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Abstract — This paper presents a multi-commodity, discrete-

time, distributed and non-cooperative routing algorithm, which is 

proved to converge to an equilibrium in the presence of 

heterogeneous, unknown, time-varying but bounded delays. 

Under mild assumptions on the latency functions which describe 

the cost associated to the network paths, two algorithms are 

proposed: the former assumes that each commodity relies only on 

measurements of the latencies associated to its own paths; the 

latter assumes that each commodity has (at least indirectly) access 

to the measures of the latencies of all the network paths. Both 

algorithms are proven to drive the system state to an invariant set 

which approximates and contains the Wardrop equilibrium, 

defined as a network state in which no traffic flow over the 

network paths can improve its routing unilaterally, with the latter 

achieving a better reconstruction of the Wardrop equilibrium. 

Numerical simulations show the effectiveness of the proposed 

approach. 

 
Index Terms— Wardrop equilibrium, LaSalle’s invariance 

principle, selfish routing, time-delay systems 

 

I. INTRODUCTION 

ARDROP equilibria are a game-theoretical concept, 

originally introduced for network games when modelling 

transportation networks with congestion [1]. A system is said to 

have attained a Wardrop equilibrium, in its standard adversarial 

formulation, when “the journey times on all the routes actually 

used are equal, and less than those which would be experienced 

by a single vehicle on any unused route” [2]. In dynamic selfish 

routing algorithms, each agent (e.g., cars in transportation 

networks, packets in communication ones) makes its decision 

for its own interest, i.e., without taking into account the 

congestion and the consequent performance degradation it 

causes to the other agents with its decisions [3]. 

The dynamic, discrete-time, algorithm presented in this 

paper deals with a multi-commodity flow problem that consists 

of distributing a flow demand, split between various source and 

destination facilities, over a communication network. The 

convergence of the controlled network state to a set that 

approximates the Wardrop equilibrium is proven by means of 

standard control theory arguments, derived from LaSalle’s 

invariance principle.  

The network is modelled as a time-invariant communication 

graph and the total flow demand is constituted by various 

constant traffic flows, or commodities, each one characterised 

by a source and a destination node. The selfish routing problem 

is then solved by distributing the flow demand over the 

admissible network paths so that each commodity unilaterally 

decides its routing. The congestion state of an edge of the 

network is characterised by a cost function, referred to as edge 

latency, that captures the flow distribution performances. 

In the scenario described so far, the various commodities are 

constituted by an infinite stream of infinitely-many arriving 

agents, each being responsible for an infinitesimal amount of 

traffic, or job, and each one being able to make an individual 

decision regarding its routing over the available paths that 

connect its source to its destination. Within the formulated 

selfish non-cooperative routing problem, the sought 

equilibrium is a generalization of the Nash equilibrium, in 

which no agent can improve its decision unilaterally, to the case 

in which infinitely many agents compete [4], i.e., to a scenario 

in which the individual decision of a single agent has no 

significant impact on the performances of the others. 

Firstly, it is assumed that each agent is not provided with a 

model of the network and has to make its routing decisions 

based only on the measures of the latencies associated to the 

network edges traversed by the paths of the commodity it 

belongs to. Furthermore, it is assumed that the latency measures 

are subject to time-varying, unknown but bounded delays. 

Under such assumptions, the proposed routing algorithm is 

proved to converge to an approximation of the Wardrop 

equilibrium. This paper further discusses the case in which the 

agents have information also on the latencies of the paths used 

by the other commodities, proving that, in this case, the system 

is driven to a better approximation of the Wardrop equilibrium. 

The rest of the paper is organised as follows: Section II 

presents the state of the art on selfish routing solutions and their 

relation with Wardrop equilibria, and highlights the 

contributions of this work; Section III contains the selfish 

routing problem formulation; Section IV presents the proposed 

discrete-time control law and discusses some useful lemmata; 

Section V reports the convergence analysis of the proposed 
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control solution and proves the convergence of the network to 

a set of approximated Wardrop equilibria; Section VI proposes 

an algorithm improvement in presence of (limited) information 

exchanges; Section VII validates the approach by discussing the 

results of numerical simulations, while Section VIII draws the 

conclusions and discusses possible future research directions.  

II. RELATED WORK AND PROPOSED INNOVATION  

Distributing flow is a fundamental aspect of any network 

control and operation problem and can be particularised in order 

to address several domains, spacing from communication 

systems [5] to power [6] and traffic [7], [8] networks. The 

problem of selfish routing arises in networks in which the flow 

is constituted by autonomous agents [9], as no central entity is 

responsible for the flow distribution nor can directly influence 

it without modifying the network itself, for example by 

introducing routing tolls or flow capacity limitations [10]. In 

such scenarios, the network flow distribution and network 

congestion are entirely dependent on the decisions of the 

various agents and their objectives.  

In the framework of selfish routing algorithms, a significant 

role is played by the so-called Wardrop equilibrium [1], which 

represents a network state in which no agent can unilaterally 

improve its objective. In Wardrop’s typical routing problem 

formulation [11], the traffic model envisages that the travel 

time, or latency, associated with the network paths is a non-

decreasing function of their corresponding flow, and the 

Wardrop equilibrium is consequently reached when all used 

roads present an equalised travelling time. With adequate 

considerations, the original definition of Wardrop equilibrium 

can be extended also to capacitated networks [12], [13], 

uncertain networks [14], [15] and time-varying ones [16]. 

It is well known that Wardrop equilibria can be computed by 

centralised algorithms in polynomial time [17], but, due to the 

inherently distributed nature of the network flow distribution, a 

significant research effort was spent developing distributed and 

dynamic solutions to drive the network to a Wardrop 

equilibrium, as in [11], [16], [18]–[25]. This paper, as most of 

the aforementioned ones, considers a dynamic communication 

network [22], [23] whose evolution is governed by a set of 

differential equations derived by mass/flow conservation laws. 

Several of the works available in the literature utilise the 

concepts of learning and exploration, as it is common to assume 

limited knowledge regarding the state and the characteristics of 

the network. In general, these approaches are built around the 

idea of sampling different flow distribution strategies to 

increase the knowledge of the environment, and then exploit it 

to converge to certain desired states. For instance, in [18] an 

asynchronous and distributed solution is presented, in which 

transmission probabilities are updated following a 

reinforcement learning approach, depending on an estimation 

of the network edges latencies. The authors of [11] prove, by 

Lyapunov arguments, the convergence of an iterative 

distributed learning solution to a Wardrop equilibrium state. 

Assuming an exchange of information regarding the 

congestion state of the network among agents, Fischer et al. 

present in [19] a round-based algorithm, in which a finite 

number of players, each one responsible for a different 

commodity, redistribute the traffic flow following a policy that 

assures the convergence to an approximated equilibrium of the 

same nature of the ones considered in this work. A similar 

information exchange, based on an ideal bulletin board, is 

proposed by the same authors also in [20], where an 

approximate Wardrop equilibrium is reached, under 

assumptions similar to the ones of this paper, even if the agents 

are presented with stale, or delayed, information regarding the 

network state.  In [21], a round-based formulation of the 

algorithm in [20] is proposed. 

The present work extends the results of previous works from 

the authors [24], [25] and the ones available in literature mainly 

in two directions: (i) the asymptotic analysis and algorithm 

design are extended to the multi-commodity case, which is not 

explicitly discussed in the cited works, enabling the application 

to more realistic scenarios; (ii) the agents of the various 

commodities are provided with a measure of the network state 

subject to heterogeneous, time-varying, unknown but bounded 

delays; in this respect, differently from [20], which only 

analyses the tolerance to delays of the algorithm developed 

therein, here the delays are explicitly considered and 

compensated within the algorithm development. 

III. MULTI-COMMODITY SELFISH ROUTING PROBLEM 

Standard notation is used throughout the paper, with |⋅| 
denoting the cardinality operator. 

A. Preliminaries on Wardrop routing 

The modelling framework utilised in this paper is derived 

from the one in [21], commonly used in selfish-routing 

problems considering an infinite population of agents, each one 

carrying an infinitesimal amount of flow. In practice, in the case 

for example transportation or communication networks, a 

single vehicle or packet, respectively, is approximately 

considered as an agent: in fact, even if the number of 

vehicles/packets is finite, if the flow rates are sufficiently high, 

the population approximates the infinite population assumed by 

Wardrop theory [1]. 

We are given a network 𝒢 = (𝒱, ℰ), where 𝒱 is the finite set 

of vertices or nodes, ℰ ⊆ 𝒱 × 𝒱 is the set of edges or links. 

Let 𝒞 denote a set of commodities with constant traffic 

demands 𝑑𝑖 > 0, ∀𝑖 ∈ 𝒞, generally expressed in jobs per unit of 

time, with total demand 𝑑 ≔ ∑ 𝑑𝑖𝑖∈𝒞 . For each commodity, the 

source node is connected by the network to the destination node 

through the set of paths 𝒫𝑖. Let 𝒫 ≔ ⋃ 𝒫𝑖
𝑖∈𝒞  be the set of all 

the network paths. A given path 𝑝 ∈ 𝒫𝑖 includes a set of links; 

let 𝒫𝑒  be the set of paths traversing the edge 𝑒, i.e., 𝒫𝑒 ≔

{𝑝 ∈ 𝒫 | 𝑒 ∈ 𝑝}, let 𝒫𝑒
𝑖 ≔ 𝒫𝑒 ∩ 𝒫𝑖 and let ℰ𝑖  be the set of edges 

traversed by the paths in 𝒫𝑖, i.e., ℰ𝑖 ≔ {𝑒 ∈ 𝑝|𝑝 ∈ 𝒫𝑖}. For 

each commodity 𝑖 ∈ 𝒞, let us also define the maximum number 

of paths traversing an edge as 𝜂𝑖 ≔ max
𝑒∈ℰ𝑖

|𝒫𝑒|.  

In this modelling framework, an agent is considered to be, as 

in [11], an infinitesimal portion of a specified commodity. Let 

𝑥𝑝
𝑖  be the volume of the agents, or bandwidth, of commodity 𝑖 
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relying on path 𝑝 ∈ 𝒫𝑖. The vector 𝒙 ≔ (𝑥𝑝
𝑖 )

𝑝∈𝒫𝑖,𝑖∈𝒞
 is the flow 

vector or population share, whose components specify the 

overall amount of traffic per unit of time flowing along path 𝑝 ∈

𝒫𝑖 and associated with commodity 𝑖 ∈ 𝒞. Let 𝑥𝑝 ≔ ∑ 𝑥𝑝
𝑖

𝑖∈𝒞 , 

𝑥𝑒
𝑖 ≔ ∑ 𝑥𝑝

𝑖
𝑝∈𝒫𝑖∩𝒫𝑒

 and 𝑥𝑒 ≔ ∑ 𝑥𝑒
𝑖

𝑖∈𝒞  denote the total traffic 

flow over path 𝑝 ∈ 𝒫, the traffic flow of commodity 𝑖 over edge 

𝑒 and the total traffic flow over edge 𝑒, respectively. 

 

Definition 1. The feasible state space, i.e., the compact set of 

feasible flow vectors, is 

 

𝒳 ≔ {𝒙 ∈ ℝ|𝒫|×|𝒞| | 𝑥𝑒 ≥ 0, ∀𝑒 ∈ ℰ and ∑ 𝑥𝑝
𝑖

𝑝∈𝒫𝑖 = 𝑑𝑖 , ∀𝑖 ∈ 𝒞}.

 (1) 
 

A metric of interest is the average response time required by 

the path 𝑝 ∈ 𝒫 for serving an amount of traffic equal to 𝑥𝑝.The 

response time grows with the considered traffic flow and thus 

is a reliable indicator of the path congestion status. Hence, this 

quantity is defined as the latency function associated with path 

𝑝 ∈ 𝒫 and is a non-negative function 𝑙𝑝(𝒙) ∶ [0, 𝑑] → ℝ≥0. The 

path latency is the sum of the latencies of the edges of the path, 

denoted with 𝑙𝑒(𝑥𝑒) ∶ [0, 𝑑] → ℝ≥0, i.e., 𝑙𝑝(𝒙) =

∑ 𝑙𝑒(𝑥𝑒), ∀𝑝 ∈ 𝒫𝑒∈𝑝 . The shape of the latency functions 

depends on the application considered. One strength of the 

proposed approach is that the agents only rely on measures of 

the latency functions, which are not required to be explicitly 

modelled. The latency functions are only assumed to have the 

following properties. 
 

Assumption 1. The latency functions 𝑙𝑒(𝜉), ∀𝑒 ∈ ℰ, are 

Lipschitz continuous and strictly increasing over the interval 

[0, 𝑑]. Let 𝛽𝑒 be the local Lipschitz constant of 𝑙𝑒, 𝛽𝑝 ≔ sum
𝑒∈𝑝

𝛽𝑒 

and 𝛽̅𝑖 ≔ max
𝑝∈𝒫𝑖

𝛽𝑝. 

 

Assumption 1 is a reasonable restriction since the response 

time of an edge generally increases with the total amount of 

traffic flow routed onto that edge. Note that the latency of a path 

𝑝 ∈ 𝒫 is a function of the flow vector 𝒙, and the latency of an 

edge is a function of the flow 𝑥𝑒 routed over edge 𝑒.  

The agents’ aim is that of minimizing their personal latency 

selfishly, without considering the impact on the global 

situation. The routing problem is formulated below as the 

problem of determining the strategies which will lead the flow 

vector to reach a Wardrop equilibrium. In Wardrop theory, 

stable flow assignments are the ones in which no agent can 

improve its situation by changing its strategy (i.e., the set of 

used paths) unilaterally. This objective is achieved if the 

network reaches a Wardrop equilibrium. 

 

Definition 2 ([19]). A feasible flow vector 𝒙 is at a Wardrop 

equilibrium if, for each path 𝑝 ∈ 𝒫𝑖 such that 𝑥𝑝
𝑖 > 0, the 

following relation holds: 𝑙𝑝(𝒙) ≤ 𝑙𝑞(𝒙), ∀𝑞 ∈ 𝒫𝑖 , ∀𝑖 ∈ 𝒞. 

 
1 In case the latency functions are increasing, there are more Wardrop 

equilibria; a convergence analysis under this milder assumption can be found 

 

The set of Wardrop equilibria is then defined as 

 

𝒳𝒲 ≔ {𝒙 ∈ 𝒳 |𝑙𝑝(𝒙) − 𝑙𝑞(𝒙) ≤ 0, for all pairs 𝑝, 𝑞 ∈

𝒫𝑖  s. t. 𝑥𝑝
𝑖 > 0, for all 𝑖 ∈ 𝒞}. 

 

In practice, at the Wardrop equilibrium, the latencies of all 

the loaded paths for each commodity 𝑖 ∈ 𝒞 have the same value; 

therefore, provided that the latency functions properly represent 

the path performances, a fair exploitation of the network 

resources is achieved by driving the flows towards a Wardrop 

equilibrium. 

In the framework of researches on Wardrop equilibria, a key 

role is played by the Beckmann, McGuire, and Winsten 

potential [17]. 

 

Φ(𝒙) ≔ ∑ ∫ 𝑙𝑒(𝜉)𝑑𝜉
𝑥𝑒
0𝑒∈ℰ , (2) 

  

whose properties are summarised by Property 1 below. 

 

Property 1 ([20]) Under Assumption 1, the potential (2) is 

continuous and the following properties hold: 

i) there exists a unique flow, denoted with 𝒙𝑒𝑞 , over the set 

of feasible flows, minimizing Φ; 

ii) correspondingly, there exists a unique, positive, minimum 

Φ𝑚𝑖𝑛 = Φ(𝒙𝑒𝑞) > 0; 

iii) 𝒙𝑒𝑞  is at the Wardrop equilibrium. 

 

Property 1 implies that, under Assumption 1, the set 

𝒳𝒲  collapses into a unique Wardrop equilibrium1 with jobs 

vector 𝒙𝑒𝑞 . 

B. Preliminaries on Stability Results 

The system of interest is a discrete-time system described by 
 

𝒙[𝑘 + 1] = 𝑓(𝒙[𝑘]), 𝑘 = 0,1, …, (3) 
 

with 𝒙[𝑘] ∈ 𝒳 ⊂ ℝ𝑛 , ∀𝑘 ≥ 0. Under Assumption 1, let 𝒙𝑒𝑞 ∈

𝒳 be the unique equilibrium state and let us define the 

Lyapunov function 𝑉(𝒙) as follows: 

 

Definition 3. ℒ:𝒳 → ℝ is a candidate Lyapunov function for 

the discrete-time nonlinear system (3) if 

i) ℒ ∈ 𝒞1 and is bounded below on 𝒳, 

ii) ℒ(𝒙) is positive definite on 𝒳, with ℒ(𝒙𝑒𝑞) = 0 and 

ℒ(𝒙) > 0 if 𝒙 ≠ 𝒙𝑒𝑞  

iii) ℒ satisfies 

 

Δℒ(𝒙[𝑘]) ≔ ℒ(𝑓(𝒙[𝑘])) − ℒ(𝒙[𝑘]) ≤ 0, 𝑘 = 0,1,2, … 

 

along forward trajectories of (3). 

 

The LaSalle invariance principle for discrete-time nonlinear 

in [24]. In this paper, strictly increasing functions are assumed for the sake of 

simplicity. 
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systems in [26], [27] will be used to prove the algorithm 

convergence: 

 

Theorem 1 ([26]). Let ℒ(𝒙) be a candidate Lyapunov 

function for the discrete-time nonlinear system (3). Then, any 

bounded trajectory tends to the largest invariant subset 

ℳ contained in the locus of points defined by Δℒ(𝒙) = 0. 

IV. PROPOSED CONTROLLER AND 

SOME USEFUL LEMMATA 

This section presents the proposed control law 

(Section IV.A) and some lemmata (Section IV.B) which will be 

used for the convergence proof of Section V. 

A. Definition of the Control System and of the Proposed 

Control law 

As further discussed afterwards, the proposed control law 

aims at achieving an approximate Wardrop equilibrium within 

the set defined as follows: 

 

Definition 4. The set of (𝜀, 𝛿)-Wardrop equilibria is defined 

as 

 

𝒳𝒲
𝜀,𝛿 ≔ {𝒙 ∈ 𝒳 |𝑙𝑝(𝒙) − 𝑙𝑞(𝒙) ≤ 𝜀, for all pairs 𝑝, 𝑞 ∈

𝒫𝑖  s. t. 𝑥𝑝
𝑖 > 𝛿, for all 𝑖 ∈ 𝒞}, (4) 

 

where 𝜀 ≥ 0 represents a tolerated latency mismatch and 𝛿 ≥ 0 

represents a significance threshold on the path population. 

 

At the (𝜀, 𝛿)-Wardrop equilibrium, the values of latencies of 

all the paths 𝑝 ∈ 𝒫𝑖  of each commodity 𝑖 ∈ 𝒞 whose population 

𝑥𝑝
𝑖  is larger than 𝛿, hereafter referred to as 𝛿-loaded paths, differ 

at most by 𝜀. As explained in Section IV.B, the parameter 𝛿 is 

here introduced to cope with the multi-commodity scenario. 

 

We consider a discrete-time time-delay control system, 

where, periodically every 𝜏 seconds, the commodities receive 

the updated measures of the latency values. At time 𝑘, each 

commodity 𝑖 ∈ 𝒞 receives the measure of the latency of path 

𝑝 with a delay ℎ𝑝
𝑖 [𝑘], expressed as an integer number of sample 

times, for all 𝑝 ∈ 𝒫𝑖. The delays are unknown, time-varying 

and bounded by the known delay upper-bound ℎ̅: 

 

ℎ𝑝
𝑖 [𝑘] ∈ ℋ, ∀𝑝 ∈ 𝒫𝑖 , ∀𝑖 ∈ 𝒞, 𝑘 = 0,1, …, 

 

with ℋ ≔ {0,1, … , ℎ̅}. The delays are collected in the delay 

vector 𝒉[𝑘] ∈ ℋ𝒞×𝒫.  

Whenever clear from the context, for the sake of notation 

simplicity, the latency 𝑙𝑝(𝒙[𝑘]) will be simply denoted as 𝑙𝑝[𝑘]. 

The system dynamics is described by 

 

𝑥𝑝
𝑖 [𝑘 + 1] = 𝑥𝑝

𝑖 [𝑘] + 𝜏 ∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝑞∈𝒫𝑖 , 𝑘 = 0,1, … ,

 (5) 

where 𝑟𝑝𝑞[𝑘] is the control action and is the so-called migration 

rate from path 𝑝 ∈ 𝒫𝑖 to path 𝑞 ∈ 𝒫𝑖 . Similarly to a large part 

of selfish-routing algorithms in the literature [19], the proposed 

control law is 

 

𝑟𝑝𝑞
𝑖 [𝑘] = 𝑥𝑝

𝑖 [𝑘]𝜎𝑝𝑞
𝑖 [𝑘]𝜇𝑝𝑞

𝑖 [𝑘], (6) 

 

where 𝜇𝑝𝑞
𝑖 [𝑘] is the so-called migration policy, representing the 

decision whether a population share of commodity 𝑖 assigned 

to path 𝑝 migrates to path 𝑞, and 𝜎𝑝𝑞
𝑖 [𝑘] is interpreted as the 

(positive) control gain and sets the rate with which the 

population share of path 𝑝 migrates to path 𝑞. 

There is a variety of migration policies used in the literature 

for delay-free continuous-time setups, such as the better 

response policy 

 

𝜇𝑝𝑞
𝑖 (𝑡) = {

0    if 𝑙𝑝(𝒙(𝑡)) − 𝑙𝑞(𝒙(𝑡)) ≤ 0

1     otherwise                             
 . 

 

However, by using these standard migration policies in the 

discrete-time, it can be shown that convergence cannot be 

guaranteed even in the delay-free case, however small the 

sampling time 𝜏 is chosen [20]. In [24], a modified better 

response policy to achieve an 𝜀-Wardrop equilibrium in the 

discrete-time, single-commodity case (corresponding to a 

(𝜀, 0)-Wardrop equilibrium, as per definition (4)) is proposed: 

 

𝜇𝑝𝑞
𝑖 [𝑘] = {

0                       if 𝑙𝑝[𝑘] − 𝑙𝑞[𝑘] ≤ 𝜀 

𝜇𝑝𝑞(𝑙𝑝[𝑘], 𝑙𝑞[𝑘] ), otherwise     
, 

 

where 𝜇𝑝𝑞(𝑙𝑝[𝑘], 𝑙𝑞[𝑘] ) is a bounded positive real-valued 

function of the latency measures. 

Here, we further modify the migration policy of [24] by 

considering the latency measures instead of the current latency 

values to cope with the delays: 

 

𝜇𝑝𝑞
𝑖 [𝑘] = {

0 if 𝑙𝑝 (𝒙 [𝑘 − ℎ𝑝
𝑖 [𝑘]]) − 𝑙𝑞 (𝒙 [𝑘 − ℎ𝑞

𝑖 [𝑘]]) ≤ ε

1 otherwise                                                             
,

 (7) 

 

where 𝑙𝑝 (𝒙 [𝑘 − ℎ𝑝
𝑖 [𝑘]]) is the last measure of 𝑙𝑝 available to 

commodity 𝑖 and with 

 

0 < 𝜀 ≤ min
𝑖∈𝒞

𝛽̅𝑖𝑑𝑖|𝒞| (8) 

 

This bound on 𝜀 has a simple interpretation in the single 

commodity case, i.e., when |𝒞| = 1, since 𝛽̅𝑖𝑑𝑖 represents the 

maximum latency value that can be achieved by any path 𝑝 ∈

𝒫𝑖 when the population of commodity 𝑖 is totally conveyed over 

a single path: if 𝜀 > 𝛽̅𝑖𝑑𝑖 any flow distribution is therefore at 

the (𝛿, 𝜀)-equilibrium. 

The proposed controller is expressed by equations (6), (7), 

with the following control gain: 

𝜎𝑝𝑞
𝑖 [𝑘] =

𝜎

𝜏𝑑𝑖𝛽̅𝑖(|𝒫𝑖|+𝜂𝑖)|𝒞|(1+ℎ̅)
, (9) 

 

with 
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𝜎 ≤ 𝜀. (10) 

 

The controller design parameters are therefore 𝜎 and 𝜀. 

We consider that, initially, the population of each commodity 

is distributed over all its network paths, i.e., 

 

{
𝑥𝑝
𝑖 [−ℎ] = 𝑥𝑝

𝑖 [0] > 0

∑ 𝑥𝑝
𝑖

𝑝∈𝑃𝑖 [0] = 𝑑𝑖      
, ∀𝑝 ∈ 𝒫𝑖 , ∀𝑖 ∈ 𝐶, ∀ℎ ∈ ℋ. (11) 

 

Recalling the concepts of exploration/exploitation, the first 

condition of (11) may be interpreted as the need for the 

commodity 𝑖 to explore all the available paths to perform the 

latency measures2. 

B. Some Useful Lemmata and Definition of the Augmented 

State Space 

The following Lemma will be useful for the convergence 

proof presented in Section V. 

 

Lemma 1. Under Assumption 1, considering the dynamics 

(5) under the control law (6), (7), (9), with parameters set as in 

(8) and (10), the latency variation of a path 𝑝 ∈ 𝒫 in one time-

step is bounded as 

 

−
σ

|𝐶|(1+ℎ̅)
∑

𝜂𝑖

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶 ≤ 𝑙𝑝(𝑓(𝒙[𝑘])) − 𝑙𝑝(𝒙[𝑘])  

≤
σ

|𝐶|(1+ℎ̅)
∑

|𝒫𝑖|

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶  . (12) 

 

Proof (see Appendix 1).  

 

A straightforward consequence of equation (12) of Lemma 1 

is that the decrease in one step of the difference between the 

latency values of two paths 𝑝, 𝑞 ∈ 𝒫 is limited from below by 

 

(𝑙𝑝[𝑘 + 1] − 𝑙𝑞[𝑘 + 1]) − (𝑙𝑝[𝑘] − 𝑙𝑞[𝑘])  

≥ −
𝜎

|𝒞|(1+ℎ̅)
∑ (

𝜂𝑖

|𝒫𝑖|+𝜂𝑖
+

|𝒫𝑖|

|𝒫𝑖|+𝜂𝑖
)𝑖∈𝒞 = −

𝜎

1+ℎ̅
 .  (13) 

 

Before proving the next lemma, we define an augmented 

state to account for the bounded delays: 

 

𝒛[𝑘] = (𝒛0[𝑘]  𝒛1[𝑘]  …  𝒛ℎ̅[𝑘])
𝑇  

= (𝒙[𝑘]  𝒙[𝑘 − 1] …   𝒙[𝑘 − ℎ̅])
𝑇
, (14) 

 

with 

 

𝒛ℎ[𝑘] = (𝑧𝑝ℎ[𝑘])𝑝∈𝒫 = (𝑥𝑝[𝑘 − ℎ])
𝑝∈𝒫

= 𝒙[𝑘 − ℎ] ,  

𝑧𝑝ℎ[𝑘] = ∑ 𝑧𝑝ℎ
𝑖 [𝑘]𝑖∈𝒞 , 𝑧𝑝ℎ

𝑖 [𝑘] ≔ 𝑥𝑝
𝑖 [𝑘 − ℎ]. (15) 

 

The augmented state space is defined as  

 

 
2 If each commodity 𝑖 ∈ 𝒞 receives the latency measures of all the paths 𝑝 ∈

𝒫𝑖 even if 𝑥𝑝
𝑖 [𝑘] = 0, it is sufficient that the initial conditions are feasible, i.e., 

𝒵 ≔ {𝒛 = (𝒛ℎ)ℎ∈ℋ|𝒛ℎ ∈ 𝒳, ∀ℎ ∈ ℋ} = 𝒳ℎ̅, (16) 

 

the unique Wardrop equilibrium as 

 

𝒛𝒲 = (𝒛ℎ)ℎ∈ℋ , with 𝒛ℎ = 𝒙𝒲 , ∀ℎ ∈ ℋ, (17) 

 

and the system dynamics as 

 

{
 

 
𝑧𝑝0[𝑘 + 1] = 𝑧𝑝0[𝑘] + τ∑ (𝑟𝑝𝑞[𝑘] − 𝑟𝑞𝑝[𝑘])𝑞∈𝑃

𝑧𝑝1[𝑘 + 1] = 𝑧𝑝1[𝑘]                                                  
…                                          

𝑧𝑝ℎ̅[𝑘 + 1] = 𝑧𝑝(ℎ̅−1)[𝑘]                                          

, ∀𝑝 ∈ 𝑃,

 (18) 

 

with initial conditions (from equation (11)) 

 

𝒛[0] = (𝒙[𝑘])𝑘=−ℎ̅,−ℎ̅+1,…,0 ∈ 𝒵.  (19) 

 

The augmented system dynamics (18), (19), under the 

control law (6)-(10), will be hereinafter referred to as 

augmented selfish routing (ASR) dynamics. The ASR 

dynamics yields, in vector form, the closed-loop nonlinear 

system dynamics 

 

𝒛[𝑘 + 1] = 𝑔(𝒛[𝑘]) = (

𝑓(𝒛0[𝑘])

𝒛0[𝑘]
…

𝒛(ℎ̅−1)[𝑘]

).  (20) 

 

Such a map from a population game to a set of difference 

equations is referred to in the literature as deterministic 

evolutionary dynamics [28]. 

The stability analysis reported in Section V is conducted with 

respect to the ASR dynamics. Preliminarily, we show that the 

state space 𝒵 is a positively invariant set. 

 

Lemma 2. 𝒵 is a positively invariant set for the ASR 

dynamics. 

 

Proof (see Appendix 1). 

 

Let us define the function 

 

ℒ(𝒛) ≔ ∑ 𝐿(𝒛ℎ)ℎ∈ℋ , with 𝐿(𝒙) ≔ Φ(𝒙) − Φ𝑚𝑖𝑛 ,  (21) 

 

where Φ(𝒙) is the potential (2) and Φ𝑚𝑖𝑛  is its minimum value, 

which is unique, under Assumption 1, thanks to Property 1. Let 

also 

 

Δℒ(𝒛[𝑘]) = ∑ Δ𝐿(𝒙[𝑘 − ℎ])ℎ∈ℋ = ∑ Δ𝐿(𝒛ℎ[𝑘])ℎ∈ℋ =  

= ∑ (Φ(𝑓(𝒛ℎ[𝑘])) − Φ(𝒛ℎ[𝑘]))ℎ∈ℋ , 𝑘 = 0,1, …,  (22) 

 

denote the difference of the function ℒ(𝒛[𝑘]) along the 

equations (11) can be substituted by 𝒙[−ℎ] ∈ 𝒳,∀ℎ ∈ ℋ. 
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solutions of the ASR system. 

 

Lemma 3. Under Assumption 1, function (21) is a candidate 

Lyapunov function (as in Definition 3) for the ASR system. 

 

Proof (see Appendix 1). 

V. CONVERGENCE RESULT 

The main convergence result is expressed by Theorem 3. 

 

Theorem 3. Under Assumptions 1, the ASR dynamics 

robustly asymptotically converges to an (𝜀, 𝛿)-Wardrop 

equilibrium under heterogeneous, time-varying, unknown but 

bounded delays 𝒉[𝑘] ∈ ℋ𝒞×𝒫. 

 

Proof (see Appendix 1). 

 

Recalling that 𝑧0 ∈ 𝒳𝒲
(𝜀,𝛿)

 for all 𝒛 ∈ ℳ, Theorem 1 entails 

that 𝒙[𝑘] = 𝒛𝟎[𝑘] tends to the set 𝒳𝒲
(𝜀,𝛿)

, i.e., to an (𝜀, 𝛿)–

Wardrop equilibrium. 

VI. CONTROL LAW WITH COMMUNICATIONS 

From the discussions of the previous section, it is 

straightforward to think of reducing the latency tolerance with 

𝑘, i.e., to have a time-varying 𝜀[𝑘] in (7), in order to force the 

system to converge to a shrinking set 𝒳𝒲
𝜀[𝑘],𝛿

. The advantage 

would be twofold: initially, when the latency differences are 

large, one could use a large value for 𝜀[𝑘] improving the 

convergence velocity (we recall that the control gain (9) is 

proportional to 𝜀); as the latency differences decrease, 𝜀[𝑘] 
could be decreased as well to drive the system to a smaller set 

𝒳𝒲
𝜀[𝑘],𝛿

 that better approximates the Wardrop equilibrium. A 

control law with a decreasing 𝜀[𝑘] is proposed and discussed in 

[25] for the single-commodity delay-free case, and is extended 

in this section to multi-commodity problems, also in the 

presence of unknown, time-varying but bounded, delays. 

In our multi-commodity setup, if no information is shared 

among the commodities, only a heuristic law for the 𝜀[𝑘] 
dynamics could be proposed: this law should be accurately 

tuned since, in practice, a too fast decay rate of 𝜀[𝑘] would 

decrease the control gain too early, affecting the algorithm 

convergence speed. Conversely, in this section, we assume that 

the commodities may exchange some information and we 

define a time-varying tolerance 𝜀[𝑘] such that the system 

trajectories 𝒙[𝑘] asymptotically tend to 𝒳𝒲
0,𝛿

, i.e., such that the 

latencies of the 𝛿-loaded paths are asymptotically equalised. 

The time-varying control law is then modified by considering 

time-varying tolerance and gain in (7) and (9), respectively: 

 

𝜇𝑝𝑞
𝑖 [𝑘] = {

0 if 𝑙𝑝 [𝑘 − ℎ𝑝
𝑖 [𝑘]] − 𝑙𝑞 [𝑘 − ℎ𝑞

𝑖 [𝑘]] ≤ 𝜀[𝑘]

1 otherwise                                                    
 , (23) 

 

𝜎𝑝𝑞
𝑖 [𝑘] =

𝜎[𝑘]

𝜏𝑑𝑖𝛽̅𝑖(|𝒫𝑖|+𝜂𝑖)|𝒞|(1+ℎ̅)
. (24) 

 

The properties of the proposed tolerance and control gain are 

summarised in Assumption 2. 

 

Assumption 2. The time-varying tolerance 𝜀[𝑘] and the time-

varying gain 𝜎[𝑘] have the following properties: 

A2.1  𝜀[−ℎ] = 𝜀0 with 0 < 𝜀0 ≤ min
𝑖∈𝒞

𝛽̅𝑖𝑑𝑖 for all ℎ ∈ ℋ; 

A2.2  𝜀[𝑘 + 1] ≤ 𝜀[𝑘], 𝑘 = 0,1, … and lim
𝑘→∞

𝜀[𝑘] = 0; 

A2.3  𝜎[𝑘 − ℎ̅] ≤ 𝜀[𝑘], 𝑘 = −ℎ̅, −ℎ̅ + 1, … . 

 

We note that A2.1 has the same meaning of equation (8), that 

A2.2 states that the tolerance must be non-increasing and must 

asymptotically converge to 0 and that A2.3 limits the control 

gain to a future value of the tolerance. The control law described 

later in this section will propose a way to set the tolerance and 

the gain according to Assumption 2, under which the following 

convergence result holds. 

 

Theorem 4. Under Assumptions 1 and 2, considering the 

control law (6), (23) and (24), the ASR dynamics robustly 

asymptotically converges to a (0, 𝛿)-Wardrop equilibrium 

under heterogeneous, time-varying, unknown but bounded 

delays 𝒉[𝑘] ∈ ℋ𝒞×𝒫. 

 

Proof (see Appendix 1). 

 

In order to obtain a control law which can be enforced in 

practice, the assumption is that each commodity (e.g., the 

source node of each commodity) communicates to the other 

ones its current measure of the maximum measured latency 

mismatch among the 𝛿-loaded paths, computed as 

 

𝑒𝛿
𝑖 [𝑘] = max

𝑝∈𝒫𝑖|𝑥𝑝
𝑖 [𝑘]>𝛿

𝑙𝑝 [𝑘 − ℎ𝑝
𝑖 [𝑘]] − min

𝑝∈𝒫𝑖
𝑙𝑝 [𝑘 − ℎ𝑞

𝑖 [𝑘]]. (25) 

 

Then, at time 𝑘, all the commodities can compute a common 

non-increasing tolerance upper-bound as 

 

𝑒̅𝛿[𝑘] = {
𝜀0 if 𝑘 ≤ ℎ̅                                                            

min {𝑒̅𝛿[𝑘 − 1],max
𝑖∈𝒞

𝑒𝛿
𝑖 [𝑘 − 1]}  otherwise

 , (26) 

 

with 𝜀0 chosen as in equation (8), i.e., 0 < 𝜀0 ≤ min
𝑖∈𝒞

𝛽̅𝑖𝑑𝑖. Note 

that, due to equation (26), 𝛿 is now an additional controller 

design parameter. 

In [24], a time-varying tolerance law is proposed for the 

single-commodity delay-free case, where 𝜀[𝑘] is proportional, 

by a parameter 0 < 𝛼 < 1, to the current maximum latency 

mismatch. Taking inspiration from that idea, the proposed time-

varying tolerance law and the controller gain are defined as 

𝜀[𝑘] = 𝛼𝑒̅𝛿[𝑘 − ℎ̅] , (27) 

 

𝜎[𝑘] = 𝛼𝑒̅𝛿[𝑘], (28) 

 

respectively, where the parameter 0 < 𝛼 < 1 sets a trade-off 

between the gain value and the number of flows selected for 
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migrations according to equation (23)3. 

Assumption A2.3 holds since 𝜎[𝑘] = 𝜀[𝑘 + ℎ̅].  The non-

increasing sequence (27) is also such that the assumption A2.2 

holds. In fact, let us assume that there exists a number 𝑘′ such 

that 𝑒𝛿̅[𝑘] is constant for all 𝑘 ≥ 𝑘′. Let us define such a 

constant with 𝑒̅𝛿
′ . In this case, both (27) and (28) are constant 

for all 𝑘 ≥ 𝑘′ + ℎ̅, with 𝜀[𝑘] = 𝛼𝑒̅𝛿
′  and 𝜎[𝑘] = 𝛼𝑒̅𝛿

′ , and 

Theorem 3 holds. Hence, the system trajectories asymptotically 

tend to the set 𝒳𝒲

𝛼𝑒̅𝛿
′ ,𝛿

, defined as the set where the latency 

mismatch among the 𝛿-loaded paths is at most 𝛼𝑒̅𝛿
′ , i.e., where 

𝑒𝛿
𝑖 [𝑘] ≤ 𝛼𝑒̅𝛿

′  for all 𝑖 ∈ 𝒞. Therefore, since 𝛼 < 1, the error 

𝑒𝛿
𝑖 [𝑘] becomes smaller than 𝑒̅𝛿

′  in finite time, for all 𝑖 ∈ 𝒞, 

which, in turn, decreases 𝑒̅𝛿[𝑘] below 𝑒̅𝛿
′  and, hence, 𝜀[𝑘] below 

𝛼𝑒̅𝛿
′ , contradicting the assumption. 

 

Remark 1. In practice, initially the algorithm keeps 𝜀[𝑘] = 𝜀0 

for ℎ̅ time-steps and the system behaves as with the algorithm 

of Section V. As 𝜀[𝑘] starts decreasing, the system trajectories 

are attracted by the sequence of sets {𝒳𝒲
𝜀[𝑘],𝛿}

𝑘=0,1,…
, which 

shrink with 𝑘. The key is the migration policy (23): i) at any 

time step 𝑘, equation (23) sets a minimum latency separation 

𝜀[𝑘] for the migration between two paths; (ii) such latency 

separation decreases with 𝑘, as the latency values converge. 

VII. NUMERICAL SIMULATIONS 

In this section, the proposed algorithm is evaluated via 

numerical simulations performed with MATLAB®. The 

example scenario, depicted in Fig. 1, has |𝒞| = 2 commodities, 

|ℰ| = 17 edges and |𝒫| = 17 paths. |𝒫1| = 11 and |𝒫2| = 6 

paths are available to commodity 1 and 2, respectively. The 

paths, listed in Table 1, support the total traffic 𝑑 = 1, with 

𝑑1 = 0.8 and 𝑑2 = 0.2, and are such that  𝜂1 = 6 and 𝜂2 = 4. 

In the example, the sample time is 𝜏 = 0.1s and the latency 

functions are assumed to be the path delays. For simulation 

purposes, we implemented the following functions modelling, 

for each edge, how the delay increases with the load: 

 

𝑙𝑒(𝑥𝑒) = 𝑒𝑎𝑒𝑥𝑒 − 1, (29) 

 

with 𝑎𝑒 = 0.45s, for 𝑒 ≤ 5, 𝑎𝑒 = 0.7𝑠 for 6 ≤ 𝑒 ≤ 9, 𝑎𝑒 =
0.25𝑠 for 𝑒 ≥ 10. The maximum derivatives of the edge 

latency functions are computed as 𝑎𝑒𝑒
𝑎𝑒𝑥𝑒 , 𝑒 = 1,… ,17. 

Considering the defined latency functions, the traffic demand 

and the considered paths, the maximum path latency is bounded 

by 2.24𝑠 and we obtain 𝛽̅1 = 3.07 and 𝛽̅2 = 2.64. 

 
3 Concerning the effects of the value of 𝛼 on the algorithm convergence, the 

reader is referred to the analysis in [24] for the single-commodity delay-free 
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Figure 1. Example network ( 𝑘: node 𝑘; 𝑠𝑖: source node of commodity 𝑖; 𝑡𝑖: 
destination node of commodity 𝑖; 𝑒𝑘: edge 𝑘). 

 
TABLE I 

PATHS 

Paths of commodity 1 Paths of commodity 2 

𝑝1 = {𝑒1, 𝑒11}  𝑝12 = {𝑒1 , 𝑒1 }  
𝑝2 = {𝑒1, 𝑒 , 𝑒12}  𝑝1 = {𝑒1 , 𝑒 , 𝑒1 }  
𝑝 = {𝑒2, 𝑒 , 𝑒11}  𝑝1 = {𝑒1 , 𝑒 , 𝑒1 }  
𝑝 = {𝑒2, 𝑒 , 𝑒 , 𝑒12}  𝑝1 = {𝑒1 , 𝑒 , 𝑒 , 𝑒1 }   
𝑝 = {𝑒2, 𝑒 , 𝑒12}  𝑝1 = {𝑒1 , 𝑒 , 𝑒1 } 

 

𝑝 = {𝑒2, 𝑒 , 𝑒10, 𝑒12}  𝑝1 = {𝑒1 , 𝑒 , 𝑒10, 𝑒1 }  
𝑝 = {𝑒2, 𝑒 , 𝑒1 }   

𝑝 = {𝑒 , 𝑒10, 𝑒12}   

𝑝 = {𝑒 , 𝑒1 }   

𝑝10 = {𝑒 , 𝑒 , 𝑒10, 𝑒12}   

𝑝11 = {𝑒 , 𝑒 , 𝑒1 }   

 

Since, in this example, the latency functions are the path 

delays themselves, the delays are computed in sample times as: 

 

ℎ𝑝
𝑖 [𝑘] = ⌈𝜏 ⋅ 𝑙𝑝[𝑘]⌉, 𝑖 = 1,2, 𝑝 = 1, … ,18, 𝑘 ≥ 0, 

 

yielding time-varying values upper-bounded by ℎ̅ = 20. 

Fig. 2 and Fig. 3 show the dynamics of the latency and 

population values obtained with the algorithm with fixed 

tolerance, with 𝜀 = 0.02, and with the algorithm with dynamic 

tolerance, with 𝜀0 = 0.15 and 𝛼 = 0.45, with the same value 

for 𝛿 = 2 ⋅ 10− . The two algorithms were simulated starting 

from the same randomly selected initial population. 

Fig. 2 shows that the maximum latency mismatch among 𝛿-

loaded paths, i.e., max{𝑒𝛿
1[𝑘], 𝑒𝛿

2[𝑘]}, asymptotically 

approaches 𝜀. We observe that, after time 𝑘 = 611 (i.e., 61.1𝑠), 

𝑒𝛿
2[𝑘] has a sudden drop. This is due to the fact that the 

population 𝑥1 
2 [𝑘] of path 16, which is the path of commodity 2 

characterised by the highest latency, is decreasing and, at 𝑘 =
612, becomes smaller than 𝛿. From that time on, the path 16 is 

not a 𝛿-loaded path any longer and, thus, its latency 𝑙1 [𝑘] is no 

more considered in the computation of 𝑒𝛿
2[𝑘]. Since the latency 

of path 16 was the highest one, 𝑒𝛿
2[𝑘] instantaneously decreases 

to a smaller value. The figure shows that also the population of 

path 18 becomes smaller than 𝛿 (at time 𝑘 = 516, with no 

visible effect on 𝑒𝛿
2[𝑘] since, at that time, path 16 was still a 𝛿-

loaded one). In compliance with the (𝜀, 𝛿)-Wardrop equilibrium 

definition, the latencies of paths 16 and 18, which are not 𝛿-

loaded, are not equalised to the latencies of the other paths and 

remain higher. 

case, which is still meaningful in the multi-commodity case for the proposed 

controller. 
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Figure 2.  Population dynamics (higher plot), latency dynamics (middle plot) and latency mismatch (lower plot) with static tolerance (𝜀 = 0.02). 
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Figure 3.  Population dynamics (higher plot), latency dynamics (middle plot) and latency mismatch (lower plot) with dynamic tolerance (𝜀0 = 0.15). 

 

Analogous comments hold for the algorithm with dynamic 

tolerance. Fig. 3 highlights that the advantages of this approach 

are that i) initially, the tolerance 𝜀0 can be set to a large value 

to set a high gain 𝜎[𝑘] and, thus, to achieve faster convergence, 

and ii) as the errors 𝑒𝛿
𝑖 ’s decrease, 𝜀[𝑘] is decreased according 

to (27) to shrink the convergence set 𝒳𝒲
𝜀[𝑘],𝛿

. To compare the 

performance of the two algorithms, we note that the maximum 

latency mismatch becomes smaller than 0.02 (which is the 

asymptotic convergence value set for the first algorithm) from 

𝑘 = 739 on. 

Fig. 3 clarifies the need of introducing the parameter 𝛿 in the 

definition of the approximate Wardrop equilibrium (4). If only 

the paths with no load were considered as unloaded paths, path 

16 would have been considered as always loaded (its population 

𝑥1 
2 [𝑘] goes to 0 asymptotically), its latency 𝑙1 [𝑘] would be 
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always considered in the computation of 𝑒𝛿
2[𝑘] (according to 

equation (25), with 𝛿 = 0) and, therefore, 𝜀[𝑘] would not 

asymptotically annihilate. 

VIII. CONCLUSIONS AND FUTURE WORK 

This paper presented a discrete-time, distributed and non-

cooperative algorithm for multi-commodity routing problems, 

that was proven to converge to an arbitrarily small 

neighbourhood of the Wardrop equilibrium even in the 

presence of heterogeneous, unknown, time-varying but 

bounded communication delays. The paper discussed also how 

the algorithm can be improved in the case in which each 

commodity is provided with some information also on the 

network paths used by the other commodities, obtaining a better 

reconstruction of the Wardrop equilibrium. 

Future work is aimed at extending the results of the paper in 

the multi-rate system domain, assuming hence different 

decision instants for the various agents, and time-varying 

networks, in which both the latency functions and the network 

topology may evolve over time. 

APPENDIX 1 

Proof of Lemma 1. Considering the generic edge 𝑒 ∈ 𝑝 at 

time 𝑘, the maximum latency decrease occurs when no 

commodities migrate their populations from the paths not 

including 𝑒 to the paths including 𝑒: 

 

𝑙𝑒(𝑥𝑒[𝑘 + 1])  

= 𝑙𝑒(𝑥𝑒[𝑘] + 𝜏∑ ∑ (𝑟𝑚𝑝[𝑘] − 𝑟𝑝𝑚[𝑘])𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 )  

≥ 𝑙𝑒(𝑥𝑒[𝑘] − 𝜏 ∑ ∑ (𝑟𝑝𝑚[𝑘])𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 ). (A1) 

 

Since 𝛽𝑒 is the Lipschitz constant of the function 𝑙𝑒, it follows 

that 

 

𝑙𝑒(𝑥𝑒[𝑘 + 1]) ≥ 𝑙𝑒(𝑥𝑒[𝑘]) − 𝜏𝛽𝑒 ∑ ∑ 𝑟𝑝𝑚[𝑘]𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 . (A2) 

 

Considering equations (5), (7) and (9), the last term of 

equation (A2) is written as 
 

𝜏𝛽𝑒 ∑ ∑ 𝑟𝑝𝑚[𝑘]𝑚∈𝒫∖𝒫𝑒𝑝∈𝒫𝑒 = 𝜏𝛽𝑒 ∑ ∑ ∑ 𝑟𝑝𝑚
𝑖 [𝑘]𝑚∈𝒫𝑖∖𝒫𝑒

𝑖𝑝∈𝒫𝑒
𝑖𝑖∈𝐶   

= ∑ ∑ 𝜏𝛽𝑒 ∑ 𝑥𝑝
𝑖 [𝑘]𝜎𝑝𝑚

𝑖 [𝑘]𝜇𝑝𝑚
𝑖 [𝑘]𝑚∈𝒫𝑖∖𝒫𝑒

𝑖𝑝∈𝒫𝑒
𝑖𝑖∈𝐶   

≤ ∑
𝛽𝑒𝜎

𝑑𝑖𝛽̅𝑖|𝐶|(|𝒫𝑖|+𝜂𝑖)(1+ℎ̅)
∑ 𝑥𝑝

𝑖 [𝑘] ∑ 𝜇𝑝𝑚
𝑖 [𝑘]𝑝∈𝒫𝑒

𝑖𝑚∈𝒫𝑖∖𝒫𝑒
𝑖𝑖∈𝐶 , (A3) 

 

where the inequality holds since 𝛽𝑒 ≤ 𝛽̅𝑖  for all 𝑖 such that 𝒫𝑒
𝑖 ≠

∅. Since there are at most 𝜂𝑖 terms in the last summation of 

equation (A3) and since ∑ 𝑥𝑝
𝑖 [𝑘]𝑝∈𝒫𝑒 ≤ 𝑑𝑖, it holds that 

 

𝜏𝛽𝑒 ∑ ∑ 𝑟𝑝𝑚[𝑘]𝑚∈𝒫|𝑒∉𝑝𝑝∈𝒫|𝑒∈𝑝 ≤ ∑
𝛽𝑒σ

𝛽̅𝑖|𝐶|(1+ℎ̅)

𝜂𝑖

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶 . (A4) 

 

Given equations (A1) and (A4) and recalling that 𝑙𝑝 =

∑ 𝑙𝑒𝑒∈𝑝  and 𝛽̅𝑖 ≥ ∑ 𝛽𝑒𝑒∈𝑝  for all paths 𝑝 ∈ 𝒫𝑖𝑖, it holds that 

𝑙𝑝[𝑘 + 1] ≥ ∑ (𝑙𝑒[𝑘] − ∑
𝛽𝑒𝜎

𝛽̅𝑖|𝐶|(1+ℎ̅)

𝜂𝑖

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶 )𝑒∈𝑝   

= 𝑙𝑝[𝑘] −
𝜎

|𝐶|(1+ℎ̅)
∑

1

𝛽̅𝑖

𝜂𝑖

|𝒫𝑖|+𝜂𝑖
∑ 𝛽𝑒𝑒∈𝑝𝑖∈𝐶   

≥ 𝑙𝑝[𝑘] −
𝜎

|𝐶|(1+ℎ̅)
∑

𝜂𝑖

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶  (A5) 

 

Similarly, the maximum latency increase occurs when no 

commodities migrate their populations from paths including 𝑒 

to paths not including 𝑒: 

 

𝑙𝑒(𝑥𝑒[𝑘 + 1]) ≤ 𝑙𝑒(𝑥𝑒[𝑘]) + 𝜏𝛽𝑒 ∑ ∑ 𝑟𝑚𝑝[𝑘]𝑝∈𝒫𝑒𝑚∈𝒫∖𝒫𝑒 . (A6) 

 

Considering equations (5), (7) and (9), the last term of 

equation (A6) is written as 

 

𝜏𝛽𝑒 ∑ ∑ 𝑟𝑚𝑝[𝑘]𝑝∈𝒫𝑒𝑚∈𝒫∖𝒫𝑒 = 𝜏𝛽𝑒 ∑ ∑ ∑ 𝑟𝑚𝑝
𝑖 [𝑘]𝑝∈𝒫𝑖∖𝒫𝑒

𝑖𝑚∈𝒫𝑒
𝑖𝑖∈𝐶   

= ∑ ∑ 𝜏𝛽𝑒 ∑ 𝑥𝑚
𝑖 [𝑘]𝜎𝑚𝑝

𝑖 [𝑘]𝜇𝑚𝑝
𝑖 [𝑘]𝑝∈𝒫𝑖∖𝒫𝑒

𝑖𝑚∈𝒫𝑒
𝑖𝑖∈𝐶   

≤ ∑
𝛽𝑒𝜎

𝛽̅𝑖𝑑𝑖|𝐶|(|𝒫𝑖|+𝜂𝑖)(1+ℎ̅)
∑ 𝑥𝑚

𝑖 [𝑘] ∑ 𝜇𝑚𝑝
𝑖 [𝑘]𝑝∈𝒫𝑖∖𝒫𝑒

𝑖𝑚∈𝒫𝑒
𝑖𝑖∈𝐶 , (A7) 

 

Since there are at most |𝒫𝑖| terms in the last summation of 

equation (A7) it holds that 

 

𝜏𝛽𝑒 ∑ ∑ 𝑟𝑚𝑝[𝑘]𝑝∈𝒫𝑒𝑚∈𝒫∖𝒫𝑒 ≤ ∑
𝛽𝑒𝜎

𝛽̅𝑖|𝐶|(1+ℎ̅)

|𝒫𝑖|

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶 . (A8) 

  

Given equations (A6) and (A8) it follows that 

 

𝑙𝑝[𝑘 + 1] ≤ ∑ (𝑙𝑒[𝑘] + ∑
𝛽𝑒𝜎

𝛽̅𝑖|𝐶|(1+ℎ̅)

|𝒫𝑖|

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶 )𝑒∈𝑝   

≤ 𝑙𝑝[𝑘] +
𝜎

|𝐶|(1+ℎ̅)
∑

|𝒫𝑖|

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶  (A9) 

 

Equation (12) follows from equations (A5) and (A9). ∎ 

 

Proof of Lemma 2. It is shown in the following that, if the 

initial flow vector of the considered system dynamics, 𝒛[0], lies 

in 𝒵, the flow vector 𝒛[𝑘] lies in 𝒵 as well. Recalling equations 

(15) and (18), it is sufficient to show that a) ∑ 𝑥𝑝
𝑖 [𝑘]𝑝∈𝒫𝑖 = 𝑑𝑖 

and b) 𝑥𝑝
𝑖 [𝑘] ≥ 0, ∀𝑝 ∈ 𝒫𝑖 , ∀𝑖 ∈ 𝒞, ∀𝑘 ≥ 0. 

 

a) It follows from equation (5) that, for all 𝑖 ∈ 𝒞 and 𝑠 ≥ 0, 

 

∑ (𝑥𝑝
𝑖 [𝑘 + 1] − 𝑥𝑝

𝑖 [𝑘])𝑝∈𝒫𝑖 = 𝜏∑ ∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝑞∈𝒫𝑖𝑝∈𝒫𝑖   

= 𝜏(∑ ∑ 𝑟𝑞𝑝
𝑖 [𝑘]𝑞∈𝒫𝑖𝑝∈𝒫𝑖 − ∑ ∑ 𝑟𝑞𝑝

𝑖 [𝑘]𝑝∈𝒫𝑖𝑞∈𝒫𝑖 ) = 0, (A10) 

 

and, therefore, that ∑ 𝑥𝑝
𝑖 [𝑘]𝑝∈𝒫𝑖 = ∑ 𝑥𝑝

𝑖 [0]𝑝∈𝒫𝑖 = 𝑑𝑖 , ∀𝑘 ≥ 0. 

 

b) Given that equation (11) yields 𝑥𝑝
𝑖 [−ℎ] ≥ 0, ∀ℎ ∈ ℋ, it is 

proven below by induction that 𝑥𝑝
𝑖 [𝑘] ≥ 0, ∀𝑘 ≥ 0. Assuming 

that 𝑥𝑝
𝑖 [𝑘] ≥ 0, for a given 𝑘, it is sufficient to prove that  

 

𝑥𝑝
𝑖 [𝑘 + 1] = 𝑥𝑝

𝑖 [𝑘] + 𝜏 ∑ (𝑟𝑞𝑝
𝑖 [𝑘] − 𝑟𝑝𝑞

𝑖 [𝑘])𝑞∈𝒫𝑖 ≥ 0, ∀𝑝 ∈

𝒫𝑖 , ∀𝑖 ∈ 𝒞. (A11) 

If 𝑥𝑝
𝑖 [𝑘] = 0, it follows that 𝑟𝑝𝑞

𝑖 [𝑘] = 0 and thus equation 

(A11) yields 𝑥𝑝
𝑖 [𝑘 + 1] ≥ 0. 
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If 𝑥𝑝
𝑖 [𝑘] > 0, from equation (5) it follows that 𝑟𝑝𝑞

𝑖 [𝑘] ≥ 0. 

Thus, the following inequality holds (in the worst case, no paths 

migrate part of their population to a path 𝑝): 

 

𝑥𝑝
𝑖 [𝑘 + 1] ≥ 𝑥𝑝

𝑖 [𝑘] − 𝜏 ∑ 𝑟𝑝𝑞
𝑖 [𝑘]𝑞∈𝒫𝑖 . (A12) 

 

A sufficient condition for inequality (A11) to hold is then 

 

𝑥𝑝
𝑖 [𝑘] − 𝜏 ∑ 𝑟𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫𝑖 ≥ 0. (A13) 

 

Recalling equations (6) and (9), equation (A13) is written as 

 

𝑥𝑝
𝑖 [𝑘] − 𝜏 ∑ 𝑥𝑝

𝑖 [𝑘]𝜎𝑝𝑞
𝑖 [𝑘]𝜇𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫𝑖   

= 𝑥𝑝
𝑖 [𝑘](1 − 𝜏 ∑ 𝜎𝑝𝑞

𝑖 [𝑘]𝜇𝑝𝑞
𝑖 [𝑘]𝑞∈𝒫𝑖 )  

≥ 𝑥𝑝
𝑖 [𝑘] (1 −

𝜎

𝛽̅𝑖 𝑑𝑖|𝒞|(|𝒫𝑖|+𝜂𝑖)(1+ℎ̅)
∑ 𝜇𝑝𝑞

𝑖 [𝑘]𝑞∈𝒫𝑖 )  

> 𝑥𝑝
𝑖 [𝑘] (1 −

𝜎

𝛽̅𝑖 𝑑𝑖|𝒞|(1+ℎ̅)
 ) ≥ 0, (A14) 

 

where the second inequality holds since the summation has at 

most |𝒫𝑖| terms equal to 1. In the case 𝑥𝑝
𝑖 [𝑘] > 0, equations 

(8), (10) are sufficient for (A14) to hold. ■ 

 

Proof of Lemma 3. From Property 1, it holds that ℒ(𝒛) is 

positive definite. 

We need to prove that Δℒ(𝒛[𝑘]) is negative semi-definite. 

The definition (22) of Δℒ(𝒛[𝑘]) yields 

 

Δℒ(𝒛[𝑘]) = ∑ (Φ(𝒛ℎ[𝑘 + 1]) − Φ(𝒛ℎ[𝑘]))ℎ∈ℋ   

= ∑ ∑ ∫ 𝑙𝑒(𝜉)𝑑𝜉
𝑥𝑒[𝑘+1−ℎ]

𝑥𝑒[𝑘−ℎ]𝑒∈ℰℎ∈ℋ   

≤ ∑ ∑ (𝑥𝑒[𝑘 + 1 − ℎ] − 𝑥𝑒[𝑘 − ℎ])𝑙𝑒(𝑥𝑒[𝑘 + 1 − ℎ])𝑒∈ℰℎ∈ℋ , 

 (A15) 

 

where the inequality holds from geometric considerations, as 

the latency functions are strictly increasing (see Appendix 2). 

Considering that 

 

∑ (𝑥𝑒[𝑘 + 1 − ℎ] − 𝑥𝑒[𝑘 − ℎ])𝑙𝑒(𝑥𝑒[𝑘 + 1 − ℎ])𝑒∈ℰ   

= ∑ ∑ (𝑥𝑝[𝑘 + 1 − ℎ] − 𝑥𝑝[𝑘 − ℎ])𝑝∈𝒫𝑒
𝑙𝑒(𝑥𝑒[𝑘 + 1 − ℎ])𝑒∈ℰ   

= ∑ ∑ (𝑥𝑝[𝑘 + 1 − ℎ] − 𝑥𝑝[𝑘 − ℎ])𝑒∈𝑝 𝑙𝑒(𝑥𝑒[𝑘 + 1 − ℎ])𝑝∈𝒫   

= ∑ (𝑥𝑝[𝑘 + 1 − ℎ] − 𝑥𝑝[𝑘 − ℎ])𝑙𝑝[𝑘 + 1 − ℎ]𝑝∈𝒫 ,  (A16) 

 

from equations (A15) and (A16), it follows that 

 

Δℒ(𝒛[𝑘]) ≤ ∑ ∑ (𝑥𝑝[𝑘 + 1 − ℎ] − 𝑥𝑝[𝑘 − ℎ])𝑙𝑝[𝑘 +𝑝∈𝒫ℎ∈ℋ

1 − ℎ].  (A17) 

 

Let us consider the inner summation of (A17) for a given ℎ ∈
ℋ: 

∑ (𝑥𝑝[𝑘 + 1 − ℎ] − 𝑥𝑝[𝑘 − ℎ])𝑙𝑝[𝑘 + 1 − ℎ]𝑝∈𝒫   

= 𝜏∑ (∑ 𝑟𝑞𝑝[𝑘 − ℎ]𝑞∈𝒫 − ∑ 𝑟𝑝𝑞[𝑘 − ℎ]𝑞∈𝒫 )𝑙𝑝[𝑘 + 1 − ℎ]𝑝∈𝒫   

= 𝜏∑ ∑ 𝑟𝑞𝑝[𝑘 − ℎ]𝑞∈𝒫 𝑙𝑝[𝑘 + 1 − ℎ]𝑝∈𝒫 −

𝜏∑ ∑ 𝑟𝑝𝑞[𝑘 − ℎ]𝑞∈𝒫 𝑙𝑝[𝑘 + 1 − ℎ]𝑝∈𝒫   

= 𝜏∑ ∑ 𝑟𝑝𝑞[𝑘 − ℎ]𝑝∈𝒫 𝑙𝑞[𝑘 + 1 − ℎ]𝑞∈𝒫 −

𝜏∑ ∑ 𝑟𝑝𝑞𝑞∈𝒫 [𝑘 − ℎ]𝑙𝑝[𝑘 + 1 − ℎ]𝑝∈𝒫   

= 𝜏∑ ∑ 𝑟𝑝𝑞[𝑘 − ℎ](𝑙𝑞[𝑘 + 1 − ℎ] − 𝑙𝑝[𝑘 + 1 − ℎ])𝑞∈𝒫𝑝∈𝒫 .

 (A18) 

 

We now prove that the terms 

 

𝑟𝑝𝑞[𝑘 − ℎ](𝑙𝑞[𝑘 + 1 − ℎ] − 𝑙𝑝[𝑘 + 1 − ℎ]) 

 

of the last summation are either negative or null, ∀𝑝, 𝑞 ∈ 𝒫. 

 

a) If 𝑟𝑝𝑞[𝑘 − ℎ] = 0, the term is null. 

 

b) It is shown below that, if 𝑟𝑝𝑞[𝑘 − ℎ] > 0, it holds that 

𝑙𝑝[𝑘 + 1 − ℎ] − 𝑙𝑞[𝑘 + 1 − ℎ] > 0, i.e., the considered term in 

(A18) is negative. 

Since we are considering the case 𝑟𝑝𝑞[𝑘 − ℎ] > 0, it holds 

from equations (6), (7) that 

 

𝑙𝑝 [𝑘 − ℎ − ℎ𝑝
𝑖 [𝑘 − ℎ]] − 𝑙𝑞 [𝑘 − ℎ − ℎ𝑞

𝑖 [𝑘 − ℎ]] > 𝜀,  (A19) 

 

at least for one 𝑖 ∈ 𝒞. 

A useful result obtained by iteratively using Lemma 1 is that 

 

𝑙𝑝[𝑘 − ℎ + 1] − 𝑙𝑞[𝑘 − ℎ + 1] ≥ (𝑙𝑝 [𝑘 − ℎ − ℎ𝑝
𝑖 [𝑘 − ℎ]] −

(1 + ℎ𝑝
𝑖 [𝑘 − ℎ])

𝜎

|𝒞|(1+ℎ̅)
∑

𝜂𝑖

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶 ) − (𝑙𝑞 [𝑘 − ℎ − ℎ𝑞
𝑖 [𝑘 −

ℎ]] + (1 + ℎ𝑞
𝑖 [𝑘 − ℎ])

𝜎

|𝒞|(1+ℎ̅)
∑

|𝒫𝑖|

|𝒫𝑖|+𝜂𝑖𝑖∈𝒞 ).  (A20) 

 

From equation (A20) and equation (13), given that ℎ𝑝
𝑖 [𝑘] ≤

ℎ̅, ∀𝑝 ∈ 𝒫, 𝑘 = −ℎ̅, −ℎ̅ + 1,… , it follows that 

 

𝑙𝑝[𝑘 − ℎ + 1] − 𝑙𝑞[𝑘 − ℎ + 1]  

≥ (𝑙𝑝 [𝑘 − ℎ − ℎ𝑝
𝑖 [𝑘 − ℎ]] −

𝜎

|𝒞|
∑

𝜂𝑖

|𝒫𝑖|+𝜂𝑖𝑖∈𝒞 )   

−(𝑙𝑞 [𝑘 − h − ℎ𝑞
𝑖 [𝑘 − ℎ]] +

𝜎

|𝒞|
∑

|𝒫𝑖|

|𝒫𝑖|+𝜂𝑖𝑖∈𝒞 )  

≥ 𝑙𝑝 [𝑘 − ℎ − ℎ𝑞
𝑖 [𝑘 − ℎ]] − 𝑙𝑞 [𝑘 − ℎ − ℎ𝑞

𝑖 [𝑘 − ℎ]] − 𝜎. 

 (A21) 

 

From equation (10), (A19) and (A21) it follows that 

 

𝑙𝑝[𝑘 + 1 − ℎ] − 𝑙𝑞[𝑘 + 1 − ℎ] > 𝜀 − 𝜎 ≥ 0, (A22) 

 ■ 

Proof of Theorem 3. Thanks to the LaSalle’s invariance 

principle (Theorem 1), we know that the system trajectories 

asymptotically tend to the maximal invariant set ℳ in which 

Δℒ(𝒛) = 0, where ℒ(𝒛) is the Lyapunov function (21) (see 

Lemma 3). We will show below that, in our case, the set ℳ can 

be expressed as 

ℳ ≔ {𝒛 ∈ 𝒵|𝒛ℎ = 𝒛0, ∀ℎ ∈ ℋ and 𝑙𝑝(𝒛0) − 𝑙𝑞(𝒛0) <

𝜀, ∀𝑝, 𝑞 ∈ 𝒫𝑖  s. t. 𝒛𝑝0
𝑖 > 𝛿, ∀𝑖 ∈ 𝒞 }. (A23) 
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Firstly, we note that, by definition, ℳ ⊂ (𝒳𝒲
𝜀,𝛿)

ℎ̅
 and, hence, 

that ℳ ≠ ∅ since 𝒵𝒲
𝜀,𝛿

 contains at least 𝒛𝒲. 

We show now that the set (A23) is positively invariant 

and Δℒ(𝒛) = 0 for all 𝒛 ∈ ℳ. Let us suppose that 𝒛[0] = 𝒛 ∈

ℳ. By the definition (A23), it holds that 1) 𝑟𝑝𝑞
𝑖 [0] = 0, ∀𝑝, 𝑞 ∈

𝒫, ∀𝑖 ∈ 𝒞, implying that Δ𝐿(𝒛0[0]) = 0; 2) 𝒛ℎ[0] = 𝒛ℎ−1[0] 
and hence Δ𝐿(𝒛ℎ[0]) = 0, ∀ℎ ∈ ℋ ∖ {0}. It follows that 

Δℒ(𝒛[0]) = 0. Moreover, since 𝑟𝑝𝑞
𝑖 [0] = 0, it holds that 

𝒛0[1] = 𝒛0[0], which, given the dynamics (20), implies 

𝒛[1] = 𝒛[0] ∈ ℳ, meaning that ℳ is positively invariant. 

Now we prove that if 𝒛[0] ∉ ℳ then either Δℒ(𝒛[0]) < 0 or 

𝒛[𝑘] ∈ ℳ for a given 𝑘 ≤ ℎ̅ + 1. The demonstration relies on 

the following iterative procedure: 

 

Step 0. Let 𝑗 = 0. 

Step 1. The following 2 cases are possible: 

Case 1. 𝒛[𝑗] ∈ ℳ (q.e.d.). 

Case 2. 𝒛[𝑗] ∉ ℳ; the following 2 cases are possible: 

Case 2.1. There exist at least one number ℎ ∈ ℋ ∖ {0} such that 

𝒛ℎ[𝑗] ≠ 𝒛ℎ−1[𝑗] with Δ𝐿(𝒛ℎ[𝑗]) < 0 (q.e.d.). 

Case 2.2. There exist at least one number 𝑘 ∈ ℋ ∖ {0} such that 

𝒛𝑘[𝑗] ≠ 𝒛𝑘−1[𝑗] but Δ𝐿(𝒛ℎ[𝑗]) = 0 for all ℎ ∈ ℋ ∖ {0}; then 

the following 2 cases are possible: 

Case 2.2.1. There exist a pair  𝑝, 𝑞 ∈ 𝒫𝑖 for a commodity 𝑖 ∈ 𝒞 

with 𝒛𝑝0
𝑖 > 𝛿 such that 

 

𝑙𝑝 (𝒛ℎ𝑝𝑖 [𝑗]
[𝑗]) − 𝑙𝑞 (𝒛ℎ𝑞𝑖 [𝑗]

[𝑗]) > 𝜀,  

 

implying 𝑟𝑝𝑞
𝑖 [𝑗] > 0 and Δ𝐿(𝒛0[𝑗]) < 0 (q.e.d.).  

Case 2.2.2. For all pairs  𝑝, 𝑞 ∈ 𝒫𝑖 and for the commodities 𝑖 ∈

𝒞 such that 𝒛𝑝0
𝑖 [𝑗] > 𝛿, it holds that 

 

𝑙𝑝 (𝒛ℎ𝑝𝑖 [𝑗]
[𝑗]) − 𝑙𝑞 (𝒛ℎ𝑞𝑖 [𝑗]

[𝑗]) ≤ 𝜀, (A24) 

 

implying 𝑟𝑝𝑞
𝑖 [𝑗] = 0, which, in turn, implies Δ𝐿(𝒛0[𝑗]) = 0 

and 𝒛0[𝑗 + 1] = 𝒛0[𝑗]. Note that, at the 𝑗-th iteration of Case 

2.2, the system dynamics (20) leads to 

 

𝒛0[𝑗 + 1] = 𝒛0[0];

𝒛1[𝑗 + 1] = 𝒛0[0];
…

𝒛𝑗[𝑗 + 1] = 𝒛0[0].

  (A25) 

 

If 𝑗 < ℎ̅, let 𝑗 = 𝑗 + 1 and repeat the procedure from Step 1. 

Otherwise, if 𝑗 = ℎ̅, it follows from (A25) that 𝒛ℎ[ℎ̅ + 1] =

𝒛0[0], ∀ℎ ∈ ℋ, which, in turn, considering equation (A24), 

implies that, for all 𝑝, 𝑞 ∈ 𝒫𝑖 such that 𝒛𝑝0
𝑖 > 𝛿 and for all 𝑖 ∈

𝒞,  

 

𝑙𝑝 (𝒛ℎ𝑝𝑖 [ℎ̅+1][ℎ̅ + 1]) − 𝑙𝑞 (𝒛ℎ𝑞𝑖 [ℎ̅+1][ℎ̅ + 1]) =  

= 𝑙𝑝(𝒛0[ℎ̅ + 1] ) − 𝑙𝑞(𝒛0[ℎ̅ + 1]) ≤ 𝜀, 

 

and, therefore, that 𝒛[ℎ̅ + 1] ∈ ℳ (q.e.d.). 

 

In order to apply the LaSalle’s invariance principle, ℳ must 

be the maximal invariant set, which contains all and only the 

invariant trajectories of the system. 

We firstly show that all points in ℳ are part of an invariant 

trajectory. Recalling that we have already proven that ℳ is 

positively invariant, let 𝒛[0] ∈ ℳ. The trajectory that stays 

identically in 𝒛[0], i.e., 𝒛[𝑘] = 𝒛[0], 𝑘 = 1,2, …, represents a 

valid evolution of the system that remains in ℳ for all 𝑘 ∈ ℝ. 
Secondly, for the discussion regarding Case 2.2 of the 

iterative procedure, no other points for which Δ𝐿(𝒛) = 0 can 

stay identically outside of the set ℳ. Furthermore, no other 

invariant trajectory of interest for the system exists, as in any 

trajectory that does not stay identically in a point there must 

exist a pair 𝑝, 𝑞 ∈ 𝒫𝑖 and a commodity 𝑖 ∈ 𝒞 for which 

𝑟𝑝𝑞
𝑖 [𝑘] > 0, for some 𝑘 ∈ ℝ. Since we have shown in the proof 

of Lemma 3 that 𝑟𝑝𝑞
𝑖 [𝑘] > 0 implies Δℒ(𝒛[𝒌]) < 0, this 

concludes the proof. ■ 

 

Proof of Theorem 4. The proof follows the same steps of the 

ones of Lemmata 1-3 and of Theorem 3, therefore here we will 

only specify the differences due to the time-varying tolerance 

and gain values. Specifically, the only key difference is that the 

gain 𝜎[𝑘] is time-varying and, by assumption A2.2, non-

increasing, i.e.: 

 

𝜎[𝑘] ≤ 𝜎 [𝑘 − ℎ𝑝
𝑖 [𝑘]] ≤ 𝜎[𝑘 − ℎ̅], ∀𝑝 ∈ 𝒫𝑖 , ∀𝑖 ∈ 𝒞. 

 

From Lemma 1, it holds thus that 

 

𝑙𝑝[𝑘 − ℎ + 1] − 𝑙𝑞[𝑘 − ℎ + 1] ≥ (𝑙𝑝 [𝑘 − ℎ − ℎ𝑝
𝑖 [𝑘 − ℎ]] −

(1 + ℎ𝑝
𝑖 [𝑘 − ℎ])

𝜎[𝑘−ℎ−ℎ̅]

|𝒞|(1+ℎ̅)
∑

𝜂𝑖

|𝒫𝑖|+𝜂𝑖𝑖∈𝐶 ) +  

−(𝑙𝑞 [𝑘 − ℎ − ℎ𝑞
𝑖 [𝑘 − ℎ]] + (1 + ℎ𝑞

𝑖 [𝑘 −

ℎ])
𝜎[𝑘−ℎ−ℎ̅]

|𝒞|(1+ℎ̅)
∑

|𝒫𝑖|

|𝒫𝑖|+𝜂𝑖𝑖∈𝒞 ),  (A26) 

 

for all ℎ ∈ ℋ (instead of equation (A20)) and equation (A21) 

of Lemma 3 becomes 

 

𝑙𝑝[𝑘 − ℎ + 1] − 𝑙𝑞[𝑘 − ℎ + 1] ≥ 𝑙𝑝 [𝑘 − ℎ − ℎ𝑞
𝑖 [𝑘 − ℎ]] −

𝑙𝑞 [𝑘 − ℎ − ℎ𝑞
𝑖 [𝑘 − ℎ]] − 𝜎[𝑘 − ℎ − ℎ̅],  (A27) 

entailing that condition (A22) becomes 

 

𝑙𝑝[𝑘 + 1 − ℎ] − 𝑙𝑞[𝑘 + 1 − ℎ] >  

> 𝜀[𝑘 − ℎ] − 𝜎[𝑘 − ℎ − ℎ̅] ≥ 0, (A28) 

 

which holds by assumption A2.3.  ■ 
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APPENDIX 2 

If 𝑥𝑒[𝑘 + 1] > 𝑥𝑒[𝑘], the upper plot of Fig. 4 shows that the 

quantity (𝑥𝑒[𝑘 + 1] − 𝑥𝑒[𝑘])𝑙𝑒(𝑥𝑒[𝑘 + 1]), equal to the area of 

the rectangle with bold lines, is larger than the integral 

∫ 𝑙𝑒(𝜉)𝑑𝜉
𝑥𝑒[𝑘+1]

𝑥𝑒[𝑘]
, equal to the grey area. If 𝑥𝑒[𝑘 + 1] < 𝑥𝑒[𝑘], 

the lower plot shows that (𝑥𝑒[𝑘] − 𝑥𝑒[𝑘 + 1])𝑙𝑒(𝑥𝑒[𝑘 + 1]), 
equal to the area of the rectangle with bold lines, is smaller than 

the integral ∫ 𝑙𝑒(𝜉)𝑑𝜉
𝑥𝑒[𝑘]

𝑥𝑒[𝑘+1]
, equal to the grey area. 

𝑥2 𝑥1

𝜂̅ ≔ max
𝑥∈[𝑥 ,𝑥 ]

𝑑𝑙 𝑥

𝑑𝑥
− 𝜂̅ ⋅ 𝑥2 − 𝑥1

− 𝑙 𝑥2 − 𝑙 𝑥1

𝑥 

𝑙 𝑥

0

𝑥1 𝑥2

𝜂̅ ≔ max
𝑥∈[𝑥 ,𝑥 ]

𝑑𝑙 𝑥

𝑑𝑥
𝜂̅ ⋅ (𝑥2 − 𝑥1)

𝑙 𝑥2 − 𝑙(𝑥1)

𝑥 

𝑙 𝑥

0

𝑥𝑒[𝑘] 𝑥𝑒 𝑘 + 1 𝑥𝑑

𝑙𝑒 𝑥

0

𝑙𝑒 𝑥𝑒 𝑘 + 1
𝑙𝑒 𝑥𝑒[𝑘]

𝑙 𝑥2

𝑙 𝑥1

𝑥𝑒 𝑘 + 1 𝑥𝑒[𝑘] 𝑥𝑑

𝑙𝑒 𝑥

0

𝑙𝑒 𝑥𝑒[𝑘]
𝑙𝑒 𝑥𝑒 𝑘 + 1

 
Figure 4.  Geometrical considerations on the latency functions. 
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