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Introduction

It is well known that viscosity solutions were conceived by Crandall and Lions
(1982) in the framework of optimal control theory. The goal was to show well
posedness of Hamilton–Jacobi–Bellman equations in the whole space, and to
prove, via dynamic programming principle, the value function of a suitable
optimal control problem being the unique solution.

When trying to extend viscosity methods to the analysis of second order
parabolic partial differential equations, PDEs for short, and getting represen-
tation formulae, it appeared clear that some stochastic dynamics must be
brought into play. Not surprisingly, this has been first done for stochastic
control models. The hard work of a generation of mathematicians, [6, 13, 19,
21, 22, 25] among the others, allowed making effective dynamic programming
approach to stochastic control problems.

Prompted by this body of investigations, a stream of research arose in
the probabilistic community ultimately leading to the theory of backward
stochastic differential equations, BSDEs for short, which was introduced by
Pardoux and Peng in [26] (1990). Since then, it has attracted a great in-
terest due to its connections with mathematical finance and PDEs, as well
as with stochastic control. This theory has been in particular used to ex-
tend the classical Feynman–Kac formula, which establishes a link between
linear parabolic PDEs and stochastic differential equations, SDEs for short,
to semilinear and quasilinear equations, see for example [10, 11, 23]. See also
[28] for a rather complete overview of the semilinear case.

For sake of clarity, let us consider the following semilinear parabolic PDE

i



ii Introduction

problem coupled with final conditions,
1

2

〈
σσ†, D2

xu
〉

(t, x) + (∇xub)(t, x)

+∂tu(t, x) + f(t, x, u,∇xuσ) = 0
t ∈ [0, T ], x ∈ RN ,

u(T, x) = g(x), x ∈ RN ,

(1)

then its viscosity solution, see [8, 18], can be written as u(t, x) = E
(
Y t,x
t

)
,

where Y is given by the following system, called forward backward stochastic
differential equation or FBSDE in short, which is made in turn of two equa-
tions, the first one is a SDE, and the second one a BSDE depending on the
first one

X t,x
s =x+

∫ s

t

σ
(
r,X t,x

r

)
dWr +

∫ s

t

b
(
r,X t,x

r

)
dr,

Y t,x
s =g

(
X t,x
T

)
+

∫ T

s

f
(
r,X t,x

r , Y t,x
r , Zt,x

r

)
dr−

∫ T

s

Zt,x
r dWr,

s∈ [t, T ], x∈RN .

As it can be intuitively seen, the SDE takes care of the linear operator defined
by σ and b, also called the infinitesimal generators of the SDE, while the
BSDE depends on f and g. In other words, this extension of the Feynman–
Kac formula basically does not modify the treatment of the second order
linear operator with respect to the completely linear case.

Subsequently, Peng introduced in [30] (2006) the notion of G–expectation,
a nonlinear expectation generated by a fully nonlinear second order operator
G via its viscosity solutions. This work has originated an active research
field, with relevant applications to Mathematical Finance.

Peng has improved this theory in several papers and has given a com-
prehensive account of it in the book [31], where he highlights the role of the
so–called sublinear expectations, namely G–expectations generated by sub-
linear operators. Finally in [12], Peng provides representation formulas for
viscosity solutions using these expectations. More precisely, given a sublinear
operators G and the G–heat equation∂tu(t, x) +G (D2

xu(t, x)) = 0, t ∈ [0, T ], x ∈ RN ,

u(T, x) = g(x), x ∈ RN .
(2)
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he represents the viscosity solution as

u(t, x) = sup
σ∈A

E

(
g

(
x+

∫ T

t

σsdWs

))
,

whereA is a family of stochastic process associated toG andW is a Brownian
motion. The key to prove it is a dynamic programming principle that we will
illustrate in section 2.2. We point out that here the novelty with respect
to the Feynman–Kac formula is essentially given by the sublinearity of the
operator G.

The main purpose of this thesis is to provide a method for represent-
ing viscosity solutions to second order nonlinear PDEs given as inf or sup–
envelope function. This is the case of PDEs with sublinear operators or
second order Hamilton–Jacobi equations. The method is based upon a gen-
eralized version of the dynamic programming principle of [12]. It will be
tested on various problems, mostly using FBSDEs.

This is hopefully just a first step to further extend the Feynman–Kac
formula to general fully nonlinear PDE using the BSDE theory. In this
respect we also point out that Cheridito, Soner, Touzi and Victoir in [7]
have introduced a second order BSDE to give stochastic representation of
solutions to fully nonlinear parabolic PDEs.

The thesis is organized a follows: in chapter 1 we introduce the stochastic
setting and give a characterization of sublinear operators preliminary to our
analysis. Chapter 2 is devoted to present our method and to give us repre-
sentation formulas of viscosity solutions to various problems. Starting with a
problem which is slightly more general than (2), we then approach parabolic
PDE problems of the type

∂tu(t, x) + F
(
t, x,∇xu,D

2
xu
)

+f(t, x, u,∇xu) = 0,
t ∈ [0, T ], x ∈ RN ,

u(T, x) = g(x), x ∈ RN ,

(3)

where F is a sublinear operator, with respect the third and the fourth ar-
gument. This problem is clearly a blend between (1) and (2), where the
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additional difficulty with respect to (1) is given by the sublinearity of the
operator, while the generalization with respect to (2) is the dependence of F
on (t, x) of and the presence of the term f . We subsequently deal with an
elliptic version of (3), which are much harder to treat, due to the presence of
stopping times. Then, using a sample problem, we show that it is possible
by means of our method to retrieve already known representation formu-
las of viscosity solutions to some second order Hamilton–Jacobi problems.
We finally conclude chapter 2 with the analysis of a problem with singular
boundary conditions, inspired by the seminal paper of Lasry and Lions [20].
The appendices provide a compendium of the SDE and BSDE results we use.
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Notation

Here we fix the notation and some conventions that we will use later. Assume
that we have a arbitrary filtered probability space (Ω,F , {Ft}t∈[0,∞),P), then

• given two random variables X and Y we will write X d
= Y if they are

equal in distribution;

• we will say that a stochastic process {Ht}t∈[0,∞) is adapted if Ht is
Ft–measurable for any t ∈ [0,∞);

• we will say that a stochastic process {Ht}t∈[0,∞) is progressively measur-
able, or simply progressive, if, for any T ∈ [0,∞), the application that
to any (t, ω) ∈ [0, T ]×Ω associate Ht(ω) is B([0, T ])×FT–measurable,
where B([0, T ]) is the Borel σ–algebra of [0, T ];

• a function on R is called cadlag if is right continuous and has left limit
everywhere;

• a cadlag (in time) process is progressive if and only if is adapted;

• F∞ := σ(Ft|t ∈ [0,∞));

• LpN(T ) :=
{
H ∈ Lp

(
[0, T ]× Ω;RN

)
: H is progressive

}
;

• LpN :=
⋂

T∈[0,∞)

L
p
N(T );

• given a stopping time τ we will also define LpN(τ) as the set made up
by the progressive processes H such that E

(∫ τ
0
|Ht|pdt

)
<∞;

vii



viii Notation

• µ–a.e. denotes “almost everywhere for the measure µ”, but we will
usually omit the reference to µ when there is no ambiguity;

• Bδ(x) will denote an open ball centered in x with radius δ;

• given a function f defined on a set D and a subset E of D, we will
denote with f |E the restriction of f to E;

• for any Lipschitz continuous function f we will denote its Lipschitz
constant as Lip(f);

• for any v, w ∈ RN we denote with v ⊗ w the matrix (viwj);

• if A ∈ RN×M then A† will denote its transpose and eigA its spectrum;

• (Frobenius product) if A,B ∈ RN×M then

〈A,B〉 := tr
(
AB†

)
=

N∑
i=1

M∑
j=1

Ai,jBi,j;

• if A ∈ RN×M then |A| will denote the norm
√
〈A,A〉 =

√
N∑
i=1

M∑
j=1

A2
i,j;

• SN is the set made up by all the symmetric matrices of RN×N and SN+
is its the subset made up by all the positive definite matrices.



Chapter 1

Preliminaries

1.1 The Stochastic Setting

We will work on the filtered probability space
(
Ω,F , {Ft}t∈[0,∞),P

)
, where

F is a complete σ–algebra, {Ft}t∈[0,∞) is the filtration defined by W which
satisfies the usual condition of completeness and right continuity and the
stochastic process {Wt}t∈[0,∞) denote the N dimensional Brownian motion
on this space. Let F∞ be the σ–algebra σ(Ft : t ∈ [0,∞)) and additionally
define, for any t in [0,∞), the processes {W t

s}s∈[t,∞) := {Ws − Wt}s∈[t,∞),
which are again Brownian motions, the filtration {F ts}s∈[t,∞) generated by
these processes and, similarly as before, F t∞ := σ(F ts : s ∈ [t,∞)). Notice
that the filtrations {F ts}s∈[t,∞), which we assume satisfies the usual condition,
are independent from Ft for any t ∈ [0,∞). Furthermore we define, for any
non negative stopping time τ , the σ–algebra

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, t ∈ [0,∞)} .

It is well known that for the Brownian motion holds the strong Markov prop-
erty, that is to say that, for any a.e. finite stopping time τ , the processes
{W τ

t }t∈[0,∞) := {Wτ+t −Wτ}t∈[0,∞) are Brownian motions independent from
Fτ . Thus, as previously done, we can define the filtrations {F τt }t∈[0,∞) gen-
erated by these processes and the σ–algebras F τ∞ := σ(F τt : t ∈ [0,∞)) for

1



2 1. Preliminaries

any a.e. finite stopping time τ . As always we assume that the filtration
{F τt }t∈[0,∞) satisfies the usual condition. For these filtrations the following
lemma holds.

Lemma 1.1.1. If τ is an a.e. finite stopping time, then the σ–algebras Fτ
and F τt are independent for any t ∈ [0,∞). Furthermore F∞ = σ(Fτ ,F τ∞).

Proof. Consider the process {Wτ∧t}t∈[0,∞) and the filtration {Fτ∧t}t∈[0,∞) gen-
erated by this. By construction we have that

Fτ∧t ={A ∈ Ft : A ∩ {τ = s} ∈ Fs, s ∈ [0, t]}

={A ∈ Ft : A ∩ {τ ≤ s} ∈ Fs, s ∈ [0, t]},
(1.1)

which correspond to the definition of the σ–algebra defined by the stopping
time τ ∧ t. Note that, if A ∈ Fτ ,

A ∩ {τ <∞} =
∞⋃
t=0

(A ∩ {τ ≤ t}) ∈
∞⋃
t=0

Ft,

thus, since A = A∩ {τ <∞}∪B where B is a set of zero measure, A ∈ F∞
and Fτ ⊆ F∞. From this and (1.1) we get

σ(Fτ∧t : t ∈ [0,∞)) = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft, t ∈ [0,∞)} = Fτ ,

therefore, since for any t, s ∈ [0,∞) F τs and Fτ∧t are independent, so are
F τs and Fτ . Finally, to prove that F∞ = σ(Fτ ,F τ∞), is enough to note that
F∞ ⊇ σ(Fτ ,F τ∞) and, since Wt = Wt − Wτ∧t + Wτ∧t for any t ∈ [0,∞),
F∞ ⊆ σ(Fτ ,F τ∞).

The following is an important result on the filtration of Brownian motions:

Theorem 1.1.2 (Blumenthal’s 0–1 law). For any a.e. finite stopping time
τ and A ∈ F τ0 , either P(A) = 0 or P(A) = 1.

An important consequence of this theorem that we will exploit later is
the fact that any F0–measurable function is an a.e. constant.

Let LpN(T ) be the subset of Lp
(
[0, T ]× Ω;RN

)
such that its elements are

progressively measurable with respect to the filtration {Ft}t∈[0,∞) and define



1.2 Sublinear Operators 3

L
p
N :=

⋃
T∈[0,∞)

L
p
N(T ). Since the limit of progressive processes is progressive,

these are complete spaces. Moreover, for any G ∈ L2
M×N ,

∫ t
0
GsdWs will

denote the Itô’s integral of G with respect to W . The properties of the Itô’s
integral are well known and can be found in many probability textbooks,
the only result that we recall is the Itô’s formula: given the Itô’s process
Xt := X0 +

∫ t
0
GsdWs +

∫ t
0
Fsds, where G ∈ L2

N×N and F ∈ L1
N , and a

derivable function ϕ, we have that

ϕ(t,Xt) =ϕ(0, X0) +
1

2

∫ t

0

〈
GsG

†
s, D

2
xϕ(s,Xs)

〉
ds+

∫ t

0

∇xϕ(s,Xs)GsdWs

+

∫ t

0

∇xϕ(s,Xs)Fsds+

∫ t

0

∂tϕ(s,Xs)ds.

1.2 Sublinear Operators

The purpose of this section is to characterize the operators of some problems
with we will deal later.

We consider the space RN × SN with the inner product

((p, S), (p′, S ′)) :=
1

2
〈S, S ′〉+ p†p′

and the norm ‖(p, S)‖ :=
√

((p, S), (p, S)).

Assumptions 1.2.1. In this section we will focus on the study of continuous
operators of the form

F : [0,∞)×RN ×RN × SN → R

that satisfy these properties hold true for any (t, x) ∈ [0,∞) × RN , (p, S)

and (p′, S ′) in RN × SN :

(i) (Convexity) If δ ∈ [0, 1] then

F (t, x, δp+ (1− δ)p′, δS + (1− δ)S ′) ≤ δF (t, x, p, S) + (1− δ)F (t, x, p′, S ′);

(ii) (Positive Homogeneity) If δ ≥ 0 then F (t, x, δp, δS) = δF (t, x, p, S);
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(iii) (Ellipticity) If S ≤ S ′, F (t, x, p, S) ≤ F (t, x, p, S ′).

Note that items (i) and (ii) imply

(iv) (Subadditivity) F (t, x, p+ p′, S + S ′) ≤ F (t, x, p, S) + F (t, x, p′, S ′).

The operators which satisfy conditions (ii) and (iv) are commonly known
as sublinear operators. Notice that items (ii) and (iv) imply (i), i.e. every
sublinear operator is also convex.
It is common to also ask that F is uniformly elliptic with ellipticity constants
λ ∈ (0,∞) and Λ ∈ (λ,∞] (note that if λ = 0 and Λ =∞ we have condition
(iii)):

(v) (Uniform Ellipticity) If S ′ ≥ 0,

λ|S ′| ≤ F (t, x, p, S + S ′)− F (t, x, p, S) ≤ Λ|S ′|,

for any (t, x, p, S) ∈ [0,∞)×RN ×RN × SN .

Finally we require a Lipschitz continuity condition: for any (t, x, p, S) in
[0,∞)×RN ×RN × SN we have that there exists a positive constant ` such
that

(vi) (Lipschitz Continuity) for any y in RN

|F (t, x, p, S)− F (t, y, p, S)| ≤ `|x− y|‖(p, S)‖.

The main result of this section is the following characterization theorem:

Theorem 1.2.2. Let F be as in assumptions 1.2.1 and KF be the set of the
elements (b, a) ∈ C0

(
[0,∞)×RN ;RN

)
× C0

(
[0,∞)×RN ; SN+

)
such that,

for any (t, x, p, S) ∈ [0,∞)×RN ×RN × SN ,

1

2
〈a(t, x), S〉+ p†b(t, x) ≤ F (t, x, p, S),

Lip(b(t)) ≤ 2`, Lip(a(t)) ≤ 2
√

2` and the eigenvalues of a(t, x) are in
[2λ, 2Λ]. Then KF is a non empty and convex set, and

F (t, x, p, S) = max
(b,a)∈KF

1

2
〈a(t, x), S〉+ p†b(t, x)
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for any (t, x, p, S) ∈ [0,∞)×RN×RN×SN . Furthermore for each (b, a) ∈ KF

the linear operator

(t, x, p, S) 7→ 1

2
〈a(t, x), S〉+ p†b(t, x)

has the same ellipticity conditions of F .

That sublinear functions are support functions is a well known result in
functional analysis and is the basis of theorem 1.2.2, however we will write
down its proof for completeness in the next lemma. What theorem 1.2.2 adds
to this is that if we a have sublinear function F which also depends on some
parameters, t ∈ [0,∞) and x ∈ RN in our case, then we have that it can be
expressed as a supremum of functions which inherit some properties from F ,
like Lipschitz continuity in our case.

Lemma 1.2.3. If F is like in assumptions 1.2.1 then the set

LF (t,x) := {L ∈
(
RN × SN

)∗
: L ≤ F (t, x)}

is non empty, compact and convex for any (t, x) ∈ [0,∞)×RN . Furthermore
F (t, x) = max

L∈LF (t,x)
L.

Proof. Chosen
(
p, S

)
∈ RN × SN define the space V := span

((
p, S

))
and

the application I : V → R such that

I
(
t, x, cp, cS

)
:= cF

(
t, x, p, S

)
for all c ∈ R. We want to show that I(t, x) ≤ F (t, x) on the space V for any
(t, x) ∈ [0,∞)×RN , hence for the Hahn–Banach theorem there exists a linear
application L ∈ LF (t,x) that extends, for any (t, x) ∈ [0,∞)×RN , I(t, x) on
RN × SN . This is trivial for the (p, S) ∈ V such that (p, S) := c

(
p, S

)
with

c ∈ [0,∞), therefore we suppose that there exists a c ∈ [0,∞) which

−I
(
t, x, cp, cS

)
> F

(
t, x,−cp,−cS

)
and we will find a contradiction, in fact if this is true we have that by item (iv)
in assumptions 1.2.1

0 <− I
(
t, x, p, S

)
− F

(
t, x,−p,−S

)
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=−
(
F
(
t, x, p, S

)
+ F

(
t, x,−p,−S

))
≤− F (t, x, 0, 0) = 0.

We have shown that the set LF (t,x) is not empty and that and for each (p, S)

in RN×SN there exists an L ∈ LF (t,x) such that L(p, S) = F (t, x, p, S), other-
wise said F (t, x) = max

L∈LF (t,x)

L. The proof that LF (t,x) is convex and compact

is a simple verification, consequently the arbitrariness of (t, x) concludes the
proof.

Another preliminary lemma needed to prove theorem 1.2.2 is an adap-
tation of [39, Lemma 1.8.14], which permits us to express the Hausdorff
distance using support functions.

Lemma 1.2.4. Given, A and B, two compact and convex subsets of RN×SN

we define the application

hA, hB : RN × SN → R

as the support functions of A and B respectively, that is to say

hA((p, S)) = sup
(p′,S′)∈A

((p, S), (p′, S ′)), hB((p, S)) = sup
(p′,S′)∈B

((p, S), (p′, S ′)),

for any (p, S) ∈ RN × SN . Then, for the Hausdorff distance

dH(A,B) :=

max

{
max

(p,S)∈A
min

(p′,S′)∈B
‖(p, S)− (p′, S ′)‖, max

(p′,S′)∈B
min

(p,S)∈A
‖(p, S)− (p′, S ′)‖

}
,

we have that

dH(A,B) = max
(p,S)∈RN×SN
‖(p,S)‖=1

|hA((p, S))− hB((p, S))|.

Proof. Assume that there exists a positive constant c such that dH(A,B) ≤ c.
Then A ⊆ B + Bc(0) and consequently, for any (p, S) ∈ RN × SN such that
‖(p, S)‖ = 1,

hA((p, S)) ≤ hB+Bc(0)((p, S)) = hB((p, S)) + c.
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Similarly we also get that hB((p, S)) ≤ hA((p, S)) + c, therefore

max
(p,S)∈RN×SN
‖(p,S)‖=1

|hA((p, S))− hB((p, S))| ≤ c.

Reversing the argument we can conclude the proof.

We can now prove theorem 1.2.2.

Proof of theorem 1.2.2. By lemma 1.2.3 and the Riesz representation theo-
rem we then have that, for any (t, x) ∈ [0,∞) × RN , there exists the non
empty convex and compact set

Kx
t :=

(b, a) ∈ RN × SN :
1

2
〈a, S〉+ p†b ≤ F (t, x, p, S)

for any (p, S) ∈ RN × SN

 .

Given a (t, x) ∈ [0,∞)×RN and
(
b, a
)
∈ Kx

t we define the function

(b, a) : [0,∞)×RN → RN × SN

such that

(b, a)(s, y) :=


(
b, a
)
, if (s, y) = (t, x),

arg min
(b,a)∈Ky

s

∥∥(b− b, a− a)∥∥ , if (s, y) 6= (t, x).

This function is well defined because is well known that the projection of a
point onto a convex set, i.e. arg min

(b,a)∈Ky
s

∥∥(b− b, a− a)∥∥, exists and is unique.

We will show that (b, a) ∈ KF , since this yields that KF is a non empty
convex (the convexity proof is trivial, hence we skip it) set such that, thanks
to the arbitrariness of the construction,

F (t, x, p, S) = max
(b,a)∈KF

1

2
〈a(t, x), S〉+ p†b(t, x)

for any (t, x, p, S) ∈ [0,∞)×RN ×RN × SN .
As a consequence of the definition and lemma 1.2.4 we have, for any (s, y) in
[0,∞)×RN ,

‖(b, a)(t, x)− (b, a)(s, y)‖ = min
(b,a)∈Ky

s

‖(b(t, x)− b, a(t, x)− a)‖
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≤ max
(b1,a1)∈Kx

t

min
(b2,a2)∈Ky

s

‖(b1 − b2, a1 − a2)‖

≤dH(Kx
t , K

y
s )

= max
(p,S)∈RN×SN :
‖(p,S)‖=1

|F (t, x, p, S)− F (s, y, p, S)|.

Since |a| ≤
√

2‖(b, a)‖ for any (b, a) ∈ RN × SN and

|a(r, z)− a(s, y)| ≤ |a(t, x)− a(s, y)|+ |a(r, z)− a(t, x)|

the previous inequality yields that Lip(a(s)) ≤ 2
√

2` for any s ∈ [0,∞), and
similarly that Lip(b(s)) ≤ 2` for any s ∈ [0,∞).
We now prove the ellipticity part of the statement and, as a consequence,
that eiga(t,x) ⊂ [2λ, 2Λ]N for any (t, x) ∈ [0,∞)×RN , thus that (b, a) ∈ KF .
Let λ and Λ be the ellipticity constants of F and

L : [0, T ]×RN ×RN × SN →R

(t, x, p, S) 7→ 1

2
〈a(t, x), S〉+ p†b(t, x),

then, by its linearity, we only have to prove that for any S ∈ SN+ and (t, x)

in [0,∞)×RN

λ|S| ≤ L(t, x, 0, S) ≤ Λ|S|. (1.2)

Obviously we have, for any S ∈ SN+ and (t, x) ∈ [0,∞)×RN ,

λ|S| ≤F (t, x, 0, 0)− F (t, x, 0,−S) ≤ −L(t, x, 0,−S)

=L(t, x, 0, S) ≤ F (t, x, 0, S)− F (t, x, 0, 0) ≤ Λ|S|,

hence (1.2). Finally, let q an element of RN and define Q := q ⊗ q, which is
an element of SN+ such that

|Q|2 = tr(q ⊗ qq ⊗ q) = tr(|q|2q ⊗ q) = |q|4.

Therefore (1.2) yields, for any (t, x) ∈ [0,∞)×RN ,

λ|q|2 = λ|Q| ≤ 1

2
〈a(t, x), q ⊗ q〉 =

1

2
q†a(t, x)q ≤ Λ|Q| = Λ|q|2

and the Rayleigh quotient formula proves that eiga(t,x) ⊂ [2λ, 2Λ]N , conclud-
ing the proof.
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A converse of theorem 1.2.2 holds:

Proposition 1.2.5. Given two non negative constants ` and λ, let K be the
set of the elements (b, a) ∈ C0

(
[0,∞)×RN ;RN

)
× C0

(
[0,∞)×RN ; SN+

)
such that, for any (t, x, p, S) ∈ [0,∞) × RN × RN × SN , Lip(b(t)) ≤ 1√

2
`,

Lip(a(t)) ≤ ` and the eigenvalues of a(t, x) are in
[
2λ,

2Λ√
N

]
. If we define

the application

F (t, x, p, S) := sup
(b,a)∈K

1

2
〈a(t, x), S〉+ p†b(t, x),

then F is as in assumptions 1.2.1. Furthermore λ is the ellipticity constant
of F .

Proof. The proof of items (i), (ii) and (vi) in assumptions 1.2.1 is a trivial
verification. To prove item (v), and consequently (iii), note that if A ∈ SN+
then there exists a unitary matrix U such that D := UAU † is a diagonal
matrix with diagonal elements 0 ≤ d1 ≤ · · · ≤ dN and, since the trace is
invariant under similarities,

|A| =
√
〈A,A〉 =

√
tr(AA) =

√
tr(DD) =

√√√√ N∑
i=1

d2
i

≤
N∑
i=1

di = tr(D) = tr(A) ≤

√√√√N
N∑
i=1

d2
i =
√
N |A|.

Moreover if we also have another matrix B in SN+ then B := UBU † belong to
SN+ and, by the Rayleigh quotient formula, Bi,i ≥ 0 for any i ∈ {1, · · · , N}.
Therefore

d1 tr(B) = d1 tr
(
B
)
≤

N∑
i=1

diBi,i = tr
(
DB

)
= tr(AB) = 〈A,B〉 ≤ dN tr(B).

Finally, as a consequence of the previous inequalities, we have that, for any
S ′ ∈ SN+ , (b, a) ∈ K and (t, x, p, S) ∈ [0,∞)×RN ×RN × SN+ ,

λ|S ′| ≤λ tr(S ′) ≤ inf
(b,a)∈K

1

2
〈a(t, x), S ′〉
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= inf
(b,a)∈K

(
1

2
〈a(t, x), S + S ′〉+ p†b(t, x)− 1

2
〈a(t, x), S〉 − p†b(t, x)

)
≤F (t, x, p, S + S ′)− F (t, x, p, S)

≤ sup
(b,a)∈K

(
1

2
〈a(t, x), S + S ′〉+ p†b(t, x)− 1

2
〈a(t, x), S〉 − p†b(t, x)

)
≤ sup

(b,a)∈K

1

2
〈a(t, x), S ′〉 ≤ Λ√

N
tr(S ′) ≤ Λ|S ′|.

Remark 1.2.6. Note that we can also define a support function on sets, non
necessarily convex, and it coincides with the support function of the convex
hull, see theorem 1.2.2 and proposition 1.2.5.

We have characterized F as the support function of a set of linear oper-
ators. Usually, to obtain representation formulas for viscosity solutions to a
second order PDE with linear operator, is useful to study a function σ such
that σσ† is the diffusion part of that operator, hence we will do something
similar: if we define the application from SN+ to itself which associate via
singular value decomposition the matrix A with its square root σ then it is
well defined, as can be seen in [5, Section 6.5]. Moreover we know from [38,
Lemma 2.1] that, on the space of matrices with eigenvalues equal or big-
ger than 2λ, this application is Lipschitz continuous with Lipschitz constant

1

2
√
λ
, therefore the application (b, σ) 7→ (b, σσ) that maps the set KF , which

is made up by the (b, σ) in C0
(
[0,∞)×RN ;RN

)
× C0

(
[0,∞)×RN ; SN+

)
such that (b, σσ) ∈ KF and Lip(σ(t)) ≤

√
2√
λ
` for any t ∈ [0,∞), into KF is

surjective and consequently

F (t, x, p, S) = max
(b,σ)∈KF

1

2
〈σ(t, x)σ(t, x), S〉+ p†b(t, x). (1.3)

Our hope is that this characterization will help us find representation formu-
las for viscosity solutions to second order PDEs with sublinear operators as
in the linear case.

We end this chapter with an useful property that sublinear operators
inherit from the linear operators and which will play a key role further on, in
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a proof of uniqueness. This lemma has already been proved in [17], here we
will adapt the arguments of [8, Example 3.6], where the proof is just given
for linear operators.

Lemma 1.2.7. Let S and S ′ be two elements of SN which admit a positive
constant α such that (

S 0

0 −S ′

)
≤ 3α

(
I −I
−I I

)
,

or equivalently
v†Sv − w†S ′w ≤ 3α|v − w|2. (1.4)

Then if F is as in assumptions 1.2.1, there exists a constant c > 0 depending
only on ` and λ such that, for any (t, x) ∈ [0,∞)×RN ,

F (t, y, α(x− y), S ′)− F (t, x, α(x− y), S) ≤ cα|x− y|2.

Notice that (1.4) implies S ≤ S ′.

Proof. Thanks to theorem 1.2.2 we know that

F (t, y, α(x− y), S ′)− F (t, x, α(x− y), S)

≤ sup
(b,σ)∈KF

1

2
(〈S ′, σ2(t, y)〉 − 〈S, a(t, x)〉) + α(x− y)†(b(t, y)− b(t, x))

≤ sup
(b,σ)∈KF

1

2

(
〈S ′, σ2(t, y)〉 − 〈S, a(t, x)〉+ 2α`|x− y|2

)
and this concludes the proof because

〈S ′, σ2(t, y)〉 − 〈S, σ2(t, x)〉 = tr(σ2(t, y)S ′)− tr(σ2(t, x)S)

= tr(σ(t, y)S ′σ(t, y)− σ(t, x)Sσ(t, x))

=
N∑
i=1

e†iσ(t, y)S ′σ(t, y)ei − e†iσi(t, x)Sσ(t, x)ei

≤
N∑
i=1

3α|(σi(t, y)− σi(t, x))ei|2

≤6α`2N

λ
|x− y|2.



Chapter 2

Viscosity Solutions

Before we start this chapter we give two useful definition, bearing in mind
the following second order PDE problem:

F
(
x, u(x),∇u(x), D2u(x)

)
= 0, (2.1)

where F is a arbitrary continuous function. To ease notation we will usually
write F (x, u,∇u,D2u) instead of F (x, u(x),∇u(x), D2u(x)).

Definition 2.0.1. Given an upper semicontinuous function u we say that a
function ϕ is a supertangent to u at x if x is a local maximizer of u− ϕ.
Similarly we say that a function ψ is a subtangent to a lower semicontinuous
function v at x if x is a local minimizer of v − ψ.

Definition 2.0.2. An upper semicontinuous function u is called a viscosity
subsolution to (2.1) if, for any suitable x and C2 supertangent ϕ to u at x,

F
(
x, u(x),∇ϕ(x), D2ϕ(x)

)
≥ 0.

Similarly a lower semicontinuous function v is called a viscosity supersolution
to (2.1) if, for any suitable x and C2 subtangent ψ to v at x,

F
(
x, v(x),∇ψ(x), D2ψ(x)

)
≤ 0.

Finally a continuous function u is called a viscosity solution to (2.1) if it is
both a super and a subsolution to (2.1).

12
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Notice that these definitions can be naturally extended to parabolic prob-
lems.

Here are also given some known results in the viscosity solutions theory
which will be used later, while for a detailed overview of this theory we refer
to [8, 18].

Theorem 2.0.3. Let {uα}α∈A be a family of locally equibounded viscosity
subsolutions (resp. supersolutions) to (2.1) in a locally compact subset K of
RN . Then if u := sup

α∈A
uα is upper semicontinuous (resp. u := inf

α∈A
uα is lower

semicontinuous) it is a viscosity subsolution (resp. supersolution) to (2.1) in
K. The same holds true for the parabolic version of (2.1).

The proof can be found in [8, Lemma 4.2], see also [17], where the same
statement is shown for discontinuous viscosity solutions.

Now consider the parabolic problem

∂tu(t, x) + F
(
t, x, u,∇u,D2u

)
= 0, t ∈ (0, T ), x ∈ RN , (2.2)

where F is a continuous elliptic operator which admits, for any t ∈ [0, T ],
(x, r, p, S) and (y, r′, p′, S ′) in RN × R × RN × SN , a µ ∈ R and a positive
constant ` such that

(i) |F (t, x, r, p, S)− F (t, x, r, p, S ′)| ≤ ` (1 + |x|2) |S − S ′|;

(ii) |F (t, x, r, p, S)− F (t, x, r, p′, S)| ≤ `(1 + |x|)|p− p′|;

(iii) |F (t, x, r, p, S)− F (t, y, r, p, S)| ≤ `(1 + |x|+ |y|)|x− y|‖(p, S)‖;

(iv) (Monotonicity) (F (t, x, r, p, S)− F (t, x, r′, p, S))(r − r′) ≤ µ|r − r′|2;

(v) the continuity of the function r 7→ F (t, x, r, p, S) is independent from
the fourth variable.

Notice that, given a compact set K ⊂ RN ×R×SN , item (v) and the Heine–
Cantor theorem yield the existence of a modulus of continuity ωK such that,
if (x, r, S), (x, r′, S) ∈ K,

|F (t, x, r, p, S)− F (t, x, r′, p, S)| ≤ ωK(|r − r′|) (2.3)
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for any t ∈ [0, T ] and p ∈ RN .

In the next sections we will study some parabolic problems of this type,
therefore we give here a comparison result, which is an adaptation of [31,
Theorem C.2.3] for problem (2.2). To prove it we will need the following
theorem, adaptation of [31, Theorem C.2.2] which can be proved similarly.
Notice that condition (G) in [31] is replaced by (2.4).

Theorem 2.0.4. Let {Fi}ki=1 be a collection of continuous functions from
[0, T ]×RN×R×RN×SN to RN and assume that, if (x, r, S), (y, r, S) belong
to a compact set K ⊂ RN×R×SN , there exist a constant CK and a modulus
of continuity ωK such that, for any i ∈ {1, · · · , k},

|Fi(t, x, r, p, S)− Fi(t, y, r, p, S)| ≤ CK(1 + |p|)|x− y|+ ωK(|x− y|). (2.4)

Furthermore assume the following domination condition: there exists a col-
lection of positive constants {βi}ki=1 satisfying

k∑
i=1

βiFi(t, x, ri, pi, Si) ≤ 0

for each (t, x) ∈ [0, T ]×RN and (ri, pi, Si) such that
k∑
i=1

βiri ≥ 0,
k∑
i=1

βipi = 0

and
k∑
i=1

βiXi ≤ 0.

For any i ∈ {1, · · · , k}, let ui be a viscosity subsolution of

∂tu(t, x) + Fi
(
t, x, u,∇u,D2u

)
= 0, t ∈ (0, T ), x ∈ RN ,

and assume that
k∑
i=1

βiui(T, ·) ≤ 0 and
(

k∑
i=1

βiui(·, x)

)+

→ 0 uniformly as

|x| → ∞. Then
k∑
i=1

βiui(t, ·) ≤ 0 for any t ∈ (0, T ).

Theorem 2.0.5. Let u and v be, respectively, a viscosity subsolution and a
viscosity supersolution to (2.2) satisfying polynomial growth condition. Then,
if u|t=T ≤ v|t=T , u ≤ v on (0, T ]×RN .
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Proof. We set φ(x) := (1 + |x|2)
c
2 ,

γ > µ+ ` sup
x∈RN

(
(1 + |x|) |∇φ(x)|

φ(x)
+
(
1 + |x|2

) |D2φ(x)|
φ(x)

)
,

u1(t, x) :=
e−γtu(t, x)

φ(x)
and u2(t, x) := −e

−γtv(t, x)

φ(x)
, where c is such that both

|u1| and |u2| converge uniformly to 0 as |x| → ∞. Notice that

∇φ(x) = c
φ(x)x†

1 + |x|2
and D2φ(x) = φ(x)

(
c

1 + |x|2
I +

c(c− 2)

(1 + |x|2)2
x⊗ x

)
,

therefore γ is well defined. We also set the operators F1(t, x, r, p, S), given
by

e−γt

φ(x)
F
(
t, x, eγtrφ, eγt

(
r∇φ+ φp†

)
, eγt

(
rD2φ+∇φ⊗ p+ p⊗∇φ+ φS

))
,

and F2(t, x, r, p, S), given by

− e
−γt

φ(x)
F
(
t, x,−eγtrφ,−eγt

(
r∇φ+φp†

)
,−eγt

(
rD2φ+∇φ⊗p+ p⊗∇φ+φS

))
.

It is easy to check that, for i ∈ {1, 2}, Fi is still continuous, elliptic, Lipschitz
continuous in p and S, that its monotonicity constant is

µ+ ` sup
x∈RN

(
(1 + |x|) |∇φ(x)|

φ(x)
+
(
1 + |x|2

) |D2φ(x)|
φ(x)

)
,

i.e. is lower than γ, and ui is a viscosity subsolution to

∂tu(t, x)− γu(t, x) + Fi
(
t, x, u,∇u,D2u

)
= 0, t ∈ (0, T ), x ∈ RN .

It can also be checked that, if (x, r, S), (y, r, S) belong to a compact set
K ⊂ RN × R × SN , there exist a constant CK and a modulus of continuity
ω̃K bigger than ωK in (2.3) such that

|Fi(t, x, r, p, S)− Fi(t, y, r, p, S)| ≤ CK(1 + |p|)|x− y|+ ω̃K(|x− y|)

for any i ∈ 1, 2, t ∈ [0, T ] and p ∈ RN .
Furthermore (u1 +u2)|t=T ≤ 0 and F1(t, x, r, p, S) +F2(t, x,−r,−p,−S) = 0.
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From these properties we have, for any ri ∈ R, pi ∈ RN and Si ∈ SN such
that r = r1 + r2 ≥ 0, p1 = −p2 and S = S1 + S2 ≤ 0,

− γr + F1(t, x, r1, p1, S1) + F2(t, x, r2, p2, S2)

=− γr + F1(t, x, r1, p1, S1) + F2(t, x,−r1,−p1,−S1)

+ (F2(t, x, r2, p2, S2)− F2(t, x, r2 − r, p2, S2 − S))
r

r

≤− γr + (F2(t, x, r2, p2, S2)− F2(t, x, r2 − r, p2, S2))
r

r

≤− γr + γr = 0.

As a consequence we have that all the conditions of theorem 2.0.4 are satis-
fied, thus u1 + u2 ≤ 0, or equivalently, u ≤ v in (0, T ]×RN .

2.1 The Cauchy Problem

In order to illustrate our methodology, we preliminarily study a problem
which can be attacked only using the results previously given and some basic
knowledge of the stochastic differential equation, see appendix A and the
Feynman–Kac formula.

Problem 2.1.1. Let T be a terminal time F an elliptic operator as in as-
sumptions 1.2.1 and

g : RN → R

a continuous functions for which there exists a constant ` ≥ 0 such that, for
any x, x′ ∈ RN ,

|g(x)− g(x′)| ≤ `|x− x′| and |g(x)| ≤ `(1 + |x|).

Find the solution u to the parabolic PDE∂tu(t, x) + F (t, x,∇xu,D
2
xu) = 0 t ∈ (0, T ), x ∈ RN ,

u(T, x) = g(x) x ∈ RN .
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Remark 2.1.2. To ease notation we can assume without loss of generality
that the ` in problem 2.1.1 is the same of assumptions 1.2.1. Since F is
continuous, we can also assume that |b(t, 0)| ≤ ` and |σ(t, 0)| ≤ ` for any
t ∈ [0, T ].

Notice that theorem 2.0.5 yields a comparison result.

Theorem 2.1.3. Let u and v be respectively a subsolution and a super-
solution to problem 2.1.1 satisfying polynomial growth condition. Then, if
u|t=T ≤ v|t=T , u ≤ v on (0, T ]×RN .

For any (b, σ) ∈ KF define the linear operator L(b,σ) such that, for any
(t, x, p, S) ∈ [0, T ]×RN ×RN × SN ,

L(b,σ)(t, x, p, S) :=
1

2
〈σ(t, x)σ(t, x), S〉+ p†b(t, x)

and the SDE X(b,σ) such that, for any t ∈ [0, T ] and ζ ∈ L2(Ω,Ft;RN),

X t,ζ
(b,σ)(s) = ζ +

∫ s

t

σ
(
r,X t,ζ

(b,σ)(r)
)
dWr +

∫ s

t

b
(
r,X t,ζ

(b,σ)(r)
)
dr, s ∈ [t, T ].

We refer to appendix A for more details on SDEs. It is well known from the
Feynman–Kac formula that the viscosity solution to the problem∂tv(t, x) + L(b,σ) (t, x,∇xv,D

2
xv) = 0, t ∈ (0, T ), x ∈ RN

v(T, x) = g(x), x ∈ RN .

is v(t, x) := E
(
g
(
X t,x

(b,σ)(T )
))

. Moreover, since F = max
(b,σ)∈KF

L(b,σ), theo-

rem 2.0.3 yields that

u(t, x) := sup
(b,σ)∈KF

E
(
g
(
X t,x

(b,σ)(T )
))

is a subsolution to problem 2.1.1. Thus the idea is that u could also be
the viscosity solution to problem 2.1.1, but in reality we do not expect this
supremum over KF to produce a viscosity solution. In more detail: generally,
we could have that, for some x ∈ RN , t ∈ [0, T ], δ > 0 and for any h ∈ (0, δ),
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u(t, x)+εh = sup
(b,σ)∈KF

E
(
g
(
X t,x

(b,σ)(T )
))

+ εh

< sup
(b,σ)∈KF

E

(
ess sup

(b′,σ′)∈KF
E
(
g
(
X t+h,y

(b′,σ′)(T )
)∣∣∣y = X t,x

(b,σ)(t+ h)
))

≤ sup
(b,σ)∈KF

E
(
u
(
t+ h,X t,x

(b,σ)(t+ h)
))

.

(2.5)

Moreover we have that, under some additional assumptions (see [31, Section
C.4], for example), problem 2.1.1 admits a C1+α

2
,2+α([0, T−k]×RN) solution,

where α ∈ (0, 1) and k ∈ (0, T ). Thus, if we assume that u is this solution
and h is small enough, from Itô’s formula we get

E
(
u
(
s,X t,x

(b,σ)(t+ h)
))

=u(t, x) + E

(∫ t+h

t

L(b,σ)

(
s,X t,x

(b,σ)(s),∇u,D
2
xu
)
ds

)
+ E

(∫ t+h

t

∂tu
(
s,X t,x

(b,σ)(s)
)
ds

)
and by our assumptions, Jensen’s inequality and corollary A.1.5 there exist
three constants c1, c2 and c3, independent from the choice of (b, σ) ∈ KF ,
such that

E
(∫ t+h

t

(
L(b,σ)

(
s,X t,x

(b,σ)(s),∇u,D2
xu
)
− L(b,σ) (s, x,∇u,D2

xu)
)
ds
)

h

+
E
(∫ t+h

t

(
∂tu
(
s,X t,x

(b,σ)(s)
)
− ∂tu(s, x)

)
ds
)

h

≤
c1E

(∫ t+h
t

(∣∣∣X t,x
(b,σ)(s)− x

∣∣∣+ |x| ∨ 1
)(∣∣∣X t,x

(b,σ)(s)− x
∣∣∣+
∣∣∣X t,x

(b,σ)(s)− x
∣∣∣α)ds)

h

≤c2

(
E

(
sup

s∈[t,t+h]

∣∣∣X t,x
(b,σ)(s)− x

∣∣∣2)) 1
2

+ c2

(
E

(
sup

s∈[t,t+h]

∣∣∣X t,x
(b,σ)(s)− x

∣∣∣2))α
2

+ c1E

(
sup

s∈[t,t+h]

∣∣∣X t,x
(b,σ)(s)− x

∣∣∣2)+ c1

(
E

(
sup

s∈[t,t+h]

∣∣∣X t,x
(b,σ)(s)− x

∣∣∣2))α+1
2

≤c3

(∫ t+h

t

eγ(t+h−s)ds

)
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which together with (2.5) imply that

0< lim
h↓0

sup
(b,σ)∈KF

E
(
u
(
t+ h,X t,x

(b,σ)(t+ h)
))
− u(t, x)

h

= lim
h↓0

sup
(b,σ)∈KF

E
(∫ t+h

t

(
L(b,σ)

(
s,X t,x

(b,σ)(s),∇xu,D
2
xu
)

+∂tu
(
s,X t,x

(b,σ)(s)
))
ds
)

h

=∂tu(t, x) + sup
(b,σ)∈KF

L(b,σ)

(
t, x,∇xu,D

2
xu
)

= ∂tu(t, x) + F
(
t, x,∇xu,D

2
xu
)
.

Therefore u is not a supersolution, in contradiction with our assumption that
u is a solution.

In [12, Section 3.1] Denis, Hu and Peng find a representation formula for
the viscosity solution to a version of problem 2.1.1, with a sublinear operator
that depends only on the second order term, using a dynamic programming
principle which assure that, thanks to an ad hoc construction, (2.5) never
happens. Inspired by this paper, our method to obtain representation for-
mulas relies on a dynamic programming principle, which is a generalization
of the one presented in [12] and is based on a construction on a broader set
than KF . This set, which we call AF , is made up of the progressive processes,
sometimes referred as controls,

(b, σ) : [0,∞)× Ω×RN → RN × SN+

which are cadlag, i.e. right continuous and left bounded, on [0,∞) and such
that, for any (t, x, p, S) ∈ [0,∞)×RN ×RN × SN and ω ∈ Ω,

1

2
〈σ(t, ω, x)σ(t, ω, x), S〉+ p†b(t, ω, x) ≤ F (t, x, p, S),

Lip(b(t, ω)) ≤ 2`, Lip(σ(t, ω)) ≤
√

2`√
λ
, the eigenvalues of (σσ)(t, ω, x) belong

to [2λ,∞)N and (b(x), σ(x)) ∈ L2
N × L2

N×N . AF is obviously non empty,
since it contains KF . Notice that on AF it is possible to define a topology
induced by the convergence on compact sets, since, for any k ∈ [0,∞) and
(b, σ) ∈ AF , E

(∫ k
0

∫
Bk(0)

‖(b, σ)‖2
)
<∞, and that, by proposition A.1.6, the
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solution to the SDE is continuous in AF endowed with this topology.
For any t ∈ [0,∞), an useful subset of AF , which we will use later, is AtF ,
which consists of the (b, σ) belonging to AF such that {(b, σ)(t+ s, x)}s∈[0,∞)

is progressive with respect to the filtration {F ts}s∈[0,∞). We point out that
trivially A0

F = AF and KF ⊂ AtF . Moreover, as a consequence of the defini-
tion, we have

F (t+ s, x, p, S) = max
(b,σ)∈AτF

1

2
〈σ(t+ s, x)σ(t+ s, x), S〉+ p†b(t+ s, x),

since this is true for each ω ∈ Ω, thanks to (1.3).
In what follows will be useful the next density result.

Lemma 2.1.4. The set

J :=


(b, σ) ∈ AF : (b, σ)|[t,∞) =

n∑
i=0

χAi(bi, σi)|[t,∞),

where {(bi, σi)}ni=0 ⊂ AtF and {Ai}ni=0 is a Ft–partition of Ω


is dense in AF for any t ∈ [0, T ].

Proof. To prove this we will show that, fixed a k ∈ N, we can approximate,
in L2([0, k]× Ω×Bk(0)), any element of AF with an element of J .
Preliminarily notice that by our assumption each element of AF can be ap-
proximated in L2([0, k]× Ω× Bk(0)) by a sequence of simple functions. We
will denote with B([0, k]×Bk(0)) the Borel σ–algebra of [0, k]×Bk(0).
Furthermore, since the collection I of the rectangles A × B where A ∈ F∞
and B ∈ B([0, k]×Bk(0)) is a π–system which contains the complementary of
its sets and generate σ(F∞×B([0, k]×Bk(0))), by [40, Dynkin’s lemma A1.3]
each set in σ(F∞ × B([0, k] × Bk(0))), which is the smallest d–system con-
taining I, can be approximate by a finite union of sets in I. Similarly, each
set in F∞ can be approximated by finite intersection and union of sets in Ft
and F t∞, since by lemma 1.1.1 F∞ = σ(Ft,F t∞).
Therefore, fixed (b, σ) ∈ AF , for any ε > 0 there exists a simple function sε
such that sε(t, ω, x) =

n∑
i=1

m∑
j=1

sji (t, x)χAi(ω)χA′j(ω) where {Ai}ni=1 and {A′j}mj=1
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are respectively a Ft–partition and a F t∞–partition of Ω and

E

(∫ k

0

∫
Bk(0)

|(b, σ)(t, x)− sε(t, x)|2dxdt
)
< ε. (2.6)

Then, for each Ai and A′j with P(Ai ∩ A′j) > 0, there exists a ωji ∈ Ai ∩ A′j
such that ∫ k

0

∫
Bk(0)

∣∣(b, σ)
(
t, ωji , x

)
− sji (t, x)

∣∣2 dxdt < ε

P(Ai ∩ A′j)
,

otherwise we would have that

E

(∫ k

0

∫
Bk(0)

|(b, σ)(t, x)− sε(t, x)|2dxdt
)

=E

(
n∑
i=1

m∑
j=1

∫ k

0

∫
Bk(0)

∣∣(b, σ)(t, x)− sji (t, x)
∣∣2 χAiχA′jdtdx

)

≥E
(∫ k

0

∫
Bk(0)

∣∣(b, σ)(t, x)− sji (t, x)
∣∣2 χAiχA′jdtdx)

≥ε,

in contradiction with (2.6). Finally, let ωji be any elements of Ai ∩ A′j if

P(Ai ∩ A′j) = 0 and
(
bki , σ

k
i

)
:=

m∑
j=1

(b, σ)
(
ωji
)
χA′j . Then

(
bki , σ

k
i

)
∈ AtF and(

bkε , σ
k
ε

)
:=

n∑
i=1

(
bki , σ

k
i

)
χAi is an element of J satisfying

E

(∫ k

0

∫
Bk(0)

∣∣(b, σ)(t, x)−
(
bkε , σ

k
ε

)
(t, x)

∣∣2 dxdt) < 4ε.

This proves that J is dense in AF .

The dynamic programming principle is, in our case as in [12], an instru-
ment that allows us to break a stochastic trajectory in two or more parts
(this intuitively explain why we ask (b, σ) to be cadlag in time) avoiding
(2.5), i.e., for any s and t such that 0 ≤ s ≤ t ≤ T and x ∈ RN ,

sup
(b,σ)∈AF

E
(
g
(
Xs,x

(b,σ)(T )
))
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= sup
(b,σ)∈AF

sup
(b′,σ′)∈AF

E

(
g

(
X
t,Xs,x

(b,σ)
(t)

(b′,σ′) (T )

))
= sup

(b,σ)∈AF
E

(
ess sup

(b′,σ′)∈AF
E
(
g
(
X t,y

(b′,σ′)(T )
)∣∣∣y = Xs,x

(b,σ)(t)
))

,

(2.7)

therefore we proceed by steps analyzing, for any ζ ∈ L2
(
Ω,Ft;RN

)
, the

function
Φt(ζ) := ess sup

(b,σ)∈AF
E
(
g
(
X t,ζ

(b,σ)(T )
)∣∣∣Ft) .

We point out that the initial datum ζ here represent the first part of the
trajectory defined by X(b,σ) broken off at t, i.e. is a generalization of the
term Xs,x

(b,σ)(t) in (2.7).

Remark 2.1.5. The reasons why we ask the elements of AF to be cadlag in
time can be seen in the first identity of (2.7):

sup
(b,σ)∈AF

E
(
g
(
Xs,x

(b,σ)(T )
))

= sup
(b,σ)∈AF

sup
(b′,σ′)∈AF

E

(
g

(
X
t,Xs,x

(b,σ)
(t)

(b′,σ′) (T )

))
.

While this is true in AF , since given two elements (b1, σ1), (b2, σ2) in AF

(b3(s), σ3(s)) :=

(b1(s), σ1(s)) if s ∈ [0, t],

(b2(s), σ2(s)) if s ∈ [t, T ]

belongs to AF , this could not be true in general for a space with time con-
tinuous elements.

Preliminarily we need the following lemma:

Lemma 2.1.6. Under the assumptions of problem 2.1.1 we have that

u(t, x) := sup
(b,σ)∈AF

E
(
g
(
X t,x

(b,σ)(T )
))

is 1
2
–Hölder continuous with respect to the first variable and Lipschitz con-

tinuous with respect to the second one. Furthermore there exists a constant
c, which depends only on ` and T , such that

sup
(b,σ)∈AF

E
(∣∣∣g (X t,ζ

(b,σ)(T )
)∣∣∣) ≤ c

(
1 +

(
E
(
|ζ|2
)) 1

2

)
for any t ∈ [0, T ] and ζ ∈ L2

(
Ω,Ft;RN

)
.
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Proof. Our assumption, Jensen’s inequality and corollary A.1.5 yield, for any
t ∈ [0, T ] and ζ ∈ L2,

E
(∣∣∣g (X t,ζ

(b,σ)(T )
)∣∣∣) ≤`(1 + E

(∣∣∣X t,ζ
(b,σ)(T )

∣∣∣))
≤`

(
1 +

(
E

(∣∣∣X t,ζ
(b,σ)(T )

∣∣∣2)) 1
2

)
≤c1

(
1 +

(
E
(
|ζ|2
)) 1

2

)
,

where c1 is a constant which depends only on ` and T , and this prove the
boundedness property. The continuity property can be proved in the same
way, in fact, for any t, s ∈ [0, T ] and x, y ∈ RN , we obtain that there exists
a constant c2 which depends only on ` and T such that

|u(t, x)− u(t, y)| ≤ sup
(b,σ)∈AF

E
(∣∣∣g (X t,x

(b,σ)(T )
)
− g

(
X t,y

(b,σ)(T )
)∣∣∣)

≤ sup
(b,σ)∈AF

`E
(∣∣∣X t,x

(b,σ)(T )−X t,y
(b,σ)(T )

∣∣∣)
≤ sup

(b,σ)∈AF
`

(
E

(∣∣∣X t,x
(b,σ)(T )−X t,y

(b,σ)(T )
∣∣∣2)) 1

2

≤c2

(
|x− y|2

) 1
2 = c2|x− y|,

and, assuming s ≤ t,

|u(t, x)− u(s, x)| ≤ sup
(b,σ)∈AF

E
(∣∣∣g (X t,x

(b,σ)(T )
)
− g

(
Xs,x

(b,σ)(T )
)∣∣∣)

≤ sup
(b,σ)∈AF

`E

(∣∣∣∣X t,x
(b,σ)(T )−X

t,Xs,x
(b,σ)

(t)

(b,σ) (T )

∣∣∣∣)

≤ sup
(b,σ)∈AF

`

(
E

(∣∣∣∣X t,x
(b,σ)(T )−X

t,Xs,x
(b,σ)

(t)

(b,σ) (T )

∣∣∣∣2
)) 1

2

≤c3

(
E

(∣∣∣x−Xs,x
(b,σ)(t)

∣∣∣2)) 1
2

≤c4(t− s)
1
2 ,

where c3 and c4 constants which depends only on ` and T .
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We can now start to focus on the dynamic programming principle and
our first step to prove it is a lattice property, which heavily relies on the
randomness of the set AF . We point out that this method is a generalization
of the one presented by Denis, Hu and Peng in [12, Section 3.1], and will
be proved along the same lines. However in [12] the dynamic programming
principle is applied to equation with sublinear operators only depending on
the second order terms, consequently the controls take matrices as values, and
not functions as in our case. Another difference is that we require controls to
be cadlag because they are more suitable to our needs, as will appear clear
in the next sections. While here we try to be as simple as possible, in the
next section we will obtain a more general result.

Lemma 2.1.7. For each (b1, σ1) and (b2, σ2) in AF there exists a (b, σ) ∈ AF
such that

E
(
g
(
X t,ζ

(b,σ)(T )
)∣∣∣Ft)=E

(
g
(
X t,ζ

(b1,σ1)(T )
)∣∣∣Ft)∨E(g(X t,ζ

(b2,σ2)(T )
)∣∣∣Ft). (2.8)

Therefore exists a sequence {(bi, σi)}i∈N in AF such that a.e.

E
(
g
(
X t,ζ

(bi,σi)
(T )
)∣∣∣Ft) ↑ Φt(ζ). (2.9)

We also have

E(|Φt(ζ)|) ≤ sup
(b,σ)∈AF

E
(∣∣∣g (X t,ζ

(b,σ)(T )
)∣∣∣) <∞, (2.10)

and, for any s ∈ [0, t],

E

(
ess sup
(b,σ)∈AF

E
(
g
(
X t,ζ

(b,σ)(T )
)∣∣∣Ft)

∣∣∣∣∣Fs
)

= ess sup
(b,σ)∈AF

E
(
g
(
X t,ζ

(b,σ)(T )
)∣∣∣Fs) .

(2.11)

Proof. Given (b1, σ1), (b2, σ2) ∈ AF , we define

A :=
{
ω ∈ Ω : E

(
g
(
X t,ζ

(b1,σ1)(T )
)∣∣∣Ft) (ω) ≥ E

(
g
(
X t,ζ

(b2,σ2)(T )
)∣∣∣Ft) (ω)

}
,

which belong to Ft, and (b, σ) := χA(b1, σ1) + χAc(b2, σ2). We thus have
(b, σ) ∈ AF and (2.8). From this, by the properties of the essential supremum,
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we obtain the existence of a sequence {(bi, σi)}i∈N in AF such that (2.9) is
true. Furthermore, from lemma 2.1.6, (2.8) and [41, Theorem 1], (2.10) and
(2.11) follow.

Lemma 2.1.8. For each x ∈ RN , Φt(x) is deterministic. Furthermore
Φt(x) = u(t, x).

At first sight stating that Φt(x) is deterministic may seem trivial, but we
remember to the reader that in general the conditional expectation, hence
E
(
g
(
X t,x

(b,σ)(T )
)∣∣∣Ft), is not deterministic.

Proof. By lemma 2.1.4 J is dense in AF , hence, by lemma 2.1.7 and propo-
sition A.1.6, there exists a sequence

{(bi, σi)}i∈N =

{
ni∑
j=0

χAj(bi,j, σi,j)

}
i∈N

which belong to J such that E
(
g
(
X t,x

(bi,σi)
(T )
)∣∣∣Ft) ↑ Φt(x) a.e.. But

E
(
g
(
X t,x

(bi,σi)
(T )
)∣∣∣Ft) =

ni∑
j=0

χAjE
(
g
(
X t,x

(bi,j ,σi,j)
(T )
)∣∣∣Ft)

=

ni∑
j=0

χAjE
(
g
(
X t,x

(bi,j ,σi,j)
(T )
))

≤ ni
max
j=0

E
(
g
(
X t,x

(bi,j ,σi,j)
(T )
))

=E
(
g
(
X t,x

(bi,ji ,σi,ji )
(T )
))

,

where ji is the index that realizes the maximum in the previous formula. This
imply lim

i→∞
E
(
g
(
X t,x

(bi,ji ,σi,ji )
(T )
))

= Φt(x), therefore Φt(x) is deterministic
and this concludes the proof.

Notice that, contrary to the appearances the equality u(t, ζ) = Φt(ζ),
could in general be false, however it is true in our setting, as made clear by
the next lemma.

Lemma 2.1.9. For each ζ ∈ L2
(
Ω,Ft;RN

)
, we have that u(t, ζ) = Φt(ζ)

a.e..
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Proof. Thanks to the continuity of u proved in lemma 2.1.6 and conse-
quently, by lemma 2.1.8, of Φ, we only need to prove the statement when
ζ =

n∑
j=0

χAjxj, where xj ∈ RN and {Aj}nj=0 is a Ft–partition of Ω. As seen

in the proof of the previous lemma, for each xj, there exists a sequence
{(bi,j, σi,j)} in AtF such that

lim
i→∞

E
(
g
(
X
t,xj
(bi,j ,σi,j)

(T )
))

= Φt(xj) = u(t, xj).

Setting (bi, σi) :=
n∑
j=0

χAj(bi,j, σi,j), we have

Φt(ζ) ≥E
(
g
(
X t,ζ

(bi,σi)
(T )
)∣∣∣Ft)

=
n∑
j=0

χAjE
(
g
(
X
t,xj
(bi,j ,σi,j)

(T )
)∣∣∣Ft) −−−→

i→∞

n∑
j=0

χAju(t, xj)

=u(t, ζ).

On the other hand, for any (b, σ) ∈ AF ,

E
(
g
(
X t,ζ

(b,σ)(T )
)∣∣∣Ft) =

n∑
j=0

χAjE
(
g
(
X
t,xj
(b,σ)(T )

)∣∣∣Ft) ≤ n∑
j=0

χAju(t, xj)

=u(t, ζ).

Thus ess sup
(b,σ)∈AF

E
(
g
(
X t,ζ

(b,σ)(T )
)∣∣∣Ft) ≤ u(t, ζ). This completes the proof.

Now we have all that we need to prove the dynamic programming prin-
ciple:

Theorem 2.1.10 (Dynamic Programming Principle). Let t and s such that
0 ≤ t ≤ s ≤ T , then under our assumptions, for any x ∈ RN ,

sup
(b,σ)∈AF

E
(
g
(
X t,x

(b,σ)(T )
))

= sup
(b,σ)∈AF

E

(
ess sup

(b′,σ′)∈AF
E

(
g

(
X
s,Xt,x

(b,σ)
(s)

(b′,σ′) (T )

)∣∣∣∣Fs)
)
. (2.12)
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Proof. By the uniqueness property of the SDEs and since the (b, σ) in AF
are cadlag, we have

sup
(b,σ)∈AF

E
(
g
(
X t,x

(b,σ)(T )
))

= sup
(b,σ)∈AF

sup
(b′,σ′)∈AF

E

(
g

(
X
s,Xt,x

(b,σ)
(s)

(b′,σ′) (T )

))
.

Furthermore follows from (2.11) and lemma 2.1.9 that

sup
(b′,σ′)∈AF

E

(
g

(
X
s,Xt,x

(b,σ)
(s)

(b′,σ′) (T )

))
= E

(
ess sup

(b′,σ′)∈AF
E

(
g

(
X
s,Xt,x

(b,σ)
(s)

(b′,σ′) (T )

)∣∣∣∣Fs)
)
,

hence (2.12) is true.

We finish this section solving the problem 2.3.1 using the dynamic pro-
gramming principle just proved.

Theorem 2.1.11. The function u(t, x) := sup
(b,σ)∈AF

E
(
g
(
X t,x

(b,σ)(T )
))

is the

unique viscosity solution to the problem 2.1.1 such that u(T, x) = g(x) for
any x in RN .

Proof. Uniqueness follows from theorem 2.1.3 and we already proved in
lemma 2.1.6 that u is well defined and continuous. Is also trivial that
u(T, x) = g(x) for any x ∈ RN , so we only need to prove that u is a vis-
cosity solution. We start proving the subsolution property. Fixed (t, x) in
(0, T ) × RN and (b, σ) ∈ AF , we let v(t, x) := E

(
g
(
X t,x

(b,σ)(T )
))

, ϕ be a
supertangent to v in (t, x) and δ a positive constant such that

ϕ(s, y)− ϕ(t, x) ≥ v(s, y)− v(t, x) for any (s, y) ∈ [t, t+ δ)×Bδ(x).

By definition we know that

∂tϕ(t, x) + F
(
t, x,∇xϕ,D

2
xϕ
)
≥ ∂tϕ(t, x) + E

(
L(b,σ)

(
t, x,∇xϕ,D

2
xϕ
))

and if we define

τh := inf
{
s ∈ [t, T ] :

∣∣∣X t,x
(b,σ)(s)− x

∣∣∣ ≥ δ
}
∧ (t+ h),

Lebesgue’s differentiation theorem and Itô’s formula yield
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∂tϕ(t, x) + E
(
L(b,σ)

(
t, x,∇xϕ,D

2
xϕ
))

= lim
h↓0
E

∫ h

t

∂tϕ
(
s,X t,x

(b,σ)(s)
)

+L(b,σ)

(
s,X t,x

(b,σ)(s),∇xϕ,D
2
xϕ
)

h
χ{τh≥s}

ds


= lim
h↓0

E
(
ϕ
(
τh, X

t,x
(b,σ)(τh)

))
− ϕ(t, x)

h
.

By the uniqueness property of SDEs we have that

E

(
g

(
X
τh,X

t,x
(b,σ)

(τh)

(b,σ) (T )

))
:= E

(
g
(
X t,x

(b,σ)(T )
))

,

therefore, thanks to the definition of v

∂tϕ(t, x) + F
(
t, x,∇xϕ,D

2
xϕ
)
≥ lim

h↓0

E
(
ϕ
(
τh, X

t,x
(b,σ)(τh)

))
− ϕ(t, x)

h

≥ lim
h↓0

E
(
v
(
τh, X

t,x
(b,σ)(τh)

))
− v(t, x)

h

=0.

This show that v is a viscosity subsolution to problem 2.1.1, thus theo-
rem 2.0.3 yields that u is a viscosity subsolution to problem 2.1.1.
In a similar way we now show that u is a viscosity supersolution. Fixed (t, x)

in (0, T )×RN , let ψ be a subtangent to u in (t, x) and δ a positive constant
such that

ψ(s, y)− ψ(t, x) ≤ u(s, y)− u(t, x) for any (s, y) ∈ [t, t+ δ)×Bδ(x).

By definition we know that

∂tψ(t, x) + F
(
t, x,∇xψ,D

2
xψ
)

=∂tψ(t, x)

+ sup
(b,σ)∈AF

E
(
L(b,σ)

(
t, x,∇xψ,D

2
xψ
))

and if we define

τh := inf
{
s ∈ [t, T ] :

∣∣∣X t,x
(b,σ)(s)− x

∣∣∣ ≥ δ
}
∧ (t+ h)
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Lebesgue’s differentiation theorem and Itô’s formula yield

∂tψ(t, x) + E
(
L(b,σ)

(
t, x,∇xψ,D

2
xψ
))

= lim
h↓0
E

∫ h

t

∂tψ
(
s,X t,x

(b,σ)(s)
)

+L(b,σ)

(
s,X t,x

(b,σ)(s),∇xψ,D
2
xψ
)

h
χ{τh≥s}

ds


= lim
h↓0

E
(
ψ
(
τh, X

t,x
(b,σ)(τh)

))
− ψ(t, x)

h
.

Therefore, using the subtangency property of ψ, we have that

∂tψ(t, x) + F
(
t, x,∇xψ,D

2
xψ
)

= sup
(b,σ)∈AF

lim
h↓0

E
(
ψ
(
τh, X

t,x
(b,σ)(τh)

))
− ψ(t, x)

h

≤ sup
(b,σ)∈AF

lim
h↓0

E
(
u
(
τh, X

t,x
(b,σ)(τh)

))
− u(t, x)

h

≤ lim
h↓0

sup
(b,σ)∈AF

E
(
u
(
τh, X

t,x
(b,σ)(τh)

))
− u(t, x)

h
.

Finally, by the dynamic programming principle 2.1.10,

lim
h↓0

sup
(b,σ)∈AF

E
(
u
(
τh, X

t,x
(b,σ)(τh)

))
− u(t, x)

h

= lim
h↓0

sup
(b,σ)∈AF

E

(
g

(
X
τh,X

t,x
(b,σ)

(τh)

(b,σ) (T )

))
− sup

(b,σ)∈AF
E
(
g
(
X t,x

(b,σ)(T )
))

h
= 0

and this concludes the proof.

2.2 Dynamic Programming Principle

The scope of this section is to provide a generalization of the dynamic pro-
gramming principle 2.1.10 used on the Cauchy problem 2.1.1, so that we can
employ it to derive representation formulas for the viscosity solutions to more
general problems. We remember the reader that this dynamic programming
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principle is a generalization of the one presented by Denis, Hu and Peng in
[12, Section 3.1] and will be obtained in a similar way.

Let A be the set made up by the progressive stochastic controls

α : [0,∞)× Ω×RN → RM

such that α(x) ∈ L2 for any x ∈ RN and which are cadlag with respect to
the first variable, uniformly Lipschitz continuous with respect to the third
one with Lipschitz constant equal or lower than a positive constant ` and, for
each (t, x) ∈ [0,∞)×RN , there exists a closed convex set Kx

t such that the
αt(ω, x) belong to Kx

t for any ω ∈ Ω. Notice that under these assumptions
A can be endowed with the topology of the convergence on compact sets as
AF . Then, given an a.e. finite stopping time τ and a continuous application
ϕ from [0,∞)×RN ×A into R such that

ϕτ : RN ×A|[τ,∞) → L1 (Ω,F∞;R) ,

we define the set Aτ , which is made of the controls α belonging to A such
that {ατ+t}t∈[0,∞) is progressive with respect to the filtration {F τt }t∈[0,∞),
and, for any ζ ∈ L2

(
Ω,Fτ ;RN

)
, the function

Φτ (ζ) := ess sup
α∈A

E(ϕτ (ζ, α)|Fτ ).

We assume that ϕt(x, α) is F t∞–measurable for any t ∈ [0,∞), x ∈ RN and
α ∈ At, and, for any a.e. finite stopping time τ and ζ ∈ L2

(
Ω,Fτ ;RN

)
,

sup
α∈A

E(|ϕτ (ζ, α)|) <∞. (2.13)

In this section the function Φ represents, roughly speaking, the viscosity
solution, ζ is the first part of a stochastic trajectory broken off at τ (this is
why we restrict ϕτ on A|[τ,∞)) and ϕ the function which we will use to build
the viscosity solution.

Notice that under our assumptions the set Aτ are non empty when τ is
deterministic, but they could be empty for a generic a.e. finite stopping time.
However it is easy to see that Aτ is non empty for any a.e. finite stopping



2.2 Dynamic Programming Principle 31

time τ if the sets Kx
t do not depend on t, i.e. the following condition holds

true

Kx
t = Kx

s =: Kx for any t, s ∈ [0,∞), (2.14)

since deterministic function with value in Kx belongs to Aτ . In this
case we will also assume that ϕτ (x, α) is F τ∞–measurable for any a.e. finite
stopping time τ , x ∈ RN and α ∈ Aτ .

We proceed by steps, like the previous section, keeping in mind that the
following results are a generalization of [12, Lemmas 41-44 and Theorem 45].

Lemma 2.2.1. For each a.e. finite stopping time τ and α1, α2 in A there
exists an α ∈ A such that

E(ϕτ (ζ, α)|Fτ ) = E(ϕτ (ζ, α1)|Fτ ) ∨ E(ϕτ (ζ, α2)|Fτ ). (2.15)

Therefore there exists a sequence {αi}i∈N in A such that a.e.

E(ϕτ (ζ, αi)|Fτ ) ↑ Φτ (ζ). (2.16)

We also have

E(|Φτ (ζ)|) ≤ sup
α∈A

E(|ϕτ (ζ, α)|) <∞, (2.17)

and, for any stopping time τ ′ ≤ τ ,

E

(
ess sup
α∈A

E(ϕτ (ζ, α)|Fτ )
∣∣∣∣Fτ ′) = ess sup

α∈A
E(ϕτ (ζ, α)|Fτ ′). (2.18)

Proof. Given α1, α2 ∈ A, we define

A := {ω ∈ Ω : E(ϕτ (ζ, α1)|Fτ )(ω) ≥ E(ϕτ (ζ, α2)|Fτ )(ω)},

which belong to Fτ , and α := (χAα1+χAcα2)χ{t≥τ}. We thus have α ∈ A and
(2.15). From this, by the properties of the essential supremum, we obtain the
existence of a sequence {αi}i∈N in A such that (2.16) is true. Furthermore,
from (2.15), (2.13) and [41, Theorem 1], (2.17) and (2.18) follow.

The next is a density result similar to lemma 2.1.4.
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Lemma 2.2.2. The set

J τ :=


α ∈ A : α|[τ,∞) =

n∑
i=0

χAiαi|[τ,∞), where {αi}ni=0 ⊂ Aτ

and {Ai}ni=0 is a Fτ–partition of Ω


is dense in A for any τ ∈ [0,∞). If (2.14) holds, then this is true for any
a.e. finite stopping time τ .

Proof. When τ is deterministic this lemma can be proved in the same way
of lemma 2.1.4, hence we will just prove it when (2.14) holds true and τ is
an a.e. finite stopping time.
Let

τn :=


j

n
, if

j − 1

n
≤ τ <

j

n
, j ∈ {1, · · · , n2},

∞, if τ ≥ n.

Clearly τ is the decreasing limit of {τn} and, fixed an α ∈ A, there exists a
sequence

{
αj,ni
}
i∈N ⊂ J

j
n converging to α for any n ∈ N and j ∈ {1, · · · , n2}.

Now take an α′ ∈ Aτ and define, for any n ∈ N,

αnt := αtχ{t<τ} +

(
n2∑
j=1

αj,nn,τn−τ+tχ{ j−1
n
≤τ< j

n} + α′tχ{n≤τ}

)
χ{t≥τ}.

It is easy to see that αn belongs to J τ for any n ∈ N. Fixed k > 0 we have
that

E

(∫ k

0

∫
Bk(0)

|αt(x)− αnt (x)|2dxdt
)

≤2E

(∫ (k−τ)∨0

0

∫
Bk(0)

|ατ+t(x)− ατn+t(x)|2χ{n>τ}dxdt

)

+ 2
n2∑
j=1

E

(∫ (k−τ)∨0

0

∫
Bk(0)

∣∣αj,nn,τn+t(x)− ατn+t(x)
∣∣2 χ{ j−1

n
≤τ< j

n}dxdt

)

+ 2E

(∫ (k−τ)∨0

0

∫
Bk(0)

(
|ατ+t|2 + |α′τ+t|2

)
χ{n≤τ}dxdt

)
,
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thus, thanks to the right continuity of α and the definition of τ , τn and αj,nn ,
we have that for each positive ε and k there exists a nk,ε such that

E

(∫ k

0

∫
Bk(0)

|αt(x)− αnt (x)|2dxdt
)
< ε

for any n > nk,ε. Consequently J τ is dense in A.

Lemma 2.2.3. For each τ ∈ [0,∞) and x ∈ RN , Φτ (x) is deterministic.
Furthermore

Φτ (x) = ess sup
α∈A

E(ϕτ (x, α)|Fτ ) = ess sup
α∈Aτ

E(ϕτ (x, α)|Fτ ). (2.19)

If (2.14) holds, then this is true for any a.e. finite stopping time τ .

We remember once again to the reader that in general the conditional
expectation, hence E(ϕτ (x, α)|Fτ ), is not deterministic.

Proof. By lemma 2.2.2 J τ is dense in A, hence, by lemma 2.2.1, there exists
a sequence

{αi}i∈N =

{
ni∑
j=0

χAjαi,j

}
i∈N

which belongs to J τ such that E(ϕτ (x, αi)|Fτ ) ↑ Φτ (x) a.e.. But

E(ϕτ (x, αi)|Fτ ) =

ni∑
j=0

χAjE(ϕτ (x, αi,j)|Fτ ) =

ni∑
j=0

χAjE(ϕτ (x, αi,j))

≤ ni
max
j=0

E(ϕτ (x, αi,j)) = E(ϕτ (x, αi,ji)),

where ji is the index that realizes the maximum in the previous formula.
This implies lim

i→∞
E(ϕτ (x, αi,ji)) = Φτ (x), therefore Φτ (x) is deterministic,

and the inequality

lim
i→∞

E(ϕτ (x, αi,ji)) ≤ ess sup
α∈Aτ

E(ϕτ (x, α)|Fτ ) ≤ Φτ (x)

confirms the equation (2.19).
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Remark 2.2.4. Note that by the previous lemma and (2.18) we have that

Φτ (x) =E

(
ess sup
α∈A

E(ϕτ (x, α)|Fτ )
)

= sup
α∈A

E(ϕτ (x, α))

= sup
α∈Aτ

E(ϕτ (x, α))

for any τ ∈ [0,∞), or, if (2.14) holds true, for any a.e. finite stopping time
τ .

Lemma 2.2.5. We define the function

u : [0,∞)×RN −−−→ R

(t, x) 7−−−→ Φt(x)

and assume that it is continuous. Then, for each a.e. finite stopping time τ
and ζ ∈ L2

N

(
Ω,Fτ ;RN

)
, we have that uτ (ζ) = Φτ (ζ) a.e..

Remark 2.2.6. This lemma says, as a consequence of (2.19), that

ess sup
α∈A

E(ϕτ (ζ, α)|Fτ ) = ess sup
α∈Aτ

E(ϕτ (ζ, α)|Fτ )

for any τ ∈ [0,∞), or, if (2.14) holds true, for any a.e. finite stopping time
τ .

Proof. By the continuity of u, and consequently of Φ, we only need to prove
the lemma when τ =

n∑
j=0

χAj tj and ζ =
n∑
j=0

χAjxj, where tj ∈ [0,∞), xj ∈ RN

and {Aj}nj=0 is a Fτ–partition of Ω. As seen in the proof of the previous
lemma, for each (tj, xj), there exists a sequence {αi,j}i∈N in Atj such that

lim
i→∞

E
(
ϕtj(xj, αi,j)

)
= Φtj(xj) = utj(xj).

Setting αi :=
n∑
j=0

χAjαi,j, we have

Φτ (ζ) ≥E(ϕτ (ζ, αi)|Fτ )

=
n∑
j=0

χAjE
(
ϕtj(xj, αi,j)|Ftj

)
−−−→
i→∞

n∑
j=0

χAjutj(xj) = uτ (ζ).
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On the other hand, for any α ∈ A,

E(ϕτ (ζ, α)|Fτ ) =
n∑
j=0

χAjE
(
ϕtj(xj, α)|Ftj

)
≤

n∑
j=0

χAjutj(xj) = uτ (ζ).

Thus ess sup
α∈A

E(ϕτ (ζ, α)|Fτ ) ≤ uτ (ζ). This completes the proof.

Theorem 2.2.7 (Dynamic Programming Principle). Let τ and τ ′ be two
a.e. finite stopping times such that τ ′ ≤ τ , ζ be a function from A|[τ ′,τ) to
L2(Ω,Fτ ;RN) and assume

sup
α∈A

E(ϕτ (ζα, α)|Fτ ′) <∞.

Then we have

ess sup
α∈A

E(ϕτ (ζα, α)|Fτ ′) = ess sup
α∈A

ess sup
β∈A

E(ϕτ (ζα, β)|Fτ ′)

= ess sup
α∈A

E(uτ (ζα)|Fτ ′).
(2.20)

In particular

sup
α∈A

E(uτ (ζα)) = sup
α∈A

E(ϕτ (ζα, α)). (2.21)

Proof. It follows from (2.18) and lemma 2.2.5 that

ess sup
β∈A

E(ϕτ (ζα, β)|Fτ ′) = E

(
ess sup
β∈A

E(ϕτ (ζα, β)|Fτ )
∣∣∣∣Fτ ′) = E(uτ (ζα)|Fτ ′),

therefore (2.20) is true (remember that the elements of A are cadlag, that
is why we can break the essential supremum in two part in (2.20)). Finally
from (2.20) and [41, Theorem 1(ii)] we get (2.21).

Remark 2.2.8. We point out that even if we required the elements of A to be
cadlag, this condition can be weakened. Indeed if the elements of A are just
progressive, each result of this section still holds true with the same proof.
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2.2.1 On the continuity of ϕ

Here we briefly discuss on the continuity assumptions of ϕ.
It is straightforward to see that many results of this section are still true if

ϕ is not assumed to be continuous. The continuity on the first two variables is
actually never used, since we just need and assume the continuity of functions
generated from ϕ by the essential supremum. However the continuity on the
control set is used in the proofs of lemmas 2.2.3 and 2.2.5, which are crucial
for the proof of dynamic programming principle 2.2.7. We point out that the
continuity in probability is enough to prove those results, but we just require
that ϕτ (x, α) is in L1 (Ω,F∞;R) for any (x, α) ∈ RN × A|[τ,∞). Luckily we
have, as a consequence of the density of the simple function in L1 and that,
by lemma 1.1.1, F∞ = σ (Fτ ,F τ∞), that the set

J :=


φ ∈ L1 : φ =

n∑
i=0

χAiφi, where {φi}ni=0 ⊂ L1 is F τ∞–measurable

and {Ai}ni=0 is a Fτ–partition of Ω


is dense in L1, hence, since by (2.17) ϕτ (x, α) is in L1 for any α ∈ A, we have
that there exists a sequence {φi}i∈N ⊂ J such that lim

i→∞
E(φi|Fτ ) = Φτ (x)

a.e.. So, define, for any i ∈ N,

Bi := {ω ∈ Ω : E(φi|Fτ )(ω) > Φτ (x)(ω)}, φ1 := φ1χΩ\B1

and recursively

Ci :=
{
ω ∈ Ω : E(φi|Fτ )(ω) ≥ E

(
φi−1

∣∣Fτ) (ω)
}
,

φi := φiχCi\Bi + φi−1χΩ\Ci .

By our assumptions lim
i→∞

P(Bi) = 0 and the sets Bi, Ci belong to Fτ for

i ∈ N, therefore
{
φi
}
i∈N is a sequence in J such that E

(
φi
∣∣Fτ) ↑ Φτ (x)

a.e.. We can then use this sequence to prove that Φτ (x) is deterministic as
in lemma 2.2.3 and similarly we can prove lemma 2.2.5 for measurable ϕ.
Unfortunately this method can not be used to prove (2.19) and consequently
we can not prove the last equality in remark 2.2.4 and remark 2.2.6, but any
other result of this section still holds true.
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2.3 Parabolic PDEs with Sublinear Operators

We analyze now the following problem:

Problem 2.3.1. Let T be a terminal time, F a uniformly elliptic operator
as seen in assumptions 1.2.1 and

f : [0, T ]×RN ×R×RN → R and g : RN → R

two continuous functions for which there exist two constants µ ∈ R and ` ≥ 0

such that, for any t ∈ [0, T ], x, x′ ∈ RN , y, y′ ∈ R and z, z′ ∈ RN ,

(i) |g(x)− g(x′)| ≤ `|x− x′|;

(ii) |g(x)| ≤ `(1 + |x|);

(iii) |f(t, x, y, z)− f(t, x′, y, z′)| ≤ `(|x− x′|+ |z − z′|);

(iv) |f(t, x, y, z)| ≤ `(1 + |x|+ |y|+ |z|);

(v) (y − y′)(f(t, x, y, z)− f(t, x, y′, z)) ≤ µ|y − y′|2.

To obtain uniqueness of the solution we will also assume that

(vi) the continuity of the function y 7→ f(t, x, y, z) is independent from the
fourth variable.

Find the solution u to the parabolic PDE∂tu(t, x) + F (t, x,∇xu,D
2
xu) + f(t, x, u,∇xu) = 0, t ∈ (0, T ), x ∈ RN ,

u(T, x) = g(x), x ∈ RN .

Remark 2.3.2. To ease notation we can assume without loss of generality that
the ` in problem 2.3.1 is the same of assumptions 1.2.1. Since F is continuous,
we can also assume that, for any (b, σ) ∈ AF , |b(t, 0)| ≤ ` and |σ(t, 0)| ≤ `

for any t ∈ [0, T ]. Furthermore for our analysis the operators L(b,σ) with
(b, σ) ∈ AF will be as important as they were for the Cauchy problem 2.1.1.
Thus, to ease the notations, we define for any a.e. finite stopping time τ the
sets LτF such that its elements are the operators L(b,σ) with (b, σ) in AτF . As
previously done with A we also define the set LF := L0

F .
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As for problem 2.1.1, by theorem 2.0.5 we have the following comparison
result.

Theorem 2.3.3. Let u and v be respectively a subsolution and a super-
solution to problem 2.3.1 satisfying polynomial growth condition. Then, if
u|t=T ≤ v|t=T , u ≤ v on (0, T ]×RN .

When F is a linear operator it is known that the representation formula of
its viscosity solution is build from a FBSDE, which we define below. Hence,
as done for the Cauchy problem 2.1.1, we will use the dynamic programming
principle to generalize this method for our case. We obviously start defining
the FBSDE.

Definition 2.3.4. With the term forward–backward differential equation, or
FBSDE for short, we will refer to a system composed of a SDE and a BSDE:

X t,ζ
s =ζ +

∫ s

t

σ
(
r,X t,ζ

r

)
dWr +

∫ s

t

b
(
r,X t,ζ

r

)
dr,

Y t,ζ
s =g

(
X t,ζ
T

)
+

∫ T

s

fσ
(
r,X t,ζ

r , Y t,ζ
r , Zt,ζ

r

)
dr

−
∫ T

s

Zt,ζ
r dWr,

s ∈ [t, T ], (2.22)

where ζ ∈ L2
(
Ω,Ft;RN

)
, (b, σ) ∈ AF , the function fσ is defined as

fσ(t, x, y, z) := f
(
t, x, y, z(σ(t, x))−1

)
,

for any (t, x, y, z) in [0, T ] × RN × R × RN and the functions f and g are
as in the assumptions of problem 2.3.1. Thanks to the uniformly ellipticity
condition we know that fσ is well defined and that the Lipschitz constant for

the fourth argument of fσ is `
√
N

2λ
, but for simplicity we will just assume it

is ` again, possibly increasing it.
Note that under these conditions the assumptions A.1.1 and B.1.1 hold for the
SDE part and the BSDE part respectively, thus by theorems A.1.3 and B.1.3
there always exists a unique solution to (2.22). Thanks to remark A.1.8
and proposition B.1.9 this is true even if t is an a.e. finite stopping time.
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We will call (X, Y, Z) a solution to the FBSDE if X is a solution to the SDE
part of this system and (Y t,ζ , Zt,ζ) is a solution to the BSDE part for any
(t, ζ) ∈ [0, T ] × L2

(
Ω,Ft;RN

)
. Moreover we will simply write Y to denote

the second term of the triplet (X, Y, Z) solution to the FBSDE (2.22), for
(b, σ) that varies in AF . For notation’s sake we will also omit the dependence
of Y from X and σ or, equivalently, from (b, σ).

Remark 2.3.5. Notice that the uniqueness property of the FBSDE implies
that, for any 0 ≤ t ≤ r ≤ s ≤ T ,(

Xr,Xt,ζ
r

s , Y r,Xt,ζ
r

s , Zr,Xt,ζ
r

s

)
=
(
X t,ζ
s , Y t,ζ

s , Zt,ζ
s

)
.

This holds true even if t, r and s are stopping time.

Remark 2.3.6. We point out that since each element of LτF can be uniquely
determined by an element of AτF , we can associate to each operator L ∈ LτF
an FBSDE (2.22) and this connection is unique up to the initial conditions.

We will prove proceeding by steps that u(t, x) := sup
(b,σ)∈AF

E
(
Y t,x
t

)
is a

viscosity solution to the problem 2.3.1.

Proposition 2.3.7. The function u(t, x) := sup
(b,σ)∈AF

E
(
Y t,x
t

)
is 1

2
–Hölder

continuous in the first variable and Lipschitz continuous in the second one.
Furthermore we have that there exists a constant c, which depends only on `,
µ and T , such that

E
(
|u(τ, ζ)|2

)
≤ sup

(b,σ)∈AF
E
(∣∣Y τ,ζ

τ

∣∣2) ≤ c
(
1 + E

(
|ζ|2
))
, (2.23)

for any stopping time τ bounded by T and ζ ∈ L2
(
Ω,Fτ ;RN

)
.

We point out that this proposition permits us to use the results of sec-
tion 2.2 on u. In particular Y τ

τ , which is F ττ –measurable and therefore a.e.
deterministic, has the same role of ϕ in section 2.2. We already know that
Y τ
τ is continuous, thanks to our assumptions, proposition A.1.6 and theo-

rem B.1.4, furthermore we prove here that it satisfies (2.13) and the conti-
nuity of u, which is needed for lemma 2.2.5.
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Proof. To prove our statement preliminarily note that by the definition and
the Jensen’s inequality

|u(t, x)− u(s, y)| =

∣∣∣∣∣ sup
(b,σ)∈AF

E
(
Y t,x
t

)
− sup

(b,σ)∈AF
E (Y s,y

s )

∣∣∣∣∣
≤ sup

(b,σ)∈AF

(
E
(∣∣Y t,x

t − Y s,y
s

∣∣2)) 1
2

(2.24)

and

E
(
|u(τ, ζ)|2

)
= E

∣∣∣∣∣ess sup
(b,σ)∈AF

E
(
Y τ,ζ
τ

∣∣Fτ)
∣∣∣∣∣
2
 ≤ sup

(b,σ)∈AF
E
(∣∣Y τ,ζ

τ

∣∣2) , (2.25)

for any t, s ∈ [0, T ], x, y ∈ RN and ζ ∈ L2
(
Ω,Ft;RN

)
.

Our assumptions, theorems A.1.4 and B.1.4 yield

E
(∣∣Y t,x

t − Y
t,y
t

∣∣2) ≤c1E

(∣∣g (X t,x
T

)
− g

(
X t,y
T

)∣∣2
+

∫ T

t

∣∣fσ(s,X t,x
s , Y t,x

s , Zt,x
s

)
−fσ

(
s,X t,y

s , Y t,x
s , Zt,x

s

)∣∣2ds)
≤c1`

2E

(∣∣X t,x
T −X

t,y
T

∣∣2 +

∫ T

t

∣∣X t,x
s −X t,y

s

∣∣2 ds)
≤c2

(
|x− y|2 + (T − t)|x− y|2

)
≤ c3|x− y|2,

where c1, c2 and c3 are three constants which depends upon T , ` and µ. This
shows that u is Lipschitz continuous in the second variable thanks to (2.24).
Now, to prove that u is Hölder continuous in the first variable, we assume
that s ≤ t, hence, as previously done, we obtain, for a constant c4 which
depends on `, µ and T ,

E
(∣∣Y t,x

t −Y s,x
s

∣∣2)≤2E
(
|Y s,x
t − Y s,x

s |
2
)

+ 2E
(∣∣Y t,x

t − Y
s,x
t

∣∣2)
=2E

(
|Y s,x
t − Y s,x

s |
2
)

+ 2E

(∣∣∣Y t,x
t − Y

t,Xs,x
t

t

∣∣∣2)
≤c4E

(∫ t

s

|fσ(r,Xs,x
r , Y s,x

r , Zs,x
r )|2dr+

∣∣∣g(X t,x
T

)
−g
(
X
t,Xs,x

t
T

)∣∣∣2
+

∫ T

t

∣∣∣fσ(r,X t,x
r , Y t,x

r , Zt,x
r

)
−fσ

(
r,X t,Xs,x

t
r , Y t,x

r , Zt,x
r

)∣∣∣2dr)
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≤c4`
2E

(∫ t

s

3
(
1 + |Xs,x

r |
2 + |Y s,x

r |
2 + |Zs,x

r |
2) dr

+
∣∣∣X t,x

T −X
t,Xs,x

t
T

∣∣∣2 +

∫ T

t

∣∣∣X t,x
r −X t,Xs,x

t
r

∣∣∣2 dr).
Then, from corollaries A.1.5 and B.1.5, we have that there exist four constants
c5, c6, c7 and c8 depending upon µ, ` and T such that

E

(
sup
r∈[s,T ]

|Y s,x
r |

2

)
≤c5E

(
|g (Xs,x

T )|2 +

∫ T

s

|fσ (r,Xs,x
r , 0, 0)|2 dr

)
≤2c5`

2E

((
1 + |Xs,x

T |
2
)

+

∫ T

s

(
1 + |Xs,x

r |
2) dr)

≤c6

(
1 + |x|2 + T

(
1 + |x|2

))
,

(2.26)

and

E

(
sup
r∈[t,T ]

∣∣∣X t,x
r −X t,Xs,x

t
r

∣∣∣2) ≤ c7E
(
|x−Xs,x

t |
2
)
≤ c8(t− s),

therefore these three inequality together imply that

E
(∣∣Y t,x

t − Y s,x
s

∣∣2) ≤ c9(t− s)
(
1 + |x|2

)
,

where c9 is a constants depending only on µ, ` and T , proving that u is
1
2
–Hölder continuous in the first variable thanks to (2.24).

Finally notice that, using remark A.1.8, as we got (2.26) we have that there
exists a constants c10, which depends only on µ, ` and T , such that

E
(∣∣Y τ,ζ

τ

∣∣2) ≤ c10

(
1 + E

(
|ζ|2
))
.

This, thanks to (2.25), proves (2.23) and concludes the proof.

Now we proceed to show that u is a viscosity subsolution. In order to do
so we need the following two lemmas:

Lemma 2.3.8. Let {Ut}t∈[0,∞) be a cadlag process, then for any ε > 0 there
exists a δ > 0 such that

P({|Ut − Us| < ε, for any s ∈ [t, t+ δ)}) > 0.
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Proof. Our argument is by contradiction. Assume that there exists an ε > 0

such that for any δ > 0

P({|Ut − Us| < ε, for any s ∈ [t, t+ δ)}) = 0,

which is equivalent to

P({|Ut − Us| ≥ ε, for any s ∈ [t, t+ δ)}) = 1.

Let, for any positive integer n,

An :=

{
|Ut − Us| ≥ ε, for any s ∈

[
t, t+

1

n

)}
,

then An ⊆ Ak if k ≤ n and

A :=
∞⋂
n=1

An =

{
lim
s↓t
|Ut − Us| ≥ ε

}
.

Since U is right continuous we know that P(A) = 0 which contradicts our
assumption, since P(A) = lim

n→∞
P(An) = 1.

Lemma 2.3.9. For any t ∈ (0, T ), let L be an element of LtF and (X, Y, Z)

the solution to the FBSDE (2.22) associated to L as in remark 2.3.6. If we
define, for any x ∈ RN and s ∈ [t, T ], uL(s, x) := E (Y s,x

s ) we have that, for
any supertangent ϕ to uL at (t, x),

L
(
t, x,∇xϕ,D

2
xϕ
)
≥ −∂tϕ(t, x)− f (t, x, uL,∇xϕ) .

Proof. Preliminarily we denote (b, σ) as the element of AtF associated to L
and point out that since (b, σ), restricted in [t, T ], is progressive with respect
to the filtration {F ts}s∈[t,T ], so are L, X t and Y t, therefore they are constants
a.e. in t. As a consequence uL(t, x) = Y t,x

t a.e. for any x ∈ RN .
Given x ∈ RN and a supertangent ϕ to uL at (t, x) we can assume without
loss of generality that uL(t, x) = ϕ(t, x), so we suppose that, a.e.,

∂tϕ(t, x) + L
(
t, x,∇xϕ,D

2
xϕ
)

+ fσ(t, x, uL,∇xϕσ) < 0 (2.27)
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and we will find a contradiction. Note that, as a consequence of the Blumen-
thal’s 0–1 law 1.1.2, this is a deterministic inequality a.e.. By the definition
of supertangent, there exists a δ ∈ (0, T − t) such that, for any s ∈ [t, t + δ]

and y ∈ Bδ(x),
uL(s, y) ≤ ϕ(s, y), (2.28)

hence we define the stopping time

τ := (t+ δ) ∧ inf
{
s ∈ [t,∞) :

∣∣X t,x
s − x

∣∣ ≥ δ
}

and assume, possibly taking a smaller τ , that

∂tϕ
(
s ∧ τ,X t,x

s∧τ
)

+ L
(
s ∧ τ,X t,x

s∧τ ,∇xϕ,D
2
xϕ
)

+fσ
(
s ∧ τ,X t,x

s∧τ , ϕ,∇xϕσ
)
< 0.

(2.29)

We point out that, by (2.27) and lemma 2.3.8, the previous inequality holds
true on a set of positive measure for the χ[t,t+δ]dt× dP measure, thus τ > t

on a set of positive measure.
Let

(
Y s, Zs

)
:=
(
Y t,x
s∧τ , Z

t,x
s∧τ
)
, which solve the BSDE

Y s = Y t,x
τ +

∫ τ

s∧τ
fσ
(
r,X t,x

r , Y r, Zr

)
dr −

∫ τ

s∧τ
ZrdWr, s ∈ [t, T ],

and
(
Ŷs, Ẑs

)
:=
(
ϕ
(
s,X t,x

s∧τ
)
, (∇xϕσ)

(
s ∧ τ,X t,x

s∧τ
))

which, by Itô’s formula,
is solution to

Ŷs =ϕ
(
τ,X t,x

τ

)
−
∫ τ

s∧τ
ẐrdWr

−
∫ τ

s∧τ

(
∂tϕ

(
r,X t,x

r

)
+ L

(
r,X t,x

r ,∇xϕ,D
2
xϕ
))
dr,

s ∈ [t, T ].

By (2.28) we have that

uL
(
τ,X t,x

τ

)
− ϕ

(
τ,X t,x

τ

)
= Y τ,Xt,x

τ
τ − ϕ

(
τ,X t,x

τ

)
≤ 0

and (2.29) imply, thanks to corollary B.1.8, that Y t,x
t < ϕ(t, x) a.e., but this

lead to a contradiction since we know that, by our assumptions, ϕ(t, x) = Y t,x
t

a.e.. This concludes the proof.
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Proposition 2.3.10. The function u(t, x) is a continuous viscosity subsolu-
tion to the problem 2.3.1.

Proof. We know from proposition 2.3.7 that u is continuous, thus we just
have to prove the subsolution property to conclude the proof.
Let L be an element of LtF and uL as defined in lemma 2.3.9, then if ϕ is a
supertangent to uL in (t, x) we have that, by the definition of LtF ,

F
(
t, x,∇xϕ,D

2
xϕ
)
≥ L

(
t, x,∇xϕ,D

2
xϕ
)
≥ −∂tϕ(t, x)− f(t, x, uL,∇xϕ),

therefore uL is a viscosity subsolution to the problem 2.3.1 at (t, x). Thanks
to the arbitrariness of t, L and x we then have that uL is a viscosity subso-
lution in (t, x) for any L ∈ LtF , x ∈ RN and t ∈ (0, T ). From remark 2.2.6
we have that

sup
L∈LtF

uL(t, x) = sup
(b,σ)∈AtF

E
(
Y t,x
t

)
= sup

(b,σ)∈AF
E
(
Y t,x
t

)
= u(t, x),

therefore the family of functions {uL} is locally equibounded, thanks to
proposition 2.3.7. Theorem 2.0.3 hence yields that

sup
L∈LtF

uL(t, x) = u(t, x)

is a viscosity subsolution for any (t, x) ∈ (0, T )×RN .

Before concluding this section proving that u is also a viscosity super-
solution, we need this preliminary lemma which expresses the dynamic pro-
gramming principle for this problem.

Lemma 2.3.11. For any (b, σ) ∈ AF we let
(
Y , Z

)
be the solution of the

BSDE

Y s = u
(
τ,X t,x

τ

)
+

∫ τ

s∧τ
fσ
(
r,X t,x

r , Y r, Zr

)
dr −

∫ τ

s∧τ
ZrdWr, (2.30)

where s ∈ [t, T ] and τ is a stopping time with value in [t, T ]. Then we have
that sup

(b,σ)∈AF
E
(
Y t

)
= u(t, x).
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Proof. Fix (b, σ) ∈ AF in (2.30) and define X := X(b,σ) and the subset of AF

AF :=
{

(b, σ) ∈ AF : (b, σ)(s) =
(
b, σ
)

(s) for any s ∈ [t, τ ]
}
.

From lemma 2.2.5 we know that

sup
(b,σ)∈AF

E
(
Y t,x
τ

∣∣Fτ) = sup
(b,σ)∈AF

E
(
Y τ,X

t,x
τ

τ

∣∣∣Fτ) = u
(
τ,X

t,x

τ

)
and lemma 2.2.1 yields the existence of a sequence {(bn, σn)}n∈N in AF and
a corresponding sequence {Yn}n∈N such that

lim
n→∞

E
(
Y t,x
n,τ

∣∣Fτ) = sup
(b,σ)∈AF

E
(
Y t,x
τ

∣∣Fτ) = u
(
τ,X

t,x

τ

)
.

Then, by theorem B.1.4, corollary B.1.5 and the dominated convergence the-
orem, there exists a constant c such that

lim
n→∞

E
(∣∣Y t − Y t,x

n,t

∣∣2) ≤ lim
n→∞

cE

(∣∣∣u(τ,X t,x

τ

)
− Y t,x

n,τ

∣∣∣2) = 0,

hence, up to subsequences,

lim
n→∞

E
(
Y t,x
n,t

)
= E

(
Y t

)
. (2.31)

Furthermore, thanks to theorem B.1.7, Y t,x
t ≤ Y t for any (b, σ) ∈ AF , which

together with (2.31) implies that sup
(b,σ)∈AF

E
(
Y t,x
t

)
= E

(
Y t

)
. Therefore we can

use the arbitrariness of
(
b, σ
)
and the dynamic programming principle 2.2.7

to obtain our conclusion:

sup
(b,σ)∈AF

E
(
Y t

)
= sup

(b,σ)∈AF
E
(
Y t,x
t

)
= u(t, x).

We can now prove the main statement of this section.

Theorem 2.3.12. The function u(t, x) := sup
(b,σ)∈AF

E
(
Y t,x
t

)
is the only vis-

cosity solution to the problem 2.3.1 satisfying polynomial growth condition
such that u(T, x) = g(x) for any x in RN .
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Proof. The uniqueness is a consequence of theorem 2.3.3 and (2.23), hence
we only have to show that u is a viscosity solution.
From proposition 2.3.10 we know that u is a continuous viscosity subsolution
and it is easy to see that u(T, x) = g(x) for any x ∈ RN , so we only need to
prove the supersolution property of u. Fixed (t, x) in (0, T )×RN , let ψ be a
subtangent to u in (t, x) which we assume, without loss of generality, equal
to u in (t, x) and δ a positive constant such that

ψ(s, y) ≤ u(s, y) for any (s, y) ∈ [t, t+ δ]×Bδ(x). (2.32)

We know, thanks to theorem 1.2.2, that there exists a continuous and deter-
ministic L ∈ LF for which

F
(
t, x,∇xψ,D

2
xψ
)

= L
(
t, x,∇xψ,D

2
xψ
)

and assume by contradiction

F
(
t, x,∇xψ,D

2
xψ
)

= L
(
t, x,∇xψ,D

2
xψ
)
> −∂tψ(t, x)− fσ(t, x, u,∇xψσ).

Then, by continuity,

∂tψ(s, y) + L
(
s, y,∇xψ,D

2
xψ
)
> −fσ(s, y, ψ,∇xψσ) (2.33)

for any (s, y) ∈ [t, t+ δ]×Bδ(x), possibly taking a smaller δ.
We denote with (b, σ) and (X, Y, Z), respectively, the element of AF , which,
to repeat, is continuous and deterministic, and the solution to the FBSDE
(2.22) associated to L. We define the stopping time

τ := (t+ δ) ∧ inf
{
s ∈ [t,∞) :

∣∣X t,x
s − x

∣∣ ≥ δ
}
,

let
(
Y s, Zs

)
be the solution to the BSDE

Y s = u
(
τ,X t,x

τ

)
+

∫ τ

s∧τ
fσ
(
r,X t,x

r , Y r, Zr

)
dr −

∫ τ

s∧τ
ZrdWr, s ∈ [t, T ]

and
(
Ŷs, Ẑs

)
:=
(
ψ
(
s,X t,x

s∧τ
)
, (∇xψσ)

(
s,X t,x

s∧τ
))

which, by Itô’s formula, is
solution to

Ŷs =ψ
(
τ,X t,x

τ

)
−
∫ τ

s∧τ
ẐrdWr

−
∫ τ

s∧τ

(
∂tψ

(
r,X t,x

r

)
+ L

(
r,X t,x

r ,∇xψ,D
2
xψ
))
dr,

s ∈ [t, T ].
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We know from lemma 2.3.11 that

sup
(b,σ)∈AF

E
(
Y t

)
= u(t, x) = ψ(t, x), (2.34)

but by (2.32) we have u (τ,X t,x
τ ) ≥ ψ (τ,X t,x

τ ), which together with (2.33)
imply, thanks to corollary B.1.8, that Y t > ψ(t, x) a.e., in contradiction with
(2.34).

Remark 2.3.13. Assume that F and f in problem 2.3.1 do not depend on t
and let u be the viscosity solution to this problem. Then it is easy to see
that v(t, x) := u(T − t, x) is the viscosity solution of the following parabolic
problem:F (x,∇xv,D

2
xv)− ∂tv(t, x) + f(x, v,∇xv) = 0, t ∈ [0,∞), x ∈ RN

v(0, x) = g(x), x ∈ RN .

We thus have that, for any T ∈ [0,∞), v(t, x) := sup
(b,σ)∈AT−tF

E
(
Y T−t,x
T−t

)
, where

Y is the solution to the FBSDE

XT−t,x
s =x+

∫ s

T−t
σ
(
r,XT−t,x

r

)
dWr +

∫ s

T−t
b
(
r,XT−t,x

r

)
dr,

Y T−t,x
s =g

(
XT−t,x
T

)
+

∫ T

s

fσ
(
XT−t,x
r , Y T−t,x

r , ZT−t,x
r

)
dr

−
∫ T

s

ZT−t,x
r dWr,

s ∈ [T − t, T ],

x ∈ RN ,

with (b, σ) ∈ AT−tF . Note that even in the time independent case we still need
to rely on time dependent σ and b in order to use the dynamic programming
principle. To eliminate T from this representation formula we can, for ex-
ample, use the fact that, in this case, for each (b, σ) ∈ AT−tF there exists an
element (b′, σ′) ∈ AF which has the same distribution of (b, σ)(T − t + s, x)

for any (s, x) ∈ [0, t]×RN . From this, if we define the FBSDE, with notation
changed to point out the terminal time instead of the initial time,

X t,x
s =x+

∫ s

0

σ
(
r,X t,x

r

)
dWr +

∫ s

0

b
(
r,X t,x

r

)
dr,

Y t,x
s =g

(
X t,x
t

)
+

∫ t

s

fσ
(
X t,x
r , Y t,x

r , Zt,x
r

)
dr −

∫ t

s

Zt,x
r dWr,

s ∈ [t, T ],

x ∈ RN ,
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with (b, σ) ∈ AF , we then have that v(t, x) := sup
(b,σ)∈AF

E
(
Y t,x

0

)
.

2.4 The Dirichlet Problem with Sublinear Op-

erators

The problem which will be examined in this section is static, i.e., time inde-
pendent. It makes this problem more difficult to study, since we also have to
analyze the behavior of the stopping times

τ t,ζ(b,σ) := inf
{
s ∈ [0,∞) : X t,ζ

(b,σ),t+s /∈ D
}
,

where D is the domain on which is defined the problem and X is a solution
to the SDE in (2.22). We already know that this is an a.e. finite stopping
times thanks to proposition A.2.1.

Before starting with this section’s problem, we give the following defi-
nition, which will play a key role in the proof of the continuity of the exit
times.

Definition 2.4.1. We will call a set C ⊂ RN a convex cone if for every
x, y ∈ C then x+ y ∈ C and αx ∈ C for any non negative α.
We will say that a set D satisfies the exterior cone condition if, for any
x ∈ ∂D, there exists a convex cone C with intC 6= ∅ and a positive δ such
that (x+ C) ∩D ∩Bδ(x) = {x}.

Problem 2.4.2. Let D ⊂ RN be an open bounded set which satisfies an
exterior cone condition, F a uniformly elliptic operator as seen in assump-
tions 1.2.1, which we also assume time independent with

(i) max
(p,S)∈RN×SN

F (x, p, S)

|(p, S)|
≤ `,

and
f : RN ×R×RN → R and g : RN → R

two continuous functions for which there exist three constants µ ∈ R, l ≥ 0

and `, which we assume to be the same one in assumptions 1.2.1 for F , such
that, for any x, x′ ∈ RN , y, y′ ∈ R and z, z′ ∈ RN ,
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(ii) |g(x)− g(x′)| ≤ `|x− x′|;

(iii) |g(x)| ≤ `;

(iv) |f(x, y, z)− f(x, y, z′)| ≤ l

√
2λ

N
|z − z′|;

(v) |f(x, y, z)− f(x′, y, z)| ≤ `|x− x′|;

(vi) |f(x, 0, 0)| ≤ `;

(vii) |f(x, y, z)| ≤ `(1 + |y|);

(viii) (y − y′)(f(x, y, z)− f(x, y′, z)) ≤ µ|y − y′|2.

Furthermore assume that there exists a constant ϑ > l2 + µ such that

(ix) sup
(b,σ)∈AF

sup
x∈D

E
(
eϑτ

0,x
(b,σ)

)
<∞.

Find the solution u to the elliptic PDEF (x,∇u,D2u) + f(x, u,∇u) = 0, x ∈ D,

u(x) = g(x), x ∈ ∂D.

Remark 2.4.3. Here we comment on the assumptions for problem 2.4.2.
It is easy to see that, by item (i) in problem 2.4.2, |b| ≤ ` and |σ|2 ≤ 2` for
any (b, σ) ∈ AF . It will also be convenient to assume f equal to 0 outside D.
We point out that even if F do not depends on time, we still require that the
elements of AF are cadlag in time. This is because we need it to apply the
dynamic programming principle 2.2.7.
A consequence of the fact that the operator F does not depend on time,
is that for any (b, σ) ∈ AF and a.e. finite stopping time ρ we can take a(
b, σ
)
∈ AρF such that (b, σ)(t, x)

d
=
(
b, σ
)

(ρ + t, x) for any t ∈ [0,∞) and
x ∈ RN . Consequently, by remark A.1.9, we get that X0,x

(b,σ),t

d
= Xρ,x

(b,σ),ρ+t
for

any t ∈ [0,∞) and x ∈ D, which also implies that τ 0,x
(b,σ)

d
= τ ρ,x

(b,σ)
.

Item (ix) is a standard assumption for stochastic representation formulas for
viscosity solutions to elliptic problems in the linear case, as can be seen for
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example in [3, 9, 27, 28]. The role of this condition is to assure us that
our candidate viscosity solution does not explode at some point in D, as
we will see in lemma 2.4.7. We also note that while we know, thanks to
proposition A.2.2, that there exists a constant ϑ which realize item (ix) in
problem 2.4.2, it may not be greater than l2 + µ.

A comparison result holds for this problem as a consequence of [8, Theo-
rem 3.3] and lemma 1.2.7.

Theorem 2.4.4. Let u and v be respectively a subsolution and a supersolu-
tion to problem 2.4.2 such that u ≤ v on ∂D. Then, if µ < 0, u ≤ v on
D.

As previously done, we start our analysis defining the FBSDEs we will
use to build our viscosity solution. The main difference with the parabolic
problem is that this one has random terminal time.

Definition 2.4.5. Consider the FBSDE with random terminal time

X t,ζ
t+s =ζ +

∫ t+s

t

σ
(
r,X t,ζ

r

)
dWr +

∫ t+s

t

b
(
r,X t,ζ

r

)
dr,

Y t,ζ
t+s =g

(
X t,ζ

t+τ t,ζ
(b,σ)

)
+

∫ t+τ t,ζ
(b,σ)

t+s∧τ t,ζ
(b,σ)

fσ
(
r,X t,ζ

r , Y t,ζ
r , Zt,ζ

r

)
dr

−
∫ t+τ t,ζ

(b,σ)

t+s∧τ t,ζ
(b,σ)

Zt,ζ
r dWr,

Zt,ζ
t+s =0, on

{
τ t,ζ(b,σ) ≤ s

}
,

s ∈ [0,∞), (2.35)

where ζ ∈ L2
(
Ω,Ft;RN

)
, (b, σ) ∈ AF , the function fσ is defined as

fσ(t, x, y, z) := f
(
x, y, z(σ(t, x))−1

)
,

for any (t, x, y, z) in [0,∞)×RN×R×RN and the functions f and g are as in
the assumptions of problem 2.4.2. Is easy to see that the Lipschitz constant
for the fourth argument of fσ is l.
Note that under these conditions the assumptions A.1.1, (A.4) and (A.5) hold
for the SDE part, while assumptions B.2.1 hold for the BSDE part (item (viii)
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is true by remark 2.4.3), thanks to lemma 2.4.9 which we will prove below.
Therefore by remark B.2.3 and theorems A.1.3 and B.2.4 there always exists
a unique solution to (2.35) and thanks to remark A.1.8 and proposition B.1.9
this is true even if t is an a.e. finite stopping time.
Once again we will call (X, Y, Z) a solution to this FBSDE with random
terminal time if X is a solution to the SDE part of this system and (Y t,ζ , Zt,ζ)

is a solution to the BSDE part for any t ∈ [0,∞) and ζ ∈ L2
(
Ω,Ft;RN

)
.

Remark 2.4.6. Notice that the uniqueness property of the FBSDE implies
that, for any 0 ≤ t ≤ r ≤ s,(

Xr,Xt,ζ
r

s , Y r,Xt,ζ
r

s , Zr,Xt,ζ
r

s

)
=
(
X t,ζ
s , Y t,ζ

s , Zt,ζ
s

)
.

Moreover τ r,X
t,x
r = (τ t,x − (r − t)) ∨ 0. This holds true even if t, r and s are

stopping time.

As before we will simply write Y to denote the second term of the triplet
(X, Y, Z) solution to the FBSDE (2.35), for (b, σ) that varies in AF . For
notation’s sake we will omit the dependence from (b, σ) of X, Y , Z and even
τ when obvious. Furthermore we will also write Xx, Y x, Zx and τx instead
of X0,x, Y 0,x, Z0,x and τ 0,x respectively.

We preliminarily analyze the exit times.

Lemma 2.4.7. For any a.e. finite stopping time ρ, x ∈ RN and (b, σ) ∈ AF ,
define the stopping time τ ρ,x := inf

{
t ∈ [0,∞) : Xρ,x

ρ+t /∈ D
}
. Then

P(τ ρ,x = τ ρ,x) = 1 (2.36)

for any a.e. finite stopping time ρ, (b, σ) ∈ AF and x ∈ RN .

The importance of this lemma is due to (2.36), which is used in the-
orems A.2.4 and A.2.5 to prove the continuity of the exit times and con-
sequently will allow us to prove the continuity of our candidate viscosity
solution. This lemma is the reason why we require D to satisfy an exterior
cone condition and is a generalization of [3, Proposition III.3.1], where the
author consider deterministic (b, σ).
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Proof. Preliminarily note that if x /∈ D this is obviously true, while, if x ∈ D,
by remark 2.4.6 our statement is equivalent to

P
(
τ τ

ρ,x,Xρ,x
τρ,x = 0

)
= 1, (2.37)

for any a.e. finite stopping time ρ and (b, σ) ∈ AF . Instead of (2.37) we will
prove the stronger result

P (τ ρ,y = 0) = 1 (2.38)

for any a.e. finite stopping time ρ, (b, σ) ∈ AF and y ∈ ∂D.
We will proceed by steps.
Step 1. Fixed x ∈ ∂D, in the first steps we will prove that P(τx = 0) = 1 for
any (b, σ) ∈ AF , and from this we will then prove (2.38) by approximation.
We can assume without loss of generality that x = 0, since if Xx is solution
to the SDE (b, σ), then Xx − x is solution to the SDE (b(·+ x), σ(·+ x)).
Step 2. Thanks to our assumptions we have that there exists a convex cone
C with intC 6= ∅ and a positive δ such that C ∩ D ∩ Bδ(0) = {0}, hence
there exists an x ∈ C and a positive constant ε such that Bε(x) ⊂ C ∩Bδ(0).
Fixed t ∈ [0,∞) define the continuous function ϕ : [0, t] → RN such that
ϕ(0) = 0 and ϕ(t) = x. Then, by proposition A.2.3, there exists a positive
constant c, which depend on `, λ, t and the modulus of continuity of ϕ, such
that

P

(
sup
s∈[0,t]

|Xx
s − ϕ(s)| < ε

)
≥ c.

Step 3. Now for any α > 1 let bα(t, x) := α−1b
(
t
α2 ,

x
α

)
, σα(t, x) := σ

(
t
α2 ,

x
α

)
and Wα,t := αW t

α2
. Note that Wα is still a Brownian motion and, since

α > 1, for σα and bα hold the same assumptions, with the same constants `
and λ of σ and b. Therefore

X0
α,t :=αX0

t
α2

=

∫ t
α2

0

ασ
(
s,X0

s

)
dWs +

∫ t
α2

0

αb
(
s,X0

s

)
ds

=

∫ t

0

σα
(
s,X0

α,s

)
dWα

s +

∫ t

0

bα
(
s,X0

α,s

)
ds,

that is to say that X0
α is solution to the SDE (σα, bα).

Step 4. By the previous steps and since cones are invariant under scaling, we
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have for any α > 1

P

(
τ 0 ≤ t

α2

)
≥ P

(
X0

t
α2
∈ intC

)
= P

(
X0
α,t ∈ intC

)
≥ c > 0.

Thus, sending α to ∞, we get P(τ 0 = 0) > 0, so Blumenthal’s 0–1 law 1.1.2
and the arbitrariness of x yield P(τx = 0) = 1 for any (b, σ) ∈ AF and
x ∈ ∂D.
Step 5. Since for any a.e. finite stopping time ρ and (b, σ) ∈ AρF we can take
an
(
b, σ
)
∈ AF such that, for any y ∈ ∂D, Xρ,y

(b,σ),ρ+t and Xy

(b,σ),t
have the

same distribution, we have that τ ρ,y(b,σ) and τ
y

(b,σ)
have the same distribution,

and consequently (2.38) is true for any a.e. finite stopping time ρ, (b, σ) ∈ AρF
and y ∈ ∂D, but not for any (b, σ) ∈ AF .
Step 6. Consider the set

J :=


(b, σ) ∈ AF : (b, σ)|[ρ,∞) =

n∑
i=0

χAi(bi, σi)|[ρ,∞),

where {(bi, σi)}ni=0 ⊂ A
ρ
F and {Ai}ni=0 is a Fρ–partition of Ω

 .

Moreover, for each (b, σ) :=
n∑
i=0

χAi(bi, σi) ∈ J , (2.38) holds true for any a.e.

finite stopping time ρ and y ∈ ∂D since, by the previous step,

P
(
τ ρ,y(b,σ) = 0

)
=

n∑
i=0

P
(
Ai ∩

{
τ ρ,y(bi,σi)

= 0
})

=
n∑
i=0

P(Ai)P
(
τ ρ,y(bi,σi)

= 0
)

=
n∑
i=0

P(Ai) = 1.

Step 7. We know by lemma 2.1.4 that J is dense in AF , therefore, fixed a(
b, σ
)
∈ AF and two positive constants α and ε, we will prove that there

exists a (b, σ) ∈ J such that

P

(
τ ρ,y
(b,σ)

> τ ρ,y(b,σ) + α

)
< ε. (2.39)

Notice that by the previous step τ ρ,y(b,σ) = 0 a.e. for any (b, σ) ∈ J , thus (2.39)
is equivalent to

P

(
τ ρ,y
(b,σ)

> α

)
< ε,
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therefore the arbitrariness of
(
b, σ
)
, y, ρ, α and ε proves (2.38) for any a.e.

finite stopping time ρ, (b, σ) ∈ AF and y ∈ ∂D concluding the proof.
Fix an a.e. finite stopping time ρ, y ∈ ∂D and define for any (b, σ) ∈ J the
stopping times

τβ(b,σ) := inf

{
t ∈ [0,∞) : inf

z∈D

∣∣Xρ,y
ρ+t − z

∣∣ ≥ β

}
.

By proposition A.2.1 we can take a positive T depending only on D, `, λ and

ε such that P
(
τ ρ,y
(b,σ)

≥ T

)
<
ε

3
. Similarly we can choose a β, depending on

α and ε, such that P
(
τβ(b,σ) > τ ρ,y(b,σ) + α

)
<
ε

3
for any (b, σ) ∈ J , in fact if

that would not be true we should have, thanks to the reverse Fatou’s lemma,

P
(
τ ρ,y(b,σ) > α

)
≥ lim sup

β→0
P
(
τβ(b,σ) > τ ρ,y(b,σ) + α

)
≥ ε

3

for some y ∈ D, in contradiction with the previous step. Thus we have that

P

(
τ ρ,y
(b,σ)

> τ ρ,y(b,σ) + α

)
≤P

(
τβ(b,σ) > τ ρ,y(b,σ) + α

)
+ P

(
τ ρ,y
(b,σ)

≥ T

)
+ P

({
τ ρ,y
(b,σ)

> τβ(b,σ)

}
∪
{
τ ρ,y
(b,σ)

< T

})
≤P

({
τ ρ,y
(b,σ)

> τβ(b,σ)

}
∪
{
τ ρ,y
(b,σ)

< T

})
+

2ε

3
.

Finally Markov’s inequality and theorem A.1.4 yield

P

({
τ ρ,y
(b,σ)

> τβ(b,σ)

}
∪
{
τ ρ,y
(b,σ)

< T

})
≤P

({∣∣∣∣Xρ,y

(b,σ),ρ+τβ
(b,σ)

−Xρ,y

(b,σ),ρ+τβ
(b,σ)

∣∣∣∣ ≥ β

}
∩
{
τ ρ,y
(b,σ)

< T

})
≤ 1

β2
E

(
sup
t∈[0,T ]

∣∣∣∣Xρ,y

(b,σ),ρ+t
−Xρ,y

(b,σ),ρ+t

∣∣∣∣2
)

≤ c

β2
E

(∫ T

0

eγ(T−t)
∣∣∣∣b(t,Xρ,y

(b,σ),ρ+t

)
− b
(
t,Xρ,y

(b,σ),ρ+t

)∣∣∣∣2 dt
)

+
c

β2
E

(∫ T

0

eγ(T−t)
∣∣∣∣σ(t,Xρ,y

(b,σ),ρ+t

)
− σ

(
t,Xρ,y

(b,σ),ρ+t

)∣∣∣∣2 dt
)
,
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where c depends only on T , α and `, hence, by proposition A.1.6, we can

choose a (b, σ) ∈ J such that P
({

τ ρ,y
(b,σ)

> τβ(b,σ)

}
∪
{
τ ρ,y
(b,σ)

< T

})
<

ε

3
proving (2.39).

The previous lemma permits us to use theorems A.2.4 and A.2.5 to prove
that:

Proposition 2.4.8. The function τ ρ : RN × AF → [0,∞) is, under our
assumptions, continuous in probability for any a.e. finite stopping time ρ.

As previously said, the next lemma implies that the BSDE part of the
FBSDE in definition 2.4.5 satisfies for any initial data assumptions B.2.1, or
more precisely items (vi) and (vii) in assumptions B.2.1.

Lemma 2.4.9. For any a.e. finite stopping time ρ and ζ in L2
(
Ω,Fρ;RN

)
we have sup

(b,σ)∈AF
E
(
eϑτ

ρ,ζ
)
≤ sup

(b,σ)∈AF
sup
x∈D

E
(
eϑτ

x)
<∞.

Proof. By remark 2.4.3 we know that for any (b, σ) ∈ AF we can take an(
b, σ
)
∈ AρF such that τx(b,σ)

d
= τ ρ,x

(b,σ)
and vice versa, therefore item (ix) in

problem 2.4.2 implies that sup
(b,σ)∈AρF

sup
x∈D

E
(
eϑτ

ρ,x)
= sup

(b,σ)∈AF
sup
x∈D

E
(
eϑτ

x)
<∞.

Thanks to the continuity of τ and the fact that we can approximate any
(b, σ) ∈ AF with a sequence in

J :=


(b, σ) ∈ AF : (b, σ)|[ρ,∞) =

n∑
i=0

χAi(bi, σi)|[ρ,∞),

where {(bi, σi)}ni=0 ⊂ A
ρ
F and {Ai}ni=0 is a Fρ–partition of Ω

 .

we have that

sup
(b,σ)∈AF

sup
x∈D

E
(
eϑτ

ρ,x)
= sup

(b,σ)∈J
sup
x∈D

E
(
eϑτ

ρ,x) ≤ sup
(b,σ)∈AρF

sup
x∈D

E
(
eϑτ

ρ,x)
.

Finally, since each ζ ∈ L2
(
Ω,Fρ;RN

)
can be approximated by a sequence

of simple functions, is easy to see that E
(
eϑτ

ρ,ζ
)
≤ sup

x∈D
E
(
eϑτ

ρ,x), and this

concludes the proof.
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We can now prove, proceeding by steps, that u(x) := sup
(b,σ)∈AF

E (Y x
0 ) is

a viscosity solution to the problem 2.4.2. We start proving that we can
apply the dynamic programming principle 2.2.7 on u, showing continuity
and boundedness of Y , which is the analogue of ϕ in section 2.2.

Lemma 2.4.10. Under our assumptions, for any a.e. finite stopping time
ρ, the function (x, (b, σ)) ∈ RN ×AF 7→ Y ρ,x

ρ is continuous in probability and
uniformly equicontinuous in the L1–norm on the first variable with respect to
the second one. Furthermore there exists a constant c, which depends only
on `, µ, l and ϑ such that

E
(∣∣Y ρ,ζ

ρ

∣∣2) ≤ c sup
(b,σ)∈AF

sup
x∈D

E
(
eϑτ

x)
(2.40)

for any a.e. finite stopping time ρ, (b, σ) ∈ AF and ζ ∈ L2
(
Ω,Fρ;RN

)
.

Proof. The continuity in probability is just a consequence of theorem B.2.5
and propositions A.1.6 and 2.4.8, while corollary B.2.6 and lemma 2.4.9 yield
that there exist two constants c1 and c2 depending on `, l, µ and ϑ such that,
for any a.e. finite stopping time ρ, (b, σ) ∈ AF and ζ ∈ L2

(
Ω,Fρ;RN

)
,

E
(∣∣Y ρ,ζ

ρ

∣∣2) ≤c1E

(
eϑτ

ρ,ζ
∣∣∣g (Xρ,ζ

ρ+τρ,ζ

)∣∣∣2 +

∫ τρ,ζ

0

eϑt
∣∣∣f (Xρ,ζ

ρ+t, 0, 0
)∣∣∣2 dt)

≤c2E
(
eϑτ

ρ,ζ
)
≤ c2 sup

(b,σ)∈AF
sup
x∈D

E
(
eϑτ

x)
,

proving (2.40). Thus we only have to show the equicontinuity.
To prove the equicontinuity we fix a positive ε and find a δ for which

E
(∣∣Y ρ,x

ρ − Y ρ,y
ρ

∣∣) < ε

for any (b, σ) ∈ AF , x ∈ RN and y ∈ Bδ(x). Preliminarily fix an a.e. finite
stopping time ρ and define τx := τ ρ,x∧T , τy := (τx−α)∨(τ ρ,y∧(τx+α)), where
T and α are positive number that will be chosen later. Let

(
X
x
, Y

x
, Z

x) and(
X
y
, Y

y
, Z

y) be respectively the solutions in x and in y to the FBSDEs (2.35)
but with stopping times τx and τy instead of τ ρ,x and τ ρ,y, then

E
(∣∣Y ρ,x

ρ − Y ρ,y
ρ

∣∣) ≤(E(∣∣Y ρ,x
ρ − Y x

ρ

∣∣2)) 1
2

+
(
E
(∣∣Y y

ρ − Y ρ,y
ρ

∣∣2)) 1
2
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+
(
E
(∣∣Y x

ρ − Y
y

ρ

∣∣2)) 1
2

and by theorems A.2.4 and B.2.5 and proposition A.2.1 we can choose a T ,
an α and a δ such that

E
(∣∣Y ρ,x

ρ − Y x

ρ

∣∣2) ≤ ε2

9
and E

(∣∣Y y

ρ − Y ρ,y
ρ

∣∣2) ≤ ε2

9
. (2.41)

Therefore we just have to prove that, for a suitable δ,

E
(∣∣Y x

ρ − Y
y

ρ

∣∣2) < ε2

9
(2.42)

for any (b, σ) ∈ AF , x ∈ RN and y ∈ Bδ(x).
Thanks to theorem B.2.5 we have for any fixed (b, σ) ∈ AF

E
(∣∣Y x

ρ − Y
y

ρ

∣∣2) ≤ c3E

(∣∣∣eϑτx2 g (Xρ,x
ρ+τx

)
− e

ϑτy
2 g
(
Xρ,y
ρ+τy

)∣∣∣2
+

∫ τx∨τy

0

eϑt
∣∣fσ (t,Xρ,x

ρ+t, Y
x

ρ+t, Z
x

ρ+t

)
− fσ

(
t,Xρ,y

ρ+t, Y
x

ρ+t, Z
x

ρ+t

)∣∣2 dt) ,
where c3 is a constant which depends on ϑ, l and µ, hence to prove (2.42) we
will give an upper bound to both the elements on the right of the inequality.
For the first one is easy to see that

E

(∣∣∣eϑτx2 g (Xρ,x
ρ+τx

)
− e

ϑτy
2 g
(
Xρ,y
ρ+τy

)∣∣∣2)
≤2`2E

(∣∣∣eϑτx2 − eϑτy2 ∣∣∣2 + eϑτx
∣∣Xρ,x

ρ+τx −X
ρ,y
ρ+τy

∣∣2)
≤α

2ϑ2`2

2
eϑT+|ϑ|α + 4`2eϑTE

(∣∣Xρ,x
ρ+τx −X

ρ,y
ρ+τx

∣∣2 +
∣∣Xρ,y

ρ+τx −X
ρ,y
ρ+τy

∣∣2) .
Furthermore, thanks to theorem A.1.4 and corollary A.1.5, there exist a
γ > `2 + 2` and two constants c4 and c5 depending on γ and ` with

E
(∣∣Xρ,x

ρ+τx −X
ρ,y
ρ+τx

∣∣2 +
∣∣Xρ,y

ρ+τx −X
ρ,y
ρ+τy

∣∣2)
≤E

(
sup
t∈[0,T ]

∣∣Xρ,x
ρ+t −X

ρ,y
ρ+t

∣∣2 + sup
t∈[0,α]

∣∣∣∣Xρ+τx∧τy ,Xρ,y
ρ+τx∧τy

ρ+τx∧τy+t −Xρ,y
ρ+τx∧τy

∣∣∣∣2
)

≤c4e
γT |δ|2 + c5αe

γα,
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so, taking α and δ satisfying (2.41) small enough, we have that

c3E

(∣∣∣eϑτx2 g (Xρ,x
ρ+τx

)
− e

ϑτy
2 g
(
Xρ,y
ρ+τy

)∣∣∣2) <
ε2

18
. (2.43)

For the second part note that by our assumptions and theorem A.1.4 there
exists a constant c6, depending on γ and `, such that

E

(∫ τx∨τy

0

eϑt
∣∣fσ (t,Xρ,x

ρ+t, Y
x

ρ+t, Z
x

ρ+t

)
− fσ

(
t,Xρ,y

ρ+t, Y
x

ρ+t, Z
x

ρ+t

)∣∣2 dt)
≤`2eϑTE

(∫ T

0

∣∣Xρ,x
ρ+t −X

ρ,y
ρ+t

∣∣2 dt)+ `2 e
ϑα − 1

ϑ

≤c6`
2e(ϑ+γ)T |δ|2 + `2 e

ϑα − 1

ϑ
.

Thus, possibly taking a smaller α and δ, we get

c3E

(∫ τx∨τy

0

eϑt
∣∣fσ (t,Xρ,x

ρ+t, Y
x

ρ+t, Z
x

ρ+t

)
− fσ

(
t,Xρ,y

ρ+t, Y
x

ρ+t, Z
x

ρ+t

)∣∣2dt)< ε2

18
,

which together with (2.43) yields (2.42).

As an immediate consequence of the previous lemma we have the following
proposition.

Proposition 2.4.11. The function u(x) := sup
(b,σ)∈AF

E (Y x
0 ) is bounded and

continuous. In particular, for any x ∈ RN and a.e. finite stopping time ρ,
u(x) = sup

(b,σ)∈AF
E
(
Y ρ,x
ρ

)
.

One of the consequences of this proposition is that it permits us to study
u(ζ) as ess sup

(b,σ)∈AF
E
(
Y ρ,ζ
ρ

∣∣Fρ), if ζ is in L2
(
Ω,Fρ;RN

)
.

Proof. By definition and the Jensen’s inequality, for any x, y ∈ RN ,

|u(x)− u(y)| =

∣∣∣∣∣ sup
(b,σ)∈AF

E(Y x
0 )− sup

(b,σ)∈AF
E(Y y

0 )

∣∣∣∣∣ ≤ sup
(b,σ)∈AF

E(|Y x
0 − Y

y
0 |)

and

|u(x)|2 =

∣∣∣∣∣ sup
(b,σ)∈AF

E(Y x
0 )

∣∣∣∣∣
2

≤ sup
(b,σ)∈AF

E
(
|Y x

0 |2
)
,
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thus boundedness and continuity are a consequence of lemma 2.4.10.
To prove the second part of the statement note that, since F is time indepen-
dent, for any (b, σ) ∈ AF we can take an

(
b, σ
)
∈ AρF such that Xx

t = X
ρ,x

ρ+t

for any t ∈ [0,∞) and x ∈ RN . Hence for any solution Y to (2.4.5) we can
take another solution Y such that Y x

t = Y
ρ,x

ρ+t for any t ∈ [0,∞) and x ∈ RN .
The statement is then a consequence of remark 2.2.6 and the reversibility of
the argument.

Now we proceed to show that u is a viscosity subsolution. In order to do
so we need the following lemma:

Lemma 2.4.12. Let L be an element of LF and (X, Y, Z) the solution to
the FBSDE (2.35) associated to L as in remark 2.3.6. If we define, for any
x ∈ D, uL(x) := E(Y x

0 ) we have that, for any supertangent ϕ to uL at x,

L
(
0, x,∇ϕ,D2ϕ

)
≥ −f(x, uL,∇ϕ).

Proof. Preliminarily we denote (b, σ) as the element of AF associated to L
and point out that since (b, σ) is progressive with respect to the filtration
{Ft}t∈[0,∞), so are L, X and Y , therefore they are constants a.e. in 0. As a
consequence uL(x) = Y x

0 a.e. for any x ∈ D.
Given x ∈ D and a supertangent ϕ to uL at x we can assume without loss
of generality that uL(x) = ϕ(x), so suppose that, a.e.,

L
(
0, x,∇ϕ,D2ϕ

)
+ fσ(0, x, uL,∇ϕσ) < 0 (2.44)

and we will find a contradiction. Note that, as a consequence of the Blumen-
thal’s 0–1 law 1.1.2, this is a deterministic inequality a.e.. By the definition
of supertangent, there exists a δ > 0 such that, for any y ∈ Bδ(x) ⊆ D,

uL(y) ≤ ϕ(y), (2.45)

hence we define the stopping time

ρ := δ ∧ inf{t ∈ [0,∞) : |Xx
t − x| ≥ δ}
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and assume, possibly taking a smaller ρ, that

L
(
t ∧ ρ,Xx

t∧ρ,∇ϕ,D2ϕ
)

+ fσ
(
t ∧ ρ,Xx

t∧ρ, ϕ,∇ϕσ
)
< 0. (2.46)

We point out that, by (2.44) and lemma 2.3.8, the previous inequality holds
true on a set of positive measure for the χ[0,δ]dt× dP measure, thus ρ > 0 on
a set of positive measure.
Let

(
Y t, Zt

)
:=
(
Y x
t∧ρ, Z

x
t∧ρ
)
, which solve the BSDE

Y t = Y x
ρ +

∫ ρ

t∧ρ
fσ
(
s,Xx

s , Y s, Zs

)
ds−

∫ ρ

t∧ρ
ZsdWs, t ∈ [0, δ],

and
(
Ŷt, Ẑt

)
:=
(
ϕ
(
Xx
t∧ρ
)
, (∇ϕσ)

(
t,Xx

t∧ρ
))

which, by Itô’s formula, is solu-
tion to

Ŷt = ϕ
(
Xx
ρ

)
−
∫ ρ

t∧ρ
L
(
s,Xx

s ,∇ϕ,D2ϕ
)
ds−

∫ ρ

t∧ρ
ẐsdWs, t ∈ [0, δ].

By (2.45) and proposition 2.4.11 we have that

uL
(
Xx
ρ

)
− ϕ

(
Xx
ρ

)
= Y

ρ,Xx
ρ

ρ − ϕ
(
Xx
ρ

)
≤ 0

and (2.46) imply, thanks to corollary B.1.8, that Y x
0 < ϕ(x) a.e., but this

lead to a contradiction since we know that, by our assumptions, ϕ(x) = Y x
0

a.e.. This concludes the proof.

Proposition 2.4.13. The function u is a continuous viscosity subsolution
to the problem 2.4.2.

Proof. We know from proposition 2.4.11 that u is continuous, thus we just
have to prove the subsolution property to conclude the proof.
Let L be an element of LF and uL as defined in lemma 2.4.12, then if ϕ is a
supertangent to uL in x ∈ D we have that, by the definition of LF ,

F
(
x,∇ϕ,D2ϕ

)
≥ L

(
0, x,∇ϕ,D2ϕ

)
≥ −f(x, uL,∇ϕ),

therefore uL is a viscosity subsolution to the problem 2.4.2 at x. Thanks to
the arbitrariness of L and x we then have that uL is a viscosity subsolution
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in x for any L ∈ LF and x ∈ D. Lemma 2.4.10 yields that the family of
functions {uL} is equibounded, therefore, thanks to theorem 2.0.3,

sup
L∈LF

uL(x) = sup
(b,σ)∈AF

E (Y x
0 ) = u(x)

is a viscosity subsolution for any x ∈ D.

As for problem 2.3.1, to prove that u is viscosity solution we need to
formulate the dynamic programming principle for this problem:

Lemma 2.4.14. For any (b, σ) ∈ AF we let
(
Y , Z

)
be the solution of the

BSDE

Y s = u (Xx
τ ) +

∫ τ

s∧τ
fσ
(
r,Xx

r , Y r, Zr

)
dr −

∫ τ

s∧τ
ZrdWr, s ∈ [0,∞),

where τ is a stopping time smaller than τx. Then sup
(b,σ)∈AF

E
(
Y 0

)
= u(x).

The proof of this lemma is the same as lemma 2.3.11, we just point out
that Xx

τ∧τx ∈ L2
(
Ω,Fτ ;D

)
, therefore the results of section 2.2 are still true

in this case.

We can now prove the main statement of this section.

Theorem 2.4.15. The function u(x) := sup
(b,σ)∈AF

E(Y x
0 ) is a viscosity solution

to the problem 2.4.2 such that u(x) = g(x) for any x ∈ ∂D. If µ < 0 it is
also unique.

Proof. The uniqueness is a consequence of theorem 2.4.4, hence we only have
to show that u is a viscosity solution.
From proposition 2.4.13 we know that u is a continuous viscosity subsolution
and it is easy to see that u(x) = g(x) for any x ∈ ∂D, so we only need to
prove the supersolution property of u. Fixed x ∈ D, let ψ be a subtangent
to u in x which we assume, without loss of generality, equal to u in x and δ
a positive constant such that

ψ(y) ≤ u(y) for any y ∈ Bδ(x) ⊆ D. (2.47)
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We know, thanks to theorem 1.2.2, that there exists a continuous and deter-
ministic L ∈ LF for which

F
(
x,∇ψ,D2ψ

)
= L

(
0, x,∇ψ,D2ψ

)
and assume

F
(
x,∇ψ,D2ψ

)
= L

(
0, x,∇ψ,D2ψ

)
> −fσ(0, x, u,∇ψσ).

Then, by continuity,

L
(
t, y,∇ψ,D2ψ

)
> −fσ(t, y, ψ,∇ψσ) (2.48)

for any (t, y) ∈ [0, δ)×Bδ(x), possibly taking a smaller δ.
We proceed by contradiction, as in the proof of lemma 2.4.12 denoting with
(b, σ) and (X, Y, Z), respectively, the element of AF , which we stress out
that is continuous and deterministic, and the solution to the FBSDE (2.35)
associated to L. We define the stopping time

ρ := δ ∧ inf{t ∈ [0,∞) : |Xx
t − x| ≥ δ},

let
(
Y t, Zt

)
be the solution to the BSDE

Y t = u
(
Xx
ρ

)
+

∫ ρ

t∧ρ
fσ
(
s,Xx

s , Y s, Zs

)
ds−

∫ ρ

t∧ρ
ZsdWs, t ∈ [0, δ]

and
(
Ŷt, Ẑt

)
:=
(
ψ
(
Xx
t∧ρ
)
, (∇ψσ)

(
t,Xx

t∧ρ
))

which, by Itô’s formula, is solu-
tion to

Ŷt = ψ
(
Xx
ρ

)
−
∫ ρ

t∧ρ
L
(
s,Xx

s ,∇ψ,D2ψ
)
ds−

∫ ρ

t∧ρ
ẐsdWs, t ∈ [0, δ].

We know from lemma 2.4.14 that

sup
(b,σ)∈AF

E
(
Y 0

)
= u(x) = ψ(x), (2.49)

but by (2.47) we have u
(
Xx
ρ

)
≥ ψ

(
Xx
ρ

)
, which together with (2.48) imply,

thanks to corollary B.1.8, that Y 0 > ψ(x) a.e., in contradiction with (2.49).
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2.5 Parabolic Second Order Hamilton–Jacobi

PDEs

We apply the method developed in the previous sections for study PDEs
with sublinear operators to the analysis of a generalized form of second order
Hamilton–Jacobi PDEs. The classical Hamilton–Jacobi equations is

∂tu(t, x) + sup
a∈A

(
1

2

〈
σσ†(t, x, a), S

〉
+ p†b(t, x, a) + c(a)u(t, x) + f(t, x, a)

)
and it has been deeply studied by many authors using stochastic formulas.
In this setting we cite, among the others, [21, 22, 29, 32].

The problem we are going to study in this section will present a more
general function f , also depending on the first and zero order term.

Problem 2.5.1. Let T be a terminal time, A a closed subset of RN and

σ : [0, T ]×RN × A→ RN×N , b : [0, T ]×RN × A→ RN ,

f : [0, T ]×RN × A×R×RN → R g : RN → R

four measurable functions for which there exist two constants µ ∈ R and
` ≥ 0 such that, for any t ∈ [0, T ], x, x′ ∈ RN , a ∈ A, y, y′ ∈ R and
z, z′ ∈ RN ,

(i) (s, v) 7→ (b(s, x, a), σ(s, x, a), f(s, x, a, v, z)) is continuous;

(ii) |b(t, x, a)− b(t, x′, a)| ≤ `|x− x′|;

(iii) |σ(t, x, a)− σ(t, x′, a)| ≤ `|x− x′|;

(iv) |b(t, x, a)| ≤ `(1 + |x|);

(v) |σ(t, x, a)| ≤ `(1 + |x|);

(vi) |g(x)− g(x′)| ≤ `|x− x′|;

(vii) |g(x)| ≤ `(1 + |x|);
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(viii) |f(t, x, a, y, z)− f(t, x′, a, y, z′)| ≤ `(|x− x′|+ |z − z′|);

(ix) |f(t, x, a, y, z)| ≤ `(1 + |x|+ |y|+ |z|);

(x) (y − y′)(f(t, x, a, y, z)− f(t, x, a, y′, z)) ≤ µ|y − y′|2.

To obtain uniqueness of the solution we will also assume that

(xi) the continuity of the function y 7→ f(t, x, y, z) is independent from the
fourth variable.

Define the elliptic functions

L : [0, T ]×RN × A×RN × SN → R

and
H : [0, T ]×RN ×R×RN × SN → R,

such that

La(t, x, p, S) := L(t, x, a, p, S) :=
1

2

〈
σσ†(t, x, a), S

〉
+ p†b(t, x, a)

and
H(t, x, y, p, S) := sup

a∈A

(
La(t, x, p, S) + f

(
t, x, a, y, p†σ

))
,

and further assume that, for any (t, x, y, p, S) ∈ [0, T ]×RN ×R×RN × SN ,

(xii) |H(t, x, y, p, S)| <∞;

(xiii) H is continuous.

Find the solution u to the parabolic PDE∂tu(t, x) +H (t, x, u,∇xu,D
2
xu) = 0, t ∈ (0, T ), x ∈ RN ,

u(T, x) = g(x), x ∈ RN .

It easy to see that items (iv), (v) and (ix) imply item (xii). Also notice
that here we do not require uniform ellipticity, since this time we do not need
a bound to the inverse matrix of σ.

Once again, we have that from theorem 2.0.5 follows a comparison result.



2.5 Parabolic Second Order Hamilton–Jacobi PDEs 65

Theorem 2.5.2. Let u and v be respectively a subsolution and a super-
solution to problem 2.5.1 satisfying polynomial growth condition. Then, if
u|t=T ≤ v|t=T , u ≤ v on (0, T ]×RN .

Similarly as what we have done in the previous sections we define the
sets AτH , which is made up by the progressive, with respect to {F τt }t∈[0,∞),
processes with value in A. Notice that here we require the processes to be
only progressive instead of also cadlag to be consistent with the previous
literature, but everything we say in this section hold true also for cadlag
processes. For any control a, ζ ∈ L2

(
Ω,Ft;RN

)
and functions b, σ, f and

g as in the assumptions of problem 2.5.1 we define the following controlled
FBSDE:

X t,ζ,a
s =ζ +

∫ s

t

σ
(
r,X t,ζ,a

r , ar
)
dWr +

∫ s

t

b
(
r,X t,ζ,a

r , ar
)
dr,

Y t,ζ,a
s =g

(
X t,ζ,a
T

)
+

∫ T

s

f
(
r,X t,ζ,a

r , ar, Y
t,ζ,a
r , Zt,ζ,a

r

)
dr

−
∫ T

s

Zt,ζ,a
r dWr,

s ∈ [t, T ]. (2.50)

Note that under these conditions the assumptions A.1.1 and B.1.1 hold for
the SDE part and the BSDE part respectively, hence under our assumptions
there always exists a unique solution to (2.50).
We then define the function ua(t, x) := E

(
Y t,x,a
t

)
, which is obviously measur-

able in AH . We will prove that u(t, x) := sup
a∈AH

ua(t, x) is a viscosity solution

to problem 2.5.1.
The natural question that arises, now that we have setted up the problem,

is if the dynamic programming principle holds in this case, which presents
some issues with respect to the previous problems. This question has a pos-
itive answer thanks to remark 2.2.8, section 2.2.1 and the next proposition,
which shows the continuity and the boundedness of u. We only state the
result, since the proof is identical to the one of proposition 2.3.7.

Proposition 2.5.3. The function u(t, x) := sup
a∈AH

E
(
Y t,x,a
t

)
is 1

2
–Hölder con-

tinuous in the first variable and Lipschitz continuous in the second one. Fur-
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thermore we have that there exists a constant c, which depends only on `, µ
and T , such that

E
(
|u(τ, ζ)|2

)
≤ sup

a∈AF
E
(∣∣Y τ,ζ,a

τ

∣∣2) ≤ c
(
1 + E

(
|ζ|2
))
, (2.51)

for any stopping time τ bounded by T and ζ ∈ L2
(
Ω,Fτ ;RN

)
.

The next step is to prove that u is a viscosity subsolution. Since this time
for a fixed a control we can not rely on right continuity in time, the proof
will be slightly different from what we have seen in the previous sections.

Proposition 2.5.4. The function u(t, x) is a continuous viscosity subsolu-
tion to the problem 2.5.1.

Proof. We know from proposition 2.5.3 that u is continuous, thus we just
have to prove the subsolution property to conclude the proof. In order to do
so we will show that, fixed (t, x) ∈ (0, T ) × RN , ua(t, x) is a subsolution in
(t, x) to problem 2.5.1 for any a ∈ AH . Then u is the supremum of a family
of locally equibounded subsolutions, hence is a subsolution by theorem 2.0.3.
Given (t, x) ∈ (0, T )× RN , a ∈ AH and a supertangent ϕ to ua at (t, x) we
can assume without loss of generality that ua(t, x) = ϕ(t, x), so suppose that

∂tϕ(t, x) +H
(
t, x, ua,∇xϕ,D

2
xϕ
)
< 0

and we will find a contradiction. By the definition of supertangent, there
exists a δ ∈ (0, T − t) such that, for any s ∈ [t, t+ δ] and y ∈ Bδ(x),

ua(s, y) ≤ ϕ(s, y) (2.52)

and, possibly taking a smaller δ,

0 >∂tϕ(s, y) +H
(
s, y, ϕ,∇xϕ,D

2
xϕ
)

≥∂tϕ(s, y) + La
(
s, y,∇xϕ,D

2
xϕ
)

+ f(s, y, a, ϕ,∇xϕσ),
(2.53)

thanks to the continuity of H and ϕ. Now we define the stopping time

τ := (t+ δ) ∧ inf
{
s ∈ [t,∞) :

∣∣X t,x,a
s − x

∣∣ ≥ δ
}
,
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let
(
Y s, Zs

)
:=
(
Y t,x,a
s∧τ , Z

t,x,a
s∧τ
)
, which solve the BSDE

Y s = Y t,x,a
τ +

∫ τ

s∧τ
f
(
r,X t,x,a

r , a, Y r, Zr

)
dr −

∫ τ

s∧τ
ZrdWr, s ∈ [t, T ],

and
(
Ŷs, Ẑs

)
:=
(
ϕ
(
s,X t,x,a

s∧τ
)
, (∇xϕσ(a))

(
s ∧ τ,X t,x,a

s∧τ
))

which, by Itô’s for-
mula, is solution to

Ŷs =ϕ
(
τ,X t,x,a

τ

)
−
∫ τ

s∧τ
ẐrdWr

−
∫ τ

s∧τ

(
∂tϕ

(
r,X t,x,a

r

)
+ La

(
r,X t,x,a

r ,∇xϕ,D
2
xϕ
))
dr,

s ∈ [t, T ].

By (2.52) we have that, a.e.,

ua
(
τ,X t,x,a

τ

)
− ϕ

(
τ,X t,x,a

τ

)
= Y τ,Xt,x,a

τ
τ − ϕ

(
τ,X t,x,a

τ

)
≤ 0

and (2.53) imply, thanks to corollary B.1.8, that Y t,x,a
t < ϕ(t, x) a.e., but this

lead to a contradiction since, by our assumptions, ϕ(t, x) = E
(
Y t,x,a
t

)
. This

concludes the proof.

Once again, to prove that u is the viscosity solution we need to express
the dynamic programming principle for this problem:

Lemma 2.5.5. For any a ∈ AH we let
(
Y , Z

)
be the solution of the BSDE

Y s = u
(
τ,X t,x,a

τ

)
+

∫ τ

s∧τ
f
(
r,X t,x,a

r , Y r, Zr

)
dr −

∫ τ

s∧τ
ZrdWr, s ∈ [t, T ],

where τ is a stopping time with value in [t, T ]. Then sup
a∈AH

E
(
Y t

)
= u(t, x).

The proof of this lemma is similar to the proof of lemma 2.3.11, hence we
skip it.

We can now prove the main statement of this section.

Theorem 2.5.6. The function u(t, x) := sup
a∈AH

E
(
Y t,x,a
t

)
is the only viscosity

solution to problem 2.5.1 satisfying polynomial growth condition such that
u(T, x) = g(x) for any x in RN .
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Proof. The uniqueness is a consequence of theorem 2.5.2 and (2.51), hence
we only have to show that u is a viscosity solution.
From proposition 2.5.4 we know that u is a continuous viscosity subsolution
and it is easy to see that u(T, x) = g(x) for any x ∈ RN , so we only need to
prove the supersolution property of u. Fixed (t, x) in (0, T )×RN , let ψ be a
subtangent to u in (t, x) which we assume, without loss of generality, equal
to u in (t, x) and δ a positive constant such that

ψ(s, y) ≤ u(s, y) for any (s, y) ∈ [t, t+ δ]×Bδ(x). (2.54)

As in the proof of proposition 2.5.4 we proceed by contradiction, assuming

H
(
t, x, u,∇xψ,D

2
xψ
)
> 0.

Thanks to the definition of H we know that there exists an a ∈ A for which

1

2

〈
σσ†(t, x, a), D2

xψ(t, x)
〉

+∇xψ(t, x)b(t, x, a) + f (t, x, a, ψ,∇xψσ) > 0,

thus if we define, with an abuse of notation, a as the control which is identi-
cally equal to a, then we have by continuity

La
(
s, y,∇xψ,D

2
xψ
)

+ f (s, y, a, ψ,∇xψσ) > 0, (2.55)

for any (s, y) ∈ [t, t+ δ]×Bδ(x), possibly taking a smaller δ.
Once again we define the stopping time

τ := (t+ δ) ∧ inf
{
s ∈ [t,∞) :

∣∣X t,x,a
s − x

∣∣ ≥ δ
}
,

let
(
Y s, Zs

)
be the solution to the BSDE

Y s = u
(
τ,X t,x,a

τ

)
+

∫ τ

s∧τ
f
(
r,X t,x,a

r , Y r, Zr

)
dr −

∫ τ

s∧τ
ZrdWr, s ∈ [t, T ]

and
(
Ŷs, Ẑs

)
:=
(
ψ
(
s,X t,x,a

s∧τ
)
, (∇xψσ)

(
s,X t,x,a

s∧τ
))

which, by Itô’s formula, is
solution to

Ŷs =ψ
(
τ,X t,x,a

τ

)
−
∫ τ

s∧τ
ẐrdWr

−
∫ τ

s∧τ

(
∂tψ

(
r,X t,x,a

r

)
+ L

(
r,X t,x,a

r ,∇xψ,D
2
xψ
))
dr,

s ∈ [t, T ].
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We know from lemma 2.5.5 that

sup
a∈AH

E
(
Y t

)
= u(t, x) = ψ(t, x), (2.56)

but by (2.54) we have u (τ,X t,x,a
τ ) ≥ ψ (τ,X t,x,a

τ ), which together with (2.55)
imply, thanks to corollary B.1.8, that Y t > ψ(t, x) a.e., in contradiction with
(2.56).

2.6 A Nonlinear PDE Problem with Singular

Boundary Conditions

This section is mostly inspired by the seminal paper [20] in which Lasry and
Lions study a class of stochastic control problems using the associated semi-
linear PDEs. What they do is showing existence, uniqueness and comparison
results for solutions to the PDE in a bounded domain D

1

2
∆u(x)− |∇u(x)|α − µu(x) + f(x) = 0, x ∈ D,

u(x)→∞, as dist(x, ∂D)→ 0+
(2.57)

under various conditions obtaining a complete solution to the stochastic con-
trol problem, which is also solution to the previous PDE,

inf
q∈A

J(x, q) := inf
q∈A

E

(∫ ∞
0

e−µt
(
f(Xt) +

|qt|β

α(β−1)β

)
dt

)
, (2.58)

where x ∈ D, β :=
α

α− 1
, Xt := x+

∫ t
0
qsds+Wt and A is the set of controls

which enforce the state constraint conditions, i.e. such that Xt ∈ D a.e. for
any t ∈ [0,∞) and consequently τx := inf{t ∈ [0,∞) : Xt /∈ D} is equal to
infinity a.e..

What we will do here instead is, as we have done in the previous sections,
to use the stochastic control problem to find the existence and a represen-
tation formula for the solution to a PDE problem with singular boundary
conditions. This PDE problem is a generalization of a particular case stud-
ied in [20], where the first order term is an Hamiltonian subquadratic in the
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first order term which presents a strong monotonicity with respect to the zero
order term. The main difficulty of this problem is that it requires controls
not uniformly bounded, which cause some issues when combined with the
exit times necessary to study stationary problems. This force us to consider
simpler operator than the ones used in the previous sections.

It is worth noticing that there exist some articles which study BSDEs
with singular terminal condition and use them to find viscosity solutions to
PDE problems ([34, 35]) or to solve optimal control problems ([2]), but all
use generators which are independent from the first order term.

Before we can deal with the singular boundary conditions, it is necessary
to study the associated Dirichlet problem.

2.6.1 The Dirichlet Problem for a PDE Concave and

Coercive with respect to the First Order Term

Problem 2.6.1. Let D ⊂ RN be an open bounded set which satisfies an
exterior cone condition as in definition 2.4.1, σ an N × N real matrix, a
constant G and H : RN × R × RN → R two continuous functions. Assume
that there exist three positive number λ, µ and ` such that, for any p ∈ RN ,
x, x′ ∈ RN and y, y′ ∈ R,

(i) |H(x, y, p)−H(x′, y, p)| ≤ `|x− x′|;

(ii) (y − y′)(H(x, y, p)−H(x, y′, p)) ≤ −µ|y − y′|2;

(iii) |H(x, y, p)−H(x, 0, p)| ≤ ν(1 + |y|);

(iv) p 7→ H(x, y, p) is concave;

(v) lim
|p|→∞

H(x, y, p)

|p|
= −∞;

(vi) x†σσ†x ≥ λ|x|2.
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Find the solution u to the elliptic PDE
1

2

〈
σσ†, D2u(x)

〉
+H(x, u,∇u) = 0, x ∈ D,

u(x) = G, x ∈ ∂D.

As for problem 2.4.2, we have that holds a comparison result, which is a
consequence of [8, Theorem 3.3].

Theorem 2.6.2. Let u and v be respectively a subsolution and a supersolu-
tion to problem 2.6.1 such that u ≤ v on ∂D. Then u ≤ v on D.

Without the Lipschitz assumptions for the first order term is difficult
to solve directly this problem using the method employed on the previous
sections, therefore, in order to overcome this difficulty, we will use the convex
conjugate of −H

f(x, y, q) = sup
p∈RN

(
q†p+H(x, y, p)

)
.

We point out that f is continuous, has superlinear growth at infinity and is
convex in q, and satisfies items (i) to (iii) in problem 2.6.1. Furthermore

H(x, y, p) = inf
q∈RN

(
f(x, y, q)− q†p

)
and both the infimum and the supremum in the previous formulas is achieved
at some point in RN , since both −H and f have superlinear growth. We will
conveniently assume that

sup
x∈D
|f(x, 0, 0)| ≤ `. (2.59)

The control sets that we will use this time to solve the problem are the
Aρ, made up by the cadlag processes q ∈ L2

N ∩ L
β
N such that {qρ+t}t∈[0,∞)

is progressive with respect to the filtration {Fρt }t∈[0,∞) and there exists a
constant c such that |q| < c. As always A := A0 and we have that, for any
ϕ ∈ C2 and t ∈ [0,∞),

1

2

〈
σσ†, D2ϕ(x)

〉
+H(x, ϕ,∇ϕ)
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= inf
q∈A

(
1

2

〈
σσ†, D2ϕ(x)

〉
−∇ϕ(x)qt + f(x, u, qt)

)
.

The lack of a bound for our controls q constitute the main difference between
this Dirichlet problem and the one presented in section 2.4.

The FBSDEs that we will use to build our viscosity solution this time
assume the following form,

Xρ,ζ
ρ+s =ζ +

∫ ρ+s

ρ

σdW̃r,

Y ρ,ζ
ρ+s =G−

∫ ρ+τρ,ζ

ρ+s∧τρ,ζ
Zρ,ζ
r dW̃r

+

∫ ρ+τρ,ζ

ρ+s∧τρ,ζ

(
f
(
Xρ,ζ
r , Y ρ,ζ

r , qr
)
− Zρ,ζ,q

r σ−1
r qr

)
dr,

Zρ,ζ,q
ρ+s =0, on

{
τ ρ,ζ ≤ s

}
,

s ∈ [0,∞). (2.60)

where ρ is an a.e. finite stopping time, ζ ∈ L2
(
Ω,Fρ;RN

)
, q ∈ A and τ ρ,ζ

is the exit time of Xρ,ζ from D. As in the previous sections our candidate
solution is u(x) := inf

q∈A
E
(
Y ρ,x
ρ

)
.

Note that under these conditions the assumptions A.1.1, (A.4) and (A.5)
hold for the SDE part, while assumptions B.2.1 holds for the BSDE part
(we enforce item (viii)), thanks to the definition of A, but this time some
constants in these assumptions will vary depending on q, since the elements
of A are not uniformly bounded. Furthermore under our assumptions, by
remark B.2.3 and theorems A.1.3 and B.2.4, always exists a unique solution
to (2.60). We will use the same notations and conventions used in section 2.4,
explicitly stating the dependence from the controls in A only when needed.

We start proving that we can apply the dynamic programming princi-
ple 2.2.7 on u, showing first that it is bounded and later that it is continuous.

Proposition 2.6.3. Let C := −G− −
max
x∈D

H−(x, 0, 0)

µ
. Then we have that,

for any q ∈ A and t ∈ [0,∞), Y x,q
t ≥ C a.e.. In particular

u(x) := inf
q∈A

E(Y x
0 ) ≥ C.
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Proof. Is trivial that G ≥ C and f(Xx
t , C, qt) ≥ H(Xx

t , C, 0) ≥ 0 for any
q ∈ A and t ≤ τx. Moreover the couple (C, 0) is solution of the BSDE
(C, 0, τx), therefore theorem B.2.9 imply our statement.

Proposition 2.6.4. The function u(x) := inf
q∈B

E(Y x
0 ) is bounded from above

by a constant that depends only on D, G, λ and `.

Proof. Fixed the control q ≡ 0 proposition A.2.2 yields that there exists a
ϑ depending on `, D and λ such that sup

x∈D
E
(
eϑτ

x)
< ∞. Then we can use

corollary B.2.6 with γ = ϑ and µ = 0 to obtain that there exists a constant
c depending on ` and ϑ such that, thanks also to (2.59),

sup
x∈D

E
(
|Y x

0 |2
)
≤ sup

x∈D
cE

(
eϑτ

x

G+

∫ τx

0

eϑt`dt

)
and this concludes the proof since sup

x∈D
inf
q∈A

E(Y x,q
0 ) ≤ sup

x∈D
E
(
Y x,0

0

)
.

To study the continuity of u, we will use another formulation of our
FBSDEs (2.60) given by the Girsanov’s theorem, which is explained in detail
in [37, Chapter VIII] and we summarize in the following.

Theorem 2.6.5 (Girsanov’s Theorem). Let H ∈ L2, W a Brownian motion
under the probability measure P and assume that for any t ∈ [0,∞) the
process

E(H)t := e
∫ t
0 HsdWs− 1

2

∫ t
0 |Hs|

2ds

is a martingale with E(E(H)t) = 1. Then if we define for any t ∈ [0,∞) the
measure dQ|Ft := E(H)tdP|Ft, Q is a probability measure on F∞ equivalent
to P. Furthermore W̃ := W −

∫ ·
0
Hsds is a Brownian motion for Q.

Since q and σ−1 are bounded and E(−σ−1q) is solution to the SDE

E
(
−σ−1q

)
t

= 1−
∫ t

0

σ−1
s qsE

(
−σ−1q

)
s
dWs,

it is easy to see that E(−σ−1q) satisfies the conditions of the Girsanov’s theo-
rem 2.6.5, therefore we have that under the measure Qq defined by E(−σ−1q)
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the FBSDE (2.60) take the form

Xρ,ζ
ρ+s =ζ +

∫ ρ+s

ρ

σdWr −
∫ ρ+s

ρ

qrdr,

Y ρ,ζ
ρ+s =G+

∫ ρ+τρ,ζ

ρ+s∧τρ,ζ
f
(
Xρ,ζ
r , Y ρ,ζ

r , qr
)
dr

−
∫ ρ+τρ,ζ

ρ+s∧τρ,ζ
Zρ,ζ
r dWr,

Zρ,ζ
ρ+s =0, on

{
τ ρ,ζ ≤ s

}
,

s ∈ [0,∞). (2.61)

In general the expectation under P of a stochastic variable is different
from the expectation under an equivalent measure Q of the same variable,
but, since Y ρ,x

ρ is a constant a.e. and P and Q are equivalent measures,
EP
(
Y ρ,x
ρ

)
= EQ

(
Y ρ,x
ρ

)
= Y ρ,x

ρ a.e.. We point out that in this form the value
of the SDE, and consequently of the exit time, depends on q.

Remark 2.6.6. As said before, we lack a uniform bound for the controls in
A which cause a lack of a uniform bound for the exit times of the SDE in
equation (2.61) from D. The bound for the exit times is an important tool
to prove their equicontinuity and consequently the continuity of viscosity
solutions, as we have done in section 2.4. To obtain the equicontinuity of the
exit times in this setup we will use that the paths defined by the SDE part
of (2.61) are easy to study, in fact we have that

sup
q∈A

E

(
sup

s∈[0,∞)

∣∣Xρ,x
ρ+s −X

ρ,y
ρ+s

∣∣2) = |x− y|2.

Lemma 2.6.7. Under our assumptions we have that fixed two positive con-
stants ε and α, there exists a δ > 0, depending on ε and α, such that

Qq (|τ ρ,x − τ ρ,y| > α) < ε

for any x ∈ RN and y ∈ Bδ(x).

We recall that from lemma 2.4.7, which is true for each q ∈ A, and
theorem A.2.4 that the exit times are continuous for the measure P and
hence for Q. The purpose of this lemma is to give a bound, uniform with
respect to q, that we will use to prove the continuity of u.
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Proof. To ease notation assume that ρ = 0 and restrict x in D, since for
x /∈ D this is obviously true. We start fixing x ∈ D, defining for any y ∈ D

τ yβ := inf

{
t ∈ [0,∞) : inf

z∈D
|Xy

t − z| ≥ β

}
and noting that

Q(|τx − τ y| > α) =Q
(
{τ y > τx + α} ∩

{
τxβ > τx + α

})
+Q

(
{τ y > τx + α} ∩

{
τxβ ≤ τx + α

})
+Q

(
{τx > τ y + α} ∩

{
τ yβ > τ y + α

})
+Q

(
{τx > τ y + α} ∩

{
τ yβ ≤ τ y + α

})
≤Q

(
τxβ > τx + α

)
+Q

({
τ y > τxβ

})
+Q

(
τ yβ > τ y + α

)
+Q

({
τx > τ yβ

})
.

We can choose a β, depending on α and ε, such that Q
(
τ yβ > τ y + α

)
<
ε

4
for any y ∈ D, in fact if that would not be true we should have, thanks to
the reverse Fatou’s lemma,

Q(τ y > τ y + α) ≥ lim sup
β→0

Q
(
τ yβ > τ y + α

)
≥ ε

4

for some y ∈ D, in contradiction with lemma 2.4.7, which holds true for each
q ∈ A.
Now, for the last terms, we can use Markov’s inequality and theorem A.1.4
to get

Q
({
τ y > τxβ

})
≤ Q

({∣∣∣Xx
τxβ
−Xy

τxβ

∣∣∣ ≥ β
})
≤ |x− y|

2

β2

and similarly

Q
({
τx > τ yβ

})
≤ |x− y|

2

β2
.

Therefore there exists a δ > 0 depending on ε and α such that

Q
({
τ y > τxβ

})
+Q

({
τx > τ yβ

})
≤ ε

2

for any y ∈ Bδ(x) and consequently Q (|τ ρ,x − τ ρ,y| > α) < ε.
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Proposition 2.6.8. Under our assumptions, for any a.e. finite stopping
time ρ, the function (x, q) ∈ RN ×A 7→ Y ρ,x

ρ is continuous in probability and
the function u(x) := inf

q∈A
E (Y x

0 ) is bounded and continuous. In particular,

for any x ∈ RN and a.e. finite stopping time ρ, u(x) = inf
q∈A

E
(
Y ρ,x
ρ

)
.

One of the consequences of this proposition is that it allows us to study
u(ζ) as ess inf

q∈A
E
(
Y ρ,ζ
ρ

∣∣Fρ), if ζ is in L2
(
Ω,Fρ;RN

)
.

Proof. To prove the last part of the statement note that for any q ∈ A we
can take an q′ ∈ Aρ such that Y x,q

t
d
= Y ρ,x,q′

ρ+t for any t ∈ [0,∞) and x ∈ RN .
Hence for any solution Y to (2.61) we can take another solution Y such
that Y x

t
d
= Y

ρ,x

ρ+t for any t ∈ [0,∞) and x ∈ RN . The statement is then a
consequence of remark 2.2.6 and the reversibility of the argument.
The continuity in probability of Y is just a consequence of remark A.1.7
and theorems A.2.4, A.2.5 and B.2.5. Moreover, thanks to propositions 2.6.3
and 2.6.4, we already know that u is bounded, thus we only have to show
the continuity of u.
Since Y0 is continuous in probability and F0–measurable, it is continuous a.e.
and u is upper semicontinuous as the infimum of continuous functions: let
{xn}n∈N be a sequence in D converging to a fixed x ∈ D, then we have that

lim sup
n→∞

u(xn) = u ≤ u(x).

We can extract a subsequence, which we denote again as {xn}n∈N, such

that |u(xn) − u| < 1

n
and a sequence of controls {qn}n∈N ⊂ A such that∣∣∣u(xn)− Y xn,qn

0

∣∣∣ < 1

n
a.e., qnt = qn

t∧τxn,qn . We thus have that lim
n→∞

Y xn,qn

0 = u

a.e. and that the sequence
{
Y xn,qn

0

}
is equibounded, hence to prove the

continuity of u we will show that u(x) ≤ lim
n→∞

Y xn,qn

0 = u a.e.. To do so we
will build some BSDEs that will help us in this task.
Define, for any t ∈ [0,∞), the functions χt := lim

s↓t
χ{Ys≤G} and note that χt

is cadlag with jumps of size 1, thus it has quadratic variation equal to 0 and
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Itô’s formula yields

Y xn,qn

t χt =Gχτxn,qn +

∫ τxn,q
n

t∧τxn,qn
f
(
Xxn,qn

s , Y xn,qn

s , qns
)
χsds

+G
(∣∣J0(t)

∣∣− ∣∣J1(t)
∣∣)− ∫ τxn,q

n

t∧τxn,qn
Zxn,qn

s χsdWs,

(2.62)

where J0(t) and J1(t) are respectively the sets made up by the points of
discontinuity s of χ between t and τxn,qn such that χs = 0 and χs = 1. We
will now prove for almost any ω ∈ Ω that

Y xn,qn

t χt = Gχt+

∫ τG,nt

t∧τG,nt

f
(
Xxn,qn

s , Y xn,qn

s , qns
)
ds−

∫ τG,nt

t∧τG,nt

Zxn,qn

s dWs, (2.63)

where τG,nt := τxn,q
n∧inf{s ∈ [t,∞) : χs = 0}. Notice that by definition B.2.2

χτxn,qn = 1, therefore |J0(t)|−|J1(t)| is equal to 0 or 1 if we have respectively
an even or an odd number of jumps. For a fixed ω ∈ Ω, assume that we have
2n jumps, then χs = 1 for any s ∈

[
t, τG,nt

]
, |J0(t)| − |J1(t)| = 0 and

Y xn,qn

τG,nt

χτG,nt
= G, thus (2.63) follows from (2.62). Now assume instead that

we have 2n + 1 jumps, then χt = 0 and τG,nt = t, and (2.63) is obviously
true. Finally define, for any t ∈ [0,∞) and for any n ∈ N, the stopping time
τn := τG,n

τx,qn
, the BSDE

Y
n

t = G+

∫ τn

t∧τn
f
(
Xxn,qn

s , Y
n

s , q
n
s

)
ds−

∫ τn

t∧τn
Z
n

sdWs,

the sets
At :=

{
f
(
Xxn,qn

t , Y
n

t , q
n
t

)
> f

(
Xxn,qn

t , Y
n

t , 0
)}

,

the controls qnt := qnt

(
1− χAtχ{τx,qn>t}

)
and the BSDE

Y n
t = G+

∫ τn

t∧τn
f
(
Xxn,qn

s , Y n
s , q

n
s

)
ds−

∫ τn

t∧τn
Zn
s dWs.

We have by (2.63) that, for any t ∈ [0,∞) and n ∈ N,

Y
n

t∨τx,qn =Y xn,qn

(t∧τn)∨τx,qnχ(t∧τn)∨τx,qn +G
(
1− χ(t∧τn)∨τx,qn

)
=G ∧ Y xn,qn

(t∧τn)∨τx,qn
(2.64)
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and, by theorem B.2.9,

Y n
t ≤ Y

n

t and Y n
0 ≤ Y

n

0 ≤ Y xn,qn

0 . (2.65)

Using theorem B.2.5 we have that there exist a γ ∈ (0,−µ) and a constant c
depending on µ and γ such that

E

(∣∣∣Y x,qn

0 − Y n
0

∣∣∣2)
≤ cE

(∣∣∣eγτx,qn − eγτn∣∣∣2G2 +

∫ τn

τx,qn
e2γt

∣∣∣f (Xxn,qn

t , Y x,qn

t , qnt

)∣∣∣2 dt
+

∫ τx,q
n

0

e2γt
∣∣∣f (Xx,qn

t , Y x,qn

t , qnt

)
− f

(
Xxn,qn

t , Y x,qn

t , qnt

)∣∣∣2 dt) .
By definition we have

f
(
Xxn,qn

t , Y x,qn

t , qnt

)
χ{t>τx,qn} ≥ H

(
Xxn,qn

t , G, 0
)

and, thanks to (2.64), (2.65) and the monotonicity of f ,

f
(
Xxn,qn

t , Y x,qn

t , qnt

)
χ{t>τx,qn} =f

(
Xxn,qn

t , G, qnt

)
χ{t>τx,qn}

≤f
(
Xxn,qn

t , Y
n

t , q
n
t

)
χ{t>τx,qn}

≤f
(
Xxn,qn

t , Y
n

t , 0
)
χ{t>τx,qn}

≤f
(
Xxn,qn

t , C, 0
)
χ{t>τx,qn},

where C is the lower bound defined in proposition 2.6.3. This means that∫ τn

τx,qn
e2γt

∣∣∣f (Xxn,qn

t , Y x,qn

t , qnt

)∣∣∣2 dt ≤2

∫ τn

τx,qn
e2γt

∣∣∣H (Xxn,qn

t , G, 0
)∣∣∣2 dt

+ 2

∫ τn

τx,qn
e2γt

∣∣∣f (Xxn,qn

t , C, 0
)∣∣∣2 dt,

thus the dominated convergence theorem and lemma 2.6.7 yield that

lim
n→∞

E

(∣∣∣Y x,qn

0 − Y n
0

∣∣∣2) = 0. (2.66)

We can then conclude the proof since (2.65) and (2.66) imply, a.e.,

u(x) ≤ lim inf
n→∞

Y x,qn

0 = lim inf
n→∞

Y n
0 ≤ lim

n→∞
Y xn,qn

0 = u.
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Now that we have checked that u exists and is possible to apply the tools
developed in section 2.2, we will focus on proving that u is a viscosity solution
to problem 2.6.1.

Proposition 2.6.9. The function u is a continuous viscosity supersolution
to the problem 2.6.1.

Proof. We know from proposition 2.6.8 that u is continuous, thus we just
have to prove the supersolution property to conclude the proof. In order
to do so we will show that, fixed x ∈ D, Y 0,·,q

0 is a supersolution in x to
problem 2.6.1 for any q ∈ A. Then u is the infimum of a family of locally
equibounded supersolutions, hence is a supersolution by theorem 2.0.3. In
this proof the FBSDEs are intended in the (2.60) form.
Given x ∈ D, q ∈ A and a subtangent ψ to Y x,q

0 a.e. at x we can assume
without loss of generality that Y x,q

0 = ψ(x) a.e., so suppose that

1

2

〈
σσ†, D2ψ(x)

〉
+H(x, ψ,∇ψ) > 0

and we will find a contradiction. By the definition of subtangent, there exists
a positive δ such that, for any t ∈ [0, δ] and y ∈ Bδ(x) ⊆ D,

Y t,y,q
t ≥ ψ(y), a.e., (2.67)

and, possibly taking a smaller δ,

0 <
1

2

〈
σσ†, D2ψ(y)

〉
+H(y, ψ,∇ψ)

≤1

2

〈
σσ†, D2ψ(y)

〉
+ f(y, ψ, qt)−∇ψ(y)qt,

(2.68)

thanks to the continuity of H and ψ. Now we define the stopping time

τ := δ ∧ inf{t ∈ [0,∞) : |Xx
t − x| ≥ δ},

let
(
Y t, Zt

)
:= (Y x,q

t∧τ , Z
x,q
t∧τ ), which solve the BSDE

Y t = Y x,q
τ +

∫ τ

t∧τ

(
f
(
Xx
s , Y s, qs

)
− Zsσ

−1qs
)
ds−

∫ τ

t∧τ
ZsdWs,
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for any t ∈ [0, δ], and
(
Ŷt, Ẑt

)
:= (ψ(Xx

t∧τ ), (∇ψσ)(Xx
t∧τ )) which, by Itô’s

formula, is solution to

Ŷt = ψ (τ,Xx
τ )−

∫ τ

t∧τ
ẐsdWs −

∫ τ

t∧τ

1

2

〈
σσ†, D2ψ(Xx

s )
〉
ds, t ∈ [0, δ].

By (2.67) we have that Y τ,Xx
τ ,q

τ ≥ ψ (Xx
τ ) a.e. and (2.68) imply, thanks to

corollary B.1.8, that Y x,q
0 > ψ(x) a.e., but this lead to a contradiction since,

by our assumptions, ψ(x) = Y x,q
0 . This concludes the proof.

As before, to finally prove that u is a viscosity solution we need a dynamic
programming principle for this problem, which can be proved as in the proof
of lemma 2.3.11.

Lemma 2.6.10. For any q ∈ A we let
(
Y , Z

)
be the solution of the BSDE

Y t = u(Xx
τ ) +

∫ τ

t∧τ

(
f
(
Xx
s , Y s, qs

)
− Zsσ

−1qs
)
ds−

∫ τ

t∧τ
ZsdWs,

for any t ∈ [0,∞) and where τ is a stopping time smaller than τx. Then
inf
q∈A

E
(
Y 0

)
= u(x).

Theorem 2.6.11. The function u(x) := inf
q∈A

E (Y x,q
0 ) is the only viscosity

solution to problem 2.6.1 such that u(x) = G for any x ∈ ∂D.

Proof. The uniqueness is a consequence of theorem 2.6.2, hence we only have
to show that u is a viscosity solution.
From proposition 2.6.9 we know that u is a continuous viscosity supersolution
and it is easy to see that u(x) = G for any x ∈ ∂D, so we only need to prove
the subsolution property of u. Fixed x in D, let ϕ be a supertangent to u
in x which we assume, without loss of generality, equal to u in x and δ a
positive constant such that

ϕ(y) ≥ u(y) for any y ∈ Bδ(x) ⊆ D. (2.69)

As in the proof of proposition 2.6.9 we proceed by contradiction, assuming

1

2

〈
σσ†, D2ϕ(x)

〉
+H(x, ϕ,∇ϕ) < 0
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Since ϕ is a C2 function we have that ∇ϕ is bounded, thus, if we define the
stopping

τ := δ ∧ inf{t ∈ [0,∞) : |Xx
t − x| ≥ δ},

there exists a q ∈ A such that, for any t ∈ [0, δ],

f(Xx
t∧τ , ϕ, qt∧τ )−∇ϕ(Xx

t∧τ )qt∧τ = H(Xx
t∧τ , ϕ,∇ϕ).

As a consequence of this we have that, by continuity,

1

2

〈
σσ†, D2ϕ(Xx

t∧τ )
〉

+ f(Xx
t∧τ , ϕ, qt∧τ )−∇ϕ(Xx

t∧τ )qt∧τ < 0, (2.70)

for any t ∈ [0, δ], possibly taking a smaller δ.
Let

(
Y t, Zt

)
be the solution to the BSDE

Y t = u (τ,Xx
τ ) +

∫ τ

t∧τ

(
f
(
Xx
s , Y s, qs

)
− Zsσ

−1qs
)
ds−

∫ τ

t∧τ
ZsdWs,

for any t ∈ [0, δ] and
(
Ŷt, Ẑt

)
:= (ϕ(s,Xx

t∧τ ), (∇ϕσ)(Xx
t∧τ )) which, by Itô’s

formula, is solution to

Ŷt = ϕ(Xx
τ )−

∫ τ

t∧τ

1

2

〈
σσ†, D2ϕ(Xx

s∧τ )
〉
ds−

∫ τ

t∧τ
ẐsdWs, t ∈ [0, δ].

We know from lemma 2.6.10 that

sup
q∈A

E
(
Y 0

)
= u(x) = ϕ(x), (2.71)

but by (2.69) we have u(Xx
τ ) ≤ ϕ(Xx

τ ), which together with (2.70) imply,
thanks to corollary B.1.8, that Y 0 < ϕ(x) a.e., in contradiction with (2.71).

2.6.2 A PDE with Blow Up Conditions

Here we will use the information gathered in the previous subsection to study
an elliptic problem with blow up condition on the boundary. To ease notation
we define the signed distance d(x) := inf

y∈RN\D
|x−y|− inf

y∈D
|x−y| and the sets

Γδ :=
{
x ∈ RN : |d(x)| < δ

}
, Dδ := D ∩ Γδ and Dδ := D \Dδ.
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Problem 2.6.12. Under the same conditions of problem 2.6.1 assume that
∂D is C2 and there exist an α ∈ (1, 2], a Λ ≥ λ and two constants K ≥ k > 0

such that, for any x, p ∈ RN ,

(vii) −K|p|α ≤ lim
c→±∞

H(x, 0, cp)

cα
≤ −k|p|α;

(viii) x†σσ†x ≤ Λ|x|2.

Find the solution u to the elliptic PDE
1

2

〈
σσ†, D2u(x)

〉
+H(x, u,∇u) = 0, x ∈ D,

u(x)→∞, as d(x)→ 0+.

The idea to find a representation formula to solutions of this problem is
simple: our candidate viscosity solution is u := lim

G→∞
uG, where uG is the

solution to problem 2.6.1 equal to G on ∂D (similarly we will denote with
(YG, ZG) as the (Y, Z) solution to the BSDE of (2.60) with final condition
G). To do so we need a bound for this limit. The next theorem will provide
this bound and is essentially a restatement adapted to our method of a result
given in [20].

Remark 2.6.13. It is well known, see [15, Section 14.6], that if ∂D is Ck

then there exists a δ0 such that d ∈ Ck
(
Γδ0
)
with bounded derivatives, in

particular |∇d| = 1 in Γδ0 . Thus with an abuse of notation we will denote
with d any function Ck equal to d in Dδ, for a δ ∈ (0, δ0), and bigger than δ
in Dδ.

Theorem 2.6.14. Under our assuming the limit function u := lim
G→∞

uG exists
and is locally bounded in D. Furthermore we have that

c0

(d(x))θ
− c− ≤ u(x) ≤ C0

(d(x))θ
+ c+, if α ∈ (1, 2),

− c0 ln(d(x))− c− ≤ u(x) ≤ −C0 ln(d(x)) + c+, if α = 2,

where θ := 2−α
α−1

, c+ and c− are two positive constants depending on D, α, H
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and respectively on k, Λ or K, λ, and

(c0, C0) :=


(

1

θ

(
λ(1 + θ)

2K

) 1
α−1

,
1

θ

(
Λ(1 + θ)

2k

) 1
α−1

)
, if α ∈ (1, 2),(

λ

2K
,

Λ

2k

)
, if α = 2.

Proof. In this proof we will always assume that α ∈ (1, 2), since the case
α = 2 can be handled similarly. Thanks to theorem B.2.9 we know that if
G ≤ G′ then Y q

G ≤ Y q
G′ for any q ∈ A and consequently uG ≤ uG′ . This

implies that the limit function u exists, since for G → ∞ the functions uG
converge monotonically to a function u.
Now, to prove that u is finite, we will define a function w finite in D and
we will prove that u ≤ w. Let ε be any positive constant, c+ a positive
number that we will choose later and Cε := C0 + ε. Then we define the
C2(D) function, see remark 2.6.13,

w(x) :=
Cε

(d(x))θ
+ c+.

As a first step in proving this theorem, we will show that w is a supersolution
to problem 2.6.12 starting with the following inequality:

1

2

〈
σσ†, D2w(x)

〉
+H(x,w,∇w)

≤1

2

〈
σσ†, D2w(x)

〉
+H(x, 0,∇w)− µw(x)

=
θ(θ + 1)Cε
2(d(x))θ+2

〈
σσ†,∇d(x)⊗∇d(x)

〉
+H

(
x, 0,−θCε∇d(x)

(d(x))θ+1

)
− θCε

2(d(x))θ+1

〈
σσ†, D2d(x)

〉
− µCε

(d(x))θ
− µc+.

Now we define the function

h(x) :=
θ(θ + 1)Cε

2

〈
σσ†,∇d(x)⊗∇d(x)

〉
+ (d(x))θ+2H

(
x, 0,−θCε∇d(x)

(d(x))θ+1

)
,

then, since θ + 2 = α(θ + 1), for any x ∈ ∂D we obtain from item (vii) in
problem 2.6.12 that

lim
x→x

h(x) ≤ θ(θ + 1)Cε
2

〈
σσ†,∇d(x)⊗∇d(x)

〉
− kθα(Cε)

α|∇d(x)|α.
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We point out that if |∇d(x)| = 1, which surely happens when d(x) is little
enough, then, if ε > 0, lim

x→x
h(x) < 0 therefore, by continuity, there exists a

δ > 0 such that h(x) < 0 for any x ∈ Dδ. We have from our assumptions
that there exists a constant c1 such that

1

2

〈
σσ†, D2w(x)

〉
+H(x,w,∇w)

≤ h(x)

(d(x))θ+2
+

c1

(d(x))θ+1
− µCε

(d(x))θ
− µc+. (2.72)

When x ∈ Dδ we have that h is negative, thus when d(x) is little enough this
guarantees us that (2.72) is negative, while in the other case we can choose
c+ big enough to achieve that. This prove that w is a supersolution and this
yields, thanks to theorem 2.6.2, that uG ≤ w for any G, and consequently
that u ≤ w. Then, by the arbitrariness of ε, u(x) ≤ C0

(d(x))θ
+ c+.

To conclude we will proceed as before and prove that for an opportune con-
stant c− and cε := c− ε that

wε(x) :=
cε

(d(x) + ε)θ
− c−

is a subsolution to problem 2.6.1 for any positive ε and ε such that d is C2

in Γε. As previously done we start with the inequality

1

2

〈
σσ†, D2wε(x)

〉
+H(x,wε,∇wε)

≥1

2

〈
σσ†, D2wε(x)

〉
+H(x, 0,∇wε)− ν|wε(x)| − ν

=
θ(θ + 1)cε

2(d(x) + ε)θ+2

〈
σσ†,∇d(x)⊗∇d(x)

〉
+H

(
x, 0,− θcε∇d(x)

(d(x) + ε)θ+1

)
− θcε

2(d(x) + ε)θ+1

〈
σσ†, D2d(x)

〉
− ν

∣∣∣∣ cε
(d(x) + ε)θ

− c−
∣∣∣∣− ν

and define the function

h(x) :=
θ(θ + 1)cε

2

〈
σσ†,∇d(x)⊗∇d(x)

〉
+ (d(x) + ε)θ+2H

(
x, 0,− θcε∇d(x)

(d(x) + ε)θ+1

)
.
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As before we obtain from item (vii) in problem 2.6.12 that, for any x such
that d(x) = −ε,

lim
x→x

h(x) ≥ θ(θ + 1)cε
2

〈
σσ†,∇d(x)⊗∇d(x)

〉
−Kθαcαε |∇d(x)|α,

which is positive if ε > 0, therefore, by continuity, h(x) > 0 if d(x) + ε is
little enough. Finally we have that there exists a constant c2 such that

1

2

〈
σσ†, D2wε(x)

〉
+H(x,wε,∇wε)

≥ h(x)

(d(x) + δ)θ+2
+

c2

(d(x) + δ)θ+1
− νcε

(d(x) + δ)θ
− νc−,

which can be made positive for any little enough ε choosing an opportune
c−, thanks to the positivity of h(x) for d(x) + ε little enough. Then wε is
a bounded subsolution to problem 2.6.1, thus there exists a Gε such that
wε ≤ Gε on ∂D and by theorem 2.6.2 wε ≤ uGε ≤ u on D. Hence the
arbitrariness of ε and ε yields u(x) ≥ c0

(d(x))θ
− c−.

If ∂D is C3 we can improve theorem 2.6.14.

Lemma 2.6.15. If ∂D is C3 we have that
c(x)

(d(x))θ
− c− ≤ u(x) ≤ C(x)

(d(x))θ
+ c+, if α ∈ (1, 2),

− c(x) ln(d(x))− c− ≤ u(x) ≤ −C(x) ln(d(x)) + c+, if α = 2,

where θ := 2−α
α−1

, c+ and c− are two positive constants depending on D, α, H,
σ and respectively on k or K,

C(x) :=


1

θ

(〈
σσ†,∇d(x)⊗∇d(x)

〉
(1 + θ)

2k

) 1
α−1

, if α ∈ (1, 2),〈
σσ†,∇d(x)⊗∇d(x)

〉
2k

, if α = 2

and

c(x) :=


1

θ

(〈
σσ†,∇d(x)⊗∇d(x)

〉
(1 + θ)

2K

) 1
α−1

, if α ∈ (1, 2),〈
σσ†,∇d(x)⊗∇d(x)

〉
2K

, if α = 2.
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Proof. We will always assume that α ∈ (1, 2), since the case α = 2 can be
handled similarly. Let ε be any positive constant, c+ a positive number that
we will choose later and Cε(x) := C(x) + ε. Then we define the C3(D)

function, see remark 2.6.13,

w(x) :=
Cε(x)

(d(x))θ
+ c+.

We will prove that w is a supersolution to problem 2.6.12, starting with the
following inequality:

1

2

〈
σσ†, D2w(x)

〉
+H(x,w,∇w)

≤1

2

〈
σσ†, D2w(x)

〉
+H(x, 0,∇w)− µw(x)

=
θ(θ + 1)Cε(x)

2(d(x))θ+2

〈
σσ†,∇d(x)⊗∇d(x)

〉
+

1

2(d(x))θ
〈
σσ†, D2Cε(x)

〉
− θ

2(d(x))θ+1

〈
σσ†,∇Cε(x)⊗∇d(x) +∇d(x)⊗∇Cε(x)

〉
− θCε(x)

2(d(x))θ+1

〈
σσ†, D2d(x)

〉
− µ Cε(x)

(d(x))θ
− µc+

+H

(
x, 0,

∇Cε(x)

(d(x))θ
− θCε(x)∇d(x)

(d(x))θ+1

)
.

Now we define the function

h(x) :=
θ(θ + 1)Cε(x)

2

〈
σσ†,∇d(x)⊗∇d(x)

〉
+ (d(x))θ+2H

(
x, 0,

∇Cε(x)

(d(x))θ
− θCε(x)∇d(x)

(d(x))θ+1

)
,

then, since θ + 2 = α(θ + 1), for any x ∈ ∂D we obtain from item (vii) in
problem 2.6.12 that

lim
x→x

h(x) ≤ θ(θ + 1)Cε(x)

2

〈
σσ†,∇d(x)⊗∇d(x)

〉
− kθα(Cε(x))α|∇d(x)|α.

We point out that if |∇d(x)| = 1, which surely happens when d(x) is little
enough, then, if ε > 0, lim

x→x
h(x) < 0 therefore, by continuity, there exists a

δ > 0 such that h(x) < 0 for any x ∈ Dδ. We have from our assumptions
that there exist two constants c1 and c2 such that
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1

2

〈
σσ†, D2w(x)

〉
+H(x,w,∇w)

≤ h(x)

(d(x))θ+2
+

c1

(d(x))θ+1
+

c2

(d(x))θ
− µc+. (2.73)

When x ∈ Dδ we have that h is negative, thus when d(x) is little enough this
guarantees us that (2.73) is negative, while in the other case we can choose
c+ big enough to achieve that. This prove that w is a supersolution and this
yields, thanks to theorem 2.6.2, that uG ≤ w for any G, and consequently

that u ≤ w. Then, by the arbitrariness of ε, u(x) ≤ C(x)

(d(x))θ
+ c+.

To conclude we will proceed as before and prove that for an opportune con-
stant c− and cε(x) := c(x)− ε that

wε(x) :=
cε(x)

(d(x) + ε)θ
− c−

is a subsolution to problem 2.6.1 for any positive ε and ε such that d is C3

in Γε. As previously done we start with the inequality

1

2

〈
σσ†, D2wε(x)

〉
+H(x,wε,∇wε)

≥1

2

〈
σσ†, D2wε(x)

〉
+H(x, 0,∇wε)− ν|wε(x)| − ν

=
θ(θ + 1)cε(x)

2(d(x) + ε)θ+2

〈
σσ†,∇d(x)⊗∇d(x)

〉
+

1

2(d(x) + ε)θ
〈
σσ†, D2cε(x)

〉
− θ

2(d(x) + ε)θ+1

〈
σσ†,∇cε(x)⊗∇d(x) +∇d(x)⊗∇cε(x)

〉
− θcε(x)

2(d(x) + ε)θ+1

〈
σσ†, D2d(x)

〉
− ν

∣∣∣∣ cε(x)

(d(x) + ε)θ
− c−

∣∣∣∣− ν
+H

(
x, 0,

∇cε(x)

(d(x) + ε)θ
− θcε(x)∇d(x)

(d(x) + ε)θ+1

)
and define the function

h(x) :=
θ(θ + 1)cε(x)

2

〈
σσ†,∇d(x)⊗∇d(x)

〉
+ (d(x) + ε)θ+2H

(
x, 0,

∇cε(x)

(d(x) + ε)θ
− θcε(x)∇d(x)

(d(x) + ε)θ+1

)
.
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As before we obtain from item (vii) in problem 2.6.12 that, for any x such
that d(x) = −ε,

lim
x→x

h(x) ≥ θ(θ + 1)cε(x)

2

〈
σσ†,∇d(x)⊗∇d(x)

〉
−Kθα(cε(x))α|∇d(x)|α,

which is positive if ε > 0, therefore, by continuity, h(x) > 0 if d(x) + ε is
little enough. Finally we have that there exist two constants c3 and c4 such
that

1

2

〈
σσ†, D2wε(x)

〉
+H(x,wε,∇wε)

≥ h(x)

(d(x) + δ)θ+2
+

c3

(d(x) + δ)θ+1
+

c4

(d(x) + δ)θ
− νc−,

which can be made positive for any little enough ε choosing an opportune
c−, thanks to the positivity of h(x) for d(x) + ε little enough. Then wε is
a bounded subsolution to problem 2.6.1, thus there exists a Gε such that
wε ≤ Gε on ∂D and by theorem 2.6.2 wε ≤ uGε ≤ u on D. Hence the

arbitrariness of ε and ε yields u(x) ≥ c(x)

(d(x))θ
− c−.

Remark 2.6.16. Using the same technique in the proof of lemma 2.6.15 we can

prove that v(x) ≥ c(x)

(d(x))θ
− c−, where v is a supersolution to problem 2.6.12

tending to∞ as d(x)→ 0. Similarly, given a subsolution u to problem 2.6.12
finite in D and tending to ∞ as d(x)→ 0, we can use the functions

wε(x) :=
Cε(x)

(d(x)− ε)θ
+ c+,

defined for ε > 0 small enough, to prove that u(x) ≤ C(x)

(d(x))θ
+ c+, since wε

is a supersolution to problem 2.6.12 in Dε which tends to ∞ as d(x)→ ε.

From this we can obtain a comparison result.

Theorem 2.6.17. Let u and v be respectively a subsolution and a supersolu-
tion to problem 2.6.12 tending to ∞ as d(x)→ 0. Then, if ∂D is C3, µ = ν

and k = K, u ≤ v on D. Furthermore, if λ = Λ, this is true even if ∂D is
just C2.
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Proof. In this proof we will assume that α ∈ (1, 2) and λ < Λ, since the
cases α = 2 and λ = Λ can be handled similarly. Remark 2.6.16 yields that

v(x) ≥ C(x)

(d(x))θ
−c− and u(x) ≤ C(x)

(d(x))θ
+c+, since k = K. As a consequence

of these inequalities we have in a neighborhood of ∂D that

v(x) ≥ γu(x) + (1− γ)
m

µ
=: uγ(x), (2.74)

where γ ∈ (0, 1) and m := −max
x∈D

u−(x) −max
x∈D

H−(x, 0, 0) − µ. Notice that

if ϕ is a supertangent to u in x, then γϕ+ (1− γ)
m

µ
is a supertangent to uγ

in x and vice versa. There exists a q ∈ RN such that

γ

2

〈
σσ†, D2ϕ(x)

〉
+H

(
x, γu+ (1− γ)

m

µ
, γ∇ϕ

)
≥γ

2

〈
σσ†, D2ϕ(x)

〉
+ f

(
x, γu+ (1− γ)

m

µ
, q

)
− γ∇ϕ(x)q

≥γ
2

〈
σσ†, D2ϕ(x)

〉
+ f(x, u, q)− γ∇ϕ(x)q + (1− γ)(µu(x)−m)

≥γ
2

〈
σσ†, D2ϕ(x)

〉
+ γH(x, u,∇ϕ) + (1− γ)(f(x, u, q) + µu(x)−m)

≥(1− γ)(H(x, u, 0) + µu(x)−m),

where the last inequality is a consequence of u being a subsolution to prob-
lem 2.6.12. If u(x) ≤ 0 then we can use the monotonicity of H to obtain

H(x, u, 0) + µu(x)−m ≥ H(x, 0, 0)−m ≥ 0

and if u(x) > 0 we have, since µ = ν,

H(x, u, 0) + µu(x)−m ≥ H(x, 0, 0)− µ−m ≥ 0.

This implies that uγ is a subsolution, hence (2.74) and theorem 2.6.2 yield
that v ≥ uγ in Dδ for any δ little enough and γ ∈ (0, 1). Finally letting
δ → 0 and γ → 1 we can conclude the proof.

Remark 2.6.18. Notice that the previous proof works also for ν < µ. But by
our assumptions we have that, for any y > 0,

µy ≤ H(0, 0, 0)−H(0, 0, y) ≤ ν(1 + y),

which implies that µ ≤ ν.
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Now we come back to our candidate viscosity solution u, discussing its
representation formula. Preliminarily define, for any x ∈ D, the sets

Sx :=
{
{qn}n∈N ⊂ A : lim

n→∞
τx,q

n

=∞ a.e.
}

and the FBSDEs

Xρ,ζ
ρ+s =ζ +

∫ ρ+s

ρ

σdWr −
∫ ρ+s

ρ

qrdr,

Ỹ ρ,ζ
ρ+s =

∫ ρ+τρ,ζ

ρ+s∧τρ,ζ
f
(
Xρ,ζ
r , Ỹ ρ,ζ

r , qr

)
dr −

∫ ρ+τρ,ζ

ρ+s∧τρ,ζ
Z̃ρ,ζ
r dWr,

Z̃ρ,ζ
ρ+s =0, on

{
τ ρ,ζ,q ≤ s

}
,

s ∈ [0,∞).

For any fixed x ∈ D and {qn} ∈ Sx theorem B.2.5 yields the existence of a
constant c depending on γ and µ such that

E

(∣∣∣Y x,qn

Gn,0
− Ỹ x,qn

0

∣∣∣2) ≤ cE
(
e−2γτx,q

n

G2
n

)
,

hence, if we choose a γ ∈ (0, µ) and an increasing sequence {Gn}n∈N for
which lim

n→∞
Gn =∞ and lim

n→∞
E
(
e−2γτx,q

n
)
G2
n = 0, we have that

lim inf
n→∞

E
(
Y x,qn

Gn,0

)
= lim inf

n→∞
E
(
Ỹ x,qn

0

)
.

Since E
(
Y x,qn

Gn,0

)
≥ uGn(x), this means that inf

{qn}∈Sx
lim inf
n→∞

E
(
Ỹ x,qn

0

)
≥ u(x).

On the other hand, we can choose two sequences {Gn}n∈N ⊂ R+ and {qn}n∈N
in A such that lim

n→∞

∣∣∣Y x,qn

Gn,0
− u(x)

∣∣∣ = 0 a.e.. From theorem B.2.9 we know

that Y x,qn

Gn,0
≥ Ỹ x,qn

0 a.e., which implies that lim inf
n→∞

E
(
Ỹ x,qn

0

)
≤ u(x). Thus,

if we can prove that {qn} ∈ Sx, we will have that

u(x) = inf
{qn}∈Sx

lim inf
n→∞

E
(
Ỹ x,qn

0

)
. (2.75)

As in the proof of proposition 2.6.8 we can define χnt := lim
s↓t

χ{Y x,qnGn,s
≤Gn}, the

stopping times

τn := τx,q
n ∧ inf{t ∈ [0,∞) : χnt = 0}
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and the BSDEs

Y
n

t = Gn +

∫ τn

t∧τn
f
(
Xx,qn

s , Y
n

s , q
n
s

)
ds−

∫ τn

t∧τn
Z
n

sdWs,

which is equal to Gn ∧ Y x,qn

Gn,t∧τn . Using Itô’s formula it is easy to see that

e−νtY
n

t = e−ντ
n

Gn+

∫ τn

t∧τn
e−νs

(
f
(
Xx,qn

s , Y
n

s , q
n
s

)
+ νY

n

s

)
ds−

∫ τn

t∧τn
e−νsZ

n

sdWs,

therefore, letting χnt := χ{Y nt ≤0} and C be the lower bound defined in propo-
sition 2.6.3, we get

E
(
Y
n

0

)
=E

(
e−ντ

n

Gn +

∫ τn

0

e−νs
(
f
(
Xx,qn

s , Y
n

s , q
n
s

)
+ νY

n

s

)
ds

)
≥E

(
e−ντ

n

Gn +

∫ τn

0

e−νs
(
H
(
Xx,qn

s , Y
n

s , 0
)

+ νY
n

s

)
ds

)
≥E

(
e−ντ

n

Gn +

∫ τn

0

e−νs
(
H
(
Xx,qn

s , 0, 0
)

+ ν
(
Y
n

s −
∣∣Y n

s

∣∣)− ν) ds)
≥E

(
e−ντ

n

Gn +

∫ τn

0

e−νs
(
H
(
Xx,qn

s , 0, 0
)

+ 2νCχns − ν
)
ds

)
.

By theorem 2.6.14 Y x,qn

Gn,0
, and consequently Y n

0 , are bounded by above, which,
thanks to the last inequality, implies that E

(
e−ντ

x,qn

Gn

)
is bounded, hence

lim
n→∞

τx,q
n ≥ lim

n→∞
τn =∞ a.e.. This prove (2.75).

Theorem 2.6.19. Under our assumptions u is a continuous function in D.

Proof. As a supremum of continuous function u is lower semicontinuous, thus
fixed an x ∈ D and a sequence {xn}n∈N converging to it we have that

lim inf
n→∞

u(xn) = u ≥ u(x).

We can then choose a subsequence of {xn}, which we will denote again with
{xn}, and an increasing sequence of positive numbers {Gn}n∈N, for which
lim
n→∞

Gn = ∞, such that uGn(xn) converges to u. Now let {qn}n∈N be a

sequence of control in Sx such that lim
n→∞

Ỹ x,qn

0 = u(x) a.e. and qnt = qn
t∧τx,qn .

Notice that for any n ∈ N we can find and N > 0 such that τx,qn < τx,q
k
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for any k > N , hence, by lemma 2.6.7, we can extract a subsequence, which
we will denote again with {qn}, such that not only lim

n→∞
τxn,q

n
=∞ a.e., but

also

lim
n→∞

E
(
e−2γτxn,q

n
)
G2
n = 0 (2.76)

for a given γ ∈ (0, µ). It is obvious that lim inf
n→∞

E
(
Y x,qn

Gn,0

)
≥ u, thus we will

proceed as in the proof of proposition 2.6.8, defining a sequence of BSDE

{Y n}n∈N such that Y n ≤ Ỹ x,qn and lim
n→∞

E

(∣∣∣Y xn,qn

Gn,0
− Y n

0

∣∣∣2) = 0.

Define χnt := lim
s↓t

χ{Ỹ x,qns ≤Gn}, the stopping times

τn := τx,q
n ∧ inf

{
t ≥ τxn,q

n

: χnt = 0
}
,

the BSDEs

Y
n

t =

∫ τn

t∧τn
f
(
Xx,qn

s , Y
n

s , q
n
s

)
ds−

∫ τn

t∧τn
Z
n

sdWs,

the sets

At :=
{
f
(
Xx,qn

t , Y
n

t , q
n
t

)
> f

(
Xx,qn

t , Y
n

t , 0
)}

,

the controls qnt := qnt

(
1− χAtχ{τxn,qn>t}

)
and the BSDE

Y n
t =

∫ τn

t∧τn
f
(
Xx,qn

s , Y n
s , q

n
s

)
ds−

∫ τn

t∧τn
Zn
s dWs.

We have that, for any t ∈ [0,∞) and n ∈ N,

Y
n

t∨τxn,qn = Gn ∧ Ỹ x,qn

(t∧τn)∨τxn,qn (2.77)

and, by theorem B.2.9,

Y n
t ≤ Y

n

t and Y n
0 ≤ Y

n

0 ≤ Ỹ x,qn

0 . (2.78)

Using theorem B.2.5 we have that there exists a constant c depending on µ
and γ such that

E

(∣∣∣Y xn,qn

Gn,0
− Y n

0

∣∣∣2)



2.6 A Nonlinear PDE Problem with Singular Boundary
Conditions 93

≤ cE

(
e−2γτxn,q

n

G2
n +

∫ τn

τxn,qn
e−2γt

∣∣∣f (Xx,qn

t , Y xn,qn

Gn,t
, qnt

)∣∣∣2 dt
+

∫ τxn,q
n

0

e−2γt
∣∣∣f (Xxn,qn

t , Y xn,qn

Gn,t
, qnt

)
− f

(
Xx,qn

t , Y xn,qn

Gn,t
, qnt

)∣∣∣2 dt) .
By definition we have

f
(
Xx,qn

t , Y xn,qn

Gn,t
, qnt

)
χ{t>τxn,qn} ≥H

(
Xx,qn

t , Gn, 0
)

≥H
(
Xx,qn

t , 0, 0
)
− νGn − ν

and, thanks to (2.77), (2.78) and the monotonicity of f ,

f
(
Xx,qn

t , Y x,qn

Gn,t
, qnt

)
χ{t>τxn,qn} =f

(
Xx,qn

t , Gn, q
n
t

)
χ{t>τxn,qn}

≤f
(
Xx,qn

t , Y
n

t , q
n
t

)
χ{t>τxn,qn}

≤f
(
Xx,qn

t , Y
n

t , 0
)
χ{t>τxn,qn}

≤f
(
Xx,qn

t , C, 0
)
χ{t>τxn,qn},

where C is the lower bound defined in proposition 2.6.3. This means that∫ τn

τxn,qn
e−2γt

∣∣∣f (Xx,qn

t , Y xn,qn

Gn,t
, qnt

)∣∣∣2dt ≤4

∫ τn

τxn,qn
e−2γt

∣∣∣H (Xx,qn

t , Gn, 0
)∣∣∣2 dt

+
2ν2(G2

n + 1)

γ

(
e−2γτn − e−2γτxn,q

n
)

+ 4

∫ τn

τxn,qn
e−2γt

∣∣∣f (Xx,qn

t , C, 0
)∣∣∣2 dt,

thus lemma 2.6.7, the fact that τn ≥ τxn,q
n , (2.76) and the dominated con-

vergence theorem yield that

lim
n→∞

E

(∣∣∣Y xn,qn

Gn,0
− Y n

0

∣∣∣2) = 0.

From this follows that u(x) = u, concluding the proof.

It is left to proving that u is a viscosity solution to problem 2.6.12. That
u is a subsolution follows from theorem 2.0.3, since it is a supremum of solu-
tion, while the supersolution property can be showed with the exactly same
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method used in theorem 2.6.11, we only need to prove a dynamic program-
ming principle for u.

Lemma 2.6.20. For any q ∈ A we let
(
Y , Z

)
be the solution of the BSDE

Y t = u(Xx
τ ) +

∫ τ

t∧τ

(
f
(
Xx
s , Y s, qs

)
− Zsσ

−1qs
)
ds−

∫ τ

t∧τ
ZsdWs,

for any t ∈ [0,∞) and where τ is a stopping time smaller than τx. Then
ess inf
q∈A

Y 0 = u(x).

Proof. Define Y G as the BSDE such that inf
q∈A

E
(
Y G,0

)
= uG(x) seen in

lemma 2.6.10. Then corollary B.1.8 yields Y G ≤ Y a.e., which implies

u(x) = lim
G→∞

uG(x) = lim
G→∞

ess inf
q∈A

Y G,0 ≤ ess inf
q∈A

Y 0.

On the other hand, if we let {Gn}n∈N and {qn}n∈N be two sequences such

that
∣∣∣u(x)− Y x,qn

Gn,0

∣∣∣ < 1

n
a.e., then we have that lim inf

n→∞
Y x,qn

Gn,τ
≥ u(Xx

τ ) a.e.,

since Y x,qn

Gn,τ
≥ uGn(Xx

τ ) a.e.. Consequently

u(x) = lim
n→∞

Y x,qn

Gn,0
≥ ess inf

q∈A
Y 0,

concluding the proof.

Theorem 2.6.21. The function u := lim
G→∞

uG is a continuous viscosity so-
lution to problem 2.6.12. Furthermore, if the assumptions of theorem 2.6.17
are true, the solution is unique.

Proof. As previously said we already know that u is a viscosity solution,
while uniqueness is a consequence of theorem 2.6.17.

2.6.3 The Ergodic Problem

A natural use of the previous results is the study of the so called “ergodic
problem”, which is the stochastic control problem (2.58) with µ = 0. This
study is performed in [20] analyzing the behavior of the solutions to (2.57) as
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µ tends to 0. A rather complete overview of this problem in the subquadratic
case has been done by Porretta in [36] where, studying the solutions to

1

2
∆uµ(x)− |∇uµ(x)|α − µuµ(x) + f(x) = 0, x ∈ D,

uµ(x) = 0, x ∈ ∂D
(2.79)

as µ tends to 0, he obtain that either (2.79) with µ = 0 admits a bounded
subsolutions and uµ tends to its solution, or lim

µ→0
uµ(x) = −∞ and the ergodic

limit µuµ tends to the unique ergodic constant c0 ≥ 0 such that
1

2
∆v(x)− |∇v(x)|α − c0 + f(x) = 0, x ∈ D,

v(x)→∞, as d(x)→ 0+
(2.80)

admits solutions. Furthermore uµ + ‖uµ‖∞ tends to the unique solution v to
(2.80) such that min

x∈D
v(x) = 0.

The analysis of this problem in our framework is outside the scope of this
thesis, however here we will briefly discuss about it. In our case the problem
is, roughly speaking, to find representation formula of viscosity solutions to

1

2

〈
σσ†, D2u(x)

〉
+H(x,∇u)− c0 = 0, x ∈ D, (2.81)

where H(x, p) := H(x, 0, p), which explodes as d(x) go to 0. The idea to do
that is to use the same method employed in [36] studying the solutions uν to
problem 2.6.1 with G = 0 as ν, and by remark 2.6.18 also µ, tends to 0.
First of all notice that if (2.81) admits a solution u equal to 0 in ∂D, then
u + c is a solution to (2.81) equal to c in ∂D, hence, since theorem 2.6.2
is still true for µ = 0, it can not have a solution which blow up near the
boundary and is also finite in D. Proposition 2.6.4 holds for µ = 0, but the
lower bound defined in proposition 2.6.3 explodes, thus, if uν has a lower
bound as ν tends to 0, we expect that its limit converges to the unique
viscosity solution to (2.81) with c0 = 0 which is equal to 0 in ∂D. If instead
uν → −∞ we would like to get a result similar to the one obtained by Porretta
in [36], where uν +‖uν‖∞ tends to a viscosity solution to (2.81) with singular
boundary conditions. What is important is to understand what happen to
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the term f
(
Xρ,ζ
r , Y ρ,ζ

r , qr
)
in (2.60) as ν tends to 0, in particular if it tends

to f
(
Xρ,ζ
r , qr

)
− c0 i.e. if we get an ergodic constant as for (2.80). As for

the other problems previously covered in this section, the main difficulty
comes from the lack of a uniform bounds for our controls, with the added
difficulty that this time we can not use µ as in the proof of proposition 2.6.8
and theorem 2.6.19 to deal with the exit times.

As a final note we point out the reader that the ergodic problem is not
new in the BSDE literature and it has been studied in different framework
still related to PDE and optimal control problems in, among the others, [1,
14, 16, 24].



Appendix A

Stochastic Differential Equations

In this appendix we expose some results on stochastic differential equations,
SDEs for short, that are needed to our study.

A.1 Basic Results on SDEs

We will work under these assumptions:

Assumptions A.1.1. Let t ∈ [0,∞), ζ ∈ L2
(
Ω,Ft;RN

)
and

b : [0,∞)× Ω×RN → RN and σ : [0,∞)× Ω×RN → RN×M

be two functions which admit two positive constants `, ν and a real number
µ such that a.e., for any s ∈ [0,∞) and x, y ∈ RN ,

(i) (x− y)(b(s, x)− b(s, y)) ≤ µ|x− y|2;

(ii) |b(s, x)| ≤ ν(1 + |x|);

(iii) |σ(s, x)− σ(s, y)| ≤ `|x− y|;

(iv) t 7→ (b, σ)(t, 0) ∈ L2
N × L2

N×M .

Notice that under these assumptions (b, σ) belongs to the set of measurable
functions such that, for any k ∈ [0,∞),

E

(∫ k

0

∫
Bk(0)

(
|b|2 + |σ|2

)
(t, x)dxdt

)
<∞.

97
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Let L denote this set and endow it with the topology induced by the con-
vergence on compact sets.

Definition A.1.2. We say that X t,ζ is a solution to the SDE (b, σ) if, for
the initial conditions t ∈ [0,∞) and ζ ∈ L2

(
Ω,Ft;RN

)
, the identity

X t,ζ
s = ζ +

∫ s

t

σ
(
r,X t,ζ

r

)
dWr +

∫ s

t

b
(
r,X t,ζ

r

)
dr, s ∈ [t,∞), (A.1)

is true and X t,ζ is a continuous process in L2
N . We usually write X to

denote the solution to the SDE (b, σ) for any initial conditions t ∈ [0,∞)

and ζ ∈ L2
(
Ω,Ft;RN

)
.

We state here some classical result which can be found in many probability
textbooks, such as [4, 19, 37]. We start with an existence and uniqueness
theorem.

Theorem A.1.3 (Existence and uniqueness). Under assumptions A.1.1 the
SDE (A.1) has a unique solution for any t ∈ [0,∞) and ζ in L2

(
Ω,Ft;RN

)
.

The next one is a continuity result which will be used to study the con-
tinuity of our viscosity solutions.

Theorem A.1.4 (Continuity). Let X and X̂ be the solutions to the SDEs
(b, σ) and

(
b̂, σ̂
)
under assumptions A.1.1 with constants `, µ, ν and ˆ̀, µ̂, ν̂

respectively. Then, for any γ > ˆ̀2 + 2µ̂, there exists a positive c, depending
upon ˆ̀, µ̂ and γ, such that, for any t ∈ [0,∞), ζ, ζ̂ ∈ L2

(
Ω,Ft;RN

)
and

T ∈ [t,∞),

E

(
sup
s∈[t,T ]

e−γs
∣∣∣X t,ζ

s − X̂ t,ζ̂
s

∣∣∣2 +

∫ T

t

e−γs
∣∣∣X t,ζ

s − X̂ t,ζ̂
s

∣∣∣2 ds)

≤cE
(
e−γt

∣∣∣ζ − ζ̂∣∣∣2 +

∫ T

t

e−γs
∣∣∣b (s,X t,ζ

s

)
− b̂
(
s,X t,ζ

s

)∣∣∣2 ds)
+ cE

(∫ T

t

e−γs
∣∣σ (s,X t,ζ

s

)
− σ̂

(
s,X t,ζ

s

)∣∣2 ds) .
From the previous theorem follows this important corollary.
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Corollary A.1.5. Under assumptions A.1.1, for any γ > `2 + 2µ, there
exists a positive constant c, depending upon `, µ and γ, such that, for any
t ∈ [0,∞), ζ ∈ L2

(
Ω,Ft;RN

)
and T ∈ [t,∞),

E

(
sup
s∈[t,T ]

e−γs
∣∣X t,ζ

s − ζ
∣∣2 +

∫ T

t

e−γs
∣∣X t,ζ

s − ζ
∣∣2)

≤ cE

(∫ T

t

e−γs
(
|b(s, 0)|2 + |σ(s, 0)|2

)
ds

)
,

E

(
sup
s∈[t,T ]

e−γs
∣∣X t,ζ

s

∣∣2 +

∫ T

t

e−γs
∣∣X t,ζ

s

∣∣2)

≤ cE

(
e−γt|ζ|2 +

∫ T

t

e−γs
(
|b(s, 0)|2 + |σ(s, 0)|2

)
ds

)
.

As seen in assumptions A.1.1, we have a topological structure on the set of
the admissible generators (b, σ) inherited by L . Thus, given the continuity
result stated in theorem A.1.4, is natural to ask if there is some sort of
continuity for the solutions to the SDEs with respect to this topology. In
the next proposition we give a positive answer to this question under some
additional assumptions.

Proposition A.1.6. Let {(bn, σn)}n∈N and (b, σ) be, respectively, a sequence
and an element in L both satisfying assumptions A.1.1 and denote with Xn

and X the solutions to the SDEs (bn, σn) and (b, σ) respectively. Assume that
b, σ, {bn} and {σn} are equi–Lipschitz continuous in the third variable with
Lipschitz constant ` and that, as n tends to ∞, (bn, σn) tends to (b, σ) in L .
Then, given a γ > `2 + 2` and an a.e. finite stopping time τ such that

sup
n∈N

E

(∫ τ

0

eγ(τ−s) (|b(s, 0)|2 + |σ(s, 0)|2 + |bn(s, 0)|2 + |σn(s, 0)|2
)
ds

)
<∞,

lim
n→∞

E

(
sup

s∈[t,∞)

∣∣X t,ζ
n,s −X t,ζ

s

∣∣2 χ{τ≥s}) = 0

for any t ∈ [0,∞) and ζ ∈ L2
(
Ω,Ft;RN

)
such that

E
(
eγ(τ−t)|ζ|2

)
<∞. (A.2)
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Proof. To ease notation we preliminarily assume that b and each bn are iden-
tically equal to 0. The general case can be proved similarly.
Fixed t ∈ [0,∞) and ζ ∈ L2

(
Ω,Ft;RN

)
, theorem A.1.4 and corollary A.1.5

yield that there exists a constant c satisfying, for each n ∈ N,

E

(
sup

s∈[t,∞)

∣∣X t,ζ
n,s −X t,ζ

s

∣∣2 χ{τ≥s})

≤cE
(∫ τ

t

eγ(τ−s) ∣∣σ (s,X t,ζ
s

)
− σn

(
s,X t,ζ

s

)∣∣2 ds)
≤3cE

(∫ τ

t

eγ(τ−s)
(
|σ(s, 0)|2 + |σn(s, 0)|2 + 4`2

∣∣X t,ζ
s

∣∣2) ds)
≤3cE

(
4c`2eγ(τ−t)|ζ|2 +

∫ τ

t

eγ(τ−s) ((1 + 4c`2
)
|σ(s, 0)|2 + |σn(s, 0)|2

)
ds

)
,

which by our hypothesis is equibounded with respect to n. Thus there exist,
for each m ∈ N, a Tm > 0 and a compact set Km ⊂ RN such that, if l ≥ m,
Tm ≤ Tl, Km ⊆ Kl and, for any n ∈ N,

E

(
sup

s∈[t,∞)

∣∣X t,ζ
n,s −X t,ζ

s

∣∣2 χ{τ≥max{Tm,s}}

)
<

1

m
,

E

(
sup

s∈[t,∞)

∣∣X t,ζ
n,s −X t,ζ

s

∣∣2 χ{Tm≥τ≥s}χ{Xt,ζ
s /∈Km}

)
<

1

m
.

(A.3)

Let χs := χ{Tm≥τ≥s}χ{Xt,ζ
s ∈Km} and cδ be the volume of the ball with radius

δ in RN , then by theorem A.1.4 we have

E

(
sup

s∈[t,∞)

∣∣X t,ζ
n,s −X t,ζ

s

∣∣2 χs)

≤cE
(∫ τ

t

eγ(τ−s) ∣∣σ (s,X t,ζ
s

)
− σn

(
s,X t,ζ

s

)∣∣2 χsds)
=
c

cδ
E

(∫ τ

t

∫
Bδ(Xt,ζ

s )
eγ(τ−s) ∣∣σ (s,X t,ζ

s

)
− σn

(
s,X t,ζ

s

)∣∣2 χsdxds)

≤3c

cδ
E

(∫ τ

t

∫
Bδ(Xt,ζ

s )
eγ(τ−s) ∣∣σ (s,X t,ζ

s

)
− σ(s, x)

∣∣2 χsdxds)

+
3c

cδ
E

(∫ τ

t

∫
Bδ(Xt,ζ

s )
eγ(τ−s)|σ(s, x)− σn(s, x)|2χsdxds

)
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+
3c

cδ
E

(∫ τ

t

∫
Bδ(Xt,ζ

s )
eγ(τ−s) ∣∣σn(s, x)− σn

(
s,X t,ζ

s

)∣∣2 χsdxds)

≤3ceTm

cδ
E

(∫ Tm

t

∫
Bδ(Km)

|σ(s, x)− σn(s, x)|2χsdxds
)

+ 6c`2δ2

∫ Tm

t

eγ(Tm−s)ds.

Therefore, since σn converge to σ in L , we can choose a δm and a Nm such
that

E

(
sup

s∈[t,∞)

∣∣X t,ζ
n,s −X t,ζ

s

∣∣2 χs) <
1

m

for any n > Nm. This, together with (A.3), conclude the proof.

Remark A.1.7. Notice that if the conditions (A.2) and

sup
n∈N

E

(∫ τ

0

eγ(τ−s) (|b(s, 0)|2 + |σ(s, 0)|2 + |bn(s, 0)|2 + |σn(s, 0)|2
)
ds

)
<∞

in proposition A.1.6 does not hold, we can use the last part of its proof to
obtain that sup

s∈[t,∞)

∣∣X t,ζ
n,s −X t,ζ

s

∣∣2 χ{τ≥s} converge to 0 in probability.

Remark A.1.8. The results obtained in this section and in the next one hold
even for SDEs with an a.e. finite stopping time τ as starting time. In fact if
for any ζ ∈ L2

(
Ω,Fτ ;RN

)
we define

b(t, x) := b(t, x+ ζ)χ{τ≤t} and σ(t, x) := σ(t, x+ ζ)χ{τ≤t},

then Xτ,ζ is solution of the SDE (b, σ) if and only if X0,0
:= Xτ,ζ − ζ is

solution of the SDE
(
b, σ
)
.

Remark A.1.9. By the strong Markov property, for any a.e. finite stop-
ping time τ , the processes {W τ

t }t∈[0,∞) := {Wτ+t − Wτ}t∈[0,∞) are Brown-
ian motions. Thus if b and σ are progressive with respect to the filtration
{F τt }t∈[0,∞) then any solution to the SDE (b, σ) with initial data τ + t and
ζ ∈ L2

(
Ω,F τt ;RN

)
is also progressive with respect to that filtration. In fact,

in this case, the stochastic integral with respect to W τ
t is the same that the

one with respect to Wτ+t.
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A.2 The Exit Times

In this section we will study a special kind of stopping times: the exit times
of an SDE X from a set D, or more precisely, for t and x varying respectively
in [0,∞) and RN , the stopping times

τ t,x := inf
{
s ∈ [0,∞) : X t,x

t+s /∈ D
}
.

To ease notation we additionally define τx := τ 0,x.
We will usually require that, besides assumptions A.1.1, the SDEs will also
satisfies, for any (t, x) ∈ [0,∞)×RN , the following condition:

eig(σσ†)(t,x) ⊂ [2λ,∞)N , |b(t, x)| ≤ `, (A.4)

and sometimes even
|σ(t, x)|2 ≤ 2`. (A.5)

where λ is a positive constant and ` is, for simplicity, the same ` in assump-
tions A.1.1.

The following results are already known, see for example [3, 33]. What
we add is a sort of uniformity with respect to the initial conditions, which is
needed to our study of elliptic PDEs.

Proposition A.2.1. Let D be a bounded set, X the solution to the SDE
(b, σ) under assumptions A.1.1 and (A.4) and τ the exit time of X from D.
Then there exists a constant c, which depends only on D, ` and λ, such that
E (τ t,x) ≤ c for any t ∈ [0,∞) and x ∈ RN .
In particular τ t,x is a.e. finite and for any positive ε there exists a T ∈ [0,∞),
which depends only on D, `, λ and ε, such that P (τ t,x ≥ T ) < ε for any
t ∈ [0,∞) and x ∈ RN .

Proof. We will just study the case x ∈ D, since if x /∈ D then τ t,x = 0 for any
t ∈ [0,∞). Thus fix (t, x) ∈ [0,∞)×D and let X1 be the first component of
the vector X t,x. Since D is bounded there exists a positive constant δ such
that if X1

s /∈ [−δ, δ] then X t,x
s /∈ D. Hence, if we define

τδ := inf
{
s ∈ [0,∞) : X1

t+s /∈ [−δ, δ]
}
,
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by the arbitrariness of x and t will be enough to prove that E(τδ) ≤ c for
some constant c.
Thanks to Itô’s formula we have, for any positive γ and s,

eγx1 = E

(
eγX

1
t+s∧τδ −

∫ t+s∧τδ

t

(
1

2

∣∣σ1

(
r,X1

r

)∣∣2 γ2 + b1

(
r,X1

r

)
γ

)
eγX

1
rdr

)
,

where σ1 denote the vector (σ1,i), therefore, if we choose γ >
`

λ
, (A.4) yields

eγx1 ≤E
(
eγX

1
t+s∧τδ −

(
λγ2 − `γ

) ∫ t+s∧τδ

t

eγX
1
rdr

)
≤E

(
eγX

1
t+s∧τδ −

(
λγ2 − `γ

)
s ∧ τδ inf

x∈D
eγx1

)
.

Finally we can use the dominated and monotone convergence theorems to
obtain (

λγ2 − `γ
)

inf
x∈D

eγx1E(τδ) ≤ eγδ − inf
x∈D

eγx1 ,

which implies E(τδ) ≤ c, where c is a constant depending on D, ` and λ.
We can now conclude the proof using the Markov’s inequality: fixed ε > 0

we have, for T big enough,

P
(
τ t,x ≥ T

)
≤ E (τ t,x)

T
≤ c

T
< ε,

for any t ∈ [0,∞) and x ∈ RN .

Proposition A.2.2. Let D be a bounded set, X the solution to the SDE
(b, σ) under assumptions A.1.1 and (A.4), and τ the exit time of X from D.
Then there exists a positive ϑ, which depends only on D, ` and λ, such that

sup
x∈D

E
(
eϑτ

x)
<∞.

Proof. By proposition A.2.1 we know that there is a positive T , which de-
pends only on D, ` and λ, such that

sup
(t,x)∈[0,∞)×D

P
(
τ t,x ≥ T

)
<

1

2
.
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Moreover we have that, for any (t, x) ∈ [0,∞)×RN and n ∈ N,

P
(
τ t,x ≥ nT

)
=E

(
χ{τ t,x≥nT}

)
= E

(
χ{τ t,x≥T}χ{τ t,x≥nT}

)
=E

(
χ{τ t,x≥T}E

(
χ{τ t,x≥nT}

∣∣X t,x
t+T

))
=E

(
χ{τ t,x≥T}E

(
χ{τ t+T,y≥(n−1)T}

∣∣X t,x
t+T = y

))
≤E

(
χ{τ t,x≥T}

)
sup
y∈D

E
(
χ{τ t+T,y≥(n−1)T}

)
=P

(
τ t,x ≥ T

)
sup
y∈D

P
(
τ t+T ,y ≥ (n− 1)T

)
<

1

2
sup
y∈D

P
(
τ t+T ,y ≥ (n− 1)T

)
,

hence by induction

sup
(t,x)∈[0,∞)×D

P
(
τ t,x ≥ nT

)
<

1

2n
.

Finally, if we choose a positive ϑ such that
eϑT

2
< 1, the previous inequality

yields, for any (t, x) ∈ [0,∞)×RN ,

E
(
eϑτ

t,x
)
≤
∞∑
n=1

eϑnTP
(
τ t,x ∈ [(n− 1)T, nT )

)
≤

∞∑
n=1

eϑnTP
(
τ t,x ≥ (n− 1)T

)
<eϑT

∞∑
n=0

(
eϑT

2

)n
,

which implies our statement.

Proposition A.2.3. Let ϕ : [0, T ]→ RN be a continuous function such that
ϕ(0) = x ∈ RN , X0,x the solution to the SDE (b, σ) under assumptions A.1.1,
(A.4) and (A.5), and ε a positive constant. Then there is a positive constant
c, depending only on ε, λ, `, T and the modulus of continuity of ϕ, such that

P

(
sup
t∈[0,T ]

∣∣X0,x
t − ϕ(t)

∣∣ < ε

)
≥ c.

Proof. The proof of this is the same of [3, Theorem I.8.5].



A.2 The Exit Times 105

Theorem A.2.4. Let D be a bounded set, X the solution to the SDE (b, σ)

under assumptions A.1.1 and (A.4), τ the exit time of X from D and τ the
exit time of X from D. Assume that, for some t ∈ [0,∞), P (τ t,x = τ t,x) = 1

for any x ∈ RN . Then, fixed two positive constants ε and α we have that
there exists a δ > 0, depending on D, µ, `, λ, ε and α, such that

P
(∣∣τ t,x − τ t,y∣∣ > α

)
< ε

for any x ∈ RN and y ∈ Bδ(x). Therefore τ t is continuous in probability
with respect to x.

Proof. To ease notation assume that t = 0 and restrict x in D, since for
x /∈ D this is obviously true. We start fixing x ∈ D, defining for any y ∈ D

τ yβ := inf

{
t ∈ [0,∞) : inf

z∈D
|Xy

t − z| ≥ β

}
and noting that

P(|τx − τ y| > α) =P({|τx − τ y| > α} ∩ {τx ≥ T})

+ P
(
{τ y > τx + α} ∩

{
τxβ > τx + α

}
∩ {τx < T}

)
+ P

(
{τ y > τx + α} ∩

{
τxβ ≤ τx + α

}
∩ {τx < T}

)
+ P

(
{τx > τ y + α} ∩

{
τ yβ > τ y + α

}
∩ {τx < T}

)
+ P

(
{τx > τ y + α} ∩

{
τ yβ ≤ τ y + α

}
∩ {τx < T}

)
≤P(τx ≥ T ) + P

(
τxβ > τx + α

)
+ P

({
τ y > τxβ

}
∩
{
τxβ < T + α

})
+ P

(
τ yβ > τ y + α

)
+ P

({
τx > τ yβ

}
∩
{
τ yβ < T

})
,

where the last term is a consequence of the inequality

P
(
{τx > τ y + α} ∩

{
τ yβ ≤ τ y + α

}
∩ {τx < T}

)
=P

(
{τx > τ y + α} ∩

{
τ yβ ≤ τ y + α

}
∩ {τx < T} ∩ {τ y < T − α}

)
≤P

({
τx > τ yβ

}
∩
{
τ yβ < T

})
.
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By proposition A.2.1 we can take a positive T depending only on D, `, λ
and ε such that P(τx ≥ T ) <

ε

5
. Similarly we can choose a β, depending on

α and ε, such that P
(
τ yβ > τ y + α

)
<
ε

5
for any y ∈ D, in fact if that would

not be true we should have, thanks to the reverse Fatou’s lemma,

P(τ y > τ y + α) ≥ lim sup
β→0

P
(
τ yβ > τ y + α

)
≥ ε

5

for some y ∈ D, in contradiction with our hypothesis.
Now, for the last terms, we can use Markov’s inequality and theorem A.1.4
to get

P
({
τ y > τxβ

}
∩
{
τxβ < T + α

})
≤P

({∣∣∣Xx
τxβ
−Xy

τxβ

∣∣∣ ≥ β
}
∩
{
τxβ < T + α

})
≤ 1

β2
E

(
sup

t∈[0,T+α]

|Xx
t −X

y
t |

2

)
≤ c1

β2
|x− y|2,

where c1 depends only on T , α, µ and `, and similarly

P
({
τx > τ yβ

}
∩
{
τ yβ < T

})
≤ c2

β2
|x− y|2,

where c2 depends only on T , µ and `. Therefore there exists a δ > 0 depend-
ing on D, µ, `, λ, ε and α such that

P
({
τ y > τxβ

}
∩
{
τxβ < T + α

})
+ P

({
τx > τ yβ

}
∩
{
τ yβ < T

})
≤ 2ε

5

for any y ∈ Bδ(x) and consequently P (|τ t,x − τ t,y| > α) < ε.

We point out that under the same assumptions and with a similar proof,
we can prove that the exit times are also continuous in probability with
respect to b and σ. More precisely:

Theorem A.2.5. Let D be a bounded set, A be a set made of equi–Lipschitz
continuous (b, σ) as in assumptions A.1.1 and denote with X(b,σ) the solution
to an SDE (b, σ), with τ(b,σ) the exit time of X(b,σ) from D and with τ (b,σ)

the exit time of X(b,σ) from D. Assume that there exist a
(
b, σ
)
satisfying
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(A.4) and a δ0 > 0 such that P
(
τ t,x(b,σ) = τ t,x(b,σ)

)
= 1 holds true for some fixed

(t, x) ∈ [0,∞) × RN and for any solution to the SDEs (b, σ) with (b, σ) in
A∩Bδ0

(
b, σ
)
. Then, fixed two positive constants ε and α we have that there

exists a δ ∈ (0, δ0], depending on D, µ, `, λ, ε and α, such that

P

(∣∣∣∣τ t,x(b,σ)
− τ t,x(b,σ)

∣∣∣∣ > α

)
< ε

for any (b, σ) ∈ A ∩ Bδ

(
b, σ
)
. Therefore τ t,x is locally continuous in proba-

bility at
(
b, σ
)
in A.



Appendix B

Backward Stochastic Differential

Equations

In this appendix we expose some results on backward stochastic differential
equations, BSDEs for short, that are needed to our study. Most of these
results are well known in the BSDE field and hold even under more general
assumptions. We refer to [9, 27, 28, 32], among the others, for the proof of
most of these results.

B.1 BSDEs with Deterministic Terminal Time

We will work under the followings assumptions:

Assumptions B.1.1. Let T ∈ [0,∞), ξ ∈ L2
(
Ω,FT ,P;RM

)
and

f : [0, T ]× Ω×RM ×RM×N → RM

a function which admits two positive constants `, ν and a real number µ such
that a.e., for any t ∈ [0, T ], y, y′ ∈ RM and z, z′ ∈ RM×N ,

(i) s 7→ f(s, 0, 0) ∈ L2
M(T );

(ii) |f(t, y, z)| ≤ |f(t, 0, z)|+ ν(1 + |y|);

(iii) |f(t, y, z)− f(t, y, z′)| ≤ `|z − z′|;

108
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(iv) (y − y′)(f(t, y, z)− f(t, y′, z)) ≤ µ|y − y′|2;

(v) v 7→ f(t, v, z) is continuous.

Definition B.1.2. A solution to the BSDE (ξ, f, T ) is a pair (Y, Z) of pro-
cesses belonging to L2

M(T )× L2
M×N(T ) such that

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, for any t ∈ [0, T ]. (B.1)

ξ, f and T are commonly referred as the terminal or final condition, the
generator and the terminal or final time respectively.

The followings are classical results of BSDE theory which we rewrite here
for the reader’s comfort. We start with an existence and uniqueness result.

Theorem B.1.3 (Existence and uniqueness). Under assumptions B.1.1 the
BSDE (B.1) has a unique solution (Y, Z).

We are particularly interested in the study of the relationship between
the solutions to BSDEs and their initial data, hence the next results will
focus on that.

Theorem B.1.4 (Continuity). Let (Y, Z) and (Y ′, Z ′) be the solutions to
the BSDEs (ξ, f, T ) and (ξ′, f ′, T ) under assumptions B.1.1 with constants
`, ν, µ and `′, ν ′, µ′ respectively. Then, for any γ > `′2 + 2µ′, there exists a
constant c, which depends upon `′, µ′ and γ, such that

E

(
sup
t∈[0,T ]

eγt|Yt − Y ′t |2 +

∫ T

0

eγt
(
|Yt − Y ′t |2 + |Zt − Z ′t|2

)
dt

)

≤ cE

(
eγT |ξ − ξ′|2 +

∫ T

0

eγt|f(t, Yt, Zt)− f ′(t, Yt, Zt)|2dt
)
.

In particular there exists a constant C, which depends upon T , `′ and µ′,
such that

E

(
sup
t∈[0,T ]

|Yt − Y ′t |2 +

∫ T

0

|Zt − Z ′t|2dt

)

≤ CE

(
|ξ − ξ′|2 +

∫ T

0

|f(t, Yt, Zt)− f ′(t, Yt, Zt)|2dt
)
.
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Corollary B.1.5 (Boundedness). Under assumptions B.1.1, if (Y, Z) is a
solution to the BSDE (B.1), then there exists a constant c, which depends
upon T , µ and `, such that

E

(
sup
t∈[0,T ]

|Yt|2 +

∫ T

0

|Zt|2dt

)
≤ cE

(
|ξ|2 +

∫ T

0

|f(t, 0, 0)|2dt
)
.

The next theorem is a comparison result, which we will generalize in the
successive corollary, that play an important role in our study, but to prove
it we need this lemma:

Lemma B.1.6. Assume M = 1. Given (Y, Z) solution of the linear BSDE

Yt = ξ +

∫ T

t

(AsYs + ZsBs + Cs)ds−
∫ T

t

ZsdWs,

where C ∈ L2(T ) and A, B are bounded progressive processes valued in R
and RN respectively, we have that

Yt = E

(
Γt,T ξ +

∫ T

t

Γt,sCsds

∣∣∣∣Ft) ,
where Γs,t := e

∫ t
s

(
Ar− |Br |

2

2

)
dr+

∫ t
s BrdWr

belongs to L2(T ).

Proof. Preliminarily note that Γs,t is solution to the SDE

Γs,t = 1 +

∫ t

s

Γs,rArdr +

∫ t

s

Γs,rBrdWr.

By Itô’s formula we get

Γ0,tYt = Γ0,T ξ +

∫ T

t

Γ0,sCsds−
∫ T

t

Γ0,s(Zs +BsYs)dWs, (B.2)

then if we prove that
{∫ t

0
Γ0,s(Zs +BsYs)dWs

}
t∈[0,T ]

is a martingale we can
take the conditional expectation to obtain

Γ0,tYt = E

(
Γ0,T ξ +

∫ T

t

Γ0,sCsds

∣∣∣∣Ft)
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and conclude the proof. Since by corollary A.1.5 E

(
sup
t∈[0,T ]

Γ2
0,t

)
< ∞, we

have

E

((∫ t

0

Γ2
0,s|Zs +BsYs|2ds

) 1
2

)
≤1

2
E

(
sup
t∈[0,T ]

Γ2
0,t + 2

∫ T

0

(
|BtYt|2 + |Zt|2

)
dt

)
<∞,

thus the local martingale in (B.2) is a martingale.

Theorem B.1.7 (Comparison 1). Assume M = 1 and suppose that ξ ≤ ξ′

a.e., f(t, y, z) ≤ f ′(t, y, z) dt × dP a.e. for any (y, z) ∈ R × RN and let
(Y, Z) and (Y ′, Z ′) be the solutions of the BSDEs, under assumptions B.1.1,
(ξ, f, T ) and (ξ′, f ′, T ) respectively. Then Yt ≤ Y ′t a.e. for any t ∈ [0, T ].
Furthermore if Y0 = Y ′0 a.e., then Yt = Y ′t a.e. for any t ∈ [0, T ], or in other
words, whenever either P({ξ < ξ′}) > 0 or f(t, y, z) < f ′(t, y, z), for any
(y, z) in R×RN on a set of positive dt× dP measure, then Y0 < Y ′0 a.e..

Proof. For t ∈ [0, T ], define

At :=


f(t, Y ′t , Zt)− f(t, Yt, Zt)

Y ′t − Yt
, if Yt 6= Y ′t ,

0, if Yt = Y ′t

and the RN valued process

Bi
t :=


f
(
t, Y ′t , Z

(i)
t

)
− f

(
t, Y ′t , Z

(i−1)
t

)
Z ′it − Zi

t

, if Zi
t 6= Z ′it ,

0, if Zi
t = Z ′it ,

where Z(i)
t :=

(
Z ′1t , . . . , Z

′i
t , Z

i+1
t , . . . , ZN

t

)
. We note that A and B are pro-

gressively measurable and |At| ≤ µ, |Bt| ≤
√
N`. Now, for s, t ∈ [0, T ],

define Γs,t := e

∫ t
s

(
Ar− |Br |

2

2

)
dr+

∫ t
s BrdWr

,
(
Y , Z

)
:= (Y ′− Y, Z ′−Z), ξ := ξ′− ξ

and Ct := f ′(t, Y ′t , Z
′
t) − f(t, Y ′t , Z

′
t). Is easy to see that

(
Y , Z

)
solves the

linear BSDE

Y t = ξ +

∫ T

t

(
AsY s + ZsBs + Cs

)
ds−

∫ T

t

ZsdWs,
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therefore, by lemma B.1.6,

Y t = E

(
Γt,T ξ +

∫ T

t

Γt,sCsds

∣∣∣∣Ft) .
Since ξ, Γt,s and C are a.e. non negative, then Yt ≤ Y ′t a.e. for any t ∈ [0, T ].
In particular, if Y0 = Y ′0 a.e., ξ and C are equal to 0 a.e. for the measures
Γ0,TdP and Γ0,tdt× dP, respectively, which are equivalent to P and dt× dP.
Then Yt = Y ′t a.e. for all t ∈ [0, T ], ending the proof.

Corollary B.1.8 (Comparison 2). In the M = 1 case, let (Y, Z) be the
solution to the BSDE (ξ, f, T ) under the assumptions B.1.1 and

Y ′t = ξ′ +

∫ T

t

Vsds−
∫ T

t

Z ′sdWs, t ∈ [0, T ],

where ξ′ ∈ L2 (Ω,FT ,P;R), Y ′, V ∈ L2(T ) and Z ′ ∈ L2
N(T ). Suppose that

ξ ≤ ξ′ a.e. and f(t, Y ′t , Z
′
t) ≤ Vt dt × dP a.e.. Then, for any t ∈ [0, T ],

Yt ≤ Y ′t a.e..
Furthermore if Y0 = Y ′0 a.e., then Yt = Y ′t a.e. for any t ∈ [0, T ], or in
other words, whenever either P({ξ < ξ′}) > 0 or f(s, Y ′s , Z

′
s) < Vs on a set

of positive dt× dP measure, then Y0 < Y ′0 a.e..

Proof. If we define f ′(t, y, z) := f(t, y, z)+Vt−f(t, Y ′t , Z
′
t), then the corollary

is a consequence of theorem B.1.7.

We conclude this section with a result concerning bounded stopping time.

Proposition B.1.9. Let (Y, Z) be the solution to the BSDE (B.1) and as-
sume that there exists a stopping time τ such that τ ≤ T , ξ is Fτ–measurable
and f(t, y, z) = 0 on the set {τ < t}. Then, for any t ∈ [0, T ], Yt = Yτ∧t and
Zt = 0 a.e. on the set {τ < t}.

Thanks to this proposition we can check that any result we proved on
this section is still true for BSDE with random bounded terminal time.
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Proof. Since Y is progressive

Yτ = E(Yτ |Fτ ) = E

(
ξ −

∫ T

τ

ZsdWs

∣∣∣∣Fτ) = ξ.

On the other hand, by Itô’s formula,

|Yτ |2 +

∫ T

τ

|Zs|2ds = |ξ|2 − 2

∫ T

τ

Y †s ZsdWs,

therefore, since |Yτ |2 = |ξ|2, we have that E
(∫ T

τ
|Zs|2ds

)
= 0, and conse-

quently
∫ T
τ
|Zs|2ds = 0 a.e.. This concludes the proof.

B.2 BSDEs with Random Terminal Time

This section contains some basic results on BSDEs with random terminal
time, which are needed for the study of elliptic PDEs.

Assume the followings:

Assumptions B.2.1. Let τ be a stopping time, ξ ∈ L2
(
Ω,Fτ ,P;RM

)
and

f : [0,∞)× Ω×RM ×RM×N → RM

a function which admits two positive constants `, ν and a real number µ such
that a.e., for any t ∈ [0,∞), y, y′ ∈ RM and z, z′ ∈ RM×N ,

(i) s 7→ f(s, 0, 0) ∈ L2
M ;

(ii) |f(t, y, z)| ≤ |f(t, 0, z)|+ ν(1 + |y|);

(iii) |f(t, y, z)− f(t, y, z′)| ≤ `|z − z′|;

(iv) (y − y′)(f(t, y, z)− f(t, y′, z)) ≤ µ|y − y′|2;

(v) v 7→ f(t, v, z) is continuous.

Furthermore let ϑ > `2 + 2µ be a constant such that

(vi) E
(∫ τ

0

eϑt
(
1 + |f(t, 0, 0)|2

)
dt

)
<∞;
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(vii) E(eϑτ |ξ|2) <∞.

To ease notation we will also assume, without loss of generality, since we are
not interested in the behavior of f(t) in the set {τ < t} and we can just
study the function f(t)χ{τ≥t} instead,

(viii) f(t, y, z) = 0 on the set {τ ≤ t} for any (y, z) ∈ RM ×RM×N .

Definition B.2.2. A solution to the BSDE (ξ, f, τ) is a pair (Y, Z) of pro-
cesses belonging to L2

M × L2
M×N such that

(i) lim
t→∞

E
(
eϑt|Yt − ξ|2

)
= 0;

(ii) (Yt, Zt) = (ξ, 0) on the set {τ ≤ t};

(iii) Yt = YT +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, for any T ≥ t ≥ 0.

Remark B.2.3. Intuitively we are solving the BSDE

Yt = ξ +

∫ τ

t

f(s, Ys, Zs)ds−
∫ τ

t

ZsdWs, on {t ≤ τ}, (B.3)

but the integrals here may not make sense on the set {τ = ∞}. In fact, if
P(τ <∞) = 1, asking that a pair of processes (Y, Z) ∈ L2

M ×L2
M×N satisfies

(B.3) and item (ii) in definition B.2.2 is equivalent to the definition B.2.2.
Moreover, for consistency reason, we will require that a solution to a BSDE
with deterministic terminal time will also satisfy item (ii) in definition B.2.2,
so definition B.2.2 coincides with definition B.1.2 in that case.

As in the previous section we will show existence and continuity results.

Theorem B.2.4 (Existence and uniqueness). Under assumptions B.2.1 the
BSDE (ξ, f, τ) admits a unique solution.

Theorem B.2.5 (Continuity). Let (Y, Z) and (Y ′, Z ′) be the solutions to the
BSDEs (ξ, f, τ) and (ξ′, f ′, τ ′) under assumptions B.2.1 with constants `, ν,
µ and `′, ν ′, µ′ respectively, but same ϑ. Then, for any γ ∈ (`′2 + 2µ′, ϑ],
there exists a constant c, which depends upon `′, µ′ and γ, such that
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E

(
sup

t∈[0,∞)

∣∣∣e γt∧τ2 Yt − e
γt∧τ ′

2 Y ′t

∣∣∣2 +

∫ τ∨τ ′

0

eγt
(
|Yt − Y ′t |2 + |Zt − Z ′t|2

)
dt

)

≤ cE

(∣∣∣e γτ2 ξ − e γτ ′2 ξ′∣∣∣2 +

∫ τ∨τ ′

0

eγt|f(t, Yt, Zt)− f ′(t, Yt, Zt)|2dt

)
.

We point out that condition (viii) in assumptions B.2.1 allows us to prop-
erly express the previous inequality.

Corollary B.2.6 (Boundedness). Let (Y, Z) be the solution to the BSDE
(ξ, f, τ) under assumptions B.2.1. Then, for any γ ∈ (`2 + 2µ, ϑ], there
exists a constant c, which depends upon `, µ and γ, such that

E

(
sup

t∈[0,∞)

eγt∧τ |Yt|2 +

∫ τ

0

eγt
(
|Yt|2 + |Zt|2

)
dt

)

≤ cE

(
eγτ |ξ|2 +

∫ τ

0

eγt|f(t, 0, 0)|2dt
)
.

Remark B.2.7. By definition

ξt = E(ξ) +

∫ t

0

ηsdWs = ξ −
∫ ∞
t

ηsdWs,

therefore is easy to check that (ξt, ηt)t∈[0,∞) is solution to the BSDE (ξ, 0, τ)

and consequently

E

(
sup

t∈[0,∞)

eγt∧τ |ξt|2 +

∫ τ

0

eγt
(
|ξt|2 + |ηt|2

)
dt

)
≤ cE

(
eγτ |ξ|2

)
<∞,

where c is an opportune constant.

Even in this case we have that holds a characterization for linear BSDEs
and a comparison result.

Lemma B.2.8. Assume M = 1. Given (Y, Z) solution of the linear BSDE
(ξ, Aty + zBt +Ct, τ) under assumptions B.2.1, where C ∈ L2 and A, B are
bounded progressive processes valued in R and RN respectively, we have that

Yt = E

(
Γt,τξ +

∫ τ

t

Γt,sCsds

∣∣∣∣Ft) ,
where Γs,t := e

∫ t
s

(
Ar− |Br |

2

2

)
dr+

∫ t
s BrdWr

belongs to L2(∞).
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Proof. Preliminarily note that by our assumptions A ≤ µ, |B| ≤ ` and
both, together with C, are equal to 0 when t is bigger than τ . Moreover
e−ϑ(t∧τ−s)Γs,t is solution to the SDE

e−ϑ(t∧τ−s)Γs,t = 1 +

∫ t

s

(Ar − ϑ)e−ϑ(t∧τ−s)Γs,tdr +

∫ t

s

e−ϑ(t∧τ−s)Γs,tBrdWr,

thus, by corollary A.1.5, there exists a constant c depending on ϑ, ` and µ
such that

E

(
sup

t∈[s,∞)

e−2ϑ(t∧τ−s)Γ2
s,t +

∫ ∞
s

e−2ϑ(r∧τ−s)Γ2
s,rdr

)
≤ c. (B.4)

By lemma B.1.6, for any T ∈ [t,∞),

Yt = E

(
Γt,TYT +

∫ T

t

Γt,sCsds

∣∣∣∣Ft) ,
and by the Young’s inequality

Γt,TYT ≤
1

2
e−2ϑ(T∧τ−t)Γ2

t,T +
1

2
e2ϑ(T∧τ−t)Y 2

T

and
Γt,sCs ≤

1

2
e−2ϑ(s∧τ−t)Γ2

t,s +
1

2
e2ϑ(s∧τ−t)C2

s .

Then this lemma follows from corollary B.2.6, item (i) in definition B.2.2,
item (vi) in assumptions B.2.1, (B.4) and the dominated convergence theo-
rem.

A comparison result follows from lemma B.2.8 as corollary B.1.8 follows
from lemma B.1.6.

Theorem B.2.9 (Comparison). In theM = 1 case, let (Y, Z) be the solution
to the BSDE (ξ, f, τ) under the assumptions B.2.1, ξ′ ∈ L2 (Ω,Fτ ,P;R),
V ∈ L2(τ) and assume that for some positive constant ϑ

E

(∫ τ

0

e2ϑt
(
1 + |Vt|2

)
dt

)
<∞ and E

(
e2ϑτ |ξ′|2

)
<∞.

Define (Y ′, Z ′) as the solution to the BSDE (ξ′, V, τ) and suppose that ξ ≤ ξ′

a.e. and f(t, Y ′t , Z
′
t) ≤ Vt dt × dP a.e.. Then, for any t ∈ [0,∞), Yt ≤ Y ′t
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a.e..
Furthermore if Y0 = Y ′0 a.e., then Yt = Y ′t a.e. for any t ∈ [0,∞), or in
other words, whenever either P({ξ < ξ′}) > 0 or f(s, Y ′s , Z

′
s) < Vs on a set

of positive dt× dP measure, then Y0 < Y ′0 a.e..
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