
MCMC methods for continuous time
multi-state models and high dimensional

copula models

Ph.D. candidate: Rosario Barone
supervisor: Prof. Andrea Tancredi

Thesis in Statistics

XXXII Ph.D. cycle

Department of Methods and Models for Economics, Territory
and Finance

Sapienza University of Rome



Contents

1 MCMCmethods for discretely observed continuous-time multi
state models 6
1.1 Markov and semi-Markov Continuous-time multi state processes 7

1.1.1 Poisson process as Markov chain . . . . . . . . . . . . . 8
1.1.2 State chain and sojourn times . . . . . . . . . . . . . . 10
1.1.3 Semi-Markov CTMSM . . . . . . . . . . . . . . . . . . 10

1.2 Inference and simulation for CTMSM . . . . . . . . . . . . . . 11
1.2.1 Inference for fully observed continuous-time semi-Markov

processes . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Uniformization based algorithm . . . . . . . . . . . . . 14
1.2.3 The base measure for CTMSM . . . . . . . . . . . . . 15
1.2.4 A Metropolis-Hastings for semi-Markov CTMSM . . . 17

1.3 Bayesian inference for discretely observed semi-Markov CTMSM 19
1.3.1 Bayesian inference for Weibull sojourn times . . . . . . 21

1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.1 Simulation study . . . . . . . . . . . . . . . . . . . . . 25
1.4.2 Modelling rating classes with Standard and Poor’s data 26
1.4.3 Breast Cancer Data . . . . . . . . . . . . . . . . . . . . 30

2 Bayesian nonparametric inference for continuous time multi-
state models 33
2.1 Introduction to Bayesian nonparametric inference . . . . . . . 35

2.1.1 Dirichlet Process . . . . . . . . . . . . . . . . . . . . . 35
2.1.2 Dirichlet Process Mixtures . . . . . . . . . . . . . . . . 38

2.2 Dirichlet Process Mixtures of CTMSM . . . . . . . . . . . . . 44
2.2.1 Infinite mixtures of CTMSM . . . . . . . . . . . . . . . 44
2.2.2 Assuming Markov density kernel . . . . . . . . . . . . 45
2.2.3 Posterior Computation . . . . . . . . . . . . . . . . . . 46
2.2.4 BNP inference for discretely observed CTMSM . . . . 50

2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.1 Simulation study . . . . . . . . . . . . . . . . . . . . . 52

1



2.3.2 BNP modelling of rating classes with Standard and
Poor’s data . . . . . . . . . . . . . . . . . . . . . . . . 57

3 MCMC methods for high dimensional copulas 60
3.1 Copula models . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Elliptical copulas . . . . . . . . . . . . . . . . . . . . . 63
3.1.2 Archimedean copulas . . . . . . . . . . . . . . . . . . . 65
3.1.3 Multidimensional copulas and vine construction . . . . 68

3.2 Bayesian inference for copulas . . . . . . . . . . . . . . . . . . 71
3.2.1 Parametric estimation: Bayesian inference . . . . . . . 72
3.2.2 Dealing with high dimensions: inference for vine copulas 74

3.3 Bayesian nonparametric inference for multidimensional copulas 75
3.3.1 Infinite mixtures of multivariate copulas . . . . . . . . 76
3.3.2 Dirichlet Process Mixtures of multidimensional Gaus-

sian copulas . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.3 Bayesian nonparametric conditional multidimensional

copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.4 Dirichlet Process Mixtures of conditional Gaussian vine

copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.2 Density estimation . . . . . . . . . . . . . . . . . . . . 89

2



Introduction

In this Thesis we propose Markov chain Monte Carlo (MCMC) methods for
several classes of models. We consider both parametric and nonparametric
Bayesian approaches, proposing either alternatives in computation to already
existent methods or new computational tools.

In particular, we consider continuous time multi-state models (CTMSM),
that is a class of stochastic processes useful for modelling several phenomena
evolving continuously in time, with a finite number of states. Inference for
these models is straightforward if the processes are fully observed, while it
presents some computational difficulties if the processes are discretely ob-
served and there is no additional information about the state transitions.
In particular, in the semi-Markov models case the likelihood function is not
available in closed form and approximation techniques are required. In the
first Chapter we provide a uniformization based algorithm for simulating
continuous time semi-Markov trajectories between discretely observed points
and propose a Metropolis within Gibbs algorithm in order to sample from
the posterior distributions of the parameters of that class of processes. As it
will be shown, our method generalizes the Markov case.

In the second Chapter we present a novel Bayesian nonparametric ap-
proach for inference on CTMSM. We propose a Dirichlet Process Mixture
with continuous time Markov multi-state kernels, providing a Gibbs sam-
pler which exploit the conjugacy between the Markov CTMSM density and
the chosen base measure. The method, that is applicable with fully observed
and discretely observed data, represents a flexible solution which avoid para-
metric assumptions on the process and allows to get density estimation and
clustering.

In the last Chapter we focus on copulas, a class of models for dependence
between random variables. The copula approach allows for the construction
of joint distributions as product of marginals and copula function. In partic-
ular, we focus on the modelling of the dependence between more than two
random variables. In that case, assuming a multidimensional copula model
for the multivariate data implies that paired data dependencies are assumed
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to belong to the same parametric family. This constraint makes this class
of models not very flexible. A proposed solution to this problem is the vine
copula constructions, which allows us to rewrite the multivariate copula as
product of pair-copulas which may belong to different copula families. An-
other solution may be the nonparametric approach. We present two Bayesian
nonparametric methods for inference on copulas in high dimensions. The first
proposal is an alternative to an already existent method for high dimensional
copulas. The second method is a novel Dirichlet Process Mixture of condi-
tional multivariate copulas, which accounts for covariates on the dependence
between the considered variables.

Applications with both simulated and real data are provided in the last
section of the first and the second Chapters, while in the last Chapter there
are only application with simulated data.
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Chapter 1

MCMC methods for discretely
observed continuous-time multi
state models

Continuous time multi-state models (CTMSM) represent a widely applicable
class of models useful for modelling phenomena - assuming a finite number
of states - evolving continuously in time. Inference for these models present
some computational difficulties when the process is only observed at discrete
time points with no additional information about the state transitions. In
particular, when transitions between states may depend on the time since
entry into the current state, and semi-Markov models should be fitted to the
data, the likelihood function is neither available in closed form. We are inter-
ested in providing an efficient Bayesian method for making inference when
the likelihood function of a CTMSM is intractable. In fact we relax the as-
sumption of Markovianity of the process considering the more general class
of semi-Markov CTMSM.

In this Chapter we first introduce the class of processes we are working on,
starting from the Markov CTMSM and extending the definition for the semi-
Markov case. We explain the properties of the processes, therefore we discuss
the computational difficulties when observations are discrete. In the second
section we show how to bypass the likelihood calculation in the Markov case
by simulating trajectories via uniformization based algorithm [Hobolth and
Stone, 2009]. Then we introduce a Metropolis Hastings algorithm in order to
generalize the paths simulation for the wider class of semi-Markov CTMSM.
In the last section we set up a Markov Chain Monte Carlo algorithm for
simulating the posterior distribution of the model parameters when sojourn
times are assumed to be Weibull distribuited.
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1.1 Markov and semi-Markov Continuous-time
multi state processes

A continuos time stochastic process {X(t), t ∈ T } is a Markov process on
the state space S = {1, 2, . . . S} and time space T ⊂ R+ if

P (X(t+ u = s|X(t) = r,Ft) = P (X(t+ u) = s|X(t) = r),

when Ft is the past history up to time t, for all r, s ∈ S and u ∈ R+.

The process {X(t), t ∈ T } is a homogeneous Markov process if

P (X(t+ u) = s|X(u) = r) = P (X(u) = s|X(0) = r).

Let the transition probabilities for a time-homogeneous process be defined as

prs(t) = P (X(t) = s|X(0) = r).

Moreover let P (t) be the transition probability matrix whose generic el-
ement is prs(t).

The Markov process X(t) can be defined via the transition intensity func-
tions

qrs(t) = lim
δt→0

P (X(t+ δt) = s|X(t) = r)

δt
(1.1)

representing the instantaneous transition rate from state r to state s at time t.

For the time homogeneous Markov process we have

P (X(t+ δt) = s|X(t) = r) =

{
γrsδt+ o(δt) s 6= r
1 + γrrδt+ o(δt) s = r

(1.2)

where γrs ≥ 0 and γrr = −
∑

s 6=r γrs = −γr, γrs and γr denote respectively the
r-s and the diagonal element of the the transition rates matrix, or generator
matrix

A =

γ11 . . . γ1S
... . . . ...
γS1 . . . γSS

 ,

which satisfies the three following conditions:

1. 0 ≤ −γii <∞ ∀i;

2. γij > 0 ∀i 6= j;
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3.
∑

j∈S γij = 0 ∀i.

The Chapman–Kolmogorov equations for a continuous-time Markov chain
are

P (t+ δt) = P (t)P (δt)

for any t ∈ T . Transition probabilities for a continuous-time Markov chain
are functions of time t, derivable from the transition intensity functions of
the chain.

The link between the generator matrix and the transition probability
matrix for the time t is given by the Kolmogorov differential equations.
The forward equations and backward equations are

d

dt
P (t) = P (t)A and

d

dt
P (t) = AP (t)

respectively, with P (0) = I.
Given A, the solution for P (t) is the exponential matrix

P (t) =
∞∑
n=0

(tA)n

n!
= exp (tA).

For the proof see Norris [1998] or Davison [2003].

If the process we are considering has one absorbing state, the row of the
generator matrix A corresponding to the absorbing state has all entries equal
to zero. Once the process is in an absorbing state r, the rate γrs of moving
to another state s is zero. As a consequence, the diagonal entry γrr is zero as
well. The row in the transition probability matrix P (t) that corresponds to
an absorbing state has the diagonal entry equal to one and all off-diagonal
entries equal to zero, meaning that the probability of being in the same state
in the future is one.

1.1.1 Poisson process as Markov chain

The Poisson process will have an important role in our work. In fact it will
be used for simulating CTMSM. Moreover it represents a simple example of
continuous time Markov process although with a countable state space. The
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Figure 1.1: The path of a Poisson Process.
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rate matrix for the Poisson process is then the infinite matrix

A =


−λ λ 0 . . . 0 . . .
0 −λ λ 0 . . . . . .
... 0 −λ λ 0 . . .
...

... . . . . . . . . . . . .

 .

We now give the definition of Poisson process in terms of jump chain and
sojourn times (or holding times).

A right continuous process (Xt, t ∈ T ) which takes values in {1, 2, . . . } is
a Poisson process of rate λ > 0 if

• its state chain i.e. the state sequence generated by the process is given
by Yn = n.

• for each visited state the sojourn times w1, w2, ... are Exponential ran-
dom variables with rate λ;

The picture shows an example of the path of a Poisson Process. The
Markovianity of Xt is guaranteed from the memoryless of the exponential
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sojourn times, which leads to the memoryless property of the whole Poisson
process.

1.1.2 State chain and sojourn times

We have introduced the continuous-time Markov processes by the transition
intensities functions. Moreveover, we analyzed the relationship between the
generator matrix A and the transition probability matrix P(t). Here we fo-
cus on another - equivalent - representation, which allows us to define the
continuous-time Markov process as a tuple of states and sojourn times.

Let S be a countable state space. The rate matrix A provides all the
information we need for the continuous-time Markov process construction.
Given a rate matrix A, we may define the jump matrix P = (pij : i, j ∈ S),
where

pij =

{
γij/γi if j 6= i and γi 6= 0
0 if j 6= i and γi = 0

,

pii =

{
0 if γi 6= 0
1 if γi = 0

.

In each row we take the off diagonal entries and scale them so they add
up to 1, while the diagonal element is 0. If there are no entries, we put 1 on
the diagonal element of A.

Then, a continuous-time Markov process can be defined in terms of its
jump chain and holding times. Precisely, a discrete state space continuous
time stochastic process (Xt, t ∈ T ) is a continuous-time Markov process with
transition rate matrix A

• if its jump chain (Yn, n > 0) is discrete-time Markov chain with transi-
tion probability matrix P ;

• if for each n>1, conditional on Y0, Y1, . . . , Yn−1, its holding times w1, . . . , wn
are independent exponential random variables of parameters γ(Y0), . . . , γ(Yn−1)

respectively [Norris, 1998].

1.1.3 Semi-Markov CTMSM

The definitions of Markov process given in (1.1) and (1.2) can be extended
to the more general case of continuous-time semi-Markov processes.

9



We define a semi-Markov CTMSM via its transition intensity function,

qrs(t,Ft) = lim
δt→0

P{X(t+ δt) = s|X(t) = r,Ft}
δt

,

where Ft represents the natural filtration associated to the process at time
t. More precisely, we rewrite

qrs(t,Ft) = lim
δt→0

P{X(t+ δt) = s|X(t) = r, T ∗ = t− u}
δt

,

where T ∗ denotes the entry time in the last state assumed before time t.
Unlike the Markovian case, here the transition intensity functions also depend
on the time spent in the current state. In particular, setting

P{X(t+δt) = s|X(t) = r, T ∗ = t−u} =

{
qrs(u)δt+ o(δt) s 6= r
1−

∑
l 6=r qrl(u)δt+ o(δt) s = r

we describe a time-homogeneous semi-Markov process X(t).

Note that the semi-Markov processes can be expressed by the proper-
ties of the state sequence and the sojourn times. Let Fr(u) be the dis-
tribution with hazard function F ′r(u)/(1 − Fr(u)) =

∑
l 6=r qrl(u). Consider

prs =
∫∞

0
qrs(u)(1 − Fr(u))du and Frs(u) = 1

prs

∫ u
0
qrs(v)(1 − Fr(v))dv, for

s 6= r. Then, X(t) is the result of the state sequence generated by the Markov
chain with transition probabilities prs and sojourn times depending on the
departure and arrival states generated independently with distributions Frs.

1.2 Inference and simulation for CTMSM
After having introduced the models from the mathematical point of view,
we now focus on the computational and inferential aspects. CTMSM repre-
sent a useful class of stochastic processes for analyzing event history data
[Lawless, 2013]. Practical applications of these models can be found in many
fields. For example in biostatistics they are often used for modelling both dis-
ease progression and patient recovery after medical tratment, see for example
Gentleman et al. [1994], O’Keeffe et al. [2011] and Ieva et al. [2017]. Other
applications can be found in econometrics where, for example, CTMSM have
ben adopted for modeling individual labor market status [Joutard et al.,
2012] or credit rating transitions [Bladt and Sørensen, 2009].
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Inference details for modeling data generated by specific classes of CTMSM
differ if the sample paths are continuously observed or if the data only con-
sist of the states observed at discrete time points, with no information about
the state sequence and times of events between observation times. In fact,
the former case does not present particular issues while the latter, usually
referred to as panel data framework, apart from specific models may present
considerable computational issues.

In fact, the problem with the panel data framework is that the likeli-
hood function is available only for the Markov case or its simpler extensions
and also in these cases it must be evaluated via numerical approximations.
Kalbfleisch and Lawless [1985] were the first to introduce appropriate nu-
merical techniques for the standard Markov CTMSM. Relaxing the Markov
assumptions, for example by assuming a semi-Markov process where tran-
sitions between states may depend on the time since entry into the current
state, leads generally to an intractable likelihood problem. To bypass the
problem, Kang and Lagakos [2007] assume time-homogeneous transition in-
tensities from at least one of the states while Armero et al. [2012] discuss a
Weibull progressive disability model. Titman and Sharples [2010] focus on the
tractable class of phase-type sojourn distributions while Titman [2014] sug-
gests using phase-type distributions to approximate the likelihood of CTMSM
with Gamma or Weibull sojourn time distributions.

All the proposals discussed above do not consider the possibility to re-
construct the whole sample paths in order to make inference via ordinary
missing data techniques. However, note that a missing data formulation has
been frequently adopted in the Markov case starting from Bladt and Sørensen
[2005] where both an EM and a Gibbs sampler were proposed to estimate
the parameters of a discretely observed Markov CTMSM. Anyway the Gibbs
sampler was performed by a naive rejection sampling, i.e. by drawing uncon-
ditioned trajectories and discarding them that do not hit the right states.
The limitations of the rejection sampling are discussed in Hobolth and Stone
[2009], where it is also introduced a different sampling strategy based on the
uniformization technique that permits to simulate directly Markov trajecto-
ries with fixed starting and ending states. The uniformization algorithm was
used also to draw the distribution of a Markov sample path conditionally on
a sequence of observed points by Fearnhead and Sherlock [2006] and was also
used by Pfeuffer et al. [2018] for implementing a stochastic version (SEM) of
the EM for the Markov case. A SEM algorithm was recently proposed also
for the semi-Markov case by Aralis and Brookmeyer [2019] but the recon-
struction of the sample paths was performed by a naive rejection sampling.
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Finally Tancredi [2019] proposes approximate Bayesian computation (ABC)
techniques for Markov and Semi-Markov cases by approximately matching
the observed and simulated state transition matrices between different ob-
servation times.

1.2.1 Inference for fully observed continuous-time semi-
Markov processes

When the whole process trajectory is observed, inference for semi-Markov
continuous-time multi state models is straightforward. We first have to as-
sume a probability distribution for the sojourn times, then we may write
down the likelihood function of the process. Assuming as sojourn time den-
sity a function z depending on a vector of parameters θ, the only condition
that must hold is that z is the density of a positive random variable.

We suggest to choose a generalization of the exponential distribution in
order to include also the Markovian case, allowing to relax the assumption
of independence of the time spent in the current state.

Let (Xt, t ∈ T ) be a continuous-time semi-Markov model of parameters
θ = (ζ, P ) with discrete state space S. Let z(·|ζr) be the density function for
the sojourn time in the state r. Note that we do not assume that sojourn
times depend on arrival state. Moreover, let prs be the probability of a transi-
tion from state r to state s. Let ζ = (ζ1, . . . , ζS) be the vector of sojourn times
parameters and let P be the transition probability matrix. Suppose to ob-
serve the full trajectory between two points, 0 and T . Let s = (s0, s1, . . . , s`)
be the state sequence and w = (w1, . . . , w`) be the sojourn times sequence.
Note that s` represents the last visited state, while w` represents the last
sojourn time, truncated at the end point T , so that

∑`
i=1wi = T . Notice

that Xt ↔ (s, w). Finally, we assume that s0 is observed.

Let nrs =
∑`−1

j=0 1(sj = r, sj+1 = s) be the transition counts from the state
r to the state s, let nr =

∑
s6=r nrs be the total number of complete sojourns

into the state r, i.e. excluding the truncated sojourn times. Moreover, let
wr· = (wr1, . . . , wrnr) be the sequence of observed sojourn times in the state
r. We can write down the density of the single trajectory

p(s, w|θ) =
∏
rs

(prs)
nrs
∏
r

nr∏
i=1

z(wri|ζr) · (1− Z(w`|ζs`)) . (1.3)

where 1 − Z(w`|ζs`) is the survival function for the last observation, due to

12



the truncation of the trajectory. Moreover, note that this factor does not
appear if T is exactly the entry time in an absorbing state.

Let us indicate (s, w)j for j = 1, . . . , N the state and sojourn times se-
quences for the j-th trajectory. The likelihood function is then

L(θ) =
N∏
j=1

p((s, w)j|θ), (1.4)

and it is available in closed form. Inference, both frequentist and Bayesian,
does not present particular issues.

Problems arise if the trajectory is observed at discrete points. In that
case, we do not know the exact jump times, hence we do not have infor-
mation about the sojourn times in each state and the likelihood function is
numerically available only for the Markov case, i.e. when the sojourn times
are exponentially distributed.

Our goal is to provide an MCMC sampler which remedy to the problem of
discrete observations of a continuous-time process and avoid the Markovian
assumption of the analyzed processes.

1.2.2 Uniformization based algorithm

The uniformization is a sampling strategy for continuous-time Markov pro-
cesses based on the methodology proposed by Jensen [1953]. This methods
draws the continuous-time Markov process (Xt, t ∈ T ) trajectories via con-
struction of an auxiliary stochastic process (Yt, t ∈ T ).

Let A be the rate transition matrix of Xt and consider the transition
probability matrix

R = I +
1

λ
A, (1.5)

where λ = maxAii. Note that via the transition matrix R the same state may
be visited several times in a row. Consider also a Poisson process with rate λ.
Then, the auxiliary process Yt is obtained by taking the points drawn from
the Poisson process as jump points and the state sequence generated by the
transition probability matrix R and is called Markov process subordinated to
a Poisson Process. Yt is equivalent to the original continuous-time Markov
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process Xt, indeed the transition matrix of Xt can be written as

P (t) = eAt = eλ(R−I)t = e−λt
∞∑
n=0

(λtR)n

n!
=
∞∑
n=0

e−λt
(λt)n

n!
Rn. (1.6)

It follows that the transition probability matrix Pab(t) of the Markov process
Xt can be written as

Pab(t) = P (Xt = b|X0 = a) = e−λtIa=b +
∞∑
n=1

e−λt
(λt)n

n!
Rn
ab. (1.7)

Now, without loss of generality, suppose to know the start point X0 = a and
the end point XT = b. The number of state changes for the auxiliary process
conditional on his starting point a and endpoint b is given by

P (N = n|X0 = a,XT = b) = e−λT
(λT )n

n!
Rn
ab/Pab(T ). (1.8)

Conditionally on the number of state changes N = n, the jump times are
Uniform(0, T ) both also conditionally on the endpoints and unconditionally.
Finally the state-sequence conditioned on the endpoints can be obtained by
drawing the first n steps of a Markov chain with transition matrix R, initial
state a and end state b.

Thus, we can simulate trajectories of the continuous-time Markov process
Xt, given two observed points X0 = a and XT = b, with the uniformization
algorithm described Algorithm 1.

Moreover we can draw Markovian trajectories trajectories on a sequence
of observations at times 0 = t0, t1, . . . , tm = T by iterating the uniformization
algorithm between ti−1 and ti for i = 1, . . . ,m. Our idea of generalization
of Uniformization for sampling semi-Markov CTMSM finds application in
Bayesian inference and it is basically quite intuitive. In a Markov Chain
Monte Carlo framework, our intention is to implement a Metropolis Hastings
to simulate trajectories. The idea is to propose via Uniformization Markovian
paths, choosing as target a semi-Markov density.

1.2.3 The base measure for CTMSM

In this section we give the theoretical details for the base measure of CTMSM.
This applies for both Markov and semi Markov CTMSM.
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Algorithm 1 Uniformization, Hobolth and Stone

Input: A, X0 = a, XT = b.
Output: (s, w).

• Compute λ = maxAii
• Compute R = I + 1

λ
A

• Simulate the number of state changes n from the distribution (2.8):
◦ If the number of state changes is 0, stop: Xt = a, 0 ≤ t ≤ T ;
◦ If the number of state changes is 1 and a=b, stop: Xt = a, 0 ≤ t ≤ T ;
◦ If the number of state changes is 1 and a 6= b, simulate t1 from a
Uniform(0, T ) and stop: Xt = a, t ≤ t1 and Xt = b t ≥ t1;
◦ If the number of state changes n is at least 2:

1. simulate independently n independent uniform random variables in
[0,T] and sort the number in increasing order to obtain the times of
state changes 0 < t1 < ... < tn < T in order to get the jump times ;

2. simulateXt1 ,...,Xtn−1 from a discrete time Markov chain with transition
matrix R, conditional on X0 = a and XT = b;

3. discard virtual state changes, compute wi = ti − ti−1 and return the
two-tuple containing the sequences of state changes and sojourn times
(s, w).

For m > 2 observations of the same individual, the whole trajectory is gener-
ated simulating independently the paths between each pair of observed points
in row.
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Let Xt be a CTMSM with parameters θ = (ζ, P ). Let S and T be re-
spectively the discrete state space and the time space. The process Xt takes
values in the product union space

⋃
n Sn × T n.

Consider the finite measure spaces (Sn,ΣSn , νn) and (T n,ΣT n , µn), re-
spectively the measure space of the states and the measure space of the
sojourn times for a sequence of n jumps.

We define the product measure space (Mn,ΣMn , ηn), where ηn is the
product measure ηn = νn × µn and ΣMn is the product σ-algebra. Then, we
define

M∪ ≡
∞⋃
n=0

Mn ≡
∞⋃
n=0

Sn × T n

a union space, where eachMn is a product space.
Moreover, let Σ∪M be the union product σ-algebra, where each measurable
set A ∈ ΣM∪ can be expressed as

A =
∞⋃
n=0

An with An = A ∩Mn ∈ Σn
M.

Therefore, we assign this space the measure η∪, defined as

η∪(A) =
∞∑
n=0

ηn(An).

Hence, Xt ∈M∪ has density w.r.t. η∪.

Thus, in general CTMSM have densities w.r.t. the base measure η∪. Let
p be the density function of a CTMSM Xt, defined on the measure space
(M∪,Σ∪M, η

∪). Then p is such that∫
M∪

p(s, w)dη∪(s, w) = 1.

1.2.4 A Metropolis-Hastings for semi-Markov CTMSM

We now show how to simulate semi-Markov CTMSM trajectories condi-
tional on the observed points. We have already seen how to simulate Markov
CTMSM paths via the uniformization algorithm. Then, our idea is to use a
Metropolis-Hastings algorithm having as a proposals distribution that of a
Markov CTMSM and as a target distribution that of a semi-Markov CTMSM.
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The choice for the semi-Markov CTMSM sojourn time distribution is
quite arbitrary. Hence, since in Markov CTMSM sojourn times are expo-
nentially distributed, we propose to use as the sojourn time density for the
semi-Markov model a generalization of the exponential distribution.

Suppose we need to simulate the path of a semi-Markov CTMSM condi-
tionally on the observed points x = (x0, . . . , xm) at the times t0 = 0, . . . , tm =
T . Let pSM generally denotes the density under the semi-Markov model. The
conditional density of the path is

ΠSM(s, w|x) =
pSM(s, w, x)

pSM(x)
=
pSM(s, w)

pSM(x)

∝

(∏
rs

prs

)(∏
r

nr∏
i=1

z(wri|ζr)

)
· (1− Z(w`|ζs`)) .

Since we are not able to simulate directly from pSM(s, w|x), we propose
a sample path which matches the points exactly but relies on the Markov
CTMSM. This sample path will be generated via the uniformization algo-
rithm. In particular we iterate the simulation of end points conditional path
between [ti−1, ti] with states [xi−1, xi] for i = 1, . . . ,m. The proposal density
is then

Q(s, w|x) =
pM(s, w, x)

pM(x)
=
pM(s, w)

pM(x)

∝
∏
rs

p̃nrsrs

∏
r

γ̃nrr e
−γ̃r

∑nr
j=1 wrj · e−γ̃s`ws`

where γ̃rs are the rate parameters of a Markov proposal process, p̃rs = γ̃rs/γ̃r,
while nrs indicates the number of jumps from the state r to the state s; z is
an exponential model with rate parameter γ̃.

The target density Π is proportional to the density of a continuous-time
semi-Markov process. Instead, the sojourn time density is not exponential
anymore. The only condition which must hold is that z is a positive ran-
dom variable. Since our goal is to generalize the uniformization algorithm,
we suggest to choose a probability model which contains as special case the
exponential: Weibull and gamma distributions both respect our conditions.

Thus, given a last accepted path (s, w) and the uniformization output
(s∗, w∗) acceptance ratio is

αacc = min

(
1;

Π(s∗, w∗|x)

Q(s∗, w∗|x)
· Q(s, w|x)

Π(s, w|x)

)
. (1.9)
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Note that by construction in (1.9)

pSM (s∗,w∗)
pSM (x)

pM (s∗,w∗)
pM (x)

·
pM (s,w)
pM (x)

pSM (s,w)
pSM (x)

=
pSM(s∗, w∗)

pM(s∗, w∗)
· pM(s, w)

pSM(s, w)
.

Moreover, if z is chosen to be Weibull or Gamma, the closer the ana-
lyzed process will be to the Markov CTMSM, the closer α will be to 1. The
algorithm is summarized in Algorithm 2.

Algorithm 2 Uniformization based semi-Markov CTMSM sampler

Input: A, X0 = a, XT = b, (s, w)(t).
Output: (s, w)(t+1)

• In the iteration (t+ 1), let (s, w) = (s, w)(t) be the last accepted path;
• let (s∗, w∗) be the proposed path from uniformization;
• set α = min

(
1; Π(s∗,w∗)

Q(s∗,w∗)
· Q(s,w)

Π(s,w)

)
;

• draw ω ∼ Unif(0,1):

◦ if ω < α, (s, w)(t+1) = (s∗, w∗)
◦ else (s, w)(t+1) = (s, w)

1.3 Bayesian inference for discretely observed
semi-Markov CTMSM

We now present an MCMC method based on the modified uniformization
sampler presented in the previous section, which allows us to simulate the
posterior distribution of the parameters of a semi-Markov CTMSM when it
is discretely observed and there is a panel data setting, We first introduce
theoretically the method, then we show the behavior of the algorithm assum-
ing a Weibull distribution for the sojourn times.

Let Xt be a semi-Markov CTMSM with probability transition matrix P
and sojourn times distribution z(·|ζr) for r = 1, . . . , S; let ζ = ζ1, . . . , ζS. We
set θ = (ζ, P ). When Xt is only observed at discrete points, we propose to
simulate the posterior distribution of θ by the following Metropolis within
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Gibbs sampler algorithm.

Consider a panel structure, with at least two observations for each indi-
vidual. Let n be number of individuals, i.e. the number of partially observed
trajectories; let mi be the number of observed points for each trajectory; let
0 = ti0 , ti1 , . . . , timi = Ti be the observation times and xi = (xi1 , . . . , ximi ) be
the observed states at these times.

For each iteration of the Metropolis within Gibbs algorithm, we first simu-
late the whole trajectories (s, w)i for i = 1, . . . , n conditioned on the observed
points xi. For this task we use the Metropolis-Hastings step described in the
previous section, constructing the rate matrix A of the Markov proposal dis-
tribution on the base of the parameters θ of the semi-Markov model. More
details of this step will be given later. The updating of the vector of param-
eters ζ depends on the distribution we assume for the sojourn times.

Anyway note that conditionally on all the other parameters and the whole
trajectories (s, w)i, the parameters ζ1, . . . , ζS are independent. Let nr(i) be the
number of complete sojourn times for the r-th state and the i-th trajectory,
and let wir· = (wir1 . . . , wirnr(i)). Moreover, let `i be the end state for the i-th
trajectory. The conditional distribution of ζr given all the other unknown
quantities is

π(ζr| . . . ) ∝
n∏
i=1

nr(i)∏
j=1

z(wirj|ζr) · (1− Z(w`i |ζr))δ(`i,r),

where

δ(`i, r) =

{
1 if `i = r

0 if `i 6= r

and generally can be simulated via a Metropolis-Hastings step.

The simulation of the conditional distribution of the transition probability
matrix P is straightforward. In fact let s = (s1, . . . , s`) be the sequence
of visited states. Let nrs be the transition counts from the state r to the
state state s. For each state r, the sequence of jumps into each other state
represents a Multinomial(k−1) likelihood. If the state space S = 1, . . . , S is
such that S > 2, choosing as prior for the transition probabilities pr =
(p1, . . . , pr−1, pr+1, . . . , pS) a Dirichlet(k−1)(m) we get
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Figure 1.2: Simulated paths via semi-Markov CTMSM sampler.
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π(pr|s) ∝

 ∏
s∈S\r

pnrsrs

 · (pmr1r1 · · · p
mr(k−1)

r(k−1)

)
=
∏
s∈S\r

pmrs+nrsrs ,

where by conjugacy pr|s ∼ Dirichlet(k−1) (m+ nrs). After simulating tran-
sition probabilities prs, the rate matrix A is updated setting γ̃rs = prs · γr.
Note also that P and ζ are conditionally independent given the reconstructed
trajectories.

1.3.1 Bayesian inference for Weibull sojourn times

We now assume that the sojourn times are Weibull distributed, that is the
density for a complete sojourn time w in state r is

f(w|αr, γr) = αr(γrw)αr−1 · e−γrwαr r = 1, . . . , S.

We first focus on the path sampler. The target density w.r.t. η∪ is

Π((s, w)i|xi) ∝
∏
rs

p
nrs(i)

∏
r α

nr(i)
r

rs γ
αrnr(i)
r

(nr(i)∏
j=1

wrij

)αr−1

e−γ
αr
r

∑nr(i)
j=1 wαrrije

−γ
αs`i
s`i

w
αs`i
s`i .

(1.10)
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Algorithm 3 MCMC sampler for semi-Markov CTMSM

Iteration (t + 1); n individuals; m observations of the process for each indi-
vidual; d observed covariates.

Input: A(t), (s, w)(t), θ(t), x = x1, . . . , xm, 0 = t0, . . . , tm = T .
Output: A(t+1), (s, w)(t+1), θ(t+1)

• for each individual i in n
◦ Get a semi-Markov trajectory (s, w)

(t+1)
i via Uniformization based CTMSM

sampler;
• update the parameters θ = (P, ζ) drawing from π(θ|(s, w)(t+1));
• for each individual i in n
◦ update the individual rate matrix A(t+1)

i .

Thus, assuming z to be Weibull(α,γ) we define ζ = (α, γ); our param-
eters of interest are θ = (P, α, γ), with α = (α1, . . . , αS) and γ = (γ1, . . . , γS).

As a proposal distribution we take a Markov CTMSM distribution whose
parameters are θ̃ = (P̃ , γ̃) where P̃ is the transition probability matrix and
γ̃ = (γ̃1, . . . , γ̃S) is the rate parameters vector. The proposal density w.r.t.
η∪ for the i-th trajectory is

Q((s, w)i|xi) ∝
∏
rs

p̃
nrs(i)
rs

∏
r

γ̃
nr(i)
r e−γ̃r

∑nr(i)
j=1 wrij · e−γ̃s`iws`i .

As a proposal density parameters we take γ̃rs = prsγr where prs and γr are
the current parameters of the semi-Markov model. Note that the transition
probabilities do not enter in the acceptance ratio of the Metropolis-Hastings
step for the trajectories simulation. Let (w∗, s∗)i be the proposed trajec-
tory for the i-th observation. Then the acceptance probability is such that
αacc = min(1, racc), where racc is
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racc ∝

∏
rs p

n∗
rs(i)
rs

∏
r α

n∗
r(i)
r γ

αrn∗r(i)
r

(∏n∗
r(i)

j=1 w
∗
rij

)αr−1

e−γ
αr
r

∑n∗
r(i)
j=1 w∗αrrije

−γ
αs`i
s`i

w∗
αs`i
s`i∏

rs p
n∗
rs(i)
rs

∏
r γ

n∗
r(i)

r e−γr
∑n∗

r(i)
j=1 w∗rij · e−γs`iw

∗
s`i

×

∏
rs p

nrs(i)
rs

∏
r γ

nr(i)
r e−γr

∑nr(i)
j=1 wrij · e−γs`iws`i∏

rs p
nrs(i)
rs

∏
r α

nr(i)
r γ

αrnr(i)
r

(∏nr(i)
j=1 wrij

)αr−1
e−γ

αr
r

∑nr(i)
j=1 wαrrije

−γ
αs`i
s`i

w
αs`i
s`i

=

=

∏
r α

n∗
r(i)
r γ

αrn∗r(i)
r

(∏n∗
r(i)

j=1 w
∗
rij

)αr−1

e−γ
αr
r

∑n∗
r(i)
j=1 w∗αrrije

−γ
αs`i
s`i

w∗
αs`i
s`i∏

r γ
n∗
r(i)

r e−γr
∑n∗

r(i)
j=1 w∗rij · e−γs`iw

∗
s`i

×

∏
r γ

nr(i)
r e−γr

∑nr(i)
j=1 wrij · e−γs`iws`i∏

r α
nr(i)
r γ

αrnr(i)
r

(∏nr(i)
j=1 wrij

)αr−1
e−γ

αr
r

∑nr(i)
j=1 wαrrije

−γ
αs`i
s`i

w
αs`i
s`i

.

Secondly, we need to update the parameters θ. Note that we assume
(αr, γr) for j = 1, . . . , S to be independent a priori, with prior distribution

π(αr) =
1

αr
√

2π
exp

(
−1

2
log(αr)

2

)
,

π(γr) =
1

γr
.

The joint density of the sequence of sojourn times for the single individual i
is

z(wi·|α, γ) ∝
∏
r

αnirr γαrnirr

(
nir∏
i=1

wrij

)αr−1

e−γ
αr
r

∑nir
i=1 w

αr
rije
−γ

αs`i
s`i

w
αs`i
s`i .

With n observed individuals, we can write down the likelihood function and
then the joint posterior density of the sojourn times parameters

π(α, γ|w) ∝
n∏
i=1

z(wi·|α, γ) · π(α)π(γ) = L(α, γ) · π(α)π(γ).

Therefore the posterior distribution of γr is

π(γr| . . . ) ∝ γαrnrr e−γ
αr
r T (Wir;αr),

where T (Wir;αr) =
∑

j w
αr
irj

is a function of the total time spent in the state
r and nr is the number of visits in the state r. The posterior distribution of
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αr is

π(αr| . . . ) ∝ αnr−1
r γαrr

nr∏
i=1

wαr−1
r(i) e−( 1

2
log(αr)2+γαrr T (Wir;αr)).

Next, transition probabilities pr = (p1, . . . , pr−1, pr+1, . . . , pS) are updated
by drawing from pr·|s ∼ Dirichlet(k−1)

(
m+

∑
nrs

1 (sr,s)
)
and the rate ma-

trix A is updated by setting γ̃rs = prs · γr.

Note that we may extend this structure in order to evaluate the impact
of covariates on sojourn times. Suppose to have n observations and for each
observation we observe d covariates. We assume that covariates affect the
rates of the sojourn time distribution γr. Therefore, we reparametrize γr as

log γr = βr0 + βr1 · C1 + · · ·+ βrd · Cd.

This further extension increases the computational complexity. We need
to generate for each individual the whole trajectory between the discretely
observed points. Then we update the unknown parameters θ = (P, α, γ)
as in the previous case. Unlike the previous case, here the rate matrix for
the Markov proposal does not depend only on θ: now the rates also have
dependence on the observed covariates, meaning that we will need n generator
matrices Aj, setting for each individual j

γ̃rs = (exp (βr0 + βr1 · C1j + · · ·+ βrd · Cdj)) · prs,

with prs element of pr|s representing the probability of a transition from the
state r to the state s.

1.4 Applications
Multi-state models allows for an extremely flexible approach that can model
almost any kind of longitudinal failure time data. Particularly, this class of
models have been widely applied in economics and biology. In this section
we present results from applications in both the fields. We show the behavior
of the algorithm with both simulated data and real data. In particular, we
focus on two applications: the first one comprises credit rating data from
Standard and Poor’s, the second one is a medical application analyzing the
ambulatory status for a set of woman affected by the breast cancer. In each
of the experiments, for the parameters of interest we use the prior setting
defined in Section 1.3.1.
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Table 1.1: Simulated data: mean and standard deviation (in parentheses)
of the posterior means across 100 samples of size n = (50, 100, 500, 1000)
under a three states Weibull semi-Markov model with one absorbing state,
θ = (γ12, α1, γ13, γ21, α2, γ23) = (0.25, 1.4, 0.05, 0.04, 0.7, 0.1) and follow-up
times equal to 0,3,6,12,24,60. Upper table: death time unknown. Lower table:
death time exactly known.

n γ12 α1 γ13 γ21 α2 γ23

50 0.25 (0.06) 1.43 (0.30) 0.07 (0.02) 0.05 (0.03) 0.91 (0.20) 0.09 (0.03)
100 0.25 (0.04) 1.42 (0.18) 0.06 (0.02) 0.05 (0.02) 0.81 (0.14) 0.10 (0.03)
500 0.25 (0.02) 1.39 (0.10) 0.05 (0.01) 0.04 (0.01) 0.73 (0.07) 0.10 (0.01)
1000 0.25 (0.02) 1.40 (0.08) 0.05 (0.01) 0.04 (0.01) 0.72 (0.05) 0.10 (0.01)

50 0.25 (0.05) 1.43 (0.23) 0.07 (0.02) 0.05 (0.03) 0.86 (0.17) 0.09 (0.03)
100 0.25 (0.04) 1.40 (0.17) 0.06 (0.02) 0.05 (0.02) 0.76 (0.11) 0.10 (0.03)
500 0.25 (0.02) 1.40 (0.07) 0.05 (0.01) 0.04 (0.01) 0.72 (0.06) 0.10 (0.01)
1000 0.25 (0.01) 1.40 (0.07) 0.05 (0.01) 0.04 (0.01) 0.71 (0.04) 0.10 (0.01)

1.4.1 Simulation study

Finally to assess the proposed methodology, we applied the MCMC algorithm
to simulated data sets, partially replicating the experiment conducted by
Titman [2014] and Tancredi [2019]. In particular, data were generated from
a model with three states: healthy, ill, dead. All patients start in the healthy
state and can recover from the ill state according to a Weibull model with
transition intensity functions qrs(u) = γrsαr(uγr)

αr−1 where γr =
∑

s 6=r γrs.
The exact model parameters are fixed to θ = (γ12, α1, γ13, γ21, α2, γ23) =
(0.25, 1.4, 0.05, 0.04, 0.7, 0.1), corresponding to a process where the hazard of
the transition out from the state is increasing with time for the healthy state
and decreasing for the ill state. Moreover, the transition probability towards
the dead state is greater under the ill state (p23 = γ23/γ2 = 0.71) than with
the healthy state (p13 = γ13/γ1 = 0.167). Finally note that the follow-up
times are set equal to (0,3, 6,12,24,60) months and that we consider both
the cases with the death times unknown and known. We set the sample size
at n = 50, 100, 500 and 1000 and for each sample size we generated 100
data sets running the MCMC algorithm for 10000 iterations. In Table 1.1
we present the empirical averages and standard deviations of the posterior
means obtained for each simulated data set. Note that as the sample size
increases, the Bayesian estimators to concentrate on the true values of the
parameters both when the detah time is unknown (upper table) and when
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it is know. We notice also that, as expected, the information introduced by
assuming that the death time is exactly known provides always a smaller
mean square error with respect to the unknown death time scenario.

1.4.2 Modelling rating classes with Standard and Poor’s
data

Multi state models are widely used in economics and finance. More precisely,
in credit rating modelling they play an important role. A credit rating is an
evaluation of the credit risk of a prospective debtor (an individual, a busi-
ness, company or a government), predicting their ability to pay back the
debt, and an implicit forecast of the likelihood of the debtor defaulting [Kro-
nwald, 2010]. The credit rating represents an evaluation of a credit rating
agency of the qualitative and quantitative information for the prospective
debtor, including information provided by the prospective debtor and other
non-public information obtained by the credit rating agency’s analysts.

In the first application, we consider a data set of 205 institutions from
all over the world, each one observed at least two times. These institutions
are almost all independent countries. We summarize the data in four rating
classes (A,B,C,D), with the first class (A) representing solvent institutions,
while the fourth class (D) represents the default. For these data we fitted
a continuous time Weibull semi-Markov model, assuming the default state
as absorbing state. We assumed as prior distribution for the rate parameter
π(γj) = 1/γj, while for the shape parameter we set π(αj) as a log-normal
distribution centered on 1. Via the MCMC sampler for discretely observed
data described in the previous sections we generated the posterior distribu-
tions of the semi-Markov process parameters.

As already remarked, semi-Markov CTMSM differs from Markov pro-
cesses since sojourn times also depends on the past history of the process. In
Markov models sojourn times are exponential distributed and only depends
on the rate of the process. Moreover, the expected sojourn time in the state
r is 1/γr. Here sojourn times are assumed to be Weibull; for each state r, the
average sojourn time is

w̄r =
1

γr
Γ

(
1 +

1

αr

)
=

1

γrαr
Γ

(
1

αr

)
where Γ(·) represents the gamma function.
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Table 1.2: Credit rating modelling: posterior mean and standard deviation
for the model parameters.

Semi-Markov model Markov model

p12 p13 p14

E(·|y) 0.8580 0.0760 0.0660
SD(·|y) 0.0907 0.0716 0.0617

p12 p13 p14

E(·|y) 0.8648 0.0687 0.0665
SD(·|y) 0.0862 0.0644 0.0621

p21 p23 p24

E(·|y) 0.2607 0.5705 0.1688
SD(·|y) 0.1012 0.1012 0.0976

p21 p23 p24

E(·|y) 0.2796 0.5028 0.2176
SD(·|y) 0.0971 0.1118 0.0919

p31 p32 p34

E(·|y) 0.1060 0.2106 0.6834
SD(·|y) 0.0946 0.1243 0.1398

p31 p32 p34

E(·|y) 0.0941 0.1942 0.7117
SD(·|y) 0.0853 0.1167 0.1324

γ1 γ2 γ3

E(·|y) 0.0086 0.0440 1.3522
SD(·|y) 0.0073 0.0151 1.2780

γ1 γ2 γ3

E(·|y) 0.0205 0.0294 0.4992
SD(·|y) 0.0057 0.0068 0.1670

α1 α2 α3

E(·|y) 0.6868 1.2676 0.7679
SD(·|y) 0.1995 0.2836 0.3121

The traces of the posterior distributions are represented in Figure 1.3
and Figure 1.4. Results are shown in Table 1.2 and Table 1.3. The differ-
ence in terms of estimated average sojourn times shows the sensitivity of
the CTMSM with respect to the model assumptions. In particular the semi-
Markov do not assume the memoryless of the sojourn times distributions and
this fact seems to produce very different results with respect to the Markov
case. Anyway, in both cases we observe that the rate of the process decreases
as the class increases, with average sojourn times increasing as the rating class
increases, meaning that Countries in higher classes show a greater stability
in terms of solvency. The increasing rate is justified from market dynamics,
which tends to reduce investments in countries which have been downgraded.
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Figure 1.3: MCMC samples of sojourn times parameters for S&P data.
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Figure 1.4: MCMC samples of transition probabilities posterior parameters
for S&P data.
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Table 1.3: Credit rating modelling: median of the average sojourn times ex-
pressed in years.

Me(w̄1) Me(w̄2) Me(w̄3)
Semi-Markov 201.2190 21.4278 1.2477
Markov 50.1734 34.6002 2.0816

Table 1.4: Breast cancer data: mean and standard deviation of the posterior
model parameters and the average sojourn times expressed in years.

Semi-Markov model
p12 p13 p21 p23 γ1 γ2 α1 α2

E(·|y) 0.87 0.13 0.20 0.80 0.14 0.36 0.80 0.68
SD(·|y) 0.11 0.11 0.10 0.10 0.05 0.21 0.17 0.18

Markov model
p12 p13 p21 p23 γ1 γ2

E(·|y) 0.67 0.33 0.13 0.87 0.06 0.10
SD(·|y) 0.13 0.13 0.07 0.07 0.02 0.02

E(w̄1) E(w̄2) sd(w̄1) sd(w̄2)
Semi-Markov 8.91 4.32 2.58 1.18
Markov 17.86 11.03 3.84 2.60

1.4.3 Breast Cancer Data

In the second application, we consider a data set comprising 37 women with
breast cancer treated for spinal metastases; see De Stavola [1988], Davison
[2003] and the supplementary material of Tancredi [2019] for previous anal-
ysis of these data. The ambulatory status of the women, defined as ability
to walk unaided or not, was recorded when the treatment began and then 3,
6, 12, 24, and 60 months after treatment. The three states are: able to walk
unaided (1) unable to walk unaided (2) and dead (3). We fitted the semi-
Markov Weibull model with death as absorbing state. The model parameters
are θ = (p12, p13, p21, p23, γ1, γ2, α1, α2). Figure 1.5 shows the posterior distri-
butions for the shape parameters α1 and α2 under a vague prior distribution
for θ. From Table 1.4 we may observe a difference in terms of posterior distri-
butions and average sojourn times between the Markov and the semi-Markov
model. The expected values of the posterior shape parameters suggest that
the Markov model assumption is quite restrictive for this data.
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Figure 1.5: MCMC samples of sojourn times parameters for breast cancer
data.
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Figure 1.6: MCMC samples of transition probabilities posterior parameters
for breast cancer data.
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Chapter 2

Bayesian nonparametric inference
for continuous time multi-state
models

Clustering techniques may be required in order to find groups of similar time
series in a sample of time series that are unlabeled a priori. This would allow
to determine subsets of similar time series within the sample. However, Liao
[2005] showed that it is difficult to define an appropriate distance-measure
for time series data. As opposed to that, Frühwirth-Schnatter and Kaufmann
[2008] demonstrated that choosing an appropriate clustering kernel density,
model-based clustering based on finite mixture models extends to time series
data in quite a natural way. The adequacy of the selected mixture kernel
allows to capture salient features of the observed time series. Various clus-
tering kernels were suggested for panels with real-valued time series obser-
vations. In particular, we focus on continuous time Markov processes clus-
tering, which could be viewed as fitting a dynamic multinomial model with
cluster-specific parameters to each time series in the panel. Frydman [2005]
consider finite mixtures of time-homogeneous Markov chains both in contin-
uous and discrete time, with an application to bond ratings migration. While
such a model allows the transition behavior to be different across clusters,
Fougère and Kamionka [2003] considered a mover-stayer model in continuous
time which is a constrained mixture of two Markov chains to incorporate a
simple form of heterogeneity across individual labor market transition data.
Also, Pamminger and Frühwirth-Schnatter [2010] proposed a finite mixture
of random-effects models designed specifically to capture unobserved hetero-
geneity in the transition behavior across time series within the same cluster
from a Bayesian perspective. Cardot et al. [2018] generalize the previous
methods by estimating finite mixtures of semi-Markov chains, in discrete or
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continuous time. However, all these approaches are related to finite mixtures
and consider completely observed processes. Instead, in this Chapter we pro-
pose a novel Bayesian method which allows to model such data as an infinite
mixture of continuous-time Markov processes: with a Dirichlet process prior
on the mixing measure, we get a Dirichlet Process Mixture model having
as kernel density a continuous-time Markov process. In the first Section we
introduce Dirichlet process and Dirichlet process mixtures, following Müller
et al. [2015]. Next, we present a Dirichlet process mixture of Markov contin-
uous time multi-state models for both discretely and fully observed data. In
the last Section we show applications with simulated and real data.
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2.1 Introduction to Bayesian nonparametric in-
ference

Generally a Bayesian nonparametric (BNP) model is a Bayesian model where
the functional form of the data generating the process is unknown. Hence, for
defining a nonparametric Bayesian model, we should define the prior proba-
bility distribution on an infinite-dimensional space.

Before introducing the Dirichlet process we observe that BNP inference
may be seen as a generalization of the standard parametric inference. Let
y1, . . . , yn be a sample of independent observations coming from the unknown
density f . Let π(df) be a prior distribution on a suitable space of density
functions. The first observation provides information about f , which in turn
provides information about the second observation, and so on. Similarly to
the parametric models, after n observations the posterior distribution of f
can be written as

π(df |y1, . . . , yn) =

∏n
i=1 f(yi)π(df)∫ ∏n
i=1 f(yi)π(df)

,

providing information about the future observation yn+1 via the predictive
density

f(yn+1|y1, . . . , yn) =

∫
f(yn+1)π(df |y1, . . . , yn).

In Bayesian nonparametrics there are two main categories of priors de-
pending on the infinite dimensional parametric space featuring the inferential
problem at hand. If we have to estimate functions we need to take as prior
random functions (stochastic processes, random basis expansion and random
densities) as prior distributions. While in spaces of probability measures we
have random probability measures. In this chapter we focus on the latter
class of priors, particularly on the Dirichlet process [Ferguson, 1973] whose
sample paths are almost surely discrete distributions. Particularly, in Dirich-
let Process Mixture (DPM) models [Lo, 1984] the Dirichlet process is the
mixing distribution generating random density functions. With the improve-
ment of Bayesian computation techniques the DPM has become one of the
most important tool for Bayesian nonparametrics.

2.1.1 Dirichlet Process

One of the most popular BNP models is the Dirichlet process (DP) prior,
introduced by Ferguson [1973] as a prior on the space of probability measures.
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Suppose to observe an i.i.d. sample

yi|G
iid∼ G, i = 1, . . . , n. (2.1)

In order to carry out Bayesian modelling, we need to assume a prior proba-
bility model Π for the unknown infinite-dimensional parameter G.

Definition 2.1.1.1 (Dirichlet Process, Ferguson [1973]) Let M > 0 and
G0 be a probability measure defined on S. A DP with parameters (M,G0) is
a random probability measure G defined on S which assigns probability G(B)
to every (measurable) set B such that for each (measurable) finite partition
{B1, . . . , Bk} of S, the joint distribution of the vector G(B1), . . . , G(Bk) is
the Dirichlet distribution with parameters

(MG0(B1), . . . ,MG0(Bk)) .

We denote the process as DP(MG0), where M is the precision parame-
ter and G0 is the centering measure; as M tends to infinite, G concentrates
around G0, and product MG0 is called base measure of the DP.

An important property of the DP is the discrete nature of the random
probability measure G, which allows us to rewrite it as a weighted sum of
point masses: G(·) =

∑∞
h=1 whδmh(·) where wh are probability weights and δx

denotes the Dirac measure at x. Sethuraman [1994] introduced an equivalent
representation of a DP random probability measure based on the discrete
nature of the process G. Let wh = vh

∏
`<h(1− v`) with vh

iid∼Beta(M, 1) and
mh

iid∼ G0, where {vh} and {mh} are independent for h = 0, . . . ,∞. Then

G(·) =
∞∑
h=1

ωhδmh(·), (2.2)

with
∑∞

h=1 ωh = 1, defines a DP(MG0) random probability measure. This
representation of a DP random measure is known as “stick-breaking”, since it
may be represented as successively breaking fractions vh of a stick of initially
unit length.

Another property of the DP is its large weak support: let Q be any prob-
ability measure with Q� G0 and ε > 0; for any finite number of measurable
sets B1, . . . , Bm,

π {|G(Bi)−Q(Bi)| < ε, for i = 1, . . . ,m} > 0,
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where π {. . . } refers to the probability model π of G. Roughly speaking, any
distribution with the same support as G0 can be well approximated weakly
by a DP random probability measure.

Another important feature of the DP is the conditioning property: if
A is a (measurable) set with G0(A) > 0 (which implies that G(A) > 0
a.s.), then the random measure G|A, the restriction of G to A defined by
G|A(B) = G(B|A) = G(A ∩B)/G(A) is also a DP with parameters M and
G0|A, and is independent of G(A). Extending the argument to more than one
set, we observe that the DP locally splits into numerous independent DP’s.

Posterior Distribution Let y1, . . . , yn be i.i.d. from a random variable
with distribution G and let G be a realization from a DP(MG0). The DP is
conjugate with respect to i.i.d. sampling. Thus, with a DP prior on G, the
posterior distribution for G is again a DP, with base measure adding a point
mass to the prior base measure at each observed data point yi, so that

G|y1, . . . , yn ∼ DP

(
MG0 +

n∑
i=1

δyi

)
. (2.3)

Marginal Distribution Consider a random sample as in (2.1). Blackwell
et al. [1973] represented the marginal distribution

f(y1, . . . , yn) =

∫ n∏
i=1

G(yi)dπ(G)

with the Polya urn scheme, exploiting the discreteness of the random prob-
ability measure G which implies a positive probability of ties among the
yi. They specified the marginal distribution as a product of a sequence of
increasing conditionals f(y1, . . . , yn) = f(y1)

∏n
i=2 f(yi|y1, . . . , yi−1) with

f(yi|y1, . . . , yi−1) =
1

M + i− 1

i−1∑
h=1

δyh(yi) +
M

M + i− 1
G0(yi) (2.4)

for i = 2, 3, . . . and y1 ∼ G0. Since the yi are i.i.d. given G the marginal joint
distribution of (y1, . . . , yn) is exchangeable. Thus, the complete conditional
f(yi|yh, h 6= i) has the same form as (2.4) for yn, while the (posterior) pre-
dictive for a future observation yn+1 given data y1, . . . , yn takes the form of
(2.4) for i = n+ 1.
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2.1.2 Dirichlet Process Mixtures

The discreteness of the Dirichlet process makes it uncomfortable for density
estimation. This limitation can be remedied by convolution of its paths with
a continuous kernel, i.e. by using a DP random measure as the mixing distri-
bution in a mixture over some simple parametric forms. It is hardly possible
to derive the resulting posterior distribution analytically. However, there are
many efficient algorithm which - by exploiting the properties of the DP -
allow us to compute it numerically. This approach has been introduced by
Ferguson [1983], Lo [1984], Escobar [1990], Escobar [1994], and Escobar and
West [1995].

Let fθ be a continuous probability density function, with θ ∈ Θ, and let
G be a probability distribution on Θ. We define the density function of a
mixture fθ with respect to G as

fG(y) =

∫
fθ(y)dG(θ) (2.5)

With a DP prior on the mixing distributionG, which induces a prior on kernel
densities, we get a DP mixtures (DPM) model. The mixture model (2.5),
together with a DP prior on the mixing measure G can be also represented
in a hierarchical form:

yi|θi
ind∼ fθi

θi|G
iid∼ G

G ∼ DP(MG0).

(2.6)

Under this model, the posterior distribution π(G|y1, . . . , yn) is a mixture of
DP models, mixing with respect to new latent variables θi specific to each
experimental unit:

G|y ∼
∫
DP

(
MG0 +

n∑
i=1

δθi

)
dπ(θ|y), (2.7)

with θ = (θ1, . . . , θn) and y = (y1, . . . , yn). Therefore, marginalizing with
respect to θ, the posterior distribution π(G|y) becomes a mixture over (2.3)
with respect to the posterior distribution on θ.

The choice of the suitable kernel is based on the support of the underlying
density function or more generally on the problem at hand. If it is defined
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on R, a location-scale kernel is appropriate; on the unit interval, beta dis-
tributions may be used; on R+, mixtures of gamma, Weibull or lognormal
distributions may be used. Naturally, if the underlying model is a stochastic
process, also the kernel should be a stochastic process. In particular in this
chapter we will illustrate the use of DPM by adopting a Markov CTMSM
kernel.

Clustering Since the discreteness of the DP implies a positive proba-
bility for ties among the latent θi, the DPM model induces a probability
model on clusters. Formally, let θ∗j , j = 1, . . . , k, denote k ≤ n unique values,
Ψj =

{
i : θi = θ∗j

}
, and let nj = |Ψj| denote the number of θi tied with θ∗j .

Since the θi are random, also the Ψj are random. Thus, the DPM implies a
model on the random partition ξn = {Ψ1, . . . ,Ψk} of the experimental units
{1, . . . , n}; the posterior model π(ψ|y) reports posterior inference on clus-
tering of the data. We represent the clustering by an equivalent set of cluster
membership indicators, ψi = j if i ∈ Ψj, with clusters labeled by order of
appearance.

Let ki denote the number of unique θ` among {θ1, . . . , θi}, with nij repre-
senting the multiplicity of the j-th unique value

(∑ki
j=1 nij = i by definition

)
.

Then, by the properties of the DPM we have:

π(ψi = j|ψ1, . . . , ψi−1) =

{
ni−1,j

M+i−1
for j = 1, . . . , ki−1

M
M+i−1

for j = ki−1 + 1
(2.8)

Moreover, by exchangeability of θ, the prior conditional probability π(ψi|ψ−i)
- with ψ−i = (ψ1, . . . , ψi−1, ψi+1, . . . , ψn) - takes the same form as (2.8) for
i = n.

Therefore, we may write the prior π(ψ) as

π(ψ) =
n∏
i=2

π(ψi|ψ1, . . . , ψi−1) =
Mk−1

∏k
j=1(nj − 1)!

(M + 1) · · · (M + n− 1)
(2.9)

with ψ1 = 1 by definition, since we label clusters in order of appearance.

Let θ∗i,j denote the j-th unique value among {θ1, . . . , θi}. If ψi = j, then
θi = θ∗i−1,j, while if ψi = ki−1 + 1 then θi ∼ G0. Then:

π(θi|θ1, . . . , θi−1) ∝
ki−1∑
j=1

ni−1,jδθ∗i−1,j
(θi) +MG0(θi). (2.10)
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Since the DPM is exchangeable, we get

π(θi|θ−i) ∝
k−∑
j=1

n−j δθ∗−j (θi) +MG0(θi). (2.11)

where θ−i = {θ1, . . . , θi−1, θi+1, . . . , θk}, k− represents the number of unique
values in θ−i, θ∗−j denotes the j-th unique element and n−j is the number of
observations lying in the j-th cluster excluding yi if ψi = j.

Posterior Simulation One of the main advantages of using nonpara-
metric methods is the ability to reduce uncertainty avoiding distributional
assumptions. In Bayesian framework this flexibility increases the computa-
tional cost. It was not by chance that much of the development of BNP
methods has been consequence of the improvement of simulation-based com-
putational methods.

In DPM models there are two levels of conjugacy: between the DP ran-
dom measure π(G) and its posterior π(G|y), and between the kernel element
fθ(y) and the centering measure G0 which takes the role of prior on θ. When
talking about nonconjugate DP mixtures, we always refer to the case where
fθ and G are not conjugate; a sampler for this case is the no gaps sampler
and it still relies on conjugacy of the DP posterior.

Conjugate DPM The first Gibbs sampler for DPM model has been pro-
posed by Escobar [1990]. It is based on the updating of θi by drawing from
the complete posterior distribution π(θi|θ−i,y). Nevertheless, this sampler
suffers from slow mixing of the resulting Markov Chain.

Bush and MacEachern [1996] introduced the most currently used poste-
rior MCMC methods for DPM models, using two types of transition proba-
bilities.

1. Sampling from π(θ∗j |ψ,y):

θ∗j conditional on the imputed partition is updated using

π(θ∗j |ψ,y) ∝ G0(θ∗j )
∏
i∈Ψj

fθ∗j (yi). (2.12)

The posterior π(θ∗j |ψ,y) is derived as the posterior on a parametric
model with prior G0(θ∗j ) and sampling model fθ(yi), for yi with i ∈ Ψj.
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Let y∗j = (yi, i ∈ Ψj) denote yi arranged by cluster. Therefore, the
conditioning on ψ is implicit in the selection of the elements in y∗j , that
is if we know Ψ then we also know y∗j and

π(θ∗j |ψ,y) = π(θ∗j |y∗j ).

To obtain the distribution of ψi|ψ−i, y we first calculate the conditional
distribution π(θi|θ−i,y). Then we show the expression for π(θi, ψi|θ−i,y).
We finally integrate π(ψi,θ|ψ−i,y) = π(ψi, θi|θ−i,y) · π(θ−i|ψ−i,y)
with respect to θ in order to obtain π(ψi|ψ−i,y).

2. Sampling from π(ψi|ψ−i,y):

We now get the posterior distribution π(θi|θ−i,y) by multiplying the
prior π(θi|θ−i) (2.11) with the sampling distribution fθi(yi).

π(θi|θ−i,y) ∝
k−∑
j=1

n−j fθ∗−j (yi)δθ∗−j (θi) +Mfθi(yi)G0(θi). (2.13)

In the second term fθi(yi)G0(θi) is not normalized. Anyway, if we let
H0(θi) ∝ fθi(yi)G0(θi) with normalization constant h0(yi) ≡

∫
fθ(yi)G0(dθ),

recalling that if θi = θ∗−j then ψi = j and if θi 6= θ∗−j for j = 1, . . . , k−

then ψi = k− + 1, we can write the (2.13) as

π(θi, ψi|θ−i,y) ∝
k−∑
j=1

n−j fθ∗−j (yi)δj(ci)δθ∗−j (θi)+Mh0(yi)δk−+1(ci)H0(θi).

Finally to obtain the distribution ψi|ψ−i,y we marginalize with respect
to θ, that is with respect to θi and θ−i, calculating the integral∫

π(θi, ψi|θ−i,y)π(θ−i|ψ−i,y)dθidθ−i.

For the first k− terms we get∫
fθ∗j (yi)dπ(θ∗−j |y∗−j ) = f(yi|y∗−j ),

where y∗−j = y∗j \ {yi}. For the last term we get∫
h0(yi)H0(θi)dθ = h0(yi).
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To clarify the expression of π(θ∗−j |y∗−j ) and the differences with respect
to (2.12) where in the conditioning subset we have also yi, note that
θ∗−j need not to be the same as θ∗j . Moreover, when i is a singleton
cluster, then removing the i-th unit from the partition might change
the indices of other clusters. Therefore, we have

π(θ∗−j |y∗−j ) ∝ G0(θ∗−j )
∏

`∈Ψj\{i}

fθ∗−j (y`). (2.14)

Finally, we get

π(ψi = j|ψ−i,y) ∝

{
n−j f(yi|y∗−j ) for j = 1, . . . , k−

Mh0(yi) for j = k− + 1.
(2.15)

This posterior Gibbs sampler is only practicable for DPM models with con-
jugate G0 and fθ, otherwise the evaluation of h0 would be analytically in-
tractable.

Algorithm 4 Gibbs sampler for conjugate DPM

• Clustering:
− for i = 1 . . . , n draw ψi ∼ π(ψi = j|ψ−i,y);
• Cluster parameters:
− for j = 1, . . . , k draw θ∗j ∼ π(θ∗j |ψ,y).

Non-Conjugate DPM If G0 and fθ are not conjugate, the evaluation
of h0 would not be analytically tractable and sampling from π(θ∗j |ψ,y) may
result challenging.

In order to evaluate the integral
∫
fθ(yi)G(dθ), West et al. (1994) sug-

gested using either numerical quadrature or a Monte Carlo approximation.
By approximating the required integral with an average over m θ draws from
G0, it is also possible to approximate a draw from π(θ∗j |ψ,y) by sampling
from among thesem points with probabilities proportional to their likelihood.

MacEachern and Müller [1998] propose the “no-gaps” algorithm. Let k be
the number of distinct elements in θ. They proposed a model augmentation

{θ∗1, . . . , θ∗k︸ ︷︷ ︸
θ∗F

θ∗k+1, . . . , θ
∗
n}︸ ︷︷ ︸

θ∗E
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with θ∗j ∼ G0 for j = k + 1, . . . , n; note that nj > 0 for j ≤ k, while nj = 0
for j = k + 1, . . . , n. In practice, the augmentation includes the constraint
that there will be no gaps in the values of the ψj: the θ∗F values represents
the locations of the full clusters, while θ∗E represents potential locations of
the empty clusters. In this augmented model the evaluation of integrals is
replaced by simple likelihood evaluations. As in the conjugate case, assume
ψi = j in the current imputation, we need to distinguish two cases:

• nj > 1, then

p(ψi = j|ψ−i, θ∗−j ,y) ∝

{
n−j fθ∗j (yi) for j = 1, . . . , k−

M
k−+1

fθ∗
k−+1

(yi) for j = k− + 1
(2.16)

• if nj = 1, ψi = j is imputed to form a singleton cluster. Then:

– with probability (k − 1)/k, leave ψi in the j-th cluster;

– otherwise, remove ψi form the j-th cluster, relabel θ∗j in order to
have no-gaps and assign ψi to another cluster by (2.16).

For details on the derivation of the probabilities in (2.16) see MacEachern
and Müller (1998).

Algorithm 5 No-gaps sampler for non-conjugate DPM

• Clustering:
− for i = 1 . . . , n draw ψi ∼ π(ψi = j|ψ−i, θ∗,y);
• Cluster parameters:
− for j = 1, . . . , k draw θ∗j ∼ π(θ∗j |ψ,y).
− for j = k + 1, . . . , n draw θ∗j ∼ G0

The key feature of this algorithm is that it does not require evaluation
of the integral h0 and it can be implemented for any model as long as we
can generate from G0 and compute fθ(yj). There is no need for G0 to be the
conjugate prior for Fθ.
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2.2 Dirichlet Process Mixtures of CTMSM
After a brief introduction on Dirichlet process and Dirichlet process mixtures,
we now extend the methodology to a particular class of stochastic processes.
In this section we first introduce mixtures of CTMSM and define a general
DPM model for multi state processes in continuous time. Then we assume
Markov CTMSM as kernel density of the mixture, providing a Gibbs sam-
pler for DPM models for fully observed continuous-time multi state models.
This section is introductory for the next one, in which we will extend the
framework to the more complex context of discretely observed trajectories.

2.2.1 Infinite mixtures of CTMSM

As in the first chapter, let Xt be a CTMSM, with S = {1, 2, . . . S} finite-
discrete state space and T time space. Again, Xt takes values in the union
of product spacesM∪ ≡ S∪ × T ∪.

We have defined the finite measure space of the states (S∪,Σ∪S , ν∪), the
measure space of the sojourn times (T ∪,Σ∪T , µ∪), and the product measure
space (M∪,Σ∪M, η

∪), where η∪ is the union product measure η∪ = µ∪ × ν∪.

Let f density function of a CTMSM Xt = (s, w) w.r.t. η∪, where s and w
represent respectively the states and the sojourn times sequences, such that∫

M
f(s, w)dη∪(s, w) = 1.

Recall that if all the event rates are finite, the process will have almost
surely a finite number of state-changes. Therefore, the support of f has finite
dimension by construction.

Let fθ be a probability density function of a multi-state model where
θ ∈ Θ. For instance, in the Markov case, Θ is the space of the rate matrices

A =

γ11 . . . γ1S
... . . . ...
γS1 . . . γSS


with γrr = −

∑
s 6=r γrs. Let G be a probability distribution defined on the

parameter space Θ. We define the density function fG of a mixture with
multi-state model kernels fθ with respect to the mixing measure G as

fG(s, w) =

∫
fθ(s, w)dG(θ). (2.17)
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Let Xi = (s, w)i, for i = 1, . . . , n, be n fully observed paths on [0, Ti].
Note that we assume that the observation times Ti can be different across
the paths. We may rewrite the model in a hierarchical form, assuming a DP
prior for the mixing measure G. Then:

Xi|θi
ind∼ fθi

θi|G
iid∼ G

G ∼ DP(MG0).

(2.18)

The posterior distribution Π(G|X) is a mixture of DP models, mixing with re-
spect to latent variables θi specific to each observed path Xti for i = 1, . . . , n:

G|X ∼
∫
DP (MG0 +

n∑
i=1

δθi)dΠ(θ|X), (2.19)

with θ = (θ1, . . . , θn) and X = (Xt1 , . . . , Xtn).

Regarding the kernel choice there are several issues to consider. We may
choose between Markov and semi-Markov multi-state models in continuous
time. The latter is a generalization of the former, meaning that it should have
more flexibility. However there is a trade-off between the model flexibility
and the computation time: in addition to a further parameter with respect
to the Markov processes, semi-Markov does not have conjugate priors for the
model’s parameters. This would involve the lack of a conjugate G0, increasing
the computational cost. Instead, with Markov CTMSM as kerneld density fθ
we may exploit a conjugate prior density for G0. These are the reasons why
in this thesis we implement only DPM with Markov CTMSM density kernel.

2.2.2 Assuming Markov density kernel

Consider an observation X = (s, w) observed on [0, T ]. As in Chapter 1, we
define the generic CTMSM density as product of two densities defined on the
two underlying spaces

fθ(s, w) = hp(s)zζ(w),

with hp representing the state transitions distribution density and zζ repre-
senting the sojourn times density, defined respectively on the state space S∪
and on the time space T ∪.

More specifically, let nr for r = 1, . . . , S represent the number of com-
pleted sojourn times wr1 . . . , wrnr in each state r during the trajectory (s, w).
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Let nrs be the number of transitions from the state r to the state s. Moreover,
let Wr =

∑
j wrj be the total sojourn time spent in the state r considering

also the truncated part of the trajectory. Finally, let assume the sojourn time
distribution in the state r for r = 1, . . . , S to be Exp(γr) such that ζ = γ.
Then, we may write down the density as

fθ(s, w) =
∏
rs

pnrsrs

∏
r

γnrr e
−γrWr , (2.20)

where prs = γrs/γr for r, s ∈ S.

Note that the mixing measure G, defined on the parameter space Θ, has
to be a S × (S − 1)-dimensional probability distribution if we do not have
absorbing state, otherwise is a (S − 1) × (S − 1)-dimensional probability
distribution. Moreover note that

fθ(s, w) =
∏
rs

p̃nrsrs︸ ︷︷ ︸
1

∏
r

γnrr e
−γrWr

︸ ︷︷ ︸
2

can be seen as the product of two factors. The first is proportional to the
product of S Multinomial likelihood functions of dimension S − 1, while the
second component is the product of S exponential likelihood functions with
a truncated observation.

2.2.3 Posterior Computation

In order to exploit the conjugacy, we chose G0 to be a product measure

G0 ≡ Ga(S)(a,b)×Dir(S×(S−1))(α), (2.21)

where Ga(S)(a,b) represents the product of S independent gamma distri-
butions with parameters a and b, while Dir(S×(S−1))(α) is the product of S
Dirichlet distributions of dimension S − 1 with parameter α.

We now present the Gibbs Sampler for DPM of Markov CTMSM, follow-
ing the scheme of Bush and MacEachern [1996] presented in the first section
of the current Chapter. We update the MCMC algorithm by drawing from
the cluster complete conditional posterior probability distribution of the clus-
ter membership, after marginalizing with respect to θ. Then we update the
parameters θ∗ of the different values θ conditional on their cluster observa-
tions.
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Let Xi = (s, w)i, i = 1, . . . , N , be i.i.d. continuous-time fully observed
paths. The likelihood function is

L(θ) =
N∏
i=1

fθ((s, w)i). (2.22)

Let X = (s, w) be the set of observed trajectories, let Ψh = (i : θi = θ∗h)
indicate that if ψi = h, the i-th observation belongs to the h-th cluster.
Following (2.20), let θ∗h = (γ∗h,p

∗
h), where γ∗h = (γ∗h1 , . . . , γ

∗
hS

) are vectors
of rate parameters of dimension S and p∗h = (p∗h1 . . . , p

∗
hS

) are transition
probabilities, where each element of p∗h is a vector of dimension S − 1. We
may write down the Markov CTMSM likelihood function for the cluster h

L(θ∗h) =
∏
i∈Ψh

(∏
rs

p∗
nrs,i
hrs

∏
r

γ∗
nr,i
hr
e−γ

∗
hr
Wir

)
=

=

(∏
i∈Ψh

∏
rs

p∗
nrs,i
hrs

)(∏
i∈Ψh

∏
r

γ∗
nr,i
hr
e−γ

∗
hr
Wir

)
.

(2.23)

In order to define the Gibbs sampler, we first derive the posterior density
of the cluster parameters π(θ∗h|ψ,X) and then the posterior conditional den-
sity of the clusters π(ψi = h|ψ−i,X).

1. We compute the posterior density for θ∗h as

π(θ∗h|ψ,X) = G0(θ∗h) · L(θ∗h). (2.24)

From the mixing measure definition in (2.21) we may rewrite (2.24) as

π(θ∗h|ψ,X) =
S∏
r=1

Γ(α(r))

Γ(α1r)Γ(α2r) . . .Γ(α(S−1)r)
p∗α1r−1
h1r

p∗α2r−1
h2r

. . . p∗
α(S−1)r−1

h(S−1)r(∏
i∈Ψh

∏
rs

p∗
nrs,i
hrs

)
×

S∏
r=1

barr
Γ(ar)

γ∗ar−1
hr e−brγ

∗
r

(∏
i∈Ψh

∏
r

γ∗nr,ihr
e−γ

∗
rWir

)
.

By conjugacy, the posterior distribution π(θ∗h|ψ,X) is still a product mea-
sure of Gamma and Dirichlet. With an abuse of notation we may write

π(θ∗h|ψ,X) =
S∏
r=1

Ga(ar + n∗hr , br + w∗hr) ·
S∏
r=1

Dir(S−1)(αr + s∗hrs), (2.25)

46



where:

• ar and br are elements of the S-dimensional vectors of prior hyperpa-
rameters a and b of the Gamma component;

• n∗hr and w∗hr are respectively the sum of the number of visits to the r-th
state and the sum of the sojourn times into the r-th state, for each of
the Nh trajectories lying inside the cluster h, i.e n∗hr =

∑Nh
i=1 nhr,i and

w∗hr =
∑Nh

i=1whr,i , for r = 1, . . . , S;

• αr is a (S − 1)-dimensional vector of prior hyperparameters Dirichlet
component;

• s∗hrs is the (S − 1)-dimensional vector of transition counts for the tra-
jectories lying inside the h-th cluster.

2. Recall that θ∗−h denote the h-th of the k− unique values among θ−i,
which represents the vector θ without the i-th element θi. Also, let X∗−h =
X∗h \ (s, w)i be the set of the observations lying inside the cluster h with the
exclusion of the i-th trajectory and let Nh be the number of units (complete
paths) inside the cluster h. Now, in order to complete the Gibbs sampling
scheme, we have to define the full conditional π(ψi = h|ψ−i,X) for h =
1 . . . k− and h = k− + 1 which denotes the creation of a new cluster. From
(2.15) it follows that the probability for the i-th element to belong to the
h-th cluster is

π(ψi = h|ψ−i,X) ∝

{
N−h f((s, w)i|X∗−h ) for h = 1, . . . , k−

Mf((s, w)i) for h = k− + 1
, (2.26)

where N−h is the number of elements in the h-th cluster with exclusion of the
i-th observation, M represents the precision parameter of the DP and

f((s, w)i) ≡
∫
fθ∗h((s, w)i)G0(dθ∗h),

while

f((s, w)i|X∗−h ) =

∫
fθ∗h((s, w)i)dπ(θ∗h|X∗−h = (s∗−h ,w∗−h )),

where π(θ∗h|X∗−h ) with X∗−h = (s∗−h ,w∗−h ) is the posterior distribution of θ∗h
conditional on the paths of the h-th cluster without the i-th observation,
namely:
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∫
fθ∗h((s, w)i)dπ(θ∗h|X∗−h ) =

∫
· · ·
∫ S∏

r=1

(
γ∗

nir
hr
e−γ∗hrWir

∏
s 6=r

p∗
nirs
hrs

)
×

S∏
r=1

(br + W∗−
hr

)ar+N−hr
Γ(ar +N−hr)

γ∗
N−hr
hr

e−γ
∗
hr

(br+W∗−
hr ) · Γ

(∑
s 6=r

(αrs +N−hrs)

)∏
s 6=r

p∗
(αrs+N−hrs−1)
hrs

Γ(αrs +N−hrs)

 dp∗dγ∗ =

=
S∏
r=1

(br + W∗−
hr

)ar+N−hr
Γ(ar +N−hr)

Γ(
∑

s 6=r(αrs +N−hrs))∏
s 6=r Γ(αrs +N−hrs)

∫ · · · ∫ S∏
r=1

(
γ∗

nir
hr
e−γ

∗
hr
Wir
)
×

(
γ∗

N−hr
hr

e−γ
∗
hr(br+W∗−

hr )
∏
s 6=r

p∗
(αrs+nirs−1)
hrs

p∗
(αrs+N−hrs−1)
hrs

)
dp∗dγ∗ =

=
S∏
r=1

(br + W∗−
hr

)ar+N−hr
Γ(ar +N−hr)

Γ(
∑

s 6=r(αrs +N−hrs))∏
s 6=r Γ(αrs +N−hrs)

×
∫
· · ·
∫ S∏

r=1

(
γ∗

(nir+N−hr)
hr

e−γ
∗
hr(br+Wir+W∗−

hr )
∏
s 6=r

p∗
(αrs+nirs+N−hrs−1)
hrs

)
dp∗dγ∗ =

=
S∏
r=1

(br + W∗−
hr

)ar+N−hr
Γ(ar +N−hr)

Γ(
∑

s 6=r(αrs +N−hrs))∏
s 6=r Γ(αrs +N−hrs)

×
S∏
r=1

∫
· · ·
∫ (

γ
(nir+N−hr)
hr

e−γ
∗
hr(br+Wir+W∗−

hr )
∏
s 6=r

p∗
(αrs+nirs+N−hrs−1)
hrs

)
dp∗rsdγ

∗
hr =

=
S∏
r=1

(br + W∗−
hr

)ar+N−hr
Γ(ar +N−hr)

Γ(
∑

s 6=r(αrs +N−hrs))∏
s 6=r Γ(αrs +N−hrs)

×
S∏
r=1

∫
γ∗

(Nhr )
hr

e−γhr(br+W∗
hr)dγ∗hr

∏
s 6=r

∫
p∗

(αrs+Nhrs−1)
hrs

dp∗rs.
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By integration we get

f((s, w)i|X∗−h ) =
S∏
r=1

(br + W∗−
hr

)ar+N−hr
Γ(ar +N−hr)

Γ(
∑

s 6=r(αrs +N−hrs))∏
s 6=r Γ(αrs +N−hrs)

×
S∏
r=1

(
Γ(ar +Nhr)

(br + W∗
hr)

ar+Nhr

∏
s 6=r Γ(αrs +Nhrs)

Γ(
∑

s 6=r(αrs +Nhrs))

)
,

where Γ(·) denotes the gamma function, while W∗−
hr represent the sum of

the sojourn times in the state r for the elements lying in the cluster h with
exclusion of the i-th observation. Moreover nir represents the number of visits
of the state r and nirs represents the number of transitions from the state r
to the state s, such that nir =

∑
s 6=r nirs ; finally N

−
hr

represents the number of
visits of the state r for the trajectories in lying in the cluster h with exclusion
of the i-th trajectory, while N−hrs represents the number of transition from
the state r to the state s for the trajectories lying in the cluster h excluding
the i-th observation, such that N−hr =

∑
s 6=rN

−
hrs

.

Algorithm 6 Gibbs sampler for DPM of Markov models

• Clustering:
− for i = 1 . . . , N draw ψi ∼ π(ψi = h|ψ−i,X) from (2.26);
• Cluster parameters:
− for h = 1, . . . , k draw θ∗h ∼ π(θ∗h|ψ,X) from (2.25).

2.2.4 BNP inference for discretely observed CTMSM

As we have already seen in Chapter 1, inference for multi-state models in
continuous time become hard when observations when the process is ob-
served at discrete points. The likelihood function is not available, therefore
approximations are required. In Chapter 1 we presented a parametric MCMC
method for inference in semi-Markov models based on the Uniformization-
based algorithm, proposed by Hobolth and Stone [2009]. Here we discuss the
Bayesian nonparametric extension of the methodology presented in Chapter
1. For each cluster, we implement the Uniformization algorithm in order to
get full observed path using the corresponding cluster rate matrix, eliminat-
ing the problem of having discrete observations and extending the DPM for
CTMSM also to discretely observed case.
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In Algorithm 1 we describe in detail how Uniformization works. The input
for the algorithm are start-point, end-point and a rate matrix A. After sim-
ulating the trajectories, we follow the same scheme as in the fully observed
case (Algorithm 7).

Let X(ti,i) = (ŝ, ŵ)(ti,i) = (ŝ, ŵ)i, i = 1, . . . , N , be discretely observed
paths with not necessarily the same length. Let (s, w)i be the i-th discretely
observed unit lying inside the cluster h, such that ψi = h. Then, recalling
that θ∗h = (γ∗h, p̃

∗
h), we construct the rate matrix for the h-cluster A∗h as{

A∗h,rr = −γ∗h,rr
A∗h,rs = γ∗h,rr · p∗h,rs.

(2.27)

By Uniformization function we simulate between each two observed points
the continuous time trajectory, getting as output the path (s, w)i.

After having got the full trajectory, we can follow the previous scheme:
first updating the cluster membership, drawing ψi from π(ψi = h|ψ−i,X)
(2.26) and then updating the cluster parameters θ∗h, drawing from π(θ∗h|ψ,X)
(2.25).

Algorithm 7 Gibbs sampler for DPM of discretely observed con-
tinuous time Markov models
• Path simulation:
− for i = 1, . . . , N draw (s, w)i from Uniformization((ŝ, ŵ)i, A∗h)
• Clustering:
− for i = 1 . . . , N draw ψi ∼ π(ψi = h|ψ−i,X) from (2.26);
• Cluster parameters:
− for h = 1, . . . , k 

draw θ∗h ∼ π(θ∗h|ψ,X) from (2.25)
set A∗h,rr = −γ∗h,rr
set A∗h,rs = γ∗h,rr · p∗h,rs.
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Table 2.1: True values of the parameters of the two mixture components for
fully observed data.

ψ p12 p13 p21 p23 p31 p32 γ1 γ2 γ3

1 0.87 0.13 0.13 0.87 0.13 0.87 4 4 4
2 0.33 0.66 0.33 0.66 0.66 0.33 0.3 0.3 0.3

Table 2.2: Simulated paths with n = 100: posterior mean and standard de-
viation for the model parameters.

ψ p12 p13 p21 p23 p31 p32 γ1 γ2 γ3

E(·|x) 1 0.83 0.17 0.12 0.88 0.14 0.86 3.75 4.29 3.70
SD(·|x) 1 0.03 0.03 0.02 0.02 0.02 0.02 0.30 0.20 0.18
E(·|x) 2 0.28 0.72 0.43 0.57 0.63 0.37 0.52 0.85 0.11
SD(·|x) 2 0.17 0.17 0.26 0.26 0.26 0.26 0.27 0.89 0.13

2.3 Applications
After having introduced the Gibbs sampler for DPM of Markov models, we
have extended the methodology to the more interesting case of discretely
observed processes. In this section we discuss the behavior of the proposed
method with both fully observed and discretely observed trajectories. We
first show results with simulated data, then we present an application to the
Standard and Poor’s rating data as in Chapter 1.

2.3.1 Simulation study

We divide the simulation study in two parts: in the first we show the behavior
of the algorithm with fully observed trajectories, while in the second part we
have discretely observed data. We have simulated n = 100 trajectories, each
one with time length 5, from a finite mixture of three-states Markov Pro-
cesses. The true values of the generating parmeters are presented in Table
2.1. We assume the concentration parameter to be M = 1 and the centering
measure to be a product measure of Gamma and Dirichlet as in (2.21); we
ran the MCMC sampler for 10000 iterations with a burnin of 2000 iterations.
Results are shown in Table 2.2. Although the sample size is small, the model
captures the information and the posterior densities of most of the models
parameters concentrates around the true values. In Figure 2.1 and Figure 2.2
are shown the traceplots of the model parameters for each cluster.
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Table 2.3: True values of the parameters of the two mixture components for
discretely observed data.

ψ p12 p13 p21 p23 p31 p32 γ1 γ2 γ3

1 0.4 0.6 0.6 0.4 0.8 0.2 1.5 1.5 1.5
2 0.5 0.5 0.67 0.33 0.83 0.17 3 3 3

Table 2.4: Discretely observed data with n = 200: posterior mean and stan-
dard deviation for the model parameters.

ψ p12 p13 p21 p23 p31 p32 γ1 γ2 γ3

E(·|x) 1 0.44 0.56 0.49 0.51 0.84 0.16 0.61 1.94 1.66
SD(·|x) 1 0.14 0.14 0.23 0.23 0.16 0.16 0.45 0.96 0.94
E(·|x) 2 0.49 0.51 0.67 0.33 0.88 0.12 2.65 3.15 2.34
SD(·|x) 2 0.15 0.15 0.21 0.21 0.17 0.17 1.19 1.37 1.28

Table 2.5: Discretely observed data with n = 500: posterior mean and stan-
dard deviation for the model parameters.

ψ p12 p13 p21 p23 p31 p32 γ1 γ2 γ3

E(·|x) 1 0.37 0.63 0.64 0.36 0.80 0.20 1.40 1.71 1.16
SD(·|x) 1 0.16 0.17 0.25 0.25 0.21 0.21 1.15 1.28 0.89
E(·|x) 2 0.42 0.58 0.81 0.19 0.94 0.06 2.18 3.45 2.34
SD(·|x) 2 0.08 0.08 0.12 0.12 0.08 0.08 1.17 0.93 0.78

For the discretely observed case, we have simulated two samples of size
n = 200 and n = 500, where each individual has been observed 10 times in
a interval of length 2. Observations have been generated from a mixture of
three-states Markov processes with parameters presented in Table 2.3. The
hyperparameters setting is the same as in the fully observed case. Results
for both the simulations are shown in Table 2.4 and Table 2.5, while traces
of the posterior model parameters for each cluster are shown in Figure 2.3,
Figure 2.5 and Figure 2.6. Posterior estimates are concentrated around the
real values of the model parameters, although there is higher standard error
comparing to the fully observed data case, since there is less information
from data. Naturally, posterior estimates concentrates around the mean as
sample size increases, interval length reduces and number of observed interval
increases.
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Figure 2.1: MCMC traces for first and second clusters of posterior rate pa-
rameters for n=100 and fully observed trajectories.
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Figure 2.2: MCMC traces for first and second clusters of transition probabil-
ities posterior parameters for n=100 and fully observed trajectories.
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Figure 2.3: MCMC traces for first and
second clusters of posterior rate pa-
rameters with sample size n=200.
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Figure 2.4: MCMC traces for first and
second clusters of posterior rate pa-
rameters with sample size n=500.
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Figure 2.5: MCMC traces for first and second clusters of transition probabil-
ities posterior parameters with sample size n=200.
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Figure 2.6: MCMC traces for first and second clusters of transition probabil-
ities posterior parameters with sample size n=500.
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2.3.2 BNP modelling of rating classes with Standard
and Poor’s data

As in Chapter 1, here we model Standard and Poor’s rating classes data,
considering 205 institutions, each one observed at least two times. Again, we
summarize the data in four rating classes (A,B,C,D), with the first class (A)
representing solvent institutions and the last class (D) which is assumed to
be the absorbing state and represents the default. We model data via Dirich-
let Process mixture for discretely observed data, assuming the concentration
parameter M to be 1, while the centering measure is again assumed to be
a product measure of Gamma and Dirichlet as in (2.21). We ran 25000 iter-
ations with a burnin of 5000 iterations. A summary of the output is shown
in Table 2.6. From Figure 2.7 we note that observations concentrates in the
first two clusters, which have almost the same size. In Figure 2.8 we show
the traceplots of the posterior rate parameters in each of mixture compo-
nents: there is strong evidence of the difference in terms of expected values
between the parameters of the two estimated mixture components. This re-
sult proves the adequacy of the model for this data. Furthermore, it leads
to a deeper intuition regarding the nature of the process compared to the
MCMC algorithm for semi-Markov presented in Chapter 1. In that case, we
have observed that there is a decreasing rate as the rating class increases.
Here we can observe that the insitutions belonging to the first cluster show
an higher rate in the first (A) and third (C) states, meaning that they are
based in less stable economies and they are rated most of the times as class
B institutions. On the contrary, the institutions lying in the second cluster
reside in stable economies and they are rated most of the times as class A
insitutions. The result is in line with the theory of economic stability: an
economy with absence of excessive fluctuations in the macroeconomy, with
fairly constant output growth and low and stable inflation would be con-
sidered economically stable. An economy with frequent large recessions, a
pronounced business cycle, very high or variable inflation, or frequent finan-
cial crises would be considered economically unstable.
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Table 2.6: Standard and Poor’s rating data: posterior mean and standard
deviation for the model parameters and average sojourn times expressed in
years.

ψ p12 p13 p14 p21 p23 p24 p31 p32 p34

E(·|x) 1 0.85 0.08 0.07 0.36 0.42 0.22 0.25 0.26 0.49
SD(·|x) 1 0.10 0.08 0.07 0.21 0.22 0.18 0.19 0.20 0.23
E(·|x) 2 0.41 0.29 0.30 0.26 0.52 0.22 0.13 0.23 0.64
SD(·|x) 2 0.25 0.22 0.22 0.11 0.14 0.11 0.12 0.15 0.17

ψ γ1 γ2 γ3

E(·|x) 1 0.38 0.008 1.59
SD(·|x) 1 0.13 0.01 1.08
E(·|x) 2 0.006 0.32 0.89
SD(·|x) 2 0.005 0.11 0.43

ψ w̄1 w̄2 w̄3

E(·) 1 9.71 361.89 1.50
Me(·) 1 2.76 157.68 0.72
E(·) 2 3579.53 4.58 1.45
Me(·) 2 115.54 3.27 1.22

Figure 2.7: Lables distribution across the MCMC iterations.
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Figure 2.8: MCMC traces for first and second clusters of posterior rates and
transition probabilities for Standard and Poor’s data.
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Chapter 3

MCMC methods for high
dimensional copulas

Modelling a joint distributions of two variables, let we say Y1 and Y2, de-
scribed by a function F (Y1, Y2) = P (Y1 ≤ y1, Y2,≤ y2) would make it pos-
sible to fully describe the dependence between these variables. Nevertheless,
relations between data are often difficult to describe by simple bivariate dis-
tributions. Ideally, a statistical procedure for the estimation of a joint distri-
bution would provide first the estimates of the marginal distribution using
the univariate data and prior information, then the estimates the dependence
structure, using the multivariate data. The copula approach allows for the
construction of joint distributions as product of marginals and copula func-
tion.

Even if Bayesian methods have proven successful in both formulating and
estimating multivariate models, the most popular estimation methods are full
or two-stage maximum likelihood estimation [Joe, 2005] and method of mo-
ments style estimators in low dimensions [Genest and Rivest, 1993]. In the
Bayesian literature we find Huard et al. [2006], which suggested a method
to select between different bivariate copulas, and dos Santos Silva and Lopes
[2008] who use Markov chain Monte Carlo methods to estimate low dimen-
sional parametric copula functions. Hoff [2007] proposed a Gibbs sampler
for semiparametric Gaussian copulas, estimating marginals via rank likeli-
hood. Min and Czado [2010] considered methods to estimate so called "vine"
copulas with continuous margins using MCMC. Ausin and Lopes [2010] pre-
sented a Bayesian estimation of multivariate time series with copula-based
time varying cross-sectional dependence, while Smith and Khaled [2012] sug-
gested a Bayesian data augmentation for estimating copulas with discrete
marginals. Wu et al. [2014] presented a Bayesian nonparametric method for
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multivariate copula models using a Dirichlet Process Mixture of multivariate
skew-Normal copulas; they also proposed a Dirichlet Process Mixture of bi-
variate Gussian copulas [Wu et al., 2015]. Grazian and Liseo [2017] described
an approximate Bayesian Monte Carlo method for inference on semiparamet-
ric copulas. Finally, Dalla Valle et al. [2018] presented a Bayesian nonpara-
metric method for bivariate conditional copulas, accounting for covariates in
copula density estimation.

In this Chapter we first describe the mathematical structure of these mod-
els and show the vine copula construction which facilitates the treatment of
high dimensional joint distributions; then we introduce the main inferential
aspects, from both frequentist and Bayesian perspectives. In the last section
we present two Bayesian nonparametric methods for estimating multidimen-
sional copula densities, also including the conditional multivariate copula
case, desribing in detail the inferential and computational aspects. We follow
Shemyakin and Kniazev [2017] in the introduction to copula models.
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3.1 Copula models
A function C : I2 → I is called a copula if it satisfies the following conditions:

1. for any u, v ∈ [0, 1], C(0, v) = C(u, 0) = 0;

2. for any u, v ∈ [0, 1], C(1, v) = u, C(u, 1) = v;

3. for any 0 < u1 < u2 < 1 and 0 < v1 < v2 < 1,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) > 0.

A bivariate copula is then the distribution function of a bivariate random
variable with Uniform(0,1) marginal distributions. For any copula C(u, v),
partial derivatives ∂C

∂u
and ∂C

∂v
exist for almost all u, v ∈ [0, 1]. Let ∂2C

∂u∂v
and

∂2C
∂v∂u

exist and be continuous on I2. Then, we define the copula density as

c(u, v) =
∂2C

∂u∂v
=

∂2C

∂v∂u
.

If u = F (x) and v = G(y) are two distribution functions, any function
C(F (x), G(y)) is a valid bivariate distribution function. The converse is true
as well: every joint probability distribution function is a copula. We may
rewrite the bivariate joint density function of (X, Y ) as

f(x, y) =
∂2C

∂u∂v
· dF
dx
· dG
dy

= f(x) · f(y) · c(u, v), (3.1)

while
F (x|y) =

∂C(F (x), G(y))

∂G(y)
. (3.2)

The most important statement in copulas theory is without any doubt
the Sklar’s theorem [Sklar, 1959].

Theorem 3.1 Let J be a joint distribution function with margins F and G.
Then there exists a copula C such that for all x, y

J(x, y) = C(F (x), G(y)). (3.3)

If F and G are continuous, then C is unique.

The theorem states that every valid bivariate distribution can be rep-
resented as copula of its marginals. It allows to separate margins from the
copula density, simplifying the computation. Hence, thanks to this theorem,
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if we have to build a model for bivariate distribution given marginals, we
only have to find the proper copula model.

Moreover let C(u, v) be a copula defining a joint distribution with marginal
distributions u and v. Then, the function

C̄(u, v) = u+ v − 1 + C(1− u, 1− v) (3.4)

is called survival copula.

3.1.1 Elliptical copulas

We now consider one popular class of copulas often used in applications,
named elliptical, which includes Gaussian and student t-copulas.

We first define the main property of these copulas, the elliptical symmetry :
a copula C(u, v) is elliptically symmetric if it is both symmetric with respect
to the main diagonal of the unit square, u = v, and with respect to the
diagonal u = 1− v. It turns out the identity

C(u, v) = C̄(u, v)

meaning that C coincides with its survival version C̄.

Let Qρ(s, t) represent the class of bivariate elliptical distributions, with
density function

qρ(s, t) =
k2√

1− ρ2
g

(
s2 − 2ρst+ t2

1− ρ2

)
, (3.5)

where ρ ∈ (−1, 1), g : R→ R+ with
∫
R g(t)dt <∞ and k is the normalizing

constant. Moreover, we define

q(s) =

∫
R
q0(s, t)dt =

∫
R
q0(t, s)dt

and
q(t) =

∫
R
q0(s, t)ds =

∫
R
q0(t, s)ds

as the marginal density functions of the components of the vector (s, t) with
ρ = 0.
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The most popular method of constructing elliptically symmetric copulas
using an elliptic distribution Qρ(s, t) is the method of inverses. Considering
U and V independently uniformly distributed on the line [0,1], the inverse
transforms Q−1(U) and Q−1(V ) are two independent random variables with
the same c.d.f. Q. Hence, we define an elliptical copula for any u, v ∈ [0, 1]
as

Cρ(u, v) = Qρ(Q
−1(u), Q−1(v)).

Moreover, denoting s = Q−1(u) and t = Q−1(v), the resulting copula density
is

cρ(u, v) =
qρ(s, t)

q(s)q(t)
.

The most attractive property of this construction is the effective separation
of the margins u = F (x) and v = G(y) from the structure of dependence.
Thus, we can rewrite the bivariate distribution J(x, y) with margins F (x)
and G(y) as

J(x, y) = Qρ

(
Q−1 (F (x)) , Q−1 (G (y))

)
,

where the parameter ρ characterizes the intensity of dependence.

We now present two families of copulas belonging to the elliptical class.
The first one is the Gaussian copula: we get this copula in the following way

Cρ(u, v) = Φρ

(
Φ−1 (u) ,Φ−1 (v)

)
,

where Φρ is the distribution function of the bivariate normal distribution
with zero means, unit variances and correlation ρ, while Φ is the standard
normal c.d.f..

Consequently, denoting s = Φ−1(u) and t = Φ−1(v), the density of the
Gaussian copula is

cρ(u, v) =
∂2Cρ(u, v)

∂u∂v
=
∂2Φρ(s, t)

∂s∂t
· ∂s
∂u
· ∂t
∂v

=
φρ(s, t)

φ(s)φ(t)
,

where φρ represents the density of the bivariate normal distribution with zero
mean vector, unit variances and correlation ρ, while φ represents the density
of the standard normal distribution. In explicit form we have

c(u, v) =
1√

(1− ρ2)
exp

(
−ρ

2s2 + ρ2t2 − 2ρst

2(1− ρ2)

)
. (3.6)

Basically, the idea beyond the Gaussian copula is to transform two random
variables X and Y with c.d.f respectively F and G into standard normal
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variables S = Φ−1(F (x)) and T = Φ−1(G(x)), such that the whole depen-
dence between X and Y is expressed thorough the linear dependence of their
standard normal transforms.

In applications it often happens that data requires heavy-tailed multi-
variate distributions and the Student t-copula may be used. Following the
previous scheme, we can obtain this copula as

Cηρ(u, v) = Tηρ
(
T−1
η (u) , T−1

η (v)
)
,

where Tηρ is the bivariate Student t-distribution c.d.f. with η degrees of free-
dom and correlation ρ, while Tη is the Student t-distribution c.d.f. with η
degrees of freedom.

Again, denoting s = T−1
η (u) and t = T−1

η (v), we get the copula density
as follows

cηρ(u, v) =
∂2Cηρ(u, v)

∂u∂v
=

ψηρ(s, t)

ψη(s)ψη(t)

where ψηρ is the bivariate student t-distribution density with η degrees of
freedom and correlation ρ, while ψη is the Student t-distribution density
with η degrees of freedom. Thus, the explicit formula for the density is

cηρ(u, v) =
Γ
(
η+2

2

)
Γ
(
η
2

)√
1− ρ2 · Γ2

(
η+1

2

) ·
((

1 + s2

η

)(
1 + t2

η

)) η+1
2

(
1 + s2+t2−2ρst

η(1−ρ2)

) η+2
2

. (3.7)

For modelling joint distributions for both Gaussian and Student t-copula,
we combine the copula with any marginal distributions u = F (x) and v =
G(y).

3.1.2 Archimedean copulas

Suppose again to have a copula C(u, v). Another way of thinking of depen-
dence between the margins u and v may be as “deviation” from the indepen-
dence case, corresponding to the copula C(u, v) = uv. Since transformations
ξ which support additivity are easier to manipulate, the idea is to determine
a subclass of copulas such that ξ(C) = ξ(u) + ξ(v).

Let ξ(t) be a continuous, strictly decreasing function from [0, 1] to [0,∞)
such that ξ(1) = 0. We determine the pseudo-inverse function of ξ as follows:

ξ[−1](t) = max
{
ξ−1(t), 0

}
.
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Pseudo-inverses extend the inverse transformation to functions of limited
range. If ξ(t) → ∞ when t → 0, then the pseudo-inverse function coincides
with the inverse function.

Theorem 3.2 Let ξ : I → [0,∞) be a continuous, strictly decreasing func-
tion such that ξ(1) = 0. Then the function

Cξ(u, v) = ξ[−1](ξ(u) + ξ(v))

is a copula if and only if ξ is convex.

If Cξ(u, v) satisfies these conditions, it is called Archimedean copula and the
function ξ(t) is its generator. We can check whether a copula is Archimedean
denoting by δc(u) = C(u, u) the diagonal projection of a copula, if for all
u ∈ (0, 1) δC(c) < u, then C(u, v) is Archimedean. Moreover, while it is
easy to verify that Archimedean copulas are commutative, hence C(u, v) =
C(v, u), it is much harder to prove that they are associative: C(C(u, v), w) =
C(u,C(v, w)).

If the second derivative ξ′′ exists, the Archimedean copula density may
be expressed through its generator and its derivatives as

c(u, v) =
∂2C(u, v)

∂u∂v
= −ξ

′′(C(u, v))ξ′(u)ξ′(v)

(ξ′(C(u, v)))3 .

We now briefly introduce some Archimedean copula families, showing how
to get copula densities from different generators.

The first copula we introduce is the Clayton copula. Let ξ(t) be the gen-
erator such that

ξ(t) =
1

α

(
t−α − 1

)
,

thus the pseudo-inverse

ξ[−1](s) = max
{

(1 + αs)−1/α , 0
}

defines the Clayton’s class of copulas

Cα(u, v) = max
{(
u−α + v−α − 1

)−1/α
, 0
}
, α ∈ [−1, 0) ∪ (0,∞).

Since this copula is typically applied for α > 0, we get the density as

cα(u, v) =
(α + 1) (uv)α

(uα + vα − (uv)α)
1
α

+2
, α > 0. (3.8)

65



The Clayton copula is used in situations where the dependence between low
values of u and v is stronger than the dependence between values close to 1.

The second family we consider is the Frank copula. Again, let the gener-
ator be

ξ(t) = − log
e−αt − 1

e−α − 1
,

then the pseudo-inverse function is

ξ[−1](s) = − 1

α
log
(
1 + e−s(e−α − 1)

)
.

Thus, we get the Frank Copula

Cα(u, v) = − 1

α
log

(
1 +

(e−αu − 1) (e−αv − 1)

e−α − 1

)
, with α 6= 0,

where the density is

cα(u, v) =
α (1− e−α) e−α(u+v)

(e−α − 1 + (e−αu − 1) (e−αv − 1))2 . (3.9)

This copula is used when the strength dependence is relatively similar for
values of u and v.

The last Archimedean copula class we present is the Gumbel-Hougaard
class. Let the generator be

ξ(t) = (− log t)α

with pseudo-inverse
ξ[−1](s) = e−s

1/α

.

Thus, the Gumbel-Hougaard copula is

Cα(u, v) = exp
(
− ((− log u)α + (− log v)α)

1/α
)
, α ≥ 1,

with density

cα(u, v) = (uv)−1 (log u · log v)α−1 (w2/α−2 + (α− 1)w1/α−2
)
Cα(u, v),

(3.10)
where w = (− log u)−α + (− log v)−α.
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The Gumbel-Hougaard copula is used when the strongest dependence is
for values of u and v close to 1 (right tail).

The popularity of these three classes of copulas derives from the flexi-
bility in applications, since their structures allow to model various types of
non-linear dependence, especially the tail-dependence. Survival copulas can
simply be obtained from each of these three copulas.

3.1.3 Multidimensional copulas and vine construction

All discussions so far were restricted to bivariate copulas, even if most in-
teresting applications are in dimension d ≥ 3 (multivariate copulas). Con-
struction for elliptical and Archimedean copulas can be naturally extended
to higher dimensions.

Elliptical distributions Qd,R of a random vector t = (t1, . . . , td) can be
defined by its joint density function

Qd,R = |Σ|−1/2k((t− 1)TΣ−1(t− 1)))

where µ is a d-dimensional vector of means, Σ is the d × d positive definite
covariance matrix, k(t) is some non negative function of a variable integrable
over R, while R with elements Rij = Σij/

√
ΣiiΣjj is the correlation matrix

determining all pairwise associations between the components of t.

Let Qi(ti) be the marginal distribution on ti. We may define the elliptical
copula as

Qd,R = Qd,R(Q−1
1 (u1), . . . , Q−1

d (ud)).

The most popular multidimensional elliptical copula is the Gaussian. Con-
sidering data with marginal distributions ui = F (yi), we define

CΣρ(u1, . . . , ud) = Φd,Σρ(Φ
−1(F1(y1)), . . . ,Φ−1(Fd(yd))).

where Φ is standard normal distribution and Φd,Σρ is d-variate normal with
zero mean, unit variances, and covariance (and correlation) matrix Σρ. Thanks
to the multivariate normal properties, the off-diagonal elements of matrix Σρ

describe pairwise associations, so the strength of association may differ for
different pairs of components of the vector Y.

A formal extension of Archimedean copula construction to dimension d >
2 is straightforward:

Cα(u1, . . . , ud) = ξ[−1](ξα(u1), . . . , ξα(ud)),
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is a copula with generator ξα. The problem here is the exchangeability or
symmetry requirement, which suggests that one parameter α describes all
pairwise associations, thus all these associations have to be of equal strength.
This is a substantial limitation of the modelling process. Therefore, to ad-
dress nonexchangeable situations, this construction has to be modified.

Moreover, with “classical” multivariate copula modelling there are para-
metric constraints which provide poor flexibility, in both elliptical and Archimedean
cases, since the dependencies between each variable are assumed to belong
to the same parametric family.

These problems were noted by Aas et al. [2009], which proposed to use a
wider class of multivariate copulas, based on a technique of construction of
multivariate copulas introduced by Joe [1996] and also treated by Bedford
and Cooke [2001] and Kurowicka and Cooke [2006]. The method consists in
rewriting a d-variate copula as product of d(d − 1)/2 bivariate copulas and
it is called pair-copula (or vine copula) construction. This approach is more
flexible, as we can select bivariate copulas from a wide range of (parametric)
families.

Let us begin with dimension d = 3 considering the problem of modelling
the joint distribution P (X ≤ x, Y ≤ y, Z ≤ z), where the marginals are
u = F (x), v = G(y) and w = H(z), while Y is designated as the central
variable, meaning that its associations with X and Z are most important
and modelling the association between X and Z will have a lower priority.
The choice of the central variable is inevitable, and is established either from
context or by preliminary estimation of the strength of pairwise associations.

Let us denote by f(x), g(x) and h(x) respective marginal densities of X,
Y and Z. We can write down double and triple joint densities as

fg(x, y) = gY |X(y|x)f(x)

the joint density between x and y and

fgh(x, y, z) = hZ|X,Y (z|x, y)fg(x, y).

the joint density between x, y and z. Thus we obtain the joint density of all
three variables as a “chain” of conditional densities

fgh(x, y, z) = hZ|X,Y (z|x, y)gY |X(y|x)f(x). (3.11)
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Using two pair-copulas, we first model associations (X, Y ) and (Y, Z):

C1(u, v) = C1(F (x), G(y)), C2(v, w) = C2(G(y), H(z)).

with densities respectively c1(F (x), G(y)) and c2(G(y), H(z)). We rewrite the
bivariate joint densities as:

fg(x, y) = c1(F (x), G(y))f(x)g(y), gh(y, z) = c2(G(y), H(z))g(y)h(z).

Conditional distribution may be expressed as

gY |X(y|x) = c1(F (x), G(y))g(y), hZ|Y (z|y) = c2(G(y), H(z))h(z). (3.12)

We can rewrite the joint density of all three variables as

fgh(x, y, z) =
hZ|X,Y (z|x, y)

hZ|Y (z|y)
c1(F (x), G(y))c2(G(y), H(z))f(x)g(y)h(z).

We introduce the copula C3(FX|Y (x|y), HZ|Y (z|y)) having density

c3(FX|Y (x|y), HZ|Y (z|y)) =
hZ|X,Y (z|x, y)

hZ|Y (z|y)
,

assuming the same copula structure to link two conditional distributions. We
may finally rewrite the joint density of the three variables as

fgh(x, y, z) = c1(F (x), G(y))c2(G(y), H(z))c3(FX|Y (x|y), HZ|Y (z|y))f(x)g(y)h(z),

meaning that

c(F (x), G(y), H(z)) = c1(F (x), G(y))c2(G(y), H(z))c3(FX|Y (x|y), HZ|Y (z|y)).
(3.13)

This construction is known as vine copula or pair copula construction.

X, Y Y, Z

X,Z|Y
For dimension d = 4, we introduce a further variable W , thus we have

to add a new link. We distinguish vine diagrams in two types: C-Vine and
D-Vine.

• Three levels of association for a C-vine.

X, Y Y, Z Z,W

X,Z|Y Z,W |Y
X,W |Z, Y
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• Three levels of association for a D-vine.

X, Y Y, Z Z,W

X,Z|Y Y,W |Z
X,W |Z, Y

Generalizing, we say that with the pair-copula construction, a d-variate
copula may be rewritten as the product of d(d− 1)/2 bivariate copulas.

3.2 Bayesian inference for copulas
We now briefly present classical inferential techniques for copula models and
then we focus on Bayesian methods illustrating both the parametric and the
nonparametric approaches.

In particular we will first introduce the standard inferential approaches
for d dimensional copulas and then we will concentrate on pair-copula anal-
ysis. In fact using vine construction we can deal in higher dimensional space
by pair-copula estimation. Once we have chosen a particular family of cop-
ulas, the dimension of the parametric space will depend on the number of
parameters of the marginals and of the selected copula model. Note also
that in parametric copula estimation we have to determine whether estimate
all the parameters in one step or we prefer to choose a property of copu-
las which allows us to proceed in two steps (also IFM: inference functions
from margins), first estimating margins parameters and then estimating the
association given the estimated marginal distributions. Both methods are
consistent, while the efficiency depends on the estimation procedure in the
margins [Joe, 2005].

Specifically, suppose to have the sample of size n (y1i , . . . , ydi), i = 1, . . . , n.
We can choose a semiparametric approach, assuming margins to be absolutely
continuous and choosing a parametric approach for the copula. In that case,
the likelihood function for the copula model is

L (α) =
n∏
i=1

cα

(
F̂ (y1i), . . . , F̂ (ydi)

)
·
n∏
i=1

d∏
j=1

f (yji) , (3.14)

where F̂ represents the empirical distribution function. Via likelihood maxi-
mization we get

α̂ = arg max
α=0

L
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where α̂ is the maximum likelihood estimator for the association parameter
of the copula C.

If we choose a full parametric approach, we should first assume to model
each Yji with j = 1 . . . d as a probability distribution Fj(yji ; θj); then, we
select a copula model C depending on the association parameter α. Thus,
the likelihood function is

L (α, θ) =
n∏
i=1

cα (F1(y1i ; θ1), . . . , Fd(ydi ; θd)) ·
n∏
i=1

d∏
j=1

fj (yji ; θj) . (3.15)

Maximizing the likelihood function we get

(α̂, θ̂) = arg maxL (α, θ) ,

where α̂ still represents the maximum likelihood estimator for the association
parameter of the copula C, while θ̂ represents the d dimensional vector of
maximum likelihood estimators for the marginals parameters.

3.2.1 Parametric estimation: Bayesian inference

In the Bayesian framework we have more stable procedures, exploiting the
benefits of integration instead of the optimization and using the entire pos-
terior distribution. For complex marginal structures or copula functions, the
likelihood can be hard to maximise directly. One solution is to use a two
stage estimator [Joe, 2005]; another solution is to use to an iterative scoring
algorithm to maximise the likelihood, as suggested by Song et al. [2005]. How-
ever, an attractive Bayesian alternative in this circumstance is to construct
inference from the joint posterior distribution of the association and marginal
parameters evaluated in a Monte Carlo manner. Furthermore, when estimat-
ing a copula model, the objective is often to construct inference on measures
of dependence, quantiles or functionals of the random variable vector. Evalu-
ation of the posterior distribution of these quantities is often straightforward
using MCMC methods.

Let (y1i , . . . , ydi), i = 1, . . . , n be our sample. We may choose a semi-
parametric approach, modelling marginals nonparametrically. In that case
we might have either a fully Bayesian approach, specifying the prior process
on the marginal parameters, or we can have a frequentist nonparametric es-
timation of the marginals e.g. via empirical distribution functions. In both
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cases, we write down the likelihood function as

L (α) =
n∏
i=1

cα

(
F̂ (y1i), . . . , F̂ (ydi)

)
.

Assuming π(θ) as the prior distribution of the association parameter, the
posterior distribution is

π(α|F̂ (y1i), . . . , F̂ (ydi)) ∝ L (α) · π(α). (3.16)

Choosing a parametric approach for marginal modelling, we have to de-
fine the prior distribution for the marginals and the copula parameters.
Let π(α) be the prior distribution for the association parameter and let
π(θ) =

∏d
j=1 π(θj) the joint d-dimensional prior distribution for the vector

of marginal parameters. Assuming the marginals to have densities f1, . . . , fd,
the likelihood function is

L (α, θ) =
n∏
i=1

cα (F1(y1i |θ1), . . . , Fd(ydi |θd)) ·
n∏
i=1

d∏
j=1

fj (yji |θj) .

The joint posterior distribution for the parameters of interest is

π(α, θ|F1(y1), . . . , Fd(yd)) ∝ L (α, θ) · π(α) · π(θ), (3.17)

by marginalization we get:

π(θj|F1(y1), . . . , Fd(yd)) =

∫
· · ·
∫
π(α, θ)dαdθ1, . . . , dθj−1dθj+1, . . . , dθd

and
π(α|F1(y1), . . . , Fd(yd)) =

∫
· · ·
∫
π(α, θ)dθ1, . . . , dθd.

Posterior computation In order to draw samples from the correct
posterior distribution, MCMC methods are required. The choice between
Metropolis-Hastings and Gibbs sampler depends on the conjugacy of the
model. Clearly, in case of parametric assumptions on the margins, in order
to implement a Gibbs sampler also the marginal parameters prior distribu-
tions have to be conjugate. In any case, as already said, we can use both
one-step and two-steps procedures.
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3.2.2 Dealing with high dimensions: inference for vine
copulas

In Section 3.1.3 we presented the vine copula construction, helpful when the
dimension of the copula is d ≥ 3. Again, we consider the d = 3 case, modelling
the joint distribution P (X ≤ x, Y ≤ y, Z ≤ z) with marginals u = F (x),
v = G(y) and w = H(z), where Y is designated as the central variable. From
(3.13) we have

c(F (x), G(y), H(z)) = c1(F (x), G(y))c2(G(y), H(z))c3(FX|Y (x|y), HZ|Y (z|y)).

Inference on the parameters of the first two elements is quite intuitive, since
they are independent from each other and there is no problem in writing
down the likelihood functions

L(α1;x, y) =
n∏
i=1

c1(FX(xi), GY (yi)) and L(α2; y, z) =
n∏
i=1

c2(GY (yi), HZ(zi)).

Estimates are provided depending on the chosen approach.

Regarding the last element, the likelihood function is

L(α3;x, y, z) =
n∏
i=1

c3(FX|Y (xi|yi), HZ|Y (zi|yi)). (3.18)

From (3.2), we rewrite (3.18) as

L(α3;x, y, z, α̂1, α̂2) =
n∏
i=1

c3

(
∂C1(F (xi), G(yi)|α̂1)

∂G(yi)
,
∂C2(G(yi), H(zi)|α̂2)

∂G(yi)

)
,

with α̂1 and α̂2 having different meaning depending on the statistical ap-
proach.

In frequentist inference they represent respectively the MLE estimates for
the association parameters of c1(F (x), G(y)) and c2(G(y), H(z)), with

α̂3 = arg max
α3=0

L(α3;x, y, z, α̂1, α̂2).

In Bayesian inference, the posterior density

π(α3|x, y, z, α̂1, α̂2) ∝ π(α3) · L(α3;x, y, z, α̂1, α̂2), (3.19)

also depends on the values α̂1 and α̂2. Thus, in computing (3.19) we need to
further distinguish two cases:
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1. in case of one-step estimation, α̂1 and α̂2 are set as the simulated pa-
rameter values of c1(F (x), G(y)) and c2(G(y), H(z)) for the current
iteration;

2. in case of two-steps estimation, they represent the expected value of
the posterior density of the association parameters α̂1 = E(α1) and
α̂2 = E(α2).

Hence, by construction, in both frequentist and Bayesian frameworks we
need a hierarchical approach, with the extension to the d > 3 case following
naturally. The Bayesian approaches for inference on vine copulas are sum-
marized in Algorithm 8 and Algorithm 9.

Algorithm 8 One-step Bayesian inference for vine copulas

• for each iteration t
− draw α1t ∼ π(α1|x, y) and α2t ∼ π(α2|y, z);
◦ set α̂1 = α1t and α̂2 = α2t

− draw α3t ∼ π(α3|x, y, z, α̂1, α̂2);
end

Algorithm 9 Two-steps Bayesian inference for vine copulas

• for each iteration t
− draw α1t ∼ π(α1|x, y) and α2t ∼ π(α2|y, z);
end
◦ set α̂1 = E(α1) and α̂2 = E(α2)
• for each iteration t
− draw α3t ∼ π(α3|x, y, z, α̂1, α̂2);
end

3.3 Bayesian nonparametric inference for mul-
tidimensional copulas

For the two-dimensional case, there exists a wide collection of parametric cop-
ula models. However, in higher dimensions, the number of families of para-
metric copulas is more limited. Furthermore, assuming a parametric model
for multivariate data implies the assumption of the same parametric model
for each subset of paired variables. A solution to this problem may be the
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pair-copula constructions, which allows us to rewrite the multivariate copula
as product of pair-copulas. Alternatively, nonparametric methods may over-
come the problem giving flexibility.

Wu et al. [2014] presented a method for Bayesian nonparametric infer-
ence on multidimensional copulas mixing over a skew-Normal multivariate
copula. Moreover, in estimating densities of two-dimensional copulas by mix-
ing over Gaussian copulas, Wu et al. [2015] showed that any bivariate copula
density can be arbitrarily accurately approximated by an infinite mixture
of Gaussian copula density functions. Dalla Valle et al. [2018] extended the
methodology to the conditional bivariate copula estimation, accounting for
covariates in the two dimensional case.

In this Section we focus on Bayesian nonparametric techniques for mul-
tivariate copula density estimation. We first present an alternative DPM of
multivariate copulas with respect to the Wu et al. [2014] model. By choosing
a Gaussian copula as kernel density of the DPM and adopting an Inverse
Wishart centering measure, we exploit the conjugacy between G0 and the
mixture components. Then, we present a Bayesian nonparameteric method
for multivariate copulas accounting for covariates.

3.3.1 Infinite mixtures of multivariate copulas

Let G be a probability distribution defined on the parameter space Θ. Let
(u1i , . . . , udi) = (F1(y1i), . . . , Fd(ydi)) with i = 1, ..., n be observations of d
variables. Given the set of parameters R ∈ Θ, we define the d-variate copula
density cG of a mixture of d-variate copulas with kernels cR with respect to
the mixing measure G as

cG(u1, . . . , ud) =

∫
cR(u1, . . . , ud)dG(R).

With a DP prior on G, we get a DPM model, which can be rewritten in a
hierarchical form. We define a DP prior on G such that

(u1i , . . . , udi)|Ri
ind∼ cRi(u1i , . . . , udi)

Ri|G
iid∼ G,

G ∼ DP (M,G0).

with M total mass parameter and G0 is the centring measure, and Ri is the
i-th parameters set defined on the parameter space Θ.
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The posterior distribution Π(G|u1, . . . , ud) is a mixture of DP models,
mixing with respect to latent variablesRi specific to each observation (u1i , . . . , udi)
for i = 1, . . . , n:

G|(u1, . . . , ud) ∼
∫
DP (MG0 +

n∑
i=1

δθi)dΠ(R|u1, . . . , ud).

Wu et al. [2014] presented a DPM model having as kernel density the
multivariate skew-Normal copula. They showed that the Gaussian copula,
that is one of the most widely used copulas because of its attractive proper-
ties and mathematical tractability, has the symmetric property which makes
it difficult to deal with skewed data. However, even if estimating marginals
nonparametrically, the presence of a further parameter in the copula model,
in addition to the lack of conjugacy between G0 and the kernel density, of
the mixture make the computational cost increase. Therefore, if summary
statistics show symmetry of the data, their approach results quite expansive
in terms of computation.

3.3.2 Dirichlet Process Mixtures of multidimensional Gaus-
sian copulas

We present a DPM of multivariate Gaussian copulas, which will overcome
most of the problems related to multidimensional copula modelling. Our
method relaxes distributional assumptions and allows to get good approxi-
mation of any symmetric copula family.

Let (u1i , . . . , udi), i = 1, . . . , n, be i.i.d. observations defined in Id. Let
Σ ≡ R ∈ Θ be the d × d covariance matrix of the d-dimensional Gaussian
copula kernel density cΣ.

In order to exploit the conjugacy with the multidimensional Gaussian
copula model, we define the centering measure as a d-dimensional Inverse
Wishart distribution

G0 ≡ W−1
d (S0, η),

that is in explicit form

G0(Σ) =
|S0|η/2

2ηd/2Γd(η/2)
|Σ|−(η+d+1)/2 exp

(
−1

2
S0 · Σ−1

)
,
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where S0 is a positive-definite scale matrix and η > d− 1 are the degrees of
freedom.

Let Σ∗−h denote the h-th of the k− unique values among Σ−i, which rep-
resents the set of covariance matrices Σ without the i-th element Σi. Also,
let (u1, . . . ,ud)∗−h = (u1, . . . ,ud)∗h \ (u1i , . . . , udi) and Ψh = (i : Σi = Σ∗h),
so that if ψi = h, the i-th observation belongs to the h-th cluster and nh
represents the number of observations lying inside the cluster h. Thus, we
write down the likelihood function for the cluster h as

L(Σ∗h) =

nh∏
i=1

|Σ|1/2 exp

−1

2

Φ−1(u1i)
...

Φ−1(udi)


T

·
(
Σ−1
h − I

)
·

Φ−1(u1i)
...

Φ−1(udi)



 ,

L(Σ∗h) = |Σ|n/2 exp

−1

2

Φ−1(u1
∗
h)

...
Φ−1(ud

∗
h)


T

·
(
Σ−1
h − I

)
·

Φ−1(u1
∗
h)

...
Φ−1(ud

∗
h)


.

We derive the posterior density of the cluster correlation matrices π(Σ∗h|ψ,u1, . . . ,ud)
and the posterior conditional density of the clusters π(ψi = h|ψ−i,u1, . . . ,ud).

1. We compute the posterior density for Σ∗h as

π(Σ∗h|ψ,u1, . . . ,ud) = G0(Σ∗h) · L(Σ∗h), (3.20)

rewriting in explicit form

π(Σ∗h|ψ,u1, . . . ,ud) =
|S0|η/2

2ηd/2Γd(η/2)
|Σh|−(η+d+1)/2 exp

(
−1

2
S0 · Σ−1

h

)
×

|Σh|n/2 exp

−1

2

Φ−1(u1
∗
h)

...
Φ−1(ud

∗
h)


T

·
(
Σ−1
h − I

)
·

Φ−1(u1
∗
h)

...
Φ−1(ud

∗
h)


 ,

where Γd(·) is the d-dimensional multivariate gamma function. We note that
π(Σ∗h|ψ,u1, . . . ,ud) is still an Inverse Wishart

π(Σ∗h|ψ,u1, . . . ,ud) ≡ W−1

S0 +

Φ−1(u1
∗
h)

...
Φ−1(ud

∗
h)


TΦ−1(u1

∗
h)

...
Φ−1(ud

∗
h)

, η + nh


(3.21)
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where:

• S0 is the prior scale matrix and η represents the prior on the degrees
of freedom;

• (u1
∗
h, . . . ,ud

∗
h) is the set of observations lying inside the cluster h;

•

Φ−1(u1
∗
h)

...
Φ−1(ud

∗
h)

 is a nh × d matrix.

2. We now define the posterior probabilities π(ψi = h|ψ−i,u,v) for h =
1 . . . k− and h = k− + 1 which denotes the creation of a new cluster. From
(2.15) it follows that the probability of the i-th element of belong to the h-th
cluster is

π(ψi = h|ψ−i,u1, . . . ,ud) ∝

n
−
h f(u1i , . . . , udi |(u1, . . . ,ud)∗−h ) for h = 1, . . . , k−

Mc(u1i , . . . , udi) for h = k− + 1

(3.22)
where n−h is the number of elements in the h-th cluster with exclusion of
the i-th observation, M represents the precision parameter of the DP and
c(u1i , . . . , udi) ≡

∫
cR∗h(u1i , . . . , udi)G0(dΣ∗h), while

f(u1i , . . . , udi |(u1, . . . ,ud)∗−h ) =

∫
cΣ∗−h

(u1i , . . . , udi)dπ(Σ∗−h |u1, . . . ,ud
∗−
h ),

where π(Σ∗−h |(u1, . . . ,ud)∗−h ) is the posterior density of Σ in the h-th cluster
excluding the i-th observation. In particular, in order to simplify the notation
we define

T (u|Σh) =

Φ−1(u1)
...

Φ−1(ud)


T

·
(
Σ−1
h − I

)
·

Φ−1(u1)
...

Φ−1(ud)


and

T (u) =

Φ−1(u1)
...

Φ−1(ud)


TΦ−1(u1)

...
Φ−1(ud)

.
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Then, we calculate

f(u1i , . . . , udi|(u1, . . . ,ud)∗−h ) =

∫
|Σh|−1/2e(−

1
2
T (ui|Σh))×∣∣S0 + T (u∗−h )

∣∣(η+n−h )/2

2(η+n−h )d/2 · Γd
(
(η + n−h )/2

) |Σh|−(η+n−h +d−1)/2 e(−
1
2
T (u∗−h |Σh))dΣh =

=

∣∣S0 + T (u∗−h )
∣∣(η+n−h )/2

2(η+n−h )d/2 · Γd
(
(η + n−h )/2

) ∫ |Σh|−(η+nh+d−1)/2 e(−
1
2
T (u∗h|Σh))dΣh =

=

∣∣S0 + T (u∗−h )
∣∣(η+n−h )/2

2(η+n−h )d/2 · Γd
(
(η + n−h )/2

) · 2(η+nh)d/2 · Γd ((η + nh)/2)

|S0 + T (uh)|
(η+nh)/2

,

where Γd(·) represents the d-dimensional multivariate gamma function, u∗−h
represents the observations in the h-th cluster with the exclusion of the i-
th observation and u∗h is got including the i-th element in the set u∗−h . The
number of elements in u∗−h and u∗h are respectively n−h and nh.

Thus, we may define the Gibbs sampler for DPM of multidimensional
Gaussian copulas as in the following scheme.

Algorithm 10 Gibbs sampler for DPM of multidimensional Gaus-
sian copulas

• Clustering:
− for i = 1 . . . , N draw ψi ∼ π(ψi = h|ψ−i,u1, . . . ,ud) from (3.22);
• Cluster parameters:
− for h = 1, . . . , k draw Σ∗h ∼ π(Σ∗h|ψ,u1, . . . ,ud) from (3.21).

3.3.3 Bayesian nonparametric conditional multidimen-
sional copulas

We finally present a method which allows to make inference on multidimen-
sional copulas accounting for covariates. Suppose to have (u1i , . . . , udi) =
(F (y1i), . . . , F (ydi)) with i = 1, ..., n. We also observe a n × v matrix of
covariates X. Dalla Valle et al. [2018] provided a Bayesian nonparametric
method for bivariate conditional copulas. We propose a Bayesian nonpara-
metric method for conditional multidimensional copulas, which allows us to
detect the impact of each covariate Xj j = 1, . . . , v on the dependence struc-
ture of the multivariate copula, basing on the vine construction.
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Let G be a probability distribution on defined on the parameter space Θ.
Let (u1i , . . . , udi) = (F (y1i), . . . , F (ydi)) with i = 1, ..., n be observations of d
variables and let X be the n×v matrix of observed covariates. We define the
density cG as a mixture of d-variate conditional copulas with kernels cθ(X)

with respect to the mixing measure G, that is

cG(F1(y1), . . . , Fd(yd)) =

∫
cθ(X)(F1(y1), . . . , Fd(yd))dG(θ(X)).

Remark that, since we need to specify a vine structure, we consider both cG
and cθ(X) as products of p = d(d− 1)/2 pair-copulas. Let

θ(X) = g(X;β), (3.23)

be a p-dimensional vector of functions. Then, defining a DP prior on G we
rewrite

(F1(y1i), . . . , Fd(ydi))|θ(X)i
ind∼ cθ(X)i(F1(y1i), . . . , Fd(ydi))

θ(X)i|G
iid∼ G,

G ∼ DP (M,G0).

withM total mass parameter andG0 is the centring measure. Again, θ(X)i =

(θ(X)i1 , . . . , θ(X)ip) has dimension p × 1, with p = d·(d−1)
2

, since by pair-
copula construction we rewrite c(F1(y1), . . . , Fd(yd)) as product of d(d− 1)/2
bivariate copulas and each θij is a v-variate function of the covariates

θij = g(X, βij) (3.24)

with βij vector of dimension v.

The posterior distribution Π(G|F1(y1), . . . , Fd(yd)) is a mixture of DP
models, mixing with respect to latent variables θi(X) specific to each obser-
vation (F1(y1i), . . . , Fd(ydi)) for i = 1, . . . , n:

G|(F1(y1), . . . , Fd(yd), X) ∼
∫
DP (MG0+

n∑
i=1

δθi(X))dΠ(θ(X)|F1(y1), . . . , Fd(yd)).

Therefore, by vine copulas construction we rewrite d-variate copula densi-
ties as the product of d(d−1)/2 bivariate copulas, reducing the kernel choice
to the biavriate copulas class of densities whatever d is.
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As kernel density of our DPM model, we need a bivariate copula that is
able to capture any kind of dependence and may approximate each copula
family. The reparametrization of θ as function fo X makes impossible to
exploit the conjugacy between G0 and the kernel density. Hence, we should
choose only basing on the properties of the kernel. Wu et al. [2015] showed
that that bivariate density functions on the real plain can be arbitrarily well
approximated by a mixture of a countably infinite number of bivariate normal
distributions.

3.3.4 Dirichlet Process Mixtures of conditional Gaus-
sian vine copulas

We now present a DPM of conditional vine copulas which allows to estimate
multivariate copula densities in presence of covariates. Let (F (y1i), . . . , F (ydi))
be i = 1, . . . , n observations defined in the hypercube Id. Let X be a n × p
matrix of covariates. Assuming as kernel density of our mixture the product
of Gaussian copulas cρi = (u, v), with i = 1, . . . , p and p = d(d − 1)/2, each
one having association parameter ρ ∈ (−1, 1) assumed to be function of v
covariates X. Thus, considering

ρ(X) = g(X;β), (3.25)

where ρ is a p× 1 vector of functions each one depending on v-dimensional
vectors β, we need to define a p× v dimensional centering measure. In par-
ticular, we chose G0 to be multivariate Normal

G0 ≡ Np×v(µ,Σ). (3.26)

We present the details of the case with d = 3. Thus, let (F (y1i), F (y2i), F (y3i)),
i = 1, . . . , n, be i.i.d. observations defined in I3, with X n × p matrix of co-
variates. Let we choose y2 as central variable, so that:

c(F1(y1), F2(y2), F3(y3)) = c1(F1(y1), F2(y2))·c2(F2(y2), F2(y3))·c3(F1(y1|y2), F3(y3|y2)).

Consider ρ for each pair-copula as function of unknown parameters β and
covariates X

ρ = g(X; β),

where g is the link function and β has dimension depending on the number
of covariates v. Let β∗−h denote the h-th of the k− unique values among β−i,
which represents the vector β without the i-th element βi. Let Ψh = (i : βi =
β∗h), so that if ψi = h, the i-th observation belongs to the h-th cluster and
nh represents the number of observations lying inside the cluster h.
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1. We first define π(ψi = h|ψ−i, β∗h, X, F1(y1), F2(y2), F3(y3)) for h =
1 . . . k− and h = k− + 1. From (2.16) it follows that the probability of the
i-th element of belong to the h-th cluster is

• for h = 1, . . . , k−

n−h cβ∗h,1(F1(y1), F2(y2)) · cβ∗h,2(F2(y2), F2(y3)) · cβ∗h,3(F1(y1|y2), F3(y3|y2)),

• for h = k− + 1

M

k− + 1
cβ∗
k−+1,1

(F1(y1), F2(y2))·cβ∗
k−+1,2

(F2(y2), F2(y3))·cβ∗
k−+1,2

(F1(y1|y2), F3(y3|y2)),

where n−h is the number of elements in the h-th cluster with exclusion of the
i-th observation, M represents the precision parameter of the DP and c is
the Gaussian bivariate copula density of parameters β∗h.

2. We compute the conditional distribution functions F1(y1|y2) as

F1(y1|y2) =
∂cβ∗h(F1(y∗1h), F2(y∗2h))

∂F2(y∗2h)
for h = 1, . . . , k, (3.27)

where in deriving for each observation we consider the belonging cluster h.
We do the same in order to get F3(y3|y2).

3. Finally, denoting by si = Φ−1(F (y1i)) and ti = Φ−1(F (y2i)), the likeli-
hood function for the cluster h is

L(β∗h) =

nh∏
i=1

1√
(1− g(βh;X)2)

exp

(
−g(X; βh)

2s2
i + g(X; βh)

2t2i − 2g(X; βh)siti
2(1− g(X; βh)2)

)
.

We compute the posterior density for β∗h as

π(β∗h|ψ, X, F1(y1), F2(y2)) = G0(β∗h) · L(β∗h), (3.28)

which is a complex v-dimensional density, approximated with a Metropo-
lis Hastings step with v-variate Normal proposal. We repeat the point with
si = Φ−1(F (y2i)) and ti = Φ−1(F (y3i)) and with si = Φ−1(F (y1i |y2i)) and
ti = Φ−1(F (y2i |y2i)).

The algorithm is summarized below.
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Algorithm 11 No-gaps sampler for DPM of conditional vine copulas

• Clustering:
− for i = 1 . . . , n draw ψi ∼ π(ψi = h|ψ−i, β∗h, X, F1(y1), F2(y2), F3(y3));
• Cluster parameters:
◦ compute the conditioned distribution function from (3.25);
◦ for each pair-copula:
− for h = 1, . . . , k draw β∗h ∼ π(β∗h|ψ, X, Fj(yj), F`(y`));
− for h = k + 1, . . . , n draw β∗h ∼ G0.

3.4 Simulation study
In this section we provide a simulation study for both the DPM of conditional
multivariate copulas (Conditional model) and the DPM of multivariate Gaus-
sian copulas (Unconditional model). We show the efficiency of the methods
in clustering and density estimation. We also provide a comparison of the
models. In each of the presented cases we simulate data from copula func-
tions, treating the marginals as given.

For the implementation of the DPM of conditional multivariate vine cop-
ulas, in the choice of the function ρ(X) for each pair-copula, we follow the
approach proposed by Abegaz et al. [2012], which models the dependence of
the parameter of interest, with respect to the covariate, through a calibration
function λ(X; β). Note that in many copula families the parameter space is
restricted. In contrast, the calibration function λ(X; β) can assume any value
on the real line. Since with a bivariate Gaussian copula kernel the parameter
space is restricted to the interval (−1, 1), we need a transformation which
can link the calibration function λ(X; β) to ρ(X). We chose two links:

• Following Dalla Valle et al. [2018], we adopt:

ρ(X) =
2

|λ(X; β)|+ 1
− 1; (3.29)

• The second link is the Inverse Fisher Transform:

ρ(X) =
eλ(X;β) − 1

eλ(X;β) + 1
. (3.30)

In both cases λ is set to be

λ(X; β) = β0 + β1X.
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Table 3.1: Results for 3-dimensional copula with n = 200 observations: pos-
terior mean and standard deviation for the model parameters.

ψ ρ12 ρ23 ρ13

1 E(·|y) 0.5041 0.5086 0.4681
1 SD(·|y) 0.0834 0.0855 0.0889
2 E(·|y) -0.5045 -0.4813 -0.4062
2 SD(·|y) 0.0782 0.0818 0.0864

For the Unconditional model, we chose as concentration parameter of
the DPM M = 1 and as centering measure an Inverse Wishart distribution.
Instead, for the Conditional model we set as concentration parameterM = 1
and chose as centering measure a multivariate Normal distribution as defined
in (3.26).

3.4.1 Clustering

We first show how the proposed models works for clustering. First, for the
implementation of the DPM of multivariate Gaussian copulas we have sim-
ulated 200 observation from an equally weighted mixture of two Gaussian
copulas with covariance matrices

Σ1 =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 and Σ2 =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

 .

We ran 15000 MCMC iterations with a burnin of 1000 iterations. A summary
on the results is presented in Table 3.1, while traceplots of the estimated clus-
ters parameters and the distribution of the labels across the MCMC iterations
are shown in Figure 3.1. The model shows a good behavior, the posterior dis-
tributions of the parameters are centered around the true values even with a
small sample; there is also a good estimation of the size and the number of
clusters.

As second example, we show how both models work on the same data.
We have simulated data from a finite mixture of d = 3 conditional vine
copulas, with one covariate X simulated from a N(1, 0.2). The true value of
the parameters are presented in Table 3.2. For the Conditional model we ran
25000 iterations with a burnin of 5000, adopting as link function the Inverse
Fisher Transform (3.30). Instead, for the Unconditional model we ran 15000
MCMC iterations, with a burnin of 1000 iterations. From Figure 3.2 we may
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Figure 3.1: Labels distribution across the MCMC iterations and traceplots of
the off-diagonal elements of the posterior correlation matrix for the estimated
clusters.
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Table 3.2: True values of the pair-copula parameters. In simulating vine cop-
ula data, we chose as central variable Y2.

ψ β0 β1

1 0.5 1.5
2 -0.5 -1.5

note that for the Unconditional model the frequencies of the labels are close
to the real values, while the Conditional model seems to be less consistent,
showing also the presence of a third cluster. From Figure 3.3 we observe
that the posterior densities of the Unconditional model parameters for the
first two pair associations have a low standard deviation, proving the very
good performance of this model for clustering. In Figure 3.4 we observe that
the posterior densities of the Conditional model parameters are concentrated
around the true values (red line for the first cluster and green line for the
second cluster). However, especially in the second cluster, some parameters
show an high standard deviation. Therefore, we may say that for clustering
the Unconditional model seems to perform better than the Conditional one.
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Figure 3.2: Labels distribution across the MCMC iterations for the Condi-
tional (left) and the Undonditional model (right).
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Figure 3.3: Unconditional model: posterior densities of the parameters for
the first two clusters.
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Figure 3.4: Conditional model: posterior densities of the parameters for the
first two clusters.
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Table 3.3: Results for 3-dimensional vine copulas mixture with n = 500 obser-
vations: posterior mean and standard deviation for the models (Conditional
and Unconditional) parameters.

ψ ρ12 ρ23 ρ13

1 E(·|y) 0.95 0.95 0.98
1 SD(·|y) 0.006 0.003 0.006
2 E(·|y) -0.94 -0.94 0.82
2 SD(·|y) 0.008 0.008 0.003

ψ β0(c12) β1(c12) β0(c23) β1(c23) β0(c13|2) β1(c13|2)

1 E(·|y) 0.39 1.89 1.08 1.35 0.42 1.41
1 SD(·|y) 0.89 0.87 1.12 0.96 0.91 0.81
2 E(·|y) -0.72 -1.03 -0.34 -1.71 -0.85 -1.05
2 SD(·|y) 2.49 2.62 1.37 1.34 2.07 2.02

3.4.2 Density estimation

We now show how both the proposed models works for density estimation. Fo-
cusing on the Unconditional model, we have simulated data from a mixtures
of Frank, Gumbel and Gaussian copulas. We ran 15000 MCMC iterations
with a burnin of 1000 iterations. Results are shown in Figure 3.5, Figure 3.6
and Figure 3.7.. In each of these cases the algorithm provides good density
estimates.

In order to test how the Conditional model works for density estimation,
we have simulated data from different scenarios, choosing as central variable
in the vine construction Y2. In Figure 3.8 we show results for data simulated
from a multivariate (d=3) Gaussian copula with covariate X generated from
a N(1, 0.2). In the second case (Figure 3.9) we have simulated data from a
mixture of multivariate (d=3) Frank copulas with covariate X generated from
a N(0, 0.2). In Figure 3.10 we show results for simulated data simulated from
a mixture of multivariate (d=3) Gaussian copulas with covariate X generated
from a N(0.5, 0.2). Comparing the observed data with the density estimates,
we may note that the model gives good estimates of any pair-copula density.
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Figure 3.5: Scatterplot of the mixture of Frank copulas data and density
estimation via Unconditional model with sample size n=200.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

F(y1)

F
(y

2)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

F(y1)

F
(y

2)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

F(y2)

F
(y

3)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

F(y2)

F
(y

3)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

F(y1)

F
(y

3)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

F(y1)

F
(y

3)

89



Figure 3.6: Scatterplot of the mixture of Gumbel copulas data and density
estimation via Unconditional model with sample size n=200.
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Figure 3.7: Scatterplot of the mixture of Gaussian copulas data and density
estimation via Unconditional model with sample size n=200.
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Figure 3.8: Scatterplot of the Gaussian copula data and density estimation
via Conditional model with sample size n=500 and link function (3.29).
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Lastly, we show how both the models estimate the pair-copula densities
for the observed data, extending the second example presented in 3.4.1. From
Figure 3.11 we observe that both models have a good performance in terms
of density estimation, with the Conditional model performing slightly better.
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Figure 3.9: Scatterplots of the mixture of Frank copulas data and density
estimation via Conditional model with sample size n=500 and link function
(3.29).
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Figure 3.10: Scatterplots of the mixture of Gaussian copulas data and density
estimation via Conditional model with sample size n=500 and link function
(3.30).
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Figure 3.11: Scatterplots of the mixture of Gaussian copulas data and density
estimation via both the models with sample size n=500 and link function
(3.30).
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