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Abstract 

The maintenance of chromosome ends in Drosophila is an exceptional phenomenon 

because it relies on the transposition of specialized retrotransposons rather than on the activity of 

the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. 

Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce 

long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by 

telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the 

recruitment of telomere capping proteins favors proper telomere function. However, how this 

coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric 

elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA 

and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a 

unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms 

underlying the regulation of HTT transcription and transposition and will discuss the possibility of a 

crosstalk between piRNA mediated regulation, telomeric chromatin establishment and telomere 

protection. 

 

Keywords: telomere capping; retrotransposons; piRNAs; terminin; Het-A 

 

Introduction 

The transition from circular to linear chromosomes about 1 Gy ago is a key event in 

eukaryotic evolution [1, 2]. The emergence of linear chromosomes posed two major problems to 

the first eukaryotic cell. First, chromosome ends would have been sensed as sites of DNA damage 

wreaking havoc to genome integrity [3]; second, the removal of the terminal primer used by DNA 

polymerases during replication determines a progressive erosion of chromosome ends leading to 

the loss of essential genes, thereby compromising cell viability [4, 5]. To cope with these two 

problems, cells evolved telomeres by the implementation of efficient strategies to specifically 

address the protection and the replication issues [6]. The accumulation of repeated sequences at 

chromosome ends turned out to efficiently counteract the loss of relevant parts of the genome due 
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to incomplete end replication. The majority of modern telomeres consist of short G-rich repeats 

elongated by telomerase [7], which is thought to derive from an ancient retroelement [8, 9]. 

Telomeres are protected from unwanted DNA damage repair by several proteins that constitute 

specific capping complexes, namely shelterin in vertebrates and in fission yeast [10, 11] and CST 

in budding yeast [12]. The components of the capping complexes perform a number of conserved 

functions: 1) recognize and bind the ssDNA overhang that is present at chromosome ends in most 

organisms and provides the 3’ OH for the primed synthesis of new DNA sequences; 2) recognize 

and bind the DNA duplex containing telomeric repeats; 3) inhibit the activation of the DNA damage 

repair pathways; 4) favor the recruitment of the telomere lengthening machineries. 

Notably, in Drosophila different mechanisms evolved to ensure telomere homeostasis. Fruit 

flies have lost telomerase and (with the exception of the Ver protein) their genome does not 

encode obvious orthologs of shelterin or CST components that co-evolved with the telomerase-

based system of telomere maintenance [13, 14]. The Drosophila capping complex, named 

terminin, shares the structural organization and performs all the functions of shelterin and CST. 

However, terminin proteins are not conserved in terms of sequence and bind telomeric DNA with 

no sequence specificity [15]. Indeed, telomeric DNA in Drosophila does not contain short repeats; 

instead, it consists of head-to-tail arrays of three different non-LTR retrotransposons, 

Heterochromatic telomeric repeats, type A/Healing Transposon (HeT-A), Telomere Associated 

Retrotransposon (TART), and Telomere Associated and HeT-A Related (TAHRE) (Figure 1), 

known as the HTT arrays, which are specifically targeted at chromosome ends through efficiently 

regulated transposition events at each fly generation (see below). The evolution of capping 

complexes, able to recognize chromosome ends independently of the sequence, implies that HTT 

arrays are not strictly essential for telomere capping and it is assumed that Drosophila telomeres 

are epigenetically determined structures [15, 16]. This is further supported by the observation that 

after telomerase loss in Diptera (estimated about 260 million years ago) [13], different telomerase-

independent telomere elongation variants flourished in the Drosophila genus, with gains and 

losses of specific lineages of retroelements in different Drosophila species [17] and the concurrent 

rapid evolution of telomere capping proteins [17, 18]. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 4 

Despite an extensive literature on how capping and length are maintained at Drosophila 

telomeres, the question of whether there might exist a functional interaction between HTT targeting 

and telomere capping remains quite elusive. Here we will describe the mechanisms exploited by 

fruit flies to regulate the telomeric retrotransposition, how this can be reconciled with the 

recruitment of telomere capping complexes and the relevance of these results for the telomere 

biology field. 

 

How Drosophila caps its ends: a short overview 

Drosophila telomeres are protected by a specialized telomeric complex (terminin) as well as 

by a large number of terminin-associated proteins [14, 15, 19]. Mutations in genes encoding these 

proteins result in frequent telomere fusions, a very peculiar phenotype that allowed their 

identification. Terminin consists of the proteins HP1/Orc-associated Protein (HOAP) [20] and HP1-

HOAP-interacting Protein (HipHop) [21] (and its male germline specific counterpart, K81 [22, 23]), 

which bind double-stranded telomeric regions; Modigliani (Moi) [24], Verrocchio (Ver) [25, 26], and 

Telomere Ends Associated (Tea) [27] that interact with single-stranded DNA. Terminin 

components are fast evolving proteins [15, 19, 28]. As these proteins localize only at telomeres 

and serve exclusively telomeric functions, terminin is considered functionally analogous to 

shelterin. In contrast, several other non-terminin proteins important for telomere function are 

evolutionarily conserved and their roles are not restricted to telomeres. This class of proteins 

includes Heterochromatin Protein 1a (HP1a) [29], Without children (Woc) [30], the MRN complex 

[31, 32], ATM [33], Eff/UbcD1 [34], Peo/AKTIP [35] and Separase [36]. 

Genetic and molecular data have shed some light on the inter-relationships between 

terminin proteins and between terminin and terminin-associated factors. It has been extensively 

reported that the recruitment of all these proteins at somatic chromosome ends is independent of 

the DNA sequence including telomeric transposon elements. However, in the female germline, 

regulators of telomeric transposons are also required for chromosome stability (see below), 

indicating that telomere length maintenance and protection might not be as unlinked as generally 

thought. 
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The Het-A, TART and TAHRE retroelements maintain telomere length in Drosophila 

melanogaster 

The three elements Het-A, TART and TAHRE (Figure 1A-C) are inserted exclusively at 

chromosome ends and share many features with mammalian LINEs: they are arranged in 

unidirectional arrays (HTT) containing 5’ truncated elements, with their poly-A regions directed 

towards the centromere (Figure 1D). This arrangement reflects the mode in which they 

retrotranspose onto the chromosome end. In order to incorporate a new element that elongates the 

chromosome end, a poly-A full length sense transcript is docked to the telomere and the free 3’ OH 

DNA end is used for target-primed reverse transcription of the antisense strand, followed by 

second strand synthesis. The 5’ region of the element thus represents the exposed telomere 

extremity and remains subjected to terminal erosion. HeT-A [37] is about 6 kbp in length, has an 

open reading frame encoding a GAG protein, but does not encode for a reverse transcriptase 

(Figure 1A). Hence, for its transposition Het-A must rely on a reverse transcriptase provided in 

trans by a different element (probably TAHRE) [38, 39]. Het-A has a long 3’UTR (2,6 kbp) and the 

last 600 bp contain the sense promoter, which drives the transcription of a downstream element. 

Therefore, the production of a transposition-competent Het-A transcript requires cooperation 

between two adjacent elements. Two transcriptional start sites from which sense transcripts 

originate have been located at -31 and -62 bp upstream of the poly-A region [40]. Consequently, 

Het-A has a 5’ UTR, which contains a tag region of variable length, derived from the 3’ UTR of the 

upstream element. This tag includes the oligo-A tract and may act as a buffer sequence that 

shortens due to terminal erosion. Interestingly, the 3’ UTR of Het-A contains G-rich tracts able to 

form G-quadruplex structures in vitro [41], a structural motif implicated in regulating transcription 

and replication [42] found also at the G-rich telomeric 3’ DNA strand of telomerase-based 

telomeres. Due to this peculiarity, it has been therefore suggested that having Het-A at the 

chromosome termini might have conferred an evolutionary advantage. 

The TART element (Figure 1B) is about 11-13 kbp long and has two ORFS (ORF1 and 

ORF2) separated by a short spacer, indicating that translation of the second ORF requires an 
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internal ribosomal entry site [43]. ORF1 and ORF2 encode for a Gag protein and a reverse 

transcriptase (Pol), respectively. TART has a pair of Perfect Non-Terminal Repeats (PNTRs, 

arrows in Figure 1B) within its 5’ and 3’ UTRs [43-45]. The promoter for sense transcripts is located 

in the 5’ UTR and the transcriptional start site lies 75 bp upstream of the ORF1 ATG, so that the 

first codons of ORF1 overlap with the last 84 bp of the 5’ PNTR. Hence, as it occurs also for Het-A, 

most of the 5’ UTR is lost during transcription and thus the RNA template for retrotransposition 

does not contain the promoter sequence. In this respect, both Het-A and TART differ from other 

non LTR transposons, such as jockey or the I element [46], which have an internal promoter that 

drives transcription upstream of the promoter so that this sequence can be copied onto the new 

transcript [47]. Therefore, Het-A and TART face two challenges, which might jeopardize their 

success to produce full-length copies for retrotransposition: (a) terminal erosion that causes loss of 

5’ sequences, and (b) an inability to perpetuate the promoter. Het-A and TART adopted different 

strategies to solve these issues. TART 5’ end is regenerated at each transposition event by 

reverse transcription, using the 3’ PNTR as a template to copy the missing region of the 5’ end that 

has not been incorporated into the transcript (dotted line, Figure 1B). This mechanism involves a 

template jump, a feature observed in some reverse transcriptases from non LTR elements [48]. As 

a consequence, the two 3’ and 5’ PNTRs in TART coevolved and changes observed in one PNTR 

are almost invariably also present in the other one on the same element [44]. In contrast to TART, 

which “plays solo” and behaves as an independent unit, to compensate for the loss of 5’ end, Het-

A operates in teamwork by exploiting a promoter sequence within the 3’ UTR of an adjacent 

element that is closer to the chromosome end (Figure 1A). This is not possible for TART, because 

its 3’ end, despite being capable of initiating transcription, is unable to allow the readthrough into a 

downstream element, due to the presence of a unique polyadenylation site that promotes RNA 

polymerase II termination [44]. 

The less abundant element, TAHRE, is about 10 kb in length and shows similarity to HeT-

A, especially in the UTR regions (Figure 1C); like Het-A, TAHRE has a 3’ sense promoter which 

drives the transcription of a downstream element. TAHRE also encodes a reverse transcriptase 

that shows similarities with the Pol protein encoded by the ORF2 of TART [38, 39]. It has been 
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suggested that TART and TAHRE originated from a common ancestral element and that HeT-A 

may have evolved from TAHRE by loss of the ORF2 coding sequence or by mobilization of a 

truncated copy that contained only the ORF1 [38]. 

The three elements have also promoters in their 3’ ends, which drive the expression of 

antisense transcripts [45, 49-51]. 

 

Regulation of telomeric transposition as revealed by somatic tissues studies. 

The RNA transcripts of HeT-A, TART and TAHRE play at least two crucial roles in the 

biology of transposition: they are reverse transcribed and they encode proteins essential for 

transpositions. Yet, the regulation of transposition at Drosophila telomere ends presents two 

fundamental questions on the mechanisms of transposition: 1) how the specific and exclusive 

targeting to chromosome ends is achieved; 2) how the transposon expression is controlled during 

development. 

Studies on mitotic cells (either S2 cultured cells or larval brain cells) that express tagged 

telomeric transposons helped get insights into the regulation of transposon expression. The 

genetic and molecular characterization of lines with artificially induced Terminal Deletions (TDs) 

maintained over several generations, has also provided a tremendous source of information on 

telomeric transposon regulation especially during the de novo telomere formation. Although 

Muller’s early studies unveiled the concept of telomeres based on the failure of recovering viable 

terminal deletions upon X-ray irradiation [52], successive studies showed that terminal deletions 

can indeed be retrieved in flies in different ways.  Drosophila in fact endures terminally deleted 

chromosomes, which are efficiently healed and recruit the same proteins that normally cap natural 

telomeres. Interestingly, some of these new telomeres do not contain the HTT array indicating that 

i) telomeric retrotransposons are neither necessary nor sufficient for establishing the protective cap 

at telomeres and ii) new telomeres can be assembled on any DNA sequence. TDs have been 

induced either by X-rays, dicentric chromosome breakage or by cleavage into specific target 

sequences, within transgenes inserted at a very distal location on chromosome ends, in flies 

expressing non-Drosophila endonucleases (i.e. I-SceI) [37, 53-59]. The occurrence of TDs induces 
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the inactivation of appropriate genetic markers and can be monitored through visible phenotypes in 

the adult. More importantly, the expression of these visible phenotypes can be modulated by 

events taking place in close proximity to the TDs such as telomeric erosion or transposition, thus 

making TDs a valuable tool to study the dynamics of telomere retrotransposon activity during de 

novo telomere formation. Interestingly, the findings that terminal deletions likely occur at high 

frequency on all chromosomes of natural populations strengthen the view that information obtained 

from TD studies can be used to understand the origin and the maintenance of naturally deleted 

chromosome ends [60, 61]. 

Studies carried out in flies bearing TDs as well as in somatic cells revealed that 

transposition events are regulated at different levels and involve distinct classes of regulators: a) 

cis-acting factors b) telomere capping proteins c) chromatin factors d) DNA repair proteins and e) 

still-uncharacterized genetic factors. The evidence that the majority of regulators are factors that 

are not encoded by telomeric retroelements supports the view of a host-transposon mutualistic 

interaction that reduces the cost to the host of transposon activity [17, 61, 62] 

 

Cis acting factors. Transient transfection assays and studies on TDs showed that only 400 bp of 

the Het-A 3’UTR is required for the activity of this promoter and highlighted the most crucial feature 

of this element in promoting transcription (for a review see [63]). However, the same 400 bp of 

3’UTR is also apparently active in driving the expression of reporter genes when moved into 

euchromatic sites. Yet, increasing the length of flanking sequence with the addition of 5’UTR 

repressed this activity to levels comparable to those of endogenous Het-A [64]. This suggests that 

in addition to the 400 bp sequence stretch, other sequences of the 3’UTR serve as regulatory 

elements to delimit the promoter activity to its native telomeric heterochromatin. This promoter is 

bidirectional and activates transcription in opposite directions [51]. 

Promoter studies and 5’ RACE experiments on total RNAs from D. melanogaster S2 cells, 

larvae and adults revealed a single sense start for the TART transposition intermediate RNA, 

located in the 5’ PNTR [44, 45]. Other putative sense 5’ ends were also shown to map within the 

PNTRs suggesting that these repeats could play an important role in TART transcription [45]. 
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Furthermore, reporter mapping identified sense promoter activity at the 3’ end, but this 3’ sense 

strand promoter was responsible mainly for short 3’UTR transcripts. Interestingly, 3’UTR contains 

also a TART antisense promoter, which produces a nearly full-length antisense RNA that is 

significantly more abundant than sense strand RNA [49]. The antisense transcript contains introns 

but does not encode proteins indicating that it is not providing sequence information needed for 

transposition [45]. 

Telomere specific transposition is also dependent on Gag proteins encoded by Het-A and 

TART. These proteins, which share amino acid sequence motifs with retroviral Gags, interact 

cooperatively at chromosome ends in interphase nuclei, likely promoting the specific end-targeting 

of telomeric transposons. Transient transfection studies on Drosophila cultured cells carried out by 

the Pardue group revealed that Het-A Gag protein forms discrete Nuclear foci (Het-A dots) that 

colocalize with the terminin protein HOAP [65, 66]. TART Gag also is targeted to the nucleus, but it 

localizes at telomeres only if co-expressed with Het-A Gag [65]. 

Other independent studies by the Rong group using an anti-Het-A Gag antibody revealed 

that in wild-type larval brains endogenous Het-A Gag proteins can also form nuclear telomere foci, 

which appear as hollow spheres (Het-A spheres, [56]). These spheres are filled with Het-A RNAs 

and colocalized with replicating telomeres suggesting that telomere elongation and end-replication 

are coupled events also in Drosophila as in other organisms [67, 68]. Interestingly, mutations in 

Su(var)2-5 and verrocchio (ver) genes, which encode the capping factors HP1a and Ver, 

respectively, affected the organization of Het-A spheres [56] indicating that a relationship between 

telomere capping and elongation could exist also in flies (see below). It has been speculated that 

Het-A transcription at telomeres could therefore initiate Het-A Gag multimerization, which in turn 

attracts the transposition machinery. However, it is still unknown whether Het-A dots or spheres 

also contain RT activity, suggesting that some of the targeting would not result into effective 

transposition. 

Het-A/Gag spheres (see the scheme in Figure 2, left) have also been detected in the nuclei 

of the female germline cells upon piRNA loss and consequent overexpression of Het-A (see next 
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section). Presumably these structures mediate increased telomeric transpositions observed in the 

piRNA pathway gene mutants [69, 70]. 

 

Telomere capping factors. The analysis of TDs, which are devoid of the HTT array but do not 

fuse and are stably transmitted, led to the hypothesis that, unlike other organisms, Drosophila 

telomere protection and elongation are uncoupled events [15, 16]. However, the evidence that 

capping proteins regulate the expression of telomeric transposons suggests that elongation and 

capping are not intrinsically separated as previously suggested. The most evident example is 

represented by HP1a (encoded by Su(var)2-5), an essential terminin associated protein that is 

involved in both telomere capping and telomeric DNA transcription, as well as in telomere 

elongation [29, 71, 72]. Indeed, different Su(var)2-5 mutations have a strong dominant effect on 

the frequency of attachment of HeT-A and TART to TDs, activate HeT-A transcription, and show 

cytologically visible elongated polytene chromosome tips. This effect is independent of the HP1a 

capping activity as increased levels of HeT-A RNAs are also found in Su(var)2-5 alleles that do not 

elicit TFs and encode a mutant HP1a, which normally localizes at telomeres [29]. Finally, Su(var)2-

5 mutant larval brain cells displayed an increase in the size of Het-A spheres [56], thereby 

confirming that HP1a appears to repress HeT-A transcription at telomeres. This function, however, 

is not limited to somatic cells as HP1a knockdown in the female germline also led to derepression 

of telomeric transposons, very likely as a consequence of a reduction of Piwi-dependent 

transcriptional repression [73]. The activation of HeT-A transcription may partly contribute to the 

high rate of transposition-mediated HeT-A additions in the Su(var)2-5 mutant background. 

Very interestingly, HeT-A transcription and targeting can be also regulated by Ver, a 

terminin factor with an OB-fold domain, which shares significant structural similarities with the Stn1 

protein [25, 26], a component of the conserved CST complex (Cdc13-Stn1-Ten1 in budding yeast, 

CTC1-STN1-TEN1 in higher eukaryotes) required for telomere replication and elongation [74-76]. It 

is worth noting that, in yeasts, plants and human, Stn1 negatively regulates telomerase activity [77-

80]. FISH analysis and qPCR revealed that in ver mutants, clustered HeT-A transcripts 

disappeared and the steady-state level of HeT-A transcripts was also significantly reduced leading 
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to a complete absence of HeT-A spheres [56], indicating that Ver might positively regulate 

transposon targeting. The finding that also in Drosophila an OB-fold protein plays a role in 

telomere elongation mechanisms, reinforces the view that the recruitment of telomere 

retrotransposons in flies shares mechanistic similarities with the recruitment of telomerase and 

telomere replication. 

 

Chromatin Factors. HTT transposition is also regulated by protein complexes that, although not 

directly involved in capping chromosome ends, strongly associate with telomeric chromatin. 

Deletion of the Drosophila hnRNPA1 homolog, Hrb87F/Hrp36, increases the expression of HeT-A 

transcripts and elongated telomeres [81]. As Hrb87F plays several roles in different processes 

such as gene expression, organization of nuclear matrix and heterochromatin formation, it remains 

elusive whether its effect on HTT regulation is indirect or due to a specific function at chromosome 

ends. Interestingly, hnRNPA1 has a role in telomere regulation in higher eukaryotes [82, 83], 

suggesting that its involvement in telomere regulation is evolutionarily conserved. 

HeT-A transcripts also increase considerably upon depletion of Proliferation Disrupter 

(Prod) protein, a chromatin factor that has been localized at the promoter of HeT-A element [84], 

where it potentially recruits additional factors to maintain a proper telomere chromatin structure 

[85]. However, since prod mutant alleles only show a slight, although significant, increase of HeT-A 

copy number, Prod can be considered a negative regulator of HeT-A transcription, which is unlikely 

to be involved in regulating HeT-A targeting at chromosome ends. 

 

DNA repair proteins. Studies on TDs have also revealed that some DNA repair proteins can act 

as negative regulators of HeT-A and TART transposition at telomeres. It has been shown that 

Ku70 and Ku80 proteins that promote DNA repair through NHEJ limit transposition events by 

rendering chromosome ends less accessible to retrotransposon transcripts. Indeed, flies deficient 

for Ku70 and Ku80 exhibit a dramatic increase in the frequency of HeT-A and TART attachments 

to a broken chromosome end, as well as an increase in elongation of terminal DNA by gene 

conversion [86]. However, this increase is not associated with a boost of transcription of HeT-A 
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and TART. Beaucher et al [55], developed an assay to monitor the rate of de novo telomere 

formation events in Drosophila, which normally occur at a very low frequency. With this assay, they 

showed that functional NHEJ inhibits the formation of a novel telomere at a broken end. Indeed, 

the recovery of healed double strand breaks is enhanced by loss of the NHEJ factor Ligase 4. 

Whereas loss of Ku70 does not affect the healing rate, it increases the attrition at a broken end, 

before it is healed by formation of a new telomere [55]. Interestingly, the same assay revealed that 

depletion of ATR Interacting Partner (ATRIP) resulted in a striking increase of transposition events 

and consequently of new telomere formation. Although this assay could not provide an absolute 

measurement of healing, the resulting observations indicate that in Drosophila, like in yeast cells, 

mechanisms promoting the recruitment of proteins involved in DNA repair at telomeres generally 

inhibit de novo telomere formation [87]. 

 

Uncharacterized factors. Two dominant viable mutations, Telomere Elongator (Tel) and 

Enhancer of telomere gene conversion (E(tc)) result in a marked increase in HeT-A and TART 

copy number at telomeres and to extensively elongated telomeres [16]. The Tel mutation, which 

originated from the Gaiano stock, leads to a ten-fold increase of HeT-A transcription with respect to 

wild-type, more likely due to the high number of template copies than to an increase of 

transcription rate [88]. However, Tel mutation did not appear to affect transposon attachment to 

broken chromosome ends [55]. Tel mutants have also been reported to exhibit a high content of 

spliced antisense HeT-A transcripts for the 3’UTR (but not for the gag fragment) in somatic tissues 

[89]. This deregulation of Het-A expression may involve a mechanism similar to that observed in 

ovaries defective for the piRNA pathway ([50], see below), even if it remains still unaddressed 

whether the accumulation of these antisense transcripts can account for the extended telomere 

phenotype seen in Tel mutants.  

In the E(tc) mutant, telomere DNA is elongated by gene conversion using the homologous 

sequences as a template and contain HeT-A and TART sequences that increase with the number 

of generations [90]. However, like Tel, E(tc) mutation does not enhance the frequency of telomeric 

element transposition indicating that E(tc) affects the function of factors regulating gene 
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conversion. 

Tel and E(tc) have been mapped at the same chromosome 3 genomic region suggesting 

that both mutations are likely affecting the same gene. The molecular identification of this factor(s) 

will unveil new functions in the regulation of Drosophila telomere length. 

 

Regulation of telomeric transposition in the germline: Piwi pathway and chromatin 

remodeling come into play 

As mentioned above, Het-A, TART and TAHRE produce both sense and antisense 

transcripts [45, 50, 51]. Although Het-A and TART share common genomic niche, these elements 

exhibit also specific genetic requirements for their silencing and regulation [44, 49, 91-94]. 

Telomere function and stability, particularly in the germline, require the establishment of a 

specific epigenetic pattern characterized by an enrichment in heterochromatic marks, such as 

trimethylated lysine 9 of H3 histone (H3K9me3) and HP1a binding [91]. In Drosophila, 

trimethylation of H3K9 is catalyzed by distinct histone methyltransferases, Su(var)3-9 and 

SetDB1/Eggless, active in the soma and the germline respectively [71, 95, 96]. Importantly, 

depletion of either SetDB1 or HP1a results in derepression of retrotransposons in ovaries, 

including Het-A [72, 95, 97] suggesting that a proper telomere chromatin set up is associated with 

regulation of the transcription of telomeric transposons. In Drosophila ovaries, transposon 

expression is silenced by the piRNA pathway, whose major players are a germline-specific class of 

small RNAs known as Piwi-interacting RNAs (piRNAs), and the Piwi clade of Argonaute proteins, 

Piwi, Aubergine (Aub), and Argonaute3 (Ago3) (reviewed in [98-101]). Figure 2 summarizes the 

complex activities in play at telomeres, based on recent data on the regulation of piRNA pathway 

and on the modulation of Het-A activity in the female germline. Indeed, downregulation of the 

piRNA pathway factors shown in Figure 2 and in Figure 3 results in the accumulation of 

retrotransposons transcripts, including those produced by Het-A. The piRNA pathway is thought to 

be triggered by maternally inherited factors [100, 102]: piRNAs bound by Piwi and Aubergine are 

deposited into the developing egg by the mothers [103-105]. piRNAs originate from genomic loci 

named ‘piRNA clusters’ [106]. HTT arrays represent specialized piRNA clusters, whose transcripts 
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are both the piRNA precursors and their unique targets [91]. piRNA producing loci are 

characterized by a peculiar chromatin organization, enriched in H3K9me3 bound by the RDC 

complex formed by Rhino (Rhi, a paralogue of the heterochromatic protein HP1), Deadlock (Del), 

and Cutoff (Cuff) [107]. The RDC complex recruits transcription initiation factors that set up a non-

canonical transcription of piRNA precursors (refs. [108-110], see Figure 2). Therefore, at piRNA 

clusters the transcriptional machinery is not recruited by DNA sequence signals but by a specific 

epigenetic mark. Next, a subset of sense and antisense Het-A transcripts are channeled to 

become piRNA precursors (Figure 2, on the right). These precursors are exported in a perinuclear 

structure called nuage and processed in the cytoplasm to eventually produce mature 23–29-nt 

piRNAs. 

In the cytoplasm piRNA precursors enter the ping-pong piRNA amplification pathway, in 

which Aub and Ago3 direct the cleavage of transposon targets, and the phased piRNA biogenesis 

pathway, in which Piwi-piRNA mature complexes are assembled and imported into the nucleus 

(Figure 3; see [100, 101, 111] for detailed reviews). Armitage (Armi) connects the ping-pong and 

the phased piRNA pathways by shuttling Aub-bound pre-piRNAs from nuage to mithochondrial 

outer membrane [112]. 

The Piwi-piRNA complexes emerging from the phased pathway enter the nucleus, where 

they can fuel non-canonical synthesis from piRNA clusters and induce the establishment of a 

repressive chromatin environment at transposon loci (see legend of Figure 2 and refs. [113-116] 

for details). The binding of HP1a reinforces the establishment of heterochromatin and directly 

contributes to piRNA production at telomeres [73]. It is important to note that Het-A sense and 

antisense RNAs undergo extensive degradation in the nucleus, promoted by the CCR4/NOT 

complex [92] (see below).  

Het-A sense transcripts produced by canonical transcription, which escape degradation 

(Figure 2, left side) and behave like intronless mRNAs, are exported in the cytoplasm and are 

translated to produce Gag proteins. Gag proteins form spheres, which assemble with sense 

transcripts, to generate the ribonucleoproteins that likely serve as intermediates for 

retrotransposition. The Gag/Het-A spheres are reimported in the nucleus and are recruited at 
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telomere ends for retrotransposition, probably by interacting with the capping protein Ver, as it 

occurs in the soma [56]. 

 

Specific features of HTT transcription regulation affect telomere organization and stability. 

Some of the factors involved in the transcriptional regulation of telomeric retrotransposons also 

play direct roles in the control of telomere length or telomere stability in the female germline. 

Mutations in aub or in spindle-E (spn-E, a gene encoding a helicase essential for the ping-pong 

cycle), result in derepression of Het-A and TART and in telomere lengthening [70]. Moreover, spn-

E mutations and piwi knockdown cause strong reduction of H3K9me3 marks, HP1a and Rhino at 

HTT arrays and increase of H3K4me2, a mark of active chromatin [91, 114, 117], indicating a key 

role of chromatin remodeling in telomeric transposons homeostasis. As noted above, a singular 

aspect of HTT arrays is that they are both source of piRNA and targets of gene silencing [91, 118, 

119]. H3K9me3 residues recruit Rhino, which favors production of telomeric piRNAs, and 

concomitantly HP1a forms repressive chromatin domains [91]. Since Drosophila telomeres are 50 

kbp long on average [61], the two chromatin patterns might occupy different parts of the HTT array. 

In addition, it remains to be established whether the two complexes form at the same time. 

Moreover, recent results show that HP1a also plays a role in telomeric piRNA biogenesis, possibly 

by stabilizing Rhino [73], adding complexity to the regulation of telomeric piRNAs. Importantly, 

piRNA production in the germline is necessary at all stages for establishing and maintaining a 

heterochromatic state at telomeric transposons [91], while at non-telomeric piRNA clusters 

maternal and/or zygotic piRNAs are sufficient to form a repressive chromatin state that is 

maintained by a piRNA-independent mechanism during oogenesis [120]. 

HTT expression in the germline is also regulated by a fine balance between stability and 

degradation of HTT RNAs. The proteins CCR4 and NOT form a complex involved in the 

deadenylation of specific germline mRNAs [121].  Knockdown of the twin gene (encoding CCR4) 

increases polyadenylation of Het-A (but not of TART) [122]. Moreover, depletion of CCR4 or NOT 

causes the accumulation of full-length Het-A (but not of TART) transcripts in germ cells [92, 122, 

123]. CCR4 and Piwi associate in the nucleus at telomeres [92], suggesting that CCR4-NOT is 
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recruited to mediate the degradation of nascent transcripts. Thus, Drosophila has evolved an 

additional regulatory system that restricts the abundance of Het-A transcripts by preventing their 

accumulation on chromatin. Similarly, the depletion of the RNA-binding protein Ars2 and of the 

transcription factors Trf2 and Woc result in Het-A transcript accumulation [122]. In addition, 

knockdown of twin, Ars2, woc and Trf2 cause chromosome instability during mitosis [122]. Notably, 

Woc is also required to prevent telomeric fusions in somatic cells [30]. 

 

Telomeric Transposon Silencing and Telomere protection: Convergence of Functions? 

The finding that mutations in aub and armi decrease the binding of the terminin protein, 

HOAP, to chromosome ends and result in telomere fusions in embryos [124] could suggest that an 

excessive accumulation of telomeric transposons may be detrimental for telomere stability and 

function. In contrast, mutations in rhi and ago3 do not disrupt HOAP and HP1a binding [124]. Both 

Aub and Armi are involved in the phased piRNA pathway that produces most of the piRNAs bound 

by Piwi (see above) [112]. These results indicate that the Piwi-piRNA mediated transcriptional 

silencing of telomeric transposons could promote the establishment of a chromatin pattern that 

might also be important for the recruitment of the terminin capping complex. The transcriptional 

silencing of telomeric retrotransposons could represent an early step during the assembly of the 

capping complex at telomeres, possibly through the formation of specific heterochromatic domains 

enriched with HP1a bound to H3K9me3 containing nucleosomes. 

It has been suggested that the formation of a proper telomeric chromatin might require DNA 

damage response (DDR) factors such as the MRE11–RAD50–NBS1 (MRN) complex and ATM 

[125, 126]. Indeed, in fruit flies mutations in the genes encoding the components of the MRN 

complex or the combined deficiency of ATM and ATR strongly reduce HOAP/Hiphop abundance at 

telomeres and cause extensive telomere fusions [31, 32, 127-130]. Furthermore, MRN and ATM 

are two of the very few factors essential for preventing fusigenic events in the female germline [33, 

130]. As HOAP (and/or HipHop) fail to properly localize at telomeres upon perturbation of factors 

involved in the piRNA-mediated silencing, it is tempting to speculate that DDR and piRNA 

pathways could at some point converge into a common route to maintain telomeres. Recent 
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evidence showed that HP1a, which is also involved in the HTT transcriptional regulation, interacts 

physically with the MRN complex and that mutations in the MRN components reduce HP1a levels 

[131]. These results could give further support to our hypothesis that the piRNA-mediated 

transcriptional silencing and DDR factors might cooperate to recruit the terminin components. 

As described earlier, both strands are transcribed at telomeres [51] and a small RNA 

response is mounted by the complementary piRNAs. At these actively transcribed loci, the nascent 

RNA is targeted for degradation by the piRNAs that simultaneously mediate the chromatin 

remodeling of the same loci from which they are generated. This situation implies that loss of 

piRNAs (i.e as consequence of depletion of either Aub or Armi) induces both the loss of the 

epigenetic marks at telomeres and a failure to silence the telomere transcripts, which in turn 

accumulate on chromatin, just like the telomeric repeat-containing RNA (TERRA) coats yeast and 

mammalian telomeres [91, 132, 133]. 

A correlation between small RNA responses at telomere and telomere maintenance is not 

unprecedented. Dysfunctional mammalian telomeres mount a small RNA response in which a 

damage-induced long non-coding RNA (dilncRNA) generated by Pol II transcription at a 

dysfunctional end, is processed in a dicer-dependent manner to generate DNA damage response 

RNAs (ddRNAs) [134]. The small RNAs form ribonucleoproteins that in turn, mediate recruitment 

of DNA repair factors (i.e. 53BP1) and favor DNA repair. Though the RNA biogenesis pathways of 

piRNA and ddRNAs are different, in this respect a damaged mammalian telomere is as 

transcriptionally active as a fly telomere and in both cases telomere transcripts are targeted by the 

small RNAs produced by themselves (both precursors and target). 

The sense and antisense transcriptional activity at telomeres likely confers intrinsic instability 

to the chromosomes as it renders telomeres potentially exposed to transcriptional stress as well as 

to RNA:DNA hybrids that would normally be perceived as sites of damage. In this case, HTT 

transcription could thus favor the recruitment of DDR factors such as ATR, ATM, or the MRN 

proteins (Figure 2, refs [135-137]). We can speculate that DNA repair proteins at telomeres could 

resolve conflicts between the replication and transcription machineries and, in concert with the 

piRNA pathway, could attract terminin components to finally cap the telomeres and shield the 
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chromosome end from unwanted DNA damage repair. However, when piRNA production is 

impaired, and the accumulation of transcripts at telomeric chromatin is unleashed, the presence of 

large amounts of HTT transcripts could become a threat to chromatin stability, due to their potential 

to form R-loops that would induce DNA damage response (this model is indicated by question 

marks in Figure 2). Such a strong transcriptional and replicative stress could impede severing of 

the DNA damage signaling at telomeres. This scenario would be further worsened if depletion of 

piRNAs was associated with the concomitant decrease of HOAP or HipHop and could ultimately 

result in telomere dysfunction and fusions. Further experiments are needed to address the 

functional relationships between the DNA damage response, the regulation of HTT transcription 

and telomere protection. With regard to this, careful attention should be paid in the definition of 

potential telomere fusion phenotypes. Assessing the presence of clear telomere-telomere fusions 

in the oocyte chromosomes is not as straightforward as in cultured cells or in larval neuroblasts. 

Therefore, sequencing of the DNA amplified from telomere junctions can provide the ultimate proof 

for the occurrence of covalent telomere fusion events [33, 130]. 

With the exception of Su(var)2-5 and woc, it is noteworthy that mutations in all genes 

required for HTT transcription regulation in oocytes have no effect on somatic telomeres ([29]; our 

data) reinforcing the observations that the actions of these genes are restricted to female germline. 

However, this is quite unexpected, given that transcription of telomeric transposons and a specific 

telomere targeting of these elements are believed to occur in somatic tissues as well (see above). 

It is possible that, unlike germline cells, somatic cells do not require stringent piRNA-mediated 

regulation of transposition or that this regulation is redundant during mitosis. Finally, the acquisition 

of Het-A, TART and TAHRE at telomeres of mitotic chromosomes might rely more on 

recombination and/or gene conversion events rather than on transposition. Both events indeed 

account for telomere healing and de novo telomere formation that frequently occur in natural 

populations [60, 61], which underscore their importance in telomere maintenance. It is worth noting 

that recombination between chromosome end sequences is at the base of the Alternative 

Lengthening of Telomeres (ALT) pathway that a subset of cancers uses to elongate their 

telomeres in order to prevent the telomere shortening normally occurring in proliferating cells [138].  
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Conclusions and Perspectives 

Drosophila devised a peculiar solution to counteract terminal erosion and to shield 

chromosome ends from repair machineries. These problems have been solved by taming three 

retrotransposons to target chromosome ends and with a sequence-independent capping complex. 

Several questions await an answer. Why have different proteins developed distinct roles at 

telomeres in the soma and in the germline? What makes a newly or freshly established germline 

telomere different from an already “seasoned” somatic telomere, which underwent many cycles of 

replication? And is it just a coincidence that telomere establishment occurs in a highly 

transcriptionally active chromatin environment, threatened by extensive transcriptional and 

replicative stresses that would require a high demand for repair factors such as ATM, ATR and 

MRN? 

The signaling of DNA damage is necessary to maintain functional telomeres in Drosophila in 

both the soma and the germline; it is possible that the regulation of telomeric transposon 

transcription may contribute both to managing the stress inherent in an environment rich in nascent 

sense and antisense transcripts (initiation, elongation, termination, R-loops resolution) and to the 

recruitment of terminin. If DNA-RNA hybrid structures indeed occurred at fly telomeres, as at 

human telomeres [139-141], unresolved R-loops might be sensed as damaged foci and trigger the 

DNA damage response, thus contributing to telomere instability (Figure 2). Thus, recruitment of the 

protection complex occurs in a dynamic chromatin environment in which DNA damage response 

factors constitute a prerequisite for capping, but in the presence of unresolved chronic 

transcriptional stress, they might constitute a driver for telomere instability. 

It should be noted that another whole level of complexity for telomere maintenance is found 

in the zygote, when paternal telomeres need to be completely reprogrammed [22, 23, 142] by 

switching from the sperm configuration enriched in the K81 protein to the canonical telomere. 

Whether the small RNA pathway is also involved in this process is currently unknown. 

An additional question arising from studies in the female germline is whether zygotic 

genome instability is promoted only by accumulation of telomeric transposon transcription per se or 
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also by the implicit follow up event, that of telomere elongation. Elongated telomeres per se in the 

female germline should not threaten genome integrity in the female germline. Long telomeres, 

such as those harbored by natural populations (i.e. Bejing populations) [61] or by Tel and/or Et(c) 

mutants, are indeed stably transmitted despite their remarkable increase in the Het-A and TART 

copy number. Very long telomeres are also efficiently inherited after introgression of either Tel or 

Et(c) mutant chromosomes in a different wild-type background [88, 90], indicating that their stability 

does not result from adaptive events. A plausible explanation for this tolerance is that in Tel and 

Et(c) mutants, despite the large number of telomeric transcripts produced by the high number of 

template copies, the HTT transposition rate does not increase and telomere elongation derives 

mainly from recombination and gene-conversion events. However, how Drosophila can measure 

transposition rate remains a fundamental issue to solve. The characterization of genes identified 

by Tel and/or Et(c) mutations will definitely provide new insights to clarify this important point. It is 

worth mentioning that break-induced replication (BIR) can restore the termini of broken dicentric 

chromosomes in flies by using sequences from the homolog. Interestingly, BIR-mediated 

restoration can lengthen chromosome termini by more than 1.3 Mb, compared with normal gene 

conversion, whose extension capacity is below 20 kb [143]. Further studies are needed to address 

the question of whether BIR-dependent chromosome healing influences the HTT attachments. 

With the increasing number of species being studied, other telomerase-independent 

telomere maintenance mechanisms emerged in different taxa [13, 144-147]. Given the 

phylogenetic relationships between telomerase and retrotransposons [8, 148, 149] it is 

unsurprising that the ability of retrotransposons to target chromosome ends turned out to be a 

successful adaptation as a substitute for telomerase-based telomere elongation in eukaryotes 

[150]. The interactions between the telomere retroelements and the host genomes underwent 

extensive reshaping during evolution and the resolution of the host-transposon conflicts might have 

depended on a fine balance between the rate of piRNA production and the number of transposition 

events that maintained enough active copies of a certain transposon [151]. In some instances, as 

for Drosophila biarmipes and possibly also for Drosophila takahashii, telomere retroelements 

became inactive and recombination-based mechanisms emerged as the principal mean to regulate 
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telomere length [17]. Furthermore, in Drosophila melanogaster retrotransposition of active 

telomeric elements coexists with gene conversion and very likely with BIR-mediated healing [90, 

143, 152]. 

Noteworthy, alternative ways of telomere maintenance are present also in telomerase 

expressing species when the telomerase pathway is inactivated. Schizosaccharomyces pombe 

can survive telomerase loss by preserving telomeres via homologous recombination [153] or by 

replacing telomeric repeats with heterochromatic blocks (Heterochromatin Amplification dependent 

And Telomerase Independent (HAATI) cells, [154]). In humans, homologous recombination is 

thought to be at the basis of ALT [138], which allows maintaining telomeres in about 15% tumors 

[155]. Interestingly, both HAATI and ALT telomeres, similar to Drosophila telomeres, are 

characterized by an active transcriptional state [156-158]. 

Taken together, these observations suggest that the ability to implement 

recombination/gene conversion at telomeres and active transcription appear to be a common 

denominator shared by telomeres that are not maintained by a telomerase-dependent system 

[139, 149, 157, 159, 160].  

Drosophila melanogaster telomeres combine an active transcriptional state (as they are a 

source of both transposon RNA and piRNA precursors) with their intrinsic proneness to 

recombination and/or gene conversion, as in this species retrotransposition and recombination 

both contribute to telomere maintenance [152]. It is also possible to postulate a potential 

competition between the two mechanisms, as suggested by the case of Drosophilids in which 

recombination prevailed as the main mode of telomere maintenance [17]. Drosophila, therefore, 

represents a unique model to understand the development of ALT mechanisms, which made 

possible the transitions between telomerase-dependent and telomerase-independent mechanisms 

of telomere maintenance, seen multiple times during evolution [13] as well as in experimentally-

induced [161, 162] or pathogenic conditions [155]. 

We would like to propose a holistic view of the germline telomere, a chromatin domain that 

extends for tens of kilobases, in which different transcription regulation and chromatin remodeling 

activities take place concomitantly with the recruitment of the capping proteins that protect the very 
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end of the chromosome. Future studies will clarify whether other proteins that are required to 

modulate the small RNA pathways at germline telomeres affect the loading of the terminin 

components, possibly enforcing sequence-independent recruitment of the capping complexes. 
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Figure legends 

 

Figure 1. Schematic representation of the telomeric Drosophila retrotransposons. 

(A) Two Tandem copies of the HeT-A element. One complete HeT-A element (highlighted with a 

red bordered rectangle) is flanked by an upstream 5’ truncated Het-A copy, which provides the 

promoter (P, red line) that drives transcription (black arrow) of a full-length sense transcript (green 

undulated line) from the element located downstream. This intronless, full-length transcript is the 

putative transposition intermediate. The arrows below the diagram indicate promoters for the 

antisense transcripts [51], which contain introns and undergo alternative splicing events [89, 163]. 

Blue boxes: 3’UTR; green boxes: oligo-A regions of variable length (An). Blue-striped boxes: 

5’UTR; this region contains a “tag” that includes the most distal part of the 3’UTR and the oligo-A 

of an upstream Het-A element, which provided the promoter that has been used in the previous 

cycle of transcription [40, 164]. Pink box: open reading frame encoding the GAG protein. Grey box: 

another element located downstream in the array (derived from the GenBank sequence 

U06920.2). 

(B) Schematic representation of a generic TART element. Three TART subfamilies exist (TART-A, 

TART-B, TART-C) which differ for the sequence of the UTRs (purple boxes) [44]. The UTR regions 

contain Perfect Non Terminal Repeats (PNTRs, white arrows). The dotted line within the 5’ PNTR 

indicates the region that is copied by reverse-transcription, using the 3’ PNTR as a template, 

during a de novo retrotransposition event. Pink boxes: ORF1 and ORF2, encoding the Gag and 
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Reverse transcriptase proteins, respectively. The promoter that drives transcription of the major 

sense transcript (green line) is contained within the PNTRs and the initiation site is marked by a 

black arrow; the end of the 3’ PNTR contains termination sequences (term) [44]. The PNTRs 

comprise also promoters that drive the transcription of antisense transcripts (pink lines), which 

contain multiple introns [45]. 

(C) The TAHRE element has an organization similar to Het-A [38, 39], but in addition to the ORF1, 

encoding the Gag protein, it also contains a second ORF, encoding for a Reverse transcriptase 

(Pol; pink boxes). Orange-striped boxes: 5’UTR; orange boxes: 3’ UTR (modified from ref [144]). 

(D) Schematic representation of HTT arrays. In an average telomere, the HTT arrays contain 12 

head-to-tail element insertions, spanning about 50 kbp. The 5’ end of the most distal element is 

located at the extremity of the chromosome and may thus be subjected to terminal erosion until a 

new element is added onto the end. Only 20% of the Het-A or TAHRE insertions and 7% of the 

TART insertions are represented by full-length elements [38, 61]. 

 

 

 

Figure 2. Transcriptional fates of a Het-A element in the female germline. 

The cartoon represents a series of epigenetic events occurring at telomeres in the female 

germline, which may regulate the activity of the Het-A telomeric retroelements. On the right, Piwi-

piRNA complexes can either induce the formation of a repressive heterochromatin or promote non-

canonical transcription. Transposon repression is initiated by targeting of the piRNA-Piwi complex 

at transposon loci, and requires the Panoramix (Panx), Nxf1 and Nxf2 (SFiNX) complex [165]. 

SFiNX recruits Lsd1, which demethylates the euchromatic mark H3K4me2, and the histone 

methyltransferase SetDB1 along with its co-factor Wde, which catalyzes H3K9me3 enrichment 

[166, 167]. SetDB1/Wde recruitment requires the small ubiquitin-like protein SUMO and the SUMO 

ligase Su(var)2-10 that links the piRNA-guided target recognition complex to the establishment of 

transcriptional silencing which requires the recruitment of HP1a [168]. H3K9me3 can be also 

bound by the RDC complex formed by Rhino (Rhi, a paralogue of the heterochromatic protein 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 24 

HP1), Deadlock (Del), and Cutoff (Cuff). The RDC complex binds H3K9me3 through the Rhino 

chromodomain and promotes transcription initiation of piRNA precursors through Rhi-dependent 

recruitment of Moonshiner, a paralogue of a basal transcription factor IIA (TFIIA) subunit, which in 

turn recruits other factors of the transcription initiation complex [108, 109]. This process is favored 

by the protein Maelstrom (Mael), which represses the canonical promoter-dependent Pol II 

transcription in a Piwi-dependent manner [169]. Next, a subset of sense and antisense Het-A 

transcripts are channeled to become piRNA precursors. These precursors are exported in the 

cytoplasm to be processed in the ping-pong and in the phased piRNA pathways (see Figure 3).   

On the left there is a schematic representation of the telomere capping complex terminin. 

HOAP/HipHop bind the telomeric DNA duplex and load the Moi/Ver/Tea proteins that bind the 

single stranded overhang. In the female germline, HOAP/HipHop recruitment is thought to depend 

on the MRN complex and the ATM or ATR kinases. Depletion of these DNA damage response 

proteins results in loss of the protective cap and telomere fusion. HOAP recruitment might also be 

facilitated by piRNAs, as loss of Aub or Armi (key players in piRNA production pipelines in the 

cytoplasm), results in reduced HOAP loading and extensive telomere instability in embryos. 

Excessive accumulation of Het-A transcripts on chromatin, in CCR4-NOT mutants, results in 

chromosome instability. Accumulation of Het-A at Drosophila telomeres is reminiscent of the 

accumulation of the TERRA transcripts at both human and yeast telomeres [170]. If not properly 

managed, TERRA transcription is the source of conflicts at replicating telomeres, resulting in the 

formation of RNA/DNA hybrids, i.e. R-loops [141]. It is tempting to speculate that Drosophila 

telomeres, which produce transcripts in both directions, can also elicit R-loops. 

 

Figure 3 – The ping-pong piRNA pathway and the phased piRNA pathway 

In the cytoplasm piRNA precursors enter the ping-pong piRNA amplification pathway, in 

which Aub and Ago3 direct the cleavage of transposon targets, and the phased piRNA biogenesis 

pathway  in which PIWI-piRNA mature complexes are assembled and exported to the nucleus 

[100, 101, 111]. In the ping-pong cycle an antisense piRNA with a U at its 5’-end (1U bias), 

possibly of maternal origin, is loaded with Aub [106, 171]. Aub directs the cleavage of 
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complementary sense transposon RNAs and generates two fragments. Ago3 binds at the 5’ end of 

the fragment with an A at position 10 (10A bias), which is then trimmed by the 3’-5’ 

exoribonuclease Nibbler [172]. Ago3-bound piRNAs then direct the cleavage of an antisense 

piRNA precursor, which, after cleavage, in turn is bound by Aub, leading to the amplification of 

piRNAs that will target transposons [173]. The process is favored by several Tudor proteins in the 

nuage, such as Krimp, which facilitates the formation of Aub/Ago3 complexes [174]. The phased 

piRNA pathway is localized on the mitochondrial outer membrane where the endonuclease 

Zucchini cleaves antisense pre-piRNA to 23-29 nt mature piRNAs that are bound by Piwi [172]. 

Armitage connects the two pathways by shuttling Aub-bound pre-piRNAs from nuage to 

mitochondrial outer membrane [112]. 
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Drosophila melanogaster telomeres are sequence-independent epigenetic structures  
Telomere DNA in D. melanogaster is made of three specialized retrotransposons targeting 
chromosome ends  
The piRNA pathway finely tunes telomere retrotransposon activity in Drosophila ovaries  
Drosophila telomere assembly requires the interplay between transcription and chromatin 
factor activities 
Fly telomeres can be considered a good model for ALT telomeres  
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