Pure-Past Linear Temporal and Dynamic Logic on Finite Traces

Giuseppe De Giacomo1, Antonio Di Stasio1, Francesco Fuggitti1,2 and Sasha Rubin3

1Università degli Studi di Roma “La Sapienza”, Roma, Italy
2York University, Toronto, ON, Canada
3University of Sydney, Sydney, NSW, Australia

{degiacomo, distasio, fuggitti}@diag.uniroma1.it, sasha.rubin@sydney.edu.au

Abstract

We review PLTL\(_f\) and PLDL\(_f\), the pure-past versions of the well-known logics on finite traces LTL\(_f\) and LDL\(_f\), respectively. PLTL\(_f\) and PLDL\(_f\) are logics about the past, and so scan the trace backwards from the end towards the beginning. Because of this, we can exploit a foundational result on reverse languages to get an exponential improvement, over LTL\(_f\)/LDL\(_f\), for computing the corresponding DFA. This exponential improvement is reflected in several forms of sequential decision making involving temporal specifications, such as planning and decision problems in non-deterministic and non-Markovian domains. Interestingly, PLTL\(_f\) (resp., PLDL\(_f\)) has the same expressive power as LTL\(_f\) (resp., LDL\(_f\)), but transforming a PLTL\(_f\) (resp., PLDL\(_f\)) formula into its equivalent LTL\(_f\) (resp., LDL\(_f\)) is quite expensive. Hence, to take advantage of the exponential improvement, properties of interest must be directly expressed in PLTL\(_f\)/PLDL\(_f\).

1 Introduction

Several research areas in AI have been attracted by the clarity and ease of Linear-time Temporal Logic (LTL) [Pnueli, 1977]. Specifically, LTL has been employed in reasoning about actions and planning: as a specification mechanism for temporally extended goals [Bacchus and Kabanza, 1998; De Giacomo and Vardi, 1999; Calvanese et al., 2002; Camacho et al., 2017], for constraints on plans [Bacchus and Kabanza, 2000], to express preferences and soft constraints [Bienvenu et al., 2006], for specifying multi-agent systems [Fagin et al., 1995], and for specifying norms [Fisher and Wooldridge, 2005].

Recently, a variant of LTL on finite traces, LTL\(_f\), and its extension LDL\(_f\), inspired by the Propositional Dynamic Logic (PDL) [Harel et al., 2000], have been investigated [De Giacomo and Vardi, 2013], and have found application in several contexts. The main reason for this interest is due to the possibility of transforming LTL\(_f\)/LDL\(_f\) formulas into Deterministic Finite-state Automaton (DFA), which can then be suitably employed in different contexts, as mentioned above.

LTL\(_f\)/LDL\(_f\), like LTL originally, expresses temporal properties in a “pure-future fashion”, i.e., referring only to the present and to the future. However, it has been observed that sometimes specifications are easier and more natural to express referring to the past [Lichtenstein et al., 1985]. For instance, to say that we have accomplished our task and that since we were decontaminated we have been in clean areas, we write: \textit{TaskDone} \land (\textit{InCleanArea} \land \text{Decontaminated}). The use of past temporal logics has been advocated for non-Markovian models in reasoning about actions [Gabaldon, 2011], for non-Markovian rewards in MDPs [Bacchus et al., 1996], and for normative properties in multi-agent systems [Fisher and Wooldridge, 2005; Knobbout et al., 2016; Alechina et al., 2018].

In this paper, we review the pure-past versions of LTL\(_f\) and LDL\(_f\), respectively PLTL\(_f\) and PLDL\(_f\). Due to the finite nature of traces, PLTL\(_f\) and PLDL\(_f\) have a very natural interpretation: they specify formulas that must be true at the end of the trace and evaluate the trace backwards. In fact, PLTL\(_f\) has been introduced in the literature as a technical means to get results for LTL and LTL\(_f\) [Maler and Pnueli, 1990; Zhu et al., 2019]. Here, instead, we consider PLTL\(_f\), and its extension PLDL\(_f\), as first class citizens.

Working with PLTL\(_f\)/PLDL\(_f\) gives us an exponential (worst-case) computational advantage with respect to LTL\(_f\)/LDL\(_f\). Such an advantage stems from the fact that, like LTL\(_f\)/LDL\(_f\), also PLTL\(_f\)/PLDL\(_f\) can be translated into an Alternating Finite-state Automaton (AFA) in polynomial time, but, in the case of PLTL\(_f\)/PLDL\(_f\), we can exploit a well-known result on regular languages, which states that an AFA can be transformed, in single exponential time, into a DFA that recognizes the reverse language [Chandra et al., 1981]. This should be contrasted with the fact that the DFA for the language itself (not its reverse) can be double-exponentially larger than the AFA.

This language theoretic property has a deep impact on the conversion of PLTL\(_f\)/PLDL\(_f\) formulas to their corresponding DFAs. Indeed, PLTL\(_f\)/PLDL\(_f\) formulas can be transformed into DFAs in only single exponential time (vs. double exponential time for LTL\(_f\)/LDL\(_f\) formulas).

This exponential improvement affects the computational complexity of problems involving temporal logics on finite traces in several contexts, including planning in non-deterministic domains (FOND) [Camacho et al., 2017; De Giacomo and Rubin, 2018], reactive synthesis [De Giacomo and Vardi, 2015; Camacho et al., 2018], MDPs with non-Markovian rewards [Bacchus et al., 1996; Brafman et al.,]
2 Preliminaries

AFA, NFA, and DFA. An alternating finite-state automaton (AFA) is a tuple \(A = (\Sigma, Q, q_0, \delta, F)\), where (i) \(\Sigma = 2^P\) is a finite input alphabet; (ii) \(Q\) is a finite set of states; (iii) \(q_0 \in Q\) is the initial state; (iv) \(F \subseteq 2^Q\) is the set of accepting states; and (v) \(\delta : Q \times \Sigma \rightarrow B^*(Q)\) is the transition function, where \(B^*(Q)\) is the set of positive Boolean formulas over \(Q\) (i.e., built from the states using \(\land, \lor\), and the constants \(true\) and \(false\)). For instance, \(\delta(q_1, a) = q_2 \lor (q_3 \land q_4)\) means that for the automaton to accept the input \(a\), from state \(q_1\), it should either accept the input \(t\) from \(q_2\) or from both \(q_3\) and \(q_4\). For \(V \subseteq Q\) and \(\varphi \in B^*(Q)\), we write \(V \models \varphi\) if the assignment that maps states in \(V\) to \(true\) and states in \(Q \setminus V\) to \(false\) satisfies the formula \(\varphi\).

A nondeterministic finite-state automaton (NFA) is an AFA in which no transition uses \(\land\). For instance, the transition \(\delta(q, a) = (q_1 \lor q_2 \lor q_3)\) is allowed. A deterministic finite-state automaton (DFA) is an NFA in which no transition uses \(\lor\). For instance, the transition \(\delta(q, a) = q_1\) is allowed.

The size of \(A\), denoted \(|A|\), is the number of bits required to represent the transition function, i.e., \(\sum_{q \in Q} \sum_{a \in \Sigma} |\delta(q, a)|\) which is bounded by \(|Q| |\Sigma| K\) where \(K\) is an upper bound on the lengths of the formulas in the transition function.

An accepting run of an AFA \(A\) is defined by introducing the function \(Acc : \Sigma^* \rightarrow 2^Q\), where \(q \in Acc(\tau)\) is read “input \(\tau\) is accepted from state \(q^*\), inductively given as follows:

1. \(Acc(\epsilon) = F\),
2. \(q \in Acc(\alpha t)\) iff \(V \models \delta(q, a)\) for some \(V \subseteq Acc(\alpha)\).

A run \(\tau\) is accepted by \(A\) if \(q_0 \in Acc(\tau)\). Note that in the special case that \(\delta(q, a) = true\), we have that \(q \in Acc(\alpha t)\) for all \(\tau\) (since \(\delta = true\)). One way to visualize this definition is via run-trees,

A run-tree of \(A\) on input \(\tau\) is a tree labeled by states such that i) all nodes at depth \(|\tau|\) are labeled by final states, and ii) if an internal node \(x\) is labeled by \(q\), and \(X\) is the set of labels of the children of \(x\), then \(X \equiv \delta(q, x)\). Note that not all branches need to reach depth \(|\tau|\) since an internal node at depth \(i\) may be labeled \(q\) where \(\delta(q, \tau_i) = true\). Thus, a branch in a run-tree either reaches a final state after reading the word, or hits the transition \(true\).

An easy induction shows that \(q \in Acc(\tau)\) iff there is a run-tree on input \(\tau\) whose root is labeled by \(q\).

Given an AFA it is possible to obtain (in single exponential time) an NFA that accepts the same language and whose size is at most single exponential in the size of the AFA [Chandra et al., 1981], and hence a DFA that accepts the same language whose size is at most double exponential in the AFA.

We make use of regular expressions, collectively denoted RE [Hopcroft and Ullman, 1979]. In particular, Kleene’s Theorem says that one can translate a DFA to a RE in exponential time (and thus to a RE that is at most exponentially-larger than the DFA). We can use RE as temporal specifications on finite traces, see, e.g., [De Giacomo and Vardi, 2013].

LTLf and LDLf. LTLf is a variant of Linear-time Temporal Logic (LTL) interpreted over finite, instead of infinite, traces [De Giacomo and Vardi, 2013]. Given a set \(P\) of atomic propositions, LTLf formulas \(\varphi\) are defined by:

\[\varphi ::= a \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi U \varphi\]

where \(a\) denotes an atomic proposition in \(P\), \(\odot\) is the next operator, and \(\square\) is the until operator. We use abbreviations for other Boolean connectives, as well as the following: eventually \(\varphi \equiv true \odot \varphi\) always \(\varphi \equiv \square \neg \varphi\); weak next \(\odot \varphi \equiv \square \neg \neg \varphi\) (note that, on finite traces, \(\neg \varphi\) is not equivalent to \(\neg \varphi\)); and last (time point of the trace) \(\square \varphi\) (last \(\varphi\)).

Formulas of LTLf are interpreted on finite traces \(\tau = \tau_0 \tau_1 \cdots \tau_{n-1}\) where \(\tau_i\) at instant \(i\) is a propositional interpretation over the alphabet \(2^P\). We denote by \(length(\tau)\) the length \(n\) of \(\tau\). Given \(\tau\), an LTLf formula \(\varphi\) and an instant \(i\), we define when \(\varphi\) holds at \(i\), written \(\tau, i \models \varphi\), by induction, as follows:

- \(\tau, i \models a\) if \(a \in P\);
- \(\tau, i \models \neg \varphi\) if \(\tau, i \not\models \varphi\);
- \(\tau, i \models \varphi_1 \land \varphi_2\) if \(\tau, i \models \varphi_1\) and \(\tau, i \models \varphi_2\);
- \(\tau, i \models \odot \varphi\) if \(i < length(\tau) - 1\) and \(\tau, i + 1 \models \varphi\);
- \(\tau, i \models \varphi_1 U \varphi_2\) if for some \(j, i \leq j < length(\tau)\), \(\tau, j \models \varphi_2\), and for all \(k, i \leq k < j\), \(\tau, k \not\models \varphi_1\).

We write \(\tau \models \varphi\), if \(\tau, 0 \models \varphi\) and say that \(\tau\) satisfies \(\varphi\).

LDLf is a proper extension of LTLf that is able to capture regular expressions over traces. Here, following [Brafman et al., 2018], we consider a notational variant of LDLf. The syntax of LDLf is defined by:

\[\varphi ::= tt \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi U \varphi\]

where \(\phi\) denotes propositional formulas over \(P\) (we use the usual abbreviations, e.g., the Boolean constant \(true\) is defined as \(a \lor \neg a\), for some fixed \(a \in P\)) and \(tt\) stands for logical true (not to be confused with the Boolean constant \(true\)). Expressions of the form \(\varphi\) are regular expressions (RE) over propositional formulas \(\phi\) and the test construct \(\varphi^*\) typical of PDL. We abbreviate \([\varphi]\phi \equiv \neg(\neg \varphi)\phi\) as in PDL, \(ff \equiv \neg tt\) for false, and \(\phi \odot [\varphi] tt\) to denote the occurrence of the propositional formula \(\phi\). We also use \(end \equiv [true] ff\) to express that the trace has ended.

Intuitively, \(\langle \varphi \rangle\) states that, from the current instant in the trace, there exists an execution satisfying the RE \(\varphi\) such that its last instant satisfies \(\varphi\), while \(\langle \varphi \rangle\) states that, from the current instant, all executions satisfying the RE \(\varphi\) are such that their
last instant satisfies φ. Test constructs put into the execution path checks for satisfaction of additional LDL$_f$ formulas.

Given a trace $\tau = \tau_0 \tau_1 \ldots \tau_{n-1}$ we denote by $\tau_{i,j}$ the sub-trace $\tau_i \ldots \tau_j$ if $j < \text{length}(\tau)$, $\tau_i \ldots \tau_{n-1}$ if $j \geq \text{length}(\tau)$. Note that if $i \geq \text{length}(\tau)$ then $\tau_{i,j}$ denotes the empty trace. Given a finite trace τ, an LDL$_f$ formula φ, and an instant i, we define when φ holds at i, written $\tau, i \models \varphi$, by (mutual) induction, as follows:

- $\tau, i \models \top$;
- $\tau, i \models \neg \varphi$ if $\tau, i \not\models \varphi$;
- $\tau, i \models \varphi_1 \land \varphi_2$ if $\tau, i \models \varphi_1$ and $\tau, i \models \varphi_2$;
- $\tau, i \models (\langle q \rangle \varphi$ if there is a j such that $i \leq j$ and $\tau_{i,j} \in R(q)$ and $\tau, j \models \varphi$.

where the relation $\tau_{i,j} \in R(q)$ is inductively defined as:

- $\tau_{i,j} \in R(\varphi)$ if $j = i + 1$, $i < \text{length}(\tau)$, and $\tau, i \models \varphi$;
- $\tau_{i,j} \in R(\varphi ?)$ if $j = i$ and $\tau, i \models \varphi$;
- $\tau_{i,j} \in R(q_1 \cup q_2)$ if $\tau_{i,j} \in R(q_1)$ or $\tau_{i,j} \in R(q_2)$;
- $\tau_{i,j} \in R(q_1; q_2)$ if there exists $i \leq k \leq j$ such that $\tau_{i,k} \in R(q_1)$ and $\tau_{k,j} \in R(q_2)$;
- $\tau_{i,j} \in R(\langle q \rangle \varphi)$ if $j = i$ or there exists k such that $\tau_{i,k} \in R(\varphi)$ and $\tau_{k,j} \in R(q)$.

Note that if $i \geq \text{length}(\tau)$, the above definitions still apply. Again, we say that a trace τ satisfies an LDL$_f$ formula φ, written $\tau \models \varphi$, if $\tau, 0 \models \varphi$.

LTL$_f$/LDL$_f$ to AFA and DFA. For every LTL$_f$/LDL$_f$ formula φ there is an equivalent AFA A_{φ} accepting exactly the traces satisfying φ, which is linear in the size of φ [Di Giacomo and Vardi, 2013]. Moreover, every AFA can be translated into an equivalent DFA, i.e., a DFA recognizing the same language, whose size is at most doubly-exponential, which can be computed in 2EXPTIME in the size of the AFA [Chandra et al., 1981]. Hence, we have a 2EXPTIME algorithm for translating an LTL$_f$/LDL$_f$ formula into an equivalent DFA [De Giacomo and Vardi, 2013].

Algorithm 1: Translating LTL$_f$/LDL$_f$ to DFA
Given an LTL$_f$/LDL$_f$ formula φ:
1: Compute an AFA equivalent to φ (lin)
2: Compute an NFA equivalent to the AFA (1exp)
3: Determine the NFA obtaining an equivalent DFA (1exp)

3 PLTL$_f$ and PLDL$_f$
We study the pure-past version of LTL$_f$, denoted as PLTL$_f$, and the pure-past version of LDL$_f$, denoted as PLDL$_f$. These are logics on finite traces that refer only to the past. PLTL$_f$ and PLDL$_f$ have a natural interpretation on finite traces: they are satisfied if they hold in the last instant of the trace.

PLTL$_f$. Given a set P of propositional symbols, PLTL$_f$ is defined by:

$$
\varphi ::= a \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi \mid \varphi S \varphi
$$

where $a \in P$, \neg is the before operator and S is the since operator. Similarly to LTL$_f$ and LDL$_f$, we define the following common abbreviations: the once operator $\@ \varphi \equiv \text{true} S \varphi$ and the historically operator $@ \varphi \equiv \neg S \neg \varphi$.

We define the satisfaction relation $\tau, i \models \varphi$, stating that φ holds at instant i, as follows. For atomic propositions and Boolean operators it is as for LTL$_f$. For past operators:

- $\tau, i \models \varphi \text{ iff } i \geq 1$ and $\tau, i - 1 \models \varphi$;
- $\tau, i \models \varphi_1 S \varphi_2$ iff there exists k, with $0 \leq k \leq i$ such that $\tau, k \models \varphi_2$ and for all j, with $k < j \leq i$, we have that $\tau, j \models \varphi_1$.

A PLTL$_f$ formula φ is true in τ, denoted $\tau \models \varphi$, if $\tau, \text{length}(\tau) - 1 \models \varphi$.

Example 1. The property "we are now at location p_{23} and we have passed through location p_{12}" can be expressed in PLTL$_f$ as $p_{23} \land \neg p_{12}$. It is also expressible in LTL$_f$, although with a more complex formula, i.e., $(p_{12} \land \neg (p_{23} \land \text{last}))$.

Example 2. The property "every time you took the bus, you bought a new ticket beforehand" can be expressed in PLTL$_f$ as $\exists i ((\text{takeB} \Rightarrow \langle \neg \text{takeB} S \text{buyT} \rangle))$, while it can be expressed in LTL$_f$ as $(\text{buyT} \text{R} \text{takeB}) \land \Box ((\text{takeB} \Rightarrow (\text{buyT} \lor \Box (\text{takeB} \text{R} \neg \text{takeB}))))$ [Cimatti et al., 2004].

PLDL$_f$. PLDL$_f$ is the extension of PLTL$_f$ with regular expressions in the eventuality. The syntax of PLDL$_f$ is similar to the syntax of LDL$_f$ except that we use a backward diamond operator. Intuitively, $\langle q \rangle \varphi$ states that there exists a point in the past, reachable (going backwards) through the regular expression q from the current instant, where φ holds. Formally, the syntax of PLDL$_f$ is defined by:

$$
\begin{align*}
\varphi & ::= \top | \neg \varphi | \varphi \land \varphi | \langle q \rangle \varphi \\
q & ::= \varphi | q \lor \varphi | q; \varphi | q^*
\end{align*}
$$

Define the satisfaction relation as for LDL$_f$ except that:

- $\tau, i \models \langle q \rangle \varphi$ if there exists j, $0 \leq j \leq i$ such that $\tau_{j,i} \in \text{past}(q)$ and $\tau, j \models \varphi$,

where the relation $\tau_{j,i} \in \text{past}(q)$ is inductively defined as:

- $\tau_{j,i} \in \text{past}(\varphi)$ if $j = i - 1$, $i \geq 0$, and $\tau, i \models \varphi$;
- $\tau_{j,i} \in \text{past}(\varphi ?)$ if $j = i$ and $\tau, i \models \varphi$;
- $\tau_{j,i} \in \text{past}(q_1 \cup q_2)$ if $\tau_{j,i} \in \text{past}(q_1)$ or $\tau_{j,i} \in \text{past}(q_2)$;
- $\tau_{j,i} \in \text{past}(q_1; q_2)$ if there exists $j \leq k \leq i$ such that $\tau_{k,i} \in \text{past}(q_1)$ and $\tau_{j,k} \in \text{past}(q_2)$;
- $\tau_{j,i} \in \text{past}(\langle q \rangle \varphi)$ if $j = i$ or there exists $k \leq j \leq i$ such that $\tau_{k,i} \in \text{past}(\varphi)$ and $\tau_{j,k} \in \text{past}(q^*)$.

We say that τ satisfies a PLDL$_f$ formula φ, written $\tau \models \varphi$, if $\tau, \text{length}(\tau) - 1 \models \varphi$. As before, we use the abbreviation $\langle q \rangle \varphi \equiv \neg \langle q^* \rangle \neg \varphi$. Moreover, we define $\text{start} \equiv \top [\text{true}]$ to express the fact that the trace has just started.

Example 3. The property "every time, if the cargo-ship departed (cs), then beforehand there was an alternation of grab and unload (unl) of containers” can be expressed in PLDL$_f$ as $[\text{true}][\langle \text{cs} \rangle \top \Rightarrow (\langle \text{unl} \lor \text{grab} \rangle) \land (\langle \text{unl} \lor \text{grab} \rangle) \text{start}$, whereas it can be expressed in LDL$_f$ as $(\neg \text{cs} \lor (\text{grab} \land \neg \text{cs}); (\text{unl} \lor (\text{grab} \land \neg \text{cs}); (\text{unl} \lor \text{unl}); \neg \text{cs}^*)$ end.

As we will see later, all PLTL$_f$/PLDL$_f$ formulas are translatable into LTL$_f$/LDL$_f$ and vice versa, however the translation can be quite involved.
Just as for $\text{LTL}_f / \text{LTL}_d$, one can build a DFA accepting the traces satisfying φ. The same is true for $\text{PLTL}_f / \text{PLDL}_f$ formulas φ. However, since $\text{PLTL}_f / \text{PLDL}_f$ formulas are evaluated from the end of the trace towards the beginning, we can build a DFA whose size is single exponential in the size of the formula (vs. double-exponential, as for $\text{LTL}_f / \text{LTL}_d$). The crux of this result lays on the possibility of obtaining from an AFA a DFA for the reverse language in single exponential time.

4 Reverse Languages and AFA

The reverse of a string $\tau = \tau_0 \tau_1 \ldots \tau_{n-1}$ is the string $\tau^R = \tau_{n-1} \ldots \tau_1 \tau_0$, and the reverse of a language L is the language $L^R = \{ \tau^R : \tau \in L \}$. Notably, while the minimal DFA equivalent to an AFA can be double-exponentially larger, the minimal DFA for the reverse language is at most single-exponentially larger [Chandra et al., 1981], and can be easily built as shown below. For an AFA $A = (\Sigma, Q, q_0, \delta, F)$, define the DFA $A^R = (\Sigma, S, s_{init}, T, F')$ that recognizes the reverse language where:

- $S = 2^Q$, $s_{init} = F$;
- for $v \in S, a \in \Sigma$, define $T(v, a)$ to be the set of all q such that $v = \delta(q, a)$;
- let $V \in F'$ iff $q_0 \in V$.

Note that the size of A^R is $2^{O(|A|)}$. Moreover, A^R can be computed in exponential time.

Theorem 1. [Chandra et al., 1981] The DFA A^R recognizes the reverse of the language of the AFA A.

Proof. Introduce a generalization of Acc defined in Section 2: $q \in Fwd(\tau, X)$ which is intuitively read as “the automaton reads τ forward from state q and results in a state in the set X”. Formally, define $Fwd : \Sigma^* \times 2^Q \rightarrow 2^Q$ inductively:

(i) $Fwd(\epsilon, X) = X$,
(ii) $Fwd(\tau a, X) = \{ q : Fwd(\tau, X) = \delta(q, a) \}$.

Note that Acc is definable in terms of Fwd, i.e., $q \in Acc(\tau)$ iff $q \in Fwd(\tau, F)$. Intuitively, Fwd processes the input word in the forward direction. Also, for processing the input τ in the backward direction, define $Bck : \Sigma^* \times 2^Q \rightarrow 2^Q$ inductively:

(iii) $Bck(\epsilon, X) = X$,
(iv) $Bck(\tau a, X) = Bck(\tau, \{ s : X = \delta(s, a) \})$.

By (ii) and (iv) we get the following property corresponding to the shift from $(\tau a)^R$ to $(\tau a)^R$:

$Bck(\tau, Fwd(\tau, X)) = Bck(\tau, Fwd(\tau a, X))$. Then, an induction on the length of τ shows $Bck(\tau, Fwd(\tau, X)) = Fwd(\tau^R, X)$ for all τ^R. Indeed, for the base case $\tau = \epsilon$, note that $Bck(\epsilon, Fwd(\epsilon, X)) = Fwd(\epsilon, X)$ by (iii), and for the general case, say $\tau = \tau_0 \in \tau$, note that $Bck(\tau_0, Fwd(\tau, X)) = Bck(\tau_0, Fwd(\tau a, X))$ by the shifting property above, which equals $Fwd(\tau_0(\tau a)^R, X)$ by the inductive hypothesis, which equals $Fwd(\tau_0(\tau a)^R, X)$ as required.

We return to the proof of Theorem 1. We prove, by induction on τ, that $q_0 \in Fwd(\tau, V)$ iff A^R accepts τ^R from state V. If $\tau = \epsilon$ then both sides are equivalent to $q_0 \in V$. Consider $\tau = \tau_0 \tau_1$. Then $Fwd(\tau_0 \tau_1, V) = Bck(\tau_0 \tau_1, V) = Bck(\tau_0, \{ s : V = \delta(s, a) \}) = Bck(\tau_0, Fwd(\tau_1, V)) = Fwd(\tau_0, Fwd(\tau_1, V))$.

Thus, $q_0 \in Fwd(\tau, V)$ iff A^R accepts τ^R from state V, as required. So, A accepts τ iff A^R accepts τ^R.

5 From $\text{PLTL}_f / \text{PLDL}_f$ to DFA

We take advantage of the single exponential reduction of an AFA to a DFA for the reverse language to get a DFA for $\text{PLTL}_f / \text{PLDL}_f$ formulas, which is single exponential in the size of the formula. To do so, we introduce the syntactic notion of swap, which, given a $\text{PLTL}_f / \text{PLDL}_f$ formula, produces an $\text{LTL}_f / \text{LTL}_d$ formula by syntactically replacing each past operator with its corresponding future operator. Intuitively, \lhd corresponds to \circ, δ corresponds to Υ, $\langle \emptyset \rangle$ corresponds to $\langle \emptyset^R \rangle$, and $\langle \emptyset^R \rangle$ corresponds to $\langle \emptyset^R \rangle$, where \emptyset^R is the regular expression \emptyset with all formulas in text replaced by the corresponding swapped formulas. Formally, we define \emptyset^R by induction: (i) $\emptyset^R = \emptyset$ (for all $\emptyset \in \emptyset$) and $\emptyset^R = \emptyset$; (ii) $(\varphi \cdot \psi)^R = \varphi^R \psi^R$; (iii) $(\varphi \vee \psi)^R = \varphi^R \vee \psi^R$; (iv) $\langle \emptyset \rangle^R = \langle \emptyset^R \rangle$.

The following lemma summarizes the relationship between formulas and their swaps.

Lemma 1. If φ is a $\text{PLTL}_f / \text{PLDL}_f$ (resp., $\text{LTL}_f / \text{LTL}_d$) formula, its swap φ^R is an $\text{LTL}_f / \text{LTL}_d$ (resp., $\text{PLTL}_f / \text{PLDL}_f$) formula of size $|\varphi|$ such that $\varphi = \varphi^R$ iff $\varphi^R = \varphi$, i.e., $L^R(\varphi) = L(\varphi^R)$.

We present two examples that illustrate the syntactic (vs. semantic) relationship between a formula and its swap.

Example 4. Consider the PLTL_f formula “inRoom ∧ roomDecontaminated ∧ \diamondsuit(getPermit)” — a variant of the example in the introduction. Its swapped LTL_f formula is “inRoom ∧ roomDecontaminated ∧ \diamondsuit(getPermit)”. Although the two formulas are syntactically similar, they have different meanings. The former says that the robot is in a decontaminated room and it acquired the permit to enter the room beforehand. The latter says that the robot is in a decontaminated room and later (!) it will get the permit to enter.

Example 5. Consider the LTL_f formula “batteryCharged ∧ \diamondsuit(useNotebook)” and its swapped PLTL_f formula “batteryCharged ∧ \diamondsuit(useNotebook)”. While the first says that the battery is now charged and you can eventually use the notebook, the PLTL_f formula says that you used the notebook in the past, but the battery is charged now.

Now, we are ready to show that transforming $\text{PLTL}_f / \text{PLDL}_f$ formulas into DFA can be done in exponential time (vs. double exponential time for $\text{LTL}_f / \text{LTL}_d$ formulas).

Theorem 2. For every $\text{PLTL}_f / \text{PLDL}_f$ formula φ there is an equivalent DFA A_φ whose size is at most $2^{O(|\varphi|)}$ in the size of φ, and which is computable in at most exponential time.

Proof. Swap the $\text{PLTL}_f / \text{PLDL}_f$ formula φ getting the $\text{LTL}_f / \text{LTL}_d$ φ^R, then construct the AFA A_φ, and, finally, build the DFA $A_\varphi = A_\varphi^R$. By Lemma 1 and Theorem 1 we get that A_φ has size $2^{O(|\varphi|)}$ and $L(\varphi) = L(A_\varphi)$.

□
Hence, we can define the analogue of Algorithm 1 to translate PLTL/PLDL$_f$ formulas into DFA based on Theorem 2.

Algorithm 2: Translating PLTL$_f$/PLDL$_f$ to DFA

Given a PLTL$_f$/PLDL$_f$ formula φ:
1. Swap φ into the corresponding LTL$_f$/LDL$_f$ φ^{sw} (lin)
2. Compute AFA for φ^{sw} (lin)
3. Compute DFA from AFA for the reverse language (1exp)

Note that Algorithm 2 returns the DFA corresponding to a PLTL$_f$/PLDL$_f$ formula in single EXPTIME (worst-case complexity) vs. 2EXPTIME of Algorithm 1 for the LTL$_f$/LDL$_f$ case. This implies that using past temporal formulas reduces the complexity of several problems, as we will see later.

6 PLTL$_f$/PLDL$_f$ and LTL$_f$/LDL$_f$

PLTL$_f$/PLDL$_f$ offers an exponential advantage over LTL$_f$/LDL$_f$ when building the corresponding DFA. However, here we show that they have the same expressive power, and, indeed, they can be translated one into the other. Unfortunately, the translations are quite expensive.

Expressive power of PLTL$_f$. We start by establishing that PLTL$_f$ and LTL$_f$ have the same expressive power by using first-order logic (FOL) as an intermediate logic. In this setting, FOL formulas are interpreted on finite traces viewed as labeled linear orders, i.e., formulas can use: variables x that vary over instants and that can be quantified existentially and universally; the binary predicate \preceq denoting the order of instants; equality $=$ between instants; and unary (sometimes called monadic) predicates P for the labels; see, e.g., [De Giacomo and Vardi, 2013] for formal definitions.

We start by observing that LTL$_f$ and PLTL$_f$ can be translated into FOL on finite traces by mimicking the semantics of these logics as FOL formulas, and can be done in linear-time.

Theorem 3. [De Giacomo and Vardi, 2013; Zhu et al., 2019] Both PLTL$_f$ and LTL$_f$ can be translated into FOL on finite traces in linear-time.

For the converse, it is known that FOL (on finite traces) can be translated into LTL$_f$ [Gabbay et al., 1980]. Here, we use this fact to show that FOL can also be translated into PLTL$_f$.

Theorem 4 (cf. [Kamp, 1968]). FOL (on finite traces) can be translated into both LTL$_f$ and PLTL$_f$.

Proof. Given an FOL formula φ replace $x < y$ by $y < x$ to get an FOL φ^{sw} for the reverse language, i.e., $w = w' \iff wR = w'_R$. Then, translate the FOL formula φ^{sw} into an equivalent LTL$_f$ formula ψ [Gabbay et al., 1980]. Then, the PLTL$_f$ formula ψ^{sw} is equivalent to the original FOL formula φ. □

Putting these together, we immediately get:

Theorem 5. PLTL$_f$ and LTL$_f$ have the same expressive power.

Considering the results on LTL$_f$ in [De Giacomo and Vardi, 2013], we can now characterize the expressive power of PLTL$_f$.

Theorem 6. PLTL$_f$ has exactly the same expressive power as FOL on finite traces, i.e., star-free regular expressions.

Expressive power of PLDL$_f$. Next, we investigate the expressive power of PLDL$_f$.

Theorem 7. RE is as least as expressive as PLDL$_f$.

Proof. Apply Theorem 2 to get a DFA, and then apply Kleene’s Theorem to get an equivalent regular expression. □

The reverse direction also holds:

Theorem 8. PLDL$_f$ is as least as expressive as RE.

Proof. Given a regular expression ϱ compute the reverse regular expression ϱ^R and return $\langle \varrho \rangle^{\text{start}}$. □

Since RE has the same expressive power as Monadic Second-order Logic (MSO) over finite traces (cf., [De Giacomo and Vardi, 2013]), we get the following characterizations.

Theorem 9. PLTL$_f$ has the same expressive power as RE, and as MSO on finite traces.

Theorem 10. PLDL$_f$ has the same expressive power as LDL$_f$.

Translating between PLTL$_f$ and LTL$_f$. The above results give us a way to translate LTL$_f$ (resp., PLTL$_f$) into PLTL$_f$ (resp., PLDL$_f$): first, translate LTL$_f$ into FOL; then, translate FOL into PLTL$_f$. However, we remark that the transformation of an FOL formula into an LTL$_f$ formula, in general, can be non-elementary (i.e., not bounded by any finite tower of exponentials) in the size of the FOL formula [Gabbay, 1987]. Hence, the above translation of LTL$_f$ (resp., PLTL$_f$) to PLTL$_f$ (resp., PLDL$_f$) is not trivial. In fact, we can do better by making use of the following result from the literature:

Theorem 11. [Maler and Pnueli, 1990] DFA accepting star-free regular languages can be translated into PLTL$_f$ formulas of size at most exponentially larger.

Now, we are ready to provide our translation, which gives us the best known upper bound for the translation, though it remains open whether the bound is tight.

Theorem 12. For every PLTL$_f$ (resp., PLDL$_f$) formula φ there exists an equivalent LTL$_f$ (resp., PLTL$_f$) formula whose size is at most triply exponential in the size of φ, and which is computable in at most triply exponential time.

Proof. Given a PLTL$_f$ formula φ, build an equivalent DFA A_{φ} by Theorem 2. Note that the DFA may be exponentially larger than φ. Reverse all transitions to get an NFA A_{φ}^R that accepts the reverse of the language of A_{φ}, then determinize this NFA to get an equivalent DFA A_{φ}^{DFA}. Note that A_{φ}^{DFA} may be exponentially larger than A_{φ}^R. Now, apply Theorem 11 to transform this DFA into an equivalent PLTL$_f$ formula ψ. Finally, form the swap ψ^{sw} for the reverse language of ψ. Then, ψ^{sw} is the LTL$_f$ formula equivalent to the PLTL$_f$ formula φ. Note that we reversed the language twice, and we incurred in three exponential blowups.

Similarly, we can obtain a PLTL$_f$ formula from an LTL$_f$ one. From an LTL$_f$ formula φ, build an equivalent DFA A_{φ} that may be double-exponentially larger than φ, and, then, apply Theorem 11 to get an equivalent PLTL$_f$ formula which may be single-exponentially larger. □
Translating between PLDL\(f\) and LDL\(f\). Next, we turn to PLDL\(f\) and LDL\(f\). Again, the bound (and algorithm) in the theorem below is the best known upper bound for the translation. It is open whether the bound is tight.

Theorem 13. For every PLDL\(f\) (resp., LDL\(f\)) formula \(\varphi\) there exists an equivalent LDL\(f\) (resp., PLDL\(f\)) formula whose size is at most doubly exponential in the size of \(\varphi\), and which is computable in doubly exponential time.

Proof. From a PLDL\(f\) formula \(\varphi\), build an equivalent DFA that may be exponentially larger (Theorem 2), then, using Kleene’s Theorem, convert this to a regular expression that may be exponentially larger, and, finally, convert this to an LDL\(f\) formula with constant blow-up [De Giacomo and Vardi, 2013]. The other case (from LDL\(f\) to PLDL\(f\)) follows by considering the swapped formulas. \(\Box\)

In light of the discussion in this section, we observe that while PLTL\(f\)/PLDL\(f\) allows for exponentially smaller equivalent DFA compared to LTL\(f\)/LDL\(f\), we cannot try to translate LTL\(f\)/LDL\(f\) into PLTL\(f\)/PLDL\(f\) to take advantage of this result, since the translation itself is too expensive. Hence, the properties of interest should be naturally expressible directly in PLTL\(f\)/PLDL\(f\) to get the exponential improvement.

7 Impact of Adopting PLTL\(f\)/PLDL\(f\)

The exponential gain in transforming PLTL\(f\)/PLDL\(f\) formulas into DFAs, with respect to LTL\(f\)/LDL\(f\), is reflected in an exponential gain in solving a variety of forms of sequential decision making problems involving temporal specifications. We start by focusing on Planning.

Planning in fully observable nondeterministic planning domains (FOND) for LTL\(f\)/LDL\(f\) goals has been studied in [Camacho et al., 2017; De Giacomo and Rubin, 2018; Camacho et al., 2018]. A (rooted) fully observable nondeterministic domain is a tuple \(D = (P, A, S, 0, s_0, tr)\) where: (i) \(P\) is a set of fluents (atomic propositions); (ii) \(A\) is a set of actions (atomic symbols); (iii) \(S = 2^P\) is the set of domain states; (iv) \(s_0\) is the initial state (initial assignment to fluents); (v) \((s, a, s') \in tr\) represents action effects (including frame assumptions), and implicitly also actions preconditions. Since a domain is assumed to be represented compactly (e.g. in PDDL), we consider the size of the domain as the cardinality of \(P\), i.e., logarithmic in the number of states (see e.g., [Geffner and Bonet, 2013]). We are interested in the case where the goal is given as a PLTL\(f\)/PLDL\(f\) goal formula \(\varphi_g\) over fluents \(P\). A plan \(f\) is a strong solution to \(D\) for goal \(\varphi_g\) if every trace following the plan \(f\) of \(D\) is finite and satisfies \(\varphi_g\). To find such a plan we use the automata-based technique in [De Giacomo and Rubin, 2018], but exploit the fact that PLTL\(f\)/PLDL\(f\) goals give us a single exponential DFA.

Theorem 14. Solving FOND for PLTL\(f\)/PLDL\(f\) goals is EXPTIME-complete in the domain and EXPTIME-complete in the PLTL\(f\)/PLDL\(f\) goals.

Contrast this result with the LTL\(f\)/LDL\(f\) case, where FOND planning is EXPTIME-complete in the domain (compactly represented) and 2EXPTIME-complete in the goal [De Giacomo and Rubin, 2018]. As mentioned in Section 6, the exponential gain is only achieved for properties expressed directly in PLTL\(f\)/PLDL\(f\). If we first express the specification in LTL\(f\)/LDL\(f\) and then translate it into PLTL\(f\)/PLDL\(f\), we lose the advantage due to a blow-up in the translation. Thus, our approach yields an improvement for problems that can natively be specified in PLTL\(f\)/PLDL\(f\), without resorting to LTL\(f\)/LDL\(f\) at all. The above construction can be adapted to handle (stochastically) fair domains [De Giacomo and Rubin, 2018; Aminof et al., 2020] with the same exponential advantage.

Note that if the domain is deterministic the difference between LTL\(f\)/LDL\(f\) and PLTL\(f\)/PLDL\(f\) disappears because in the former case we can directly work with an NFA, since it is sufficient to solve simple reachability, i.e., nonemptiness (cf. [De Giacomo and Rubin, 2018]). Hence, in both cases, the complexity becomes PSPACE in the domain and in the goal. The crux of the above construction is that starting from the PLTL\(f\)/PLDL\(f\) formula we build an exponential DFA, which is then combined through a polynomial operation (the product) with the planning domain. An analogous line of reasoning can be exploited to show an exponential improvement in several other contexts as we will show in what follows.

Solving MDPs with non-Markovian rewards [Bacchus et al., 1996; Thiebaux et al., 2006; Brafman et al., 2018] with PLTL\(f\)/PLDL\(f\) rewards is EXPTIME-complete in the domain and EXPTIME in PLTL\(f\)/PLDL\(f\) rewards, while the latter is 2EXPTIME-complete for LTL\(f\)/LDL\(f\) rewards [Brafman et al., 2018].

Reinforcement Learning where rewards are based on traces [De Giacomo et al., 2019; Camacho et al., 2019] with PLTL\(f\)/PLDL\(f\) rewards also gain the exponential improvement.

Planning in non-Markovian domains [Brafman and De Giacomo, 2019a], with both the non-Markovian domain and the goal expressed in PLTL\(f\)/PLDL\(f\) is EXPTIME-complete in the domain and in the goal, vs. 2EXPTIME-complete in the domain and in the goal in the case these are expressed in LTL\(f\)/LDL\(f\).

Solving non-Markovian decision processes [Brafman and De Giacomo, 2019b], with both the system dynamics and the rewards expressed in PLTL\(f\)/PLDL\(f\), is EXPTIME-complete in the domain and in the rewards specification. Again, this is an exponential improvement both in the domain and the rewards wrt the case of LTL\(f\)/LDL\(f\).

8 Conclusion

We reviewed PLTL\(f\) and its extension PLDL\(f\), which have an exponential advantage over LTL\(f\)/LDL\(f\) when computing the corresponding DFA, which, in turn, positively impacts several problems in AI. However, to take advantage of this exponential improvement, the properties of interest must be directly expressed in PLTL\(f\)/PLDL\(f\) because the translation between LTL\(f\)/LDL\(f\) and PLTL\(f\)/PLDL\(f\) dominates the exponential advantage of working with PLTL\(f\)/PLDL\(f\).

Acknowledgments

Work partially supported by the European Research Council under the European Union’s Horizon 2020 Programme through the ERC Advanced Grant WhiteMech (No. 834228),
References

