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Abstract—Real-world networks are typically described in
terms of nodes, links, and communities, having signal values often
associated with them. The aim of this paper is to introduce a
novel Compound Markov random field model (Compound MRF,
or CMRF) for signals defined over graphs, encompassing jointly
signal values at nodes, edge weights, and community labels.
The proposed CMRF generalizes Markovian models previously
proposed in the literature, since it accounts for different kinds
of interactions between communities and signal smoothness con-
straints. Finally, the proposed approach is applied to (joint) graph
learning and signal recovery. Numerical results on synthetic and
real data illustrate the competitive performance of our method
with respect to other state-of-the-art approaches.

Index Terms—Graph Signal Processing, Markov random field,
graph community, graph learning, graph signal denoising.

I. INTRODUCTION

S IGNALS on graphs (SoG) describe a huge variety of complex
systems like social, biological, and technological networks [1].
Several SoG models have been proposed in the literature to,
e.g., infer network topology, denoise measurements, predict
missing data, etc. [2]–[4]. Among others, Markovian models
are widely adopted to model complex systems involving
several random variables; such models are useful whenever
global constraints on single random variables can be expressed
exactly, or approximately, in terms of local constraints. Fruitful
applications of Markovian models can be found in signal
and image processing [5]–[9], and, recently, they have been
applied also to graphs [11], [12], especially for graph inference
purposes. In particular, SoG are often modeled as Gaussian
Markov Random Fields (GMRF), having a precision matrix
related to the Laplacian matrix of the underlying graph, see,
e.g., [13], [15]. Also, in [14], the authors infer the graph
topology based on the potential energy of the associated MRF.
In [16], SoG are modeled as an irregular sampling of a
continuous space GMRF. Finally, in [17] the authors proposed
an MRF to model edges and signals observed over graphs in
a joint fashion.

Contribution. Many social or biological networks are or-
ganized into communities, i.e., subsets of nodes that feature
peculiar interconnections among them. Clearly, incorporating
such side information in SoG modeling may improve the
performance of several learning tasks. In this paper, we address
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the joint modeling of the signal values, edges connectivity, and
the underlying community structure using distinct but related
random fields. We introduce a novel compound MRF (CMRF)
model built by the signal, edge weight and community labeling
fields. To the best of our knowledge, such holistic modeling
has never been proposed up to date. The proposed CMRF
generalizes Markovian models in the literature and it can
be tuned to represent different kind of interactions between
graph communities, such as attractive or repulsive behavior
between nodes. Also, our CMRF model paves the way for
designing joint solutions of GSP problems such as graph
learning, community detection, and signal recovery, which are
conventionally independently tackled. The proposed CMRF
is applied to the recovery of the graph topology and signal
from data; numerical simulations illustrate its advantages with
respect to state-of-the-art competitors.

Outline. The structure of the paper is as follows. In Sec.
II we introduce the proposed CMRF. In Sec. III we apply the
CMRF to graph learning and signal recovery, and in Sec.IV
we evaluate the performance of our approach against other
techniques. Finally, Sec.V draws some conclusions.

II. A COMPOUND MARKOV RANDOM FIELD MODEL
FOR SIGNALS ON GRAPHS

In this section, we introduce the proposed CMRF model,
which accounts jointly for signal values observed at nodes,
graph connectivity, and the underlying community structure.
Let us consider a graph G = (V, E), where V denotes the set
of N vertices, and E = {eij = (vi, vj)}, for all vi, vj ∈ V ,
represents the set of edges. A real weight wij is associated to
each edge eij ∈ E . Let W = {wij}Ni,j=1 be the N × N real
matrix collecting all edge weights. Also, let A be the N ×N
binary adjacency matrix, whose elements are such that aij = 1
if wij 6= 0, and 0 otherwise. The graph Laplacian is defined
as L = D−A, where D is the diagonal degree matrix, having
dii =

∑N
j=1 aij , for all i = 1, . . . , N .

An M -dimensional signal x(v) ∈ RM is associated to
vertex v, for all v ∈ V . Furthermore, we consider a partition of
V into C disjoint communities, assigning each vertex to a com-
munity using the binary vector γ(v) = [γ1(v), . . . , γC(v)]T ,
for all v ∈ V , where γc(v) = 1 if node v belongs to community
c, and zero otherwise. Thus, inspired by the pixel-and-edge
model [18], [19], adopted in image processing to jointly rep-
resent smooth regions and their boundaries [20], we represent
the multidimensional signal x(v), v ∈ V , the graph adjacency
a(e), e ∈ E , and the community structure γ(v), v ∈ V , as
realizations of the following triplet of random fields: i) Signal
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Fig. 1. (a) Clique potential functions VX (·) (the case VX (·) = (·)2 corresponds to GMRF); (b) assortative and (c) disassortative community structure.

field X : V → RM ; ii) Edge field A : E → {0, 1}; iii)
Community field Γ : V → B = {1i, i = 1, . . . , C}, where
B represents the set of unit-norm vectors 1i ∈ {0, 1}C of the
M -dimensional standard basis. Then, we define the compound
domain U , V ∪ E ∪ V, and the related compound random
field: X̃ : U → RM ∪ {0, 1} ∪ B, being:

x̃(u)=

 xv ∈ RM

ae ∈ {0, 1}
γv ∈ B,

for u = [v, e, v] ∈ U .

If X̃ is an MRF, any u is associated to a neighborhood system
Nu, and the local Markov property holds, i.e. p

(
x̃u | U

)
=

p
(
x̃u | Nu

)
. Also, a MRF obeys a Gibbs distribution [21]:

pX̃(x̃) =
exp{−U(x̃)}∑

x̃∈X̃

exp{−U(x̃)}
(1)

where U(x̃) =
∑

u

∑
u′∈N (u) V (||x̃u − x̃u′ ||) is a global

potential function, with V (·) denoting a non-negative non-
decreasing function computed on cliques1, i.e., the clique
potential. In particular, for the proposed CMRF X̃ , the Gibbs
distribution (1) depends on the component fields X , A, Γ, as:

pX ,A,Γ(x, a,γ) =
exp{−U(x, a,γ)}

Z
, (2)

where the constant term Z is set as Z =
∑

x̃∈X̃ exp{−U(x̃)}.
In the pixel-and-edge MRF used in image processing applica-
tions [19], the MRF jointly models the image luminance values
and the discontinuities along smooth regions boundaries. This
is achieved by factorizing the Gibbs distribution into two
terms: one representing the relationship between image values
and edges, and the other modeling intrinsic image edge proper-
ties, e.g., the spatial continuity. Herein, we follow an analogous
approach, thus separately modeling three kinds of relation-
ships, namely: i) signal-edge interactions, ii) community-edge
interactions, and iii) intrinsic edge constraints. To this aim,
the Gibbs distribution in (2) is factorized into the product of
three terms, and the potential function U(x, a,γ) is cast as:

U(x, a,γ) =
∑

i∈V, j∈Ni

aij VX (||xi − xj ||)︸ ︷︷ ︸
UX (x,a)

+
∑

i∈V, j∈Ni

aij VΓ (‖γi − γj‖)︸ ︷︷ ︸
UΓ(a,γ)

+
∑

e∈E, k∈Ne

VA (a, ak)︸ ︷︷ ︸
UA(a)

(3)

1A clique is a set of fully connected elements.

being VX , VΓ, VA three non-negative potential functions.
The three terms in the potential function U(x, a,γ) have the
following meaning. The term UX (x, a) is jointly related to the
signal and the edge processes: it enforces signal smoothness
on pairwise connected nodes and, vice-versa, connectivity
over nodes with similar signal values. The term UΓ(a,γ)
controls the probability of observing edges between different
communities. Finally, the term UA(a) implies constraints on
edges stemming from the same node.

Choice of the potential functions. For simplicity, but
without loss of generality, let us consider the case of scalar
SoG (i.e., M = 1), which is commonly used in the literature.
Regarding VX , the choice of a quadratic prior as VX (·) = (·)2

corresponds to using a GMRF model [13] However, non-
quadratic priors such as VX (·) = | · | or VX (·) = 1 − e−(·)2

can be used to limit the penalty computed on largely different
signal values (see, e.g., Fig.1(a)), and are well suited to
model SoGs where a few nodes largely differ from their
neighborhood as, e.g., in the case of sparse or spiky signals.

Regarding VΓ, the distance metric should assert if two nodes
belong or not to the same community. Then, the potential
function VΓ may take the form VΓ(·) = 2− || · ||0 or VΓ(·) =
|| · ||0, depending on whether high or low potential energy
wants to be assigned to links within the same community.
Thereby, VΓ can model different network structures such as,
e.g., disassortative or assortative ones (see, e.g., Fig.1 (b) and
(c)). The further prior UA(a) in (3) accounts for relative edge
positioning and can be used to model SoGs with constrained
graphs layouts. A relevant example is that of time-variant
SoGs, where the vertex-time domain may obey to specific
topological constraints, see, e.g., [22].

On the structure of UX . As previously mentioned, a
GMRF is a particular case of our framework, correspond-
ing to the selection of a quadratic cost function UX , i.e.,
UX (x, a) = 1

2x
TLx. For general choices of UX , a more

general expression can be found for the proposed CMRF. In
particular, let us consider the Taylor series expansion of VX up
to order K, i.e., VX (xi − xj) ≈

∑K
k=1

1
k!V

(k)
X (0)(xi − xj)k,

where V
(k)
X (0) is the k-th order derivative of VX evalu-

ated at 0. Then, UX (x, a) in (3) writes as: UX (x, a) =∑K
k=1

1
k!V

(k)
X (0)

∑
i∈V, j∈N (i) aij (xi−xj)k. Introducing now

the vector h(k)(x) given by

h(k)(x) = [ 1 · · · 1︸ ︷︷ ︸
0-th

x0 · · ·xN−1︸ ︷︷ ︸
1-st

· · · xk0 · · ·xkN−1︸ ︷︷ ︸
k-th order

],

which collects the Hadamard (entry-wise) powers of the
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[x0 · · ·xN−1] up to the k-th order, and leveraging (a− b)k =∑k
l=0

(
k
l

)
(−1)lal bk−l, we obtain:

UX (x, a) =
K∑

k=1

h(k)(x)TA(k)h(k)(x), (4)

where A(k) =
(
V(k) ⊗A

)
J, with V(k) denoting a diag-

onal matrix whose l-th entry is equal to V
(k)
X (0)

k!

(
k
l

)
(−1)l;

also, ⊗ denotes the Kronecker product, and J is the ex-
change matrix [25]. Eq.(4), which for symmetric potential
function and K = 2, boils down to the GMRF quadratic
form UX (x, a) = h(2)(x)T

(
V(2) ⊗A

)
Jh(2)(x) = 1

2x
TLx,

rephrases the potential Eq.(4), as an element of the ring of
polynomials. This model can be leveraged for numerical and
analytical solutions of graph inference problems. This is left
for further studies.

III. APPLICATION TO GSP INFERENCE PROBLEMS

In this section, we leverage the CMRF in two fundamental
GSP tasks: i) graph learning; ii) and joint signal and graph
topology recovery, when the communities are known but the
actual links are not. This occurs for instance, in social net-
works, where users are profiled as belonging to a community,
e.g. by age, school or association, but mutual interactions
and correlation between users have to be estimated to setup
personalized advertising [23]. In such a case, the community
information can be leveraged in estimating connectivity pattern
between users’ choices. Likewise, in brain networks, the
communities represent areas which are known to be involved
in given tasks [24], but the underlying graph topology has to
be estimated. These problems can be tackled leveraging the
proposed CMRF, as we will illustrate next.

1) Graph Learning: Let us assume that we know the
signal xi, i = 1, . . . , N , and the community partition γi,
i = 1, . . . , C. Then, we perform Maximum a Posteriori (MAP)
estimation seeking for the edges {aij} that maximize the
Gibbs distribution in (2). Exploiting (3), this task coincides
with the following minimization problem:

min
A

∑
i∈V, j∈N (i)

aij

(
VX (||xi − xj ||) + VΓ (‖γi − γj‖)

)
subject to ‖A‖0 = 2K, (5)

where K represents the number of edges assumed to be in the
graph. Since the objective function is linear in {aij}, if VX (·)
is a non-negative and non-decreasing function, the solution of
(5) coincides with the selection of the K edges corresponding
to the K smallest values of VX (||xi − xi||)+VΓ (‖γi − γj‖),
for all i, j = 1, . . . , N . When no prior on the community
field is available, the term VΓ(·) vanishes, and the MAP
solution is driven only by the component VX (||xi − xj ||).
Interestingly, in such a case, relaxing the discrete coefficients
{aij} to be real variables in the interval [0, 1], and consid-
ering VX (||xi − xj ||) = 1 − exp

(
−‖xi − xj‖2

)
, problem

(5) becomes: maxaij∈[0,1]

∑
ij aij exp

(
−‖xi − xj‖2

)
, which

leads to the so-called Gaussian weights [16], i.e., aij =

exp(−||xi−xj ||2). Thus, the CMRF extends to real weights,
and the graph learning in (5) includes as particular cases

Algorithm 1 : Joint Signal and Graph Topology Recovery

Data: y, γ. Set x(0) = y; for t ≥ 0, repeat:
Step 1: Solve the SCA optimization problem(

x̂(t),A(t+ 1)
)

= arg min
x,A

1

2
‖y − x‖2

+ λ1 · ŨX ,A(x,A;x(t),A(t)) + λ2 · UΓ(A,γ)

subject to ‖A‖0 = 2K, (7)

Step 2: Compute: x(t+1) = x(t)+α(t)
(
x̂(t)− x(t)

)
Gaussian distance weights [16], covariance based weights [22],
Intensity/Distance based weights [14], among the others.

Finally, we highlight that our learning strategy in (5) might
also be modified to select edges whose potential energy falls
below a given threshold θ. Either K0 in (5) or θ shall be
properly tuned given the system constraints (e.g., number of
neighbors per node, maximum number of links, etc.).

2) Joint Topology and Signal Recovery: In this task, we
aim to jointly recover the graph signal and its topology from
noisy observations given by: yi = xi+vi, i = 1, . . . , N, where
v = [vT

1 , . . . ,v
T
N ] is a zero-mean noise vector with covariance

matrix σ2I. Let y = [yT
1 , . . . ,y

T
N ] and x = [xT

1 , . . . ,x
T
N ].

Then, exploiting the proposed CMRF model in (3), the task
of joint recovery of x and A can be cast as:

min
x,A

1

2
‖y − x‖2 + λ1 · UX ,A(x,A) + λ2 · UΓ(A,γ)

subject to ‖A‖0 = 2K, (6)

where λ1 and λ2 are two positive regularization coefficients.
In general, the optimization in (6) is nonconvex due to the
nonlinear coupling term UX ,A(x,A). Thus, in the sequel,
we exploit successive convex approximation (SCA) methods
[26] to devise an iterative algorithm that converges to local
solutions of (6). The main steps of the method are shown in
Algorithm 1. The first step is an SCA optimization, where the
nonconvex term UX ,A(·) in (6) is replaced by a convex approx-
imation ŨX ,A(x,A;x(t),A(t)) evaluated at (x(t),A(t)).
Among the possible choices for the approximant (see
[26]), in this work we consider: ŨX ,A(x,A;x(t),A(t)) =
∇xUX ,A(x(t),A(t))Tx+UX ,A(x(t),A). The problem in (7)
admits a closed form solution: as for (5), A(t+1) is obtained
by selecting the edges corresponding to the K smallest pairs
among the potentials in λ1 · UX ,A(x(t),A) + λ2 · UΓ(A,γ);
whereas, we have x̂(t) = y + λ1 · ∇xUX ,A(x(t),A(t)).
Finally, the second step in Algorithm 1 performs a convex
combination between the previous signal estimate x(t) and the
current solution x̂(t), using a diminishing step-size α(t) 2. Our
method generalizes other approaches available in the literature
[13], [15], [28], [29] which do not consider the community
term UΓ and assume only quadratic potentials for UX ,A(·).

IV. NUMERICAL SIMULATIONS

In this section, we assess the performance of procedures
leveraging the proposed CMRF. Let us first consider learning

2α(t) satisfies
∑∞

t=0 α(t) = ∞ and
∑∞

t=0 α(t)
2 < ∞, which are well

known conditions in the adaptive filters and control literature [27].
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Fig. 2. Precision and recall for different values of signal variability ν (disassortative (a) and assortative (b) networks, ν = {0, 0.5, 1, 1.5, 2, 2.5} ) and for
different number of communities P (disassortative (c) and assortative (d) networks, P = {3, 4, 5, 6, 7, 8, 9}). The black circle in (1, 1) represents perfect
detection. The CMRF based method achieves uniformly better performances while being less sensitive to the parameter settings.

Fig. 3. Estimated edges over real social network data [30] .
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Fig. 4. Joint topology and signal recovery: percentage MSE reduction vs
F-measure for Algo. 1 (red), [15] (black) and [13] (gray), 20 Montecarlo
runs.

of random modular graphs with of N = 30 nodes and P =
4 communities, with intra/inter community link probability
πintra, πinter. The signal in the i-th community is uniformly
distributed in the interval [i, i + ν], i = 1, . . . P . Both signal
and community values are assumed to be known. In Fig.2 we
report precision and recall3 of the proposed CMRF method,
and other state-of-the-art learning methods [13] and [15],
as well as the perfect detection point (1, 1) (black circle).
Figs.2(a)-(b) correspond to different signal variability ν for (a)
a disassortative (πintra = 0.01) and (b) an assortative network
(πintra = 0.99)4; the number of networks edges differ, being
larger in the dissortative case. Furthermore, in Figs.2(c)-(d) we
illustrate precision and recall results for different number P of
communities for disassortative (c) and assortative (d) network
structure. As we can see from Fig. 2, the proposed CMRF
outperforms the competitors in [13] and [15] for several values
of the parameters, being systematically closer to the perfect
detection point (1, 1). Also, Table I illustrates the F-measure,
given by F = 2· rp

r + p
(the higher the better), averaged over 20

Montecarlo runs, for P = 4 and ν = 3. The results in Table 1
show how the proposed method based on CMRF outperforms
competitors on both assortative and disassortative networks.

As a further example, we report the performance of the

3Precision is the number of true detected edges over the total detected;
recall is the number of true detected edges over the number of true edges.

4For both the networks πintra = 1− πinter .

TABLE I
F-MEASURE (20 MONTECARLO RUNS, N = 30, P = 4,ν = 3).

F-measure CMRF [15] [13]
Assortative 0.98 0.46 0.36
Dissortative 0.93 0.87 0.5

algorithm on a real social network [30], composed of N = 236
nodes representing the children of a primary school; the true
edge weights are associated to daily children interaction, the
signal values and community labels are given by the children
ages and attended classes. The CMRF based graph learning
achieves precision p = 0.76, recall r = 0.60, and an overall
F-metric F = 0.68. The SoG and the estimated links are
illustrated in Fig.35 For the sake of comparison, the algorithm
in [13] achieves F = 0.2 on the same data.

Finally, we test the performance of Algorithm 1 applied to
a random modular graph with N = 30 and P = 4. The signal
x in the i-th community is set to i and corrupted with white
Gaussian noise of variance 0.5. We consider the Mean Squared
Error (MSE) between the true value x and the estimated signal
x(t), i.e., MSE(t) = ‖x− x(t)‖2, and its reduction δMSE =
(MSE(0)−MSE(tMAX)) /MSE(0) achieved at convergence
by Algorithm 1 (where tMAX = 10). In Fig.4 we report the
scatterplot of δMSE obtained in 20 Montecarlo simulations,
versus the corresponding F-measure (red points). As we can
see from Fig. 4, Algorithm 1 achieves an F-measure close to
one; the MSE reduction is above 50% in all runs. For the sake
of comparison, in Fig.4 we also report the F-measure achieved
by the methods in [15] (black points) and [13] (gray points).
Since these approaches do not perform signal recovery, their
δMSE has been set to 0. Clearly, the holistic approach of the
proposed CMRF-based method leads to better performance in
graph topology recovery even in presence of noisy signals,
where conventional signal-based approaches are not robust.

V. CONCLUSIONS

In this paper, we have proposed a novel compound MRF
(CMRF) for signals on graphs, jointly modeling signal values,
edge weights, and community labels. The CMRF generalizes
Markovian SoG models in the literature, addressing different
graph structures and signal smoothness priors. We have applied
the CMRF to two GSP inference tasks: graph learning, and
joint topology and signal recovery. Numerical simulations on
synthetic and real data illustrate the superior performance of
our method with respect to state-of-the-art competitors.

5Different communities are represented by different node colors, apart from
communities built by one node that are assigned a dark blue color.
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