy and the Auger parameter α' = Ek
FL(c1c2c3) + Eb

FL(c0)  are reported in 
the Supplement (note that the c0/c1 core levels are 3d5/2 / 3d3/2 for Ba, 4f7/2 / 4f5/2 for Pb, and 
2p3/2 / 2p3/2 for both Zn and Cu).  The dashed reference lines with slope +1 give the orientation 
of constant Auger parameters ranging from the value for the free atom (α´(Ba,Zn,Pb,Cu)g) to the 
one for the element in the respective solid (α´(Ba,Zn,Pb,Cu)s), and the other set with slope +3 
should unite compounds with similar initial state effects.  

As said before, we see that the sequence of abscissa values, i.e. the relation of binding 
energies of an element in different compounds, will not meet our expectations with respect to 
bonding type and charges. The scatter is quite irregular. However, this parameter is at least 
appropriate to classify chalcogenides and halides in different groups, the former all having 
lower binding energies of the respective core levels. It is also interesting to see that different 
structural modifications of a compound may result in different positions of the respective 
ticks, i.e. the structure of the atomic environment influences the binding energy. 
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The situation is a little better when we move a parallel to the two α´ lines from the one giving 
the free atom data to the other for the metal. We cross the values for the different compounds 
in a sequence which is similar to the sequence of electronegativity differences but only on an 
ordinal scale. However, there are still some inconsistencies.  

A similar scan across the diagrams with a line with slope +3 gives quite different results for 
the three series of compounds. The ticks even spread outside the range given by the values for 
the free atom and the elemental metal. We may see a weak tendency of all ticks aligned along 
a line with this slope. But the scatter is quite strong. The halides of Zn and Pb can be grouped 
as having similar initial state effects, but here the fluorides are out of the line. This tells us 
that the various contributions to the initial and final states add up quite differently in these 
compounds. We will therefore study the different terms given in Eq.(1a) in more detail. 

Fig.4 Wagner plots for a) Ba, b) Pb, c) Zn, d and e) Cu. All data used to draw the plots are 
reported in the Supplement.   
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5.2 Initial state effects 

As stated above the contribution to the initial state effects is given by the quantity [Q0(k0-k) + 
kQcalc + VM - Φsolid] which within the framework of our simple model may be calculated 
according to Eq.(1b) and Eq.(6) 
 
Eb(ci)

FL(atom/solid) - Eb(ci)
VL(free atom) +∆α' /2  = Q0(k0-k) + kQcalc + VM - Φsolid     (13) 

 
 
As said before, the term Q0(k0-k) gives a correction term for the effect of the change from the 
total electron set of the free atom to that of the atom in the solid which has led to a change of 
the binding energy, and the last term is a correction factor to transfer the energies from the 
vacuum level to the Fermi level of the solid. This leaves us with two terms representing the 
situation in the solid, kQcalc and VM(Qcalc), i.e. the valence charge density of the atom in the 
solid and the local Madelung site potential induced by the total surrounding structure of the 
solid which will then either help  or hinder the outgoing photoelectron to leave a cationic or 
an anionic species respectively. The balance of these two terms and the question which of the 
two outbalances the other one is decisive for the kinetic energy of the outgoing electron.  
 
Surprisingly, these two parameters have quite similar values and they compensate each other 
more or less. We describe their relation in the different compounds by the sum ∆ = kQcalc + 
VM(Qcalc) (which is essentially a difference in the case of cations because VM is a negative 
quantity at a cationic site). Fig.5 summarises these compensatory effects for the Zn 
compounds under study as an exmple. 
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Fig.5 The balance of kQcalc vs. VM(Qcalc) for Zn compounds 
 
 
The situation ∆ = 0 is depicted by the straight line in this diagram. The kQcalc term overrides 
the potential term for most of the halides (∆ > 0). Both terms are quite balanced for most of 
the chalcogenides. ZnF2 lies only slightly in the ∆ > 0 field. In plots for the other elements 
under study (not shown here) here we see some stronger deviations from the ∆ = 0 line. PbO 
is a very special case insofar as this compound is distinctly “out of balance” and we find that 
some Cu(II) compounds have mostly moved into the ∆ < 0 field, and this merits an own 
discussion as given below. These “misfits” give clear evidence that a specific electron 
configuration and the respective structures of the compounds play a decisive role. 

Crystal chemical discussions focus very much on size relations of atoms and ions. The typical 
tetrahedral coordination in most of the Zn compounds and the high coordination numbers for 
the Ba and Pb compounds are an outcome of such relations. Together with the particular 
charges of the ions the respective topology of the structures governed by such size relations 
leads to a specific potential at an ion site (VM /e).  DFT calculations provide another set of 
sizes, i.e. the volume of the electron clouds, which we use in this approach to define a radius 
for the calculation of k values. As said above, these sizes may not be congruent with the 
typical ionic radii as documented in tables (e.g. Shannon et al. [24]) since the electron 
distribution in basins will not be exactly spherical in the different structures. Fig.6 gives some 
examples for the size and form of electron basins of cations in different coordination 
environments, the geometric form of a basin always being the dual form of the respective 
coordination polyhedron. 
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coordination number 4 
(tetrahedral) 

coordination number 6 
(octahedral) 

Coordination number 7 

 

Fig.6  Electron basins of cations within typical coordination spheres as examples  

The “competition” between kQcalc and VM comes down to a comparison between a local 
topology of electron density and a potential built up from a collective arrangement of charge 
points. It is surprising to see how they match in part and how they deviate in some cases. To 
emphasize the effect of topology we have chosen to eliminate the charge effect and to contrast 
k values with a so-called geometric factor (GF) involving the structural information in a 
distinct form. GF is calculated by dividing the potential at the ion site by the charge (see 
Experimental, Eq.(12b)). So, the diagrams in Fig.7 are in a sense a magnified view of such 
ones like Fig.5 showing in more detail the influence of the geometry of the structures on the 
deviations from the kQcalc/VM balance ∆ = 0 which is marked as dotted lines. The other lines 
should give help to the eye to group halides and chalcogenides. 

 

  

  
 

Fig.7 A comparison of k values (k =14.4/r in eV, r in Å) and geometric factors (GF) for the a) 
Ba, b) Pb, c) Zn and d) Cu compounds   
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For an interpretation we must keep in mind that the charges – and consequently also the 
potentials – will grow with the electronegativity differences (∆EN) of the elements in a 
compound, and with growing charges the electron clouds of the cations will contract, i.e. 1/r 
will increase. With increasing ∆EN we should move along a negative diagonal upwards in 
these diagrams, and this is generally the case in all series.  

The Ba chalcogenides – all having a rocksalt type structure with six-fold coordination of the 
cation - are well assembled on a line mostly in the ∆<0 field. The potential dominates less 
when going from the oxide to the telluride, i.e. reduced potential values and larger interatomic 
distances “improve” the k/GF balance. For the halides - all having the same PbCl2-type 
structure with 7+2 coordination of the cation - the ticks move closer to the ∆ = 0 line in the 
opposite potential/distance relation. BaF2 has a fluorite-type structure with eightfold 
coordination of Ba, and it is far on the other side of the ∆ = 0 line. This structure type has a 
large Madelung-factor, and consequently the local potential is large. 

The chalcogenides of Zn and Pb show the same trend. They move closer to the ∆ = 0 line with 
reduced potentials and larger interatomic distances. The electron configuration of Pb is inert 
in these cases. The isostructural chloride and bromide of Pb behave like the respective 
isostructural Ba compounds. However, the Pb halides move faster to the left with increasing 
ionicity which nevertheless does not lead to the respective contraction of the electron clouds 
in these cases, evidently due to the lone pair configuration.  Pb iodide with a different 
structure and a different Madelung-factor is out of this line. The heavier halides of Zn with 
fourfold cation coordination stay well out of balance in the ∆ > 0 field. The Zn-fluoride 
modifications with coordination number 6 are quite different. The rutile structure is a “more 
favourable” geometric arrangement with a larger Madelung-factor, so these ticks move to the 
left and closer to the ∆ = 0 line. 

PbO behaves quite differently. The lone pair activity of Pb is clearly mapped in this diagram. 
The large potential and a large geometric factor are contrasted by a “seemingly huge” electron 
cloud. In the Wagner plot given in Fig.4b we find the PbO tick at a smaller binding energy 
compared to the other compounds, perhaps similar only to PbTe. The binding energy is much 
lower than expected. The k values of these compounds representing the size of the electron 
clouds are quite similar also. However, in the latter compound the ns2 electron pair is rather 
inert, whereas in PbO it is a lone pair with large excentricity. The general trend as given by 
∆EN is out of order in the case of PbO, and this inconsistency might tempt us to speculate that 
the non-spherical electron distribution in the cloud is responsible for it. This peculiarity will 
be dealt with in another context in the final “conclusion” section. 

The diagram giving the 1/r vs. GF relation for the Cu compounds seems to be quite different 
at first sight. This is because it contains other compounds than halides and chalcogenides and 
that not all chalcogenides have been included because their XPS data are not available. 
Furthermore, we note that the ticks of compounds with different formal oxidation numbers are 
separated in this field. The more ionic Cu(II) compounds are assembled in the upper part of 
the diagram. The dihalides follow a common trend moving closer to the ∆ = 0 line with 
increasing ionicity like the other cations discussed above. The Cu(I) halides, on the contrary, 
move away from the equilibrium line with increasing cationic charge. They behave 
surprisingly like the chalcogenides of Ba, Pb and Zn. The general difference between Cu(I) 
and Cu(II) compounds will also be an important item in the following paragraphs dealing with 
final state effects and in our “Conclusion”. 

To summarize we can state that the delicate balance between kQcalc and VM is an important 
contribution to the initial state effects. The seemingly surprising scatter of the various ticks in 
Wagner plots may well be rationalized considering the results of such DFT and Madelung-
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type calculations. It becomes evident that not only the local electron density but also the 
topology of the solid structures plays a decisive role. 

To finish up this paragraph we focus once more on the graph for Ba compounds in Fig.7. XPS 
data for non-hydrated Ba-halides are not available, evidently because they are deliquescent 
compounds and difficult to handle. To show the effect of water in the first coordination sphere 
we have also included ticks calculated for a known hydrate of the di-iodide and of a hydroxy-
iodide. The ticks of the water containing compounds are well off the line for the Ba halides 
and much higher than for BaI2, itself, just as one would expect due to the higher charges 
induced by a larger mean ∆EN, and with a higher charge the electron cloud is more contracted 
changing the initial state contribution. Furthermore, the coordination sphere is now different. 
The coordination number is 7 (BaI7) in BaI2, 8 (BaI(H2O)6OH) in BaI(OH)•4H2O and finally 
even 9 (BaI5(H2O)4) in BaI2•2H2O. The change in ligands and the increase of ligand distances 
will now also influence the R term in our fundamental equation, i.e. the final state effect. So, 
the hydration will have considerable effect both on the initial state terms kQcalc and VM and on 
the final state term and thereby on measured XPS data. This will often be the cause for 
differing XPS data of hygroscopic materials. 

5.3 Final state effects: atomic and extra-atomic contributions 

The last term in Eqs.(1a and b), R, calculated according to Eq.(11), describes the relaxation of 
the electronic system after the excitation by the impinging radiation:  

 ∆α'/2 = R = - Qcalc•R1
a + Rea(extra-atomic)                                (14) 

 
- Qcalc•R1

a represents the modification of the atomic relaxation energy due to the valence 
charge difference between the atom under study and the free atom. Rea is the contribution 
arising from the relaxation of electrons of neighbour atoms (extra-atomic). To a first 
approximation for the atom in the solid compound under study we assume that   
R1

a(free atom) represents the atomic relaxation energy per valence electron.This quantity may 
be estimated from the nonrelativistic numerical Hartree-Fock calculations of core electron 
binding energies for free atoms and ions reported by Broughton and Bagus [2a] to obtain 
atom-ion core level shifts for use in analyzing XPS data. The unrelaxed (Koopmans’ theorem) 
Eigenvalue and the relaxed (∆SCF) core-ionization energies are calculated by nonrelativistic 
self-consistent Hartree-Fock programs. 
 
The difference between the Eigenvalue and the ∆SCF value represents the atomic relaxation 
energy: 

∆SCF = Eigenvalue – Ra                                          (15a) 

Considering Eq.(1a) applied to a free ion, it is possible to write 

∆∆SCF = Eb(ci)
VL(free ion) - Eb(ci)

VL(free atom) = ∆Eigenvalue – ∆Ra                         (15b)
                      

∆Eigenvalue = k0Q0– kQ                                           (15c) 

∆Ra = [Ra(Q) - Ra(Q0)] = - Qcalc •R1
a        (15d)

                                 

where R1
a represents the atomic relaxation energy per valence electron. 

Jo
urn

al 
Pre-

pro
of



 22

Therefore 

∆∆SCF = k0Q0– kQ + Qcalc R1
a                                                                                     (15e) 

 
The results of these calculations on Ba(g), Pb(g), Zn(g) and Cu(g) free atoms, and on Ba2+(g), 
Pb2+(g), Zn2+(g) and Cu+/Cu2+(g) free ions are reported in Table 2. In this table we also report 
the values of k0 in eV and of the atomic radius r0 in Ǻ (k0 = 14.4/r0).  
 

Table 2 Relaxation energy per valence electron, R1
a(free atom), for Zn a), Pb b), Ba c) and Cu 

d) free atoms calculated from the relaxation energies reported by Broughton and Bagus [2a]. 
In the table we also report the k0 values (eV) for the free atoms calculated according to 
Eqs.(15a-15e). The atomic radius r0 (in Å) is estimated by the relation k0 = 14.4/r0

 . 

a) Zn free atom and Zn2+ free ion with a 2p core hole: 

Free atom and ion 
 

∆SCF  
(eV) 

Eigenvalue  
(eV) 

Ra 
(eV)   

R1
a  (eV)    k (eV)  

(*) 
r (Å) 

(*) 
       
Zn (3d104s2) 1031.605 1059.223 27.618  10.12 1.42 
       
Zn2+ (3d10) 1054.099 1079.462 25.363    
∆∆SCF  22.494      
∆ Ra   2.255 R1(s)

a = 1.13   
Q = Qs

 = 0       
Qcalc = Qcalc(s) = +2       
 

(*) ∆∆SCF = k0Q0 – kQ + Qcalc(s) R1(s)
a  

∆∆SCF(Zn2+ - Zn) = 22.494 = kZn
0 x 2 + 2R1(s)

a , then kZn
0 = 10.12 eV and rZn0 = 1.42 Å. 

 

b) Pb free atom and Pb2+ free ion with a 4f core hole: 

Free atom and ion 
 

∆SCF  
(eV) 

Eigenvalue  
(eV) 

Ra 
(eV)   

R1
a  (eV)    k (eV)   

(*) 
r (Å)  

(*) 
       
Pb (6s26p2) 165.660 179.120 13.462  8.177 1.76 
       
Pb2+ (6s2) 183.550 195.476 11.926    
∆∆SCF  17.890      
∆ Ra   1.536 R1(p)

a = 0.768   
Q = Qp

 = 0       
Qcalc = Qcalc(p)  = +2       
 

(*) ∆∆SCF = k0Q0 – kQ + Qcalc (p) R1(p)
a  

∆∆SCF(Pb2+ - Pb) = 17.890 = kPb
0 x 2 + 2R1(p)

a , then kPb
0 = 8.177 eV and rPb0 = 1.76 Å. 
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c) Ba free atom and Ba2+ free ion with a 3d core hole: 

Free atom and ion  
 

∆SCF  
(eV) 

Eigenvalue  
(eV) 

Ra 
(eV)   

R1
a  (eV)    k (eV) 

  (*) 
r (Å)  

(*) 
       
Ba(6s2) 808.757 827.306 18.549  5.833 2.47 
       
Ba2+ [Xe] 821.798 838.971 17.173    
∆∆SCF  13.041      
∆ Ra   1.376 R1(s)

a = 0.688   
Q = Qs

 = 0       
Qcalc = Qcalc(s)  = +2       
 

(*)∆∆SCF = k0Q0 – kQ + Qcalc(s) R1(s)
a   

∆∆SCF(Ba2+ - Ba) = 13.041 = kBa
0 x 2 + 2R1(s)

a , then kBa
0 = 5.833 eV and rBa0 = 2.47 Å. 

d) Cu free atom and Cu+ and Cu2+ free ions with a 2p core hole: 

Free atom and ions 
 

∆SCF  
(eV) 

Eigenvalue  
(eV) 

Ra 
(eV)   

R1
a (eV)    k (eV) 

(eV) 
  (*) 

r (Å)  

(*) 

       
Cu (3d104s1) 941.514 969.235 27.721  13.4 1.07 
       
Cu+ (3d10) 951.265 977.693 26.428  18.3 0.787 
∆∆SCF  9.751      
∆ Ra   1.293 R1(s)

a = 1.29   
Q=Qs+Qd

 = 0 + 1       
Qcalc = Qcalc(s)  = +1        
       
Cu2+(3d9) 972.028 996.052 24.024    
∆∆SCF 30.514      
∆ Ra   2.404 R1(d)

a = 2.40   
Q = Qs+Qd

 = 0 + 0       
Qcalc = Qcalc(s)+Qcalc(d) 

 =+2 
      

 

(*) ∆∆SCF = k0Q0 – kQ + Qcalc(s) R1(s)
a  +  Qcalc(d) R1(d)

a  

∆∆SCF(Cu2+ - Cu) = 30.514 = kCu
0 x 2 + R1(s)

a + R1(d)
a, then kCu

0 = 13.4 eV and rCu0 = 1.07 Å. 

∆∆SCF(Cu+ - Cu) = 9.751 = kCu
0 x 2 - kCu+  + R1(s)

a, then kCu+ = 18.3 eV and rCu+ = 0.787 Å. 

∆∆SCF(Cu2+ - Cu+) = 20.763 = kCu+  + R1(d)
a, then kCu+ = 18.4 eV and rCu+ = 0.784 Å. 

Considering the information contained in ∆α'/2, according to Eq.(14), we can now estimate 
the two parts of the relaxation energies Ra and Rea separately since Ra = - Qcalc•R1

a gives the 
atomic part and the difference to ∆α'/2 (i.e. Rea = ∆α'/2  + Qcalc•R1

a) the extra-atomic one. 
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Fig.8a shows the two parts in comparison for the Zn compounds as an example. With growing 
cationic charge the total relaxation decreases and so does the atomic and - to a lesser extent - 
the extra-atomic part of it. This is to be expected since the tendency to retain electrons in an 
atomic interaction depends on the electronegativity relation, and a growing ∆EN is correlated 
with the charge. Furthermore, we see that the relation between the two contributions changes 
continuously with growing charge. The halides differ very little from the chalcogenides, and 
there is a linear relation between both relaxation terms and the charge. 

  
 

Fig.8 A comparison between atomic and extra-atomic relaxation energies with measured 
differences of Auger parameters with respect to the free atom for a) Zn compounds and b) Pb 
compounds. 

This is to be compared with the relaxation in Pb compounds where we may expect 
differences. Fig.8b gives the corresponding plot. The general aspect of the relaxation for Pb 
compounds is quite the same as for the Zn compounds, except that the span of values for the 
total relaxation and for Rea is distinctly smaller (compare scales). The difference between 
halides and chalcogenides is now a little larger. However, there is one clear distinction. PbO 
and PbBr2 have about the same cationic charge, but for the oxide the total relaxation energy 
and its extra-atomic part are both distinctly smaller, whereas the atomic relaxation energy fits 
smoothly into the general trend in these compounds. We notice again the special effect of the 
lone pair which strongly biases the “interaction” with neighbouring ligands. 

The corresponding plots for a set of Cu compounds are given in Fig.9 where we have 
highlighted the two formal oxidation states.   
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Fig.9 A comparison of atomic and extra-atomic relaxation energies with measured differences 
of Auger parameters for Cu compounds 

 

These plots differ considerably from the other ones. Here we focus on the difference between 
the oxidation states. The total relaxation (black squares) changes very little with increasing 
charge (see the energy scale). Values for Ra are assembled together on the lines in the lower 
part of the diagram where we see a great difference between Cu(I) and Cu(II) compounds. Rea 
values for the chalcogenides and the halides of Cu(I) (red balls) are assembled slightly below 
and above the line describing their trend respectively. The picture is completely different for 
the Cu(II) compounds. The total relaxation - and especially the extra-atomic part of it - 
increases with cationic charge. The 3d open shell configuration clearly changes the Ra/Rea 
relation in these compounds.  

When looking at the general trend of the relaxation energies for the Zn and Pb compounds we 
observe that their contribution decreases with Qcalc. The total electronic system seems to 
“stiffen” with increasing charge. The same is true for the atomic relaxation part of both Cu(I) 
and Cu(II) compounds. However, the extra-atomic relaxation Rea is hardly affected by the 
charge for the Cu(I) compounds - we see an almost horizontal line describing their trend with 
the chalcogenides slightly above and the halides slightly below it – whereas this extra-atomic 
contribution increases considerably which growing charge in the case of the Cu(II) 
compounds. As expected, the open shell systems are definitely more prone to external 
influences. 

A simple model that correlates the Auger parameter shift with the ground state Bader valence 
charge has been developed and applied by us to Cu(I) and Cu(II) compounds and to Ba(II), 
Pb(II) and Zn(II) compounds [25]. The model is able to estimate in a good approximation the 
slope of the ∆α’ vs. Qcalc linear relationship for the closed shell Cu(I), Ba(II), Pb(II) and 
Zn(II) ions.  The Auger parameter shift for the open shell Cu(II) compounds is instead 
independent of Qcalc and close to the (α’Cu(s) – α’Cu(g)) value. 

 
5.4 Work functions 
 
Many years ago, Shirley [see 6 and 9b, p.140] stated: “The deduction of atomic charge in 
solids from core-level shifts is very elusive. The shifts are small, there is no suitable reference 
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level, and relaxation effects may be important. A much more promising approach lies in the 
analysis of the most tightly bound valence orbitals in simple solids. For binary solids such as 
the III-V and II-VI compounds the second and the third valence peaks are separated by an 
“antisymmetric gap” that is closely related to the ionicity (Pollak et al. Phys. Rev. Letters 
1972, vol. 29, p. 1103)”.  

It is evident that our approach, i.e. the use of Eqs. (1d, 6 and 14) in a sort of retro-calculation 
(see Conclusion), may represent an advancement in the direction of the deduction of the 
atomic charge in solids from core-level shifts. A crucial point, however, is the knowledge of 
the term describing the work function. 

With good electrical contact of the sample to the spectrometer charging effects play no role in 
the case of metals. Photoelectrons must nevertheless have certain energies to pass the surface 
of the sample into vacuum. The term “work functions” describing such energies is nowadays 
used not only for metals but for all kinds of samples. The physical mechanisms for this 
retarding effect on outgoing electrons are complex and may be classified into bulk and surface 
contributions, the former having to do with the energetics of the total electronic system and 
the latter with the special surface features of the diverse crystallites which make up the 
sample. Structural relaxations and reconstructions in part of the atomic arrangements will 
induce local dipoles which will interact with the outgoing photoelectrons, and this will even 
lead to varying work functions for different faces of single crystals. 

The work functions of insulating or semiconducting solids are generally not known. In 
principle there are ways to access work functions experimentally by varying an electric field 
between sample and detector entrance so as to slow down or stop the movement of the 
emitted electrons in a controlled manner. Furthermore, the low energy cut-off of kinetic 
energies of the outgoing electrons in comparison with the energy hν of the impinging 
radiation will give an estimate for Φ (for metallic samples!). Meanwhile many work functions 
for metals have been tabulated, Φ values are even given for different crystallographic surface 
layers of single crystals. However, such investigations are generally tedious, and therefore 
experimental work functions are not available for many compounds. It was therefore 
necessary to find ways to predict them using other known experimental parameters.   

Theories how to define bulk work functions have been known since quite a long time [26-30]. 
The basic concept of such approaches is the assumption that the retarding effect on 
photoelectrons may be compared with the tendency to attract electrons in a bonding 
interaction between atoms, i.e. the electronegativities of the elements sum up to a specific 
bulk effect in the solid when we assume that there is a sort of electronegativity equalization 
between all the atomic components, and that - according to Density Functional Theory – the 
electronegativity may be seen as the negative of the chemical potential of the electrons [31].  

Chen et al. [27] reported an empirical and remarkable relationship between the metal work 
function and the absolute electronegativity of Mulliken of a free metal atom in the gaseous 
state, ΦM ≈ χ M.  The absolute electronegativity is calculated as the average of the ground state 
first ionization energy and the electron affinity energy (χ = (I1 + A)/2). The same authors 
describe an empirical relationship useful to estimate the work function of insulating and 
semiconducting solids as first reported by Nethercot [28]: the Fermi energy of binary 
compounds, MX, can be taken as the geometric mean of the electronegativities of the two 
components,  EF

th = χM χX
1/2. It is important to notice that EF

th is then determined solely by the 
electronegativities of the constituent elements and is hence not structure or coordination 
sensitive, and that is - in our opinion – a weak point in this approach. 
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The same relationship was also used by Poople et al. [29] to estimate the work function of 
MX2 compounds employing atomic electronegativities from the scales proposed by Pauling 
and by Sanderson.  We may recall that the electronegativity scales proposed by Mulliken and 
Sanderson, as well as scales proposed by other authors, are to a good approximation linearly 
related to the scale of Pauling [31]. For our purposes we use the relation proposed by Chen et 
al. to estimate the work function of all the solids studied with our model.   

The relation to the experimental measurements described above may be explained by the 
photoelectric threshold energy defined by Et

th = EF
th + ½ Eg and representing the electrons 

ejected from the maximum of the valence band. Eg is the experimental band gap energy to be 
measured by other spectroscopic methods. In the case of a metal A the band gap Eg = 0, so  

Et
th = EF

th = χA = Φ.  

Since experimental work functions of metals were first to be known their relationship to 
electronegativities was first noticed, and this led to the theories described here. Fig.10 
presents the relations of the described terms for different materials in a schematic plot. It is 
common use to locate the Fermi level in semiconductors in the band gap at a position where 
there is a 50% probability to find an electron in a specific energy state. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 Scheme representing the position of the vacuum level and the Fermi level on an energy 
scale. (Note that EF

th = Φ for the metal and for conductors and that for insulators and 
semiconductors Et

th = I1 = Φ + ½ Eg, i.e. Φ = I1 - ½ Eg = A + ½ Eg) 

We now try to use this approach to estimate the missing element Φ in our theory. In Appendix 
C (Supplement) we report the Mulliken electronegativities of the component elements and 
their geometric mean of the components of each studied solid. It is assumed that according to 
the principle of electronegativity equalization the work function of the MXn solid is given by 
ΦMXn ≈ (χM χn

X)1/(n+1). These values may be then used as a crude estimate in the calculations 
according to Eq.(1a). However, as described in the following paragraph, we propose to apply 
them in a slightly different context. 
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6 Conclusion  
 
Many spectroscopic experiments such as NMR or Mössbauer spectroscopy deal with so-
called chemical shifts where typical atomic states and the energy differences between them 
are influenced by the interactions with surrounding atoms, and their interpretation is based on 
sound theories since long times. In photoelectron spectroscopy, too, the binding energies Eb of 
electrons originating from different energy states can vary considerably for the same atomic 
species depending on their embedment in different matrices. At a first glance such chemical 
shifts seem to follow known trends such as electronegativity differences or polarizabilities of 
neighbouring atoms. However, the correlations are not all univariate, and plots of binding 
energies or Auger electron energies versus such parameters very often present an 
unintelligible scatter as demonstrated in the discussion of the Wagner plots above. 
 
Since the pioneering work of Kai Siegbahn there have been several approaches to found a 
theoretical basis of understanding [see Ref.1 and references therein] of such chemical shifts. 
By a generalization of previous approaches [2a, 6] one of us has presented a simple 
theoretical model some time ago [3-5] combining several parameters which can influence the 
energy of the outgoing electrons in a unifying equation such as the one presented in the 
introductory paragraphs of this paper where so-called initial state effects and final state effects 
are combined and the free atom data are taken as a natural reference for the core electron 
binding energy shift (Eq.(1b)):  
 
Eb(ci)

FL(atom/solid) = Eb(ci)
VL(free atom) + Q0(k0–k) + kQcalc + VM – Φsolid – R(ci), 

 
and in Eq.(1c) the last term is further specified as atomic and extra-atomic relaxation energies 
 
R(ci) = - R1

a•Qcalc+ Rea(extra-atomic).  
 
In the work presented here we try to “feed” the diverse terms of such equations with the 
results of theoretical DFT calculations in order to test the validity of this theoretical approach. 
To do so we have chosen a series of compounds of Ba, Zn, Pb and Cu which represent 
different types of electronic states on the one hand and which mostly crystallize in simple 
structures with few crystallographic sites on the other hand. By calculating Bader charges, 
atomic volumes and site potentials (and therefore the local Madelung energy term) for 
chalcogenides and halides of these elements we have produced a data basis to rationalize the 
spread of measured binding energies and Auger energies in comparison with the results of this 
theory. 
 
It has thereby become possible to quantify different factors separately which bias the kinetic 
energies of the outgoing electrons termed initial state (ISE) and final state effects (FSE) (see 
Fig.1). Special attention was thereby directed to the interplay of electron numbers and 
electron densities in the valence shell with the leaving electrons described by such terms as 
kQ (atom/solid) or k0Q0(free atom) with the ground state valence charge given by Qcalc = Q0 – 
Q. As a second key aspect we have investigated the influence of site potentials as derived by 
Madelung-type calculations on the basis of the Bader charges, and finally we use the 
information contained in the shift of the Auger parameter to estimate the atomic and extra-
atomic relaxation energies (see Eq.(11)). The change of the binding energies of the single 
atoms in the gaseous state to those in the diverse compounds can thereby be attributed to 
several distinct influences. Two of these parameters (kQ and VM) vary strongly with the 
charge of the atom, which clearly has the strongest effect on the chemical shift in XPS and 
AES (see Appendix D and Fig.11 in the Supplement). 
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A proof of principle 
 
In the following we present a sort of “crucial test” for the validity of our fundamental 
equation. Fig.12 may give a pictorial presentation of the effect of the different “correction 
terms” in our unifying equation by reversing the “movement” insinuated in Fig.1 from 
Eb(g)

VLexp to Eb(s)
FLexp in solving this equation the other way round for the Zn compounds as an 

example, i.e. “moving back” the energy values measured for the solids in the direction of the 
gaseous state. The arrows from the ticks of the measured energies (Eb(exp), black squares) to 
the ones “corrected” by ISE and FSE (Eb(g)(calc), red circles) are all correctly directed 
towards the Eb(g) value at about 1029 eV. A last step would add the contribution of the work 
functions to give values which should be close to the binding energy for Zn in the gaseous 
state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.12 The shift of real measured binding energies (black squares) towards the binding energy 
value of the free Zn atom Eb(g) by application of the corrections terms of Eq.(1c) (red circles) 
(see text).  
 
It is interesting to note that the two series of compounds respond differently to the application 
of the diverse terms of our equation. For the chalcogenides the terms kQcalc and VM in Eq.(1c), 
related to the charge, volume and site potential, all move the measured binding energies closer 
to that of the free atom than in the case of the halides (excepting ZnF2). On the average the 
potentials are higher for the halides. However, the geometric factors are lower, so the 
advantage of higher potentials is evidently counteracted - at least in part - by the topology of 
the structures. The gap between the “calculated fictitious” Eb(g) value and the measured one 
closes for both series of compounds when moving to higher charges of the Zn cation 
(equivalent to higher ∆EN), and the two series behave differently with regard to the size of 
the missing gap and the gradient of the lines. This behaviour may be explained by looking at 
the Figs.5 and 7c in our paper.  
 
We find the Zn halides in the ∆ > 0 field and the chalcogenides in the ∆ < 0 region. We have 
stated that the two terms kQcalc and VM counteract and partly balance each other.  For the Zn 
halides the 1/r term wins, so the effect of VM, i.e. the effect of the local potential at the cation 
site, is weakened. The overall correction is reduced and less dependent on the potential term. 
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This leads to the line for the halides being below the other one in our Fig.12 and less steep in 
the diagram. 
 
When finally adding the contribution of the work functions as defined in the foregoing 
paragraph we do approach the Eb(g)

(VLexp) value. Furthermore, the difference between the two 
lines joining either the chalcogenides or the halides (not plotted here) has almost disappeared. 
However, in many cases we overshoot the experimental value for the binding energy of the 
single atom more and more with increasing cationic charge, and this is to be expected since 
these work functions increase, whereas the remaining gap mentioned before decreases with 
charge. So, this merits a closer look at the way we introduce the WFs calculated from the 
Mulliken electronegativities. 
 
As said above it is common use to formally locate the Fermi level in semiconductors in the 
band gap at a position where there is a 50% probability to find an electron in a given energy 
state, The definition of the threshold value by Chen and Nethercot as Et

th = EF
th + ½ Eg fixes 

the Fermi level halfway between the valence band maximum (VBM) and the conduction band 
minimum (CBM), and therefore its position is marked in the middle of the band gap in Fig.10. 
However, as indicated in this plot, its position depends on the type of material and it may vary 
in the gap between the VBM and the CBM depending on the semiconductor type. For p-type 
compounds the “distance” to the vacuum level will be larger by up to ½ Eg and for n-type 
ones it will be even smaller by up to ½ Eg than from the level halfway in between. We 
therefore propose to use the “Mulliken” values for work functions in a different way. The 
following Fig.13 gives a selection of Cu compounds - as an example - where we compare 
known values for Eb(g)VL with those calculated first by our retro-calculation including the 
“Mulliken Φ” and then also by using such a kind of “adapted” work function depending on 
the type of semiconductor.  

The black squares give the experimentally measured binding energies and the red circles give 
a fictitious Eb(g)VL value resulting from a retro-calculation including the Mulliken work 
function. The arrows show the shift to “corrected” Eb(g)VL values (blue triangles) when 
assuming the compounds to be n-type (as for the Zn and Pb compounds) or p-type 
semiconductors (as for the Cu(I) compounds). (Results of such calculations for all the 
compounds under study in this paper are given in the table and in additional graphs in 
Appendix E in the Supplement.) 

  
 
 
Fig.13 A comparison of experimental binding energies for gaseous single atoms Eb(g)VL and 
the respective values resulting from a retro-calculation for a) Cu(I) (blue triangles) and b) 
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Cu(II) compounds. (See text!) The “correction arrows” are shown when band gap values were 
known. These results are also presented in a tabular form in the Appendix E (Supplement).  
 
For the Cu(I), Zn and Pb compounds our corrected values now line up quite satisfactorily with 
the experimental value as shown in Fig.13 a (and c and d in Appendix E in the Supplement) 
respectively. For Zn and Pb the fit is best for the correction by -½ Eg, i.e. assuming an n-type 
material. For the Cu(I) compounds we must add ½ Eg. We could therefore venture to say that 
such a detailed analysis of the XPS spectra including an experimental work function would 
probably allow a prediction of the type of semiconductor.  
 
This is not true for the series of Cu(II) compounds. The corresponding graph in Fig.13 b does 
not include values resulting from an additional correction by the position of EF in the band 
gap. The chalcogenides CuS and CuSe surprisingly fit better than the other compounds even 
without any further correction. In fact, the magnetic measurements and the Cu2p XPS spectra 
show that in these compounds Cu is virtually in the oxidation state +1, and a close inspection 
of the structure shows up some very short S-S distances also indicating a partial oxidation of 
the anion lattice.  
 
The deviation of the other compounds amounts up to +/- 4 eV, which is more than the 
possible band gap correction applied in the other cases. Looking at the structures we find 
highly anisotropic surroundings for the Cu2+ cation mostly in the form of a square planar 
arrangement or in tetragonally distorted octahedra. 
 
It may be assumed that such results for the retro-calculations are due to the open shell 
configuration of these Cu(II) cations. There is one term in our fundamental equation which is 
prone to effects of a non-radial electron distribution. We have introduced the terms k0Q0and 
kQ as factors describing the shielding of the charge of the nucleus by valence electrons, and 
we have pointed out above that the ns2configuration in some Pb(II) compounds (especially in 
PbO) leads to unusual experimental binding energies when there is a pronounced lone pair 
eccentricity. A similar effect may influence the open shell systems where the total electron 
configuration is not radial-symmetric. We therefore propose to consider such effects by a 
formal reduction of shielding power in a modified term k(Q-ε) for such cases. In a retro-
calculation the position of the “band gap corrected value” will then move up less in our 
graphs in Fig.13. It would be ever so interesting to derive the term ε from a close comparison 
with experimental data, however, it does not make sense to start this study as long as we are 
forced to rely on such crude data resulting from the estimation of work functions from 
Mulliken electronegativities. To really evaluate our approach we need binding energies from 
XPS and AES experiments and experimental work functions derived from measurements on 
the same instrument. We would like to encourage experimentalists to produce this important 
information and we hope to find such data in the near future. 
 
To finish our “Conclusion” we may point out that our fundamental equation has successfully 
been used also in other contexts. In previous work [25] we reported ∆α’ vs. Qcalc plots for the 
same Cu(I), Zn(II), Ba(II) and Pb(II)  samples (as reported above such a plot for Cu(II) 
compounds is to a good approximation a line parallel to the x-axis). Our simple model 
presented in Ref. 25 links the Auger parameter shift with the local ground valence charge 
obtained by DFT calculations and the Bader charge analysis code. This is an important 
achievement because - as said above - the Auger parameter may be easily measured even on 
samples prone to charging phenomena (insulators and semiconductors). It is also independent 
of the reference level employed to measure the electron kinetic energies of core and Auger 
electrons (the Fermi or the vacuum level). The local valence charge, on the other hand, 
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represents a valuable piece of chemical knowledge, and its determination has been an 
objective of X-ray photoelectron spectroscopy (ESCA) since the early days of its discovery 
[Ref.1 and references therein].  
 
All in all, we see that there is a delicate balance of different terms adding up in a calculation 
of binding energies whose results cannot be foreseen. Their contribution and balance are 
responsible for the - sometimes unintelligible - scatter of data in Wagner plots, and their 
substantiation - as presented in this paper - could help to rationalize the results. It may be 
surprising that the topology of the individual structures plays such a large role in the balance 
of the different terms of our equation. In the paragraph devoted to such topics (5.2) we have 
demonstrated how the local effect of electron density at an atom on the one hand and a 
potential built up from a collective arrangement of charge points in a certain topology on the 
other hand interact to a combined initial state effect. We have demonstrated that this 
topological effect can also be described more clearly by contrasting it in the form of so-called 
geometric factors with the respective electron density given as reciprocal sizes of the electron 
clouds. 
 
We may summarize that the results of DFT calculations help to demonstrate the bearing of 
our unifying equation which describes the influences of several factors on binding energies 
and kinetic energies of Auger electrons. This kind of scientific cross-breeding opens up new 
possibilities to rationalize the spread of XPS and AES data of the same element in different 
compounds. 
 
 
References   

[1] a) W.F. Egelhoff Jr., Core-level binding-energy shifts at surfaces and in solids, Surf. Sci. 
Rep. 6 (1987) 253-415. b) S. Hüfner, Photoelectron Spectroscopy, Principles and 
Applications, Third Edition, Springer 2003 

[2] a) J.Q. Broughton, P.S. Bagus, ∆SCF calculations of free atom-ion shift, J. Electron 
Spectr. Related Phenom. 20 (1980) 127-148. b) P. S. Bagus, E. S. Ilton, C. J. Nelin, The 
interpretation of XPS spectra: Insights into materials properties, Surf. Sci. Rep. 68 (2013) 
273-304. 

[3] G. Moretti, Auger parameter and Wagner plot in the characterization of chemical states by 
X-ray photoelectron spectroscopy: a review, J. Electron Spectr. Related Phenom. 95 (1998) 
95-144. 

[4] G. Moretti, The Wagner plot and the Auger parameter as tools to separate initial- and 
final-state contributions in X-ray photoelectron spectroscopy, Surface Science 618 (2013) 3-
11. 

[5] G. Moretti, A. Palma, E. Paparazzo, M. Satta,  Auger parameter and Wagner plot studies 
of small copper clusters, Surface Science 646 (2016) 298-305.  

[6] C.S. Fadley, S. B. M. Hagstrom, M. P. Klein, D. A. Shirley, Chemical effects on core-
electron binding energy in iodine and europium. J. Chem. Phys. 48 (1968) 3779-3794.  

[7] a) C.D. Wagner, Faraday Discuss. Chem. Soc., Chemical shifts of Auger lines, and the 
Auger parameter, 60 (1975) 291-300; b) C.D. Wagner, A. Joshi, The Auger parameter, its 
utility and advantages: a review, J. Electron Spectr. Related Phenom. 47 (1988) 283-313. 

Jo
urn

al 
Pre-

pro
of



 33

[8] J. E. Castle, D. Epler, Chemical shifts in photoexcited Auger spectra. Proc. R. Soc. Lond. 
A 339 (1974) 49-72. 
 
[9] a) D.A. Shirley, Relaxation effects on Auger energies. Chem. Phys. Lett. 17 (1972) 312-
315; b) D.A. Shirley, ESCA. Results versus other physical and chemical data, J. Electron 
Spectr. Related Phenom. 5 (1974) 135-148. 

[10] G. Hohlneicher, H. Pulm, H.-J. Freund. On the separation of initial and final state effects 
in photoelectron spectroscopy using an extension of the Auger-parameter concept. J. Electron 
Spectr. Related Phenom. 37 (1985) 209-224. 
 
[11] NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of 
Standards and Technology, Gaithersburg, 2012); http://srdata.nist.gov/xps/. (Accessed 21 
October 2019). 

[12] a) G. Moretti, F. Filippone, M. Satta, Use of  Auger parameter and Wagner plot in the 
characterization of Cu-ZSM-5 catalysts, Surface Int. Anal. 31 (2001) 249-254; b) G. Moretti, 
The Auger parameter, in Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, 
Chapter 18,  Ed. by D. Briggs, J.T. Grant, 2003, IM Publications, pp.501-530; c) M. Satta, S. 
Morpurgo, G. Moretti, Long range and surface effects on the Auger parameter: electrostatic 
self consistent polarization energy model, Surface Int. Anal. 40 (2008) 692-694; d) M. Satta, 
G. Moretti, Auger parameter and Wagner plots, J. Electron Spectr. Related Phenom. 178-179 
(2010) 123-127.  

 [13] a) I.A. Abrikov, W. Olovsson, B. Johansson, Valence-band hybridization and core level 
shifts in random Ag-Pd alloys, Phys. Rev. Lett. 87 (2001) 176403(1-4); b) W. Olovsson, I.A. 
Abrikov, B. Johansson, A. Newton, R.J. Cole, P. Weightman, Auger energy shifts in fcc 
AgPd random alloys from complete screening picture and experiment, Phys. Rev. Lett. 92 
(2004) 226406(1-4); c) W. Olovsson, T. Marten, E. Holmström, B. Johansson, I.A. Abrikov, 
First principle calculations of core-level binding energy and Auger kinetic energy shifts in 
metallic solids, J. Electron Spectr. Related Phenom. 178-179 (2010) 88-99. 

[14] J.Q. Broughton, P.S. Bagus, A study of Madelung potential effects in the ESCA spectra 
of the metal oxides, J. Electron Spectr. Related Phenom. 20 (1980) 261-280 and (Errata) 21 
(1980) 283-284. 

[15] H. Wadati, A. Maniwa, A. Chikamatsu, H. Kumigashira, M. Oshima, T. Mizokawa, A. 
Fujimori, and G. A. Sawatzky, Madelung potentials and covalency effect in strained 
La1−xSrxMnO3 thin films studied by core-level photoemission spectroscopy, Physical Review 
B (2019) 80, 125107-125111. 
 
 [16] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy 
calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186. 
 
 [17] G. Kresse, J. Furthmüller, Efficiency of ab initio calculations for metals and 
semiconductors using a plane wave basis set, Comput. Mater. Sci. 6 (1996) 15-50. 
 
[18] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953–17979. 
 
[19] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, 
Phys. Rev. Lett. 77 (1996) 3865-3868. 
 

Jo
urn

al 
Pre-

pro
of



 34

[20] P. E. Blöchl, O. Jepsen, O. K. Andersen, Improved tetrahedron method for Brillouin-
zone integrations, Phys. Rev. B 49 (1994) 16223–16233. 
 
[21] R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, New 
York, 1990. 
 
[22] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader 
decomposition of charge density, Comput. Mater. Sci. 36 (2006) 254-360. 
 
[23] T. Beyer, H. P. Beck, Lattice Potentials as an Instrument in Crystal Chemistry, Part I, 
Theory and Calculation, Z. Krist. 212 (1997) 559-564.  

[24] Shannon, R. D., Revised Effective Ionic Radii and Systematic Studies of Interatomic 
Distances in Halides and Chalcogenides". Acta Crystallogr. A32 (1976) 751–767. 

[25] G. Moretti, H. P. Beck, Relationship between the Auger parameter and the ground state 
valence charge of the core ionized atom: The case of Cu(I) and Cu(II) compounds. Surf. 
Interface Anal. 51 (2019) 1359-1370. 2019.  

 [26] H. B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phys., 
48 (1977) 4729-4733. 

[27] E.C.M. Chen, W.E. Wentworth, J.A. Ayala, The relationship between the Mulliken 
electronegativities of the elements and the work functions of metals and non-metals, J. Chem. 
Phys. 67 (1977) 2642-2647. 

[28] A.H. Nethercot, Jr, Prediction of Fermi energies and photoelectric thresholds based on 
electronegativities Concepts, Phys. Rev. Lett. 33 (1974) 1088-1091. 

[29] R.T. Poole, D.R. Williams, J.D. Riley, J.G. Jenkin, J. Liesegang, R.C.G. Leckey, 
Electronegativity as a unifying concept in the determination of Fermi energies and 
photoelectric thresholds, Chem. Phys. Lett., 36 (1975) 401-403. 

[30] R. G. Parr, W. Yang, Density-Functional Theory of atoms and molecules, Oxford 
University Press, New York, 1989. 
 

[31] J. Mullay, Estimation of atomic and group electronegativities, in Electronegativity, 
Editors: K.D. Sen and C. K. Jørgensen, Structure and Bonding 66 (1987)1-25, Springer-
Verlag Berlin Heidelberg, Germany. 

[32] W. H. Strehlow, E. L. Cook, Compilation of energy band gaps in elemental and binary 
compounds, J. Phys. Chem.Ref. Data, 2(1973) 163-199 
 
 
 
 
 

 

Jo
urn

al 
Pre-

pro
of



 35

 

Supplement 
 

Appendix A: On the derivation of the terms k0Q0 and kQ in the Eqs. (1a and 1b) and the 
previous approach by Broughton and Bagus.  

This appendix is aimed to illustrate in more detail some terms of Eq.(1a and 1b) taking the 
influence of the electron cloud into account of both the free atom and the atom in a solid 
respectively on the leaving photoelectron, and it also considers the site potential induced by 
the charge distribution of the surrounding atoms in the solid – all being aspects of the initial 
state effects. The terms k0Q0 and kQ result from a simplistic model of the shell-like charge 
distribution in the electron cloud of an atom assuming them in conducting spheres with radius 
r1, r2, r3, …, up to the “valence” sphere with radius r0. Each sphere has a negative charge 
according to the respective number of electrons in it up to the “valence” sphere with charge - 
Q0e.  According to the Gauss’ theorem, the potential within an individual sphere (say: number 
3) is  
 
V3 (free atom) = (1/4πε0)[(+ Qn – Q1 – Q2 – Q3) e/r3 – Q4e/r4 –   … – Q0 e/r0] 
 
and the “binding energy” for the electron in the sphere number 3 will therefore be  

Eb (3, free atom) = eV3(free atom).  

Charge (e) and radius (r) may be combined in the form of ki values (i = 3,4,…,0) and written 
as  

ki (joule) = (e2/4πε0)/ri and ki (eV) = 14.4 (eVÅ)/ri (Å). 

Applying the same approach to a positive ion (Q < Q0) the potential at the sphere number 3 
will be 

V3 (free ion) = (1/4πε0) [(+ Qn– Q1 – Q2 – Q3) e/r3 – Q4 e/r4 –   … – Q e/r] 

where the number of terms is the same as before, but the radius of the outermost shell is now 
different (r < r0). The shift of the binding energy (ion vs. atom) of an electron emitted from 
shell number 3 will therefore be 

Eb(3, free ion) - Eb(3, free atom) = eV3 (free ion) - eV3(free atom) = - kQ + k0Q0,  

and this is included in Eq.(1a) to allow for the shielding effect of the different number of 
electrons in both cases.  

The Eqs. (1a and 1b) are a generalization of previous equations suggested by Broughton and 
Bagus [2a]. These authors describe the core-level ionization potential IP of an atom A as 
follows: 
 
IPA = - εnl A – (Ec A + kqA + Eflow A)         
εnl A =  εnlA(gas) + bqA + EMA          
 
According to them IPA, may be calculated considering the following contributions :  
- εnl is the eigenvalue of the core level nl (obtained from a Hartree-Fock calculation on the 
molecule or bulk material);  
- Ec A is the local contraction energy on the neutral atom A;  
- Eflow A is the extra-atomic relaxation (or polarization) energy;  
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- kqA is a correction term for the amount of charge in the valence levels of atom A, k being 
assumed constant and q being the charge on the atom; 
The last three terms on the right-hand side of Eq.(1d) are collectively termed “relaxation 
energy”, and of these terms, Ec is approximated by the local or gas-phase atomic relaxation 
energy. The eigenvalue, Eq.(1e), mirrors initial-state effects such as the charge on the ionized 
atom and Madelung potentials, while the IP includes both initial-state and final-state (i.e. 
polarization) effects: 
- εnlA(gas) is the gas-phase, neutral-atom eigenvalue; 
- EM A is the potential on atom A due to its environment (often approximated in bulk systems 
by the Madelung potential);  
- bq A is a correction term for the charge q on the atom (b being assumed constant).  
 

 

Appendix B:  Application of Eq.(1d) to several cases that may be of interest. 

Eq.(1d) is related to the atom in a solid sample (that may be in general metallic, 
semiconducting and insulating): 
 
Eb(ci)

FL(atom/solid) =  
Eb(ci)

VL(free atom) + Q0 (k0– k) +kQcalc + VM - Φsolid + R1
a•Qcalc - R

ea(extra-atomic) 

As for the atom in the metal solid (Q = Q0 and R1
a•Qcalc = 0) the equation becomes 

Eb(ci)
FL(atom/metal) = Eb(ci)

VL(free atom) + Q0(k0–k) – Φmetal – Rea(extra-atomic)  
 

The binding energy of the free atom referenced to the Fermi level of the spectrometer, which 
is in equilibrium with the Fermi level of the atom in the metal solid, may be written as 

 Eb(ci)
FL(free atom) = Eb(ci)

VL(free atom) – Φmetal        
 

Note that in the free atom the valence charge extends well outside the core, while in a 
monoatomic solid it is normalized to the electrically neutral Wigner-Seitz cell.  Such a 
compression of the valence charge into the cell corresponds to a reduction of the metal core 
electron binding energy (see R.E. Watson, M.L. Perlman, J.F. Herbst, Phys. Rev. B 13 (1976) 
2358-2365) represented in Eq.(A1) by the term Q0(k0–k), with  k > k0 because the atomic radius 
of the atom in the solid metal is less than the atomic radius of the free atom (r < r0). 

The binding energy for a free ion, considering all the Q0 valence electrons removed, becomes 
 
Eb(ci)

VL(free ion) = Eb(ci)
VL(free atom) + k0Q0 – R(ci)       

 
where R(ci) = - R1

a• Q0 

The binding energy for a free ion, considering only (Q0 – Q) valence electrons removed, 
becomes 
 
Eb(ci)

VL(free ion) = Eb(ci)
VL(free atom) + k0Q0 – kQ – R(ci)      

 
where R(ci) = - R1

a• (Q0 – Q) = - R1
a•Qcalc 
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Appendix C: Estimation of the work function of the studied samples by the Mulliken’s 
absoluted electronegativity and the principle of the electronegativity equalization. 

In the following table we report the ground state Mulliken’s electronegativity of the 
components M, Y and X elements present in our studied samples. The geometric mean of 
these values, according to Refs. 27-30, can be taken as an estimate of the work function of the 
solid MaYbXn. This is justified within the Density-functional Theory by the principle of 
electronegativity equalization, meaning that by the incorporation of the free atoms into a solid 
the electronegativity of all the elements becomes the same and is then equal to the negative 
value of the chemical potential of the electrons [31]. Note the meaning of the symbols in the 
empirical formula: e.g. in the case of Zn compounds: Zn (M= Zn; n = 0), ZnO (X = O; n = 1), 
ZnF2(X = F; n = 2). (The ground state electronegativities reported by Chen et al. [28] are 
somewhat higher because they add half the value of the sum of the promotion energies for the 
ionization potential and the electron affinity attributed to a particular type of bonding, i.e. the 
valence state is being considered.) 

Zn, Ba and Pb 
compounds MXn 
 

χ M / eV χX / eV ΦMXn ≈ (χ M χn
X)1/(n+1) /eV 

Zn  4.452  4.45 
ZnO   7.540 5.79 
ZnS  6.219 5.26 
ZnSe  5.887 5.12 
ZnTe  5.490  4.94 
ZnF2  10.41 7.84 
ZnCl2  8.290 6.74 
ZnBr2  7.589 6.35 
ZnI2  6.755 5.88 
    
Ba 2.678  2.68 
BaO  7.540 4.49 
BaS  6.219 4.08 
BaSe  5.887 3.97 
BaTe  5.490 3.83 
BaF2  10.41 6.62 
BaCl2  8.290 5.69 
BaBr2  7.589 5.36 
BaI2  6.755 4.96 
    
Pb 3.890  3.89 
PbO  7.540 5.42 
PbS  6.219 4.92 
PbSe  5.887 4.79 
PbTe  5.490 4.62 
PbF2  10.41 7.50  
PbCl2  8.290 6.44 
PbBr2  7.589 6.07 
PbI2  6.755 5.62 
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Cu(I) and Cu(II) 
compounds MaYbXn 
 

χ M / eV and  
χ Y / eV 

χX / eV ΦMaYbXn ≈  
(χM

a χY
b χn

X)1/(n+a+b) /eV 

Cu 4.481  4.48 
Cu2O  7.540 5.33 
Cu2S  6.219 5.00 
Cu2Se  5.887 4.91 
Cu2Te  5.490 4.79 
CuCl  8.290 6.09 
CuBr  7.589 5.83 
CuI  6.755 5.50 
Fe 4.027   
CuFeS2  6.219 5.14 
CuO  7.540 5.81 
CuS  6.219 5.28 
CuSe  5.887 5.14 
CuTe  5.490 4.96 
CuF2  10.41 7.86 
CuCl2  8.290 6.75 
CuBr2  7.589 6.37 
H 7.176   
Cu(OH)2  7.540 6.66 
CuSO4 6.219 7.540 6.70 
P 5.617   
Cu3(PO4)2  7.540 6.39 
N 7.232   
Cu(NO3)2  7.540 7.05 
 

Appendix D: The variance of the parameters in the fundamental Eq.(1d) depending on 
the charge of the atom 

 

 
 
Fig. 11 General trends of different terms in Eq.(1a) (kQ, VM, 2R(ci) = ∆α’, Φsolid= WF) as a 
function of the cation charge Qcalc) 
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The plot in Fig.11 summarizes the different ISE and FSE contributions for all compounds 
discussed here as described in Eq.(1a) in relation to the charges of the cations. The work 
functions show a small rising trend with growing charge. As expected, both kQ and VM 
depend strongly on the cation charge. Their variability will therefore dominate the chemical 
shift in XPS.  
 
The ticks showing the kQ values are nicely assembled on a line with negative slope with ZnF2 
at its high charge end. In a second line lying a little below we find ticks for Pb compounds 
and at the highest charges those of the Ba compounds. The Pb compounds have proven to be 
exceptional due to their specific lone-pair or inert pair electron configuration, and the Ba 
compounds all excel due to their high ionicity and the high coordination numbers leading to 
smaller k values. The kQ values of Cu(I) compounds are all assembled at lower charges and 
energies in the range of 4 to 7 eV because there is only 1 valence electron in the game. 
 
The ticks giving the potentials at the cation site (the local Madelung energy) show some 
spread due to the great differences in the topology of the structures which is also mirrored in 
the so-called GF factors described above (see section 5.2). However, the general trend of a 
falling line is clearly seen as expected.  
 
The ticks of the ∆α´ values as representatives for relaxation effects show two trends, a slightly 
decreasing line and a second one moving upwards. The former series represent the 
compounds of Zn, Ba and Pb and also those of Cu(I), whereas the latter one represents the 
Cu(II) compounds as already discussed above in the context of Fig.9. The open shell 
configuration is especially noticeable in the relaxation terms, and the extra-atomic part 
dominates the game. Its contribution to the general term R(c) grows with increasing charge of 
the Cu(II) cation making the Auger parameter shift almost independent of the chemical state. 
 
 

 

 

Appendix E: A comparison of experimental and retro-calculated Eb(g) values 

 
Compound Eb(g)exp  

(eV) 
Eb(g)retro  

(eV) 
Eg [33]  
(eV) 

Eb(g)retro-red  
(eV) 

∆(retro-red-exp)  
(eV) 

Zng 1028.9     
ZnO-w  1033.78 3.35 1032.11  3.21 
ZnO-s  1033.42 3.35 1031.75  2.85 
ZnS-w  1030.57 3.91 1028.62 -0.28 
ZnS-s  1030.49 3.54 1028.72 -0.18 
ZnSe-w  1030.01 2.82 1028.60 -0.3 
ZnSe-s  1030.00 2.82 1028.59 -0.31 
ZnTe  1029.05 2.25 1027.93 -0.97 
      
Pbg 144.3     
PbO-t  147.24 1.94 146.27  1.9 
PbS  145.69 0.41 145.49  1.19 

Jo
urn

al 
Pre-

pro
of



 40

PbSe  145.20 0.27 145.07  0.71 
PbTe  144.23 0.32 144.07 -0.23 
PbCl2  147.20 3.9 145.25  0.95 
PbBr2  146.54 3.2 144.94  0.64 
PbI2  144.35 2.32 143.19 -1.1 
      
Cug 939.7     
Cu2O  939.74 2.6 941.04  1.34 
Cu2S  938.96 1.93 939.93  0.23 
Cu2Se  937.17 1.23 937.79 -1.91 
CuCl  938.31 3.3 939.96 0.26 
CuBr  937.83 3.0 939.33 -0.37 
CuI  937.68 3.05 939.21 -0.49 
 
The second column shows the measured binding energies Eb(g)VL for the gaseous elements 
and the third column gives the value for the retro-calculated ones starting from the binding 
energies of the respective compounds. The fifth column contains retro-values corrected by 
subtracting ½ Eg (for Zn and Pb) or adding this value (for Cu(I)) as given in column four, and 
the deviations between calculated and experimental values are given in the last column. (See 
text!) 
The experimental and the calculated Eb(g)VL values agree quite well excepting the Zn-oxides 
and PbO. (The low Eg values for ZnO have been questioned in literature. It is known that this 
compound is non-stoichiometric depending on synthesis, and the same is true for lead 
chalcogenides. The special feature of PbO is discussed in the closing section of this paper.) 

  
 

A pictorial comparison of experimental binding energies for gaseous single atoms Eb(g)VL and 
the respective values resulting from a retro-calculation for c) Zn and d) Pb compounds (blue 
tringles). (See text!) The “correction arrows” are shown when band gap values were known. 

Appendix F:  Wagner plots, literature data and comments.  

The following tables contain the XPS data reported in the literature for the Ba, Zn, Pb and Cu 
compounds investigated in this work (In blue colour are evidenced the data employed to draw 
the Wagner plot).  

The work functions for the metals Ba, Pb, Zn and Cu,  necessary to change the reference of 
the binding-energy of core electrons and the kinetic-energy of Auger electrons of the free 
atoms from the vacuum level to the Fermi level, are obtained from the  Handbook of 
Chemistry and Physics 87th ed. 2006-2007, CRC Taylor and Francis,  (D. R. Lide, Editor-in-
Chief), p.12-114 : ΦBa(s) =  2.52 eV; ΦPb(s) =  4.25 eV ; ΦZn(s) = 3.63 eV; ΦCu(s) ≈ 5 eV( this 

Jo
urn

al 
Pre-

pro
of



 41

value was obtained considering the work functions measured on low Miller index crystal 
faces: (100) ΦCu(s) = 5.10 eV, and (111): ΦCu(s) = 4.94 eV). 

The binding-energy and the kinetic-energy data reported in the tables below have been 
standardized to an energy scale that assumes, with Fermi level referencing, the following 
binding energies: Au 4f7/2 = 84.0 eV, Ag 3d5/2 = 368.27 eV, Cu 2p3/2 = 932.67 eV, and C 1s 
(for hydrocarbon or hydrocarbon groups) = 284.8 eV.  The C 1s value has been used for the 
Fermi level referencing of all the insulating samples. The precision of most reported energies 
is generally not better than 0.1 eV. 

Ba Wagner plot: Ba (3d5/2) and Ba (M4N45N45) 

α’ = Eb (3d5/2) + Ek (M4N45N45) 

Data from literature:  

References and Compounds 3d5/2 / eV M4N45N45 / eV α’ / eV ∆α’ / eV 
a) M. Kellokumpu, H. Aksela, 
Phys. Rev. A 31 (1985) 777-782;  
b) A. Mäntykenttä, H. Aksela, S. 
Aksela, J. Tulkki, T. Åberg,  Phys. 
Rev. A 47 (1993) 4865-4873. 

    

Ba(g)  
Note: [Eb (3d5/2) - Eb (4d5/2)] = 
690.4 eV. 

788.7 576.8 1365.5 0 

 

Data from NIST database [11]:  

References and Compounds 3d5/2  / eV M4N45N45 / eV α’ / eV ∆α’ / eV 
H. van Doveren, J.A.Th 
Verhoeven, 
J. Electron Spectrosc. Relat. 
Phenom. 21 (1980) 265 

    

Ba(s) 779.3 602.0 1381.3 15.8 
BaO 779.1 598.4 1377.5 12.0 
W.V. Lampert, K.D. Rachocki, 
B.C. Lamartine, T.W. Hass 
J. Electron Spectrosc. Relat. 
Phenom. 26 (1982) 133 

    

Ba(s) 779.8 601.9 1381.7 16.2 
C.D. Wagner, W.M. Riggs, L.E. 
Davis, J.F. Moulder, G.E. 
Muilenberg 
Handbook of X-Ray Photoelectron 
Spectroscopy, Perkin-Elmer 
Corporation, Physical Electronics 
Division, Eden Prairie, Minn. 
55344 (1979) 

    

BaO 779.85 597.50 1377.35 11.8 
R.P. Vasquez, J. Electron 
Spectrosc. Relat. Phenom. 56 
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(1991) 217-240. 
BaS 779.3 599.2 1378.5 13.0 
BaO 779.4 597.8 1377.2 11.7 
BaF2 780.0 595.8 1375.8 10.3 
BaCl2 780.4 596.5 1376.9 11.4 
BaBr2.2H2O 780.4 596.8 1377.2 11.7 
BaI2.2H2O 780.6 597.3 1377.9 12.4 
The following data have been 
collected critically by C. D. 
Wagner in “Practical Surface 
Analysis” (Second edition) , J. 
Wiley &Sons, Ltd 1990. Appendix 
5 Photoelectron and Auger 
Energies and the Auger Parameter. 
A Data Set, Barium p.617. 

    

M.F. Koenig, J.T. Grant, Appl. 
Surf. Sci. 20 (1985) 481-496.  

    

Ba(s)  
Note [Eb (3d5/2) - Eb (4d5/2)] = 690.4 
eV 

780.6 601.0 1381.6 16.1 

BaO 
Note [Eb (3d5/2) - Eb (4d5/2)] = 690.1 
eV. 

779.9 598.0 1377.9 12.4 

H. Seyama, M. Soma, J. Chem. 
Soc., Faraday Trans. I 80 (1984) 
237-248. 

    

BaCl2.2H2O 781.6 594.9 1376.5 11.0 
BaF2 781.7 594.9 1376.6 11.1 
 

 

Pb Wagner plot: Pb (4f7/2) and Pb (N6O45O45)  

α’ = Eb (4f7/2) + Ek (N6O45O45)  

Data from literature: 

References and Compounds 4f7/2 / eV N6O45O45 / eV α’ / eV ∆α’ / eV 
M. Patanen, S. Urpelainen, T. 
Kantia, S. Heinäsmäki, S. Aksela 
and H. Aksela, Phys. Rev. A 83 
(2011) 053408-1-5. 

    

Pb(g) 144.3 81.3 225.6 0 
 

Data from NIST database [11]:  

References and Compounds 4f7/2  / eV N6O45O45 / eV α’ / eV ∆α’ / eV 
J. A. Taylor and D. L. Perry, J.Vac. 
Sci. Technol. A 2 (1984) 771-774. 
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Pb(s) 136.7 96.3 233.0 7.4 
PbO rhom. 137.6 92.8 230.4 4.8 
PbO tetra. 137.7 92.6 230.3 4.7 
C.J. Powell,  
J. Electron Spectrosc. Relat. 
Phenom. 185 (2012) 1. 

    

Pb(s) 136.82 95.8 232.62 7.0 
C.D. Wagner, W.M. Riggs, L.E. 
Davis, J.F. Moulder, G.E. 
Muilenberg 
Handbook of X-Ray Photoelectron 
Spectroscopy, Perkin-Elmer 
Corporation, Physical Electronics 
Division, Eden Prairie, Minn. 
55344 (1979) 

    

Pb(s) 136.80 96.25 233.05 7.5 
The following data have been 
collected critically by C. D. Wagner 
in “Practical Surface Analysis” 
(Second edition) , J. Wiley &Sons, 
Ltd 1990. Appendix 5 
Photoelectron and Auger Energies 
and the Auger Parameter. A Data 
Set, Lead p.623. 
 

    

L.R. Pederson, J. Electron 
Spectrosc. Relat. Phenom. 28 
(1982) 203-209. 

    

Pb(s) 136.80 96.25 233.05 7.5 
PbTe 137.25 95.45 232.70 7.1 
PbSe 137.60 94.75 232.35 6.8 
PbS 137.50 94.55 232.05 6.5 
PbO 137.25 92.85 230.10 4.5 
PbI2 138.35 93.35 231.70 6.1 
PbBr2 138.8 92.6 231.4 5.8 
PbCl2 138.9 92.1 231.0 5.4 
PbF2 138.5 90.6 229.1 3.5 
 

 

Zn Wagner plot Zn (2p3/2) and Zn (L3M45M45)  

α’ = Eb (2p3/2) + Ek (L3M45M45 : 
1G)  

Data from literature:   

References and Compounds 2p3/2 / eV L3M45M45 : 
1G / eV α’ / eV ∆α’ / eV 

H. Aksela, S. Aksela, H. Patana, 
Phys. Rev. A 30 (1984) 858. 

    

Zn(g) 1028.9 974.4 2003.3 0 
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Data from NIST database [11]:  

References and Compounds 2p3/2 / eV L3M45M45 : 
1G / eV α’ / eV ∆α’ / eV 

J.C. Klein and D.M. Hercules 
J. Catal. 82(1983) 424 

    

ZnCl 2 1021.9 989.4 2011.3 8.0 
Zn(s) 1021.7 992.3 2014.0 10.7 
ZnO 1021.9 988.2 2010.1 6.8 
B.R. Strohmeier and D.M. 
Hercules 
J. Catal. 86(1984) 266 

    

ZnO 1021.2 988.9 2010.1 6.8 
Zn(s) 1021.0 992.4 2013.4 10.1 
ZnS 1021.7 989.6 2011.3 8.0 
S.P. Kowalczyk, L. Ley, F.R. 
McFeely, R.A. Pollak, D.A. 
Shirley 
Phys. Rev.B 9 (1974) 381 

    

Zn(s) 1021.9 991.8 2013.7 10.4 
S.P. Kowalczyk, R.A. Pollak, 
F.R. McFeely, L. Ley, D.A. 
Shirley 
Phys. Rev.B 8 (1973) 2387 

    

Zn(s) 1021.6 991.9 2013.5 10.2 
G. Schoen 
J. Electron Spectrosc. Relat. 
Phenom. 2 (1973) 75. 

    

ZnO 1021.6 988.5 2010.1 6.8 
Zn(s) 1021.9 992.5 2014.4 11.1 
C.D. Wagner,  
Discuss. Faraday Soc. 60 (1975) 
291 

    

ZnF2 1022.8 986.7 2009.5 6.2 
ZnBr 2 1023.4 987.3 2010.7 7.4 
Zn(s) 1021.9 992.0 2013.9 10.6 
C.D. Wagner, W.M. Riggs, L.E. 
Davis, J.F. Moulder, G.E. 
Muilenberg 
Handbook of X-Ray 
Photoelectron Spectroscopy, 
Perkin-Elmer Corporation, 
Physical Electronics Division, 
Eden Prairie, Minn. 55344 (1979) 

    

Zn(s) 1021.65 992.20 2013.85 10.5 
D.W. Langer, C.J. Vesely 
Phys. Rev.B 2 (1970) 4885 

    

ZnO 1021.4 988.9 2010.3 7.0 
ZnS 1022.0 989.9 2011.9 8.6 
ZnSe 1021.8 988.4 2010.2 6.9 
ZnTe 1021.6 990.6 2012.2 8.9 
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J.M. Mariot, G. Dufour 
Chem. Phys. Lett. 50 (1977) 219 

    

Zn(s) 1021.6 992.3 2013.9 10.6 
C.J. Powell,  
J. Electron Spectrosc. Relat. 
Phenom. 185 (2012) 1; 182 
(2010) 11 

    

Zn(s) 1021.76 992.40 2014.16 10.9 
P.S. Wehner, P.N. Mercer, G. 
Apai 
J. Catal. 84 (1983) 244 

    

ZnO 1022.0 988.1 2010.1 6.8 
Zn(s) 1021.7 992.1 2013.8 10.5 
T.D. Thomas and P. Weightman 
Phys. Rev. B 33 (1986) 5406 

    

Zn(s) 1021.60 992.22 2013.82 10.5 
R. Islam and D.R. Rao 
J. Electron Spectrosc. Relat. 
Phenom. 81 (1996) 69. 

    

ZnSe 1022.2 989.1 2011.3 8.0 
L.S. Dake, D.R. Baer, J.M. 
Zachara 
Surf. Interface Anal. 14 (1989) 71 

    

ZnO 1022.3 988.1 2010.4 7.1 
ZnS sphalerite 1021.8 989.7 2011.5 8.2 
ZnS sphalerite 1021.8 989.8 2011.6 8.3 
ZnCl 2 1023.7 986.2 2009.9 6.6 
Zn(s) 1021.6 992.2 2013.8 10.5 
G. Deroubaix and P. Marcus 
Surf. Interface Anal. 18(1992) 39 

    

ZnS 1022.0 989.4 2011.4 8.1 
ZnO 1022.1 988.2 2010.3 7.0 
Zn(s) 1021.8 992.1 2013.9 10.6 
The following data have been 
collected critically by C. D. 
Wagner in “Practical Surface 
Analysis” (Second edition) , J. 
Wiley &Sons, Ltd 1990. 
Appendix 5 Photoelectron and 
Auger Energies and the Auger 
Parameter. A Data Set, Zinc 
pp.608-609. 

    

R. Hoogewijs, L. Fiermans and J. 
Vennik, J. Electron Spectrosc. 
Relat. Phenom. 11 (1977) 171 

    

ZnTe 1021.6 991.3 2012.9 9.6 
ZnSe 1022.0 989.5 2011.5 8.2 
S.W. Gaarenstroom and N. 
Winograd, J. Chem. Phys. 67 
(1977) 3500 
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ZnS 1021.6 989.7 2011.3 8.0 
ZnO 1022.1 987.7 2009.8 6.5 
ZnI 2 1022.5 988.7 2011.2 7.9 
ZnF2 1021.8 986.2 2008.0 4.7 
S. Evans, Surf. Interface Anal. 7 
(1985) 299 

    

Zn(s) 1021.7 992.1 2013.8 10.5 
 

 

Cu Wagner plot Cu (p3/2)  and Cu (L3M45M45)  

α’ = Eb (2p3/2) + Ek (L3M45M45 : 
1G)  

Data from literature:   

References and Compounds 2p3/2 / eV L3M45M45 : 
1G / eV α’ / eV ∆α’ / eV 

S. Aksela, J. Sivonen, Phys. Rev. A 
25 (1982) 1243. 
H. Aksela, S. Aksela, H. Patana, 
Phys. Rev. A 30 (1984) 858. 

    

Cu(g) 939.7 900.7 1840.4 0 
M.C. Biesinger, Surf. Interface 
Anal. 49 (2017) 1325. 

    

Cu2O 932.18 916.99 1849.17 8.8 
CuCl 932.34 915.18 1847.51 7.1 
CuBr 932.27 915.72 1848.00 7.6 
CuI 932.50 916.34 1848.84 8.4 
CuFeS2 932.14 918.04 1850.18 9.8 
Cu2S 932.62 917.23 1849.84 9.4 
CuO 933.76 917.57 1851.33 10.9 
CuF2 936.38 915.36 1851.74 11.3 
CuCl2 935.30 915.08 1850.37 10.0 
CuBr2 934.50 916.10 1850.60 10.2 
Cu(OH)2 934.67 916.25 1850.92 10.5 
CuSO4 936.00 915.91 1851.91 11.4 
Cu3(PO4)2 935.85 915.76 1851.61 11.2 
Cu(NO3)2••••3H2O 935.51 914.98 1850.49 10.1 
Cu(s) 932.63 918.61 1851.24 10.8 
 

Data from NIST database [11]:   

References and Compounds 2p3/2 / eV L3M45M45 : 
1G / eV α’ / eV ∆α’ / eV 

R. Romand, M. Roubin and J. P. 
Deloume, Electron Spectrosc. Relat. 
Phenom. 13 (1978) 229 

    

CuSe 932.0 918.4 1850.4 10.0 
D. Cahen, D. J. Ireland, L.L. 
Kazmerski and F.A. Thiel, J. Appl. 
Phys. 57(1985) 4761 
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Cu2Se 932.5 917.8 1850.3 9.9 
D.L. Perry and J.A. Taylor, J. Mat. 
Sci. Letters 5 (1986) 384. 

    

Cu2S (chalcocite) 932.4 917.5 1849.9 9.5 
CuS (covellite) 932.2 918.1 1850.3 9.9 
The following data has been collected 
critically by C. D. Wagner in 
“Practical Surface Analysis” (Second 
edition), J. Wiley &Sons, Ltd 1990. 
Appendix 5 Photoelectron and Auger 
Energies and the Auger Parameter. A 
Data Set, Cu p.608. 
 

    

R. Romand, M. Roubin and J. P. 
Deloume, Electron Spectrosc. Relat. 
Phenom. 13 (1978) 229 

    

Cu2Se 931.9 917.6 1849.5 9.1 
 

 

 

Jo
urn

al 
Pre-

pro
of



Highlights 

We discuss factors determining chemical shifts of measured binding energies in XPS in a 
unifying equation, and we quantify different factors separately which bias the measurement of 
the kinetic energies of the outgoing electrons. 

We present a theory combining several parameters resulting from DFT calculations which 
will influence the energy of photoelectrons and we thereby help to rationalize the scatter of 
data points in diverse presentations such as Wagner plots.  . 

We show how Bader charges and basin volumes resulting from DFT calculations as well as 
site potentials give a data basis to rationalize the spread of measured binding energies and 
Auger parameters. 

We demonstrate how the structural topology of a crystalline solid is mapped in the variations 
of the kinetic energy of photoelectrons. 

We show how an estimate of work functions resulting from Mulliken electronegativities can 
be included in such a unifying approach and how even types of semiconductors can be 
foreseen. 
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