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Introduction

This Ph.D. Thesis is devoted to the study of boundary value problems associated
to some nonlinear second order elliptic PDEs in bounded open subsets of RY. More
precisely, we study, first, existence and regularity results for solutions of two classes
of Dirichlet problems characterized by the interaction between a first order term
and a zero order term. The model examples are the following semilinear problems:

{—div (M(2)Vu = uE(z)) + k(@)[u*u = f(z) onQ, (0.0.1)
w=0 on 0f),
and
{—div (M(z)Vu) + k(z)|utu = E(x) - Vu+ f(z) on Q, (0.0.2)
w=0 on 0N.

Here Q € RY is a bounded open subset with N > 3 and M: Q — RV “isa uniformly
elliptic matrix with L>°(Q) coefficients, that is,

Ja, B € (0,00):
M(x)¢-€ > aléf?,
|M(z)| < B,

for a.e. x € Q, VE € RV,

Moreover, E:  — RY is a vector field with LY () components and k:  — [0, 00)
is a nonnegative function in L'() which satisfies some extra conditions (see (0.0.5)
below).
A simple application of Holder’s and Sobolev’s inequalities shows that the linear
differential operators
u — —div (M (z)Vu — uE(z))

and
u — —div(M(z)Vu) — E(z) - Vu

map the Sobolev space Hi(Q) to its dual space H~(Q), but, in general, they fail
to be coercive. This feature produces specific difficulties in the study of problems
(0.0.1) and (0.0.2) when k = 0 even if f is a smooth function on €, since, if no
additional assumptions on E are required (as smallness conditions on the size of
[1E[| L~ () or sign conditions on div(E), see [72], [59] and [74]), or no absorption
terms are added in the left-hand side of the equations in (0.0.1) and (0.0.2) (see
[72]), the classical theory for linear coercive operators (Lax-Milgram’s Theorem)
cannot be applied.



First order term in divergence form

In papers [14] and [15], existence, uniqueness and regularity results for the problem
(0.0.1) are established in the case k = 0. In detail, if f € L™(Q) for some m €
[(2*),00] and |E| € L"(Q2) for some r € [N,o0], then there exists a unique weak
solution u which belongs to H}(2) such that

{u e L>*Q) iftme (ﬂ oo} r e (N, o0,

o . ) (0.0.3)
we L") ifme |27, 5).

Furthermore, if m € [1,(2*)), then there exists a unique weak solution u obtained
as limit of approximations (see also [43]) which satisfies

{uemﬁmwg) if m e (1,(2%)), 0.04)

weWylQ) VYgell,N) ifm=1.

These results are still valid for the problem (0.0.1), under the same assumptions
on E and f, because of the coercivity properties of the zero order term. Roughly
speaking, (0.0.3) and (0.0.4) say that we have the existence of a weak solution to
(0.0.1) which satisfies (almost) the same regularity properties achieved in [72] for the
weak solutions to (0.0.1) when |E| = 0. On the other hand, explicit radial examples
(see [15], Examples 2.1 and 2.2) can be constructed to show how the regularity
properties (0.0.3) and (0.0.4) can be lost when the right-hand side f is smooth
enough on €2, but |E| does not belong to L™ (Q). Anyway, regularity results similar
to (0.0.3) and (0.0.4) can be recovered in a borderline case (0 € Q and |E(z)| < III
a.e. on  for some positive constant C'), taking advantage of Hardy’s inequality
(provided that C' is small with respect to o, m and N), as shown in [15].

In paper [15] the study of (0.0.1) when k = 0 is completed considering the case
|E| ¢ LV (). In order to give a meaning to the concept of solution, the definition
of entropy solution (introduced in [4]) is used and, in this functional framework,
existence and uniqueness results are proved. Moreover, the regularizing effect of the
polynomial zero order term is investigated in the spirit of [26] and [39], assuming that

the coefficient k is a positive constant (see also [16]): if A > IH2 |E| € L5 (Q)

and f € L¥(Q), then there exists a (unique) weak solutlon u to (0.0.1) which
belongs to H(Q) N LM(Q). The mterestmg point is that A > =2 implies that

()‘H) < N, ’\“‘1 < (2*) and A + 1 > m**. Therefore, on the one hand, there is an
1mpr0vement 1n the regularity properties of unbounded finite energy weak solutions
(that is, which belong to H3(2)) and of their distributional gradients with respect
to the case k = 0; on the other hand, the regularity properties of unbounded finite
energy weak solutions established in the case k = 0 are achieved even if |E| ¢ LV (Q)
and f ¢ L2 (Q).

Let us now give a description of our main contributions about problem (0.0.1).
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Regularizing effect of a polynomial zero order term

In paper [40] we generalize the results of [15] and [16] to the case of a positive
coefficient k& which only belongs to L'(£2) and satisfies

Jhe (0,00): khe LY(Q). (0.0.5)

We point out that, if k is a positive constant (or, more generally, k is bounded from
below on (2 by a positive constant), then k~* belongs to L>°(€2) and condition (0.0.5)
is fulfilled for every h € (0,00). Our proofs in [40] can be easily particularized to
the case k = constant > 0. The results obtained in this way are the same as (0.0.6)
below just letting h — co. Moreover, they cover also the lacking case |E| & LY (Q)
and f € L'(Q2). In detail, assuming that f € L™(Q) for some m € [1,00), |E| €
L"(9) for some r € (2,00) and k € L(Q) satisfies (0.0.5), we prove the existence of
a weak solution u such that

we HY(Q), klul e LY () if m € (1,00), A€ [X,00)
ue Wyl(Q), klu e L1(Q) if m e (1,00), A€ (AX), (0.06)
we W™ () VgL, HuleLl(Q) ifm=11€[)00),

where

(ht 1
Ao

o ()

. (A=D1 (h+1Dr AMh+1)m
A:mm{ oh+r ' htm }
_ (A=1)hr 2\hm
q:mln{(/\+1)h+r’(>\+1)h+m}
V)
N ¥ Dh+ 1

Following the approach of [14] and [15] (see also [25]), we establish also the unique-
ness of finite energy weak solutions and the uniqueness of infinite energy weak
solutions which are obtained as limit of approximations.

Extension to the nonlinear case

In chapters 2 and 3 we generalize the existence and regularity results (0.0.3)-(0.0.4)
and (0.0.6) to the nonlinear problems

{—div (A(z,u,Vu) — D(z,u)) = f(z) onQ, (0.0.7)
w=0 on 052,
and _
{—dw (A(z,u, Vu) — D(z,u)) + K (2,u) = f(z) onQ, (0.0.8)
w=0 on O0f2.



Here A: OxRxRY - R, D: OxR — RY and K: Q x R — R are Carathéodory
mappings (that is, measurable on Q with respect to the first N variables and con-
tinuous on R x RN, R and R with respect to the other composition variables,
respectively), which satisfy the following structural assumptions:

Ja, B e (0,00), pe (1,N), a e LP(Q):

Az, 0,8) - £ = al¢P

|A(z,0,€)| < Blla()] + |oP~1 + ¢~ (0.0.9)
[A(z,0,8) — Az, 0,m)] - (§ —n) >0,

forae. x€Q, Vo e R, VEneRY, €4,

3d e Li1(9):
|D(z,0)| < |d(2)|oP~! (0.0.10)
forae z€Q, Vo eR,

and

K(z,0)sign(o) > k(x)|o|* forae z€Q,VoeR,
sup |K(-,7)| € L'(Q) Vo € (0,00). (0.0.11)

TE|—0,0]

Of course, in this case the thresholds on the regularity of f for the regularity of the
solution and of its distributional gradient (see Theorems 2.1.7-2.1.9 and 3.1.1-3.1.3
below), will also depend on the parameter p. We emphasize that the existence and
regularity results for the finite energy weak solutions to (0.0.8) which we present, are
contained in those achieved in [6] using symmetrization techniques and assuming
that b and f belong to suitable Lorentz spaces (see also [54] and [55]). Here we give
a different proof using the techniques of [14].

Problems involving increasing powers

In chapter 4 we follow the approach of [31] and [32] (see also [44] and [13]) and we
study the asymptotic behaviour as A — oo of the weak solution u) to the problem
(0.0.8) in the particular case

(0.0.12)

—div (A(x,ux, Vuy) — D(z,uy)) + k(2)|ux|*"tuy = f(x) on Q,
u=20 on 0f2.

In detail, we prove that, if f € L™(Q) for some m € [1,00), then there exists a
function u which belongs to the closed convex subset of VVO1 ()

C:{UEWOLP(Q): v <1 a.e. on Q},

such that
uy —u  in WyP(Q) if m € (1, 00),
uy —u in Wyl(Q) Vgell,p) ifm=1.

Moreover, u is a solution of the following bilateral obstacle problem:
/ (A(z,u, Vu) — D(z,u)) - V(v —u) > / flz)(v—u) VYveCl.
Q Q

8
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First order term not in divergence form

For what concerns problem (0.0.2), one can think to use a duality approach to
recover existence and regularity results in the case k& = 0, since it is (at least
formally) the dual problem of (0.0.1) when & = 0 (see [2], [56], [16] and [17]).
Anyway, the existence and uniqueness of a weak solution which belongs to H{ ()
are established in [35] when f € L(Z")'(€2) independently from (0.0.1). This existence
result is extended in [53] to the nonlinear problem

{—diV(A(ﬂc,u, Vu)) + B(z, Vu) = f(z) on(, (0.0.13)

u =20 on 01,

where A: Q x R x RV — R¥ is a Carathéodory vector field which satisfies (0.0.9),
and B: Q x RY — R is a Carathéodory function such that

Jb e LN(Q):
|B(z,€)| < [b(2)|Ig[P~, (0.0.14)
for a.e. x € Q, VE € RV,

Regularity results in Lorentz spaces are proved in [6] when b and f belong to suitable
Lorentz spaces (see also [52], [5], [7], [54], [55]). We emphasize that these results
guarantee the existence of a weak solution u € Wol P(Q) to (0.0.13) such that, if f
belongs to the Marcinkiewicz space M™(Q) for some m € ((p*)’, 00), then

0o : N
u € L>(Q) 1fm€(;,oo},
eclul € LY(Q)  for some ¢ € (0,00) if m =&, (0.0.15)
= M[(p—l)m*]*(Q) ifm e ((p*)/’ %) :

while, if f € L™(Q) for some m € [(p*)', %), then

u e LIP=DmT (), (0.0.16)

In chapter 2 we present the existence result of [53] and we give a different proof of
the regularity results (0.0.15) and (0.0.16), using the techniques of [35], [53], [72]
and [28] (see Theorems 2.2.5-2.2.8 below). Adopting the same approach, we prove
also the existence of a weak solution u to (0.0.18) such that, if f € L™(Q) for some

m e (max {1, W} , (p*)’), then
we Wy (q). (0.0.17)

We remark that (0.0.15)-(0.0.17) are the same regularity results proved in [72], [22],
[23] and [28] for the weak solutions to (0.0.18) in the case B = 0.
Let us now give a description of our main contributions about problem (0.0.13).



Regularizing effect of a zero order term

In paper [41] we investigate the regularizing effect of the zero order term K (x,u)
on the solutions of the problem

{—div(A(:U,u, Vu)) + B(z,Vu) + K(z,u) = f(z) on (,

(0.0.18)
u=20 on 0f).

Roughly speaking, we adapt the approach of [40] to handle the first order term
B(z,Vu) and we obtain existence and regularity results similar to those given in
chapter 3 for the problem (0.0.8). In detail, assuming that f € L™(Q) for some
m € [1,00) and b € L"(Q) for some r € (p,o0), we prove the existence of a weak
solution u to (0.0.18) such that

w e Wo?(Q), K(u)lul* e LYQ) if m e (1,00), A € [X,00),
we Wy l(Q), K( e LY(Q) if m € (1,00), A€ (AX)
ueWyl(Q) Yqel,q1), K(,u)eL'(Q) ifm=1 1€ () o0),

(0.0.19)
where, in this case,

(p—1)(h+ 1)r

AT T
Yem { +ph+pr h+m}
"(m—1)h
(A — p+1 h+1) Ah + 1)m
{ ph+r " h+m }’
. . [(A=p+1Dhr pAhm
q:mm{(/\+1)h+r ()\+1)h+m}
__ pAh
N DR+

These results are presented in the second part of chapter 3.

Local regularity properties of solutions

In paper [42] we study local regularity properties of solutions to problems (0.0.13)
and (0.0.18) with datum in L'(£2), in the spirit of [29].

If f is only a function in L'(Q2) (or, more generally, f is a Radon measure on
with bounded total variation), the question of existence of solutions to (0.0.13) is
addressed in [10]. In order to give a meaning to the concept of solution, the notion
of renormalized solution (introduced in [63], [64] and [65] in the case of datum in
LY(Q) or LY(Q) + W~ (Q) and then extended in [46] to the case of a general
Radon measure on 2 with bounded total variation), is used and, in this functional
framework, the existence of a solution u such that

VulPt e MN'(Q), |uP e M7 (), (0.0.20)

10
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is proved assuming that b belongs to the Lorentz space LY1(Q) and working by
approximation.

The first aim in [42] is to investigate the behaviour of the mentioned solution far
from the singularities of the datum. The idea is that, as happens in the case B =0
(see [29]), the solution and its distributional gradient have suitable local regularity
properties which depend on the local regularity of f. For instance, if the support of
the datum f is not the whole 2, we can expect that, even if v and Vu only satisfy
(0.0.20), they have better regularity properties far away from the support of f. In
detail, we assume that f € L'(Q) and

JU ccQ,me ((p*),<): feM™Q\U), (0.0.21)
U CcCcQ,me <max{1,N(p_Nl)+1},];f) : feLl™Q\U). (0.0.22)

The results are as follows: if f satisfies (0.0.21) and V CC € is such that V > U,
then

\Vu| € LP(Q\ V), (0.0.23)
and
u€ L*®(Q\V) ifme(%,oo},
el € LY\ V) for some ¢ € (0,00) ifm =2, (0.0.24)
u e MIe-Dm T () V) itme (7,2),

while, if (0.0.22) is fulfilled and V CC 2 is such that V O U, then

Vul € LP(Q\V if me |(p*), ),
Vul € L@\ V) it me (), Y) ) 00.25)
|Vu| € Lp=1)m (Q\V) iftme (max {1, W} ) (P*)/) )
and
we LIP=Dm T\ v). (0.0.26)

We emphasize that these results concern solutions obtained as limit of approxima-
tions and which satisfy (0.0.13) in the distributional sense. The enhanced regularity
is not true for every distributional solution to (0.0.18) with datum in L'(Q) satisfy-
ing (0.0.21) or (0.0.22). As a matter of fact, a classical counterexample in [69] (see
also [67]) shows that, in general, there is no uniqueness of distributional solutions to
(0.0.13) outside Wol’p(Q). Moreover, the local regularity properties (0.0.23)-(0.0.24)
and (0.0.25)-(0.0.26) are false for the "pathological" solution of the quoted coun-
terexample.

Then, we study from a local point of view also the regularizing effect of the
zero order term K (x,u) on the solutions of (0.0.18) with datum in L!(£2). In this
connection, we proceed in two slightly different directions. In the first one we assume
that k satisfies (0.0.5) and we get a local version of the regularity results (0.0.19)
(see Theorem 5.0.3 below). The other one consists in replacing assumption (0.0.5)
with its own localized couterpart (see Theorem 5.0.4 below):

JUcCcQ,he(0,00): kel (Q\U).

11



These results, together with the previous ones concerning problem (0.0.18), are
presented in chapter 5.

Singular lower order term

In chapter 6 we deal with local regularity results for solutions to elliptic Dirichlet
problems with a singular nonlinearity, whose simplest model is

—Au = uiu in Q,
u >0 in €, (0.0.27)
u=0 on 0,

where f is a nonnegative datum and p is a postive real number.

The singular nature of the problem (0.0.27) comes from asking the solution u to
be zero on the boundary 02 of ), while the right-hand side of the equation blows
up at u = 0. Therefore, (0.0.27) cannot have solutions of class C?(€2).

However, under suitable smoothness assumptions on 92 and f, the existence
and uniqueness of a classical solution u € C?(Q) N C(2) to (0.0.27) are established
in [48], by desingularizing the problem and performing a suitable sub- and super-
solution method. In the same paper, the boundary behaviour of u and |Vu] is also
studied and, as a consequence, stronger global regularity properties than continuity
of solutions are obtained. Some generalizations of these results are given in [60]
where, in particular, it is proved that v € HJ(Q) if and only if v < 3, while
ug CHQ) if vy > 1.

The case of Lebesgue datum, that is, f € L™(2) for some m € [1, 0], is taken
into account in [34] where existence and regularity results are proved in the frame-
work of distributional solutions. In detail, the existence of a locally strictly positive
function u which satisfies (0.0.27) in the distributional sense is established working
by approximation. Moreover, if p € [1,00), then u satisfies

14p

uT € Hy(Q), € Hi(9),

and
u € L*(Q) ifme (%,oo),
m(1+p)
u € LR (Q) ifme [1, %) ,

while, if u € (0,1),

ue HY Q)N Lo(Q) if m € (§,00),
Nm( 1) *
we HY Q) NL ¥ (Q) ifme (IQ_M)',JZ,V) ,
1, Nm(1+p) .
w e WETE (g if m € {1, (@)') .

The key point in [34] is the construction of a nondecreasing approximating
sequence of solutions which satisfies a local uniform positivity property on com-
pact subsets of . For this purpose, the linearity of the principal part does not

12
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play any role. Indeed, it is enough to have a monotone differential operator such
that the strong maximum principle holds, as is for example the p-Laplace operator
—A,(u) = —div (|Vu|P~2Vu) with p € (1,00). Moreover, the same proofs of [34],
with the same techniques and under the same assumptions on f, can be performed
in the case of a more general singular nonlinearity than u%, that is, H(u) where
H: (0,00) — (0,00) is a continuous, nonincreasing function such that

3C, Oy, p€ (0,00): G < H(o) < e Vo € (0,00).

ok ot
For a variational approach to the problem and extensions to the case of a nonlinear
principal part, see [37], [49] and [38]. For generalization to the case of measure
datum and more general singular nonlinearities see [50], [51], [57] and [58].
In this Thesis we consider the nonlinear problem

—div(A(z, Vu)) = ui# on (2,
u>0 on €, (0.0.28)
u=0 on 012,

where A: Q x RY — R¥ is a Carathéodory vector field which satisfies (0.0.9). Our
purpose is to study, following the approach of [29], local regularity properties of a
weak solution u to (0.0.28) with datum in L!(£2) obtained as limit of approximations.
In detail, we assume that f is a nonnegative function in L'(£2) not identically zero,
such that

m € (1,00) if € [1, 00),

IU cc Q, m: e ((f*u)/,oo) i e (0.1), feMm™(Q\U), (0.0.29)

or

30U ccQ,me (1, JZ) . feLm™OQ\ ). (0.0.30)

The results are as follows: if p € [1,00), then u satisfies

p—1l+p

utr € WgP(Q), we WP(Q);

moreover, if f satisfies (0.0.29) and V CC Q is such that V D Q, then

ue L*®Q\V) ifme(%,oo},

el € L1(Q) for some ¢ € (0,00) if m = %,
Nom(p—1+p) . N

we MUF @\ V) itme (17),

while, if (0.0.30) is fulfilled and V CC Q is such that V' O €, then

Nm(p—14p)

ue L™ N-rmn  (Q\V).
Otherwise, if p € (0,1) and p € (2 - W, N), then u satisfies

N(p—1+p)

uwe W, Y (Q);

13



moreover, if f satisifes (0.0.29) and V CC Q is such that V O Q, then

|[Vu| € LP(Q2\ V),

and
u€e L>®(Q\V) ifme(%,oo},
el € L(Q)  for some ¢ € (0,00) if m = %,
Nm(p—144) i
weM N (Q\V) ifme((lp_ﬂ)/’]}\j)’
while, if (0.0.30) is fulfilled and V' CC € is such that V' O Q, then
V| € LP(Q\ V) ifme{(lp*u 'g)

%@(leljlt)) . p* /
Vu| € L W\ V) 1fm6<1,(1_u)>,

and
Nm(p—1+u)

we L Nam (Q\ V).

Basic notation

RN = the N-dimensional Euclidean space. R = R!.

For a number s € R define:
[s] = the integer part of s, that is, min{j integer: j < s}.
st = the positive part of s, that is, max{s, 0}.
s~ = the negative part of s, that is, — min{s, 0}.
|s| = the modulus of s, that is, st + s~

For a point = = (z1,...,zx) € RY define:
|z| = the Euclidean norm of x, that is, /> | 2.
x -y = the Euclidean inner product between = and another point y = (y1,...,yn) €

RN, that iS, sz\il TiYi-

For a subset U C RY define:
v = the characteristic function of U, that is, xp = 1 on A and xyy = 0 on RV \ U.
OU = the boundary of U.
U = the closure of U.
U ccC V if U is compactly contained in the open subset V' C RY, thatis, U c U C V
and U C RY is a compact subset.

For a real function ¢ with domain a subset U C RV define:
{¢ < s} = the subset of U where ¢ < s, that is, {z € U: ¢(x) < s}. Analogously,
define {6 > 5}, {6 < s}, {6 > s}, {6 = s} and {6 £ s},
supp(¢) = the support of ¢, that is, {¢ # 0}.
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Introduction

For a real differentiable function ¢ with domain an open subset U C RY define:
¢., = the partial derivative of ¢ in the direction z;.
V¢ = the gradient of ¢, that is, (¢z,, ..., Pzy)-

For a (Lebesgue) measurable subset U C RY and a real (Lebesgue) measurable
function ¢ with domain U define:
|U| = the (N-dimensional Lebesgue) measure of U.
Jiy ¢ = the (Lebesgue) integral of ¢ on U.

For an open subset U C RY define:
C(U) (C(U)) = the set of continuous function on U (U).
CI(U) = the set of functions having all derivatives of order less than or equal to j
continuous on U, where j is a nonnegative integer.
C*(U) =Njo Ci(U).
CJ(U) = the set of functions in C7(U) all of whose derivatives of order less than or
equal to j have continuous extensions to U, where j is a nonnegative integer.
C=(T) = N2 CI(D).
CZ(U) = the set of functions in C7(U) having compact support in U, where j is a
nonnegative integer.

C(U) = N2 €2 (V).

For a real Banach space X define:
|lz||x = the norm of a point z € X.
xn, — x if {z,} is a sequence in X which converges (strongly) to a point z € X,
that is, ||z, — z||x — 0 as n — oo.
X’ = the dual space of X, that is, the Banach space of linear and continuous
functionals on X.
(-,-)x,x’ = the duality pairing between X and X', that is, (z,¢)x x = ¢(z) for
every v € X and ¢ € X'.
xn, — x if {x,} is a sequence in X which converges weakly to a point x € X, that
is, |(zn, — 2, ¢)x x| = 0 as n — oo for every ¢ € X'

15






Chapter 1

Preliminaries

For the convenience of the reader in this chapter we summarize some basic concepts,
definitions and results on the functional analytic framework and on the PDE theory
we are going to study. All or nearly assertions are made without proofs and the
scope has been minimized to the only material actually needed in the Thesis.

1.1 Functional spaces

Throughout this Thesis  will always be a bounded open subset of RY with (unless
explicitly stated) N > 2. We stress the fact that no smoothness conditions will be
assumed on the boundary 02 of 2. As usual, we identify two measurable functions
on  which are equal almost everywhere (in abbreviation, a.e.).

1.1.1 Lebesgue spaces

We say that a measurable function ¢: 2 — R belongs to the Lebesgue space LP((2),
€ [1, 00}, if the quantity

inf{C € (0,00): |¢| <C ae. onQ} ifp=o0,
¢ = v
ol (/ !qﬁ\p) ' if p € [1,00),
Q

is finite. Endowed with the norm || - || (), LP(2) is a Banach space which turns
out to be separable if p € [1,00) and reflexive if p € (1, 00).

For an exhaustive treatment on Lebesgue spaces we refer to [1] and [36]. We
only recall the following fundamental facts.

o Hélder’s inequality: if p € [1,00] and p’ is the Holder conjugate exponent of

p, that is,
1 if p = o0,
p = oo ifp e (1,00),
oo ifp=1,
then

[ 6v] < Wollmallvllmg V6 @) Ve € /0

17



1.1. Functional spaces

e« Fatou’s Lemma: if {¢,} is a sequence of nonnegative functions in L!(£2) such
that ¢, — ¢ a.e. on §2, then

<liminf/ n;
‘/ng_ n—00 Q¢

o Lebesgue’s Theorem: if {¢,} and {1, } are sequences of functions in LP({2) for
some p € [1,00) such that ¢, — ¢ a.e. on Q, 1, — ¢ in LP(Q) and |¢y,| < ¢y,
a.e. on ), then ¢, — ¢ in LP(Q);

o if {¢),} is a sequence of nonnegative functions in L!(Q2) such that ¢, — ¢ a.e.

on 2 and
lim/ n:/ ,
n—oo Q(b Q¢

o if {¢,} is a bounded sequence of functions in LP(Q2) for some p € (1, 00) such
that ¢, — ¢ a.e. on Q, then ¢, — ¢ in L1(Q) for every ¢ € [1,p) and ¢, — ¢
in LP(Q);

then ¢, — ¢ in L'(Q);

o Vitali’s Theorem: if {¢,} is a sequence of functions in LP(Q2) for some p €
[1,00) such that ¢, — ¢ a.e. on Q and

lim / |¢n|P =0 uniformly with respect to n,
U|=0Ju

then ¢, — ¢ in LP(Q);

1.1.2 Marcinkiewicz spaces

We say that a measurable function ¢: 0 — R belongs to the Marcinkiewicz space
MP(Q), p € (0,00), if there exists a positive constant C' such that

C
{6l > o} < S Vo e (0,00)
Endowed with the quasinorm

|6y = sup {[{l¢] > o} o},

0€(0,00)

MP(Q) is a quasi-Banach space.
We recall that the Marcinkievicz spaces are intermediate spaces between Lebesgue
spaces, in the sense that the following continuous embeddings hold:

LP(Q) € MP(Q) € LP~4(Q) Vpe (1,00), e € (0,p — 1].

Moreover, if p € (1,00), for every ¢ € MP(Q2) there exists a positive constant C'
which depends only on p and [[¢||s»() such that

/ || < C!U\i V measurable subset U C .
U

18



Chapter 1. Preliminaries

1.1.3 Sobolev spaces

We say that a measurable function ¢: €2 — R belongs to the local Lebesgue space
LY (), p € [1,00], if ¢ € LP(U) for every open subset U CC .

If ¢ € LL.(Q), the distributional partial derivative ¢,, of (the Schwartzian
distribution on 2 induced by) ¢ in the direction x; is the Schwartzian distribution

on () defined by
62, (C) = —/Q¢<xi V(e CR(Q).

The distributional gradient of ¢ is the vector field Vo = (¢z,, ..., ¢zy). We recall
that if ¢ € C(Q), the distributional partial derivatives of ¢ coincide with the usual
ones, hence the notation is consistent.

We say that a measurable function ¢: ¢ — R belongs to the Sobolev space
WLP(Q), p € [1,00], if ¢ € LP(Q) and ¢, € LP(Q) for every i € {1,...,N}.
Endowed with the norm

1pllwe) = ¢lle@) + VOl o) -

WLP(Q) is a Banach space which turns out to be separable if p € [1, 00) and reflexive
if p € (1,00). For p € [1,00), the closure in W1?(Q) of the subspace C°(Q) will be
denoted by T/VO1 P(Q) and its dual space by W~ (Q). Hence, I/VO1 P(Q) is a separable
Banach space with the same norm of W1P(Q) and it is reflexive if p € (1,00). The
local Sobolev space Wli’f(Q), p € [1, 00], consists of functions belonging to WP (U)
for every open subset U CC . We set HY(Q) = W'2(Q), H}(Q) = Wol’Z(Q),
H7Y(Q) = W2(Q) and HL(Q) = W,2(9).

For an exhaustive treatment on Sobolev spaces we refer to [1] and [36]. We only
recall the following fundamental facts.

o Sobolev’s inequality: there exists a positive constant Sg which depends only
on N and p, such that

11 .
{||¢||L°°§30|Q|N 190l 2 € (No0), s

16l ) < S0 NVEll o iEpe (L),

where p* is the Sobolev conjugate exponent of p, that is,

pF = Vpe[l,N).
p

In general, VVO1 P(Q) cannot be replaced by WP(Q) in the previous embedding
result. However, this replacement can be made for a large class of open sets €2,
which includes for example open sets with Lipschitz boundary. More generally,
if 2 satisfies a uniform interior cone condition (that is, there exists a fixed cone
Uq of height h and solid angle w such that each x € €2 is the vertex of a cone
Uq(z) C Q and congruent to Ug), then there exists a positive constant S
which depends only on N and p, such that

{nwrmm < S (Il ooy + 1V0lllogey) i 2 € (N, 00),

wh

; V¢ e WHP(Q);
16l (@) < £ (Flllzow) + IIVOllagey)  iEpe (1L,N),
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1.1. Functional spaces

e Rellich-Kondrachov’s Theorem: the embedding

L>(9) if p € (N, 0),

1,p
o (Q)C{L%m Vgel[l,pY) ifpell,N),

is compact. Moreover, if ) satisfies a uniform interior cone condition, then
also the embedding

L>(Q) if p e (N, 00),

Lp
v (Q)C{LQ(Q) Vae[lp) ifpe(1,N),

is compact.

e Poincaré’s inequality: there exists a positive constant P which depends only
on N, p and €, such that

Il o) < PUIVOllo) Y€ WoP(Q).

Accordingly, the quantity |||V - ||| »q) defines a norm on W, P(Q) which is
equivalent to || - [lyyie(q)-

o Stampacchia’s Theorem (see [12]): if ® € WH™(R) is such that ®(0) = 0,
then, for every ¢ € Wol’p(Q), the composition ®(¢) belongs to Wol’p(Q) and

Vo (p) = d'(¢)Ve a.e. on .
Moreover, one has that
Vo=0 ae on{p=0} VéeWyPQ),VoeR.

Accordingly, we are able to consider compositions of functions in VVO1 P(Q) with
some useful auxiliary functions, such as, for any positive o, the truncation
function at level o, that is,

T, (5) s if [s|] < o,
ols) =
sign(s)o if |s| > o,

and
Gy(s) =5 —Ty(s) = (Ju| — o) tsign(u) VsecR.

In particular, for every ¢ € Wol’p(Q) and o € (0,00), T5(¢), Go(¢) belong to
Wol P(Q) and satisfy

VT0(¢) = V¢X{|¢\<a}a VGO’(¢> = V¢X{|¢‘>J} a.e. on €.
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Chapter 1. Preliminaries

1.2 Dirichlet problems of Leray-Lions type

The main objects of this Thesis are Dirichlet problems associated to some second
order nonlinear elliptic PDEs in bounded open subsets of RY. More precisely, we
deal with lower order perturbations of the problem

= Q
Alw) = on 2, (1.2.1)
u=0 on 0,
where A is a differential operator of Leray-Lions type, that is,
A(u) = —=div(A(-, u, Vu)), (1.2.2)

and A: Q x R x RV — R¥ is a Carathéodory vector field (that is, measurable on
with respect to the first N variables and continuous on R x RY with respect to the
other composition variables), which satisfies the following structural conditions:

Ja, B e (0,0), pe (1,N), ae LP'(Q):

A(w,0,8) - £ 2 al¢fP

|A(z,0,8)] < Blla(@)] + |oP~ + g7, (1.2.3)
[A(z,0,8) = Az, 0,m)] - (£ —n) >0,

for a.e. x € Q, Vo e R, VEn e RN, € £,

As it stands the representation (1.2.2) is only formal. For every function u €
V[/li)Cl(Q) such that |A(-,u, Vu)| € L (Q), it is well defined the functional integral
on {2

CH/QA(QZ,U, Vu) -V V(e CR(Q).

Accordingly, we have the following definition.

Definition 1.2.1. Let f € L'(Q). We say that a function u: @ — R is a weak
solution to (1.2.1) if u € Wy (), |A(-,u, Vu)| € LL () and u satisfies

loc
/A(a:,u,Vu)-V(:/f(x)C V(e ().
Q Q

A simple application of Holder’s inequality shows that, under assumptions (1.2.3),
the differential operator A maps the Sobolev space VVO1 P(Q) to its dual space
WP (©). Therefore, since, by Sobolev’s inequality, WD1 P(Q) is continuously em-
bedded in LP"(Q) and then, by duality, L)' (Q) is continuously embedded in
w-Lr'(Q), I/VO1 P(Q) is the natural functional framework to find weak solutions to
(1.2.1) if the right-hand side f is a function in L®")(Q). Moreover, every weak
solution in Wol’p(Q) to (1.2.1) with f € L¥)'(Q) satisfies

_ 1p
/QA(J:,u,Vu)-Vv—/Qf(x)v Vo e WhP(Q). (1.2.4)
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1.2. Dirichlet problems of Leray-Lions type

1.2.1 The variational case

The model example of differential operator of Leray-Lions type is of course the well
known p-Laplace operator

—A,(u) = —div(|Vu[P2Vu). (1.2.5)

As a matter of fact, the vector field A(z,0,&) = |£[P~2¢ satisfies (1.2.3) and the
corresponding operator is —A,. The Dirichlet problem for the p-Laplace operator,
that is,

{_A”(“) =/ ok, (1.2.6)

u=0 on €,

represents the simplest variational case of (1.2.1). If f € L)' (Q), the natural
starting point in the study of (1.2.6) is the p-energy functional

E(u) = ;/Q\VUF"—/Q]”(:L‘)U Vu e W (Q). (1.2.7)

Since £ is strictly convex, coercive and weakly lower semicontinuous on VVO1 P(Q), it
has a unique minimizer u € I/VO1 P(Q) and its first variation must vanish at u. This
condition leads to the Euler-Lagrange equation for £ which is

/ |VulP2Vu - Vo = / flx)v Yuve WyP(Q). (1.2.8)
Q Q

On the other hand, every solution in VVO1 P(Q) to (1.2.8) is a minimizer for £. There-
fore, it follows that, if f € L(p*)/(Q), the problem (1.2.6) has a unique weak solution
which belongs to Wol’p(Q) and satisfies (1.2.8).

1.2.2 Leray-Lions Theorem

The direct method of Calculus of Variations is a tool as simple as it is powerful in
the study of boundary value problems, but it does not work for general problems
like (1.2.1). Indeed, even if I: Qx RxRY — R is a Carathéodory function satisfying
suitable assumptions which guarantee the coercivity and weak lower semicontinuity
on I/VO1 P(Q) for the integral functional (see for example [47])

T(u) = / I(@,u, V) Yue WhP(Q), (1.2.9)
Q
the Euler-Lagrange equation for Z is given formally by
/ Vel(z,u, Vu) - Vo —|—/ I,(z,u,Vu)v =0 Vwve Wol’p(Q). (1.2.10)
Q Q

Here VI and I, are, respectively, the gradient with respect to £ and the par-
tial derivative with respect to o of I(x,0,€). Thus, equation (1.2.4) is of the
form (1.2.10) only if A(z,0,&) does not depend on o and there exists a suitable
Carathéodory function I such that A = V¢I.

The existence of a weak solution in Wol’p(Q) to (1.2.1) with datum in W12 (Q)
in the general case is a classical result of [61]. The proof hinges on a surjectivity
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Chapter 1. Preliminaries

result for coercive operators acting between separable reflexive Banach spaces in
duality and satisfying suitable monotonicity properties. For the convenience of the
reader, here we recall the statement of these results.

Definition 1.2.2. Let X be a reflexive Banach space and let X’ be its dual space.
We say that an operator J: X — X' is:

e bounded if the image of every bounded subset of X is a bounded subset of
X';

e coercive if

lull =00 Jlul ’
« pseudomonotone if it is bounded and satisfies the following (pseudomonotonic-
ity) property: if {u,} is a sequence in X such that u, — v in X and

1' n — W, mn ’ S 07
1£n_>sogp (Up, — u, I (u )>X,X

then
lim inf {up, — v,j(un)>X7X, > (u— v,j(u)>X7X, VoeX.

Theorem 1.2.1. Let X be a separable reflexive Banach space and let X' be its dual
space. Assume that J: X — X' is a coercive and pseudomonotone operator. Then,
J is surjective.

Proof. See [61]. O

Theorem 1.2.2. The differential operator A: Wol’p(Q) — Wh'(Q) is coercive and
pseudomonotone. Therefore, by Theorem 1.2.1, A is surjective. In particular, for
every f € LW (Q), there exists a weak solution u € Wol’p(Q) to (1.2.1) which
satisfies (1.2.4).

Proof. See [61]. O

1.2.3 Regularity results with regular datum

Thanks to Theorem 1.2.2, we have the existence of a weak solution u € Wy ()
to (1.2.1) when f € L®")'(€2). Moreover, by Sobolev’s inequality, we have also that
u € LP" (). One then wonders whether an increase in the regularity properties of
f will yield more regular solution.

The regularity results we are going to state are established in [72] in the linear
framework, that is, p = 2, A(z,0,&) = M(x)¢ where M is a uniformly elliptic N x N
matrix on  with L>°(Q) coefficients. For what concerns the first one, the technique
developed in [72] applies also for the general case, since the linearity of the principal
part does not play any role in the proof. The main idea is to choose

Go(u) = (Ju| — o) Tsign(u), o € (0,00),
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1.2. Dirichlet problems of Leray-Lions type

as a test function in (1.2.4). The crucial point is to deduce an information on the
behaviour of the measure of the super-level sets A, = {|u| > o}, taking advantage
of Holder’s and Sobolev’s inequalities. More precisely, one has that

A
(r—o)
Then, the result is an immediate consequence of the following Real Analysis lemma.

Since we will use it repeatedly in the next chapters, for the convenience of the reader,
here we recall both the statement and the proof given in [70] and [71].

3C, v, 9, 00 € (0,00):  |A| <C V71 >0 2> 0.

Lemma 1.2.3. Let o9 € R and ®: [0g,00) — [0,00) be a nonincresing function
such that

3C,v,6 € (0,00):  ®(7) SC’LU)IS V1 >0 > op. (1.2.11)
(1 —o)
Then
i) if § € (1,00), we have that
P (09 + 70) =0,

where

i1) if 6 = 1, we have that

P(o) < _®(oo) Vo € (0g,00),
ec(o—a0)—1
where )
c=(eC) 7,

it1) if § € (0,1) and op € (0,00), we have that

2155 [CT5 + (200)4®(00)]

ok

P(0) <

Vo € [og,00),

where
0

=15

Proof. The proof is divided into three parts.
PART I. Assume that 0 € (1,00) and define

1
an:00+7'0<1—2n> Vn € N.

We claim that

D(0,) < —n VYneN. (1.2.12)
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As a matter of fact, inequality (1.2.12) is trivially true for n = 0. Proceeding by
induction, if we suppose that (1.2.12) is true for n, then, using (1.2.11) and recalling
the definition of 7y, we obtain that

b g P é 2(n+1)'y o
P(ont1) < Cﬁ <C (Zoé) 7= (rgf?))v :
(Ont1 —on)? 251 To 251

Now, since ® is nonnegative and nonincreasing on [og, 00), we have that
0<®(og+79) <P(o,) VneN.
Hence, from (1.2.12) we deduce that

o - ®(o0) _
0 < P(op+10) < hgggéf@(an) < lim —z~ =0,

n—oo Qﬁ

PART II. Assume that § = 1 and define
on =00 + n(eC’)% Vn eN.
By (1.2.11), we have that

¢(On) m(On) ¢(00)
d(o < = < ... <
( " 1) o C(OnJrl On)’y e - - en 1

Now, let o € (09, 00). Since

lim o, = oo,
n—oo

there exists n € N such that o € [0y, 054+1). Hence, using (1.2.13) and the fact that
® is nonincreasing on (og, 00), it follows that

O(0) < P(oy) <

which in turn implies that

®(o0)
Q)(U) < ec(a—ao)—l )

since, recalling the definitions of 0,41 and ¢, we have that

n= (eC’)_%(anH —09)—1>c(oc—o0p)— 1.

PART III. Assume that § € (0,1) and define
old (o)

V(o) = . Vo € [o0,200).
C1=5

By (1.2.11), we have that

W(r) = 7'“<I)1(T) < @(0)5 T

T (T—0) o135

T M
WS:| v7'>0'20'0.

(r—0)
(1.2.14)

=U(0)° {



1.2. Dirichlet problems of Leray-Lions type

Hence, if 0 € [09,00) and 7 = 20, from (1.2.14) we get
U(20) < 2"®(0)°,
which in turn, iterating and recalling that § € (0, 1), implies that
n—1 ¢; n
T(20) < 24027 15)® < ... < 28 Dsize O (g)?
<25 ()" <275 (1+ U(0)) VneN. (1.2.15)

Now, since ® is nonincreasing on [0g, c0), we have that

old (o) < (200) ®(09)

V(o) = — < Vo € [o0,200).
1= CT=5
Therefore, from (1.2.15) we deduce that
200)H®
U(2"0) < 215 ll + “'0)1(00)] Yo € [o0,200], Vn € N,
CT=5
which yields
200)1 P
V(o) < 273 ll + “‘0)1(00)] Vo € [og,00).
CT=5
The result now follows by the definition of W. O

Theorem 1.2.4. Let f € M™(Q) for some m € ((p*)',00]. Assume that u €
W, P(Q) is a weak solution to (1.2.1). Then

u € L®(Q) ifm e (%,oo}
uwe Me=DmTQ) ifme ((p*)’, %)

Moreover, there exists a positive constant ¢ which depends only on «, f, N and p,
such that

N
e e LNQ) ifm= >
Proof. See [72]. O

The original proof contained in [72] of the next regularity result hinges on a linear
interpolation theorem which is of course typical of the linear framework. Anyway,
the result holds also in the general case as shown in [28]. The main idea of the proof
is to choose a suitable power of the weak solution u as a test function in (1.2.4),
but this is not possible since, in general, u is not bounded on 2. To overcome this
difficulty, it is sufficient to replace u by its own truncature, that is,

if |u| <
Ty(u) = { " flul <o ¢ (0,00).
sign(u)o if |u| > o,

Then, a simple application of Hélder’s and Sobolev’s inequalities and Fatou’s Lemma
leads to the following.

Theorem 1.2.5. Let f € L™(Q) for some m € {(p*)’, %) Assume that u €
Wol’p(Q) is a weak solution to (1.2.1). Then, u belongs to LIP=DmT"(Q).
Proof. See [28]. O
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Chapter 1. Preliminaries

1.2.4 The case of irregular datum

If p € (N, ), Sobolev’s inequality implies that WO1 P(Q) is continuously embedded
in L>(Q), so that, by duality, L' (Q) is continuously embedded in W~1#'(€). Hence,
in this case, Theorem 1.2.2 guarantees the existence of a weak solution in WO1 P(Q)
to (1.2.1) even if the datum is only a function in L' (£2).

When p € (1, N), the situation is quite different. As a matter of fact, if f &
L) (Q), we cannot expect the solution of (1.2.1) to be in WOLP(Q). Thus, it is
necessary to change the functional setting in order to prove existence results.

In the seminal paper [72], the notion of duality solution to (1.2.1) is introduced
and studied in the linear framework, that is, p = 2 and A(x,0,&) = M (z)&, where
M is a uniformly elliptic N x N matrix on Q with L*>°(Q) coefficients. In this
functional setting, the existence and uniqueness of a solution u which belongs to
WO1 Q) for every g € [1, N') and satisfies the equation in the distributional sense
are established. Moreover, if f € L™(Q) for some m € (1, (2*)'), an improvement in
the regularity properties of both u and Vu depending on the regularity of f occurs,
namely it results that u belongs to W™ ().

The duality arguments of [72] are extended to the nonlinear case when p = 2
(see [65]), but not to the case p # 2. The first successful attempts to solve the
problem (1.2.1) when f € L'(2) (or, more generally, f is a Radon measure on
2 with bounded total variation), in the general case are made in [22] and [23].
The idea is to approximate the datum f with a sequence {f,} of functions in
LY(Q) N W12 (Q) such that f, — f in L'(Q) and to deduce estimates in suitable
Sobolev spaces strictly contained in VVO1 1(€) on a sequence {uy,} of regular solutions
to the approximate problems

{AWJZR on 1, (1.2.16)

Up =0 on 0f),

whose existence is guaranteed by Theorem 1.2.2. The weak convergence obtained as
a consequence of these estimates does not permit to pass to the limit as n — oo in
(1.2.16) except when A(z,0,&) is linear in . The nonlinear nature of the principal
part forces to prove, up to a subsequence, the almost everywhere convergence of
the sequence {Vuy}. This is the role of Lemma 1 in [23] (see also [33], [30] and
[45]). For the convenience of the reader, here we state and prove the following result
which applies for more general problems than (1.2.1), since we will need it in the
next chapters. The proof is a slight modification of that of the main lemma of [12]
(see also [19], [20] and [24]).

Lemma 1.2.6. Let D: Q x R — R be a Carathéodory vector field such that

Jde L1 (Q):
|D(,0)| < |d(z)lloP~,
for a.e. z€Q, Vo eR.

Let {gn} be a bounded sequence in L*(Q) and let {w,} be a sequence in WP (Q)

27



1.2. Dirichlet problems of Leray-Lions type

such that
A ) nav n *Dn sy Wn -V :/ n ’
| (A w0, V) = Do, w,) - Vo = [ gu(a)o e
Yo e WyP(Q) N Le(Q),
where D
D, (z,0) = % forae x €, VoeR.
1+ H‘D(mv U)’

Assume that {wy} is bounded in W&’l(Q) and that there exists a function w €
WOLI(Q) which satisfies Ty(w) € Wol’p(Q) for every o € (0,00) and

Wy —> W a.e. on §),
Ty (w,) = Ty(w) in WyP(Q) Vo e (0,00).

Then, up to a subsequence, Vw, — Vw a.e. on 2.

Proof. Let 0 € (O, %) For any n € N and measurable subset U C 2, let us define

Iy = /U {[A(z, wp, Vwn) — Az, wp, V)] - V(w, — w)}?.

We claim that
lim I, = 0.
n—oo

In order to prove the claim, we fix o € (0,00) and we write o, as
Iﬂ7n = IQ\Aavn + IAU’”"

where

A, = {|lw| > o}.
By Hélder’s inequality and the fact that {u,} is bounded in W, (Q), we have that
Tagn < /A {[[A(, wa, V)| + Az, wn, V)] (|Vawg| + [Ve])}

0
< 50/,4 {[2lal + 2wal?™! + [V~ + [Vw 7] (Vwa| + [Vl }

< Col A" = €1 (0),

where Cj is a positive constant which does not depend on n. On the other hand,
we observe that

lovagn = [, (A 0, V) = A, VT w)] - ¥ — Ty ()

< /Q{[A(x, Wiy Vi) — Az, wny VTp(w))] - V(wn — Ty (@)} = Jon,
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since the integrand is a positive function on Q. For a fixed 7 € (0,00), Jqo, can be
splitted as

/ ([A(@, wn, Vo) — A(z, wn, VT, (w))] - VT, (wn — Ty (w))}?
{[wn—Ts ()<}

+ / {[A(z, wp, Vw,) — Az, wp, VI (w))] - V(wy, — To(w))}?.
{lwn—=To (w)[>7}

Then, thanks to Holder’s inequality again and the fact that {w,} is bounded in
Wi (Q), we get
0
Jam < ( [ 1AG wn, Tn) = A, wn, VT ()] VT (w0 Tg(w))> TR
Q
+ Cil{lwn = To(w)| > T},

where C] is a positive constant which does not depend on n.
Now, the use of T (w,, — T,,(w)) as a test function in (1.2.17) yields

/ [A(z, wn, Vin) — A(, wn, VT (w))] - VT, (1w — Ty(w))
{lwn—Ts (W<}

_ / gnTs (wy — Ty (w)) + / D (2, wp) - VT, (wn, — Ty (w))
a {lwn T, (w)|<7)

_ / A, wn, VT, (w)) - VT (wy, — Ty (w)).
{lon—Ts (w)|<7}

Since {g,} is bounded in L'(€2), the first integral on the right-hand side of the
previous inequality can be easily estimated as

’/anTT(wn —T,(w))| < Cor,
where Cs is a positive constant which does not depend on n. Moreover, since
{lwn = To(w)| < 7} C {Jwn| <o+ 7}
we have that
|Dn(-ywn)| < (0 +7)P7Yd|  ace. on {|w, — Ty(w)| < 7},

and

[A( wn, VTG (w))]
<Bllal+ (0 + 7+ VT w)P] e on {Jw, — To(w)] < 7}.

Therefore, Lebesgue’s Theorem together with the fact that T, (wy,) — T,(w) in
Wol P(Q) yields

n—o0

Jim /QDn(x,wn)-VTT(wn—Tg(w)):/QD(x,w)-VTT(w—To(w)):eg(a),
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1.2. Dirichlet problems of Leray-Lions type

and

lim [ A(z,w,, VIy(w)) VT (w, — Ty(w))

n—oo JO

= / A(z,w,VTy(w)) - VT (w — Tp(w)) = 0.
Q
Finally, since w,, — w in measure on (), we have that
Tim [{wn — T (w)] > 7} = [{fw - Ty(w)| > 7}] = e5(0).
Thus, it follows that

limsup I, < €1(0) + (Cot + 62(0’))9|Q‘170 +e3(0) V7 e (0,00),

n—oo

that is,
limsup I < e1(0) + (e2(0)° 10" + e(0r).

n—oo

which in turn implies the claim, since

lim ¢(0) =0 Vie{l, 2,3}

g—00

Thus we deduce that, up to a subsequence,

lim [A(-, wy, Vwy,) — A(-, wy, V)] - V(w, —w) =0 a.e. on Q.

n—oo
Then, in [61], it is proved that the previous limit implies the result. O

Among the existence and regularity results of [22] and [23], we recall the follow-
ing.

Theorem 1.2.7. Let f € L'(Q). Assume that p € (2 — %,N). Then, there exists
a weak solution u to (1.2.1) which belongs to Wol’q(Q) for every q € [1, N'(p —1)).

Proof. See [23]. O

Theorem 1.2.8. Let f € L™ () for some m € (max {1, W} , (p*)’). Then,

there exists a weak solution u to (1.2.1) which belongs to Wép_l)m*(ﬂ).

Proof. See [23]. O
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First order perturbations

The aim of this chapter is to introduce and study two classes of first order pertur-
bations of the problem

(2.0.1)

A(u)=f onQ,
u =20 on 0f.

We recall that Q € RY is a bounded open subset with N > 2, and A is a differential
operator of Leray-Lions type, that is,

A(U) = _dIV(A(’ U, VU)),
where A: Q x R x RN — RY is a Carathéodory vector field such that

Ja, B (0,00), pe (1,N), a € LV (Q):
Az,0,8) - & = af¢fP,

|A(z,0,8)] < B [la(@)] + |oP~1 + ¢~
[A(z,0,8) — A(z,0,n)] - (£ —n) >0,

for a.e. 1 € Q, Vo € R, VE n e RN, € £

More precisely, we deal with existence and regularity results for the weak solutions
to

{A(u) +Dw)=f onQ, (2.0.2)
w=0 on 012,
and
{A(U) +B(u)=f on, (2.0.3)
w=0 on 01},
where

B(u) = B(-Vu), D(u) = div(D(-u),
and B: Q xRY = R, D: Q x R — R are Carathéodory mappings which satisfy
the following structural assumptions:

Jb e LN(Q):
|B(x,€)| < [b(z)llg[P~,
for a.e. x € Q, VE € RY,

31



2.1. First order terms in divergence form

and N
dd e L»—1(Q):
|D(x,0)| < |d(z)]|ofP~,
for a.e. x € Q, Vo € R.

Moreover, we assume that the right-hand side f is a function in L™(2) for some
m € [1,00].

The model examples of mappings B and D we have in mind are, respectively,
B(z,€) = E(z) - |€[P~2¢ and D(x,0) = |o|P~20 E(x), where E: Q — R is a vector
field such that |E| belongs to, respectively, LY () and LpNj(Q)

Under the previous assumptions, the differential operators A + D and A + B
are pseudomonotone operators acting from the Sobolev space VVO1 P(Q) to its dual
space W1 (). The main difficulties in the study of (2.0.2) and (2.0.3) are due,
on the one hand, to the nonlinearity nature of these problems; on the other hand,
to the lack of coercivity caused by the presence of the first order terms D and B,
as can be seen with a simple application of Hélder’s and Sobolev’s inequalities. In
particular, if no additional assumptions on d and b (as smallness conditions on the

N
L7 (Q) norm of d and on the LY (Q) norm of b) are required, the standard theory
for coercive and pseudomonotone operator developed in [61] cannot be applied (see
Theorem 1.2.1).

2.1 First order terms in divergence form

Definition 2.1.1. Let f € L'(Q). We say that a function u: Q — R is a weak
solution to (2.0.2) if u € Wy (), |A(-, u, Vu)|, |D(-,u)| € LL .(Q) and u satisfies

[ (Atw,u,Vu) = D) - V6 = [ fa)c ¢ e CR@).
Q Q

In the papers [14] and [15], existence, uniqueness and regularity results for the
weak solutions to (2.0.2) are established in the linear framework, that is, p = 2,
A(x,0,€&) = M(z)€ where M is a uniformly elliptic N x N matrix on £ with L>(2)
coefficients and D(x,0) = o E(x) with |E| € L"(f2) for some r € [NV, oo]. In detail, if
m € [(2*)’,00], then there exists a unique weak solution u which belongs to H{ ()
and satisfies

{ueL“(Q) it m e (%700}’7"6 (N, 00, (2.1.1)

we L"(Q) ifme (27,5,
On the other hand, if m € [1,(2*)"), then there exists a unique weak solution u

obtained as limit of approximations such that

{u e W™ () if m e (1,(2%)), (2.12)

weWylQ) Vgell,N) ifm=1.

Moreover, T, (u) belongs to H(Q) for every o € (0, 00), where we recall that

T, (u) u if |u| <o,
o) =
sign(u)o if |u| > o.

32



Chapter 2. First order perturbations

To overcome the lack of coercivity caused by the presence of the first order
term, the starting point of [14] and [15] is a nonlinear approach by approximation.
If {u,} is the sequence of regular weak solutions to suitable approximate problems
(see (2.1.3) below), the first step consists in proving that

, 02 9 20
[ 19T < % [ 1B+ 2 [ 1] ¥n e, Vo e (0,00),
Q (6 (o) a JQ
2 1 2 2
/|V10g(1+|un|)| g—Q/ IE| +f/ f| ¥neN.
Q (% (e} a JO

The key point is that the log-estimate provides a uniform (with respect to n) control
on the measure of the super-level sets {|u,| > o}. Then, in the search of estimates
on u, the idea is to use suitable powers of

Go(un) = u—Ty(u) = (Juy| — o) Tsign(u,), o € (0,00),

as test functions in the approximate problem and to absorb the first order term into
the principal part choosing ¢ in such a way that the quantity

|oEe
{lun|>c}

is sufficiently small uniformly with respect to n.

Our purpose in this section is to generalize the existence and regularity results
of [14] to the nonlinear case using the same techniques. We emphasize that the
existence and regularity results regarding weak solutions in VVO1 P(Q2) which we are
going to prove are contained in those achieved in [6] using symmetrization techniques
and assuming that b and f belong to suitable Lorentz spaces (see also [54] and [55]).

2.1.1 Approximate problems and preliminary results

Let f € L'(Q) and let us consider the following family approximate problems (n €
N):

Altn) = Pnlin) = Juon (2.1
Uy =0 on €2,
where
Dy (u) = div(Dy, (-, u)),
and D(z.0)
Dy(z,0) = m7
fn(x) = To(f(2)),
for a.e. x € 2, Vo € R.
Since

Dy (2, 0)| < min{|D(z, o), n},
[fule)] < ming|f(2)],n},

forae. x €Q,VoeR, VneN,
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2.1. First order terms in divergence form

Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]) imply that, for every n € N, the
existence of a weak solution u,, to (2.1.3) which belongs to Wol’p(ﬂ) N L*°() and
satisfies

/ (A(2, tn, Vin) — Do(2, 1)) - Vo :/ fol@w Voe WiP(Q).  (2.14)
Q Q
Lemma 2.1.1. Let f € LY(Q). Then
oP , po
/ VT ()P < 7,/ dp? +f/ /| VneN,Voe (0,00).  (2.15)
Q ol Jo a Jo
Proof. We fix n € N, 0 € (0,00) and we choose T, (uy,) as a test function in (2.1.4).

Since
To(un)| <0, VT5(un) = VUunX{jun|<o} a-€. on

we obtain that

o [ WL )l < [ il 9T )|+ [ 1]
Q {lun|<c} Q
<or! [ 1dIV Ty )| +0 [ 171
Q Q

Hence, thanks to Young’s inequality, we deduce that

(0% P oP P’
= | WTo(un)lP < —— [ |d" +0o [ [f].
p Q p/ap—l Q Q

Lemma 2.1.2. Let f € L}(Q). Then

pl
/Q|V10g(1+lun|) +M/ny| VneN. (2.1.6)

Proof. We fix n € N and we choose

1 [1 1 }s' ( )
v = — ign(uy,
p—1 0 (T tfupt]™®

as a test function in (2.1.4). Since

1 \%
| < ——, Vv = Y ae. on Q,
p—1 (1 + [un|)?

we obtain that

[ Vu,|P |V
| a < [l — [
I+ |un| )P 1+ |un|)P —1

[V /
< d .
_/Q| ’1+\u ] -1 £l

Therefore, the use of Young’s inequality immediately yields

« Vu,|P
& [ivtost+up < 5 [ b < L a2 [,
n pap
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Chapter 2. First order perturbations

Remark 2.1.1. Lemma 2.1.2 implies that

lim |A, | =0 uniformly with respect to n, (2.1.7)

g—00

where
Apo =A{lun| >0}, o €(0,00).

As a matter of fact, thanks to the estimate (2.1.6) and Sobolev’s inequality, we
deduce that

p_
P*

log(1+ o)/ Al * < ( 1og<1+run|>p*)
Sp

< St [ 1V 051+ ual)

/81)
/|f| YVn €N, o € (0,00),

that is,

’Ana|_log(<ap /| L ) /|f|>p; vYVneN, o e (0,00).

(2.1.8)
Therefore, it follows that

Vee (0,00) Joc€ (0,00): |Apos|l<e VVneN, oe (o,00),
which is equivalent to (2.1.7).

2.1.2 Estimates on u, with regular datum

Lemma 2.1.3. Let f € L®)'(Q). Then, there exists a positive constant oy such
that, for every o € (09, 00), the sequence {Gy(un)} is bounded in Wol’p(Q).

Proof. We fixn € N, o € (0,00) and we choose G, (uy) as a test function in (2.1.4).
Since

|Go(un)| = (lun| — o)sign(un)xa,,, VGo(un) =Vupxa,, a.e. onf,

where

Apo = {lun| > o},

and
[un [Pt < 227 (0P 4 [G(un)PTT) e on

we obtain that

o [ 19Go )l < [ ldllun VG ()] + [ 171G ()
< o)t [ 1dlIVGo ()| + 277 [ 1dl|Gown) PTG ()

+ [ 111G ().
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2.1. First order terms in divergence form

Then, by Hoélder’s and Sobolev’s inequalities, we have that

2t [ 4G ()P [V G (1)

<ot ( /. |d\pN1>le (/ |Ga<un>\p*)? (/ |vaa<un>p)’l’
< (287" (/A |7 1) /|VG ()|

Therefore, it follows that

{a - (280)19*1 ( )N / VGo(uy)|

< oyt [ 1dlIVGaun) + [ IfGo(ua)l. (219)

Now, recalling Remark 2.1.1, there exists a positive real number oy such that

p—1

N\ Y«
o — (28p)P71 (/ |d|P1> 25 VneN, Vo € (0g,00).
An,d
Thus, from (2.1.9) we deduce that

5 [ 19Gatu < @yt [ 1dIVGa(un)|+ [ 1711Ga(ua)] Vo € (a0,00)

which, by Hélder’s and Sobolev’s inequalities again, finally yields
& ([ 19Gotwar)” < o ([ 1) w0 ([ 1507)%7 v e (o0

O
Lemma 2.1.4. Let f € L™ () for some m € [(p*)’, %) Then, the sequence {uy,}
is bounded in LIP=Dm1"(Q).

1
Y

Proof. We fix n € N, o € (0,00) and we choose

v — |Go(Un)ip(v_l)—HSign(Ga(un)) _ (Jun| — U)pw_l)—i_lSign(un)XA
p(y—1)+1 py—1)+1 ™7

as a test function in (2.1.4), where

_p—1)m"]" s o
Y= o ) An,a {lun| > o}

We observe that the assumption m > (p*)’ implies that v > 1, so that p(y—1)+1 >
1. Since

Vo = VG (tn)|Go(un) PO = Vi, |Gy (un) PO Vx4, . ae. on Q,

n,

[un [P < 227 (0P 4 |G (un) ) ae on
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we obtain that
a / VG (1)’ Go (1) PO < (20)77 / ]|V G (tn)]| G (1) [P0
Q
+ 270 [ 1)V Gy ()] Go ) 7 4~ [ 110,
Q p(y—1)+1

that is,

o 20)P~1 _ _
p/ |V‘Ga(un)|v|p < (20) / ‘dHGU(un”(p Do) IVIGo(un)|"|
YEJQ Y Q

or—1
+ 2 [ 1dGy(un)| PV |V |Gy (1 7+7/ G (uy) PO~ DFL,
5 QIH (un) V|G (un)|"] © 1 il n)

Then, by Young’s inequality, we have that

20)P—1 LY
O [ aliGo () 90 (971G )

< & [ 9IGatun P + 22 [ 1 Golun) PO,
plar=

Furthermore, by Hélder’s and Sobolev’s inequalities, we have that

il (v-1)
= G )| 91G ()|

2p~1 N\ S\ v
T ([ 1) ([1Getw)r) T ([ 9iGa )
v An,o Q
p—1 %
< 28 (/ ‘d,le> / V|G (un) P
Y An,o

Therefore, it follows that

p—1
(6] 28y p—1 N\
[ 7P B ( ) </ |d|p_1>
Py Y Ano

20)P / B
; )I/Q|d|P |G0(un)‘p(w 1)-1-(+1/ |£1|G o (u ’p'y D+1 (2.1.10)
por-

Now, recalling Remark 2.1.1, there exists a positive real number o such that

191G ()T
Q

<

p—1

250)P~! N\ N
/Oé ~ (2%) / 1|71 > ?‘ VneN, Vo € (0g,0).
pﬁ)/p ¥ An o 2p ’Yp

Thus, from (2.1.10) we deduce that

«
|Gy ()PP < S22 /dpG )P
sy Jy VIGaun) P < = [ a6 )

+
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2.1. First order terms in divergence form

which in turn, thanks to Holder’s and Sobolev’s inequalities again, yields

p

s (s’
(20 ]Q‘pw - & e PG-1)
pap (/ == ) (/ |G (un)] )

1

+p(7_11)+1(/0\f|m) ([ 1Gatun)#0=011m )™ o € (a0, 00),

(2.1.11)

We observe that the choice of v implies that

Py =[p(y—1)+1m’ = [(p — 1)m"]".

Moreover, assumption m < % implies that z% > % Hence, using Young’s inequal-
ity, from (2.1.11) we finally get that, for every o € (09, c0), the sequence {G,(uy)}
is bounded in L[(pfl)m*}*(Q). This concludes the proof, since

|un| = ‘Ta(un) + GO’(“’H)‘ <o+ ’Gg(un)‘ a.e. on ).

2.1.3 Estimates on u, with irregular datum

Lemma 2.1.5. Let f € L™(Q2) for some m € (max{l,ﬁ},(p*)’). Then,
there exists a positive constant oy such that, for every o € (og,0), the sequence
{Gs(up)} is bounded in VVol’(pfl)m ().

Proof. We fix n € N, o € (0,00) and we choose

(141G (1) 17070 — 1] sign (G ()
1—p(1-10)

v =

[(1 + |tp| — o)t—PI=0) 1} sign(uy,)
- 1—p(1—0) XAnes

as a test function in (2.1.4), where

_ lp=Dm " T
0 = — Ano = {[un| > o}.

We observe that the assumption m < (p*)" implies that § > ]%, so that 1—p(1—-6) >
0. Since

VGO— (Un) _ vunXAn,o'

Vo = _
° (14 |Gy (un))PA=0 (14 |Gy (uy)])PA=0)

a.e. on ),
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and

|Un|p_1
(1+ |Gy (up)|)P~1)A=6)

-1
< op=1 4 gp=1 4 gp-l [(1 + |Gy (un)])? — 1]p a.e. on €,

< P+ (1 +|Goluy)]) P2

we obtain that

VG () T VG (1)
@ T augpas < (7 o) [ 1+rG< D

-1 VG, (u
zp—l/d 1+|G 0 _q)" n / (2.1.12
+27 [l [0+ 1Gow)) =17 e 1 5+ [ Ifllvl. )
By Young’s inequality, the first term on the right—hand side of (2.1.12) can be
estimated by

1 n
IVGy(uy)P (2P~ —I-Up /\d]p

1+ ‘G un |)p(1 9) pap

while, thanks to Holder’s and Sobolev’s inequalities, the second term is controlled

by
p=1
- R VGo(un)l?
25,0 ([ 1ap) VGolun)?
( 0 ) ( An,0| |p ) 0 (1+|Go-(un)’)p(l_9)
Thus, from (2.1.12) we deduce that
p—1
Q _ N\ N VG (un) P
& 28,0y / dj7 /
[p' syt (], i) ] 0 (1 G ()70

2p—1 +O’p_1 P ,
< 7 ) /Q|d\p +/ny\|@\. (2.1.13)

plarT

Recalling Remark 2.1.1, there exists a positive real number o( such that

p—1

& (28,0)P / |71 Yo yueNvoe (00, 00).
Y Aner — 2 ’ ’

Hence, estimate (2.1.13) together with Sobolev’s inequality yield

p

@ pr 7" - VG o (un)|P
W{/Q[(”'G“(“")')a‘”} =27 Jo (1% G ()P0

1 1
S il i /|d|p +/ ] Vo € (00,00), (2.1.14)

Pa’”

so that, by Holder’s inequality, we obtain that

P 1 /
A o p¥ (27’*1—1—01’*1)10 ,
1+ |Go(un p"r< + /dp
/Q( o (un)) — p(Sol)P =T Q‘ |

plart

(67

2p/(Sob)P

+ (/Q|f|m)”l“ [0+ Gourtt-o " o€ (o). (2.115)
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We observe that the choice of # implies that
p"0=[1-p(1—-0)]m =[(p—1)m**

Moreover, assumption m < (p*) < N implies that £ > % Therefore, thanks to
Young’s inequality, from estimate (2.1.15) we deduce that the sequence {Gg(uy,)}
is bounded in LIP=D™1"(Q). Moreover, going back to estimate (2.1.14), we obtain
also that, for every o € (0¢,o0), the quantity

/ VG (un)lP
 (1+|Go(uy)|P0=9

is uniformly bounded with respect to n.
Now, for ¢ = (p — 1)m* the use of Holder’s inequality yields

VG (un) P ra1=0)] 5"

RGO T e L L R R e

which concludes the proof, since

pq(1 —0)
p—q

= [(p— )ym")".
O

Lemma 2.1.6. Let f € L'(Q2). Assume that p € (2 — %,N). Then, there exists

a positive constant oy such that, for every o € (09, 0), the sequence {Gy(uy)} is
bounded in Wol’q(Q) for every q € [1, N'(p — 1)).

Proof. We fixn €N, o € (0,00), 0 € {0, %) and we choose

1 1

CTpi-9 -1 - (1+ |Gg(un)|)P(19)1} sign(Go(un))

- q _10) — {1 ST _10-)p(l—9)_1 sign(un)X A, o
as a test function in (2.1.4), where
Ap o =A{luy| > o}
We observe that the condition 6 < ]% implies that p(1 —#) — 1 > 0. Since

XAn,o
< )
ol < p(1—10)—1
VG, (un) VUnXAn,a

= = .C. Q
VO A G wn) P ~ (T (G0 O

a.e. on {2,

and

’Un,p&
(14 |Go(up)|)p~D1=6)

—1
<@l or L [(14[Go(un))! 1) ac on®,

< 0P (14 |Go(un)) P71
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Chapter 2. First order perturbations

we obtain that
|VG0(un)’p -1 -1 / IVGU(Un)‘
< (27 P d
o T ectagi < (7 ) M Gy
p—1 VG, (uy)|
(141G (un)|)t?

1
+p(1_9)_1/ﬂm. (2.1.16)

By Young’s inequality, the first term on the right-hand side of (2.1.16) can be
estimated by

+ [ 1 [+ Goun)))” - 1]

¢ [ WGl @
p Ja (14 |Go(u,)])P1=9 p’aplTl Q ’

while, by Holder’s and Sobolev’s inequalities, the second term is controlled by

. x\'T VG (u)|?
(2800)7~1 (/A |d|p—> /Q(1+ch,(un)y)P<1—9>‘

Thus, from (2.1.16) we deduce that

« — p% Es VG (un)|?
[p' — (28509) 1 (/Anﬂ |d] > ] /Q (1 + |G (un)| )P0

(201 4 gp—1y¥' / , 1
< dfp —1—7/ . (217

Recalling Remark 2.1.1, there exists o¢ € (0, 00) such that

p—1

& (28,0)P / A7) > % YneN, Vo e (o0, 00).
Y Ano —2p ’ ’

Therefore, estimate (2.1.17) together with Sobolev’s inequality yield

p

@ PP« VG ()P
2p/(Sof)? {/Q [(1+1Go (un)]) 1] } =% Ja (1 + |G () )P0

2p—1 4 gr—1 4
@ o

/ 1
d|P +7/ Vo e (00,00). (2.1.18
s 1+ g 1A Vo€ (on0). (2118)
Now, thanks to Holder’s inequality, for any fixed ¢ € [1,p) we have that

b—gq

IVGo(u)P 1 pa=0)1%

196wl < [/Q (H’GU(%))MI_@)] [/Q(H!Ga(un)b =

By (2.1.18), the right-hand side of the previous inequality is uniformly bounded
with respect to n if o € (09, 00) and

pq(1 —0)
p—q

=p*0,
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2.1. First order terms in divergence form

that is,
oL,
p

Hence, recalling that 6 € [O, 1%), it follows that for every o € (09, 00), the sequence
{Gy(un)} is bounded in W, () for every ¢ € [1,p) such that

*

1
<]?,

’E*‘Q

that is,
g<N'(p-1).

2.1.4 Existence and regularity results

We are now in position to state and prove existence and regularity results.

Theorem 2.1.7. Let f € L'(Q). Assume that p € (2 — %,N). Then, there exists

a weak solution u to (2.0.2) which belongs to Wol’q(Q) for every ¢ € [1,N'(p — 1))
and such that T,(u) € Wy (Q) for every o € (0,00).

Proof. Let {u,} be the sequence of weak solutions to the approximate problems
(2.1.3) constructed above. By Lemmas 2.1.1 and 2.1.6, we have that

{un} is bounded in W4(Q) Vqe[1,N'(p—1)),
{Ty(un)} is bounded in Wol’p(Q) Vo e (0,00).

Hence, there exists a function v which belongs to Wol’q(ﬂ) for every ¢ € [1, N'(p—1))
such that T, (u) € Wol’p(Q) for every o € (0,00), and, up to a subsequence,

Up — U in Wy 9(Q) Yqell,N'(p—1)),
Uy —> U a.e. on €,
Ty(un) = Tp(u) in WyP(Q) Vo e (0,00).

Moreover, we get
{A(-,un, Vuy,)} is bounded in (L*(Q))Y Vs e [1,N').

For a fixed s € [1, ]%), the use of Holder’s inequality yields
(p—1)s N—(p—1)s

_N(p=1)
L pa )t < [ 1t < ([ 1aFT) ([ 76
Q Q Q Q

Thus, exploiting the fact that {u,} is bounded in L!() for every t € {1, Q) and

3

N(p—1) <ﬁ

— L <= s<p
N—-(p-1)s ¢ R
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Chapter 2. First order perturbations

we get also
{D,(-,un)} is bounded in (L*(Q))N Vs e [1,p).

Therefore, by Lemma 1.2.6 (see [12], [19], [20] and [24]), it follows that
Vu, = Vu a.e. on §,

which in turn implies that

{A(-,un,wn) = A(,u, Vu) in (LH(Q)Y (2.1.19)

Dy (-, upn) = D(-,u) in (LY(Q)N.

Putting together (2.1.19) with the fact that f, — f in L'(Q) and passing to the
limit as n — oo in (2.1.4), we finally deduce that u is a weak solution to (2.0.2). O

Theorem 2.1.8. Let f € L™ () for some m € (max{l, ﬁ} , (p*)’). Then,

there exists a weak solution u to (2.0.2) which belongs to Wol’(pfl)m* (), such that
Ty(u) € Wol’p(Q) for every positive o.

Proof. The argument of the proof is essentially the same as the previous one. What
changes is that we use Lemma 2.1.5 instead of Lemma 2.1.6 to deduce that the
sequence {uy} is bounded in W[)l’(p_l)m (). O
Theorem 2.1.9. Let f € L™(Q) for some m € [(p*)',00]. Then there exists a weak
solution u to (2.0.2) which belongs to Wol’p(Q) and satisfies

* % N
we LP=Dm1 Q) ifme {(p*)/, ) : (2.1.20)
p
Moreover, if the coefficient d belongs to L" () for some r € (1%, oo} , u satisfies
. N
u€e L>®(Q) ifme (,oo] . (2.1.21)
p

Proof. The argument of the proof of existence part is essentially the same as the
previous one. What changes is that we use Lemma 2.1.3 instead of Lemma 2.1.5 to
deduce that the sequence {u,} is bounded in W, ?(€2). Moreover, the weak solution
u obtained in the limit process satisfies

/[A(a:,u, Vu) — D(z,u)] - Vo = / F@)o Voe WP (Q). (2.1.22)
Q Q

It remains to prove the extra regularity properties of u. The first one is an
immediate consequence of Lemma 2.1.4, since u,, — u a.e. on §2. In order to prove

the other one, let us assume that d € L"(2) for some r € (}%, oo} and f € L™(Q)

for some m € (%, oo] We fix s € (0,00) and we choose

1 1 1 : :
o = {7t [ = s sign(u) it Jul > 5,
if |u] <s,

O
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2.1. First order terms in divergence form

as a test function in (2.1.22). Since

\Y
lv| < X4, , Vu= _YUXA: e on Q,
p—1 (1 + [ul)?
where
As = {|u] > s},

we obtain that
|VulP / 1 |Vl 1
—_— dl|ulP~ + /
o[y < S A G

|Vul 1
< d + — ,
< [ g =

which in turn, using Young’s inequality, implies that

1 /
f/ VG ()P < L/ PP +/ I (2.1.23)
/ Bs By

plart

where

W(u) = log(1 + [u))sign(w), By, = {|¥(w)] > o}, o =log(1+s).

Therefore, thanks to Holder’s and Sobolev’s inequalities, from (2.1.23) we deduce

that
le% % 1 p—/ 1 L
* p r r p m m L
o </ IGsw(u))lp) <—r (/ |d|) +(/ /] ) Ay |7
p 0 Q p/ap—l Q Q
On the other hand, we observe that
/|G W > (r— o) |B,| Vr>o>0.

Hence, it follows that

|&gﬁiwé@wwp
= (T—O’ [Oﬂ’ </ ‘d’r>

Now, we choose oy € (0, 00) sufficiently large such that

’ p_
P P
T

/ L
P D m 1
+= (/ f\m) | Bo |
Q

Vr>0>0. (2.1.24)

|B;| <1 Vo€ [og,0).
Hence, estimate (2.1.24) yields

p< S ([ ar)
~ (o) |a? \Ja

, p*
P’ P
T

-

|As]° V7 >0 > 00,

<5 ()
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Chapter 2. First order perturbations

where

(2]
0 = — min T
D rom

Thus, applying Lemma 1.2.3 with

ar (1)

from (2.1.25) we deduce the result, since

*
’

b /

T

+Z</Qfm>:n]pp, v =p"

®(0) = |B,|, C=8"

*T—/ N
pi( p)>1<:>r>7,
pr p—1
E3
N
p,>1<:>m>—.
pm j%

2.2 First order terms not in divergence form

Definition 2.2.1. Let f € L'(Q)). We say that a function u: Q — R is a weak
solution to (2.0.3) if u € Wol’l(ﬂ), |A(-,u, Vu)|, B(-, Vu) € Li .(92) and u satisfies

/QA(JU,U,Vu)-VC—i—/QB(x,Vu)C:/Qf(a:)gZ) V(e ().

If f e LE)'(Q), the existence and uniqueness of a weak solution to (2.0.3)
which belongs to H}(f2) are established in [35] in the linear case. This existence
result is extended to the nonlinear case and for every value of p € (1, N) in [53].
Regularity results in Lorentz spaces are obtained in [6], by means of symmetrization
techniques, when b and f belong to suitably Lorentz spaces (see also [52], [5], [7],
[54] and [55]). We emphasize that these results guarantee the existence of a weak
solution u € Wol P(Q) to (2.0.3) such that, if f belongs to the Marcinkievicz space
M™(Q) for some m € ((p*)’, ), then

u € L®(Q) ifm e (%,oo},

el € L1(Q) for some ¢ € (0,00) if m =L, (2.2.1)
—1)m*|* : *\/ N

w e MP=DmT () if me (p),;),

while, if f € L™(Q) for some m € [(p"‘)’7 %), then

u e LIP=DmT (), (2.2.2)

In this section we present the existence result of [53] and we give a different

proof of the regularity results (2.2.1) and (2.2.2), using the techniques of [35] and

[53]. Adopting the same approach, we prove also the existence of a weak solution u
to (2.0.3) such that

we WEPI™ (@) it m e (max {1, N(%NM} , (p*)’> . (2.2.3)

We remark that (2.2.1)-(2.2.3) are the same regularity results proved in [72], [22],
[23] and [28] for the weak solutions to (2.0.1).
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2.2. First order terms not in divergence form

2.2.1 Approximate problems and preliminary results

Let f € LY(Q) and let us consider the following family of approximate problems
(n € N):

Up =0 on 01},
where
B, (u) = By(+, Vu),

and

Bp(z,€) = Tn(B(x,€)),

fn(@) = Ta(f(2)),

for a.e. z € Q, V& € RV,
Since

| Bn(,€)| < min{|B(z,¢)[,n},
| fn(2)| < min{[f(z)], n},
for a.e. z € Q, V& e RY,

Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]) guarantee, for every n € N, the
existence of a weak solution u,, € WO1 P(Q) N L>(Q) to (2.2.4) which satisfies

= x)v v L . 2.
/QA(x,un,Vun)-Vv—i—/QBn(x,Vun)v—/an( o VueWi(Q).  (2.2.5)

In the search of estimates on u,, we follow the approach of [35] and [53]. To
overcome the lack of coercivity caused by the presence of the first order term, the
idea is to reduce the problem (2.0.3) to a finite sequence of problems with [|b[| (g
small taking advantage of the following decomposition result (see [53], Proposition
2.1).

Proposition 2.2.1. Let ug € Wy ®(Q) for some qo € [1,00) and let by € L () for
some 1o € [1,00]. Then, for every ey € (0,00), there exist a number ! =1(e) € N, a
finite collection of disjoint measurable subsets 2y, ..., C Q and a finite sequence
of functions uy,...,u; € T/Vol’q0 (), which satisfy the following properties:

ug = Ul + ...+ uy,

o o 2.2.6
([ 10r)® <o ([ o) <, 220
Ql Ql

sign(u;) = sign(uo) if u; # 0,
{IVu| # 0} C

and

Vu; = Vuoxe,, (2.2.7)
Vie{l,...,l}.
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Chapter 2. First order perturbations

Proof. For any 7 > o > 0, we define
Lor(5) = Tr—o(Go(5)),  Lowo(s) = Gols) Vs €R,
and we observe that
Vug = VLgr(ug) a.e. on Ayry, Vug=VLgoo(up) a.e. on Aseo,

where

Aor = {|VLUT(UO)’ # 0}7 Asoo = {|VLJOO(UO)‘ # 0}‘

We construct by induction a decreasing sequence of nonnegative real numbers
{0} in the following way. Let ey € (0,00). If ||bo||zro(q) < €0, then we set o1 = 0.
Otherwise, we choose o1 such that

1
</A ‘b0|’f0) ’ = €0.

1

Analogously, if o;_1 is defined and

1
(/ |bo|ro) ’ < e,
Aovo;_y

we set o; = 0. Otherwise, we choose ¢; such that

1
70
/ o] ) = eo.
Ao’iaifl

If [ is first index such that o; = 0, we define
Q1 - Aalom uy = La1oo(u0)7

and
Q, = Agiilgi, u; = Loiilgi(UQ) Vi€ {2, R ,l}

Now, it is not difficult to verify that the disjoint measurable subsets ,...,8; C Q
and the functions uj,...,u; € Wol’qo(ﬂ) satisfy (2.2.6) and (2.2.7). O

2.2.2 Estimates on u, with regular datum

Lemma 2.2.2. Let f € L®)'(Q). Then, the sequence {u,} is bounded in Wol’p(ﬂ).

Proof. We fix n € N and we apply Proposition 2.2.1 with

(07

Uy = Up, b():b, 60:2780.

Hence, there exist a number [ = I(«, N,p) € N, a finite collection of disjoint mea-
surable subsets €2q,...,{}; C € and a finite sequence of functions wu, 1,...,up; €
W, P (Q) which satisfy (2.2.6) and (2.2.7).
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2.2. First order terms not in divergence form

The, we fix i € {1,...,1} and we choose uy; as a test function in (2.2.5). Since

i
Vi = Vunxa,, (Vup)un;= Z(Vun,j)un,i a.e. on €,
j=1

we obtain that
o [Vl < [ 1011V il + [ |l
Q Q Q
<Y [ bVl gl + [ 1lunl- - (2:28)
papliey Q
By Holder’s inequality, we have that
i 1, L
o <3 ([, W) ([ 190sl?)” ([ un™) "
j=1 @
which in turn, thanks to Sobolev’s inequality and (2.2.7), implies that
7 7 1 1
_ 4 P
S [ 109l il < Soco 35 ([ 19nst?)” ([ 19nl?)
papliey Ve Q
Z(/ |Vum|p) (f rwm\p)

Furthermore, by Holder’s and Sobolev’s inequalities again, we have that

> [ IV,
j=17%%

1

/ [ fllem,if < (/ 1F|®") )(p) (/ i )
< () ([

Therefore, from (2.2.8) we deduce that

1

(/Q|Vun,z‘|p>p SZ(/Q\VUTL,Hp)p 0(/ Fiks )p
j=1
< 2'Sp (/ |f’(p*)/>(p ) 7
« Q

which, exploiting (2.2.6), finally yields

</Q‘Vu71‘p)‘l’ < Z:l: (2 30> (/ . )(p s
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Chapter 2. First order perturbations

Lemma 2.2.3. Let f € L™ () for some m € {(p*)’, %} Then

{u,} is bounded in LIP=1"1"(Q) if m € {(p*)’, %) ,
{ec|“"|} is bounded in L'()) Ve € (0,00) if m = %.
Proof. First, for every n € N and o € (0,00) we define
Ap o = {|un| > o},
and we observe that, by the absolute continuity of the integral,
mn/ 1IN =0,
o—00 An,a
lim If|™ =0, (2.2.9)

uniformly with respect to n,

since, by Lemma 2.2.2, {u,,} is bounded in L?"(Q) and, then, |A, ;| — 0 as 0 — 00
uniformly with respect to n.
Now, we divide the proof into two parts.

PART 1. Assume that m € {(p*)’, %) We fix n € N, o € (0,00) and we choose

v — |GU(Un)|p(7_1)+1SigH(Go(un)) _ (Jun| — o)p(7_1)+lsign(un)XA
p(y—1)+1 p(y—1)+1 o

as a test function in (2.2.5), where

[(p — )m™]"

p*
We observe that assumption m > (p*)’ implies that v > 1, so that p(y —1)+1 > 1.
Since

Vv = VGJ(un)]GU(unﬂp(”*l) = Vun\GU(un)|p(7*1)XAnya a.c. on €,

we obtain that

1
a / VG () PG () PO < o / 16|V G () PG (1) PO~ D
Q - 1) +1Jq

p(y

o —
b G )P 2210)

By Hoélder inequality, the first integral on the right-hand side of (2.2.10) can be
estimated as

[V G ) PG
Q

< ( [ |b|N)

-~ 1
v

(pI7stmPIotur )™ ([ t6etun) "
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2.2. First order terms not in divergence form

which in turn, thanks to Sobolev’s inequality, implies that

[ IV Gt 1 G P00
Q

1
N
sm(/A WV) | 19Ga () PG (w0,

Now, in virtue of (2.2.9), there exists og € (0, 00) such that

1
Soy NV«
=0 r < = )
p(7—1)+1</,4n,0|b| ) <% Vo€ (00,0)

Therefore, using Sobolev’s inequality again, from (2.2.10) we deduce that
p

s (L 16y )" < § [ VG )Pl ()

1
< ——i— p(y—1)+1 ' 5

On the other hand, by Holder’s inequality again, we have that

1

[iGotupo7r < ([ 1) ( [ iGotuaire o) 7 a21)

We observe that the choice of v implies that

Py =[p(y = 1) +1]m’ = [(p - )m"]",
thus, from (2.2.11) and (2.2.12) we finally get

2(8657)17 </Q |Ga(un)|p*7>§ﬂ1/ < ])(7_11)_{_1 (/Q |f’m>72 Vo € (09,00).

The previous estimate concludes the first part of the proof, since

N P 1
m<<—= — > —
D p* m
and
lun| = |To(un) + Go(up)| < o+ |Gy(uy)| a.e. on Q.

PART II. Assume that m = %. We fix n € N, ¢, 0 € (0,00) and we choose
(epdG“(“’”)‘ — 1) sign(Gs(un)) (epc(‘““_") — 1) sign(uy,)

v = _ XA, (2.2.13)
pe pe ’

as a test function in (2.2.5). Since

Vo = VG (uy,)ePdGe )l = Vunepch”(“")l)(An,g a.e. on (),

50



Chapter 2. First order perturbations

we obtain that
J[perelGetun)] < 1 p=1 ((pelGo(un)]
[ IVGo(um) e < | VG (un) P (e -1)
pcJq
1
+—/ epelGolunll 1) | (2.2.14
AL ). (22.14)
Recalling that
1
loP —1| < Clo — 1P + o1 Vo e [0,00), VC € (1,00),
for a fixed C' € (1,00), we have that

—/ bV Gl ()P (ePelCo )] 1)
C/ -1 e p
< = [ |b|VGq(upn) Pt (G un)l — 1
< \ H (un)] ( )

/\bHVG )[pLep=DelCelun)l (2.9 15)

plc/Qlfl (epc\Ga(Un)\ _ 1) < ]i/gm (ecIGa(un)\ _ 1)p‘|‘pc(01_1)/9|f|. (2.2.16)

By Hoélder’s, Sobolev’s and Young’s inequalities, the right-hand side of (2.2.15) can
be estimated by

CSo 1 N / ) [PpelGotun)] / v
{p +pp’c(C—1)}</n \b\) VG (un)Pe e _1 b,

while, by Hélder’s and Sobolev’s inequalities, the right-hand side of (2.2.16) is
controlled by

P
C(Soc)? / N N/ G. 1
ClSoc)” ) VG (1) [PePelCoun)] +7/ _
o (Awlf\ | n)lPe pe(C = 1) 1]
Now, by (2.2.9), there exists op € (0,00) such that
1
+ b < -,
[ p  ppe(C—1) ( Aw’ | — 4

P
P N
Oloc)® </ !fﬂ) <2
pe Ao 4
VneN, Vo € (0g,0).

Therefore, from (2.2.14) we deduce that

S [ 19Gaun)reriGetel < / '+ iy M Yo € (o00),



2.2. First order terms not in divergence form

which in turn, thanks to Sobolev’s inequality, yields

G 157 1 /
s Lo =T < ey [
+]?2(C}—1)/Q‘f‘ VO’G(U(),OO).

This concludes the proof, since

eclunl = eclTo(un)+Go(un)l < peopclGolun)l 5 o on Q.

2.2.3 Estimates on u, with irregular datum

Lemma 2.2.4. Let f € L™(Q) with m € (max{l,ﬁ},(p*)’). Then, the
sequence {uy} is bounded in Wol’(p_l)m* (Q).

Proof. Let

We observe that assumption m € (1, (p*)’) implies that 6 € (1%, 1). We fix n € N
and we apply Proposition 2.2.1 with

1—p(1—6 1\ !
ug = up, bo =", 50:W <809+]9/) .

Hence, there exist | = (o, N,p,0) € N, a finite collection of disjoint measurable
subsets €21,...,Q; C Q and a finite sequence of functions wuy 1,...,uy; € Wol’p(Q)
which satisfy (2.2.6) and (2.2.7).

Now, the proof is divided into three steps.

STEP I. We fix i € {1,...,l}, e € (0,00) and we choose

Ve = [(6 + |un,i])1_p(1_0) - el_p(l_(’)} sign(tn.;),

as a test function in (2.2.5). We observe that 6 > Z% implies that 1 —p(1 —6) > 0.
Since

Vun,i
(€ + Jun g )P0 =0)

Voo = {1~ p(1—0) R T

a.e. on €,

we obtain that

alt—p(1-0)] |

|V’U,n’l’ p

(e + ’Un,i’)p(l_e)

< [ pITua el + [ 1l 22.17)
Q Q

Then, by (2.2.7), we have that

i—1
(Vug)ve = Z(Vun,j)ve a.e. on ),
j=1
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so that

/|b||vun|p_1‘ve|§/ |b||Vum-p_1(e_|_|un’i|)1—p(1—0)
Q Q;

1—1
+Z/Q B[V P Vo (2.2.18)
i=17%

Thanks to Holder’s inequality, the first term on the right-hand side of (2.2.18) can
be estimated by

1
7

N 1
N N |Vun7i|p p o ; ) PF
</Q " > [/Q (€ + [t ]P0 /Q (e Tunal)? = ]
1 —_
0 N N \Vu,”\l’ v’
b )
e (/Qz | ‘ ) l/Q (6 + ‘unﬂ-‘)P(l*e) ’

which in turn, by Young’s and Sobolev’s inequalities and (2.2.7), is controlled by

1 |V, P e
Sof + — / ’ .
< v p’) “ Jo (€ + Jup,i|)P=9) - p

Thus, recalling the choice of ¢y and using Sobolev’s inequality, from (2.2.17) we
deduce that

-

P

W{/ﬂ [(€+’un,i’)6—€9}p*}w

afl —p(1—0)] / [Vun,i
< 9
- 2 Q (€ + |un4])PA=9

p

ep

6 1—1

€0 o

<S03 bV ol + [ 1l (2:219)
D paclieh Q

so that, letting ¢ — 0 and applying Lebesgue’s Theorem, we finally get
p

afl 2(‘1;)0(;)27 6)] (/Q [tn s p*@)p*

i—1
<3 [ BT el PO [ PO (22:20)
=179 Q

STEP II. If i = 1, estimate (2.2.20) becomes

o ()

p —_— —
< /Q | f 1]t g [P P00, (2.2.21)
which in turn, using Hélder’s inequality, leads to

afl 2—( 55;); 0)] ( /Q ,un’l‘w)p

1

(/ |Un,1|[1_p(1_6)]m,> " (2.2.22)
Q

VAN
T~
:3\

=

3
~_
3=
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We observe that the choice of # implies that
p'0=[1—p(l—0)m =[p-1)m"".
Moreover, we have that

N 1
m<(p*)/<—:>£ —.

p p* m/
Therefore, from (2.2.22) we deduce that

O ([t ) < ()

which in turn, going back to estimate (2.2.19), implies that the quantity

/ | Vg, 1[P
0 (€ + [up,1)P0=0
is uniformly bounded with respect to n.
Now, for ¢ = (p — 1)m* the use of Holder inequality yields

(Vg 1|P ’ pa(1-0) B

Then, a simple calculation shows that

pq(1—0)
p—gq

L
PF

/ Wuml’(p—l)m* <
Q

=[(p—1)m"T,

hence it follows that there exists a positive constant C7 which depends only on «,
b, f, m, N and p such that

(/’VU 1|pl )(p l)m SCl

STEP III. We proceed by induction. We fix ¢ € {2,...,l} and we assume that
there exist positive constants C, ..., C;_1 which depend only on «, b, f, m, N and
p such that

(/vawﬁ’l )”lm <C; Vie{l,...i—1} (2.2.23)

Then, by Holder’s inequality, we have that

i—1
Dl A e P
7=1 J

i—1 :

<3 () ([

Jj=1

1
(/ |, |[1—p(1 9]m>m 7

(p— 1)m)
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Chapter 2. First order perturbations

so that, exploiting (2.2.23), we get

izl i—1 4
Z/Q b1Vt P | PO < S P (/Q |b|N> (/ 5| P01 0)]m> '
=179 =

Furthermore, by Hélder’s inequality again, we have that

L a1
St 700 < (g ) (gt )
Q ’ — \Un Q!

Therefore, using Sobolev’s inequality, from (2.2.20) we obtain that

[1_509_ (/ '“""pW)
fSter () ()

which in turn, recalling that

3=

}(/ |ty 5|1 7P0— 9]’”)"1, (2.2.24)

p'0=1[1-p(1—0)m =[p-1mT,
and 1
% o
P m
implies that

p 1
pF

(509 (/\ P~ 1m]*> m,'
) :Cfﬂ (o) (Lirm)" @2

Moreover, going back to (2.2.19), we obtain that the quantity

/ﬂ (€ + |tn,i|)P(1=0)

is uniformly bounded with respect to n.

Thus, arguing as in the last part of the previous step, we finally deduce that,
for every i € {1,...,1}, there exists a positive constant C; which depends only on
«a, b, f, m, N and p such that

(U

which concludes the proof, in virtue of (2.2.6). O

1
\ o—Dym~=
7‘ (pil)m ) ’ S CZ?
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2.2. First order terms not in divergence form

2.2.4 Existence and regularity results

The existence of a weak solution in WO1 P(Q) to (2.0.3) is the main result of [53] and
the proof is given for more general problems than (2.0.3), that is,
{A(u) + B(u) +K(u) = f onQ,

(2.2.26)
u =0 on 012,

where

K(u) = K(-,u),
and K: Q x R — R is a Carathéodory function such that
K(x,0)sign(o) >0 forae z€Q,VoeR,

and
sup |K(-,7)| € LYQ) Vo € (0,00).

TE[—0,0]

For our convenience we state and prove the next two results for the problem (2.2.26).

Theorem 2.2.5. Let f € L™(Q) for some m € [(p*)’, %} Then there exists a weak

solution u to (2.2.26) which belongs to Wy*(Q), such that K(-,u), K(-,u)u belong
to LY(Q) and satisfies

{/QA(x,u, W)-vfu+/QB(:c,VU)v+/QK(ff%“>v:/Qf”’ (2.2.27)
Vo e WyP(Q) N L°(Q) and v = u.

Moreover, we have that

clu| 1 ) =X
{e € L) Vee(0,00) ifm=7, (2.2.28)

u e LDl () fme ), L).

Proof. Let us consider the following family of approximate problems (n € N):

{A(un) + Bn(un) + Kn(un) = f on Q, (2.2.29)
Uy =0 on 0f),
where
B, (u) = By(-,Vu), Kp(u)=Kp(-,u),

and

Bn(z,0) = Ta(B(z,£)),

Ky (xz,0) =T,(K(z,0)),

fu(@) = To(f(2)),

for a.e. 1€ Q, Vo e R, VE e RY,
Since

|Bn<(£,§)‘ S mln{‘B@?vf)Ln}a
|Kn(z,0)| < min{|K(z,0)|,n},
| fn(@)| < min{|f(z)[, n}
VoeR,VEeRN, VneN,
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Chapter 2. First order perturbations

Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]) guarantee, for every n € N, the
existence of a weak solution u,, € Wol P(Q) N L>®(N) to (2.2.4) which satisfies

{/QA(:z,un,Vun).Vv+/QBn(x,Vun)v+/QKn(x,un)v:/an(x)v

Yo e W, (Q).
(2.2.30)
We observe that it is not difficult to prove that the estimates achieved in the previous
sections are still valid for u,, because of the coercivity properties of the zero order
term.
By Lemma 2.2.2, we know that {u,} is bounded in W, ? (). Hence, there exists
a function u € W, ?(Q) such that

up —u in WyP(Q),
U, — u a.e. on .
Moreover, we get
{A(-, tn, Vun)} is bounded in (L” ().

Then, the use of Holder’s inequality gives
N—(p*)

@)’
S 1Bt Va0 < () ([ var) T
Q Q Q

{B,(-, Vun)} is bounded in (L®7)'(Q))V.

Furthermore, choosing u,, as a test function in (2.2.30), we have that

o [ 1Vl + [ K@ u)un < [ BTl + [ 1l
Q Q Q Q

Dropping the positive term coming from the principal part and using Holder’s and
Sobolev’s inequalities, we obtain that

ot = ([7) s () ([

which yields

so that

{K,(-,un)u,} is bounded in L'(€).

Therefore, we deduce that K (-,u)u € L'(Q2) and, by Lemma 1.2.6 (see [12], [19],
[20], [24] and [30]), up to a subsequence, Vu,, - Vu a.e. on {2, so that

A up, Vuy) = A(,u, Vu) in LPI(Q))

Moreover, for any measurable subset U C Q2 and o € (0,00), we have that

J K@) < | Kew)+ [ K@)
U Un{lun|<o} {lun[>0}

1
S/ sup ]K(x,T)H——/ K(z,up)un,
Q o Ju

TE|—0,0]
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2.2. First order terms not in divergence form

which implies that

lim / |K(z,uyn)] =0 uniformly wih respect to n.
Ul=0Ju

Hence, by Vitali’s Theorem, we deduce also that
Kn(up) = K(-,u) in LY(Q). (2.2.32)

Thus, putting together (2.2.31), (2.2.32) with the fact that f, — f in L®)(Q),
passing to the limit as n — oo in (2.2.30), we obtain that

{/QA(:U,U,VU)-Vv—i—/QB(at,Vu)v—i—/QK(x,u)v:/Qf(a:)v, .

Yo e WyP(Q) N L®(Q).

Since u,, — w a.e. on {2, from Lemma 2.2.3 we also get (2.2.28).
Finally, in order to prove that

/QA(a:,u,Vu)-Vu—|—/QB(x,Vu)u—|—/QK(x,u)u:/qu,

it is sufficient to choose Tj(u) as a test function in (2.2.33), that is,

/ A(z,u, Vu) - VT;(u) +/ B(z, Vu)Tj(u) +/ K(z,u)Tj(u) :/ IT;(u),
Q Q Q Q
and pass to the limit as j — oc. ]

Theorem 2.2.6. Let f € M™(Q) for some m € ((p*),00) and let u € WP () be
a weak solution to (2.2.26). Then

{uELOO(Q) if m e gg,oo),

we M=DmT(Q) ifme (), 5

(2.2.34)
>)

Moreover, there exists a positive constant ¢ which depends only on o, f, N and p,

such that N
el e LYQ) ifm=—. (2.2.35)
p

Proof. We fix o € (0,00) and we apply Proposition 2.2.1 with

[0}

up = Go(u) = (Ju| — o) Tsign(u), bp=b, e =—=.
28,

Hence, there exist a number [ = [(«, N, p) € N, a finite collection of disjoint measur-
able subsets Q1,...,Q; C Q and a finite sequence of functions u1,...,u; € Wol’p(Q)
which satisfy (2.2.6) and (2.2.7).
Then, we fix i € {1,...,l} and we choose u; as a test function in (2.2.33). Since
i
Vu; = VG (u)xo, = Vuxa,na,, (Vu)u; = Z(Vuj)ui a.e. on {2,
j=1
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Chapter 2. First order perturbations

where
Ay = {lu| > o},

dropping the positive zero order term, we obtain that

o [ Vi < [ plIVar il + [ 1]l
Q Q Q
<> [ IVl el + [ il (2:2.36)
j=17%% Q

By Hoélder’s inequality, we have that

1

[ |b|N>N ([rowe)” ([ )

S RLIESTEDY ( /
j=17%% j=1 J

which in turn, thanks to Sobolev’s inequality and (2.2.7), implies that

Z/ 5]Vt P 1|uz|<80602(/ |vu]|p> </ |vuz|P>
() ()

Furthermore, since u; = 0 a.e. on Q\ A,, thanks to Holder’s and Sobolev’s inequal-
ities we have that

/Q|f”ui| < (/ 1| )(p) (/ P >1*
< ()77 (f o)’

Since f € M™ () with m > (p*)’, there exists a positive constant Cy which depends
only on f, m, N and p, such that

1
7\ (p*) _1
([ 15197) "7 < colaglr 3.

Therefore, from (2.2.36) we deduce that

1 1
7

4 20080 L/_L* 2iCOSO L1
(f15u0)? <2 (fmur) S < 2

which, by (2.2.6) and Sobolev’s inequality, yields

1
2

( /. rGa<u>rp*)” < S ( /| |VGa<u>|p);’




2.2. First order terms not in divergence form

On the other hand, for every 7 > o > 0 we have

([ 16atw

P

1
* ¥ 1
") 2 - o)Al

(T =0
L iera i) 4 ()
220050 p—1 ’Aa|p m
< —_— . 2.
_{50;1< . ) } T o Vr>0>0. (2.2.38)

Thus, applying Lemma 1.2.3 with

*

l i L
2'CpSp\ P—1
00=0, o¢(0)=|A,], C—{SOZ( 00) } oy =pt,

i=1 «

from (2.2.38) we finally deduce the result, since

: N
0 € (1,00) 1fm€(;,oo},
§=1 if m=2%,
: x\/ N
se(0,1) iftme (@), Y).
L]

Theorem 2.2.7. Let f € L™ () for some m € (max {1, W} (p*)’). Then,

there exists a weak solution u to (2.0.3) which belongs to Wol’(p_l)m* (Q).
Proof. Let {u,} be the sequence of weak solutions to the approximate problems

(2.2.4) constructed above. Thanks to Lemma 2.2.4, we have that {u,} is bounded

in W()l’(p_l)m* (©2). Hence, there exists a function v which belongs to Wol’(p_l)m* (Q)

such that, up to a subsequence,

U, — w4 a.e. in €.

{un —u in W&’(p_l)m*(Q),

Moreover, we get
{A(-,un, Vu,)} is bounded in (L™ (Q))V.

Then, using Holder’s inequality, we have that

m

e o < [t < (o) (f o)
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Chapter 2. First order perturbations

so that
{Bn(:, Vuy)} is bounded in L™ (Q).

Therefore, by Lemma 1.2.6 (see [13], [19], [20] and [24]), it follows that, up to a
subsequence, Vu, — Vu a.e. in {2, which in turn implies that

{A(-,un, Vun) = A(yu, V) - in (L™ ()Y, (2.2.39)

By (-, Vuy,) = B(-,Vu) in L™(Q).

Thus, putting together (2.2.39) with the fact that f, — f in L™(Q), we can pass to
the limit in as n — oo in (2.2.4) and obtain that u is a weak solution of (2.0.3). O

2.2.5 A uniqueness result in the linear case

For the sake of completeness, in this subsection we present the uniqueness result of
[35] in the linear case, that is,

(2.2.40)

—div(M (z)Vu) = E(z) - Vu+ f(z) on Q,
u=20 on 0f2,

where M: Q — RY” is a measurable matrix such that

Ja, B € (0,00):
M(x)¢-€ > alé]?,
|M(z)| < B,

for a.e. x € Q, VE € RY,

and E: Q — RY is a vector field such that
|E| € LY (Q).

Theorem 2.2.8. Let f € L2 (Q). Then, there exists a unique weak solution to
(2.2.40) which belongs to HL(S2).

Proof. Let u, z € H}(Q) be two weak solutions to (2.2.40) and let w = u — z. We
apply Proposition 2.2.1 with

a

] w, 0 ) €0 25()

Hence, there exist a number [ = I(a, N,p) € N, a finite collection of measurable
disjoint subsets Q1,...,8; C Q and a finite sequence of functions wi,...,w; €
W, ?(€2) which satisfy (2.2.6) and (2.2.7).

Then, we fix i € {1,...,l} and we choose w; as a test function in (the weak for-
mulation of) (2.2.40) written with u replaced by z, and then in (2.2.40). Subtracting
the equalities obtained in this way, we get

/QM(x)V(u —z)-Vuw; = /QE(:B) -V(u — 2)w;.
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2.2. First order terms not in divergence form

Since ,
(2

Vw; = Vwxq,, (Vw)w; = Z(ij)wi a.e. on €,
j=1
using Hélder’s inequality, we obtain that

ofymet= ([, 0) ()’ ()

which in turn, by Sobolev’s inequality and (2.2.7), implies that

i 1 1
Oé/ |Vwi|2§50602</ ij|2)2 (/ |le-‘2)2
Q o Ve Q
: : :
(0%
2g(/{g wil?)* ([ 9w

Hence, it follows that

= !
Vwﬂ) § (/ Vw-2> s
([ ivur)” <3 ([ 19wl

Jj=1

so that w; = 0 a.e. on 2 for every i € {1,...,l}. Therefore, thanks to (2.2.6), we
finally deduce that w = 0 a.e. on 2, that is, u = z a.e. on 2. [
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Chapter 3

Interaction between lower order
terms

In this chapter we study existence and regularity results for a lower order pertur-
bation of the Dirchlet problems introduced in the previous chapter. More precisely,
we consider the problems

{A(u) +D(u) +K(u)=f onQ, (3.0.1)
w=0 on 0,
and
{A<u> £ B+ K(w)=f onQ, (3.0
w=0 on Jf2.

We recall that © ¢ RY is a bounded open subset with N > 2,
A(u) = _diV(A('v u, vu))a B(u) = B(> VU), D(u) = le(D(a u))v

and A: QxR xRN RV, B: QxRN - R, D: Q x R — RN are Carathéodory
mappings which satisfy

Ja, € (0,00),pe (1,N), a € LPI(Q):
Az, 0,8) - € > alé]?,

|A(z,0,€)| < B [Ja(@)| + [oP~ + [g[P1],
[A(z,0,8) — A(z,0,m)] - (£ —1n) >0,

for a.e. z € Q, Vo € R, VE neRY, € £,

Ir e (p,o0], be L"(Q):
|B(z,€)| < [b(@)][§]P~,
for a.e. x € Q, VE € RY,
and
dr e (pyoo], d € L"(Q):
|D(@,0)| < |d(z)[|o"~,
for a.e. x € Q, Vo € R.
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3.1. First order term in divergence form

Moreover, we assume that
K(u) = K(-, u)
where K: Q2 x R — R is a Carathéodory function such that

N € (1,00), k € L1(Q) positive a.e. on Q:
K (z,0)sign(o) > k()| ],
for a.e. x € Q, Vo € R,

and
sup |K(-,7)| € LYQ) Vo € (0,00).
TE[—0,0]

The model example of function K we have in mind is K (z, o) = k(z)|o|* o where

A€ (1,00) and k € LY(Q) is bounded from below on € by a positive constant.
If the right-hand side f is a function in L™ (2) for some m € [1, o0], the existence
of a weak solution u such that

u € Wy (9) N LIe=DmT" (@) it me |(p), 2,
we W™ () it m € (max {1, 552551 ) (7)) (3.0.3)

ueWg(Q) Yge[LN(p-1)) ifm=1,pe(2-4N),

is guaranteed for the problems (3.0.1) and (3.0.2) in the case K = 0, under suitable
assumptions on d and b (see chapter 3). Moreover, this results are still valid for the
problems (3.0.1) and (3.0.2) because of the coercivity properties of the zero order
term. In this chapter we show that if k£ also satisfies

Jhe(0,00): ke LY(Q), (3.0.4)

then a twofold regularizing effect of the zero order term occurs: on the one hand,
there is an improvement in the regularity properties of v and Vu with respect to
(3.0.3); on the other hand, the regularity properties (3.0.3) are achieved even if d

and b do not belong to, respectively, Lp%(ﬂ) and LY (Q).

This circumstance is discussed in [26] and [39] in the case B = |D| = 0, assuming
that the coefficient k is a positive constant. These results are generalized in [15]
and [16] to the problems (3.0.1) and (3.0.2) in a semilinear framework, that is,
p=2, A(z,0,8) = M(x)§ where M is a uniformly elliptic N x N matrix on  with
L>®(Q) coefficients, D(z,0) = oFE(x) and B(z,£) = E(z) - £ with |E| € LV (Q),
K(z,0) = klo|> o with k& € (0,00), and assuming that f € L™(Q) for some
m € (1,00). Analogous results are obtained in [3] for the problem (3.0.2) in the
nonlinear case, assuming that b and k are positive constants. Here we extend the
results of [40] to the nonlinear case and we present those contained in [41].

3.1 First order term in divergence form

3.1.1 Statement of existence and regularity results

Definition 3.1.1. Let f € L'(Q). We say that a function u: Q — R is a weak
solution to (3.0.1) if u € Wy (), |A(-, u, Vu)|, |D(-,u)|, K(-,u) € Li () and

loc

/(A(a:,u,Vu)—D(a;,u))-VC—i—/ K(x,u)C:/f(x)C V(e Cx(Q).
Q Q Q
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Chapter 3. Interaction between lower order terms

Remark 3.1.1. We observe that, by assumption (3.0.4), if klu|? € L}(Q) for some
h

positive v, then |u]hL+1 € LY(Q). As a matter of fact, for any fixed § € (0,7), using

Holder’s inequality, we formally have

=8 3
= et ()T (fwer)
Q Q Q Q

By (3.0.4), the right-hand side of the previous inequality is finite if

that is,
5=
h+1
Remark 3.1.2. Let us suppose that the coefficient & is bounded from below on 2 by
a positive constant. Then, k~! belongs to L>(£2) and condition (3.0.4) is fulfilled
for every positive h. We observe that the proofs of Theorems 3.1.1, 3.1.2 and 3.1.3
stated below can be easily particularized to the case k£ > constant > 0 a.e. on €.
The results obtained in this way are the same as the following ones just letting
h — oo and generalize those achieved in [15] and [16] in the semilinear framework.

Moreover, our results also cover the lacking case d ¢ L»-1(2) and f € L1(9).

Let us define
(p—1(h+1)r

A= =) (3.1.1)

X = max { il _hl(irjp]f),] e hgln:“_ml) } (3.1.2)
A= min{O_pijhll(ﬁJr Ur ’\(Zi:rzm} (3.1.3)
=i (314
pA (3.1.5)

M= NTDh+1

We recall that, for any o € (0,00), T,, denotes the truncation function at level o,

that is,
S if |s| < o,
T(={"  hbls
sign(s)o if |s| > o.

Moreover, we define
Gy(s) =s—Ty(s) = (|s| — o) tsign(s) VseR.

In this section we prove the following existence and regularity results.
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3.1. First order term in divergence form

Theorem 3.1.1. Let f € L™(QQ) for some m € (1,00]. Assume that A € {X, oo).

Then, there exists a weak solution u to (3.0.1) which belongs to Wy P(Q) and such
that K (-,u)|u|’* € LY(Q). Moreover, u satisfies

{/Q (A(x,u,Vu) — D(z,u)) - Vv +/QK(:E,u)v = /va, (3.1.6)

Vo e WyP(Q)NLX(Q) and v = u.
Remark 3.1.3. Theorem 3.1.1 guarantees the existence of a weak solution u €

Wol’p(Q) to (3.0.1) even if f ¢ L®)(Q) and d ¢ LT]XI(Q) As a matter of fact,
assumption \ € {X, oo) is equivalent to the following conditions:

D A+ 1)h (A+1)h
A -1, h> —— > >
SPTL M AT T TP 0 —prh—p "7 -1
Since
P+ 1A < N = A>pt -1 h>L
A=—p+1Lh—-p p-1 b ’ A—p*+1’
(A+1)h p*

<" <= A>p"—1, h

A —1 A1

we can assume that A € {X, oo) together with r < 1% and m < (p*)’, provided that
)\>p*—1andh>$:+1.
We also get an improvement in the regularity properties of u with respect to

(3.0.3). As a matter of fact, Remark 3.1.1 implies that u € L%(Q) Moreover,
since

(A+1)h < A=p+1)hr
AM—1 — pAh+(p—1)r’

we have that

~ A—p+Dhr . (A—p+1)hr
Ah _ o’ h4r if T Z) p’)\h—l-(p—l)r(’ )

=\ M e 1A A—p+1)hr
htl T if Sor <™ < SRR

h+m

Now, for instance, assume that

p v PO+ DR
A=p+1"  — A=p+1Dh—p’
A+Dh . (A=p+Dhr

MNi—1 =S+ (p—

A>p—1, h>

We observe that

Ahm s NOA—p+1)h
—_— -1
h+m>[(p ] <:)m<p)\h+N(p—1)’
Ahm p* p*h
= h>— .
htm P U Ve



Chapter 3. Interaction between lower order terms

On the other hand, we have that

NA—p+1)h , p*
> <= A>p"—-1, h> ———,
pM+ N(p—1) (P") p A—pr+1
p*h (A+1h * "
= A>Spi—1, h>—2
M—p " a1 S R G

Hence, it follows that we can assume that \ € [X oo) together with r < z% and

(p*) <m < % in order to have that h)jfl > [(p — 1)m*]*, and we can
assume \ € {X oo) together with r < -=5 and 7 ]; < m < (p*) in order to have

thl>p provided that A > p* —13Lndh>A p*+1

Theorem 3.1.2. Let f € L™(Q) for some m € (1,00]. Assume that \ € (A,X).
Then, there exists a weak solution u to (3.0.1) which belongs to Wy (Q) and such

that K(-,u)\u\j‘_)‘ € LY(Q). Moreover, Ty(u) belongs to Wol’p(Q) for every positive
o.

Remark 3.1.4. Theorem 3.1.2 provides the existence of a weak solution to (3.0.1)
which satisfies better regularity properties than (3.0.3) in the case m € (1, (p*)).

As a matter of fact, assumption A € (A, X) is equivalent to the following conditions:

'\h
)\>p—17 )\p+1<h_)\p+1, T>()\7p+plw, m>1,
or
_ p P’ A p'(A+Dh
A>p=L h>xpm Gt <T < Goprohpr ML
or
A1)k (A+1)h
)\>p—1, h>)\%;+1, T>m, 1<m<m
Moreover, formula (3.1.4) can be rewritten as
pO—ptDhr e (A—ptl)hr
~ p’()\>—\|—h1)h+pr 1 = p’)\h—i-gz)?\—l)rl’)h
. —p+ r
‘(Aﬁnlﬁm it 1 <m< S5
Now, for instance, assume that
'\h 'A+1)h
A>p—1, h> P , b <r< P+ 1) ,
A—p+1" A—p+1h—-p+1 A=p+1)h—p
(A=p+1)hr

l<m<

pPA+ (p—1)r

In this case we have that
_ pAhMm
= O FDh+m’

since

A—p+Dhr _ (A+Dh
PAL+ 1 No—1°

67



3.1. First order term in divergence form

We observe that

o' \h N P p*
< < A>—, h> —,
A=p+1Dh—p+1 p-—1 P p'A—p*
pAhm . NA—=p+1)h
—_— —1 <
Ot Dham > P bm ™S AT N(p— 1)’
NA—p+1)h p* p*
>l<=A>—, h>—F7—,
pAh+ N(p—1) P p'A—p*
(A—p—+1)hr NA—p+1)h . N
pPAh+(p—1)r  p\h+(p—1)N p—1

Hence, it follows that we can assume A € (A, X) together with r < 1% and m < (p*)’

in order to have ¢ > (p — 1)m*, provided that A > %t and h > ﬁ.

Theorem 3.1.3. Let f € LY(Q). Assume that X\ € [\,00). Then, there exists a
weak solution u to (3.0.1) which belongs to Wol’q(Q) for every q € [1,41), and such
that K(-,u) € LY(Q). Moreover, Ty(u) belongs to Wol’p(Q) for every positive o.

Remark 3.1.5. We recall that we cannot expect the solution of (3.0.1) to be in
WOI’I(Q) when f € LY(Q) and p € (1, 2 — %} (see [4], Appendix I). However, Theo-
rem 3.1.3 guarantees the existence of a weak solution to (3.0.1) in a Sobolev space
strictly contained in Wol’l(Q) even if f € L}(Q) and p € (1, 2— %}

Remark 3.1.6. Theorem 3.1.3 provides the existence of a weak solution to (3.0.1)

which satisfies better regularity properties than (3.0.3) in the case m = 1. As a
matter of fact, assumption A\ € [), 00) is equivalent to the following conditions:

p—1 . p'A\h
A—p+1’ “A=p+1Dh—-p+1

A>p—1, h>

We observe that

o' A\h N p* p*
< —A>— h>—
A=p+1h—-p+1 p-1 P’ P'A—p*
pAh / p* p*
T S Np-1)e=A>"— h>—" .
()\+1)h+1> (p ) >p/7 >p/)\_p*

Hence, it follows that we can assume A € [), 00) together with r < z% and m =1

. pAh / : p* p*
in order to have OFORFT > N'(p — 1), provided that A > a and h > A

3.1.2 Statement of uniqueness results in a semilinear case

Following the approach of [14] and [15] (see also [25]), in this section we also prove
the following uniqueness results in the semilinear case

(3.1.7)

—div[M (z)Vu — uE(z)] + k(z)|u>u = f on Q,
u=20 on 0f2,
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where M: Q — RY? is a measurable matrix such that

Ja, B € (0,00):
|M(z)| < B,
for a.e. x € Q, VE € RY,

and F: Q — RY is a vector field such that
dr e (2,00): |E| € L"(Q).

Theorem 3.1.4. Let f € L™(Q) for some m € (1,00]. Assume that \ € [X, oo),

where X is as in (3.1.2) but with p = 2. Then, there exists a unique weak solution
to (3.1.7) which belongs to H(Q) and such that klu|* € L*(), where X is as in
(3.1.3) but with p = 2.

Theorem 3.1.5. Let f € LY(Q). Assume that X € (), 00) where )\ is as in (3.1.1)
but with p = 2. Let u be the weak solution to (3.1.7) given by Theorem 3.1.3. Then,
u is the unique weak solution obtained as limit of approximations, that is, if {gn}
is a sequence of functions in L>(Q) such that g, — f in L'(Q) and {z,} is the
sequence of weak solutions of the approzimate problems (3.1.31) constructed below
with f, replaced by gn, then uy — z, — 0 a.e. on €.

3.1.3 Approximate problems and preliminary results

Let f € L'(Q) and let us consider the following family of approximate problems
(n € N):
A(un) + Dn(un) + Ic(un) = fn on Q, (3.1.8)
Uy =0 on 01},
where
Dy (u) = div(Dy, (-, u)),
and D)
Dnl:0) = gipea
_ _f(=)
fn(z) = L@
for a.e. x € Q,Vo e R.

Clearly, we have that

| Dn(z,0)| < min{|D(x, 0)|, n},

| fn()| < min{[f(z)],n},
fora.e. 1 €Q,VoeR, Vn eN.

We point out that, for any fixed n € N, although D, (-, u,) and f,, are bounded
functions on €, even if there exists a bounded solution u,, to (3.1.8) the zero order
term K (-, uy) is only a function in L'(). Anyway, despite to this lack of regularity,
thanks to Theorems 2.2.5 and 2.2.6 (see [53] and [72]), for every n € N, we get the
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3.1. First order term in divergence form

existence of a weak solution u,, € Wol’p(Q) N L>*(£2) to (3.1.8) such that K(-,uy,) €
LY() and

{/Q (A(x, up, Vuy) — Dyp(z,uy)) - Vo +/QK(x,un)v = /an(x)v, (3.1.9)

Yo e WyP(Q) N L®(Q).

3.1.4 Estimates on u, with datum in L™ for some m € (1, ]

Lemma 3.1.6. Let f € L™() for some m € (1,00]. Assume that A € (A, 00)
where A\ is defined in (3.1.1). Then, the sequences {u,} and {K(-,un)]un])‘*’\} are

bounded in, respectively, Wol’ﬁ(Q) and L' (Q), where

_ ) if A€ [X,oo),
p—{q UAE(LX) (3.1.10)

and X\, \, § are defined in (3.1.2)-(3.1.4).

Proof. First, we fix € € (0,00), v € (Z%, oo) and we choose

(e Jun P00 — 0D sign(uy)

p(y—1)+1

Ve =

as a test function in (3.1.9). We observe that v > 1% implies that p(y — 1) +1 > 0.
Since
Ve = Vg (€ + |un )P0 ae. on Q,

we obtain that

a/ ]Vun]p(e+|un\)p(7_l)+/ K (2, un)o.
Q Q
g/ |d||un|p_1\Vun\(e—|—|un|)p(7_1)+/ el (3.1.11)
Q Q

Using Young’s inequality, the first term on the right-hand side of (3.1.11) can be
estimated by

1 /
& [ V(e fun PO —— [ (e fan
pJo plar—1 JQ

Hence, from (3.1.11) we deduce that

[ @unlied < 5 [ 190l (e [an)?00 + [ K)o
Q P Ja Q

! /Q|d|p,(€+|Un\)m+/ﬂ\f||ve|, (3.1.12)

< —0
plart
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Chapter 3. Interaction between lower order terms

which in turn, letting ¢ — 0 and applying Fatou’s Lemma and Lebesgue’s Theorem,
yields

| 1K, unmu po-1+

1
P pY o, - p(y—1)+1
/Q\d| | | +p(7_1)+1/§2|f||un| . (3.1.13)

Furthermore, using Holder’s inequality, we have that

Liar < (f w) ( [l )

r L (;C?f)r p(h+1)ry }EELTT_{));)
< (/ |d|*) (/ = ) ( Kl hw')) (3.1.14)
Q Q Q
and
1

sttt < ([ 11m) ( |ttty
1 1 , h__
< (/ Iflm)m (/ kh) i (/ k|un|wf1w")(h“>m . (3.1.15)
Q Q Q

Then, we choose ~ such that

(—1+1

<

plar-t

/
P

i

A+p<w—1)+1zmaX{P<h+1>w [p<7—1>+1]<h+1>m'}_

h(r—p') "’ h

For this purpose, we must impose that A € (A, 00) and v € (]%, ’y}, where

- :min{(/\—p—i— h(r —p) Ah(m—l)—i—(p—l)(h—i—m)}
! pPh+r) p(h+m) '

Thus, by Holder’s and Young’s inequalities and (3.0.4), from estimates (3.1.13)-
(3.1.15) we get the existence of a positive constant Cy which does not depend on n,
such that

1
/ | K (2, up)||un |p D+1 <Cyp Vvye (p”ﬂl

Since A = A + p(§ — 1) + 1, in particular, we obtain that
[ 1 @) P < o
Moreover, going back to estimate (3.1.12), we obtain also that the quantity
[ 19 e 0
Q
is uniformly bounded with respect to n for every v € (;, ﬂ.
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3.1. First order term in divergence form

Now, we observe that if A € [X, oo), then 74 € [1,00) so that, choosing v = 1, we

deduce that {u,} is bounded in Wol’p(Q). Otherwise, if A € (A, X), then 5 € (1%’ 1).
In this case, for any fixed ¢ € [1,p), using Holder inequality, we have that

_ [Vun|? 1-7
St = e e e

Vo, [P }3 { / pquw]”pq
< _— n p—q
> |:/Q (6 T |Un‘)p(17,\/) Q(G + ’U ‘)

q pP—q (p—q)h
|vu |p P _p\ PAFD pg(h+1)(1-%) | p(h+1)
<\ (Lx e b |
Q (e+ |un|) Q Q

Thus, the right-hand side of the previous inequality is uniformly bounded with

respect to n if
pa(h +1)(1 —7)

=\
h(p — q)
that is,
B pAh ~ uin { p(A—p+1)hr pAhm }
T OoT )t - PA+Dh+pr’ A+Dh+m/’
J
3.1.5 Estimates on u, with datum in L'
Lemma 3.1.7. Let f € LY(Q). Then
oP o po
/ VT (un) P < —,/ P +—/ f| VneN,Voe(0,00).  (3.1.16)
Q ol Ja a Jo

Proof. We fix n € N, 0 € (0,00) and we choose T, (uy,) as a test function in (2.1.4).
Since
To(un)| < 0, VTy(un) = VunX{jus|<o} a-€. on €,

dropping the positive zero order term, we obtain that

o [ VT )P < [l VT 4o [ 1
Q {lun|<o} Q
<ot [ JdIVT ()l + 7 | 1f]
Q Q

Hence, thanks to Young’s inequality, we deduce that

(0% oP /
& VTP < =T [P +o [ 1]
D Jo plar-1 J/Q Q
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Chapter 3. Interaction between lower order terms

Lemma 3.1.8. Let f € LY(Q). Then

/\K(m,un)| g/ If| VneN. (3.1.17)
Q Q

Moreover, there exists a positive constant C' which depends only on «, f, g, h, p

and r such that
1 :
— d|" ;
O-Ah(T—P )_p+1 </An,0 | ‘ ) + /An,a |f|] (3118)

r(h+1)

/ K (2, u,)| < C
An,QU

VneN, Vo e (0,00),

where
Apo ={|uy| >0}, o€ (0,00).

Proof. We fix n € N, o € (0,00) and we choose
L1 — o sign(uy) if un| >
= [ ‘un|p_1} sign(uy,) if |u,| > o,
0 if |u,| <o,
as a test function in (3.1.9). Since

XAn,o vunXAn,a

v | < P Vv, = a.e. on (2,

| [P

we obtain that

Vu, [P \Y% 1
aort [ L [ e <ort [l LT,
A’ﬂyo' |un| Q An,o’ |un| p - 1 An,o‘

which in turn, using Young’s inequality, implies that

p—1
ao / |Vup, P —i—/Kx )0

4 o |unlP

O'p_1 / 1
< T [ = [ 11l L)
p ap=1 n,o b— An,o

Now, we observe that
lim [v,| = —— a.e. on Q.
o—0 D

-1

Thus, letting ¢ — 0 and using Lebesgue’s Theorem and Fatou’s Lemma, from
(3.1.19) we get (3.1.17). Recalling Remark 3.1.1, thanks to Holder’s inequality,
estimate (3.1.17), in particular, yields

1 h
1 Ah 1 3\ AT ==
Anel < 3 [l < (&) ([ k)
o h+1 An,a o h+1 Q (9]
1 h
1 1
< (/ k_h>h+1 (/ !f\)h+1 Vo€ (0,00). (3.1.20)
o h+1 Q Q
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3.1. First order term in divergence form

Therefore, dropping the positive term coming from the principal part and using
Holder’s inequality again in (3.1.19), by (3.1.20), we finally deduce that

1 1
< : k—h> " (/ ) o / d|”
> ) 1 Ah(r—p )7p+1 (/Q O ‘f’ Ano ’ ’

pap—lo- (h+1)r
1
P [

Remark 3.1.7. We observe that, if A € [A, c0) where ) is defined in (3.1.1), Lemma
3.1.8 implies that

/
P
T

O]

lim |K(x,up)| =0 uniformly with respect to n. (3.1.21)

ag—00 An.o

As a matter of fact, thanks to estimate (3.1.20) we have that

le |Ap, | =0 uniformly with respect to n,
ea

which in turn, by the absolute continuity of the integral, yields

lim / ld| =0,
T—00 An,a
lim If| =0, (3.1.22)

uniformly with respect to n.

Therefore, putting together (3.1.18) and (3.1.22) we get (3.1.21).

Lemma 3.1.9. Let f € LY(Q). Assume that A € [\, 00), where \ is defined in
(3.1.1). Then, the sequence {uy} is bounded in Wol’q(Q) for every q € [1,q1), where
q1 is defined in (3.1.5).

Proof. We fixn €N, 0 € (0, ﬁ) and we choose

B 1 . 1 ,
N - { T (1L Jup|pO-0-1 sign(un)

as a test function in (3.1.9). We observe that 0 < z% implies that p(1 —60) —1 > 0.

Since . v
Unp,
i -r VT Gr e 2o

we obtain that

|V, [P
a/Q(l T P00 +/ K(x,up)v

T |V 1
/H 0=0) =t /!f\,
(1 + fun )P~ (1 + [unl) p(1—0)—1Jo
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which in turn, dropping the positive zero order term and using Young’s inequality,
implies that

|Vup, [P / 0 1 /
ad < dJP' [ [P + . (3.1.23
5 e < o [ e g [ G2

Thanks to Holder’s inequality, the first integral on the right-hand side can be esti-
mated as

J et < (f 1ar)
Q Q

Then we choose 6 such that

/ ’ r—p)

= = p(ht1)ro\ Tl
( / k:‘h> ( k\unyh<w'>> . (3.1.24)
Q Q

p(h+1)ro <\
h(r=p') —

that is,
Ah(r —p')
~ plh+1)r’

This condition is fulfilled for every 6 € (0, ,) if A € [\, 00). Otherwise, if A € (1, ),

we choose
_ Ah(r—p')

p(h+1)r

Thus, thanks to (3.1.17), from (3.1.23) and (3.1.24) we deduce that there exists a
positive constant Cy which does not depend on n such that

p
/ Vel o (3.1.25)
Q (14 |uy,|)p=9)

where

0=

any 0 € (0,;) if A € [), 00),
Ah(r—p’ .
) if A€ (1,0).

Now, for any ¢ € [1,p), using Holder’s inequality and (3.1.25), we have

Vu,|P
/|Vun|q:/ &( 1+ n|)q(1 —0)
Q Q (1 + |uy )@

< ‘Vun’p % pq(l 9) u
= Vg (1+]un|)p(1_9~)] </Q( ) )

q =L pa(h+1)(1—0) %

<oy (/Qkh)”“”“) Uﬂk(lﬂunp((pqm } .

By (3.1.17), the right-hand side of the previous inequality is uniformly bounded
with respect to n if

pa(h+1)(1-9)
(r—qh =A
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3.1. First order term in divergence form

that is,

AR any q € [1,q1) if A €[\ 00),

qg< — — = pAhr .
A 1-0)h 1-6 fAae(1,)).
AP0 p0-0) " | o g TAE 1)

O]

Remark 3.1.8. The proof of Lemma 3.1.9 shows that assumption A € [), c0) is not
necessary to obtain estimates on u,, in Sobolev spaces strictly contained in T/VO1 1(Q)
As a matter of fact, we have that

pAhr ] e\ (p—1)(h+1)r
h(pr +p'A) + pr (p—1r—1

However, if A € (1,)), we are not able to prove the uniform integrability of the
sequence {K (-, up)} and therefore we cannot pass to the limit in the approximate
problems (3.1.8).

3.1.6 Passing to the limit as n — oo

We are now in position to prove Theorems 3.1.1, 3.1.2 and 3.1.3.

Proof of Theorem 3.1.3. Let {u,} be the sequence of weak solutions to the approx-
imate problems (3.1.8) constructed above. By Lemmas 3.1.7-3.1.9, we have that

{un} is bounded in Wol’q(Q) Yqellq),
{K(-,u,)} is bounded in L'(Q),
{T,(un)} s bounded in WyP(2) Vo € (0,00).

where §; is defined in (3.1.5). Hence, there exists a function u which belongs to
W, 9(Q) for every q € [1,q1), such that K(-,u) € LY(Q), T,(u) € Wy (Q) for every
o € (0,00) and, up to a subsequence,

Up — U in WOI’Q(Q) Vqell,q),
Up —> U a.e. on £},
Ty(un) = Ty(u) in WyP(Q) VYo e (0,00).

Moreover, we get

{A(-, upn, Vun)} is bounded in (L*(Q))N Vs e {1’ q1 1>'
p J—

For a fixed s € [1,7), the use of Holder’s inequality yields

T—S

s s (p—1)s r G fp=lrs 7
| D (@, un) [ <[ |d]*|un] < |d| |un| 7= :
Q Q Q Q
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Thus, recalling Remark 3.2.1 and exploiting the fact that {u,} is bounded L (Q)
and

(p—Vrs _ A hr
r—s ~ h+1 “llp—=Dr+Ah+(@p-1)r’
hr\ (p—1)(h+1)r
[(p—l)r+/\]h+(p—l)r>1{:>)\> h(r—1) 7’

we deduce that

| . hr\
(Dul-o )} is bounded in () Vs € |1 et ).

Therefore, by Lemma 1.2.6 (see [12], [19], [20] and [24]), Vu, — Vu a.e. on €,
which in turn implies that

{A(-,un, Vu,) = A(-,u, Vu) in (LH(Q)V,
Dy (-, un) — D(-,u) in (L*(Q))N.

Now, for any fixed ¢ € C2°(€2) we obtain that

lim / A(z,tup, Vuy) - V( = /QA($,U, Vu) -V,

lim /QDn(x,un)-VC—/D(x,u)-VC, (3.1.26)
Jim [ fa@)¢= [ )

Then, for any o € (0,00) and measurable subset U C 2, we have that

| K@< [ K ()] + K ()|
U Un{|un|<o} {lun|>c}

g/ sup |K(z,7)|+ | K (2, up)|.
U r€[—0,0] {lun|>a}

Therefore, recalling Remark 3.1.7, from the previous inequality we get

lim / |K(x,up)| =0 uniformly with respect to n,
lUl=o0Ju

which in turn, by Vitali’s Theorem, implies that
K(-,up) — K(-,u) in LY(Q).

In particular, it follows that

n—oo

lim /Q K (@, un)¢ = /Q K (e, u)C. (3.1.27)

Putting together (3.1.26) and (3.1.27), we finally deduce that u is a weak solution
of (3.0.1). 0
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3.1. First order term in divergence form

Proof of Theorem 3.1.2. The argument of the proof is essentially the same as the
previous one. What changes is that we use Lemma 3.1.6 instead of Lemma 3.1.9 to
deduce that the sequences {u,,} and { K (-, u)|u,|*~*} are bounded in, respectively,
Wol’q(Q) and L'(Q), where X and § are defined in, respectively, (3.1.3) and (3.1.4).

O

Proof of Theorem 3.1.1. The argument of the proof is essentially the same as the
previous one. What changes is that we use Lemma 3.1.6 to deduce that the se-
quences {u,} and {K(-,u,)lu,/*"*} are bounded in, respectively, Wol P(Q) and
LY(Q), where X is defined in (3.1.3).

Moreover, we observe that assumption A € [X, oo), where ) is defined in (3.1.2),
implies that

A (A+1)h pr ,
> _ .
h+1~ h+1 >max{ —p”m}
Hence, recalling Remark 3.1.1, u satisfies
A(z,u,Vu) — D(z,u -Vv—l—/Kx,uv:/ v,
| (A w. V) = D) - Vo + [ Ko = [ f@) 5128
Yo e WyP(Q) N Le(Q).

Finally, if we choose T, (u) as a test function in (3.1.28), that is,

/Q(A(a:,u,Vu)—D(:c w)) - VIy( +/Kx u)T, /f

then, letting o — oo and applying Lebesgue’s Theorem, we get that (3.1.28) is also
true for v = u. O

3.1.7 Proof of the uniqueness results in the semilinear case

Proof of Theorem 3.1.4. We follow the approach of [14] (see also [25]). Let u, z be
two weak solutions to (3.1.7) which belong to HE (). In particular, u and z satisfy,
respectively,

{/Q[M(a:)Vu—uE x)] - VU—I—/ k() |u)}t U_/f (3.1.20)
Yo e HY(Q) N L®(Q),

and

{/Q[M(:E)Vz—zE x)] - Vv—i—/ k(z)|z]* lzv—/f (3.1.30)
Vo € HE(Q) N LX(Q).

We fix 0 < 0 < € and we choose T, (u — z) as a test function in (3.1.29) and
(3.1.30). Subtracting the equalities obtained in this way, we get

/QM(:L«)V(U ) VTy(u—2) + /Q k(@) (JuP "t~ [2P12) Tolu — 2)
_ /Q(u —2)E(z) - VT,(u - 2).
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Since
‘TU(U - Z)| <o, VTU(U - Z) = V(u - Z)X{O<\u—z|<a} a.e. on {1,
dropping the positive zero order term and using Young’s inequality, we obtain that

2 2
a / VT, (u— 2)2 < 22 B[
2 Ja @ J{0<|u—z|<o}

Thus, by Poincaré’s inequality, it follows that

o? 1 9
Zallu—21> 1< 2 [ [Totu—2)
2

< [ VT w-2P <% BP.
Q a” J{o<|u—z|<o}
Since
N{0<|u—zl<o}={0<|u—2z<0}=0,
>0
the continuity of the measure with respect to the intersection implies that
;%]{O< lu—=z| <o} =0.
Hence, by the absolute continuity of the integral, we deduce that
alllu— 2l > el < BP =0 Vee (0,00
—H|lu—2z| >¢€ — lim = € ,00),
P2 ~ a?o0 {0<|u—z|<0o}
which in turn yields
{lu—z[>€}[=0 Vee(0,00),
that is, u = z a.e. on (2. ]

Proof of Theorem 3.1.5. We follow the approach of [15] (see also [25]). Let u be the
weak solution to (3.1.7) given by Theorem 3.1.3. We recall that u is obtained as
limit of the sequence of weak solutions u,, € Hg(£2) N L>(Q) to

un B () _ B
/§2<M($)vun_1—|—}1\unE(:p)|> 'Vv—i-/gk(w)|un|>‘ 1unvf/an(x)v,

Yo € HY(Q) N LX(Q).

(3.1.31)
Let {g,} be a sequence of functions in L°°(£2) such that g, — f in L'(Q). Let {2,,}
be the sequence of weak solutions to the approximate problems (3.1.31) with f,
replaced by g,. We observe that {z,} is endowed with the same properties of {u,,}.
In particular, there exists a weak solution z to (3.1.7) which belongs to VVD1 Q) for
every q € [1,G1), such that k|z|* € LY(Q), Ty (2) € H(Q) for every o € (0,00) and,
up to a subsequence,

- in Wol’q(Q) Vgell,q),
Zn — 2 a.e. on {2,
Ty(z) = To(u) in HY(Q) Vo e (0,00),

79



3.2. First order term not in divergence form

where §; is as in (3.1.5) but with p = 2.

We fix 0 < 0 < € and we choose T,(u, — z,) as a test function in (3.1.31)
written with w, and f, replaced by, respectively, z, and g, and, then, in (3.1.31).
Subtracting the equalities obtained in this way, we get

/M(a:)V(un—zn) VT,( +/ k(x \un\/\*lun - |zn|)‘*12n> Ty (un — 2n)

2B (7)
_/ <1+ 1yun x)\ 1+ i‘an@),) ‘VTU(Un—ZnH/Q(fn—gn)Ta(un—zn).

Since

To(un — 2)| < 0, VTo(un — 2n) = V(Un — 20) X{0<|un—2n|<o} a-€. ON €

and
unF

14 Lju,E| 1—1—1\an]‘

< |up — 2z,||E| a.e. on Q,

dropping the positive zero order term and using Young’s inequality, we obtain that

0.2
/\VT -zl Z | P+ [ 1f = gallToun = 201
{0<|up—2n|<c} Q

Thus, by Poincaré’s inequality, it follows that

o? 1 9 9
Zillun = 2l > € < 5 [ [Toltn =) < [ 19T un = 20)

2
B+ [ 10 = gal Totn = 20)]

o

= 02 J{0<un—zn| <o}

Thanks to Lebesgue’s Theorem, we can pass to the limit as n — oo and deduce that

Sltlu—zl> <= [ 2P

{0<|u—z|<o}

Arguing as in the proof of Theorem 3.1.4, finally we get the result. O

3.2 First order term not in divergence form

3.2.1 Statement of existence and regularity results

Definition 3.2.1. Let f € L'(Q). We say a function u: Q — R is a weak solution
to (3.0.2) ifu € Wol’l(Q), |A(-,u, V)|, |B(-, V)|, |[K(-,u)| € LL (), and u satisfies

/QA(x,u,Vu)-VC+/QB(33,VU)C+/QK(:U,U)C:/Qf(a:)C V(e O ().

Remark 3.2.1. We observe that, by (3.0.4), if k|u|” € LY(Q) for some positive 7,
h
then ]u\hWTl € LY(Q), as shown in Remark 3.1.1.
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Chapter 3. Interaction between lower order terms

Remark 3.2.2. Let us suppose that the coefficient k£ is bounded from below by a
positive constant. Then, k=1 € L>°(Q) and the condition (3.0.4) is fulfilled for every
positive h. We observe that the proofs of Theorems 3.2.1, 3.2.2 and 3.2.3 stated
below can be easily particularized to the case k > constant > 0. a.e. on 2. The
results obtained in this way are the same as the following ones just letting h — oo.

Let us define
B (p—1(h+1)r

A T (3.2.1)
{ —1T+ﬂ+pdh&jf$} (3.2.2)
{ (A - p;H;H )T,A(Zirlrzm}, (3.2.3)

e )

@:(A:%Z+1' (3.2.5)

We recall that, for any o € (0,00), T, denotes the truncation function at level o,

that is,
s if |s| < o,
T,()=4"  EFs
sign(s)o if |s| > o.

Moreover, we define
Go(5) = s —Ty(s) = (|s| — o) Tsign(s) VseR.
In this section we prove the following existence and regularity results.

Theorem 3.2.1. Let f € L™(Q) for some m € (1,00|. Assume that A € [X, oo).
Then, there exists a weak solution u to (3.0.2) which belongs to Wol’p(Q) and such
that K (-,u)|ul>* € LY(9).
Remark 3.2.3. Theorem 3.2.1 guarantees the existence of a weak solution u €
Wol’p(Q) to (3.0.2) even if f ¢ L¥)(Q) and b ¢ LN (Q). As a matter of fact,
assumption A € [\, 00) is equivalent to the following conditions:

D S p(A+1)h , m>(>\+1)h.
A—p+1 “A=p+1h-p ~ A -1

A>p—1, h>

Since

p(A+1)h . p*
<N &= \> -1, h> ——
A=p+1Dh—p p ’ >)\—p*+17

A+Dh ., P
PR e s =1, > —P
M—1 =P SPTh e NT AT

we can assume A\ € P, oo) together with » < N and m < p*/, provided that
p*
)\>p*—1andh>m.
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3.2. First order term not in divergence form

We also get an improvement in the regularity properties of u with respect to

(3.0.3). As a matter of fact, Remark 3.2.1 implies that u € Lh%(ﬂ) Moreover,
since

A+Dh _ A=p+1)hr

A> N\
AT N =L S pahit (p— D

we have that
. A—p+1)hr . (A—p+1)hr
Ak “rrr A ’f(f; = r?(p—l)r’
T .1 + _
\h . (A=p+1)hr
h+1 htm if o — 1 SMS -
Now, for instance, assume that

P . p(A+1)h
A—p+1"  — A=—p+1h-p’
A+ 1)h o < (A=p+ 1D)hr

MNi—1 =St (p—

A>p—1, h>

We observe that

Ahm e1x NA—=p+1)h
-1 <~
h+m>[(p 0y m<p/\h+(p—1)N’
Ahm p* p*h
= h>"— .
ham 7 "N T =y
On the other hand, we have that
NA—-p+1h / P P
e N> 2, h> ————
pAh+ (p—1)N P p*’ A—p*+1
p's (A+1Dh p* p*
= A>—, h> ———.
M—pr A1 A p—

Hence, it follows that we can assume A € {X, oo) together with 7 < N and p*’ <

m < % in order to have h;\fl > [(p—1)m*]*, and we can assume S F, oo)

together with » < N and /\ﬁi};* < m < p* in order to have h/\—fl > p*, provided that
p* p*

A > 77 and h > e

Theorem 3.2.2. Let f € L™(Q) for some m € (1,00]. Assume that \ € (A,X).

Then, there exists a weak solution u to (3.0.2) which belongs to W3 9(Q) and such
that K (-, u)|u* € LY(Q). Moreover, T,(u) belongs to Wol’p(Q) for every positive
.

Remark 3.2.4. Theorem 3.2.2 provides the existence of a weak solution to (3.0.2)
which satisfies better regularity properties than (3.0.3) in the case m € (1, (p*)).
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Chapter 3. Interaction between lower order terms

As a matter of fact, assumption A € (A, X) is equivalent to the following conditions:

pAh

p—1 p
A>p—1, 5 <h<s0pm "> aopronprr ML
or
i P pAs p(A+1)h

A>p—L h>5pm G <T < Goppohpr M L
or

p p(A+1)h (A+1)h
)\>p—1, h>m, sz’ l<m< =1

Moreover, formula (3.2.4) can be rewritten as

A=p+Dhr . (A=p+1)hr
i= {(A+1)h+r it m > -1

pAhm if1<m< (A=p+1)hr

(A+1)h+m pAh+(p—1)r”

Now, for instance, assume that
P pAh p(A+1)h

: <r< :
Apt1l A—ptDh-p+1 S (A —prDh—p
(A=p+1)hr

A>p—1, h>

In this case we have that
B pAhm
q= (

A+ 1Dh+m’

since

(A=p+ 1)hr - A+ 1)h
pAh + 71 A o—1
‘We observe that

* *

_pr
pA=p*

As
(/\—p+pl)h—p+1<N<:>)\>%’ h >
pAhm NAX-=p+1)h
A+ 1Dh+m pA\h+ N(p—1)
NA—-p+1)h p* p*
p)\f(z+N(p—)l)>1<:>)\>p’7 h>p7,)\_p*,
A=p+1)hr NA—p+1)h
pA+ (p—1)r  pA\h+(p—1)N

>(p—1m" <= m<

<= r < N.

Hence, it follows that we can assume A\ € (A, X) together with 7 < N and m < p*’

in order to have ¢ > (p — 1)m™*, provided that \ > %: and h > ﬁ.

Theorem 3.2.3. Let f € L'(2). Assume that X € (\,00). Then there exists a

weak solution u to (3.0.2) which belongs to Wol’ql(Q) for every q € [1,G1), and such
that K(-,u) € LY(Q). Moreover, T,(u) belongs to Wol’p(Q) for every positive o.

Remark 3.2.5. We recall that we cannot expect the solution of (3.0.2) to be in
Wol’l(Q) when f € L'(Q) and p € (1, 2—- %} (see [4], Appendix I). However, Theo-
rem 3.1.3 guarantees the existence of a weak solution to (3.0.2) in a Sobolev space
strictly contained in Wy (€2) even if f € L*(Q) and p € (1, 2— %}
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3.2. First order term not in divergence form

Remark 3.2.6. Theorem 3.2.3 provides the existence of a weak solution to (3.0.2)
which satisfies better regularity properties that (3.0.3) in the case m = 1. As a
matter of fact, assumption A € (), 00) is equivalent to the following conditions:

p—1 pAh

A>p—1, h> ———, > .
P A—p+1 " A=p+1h—p+1

We observe that

<N A>—, h> , 3.2.6
A=p+1h—p+1 4 p'A - p* (3:26)
_ P N e s ps (3.2.7)
A+ Dh+1 P v PA—p 2
Hence, it follows that we can assume A € [), 00) together with » < N and m =1 in
order to have % > N'(p — 1), provided that A > %, and h > pi,)\p_p*.

3.2.2 Approximate problems and preliminary results

Let f € L'(Q2) and let us consider the following family of approximate Dirichlet
problems (n € N):

{A(un) + Bu(un) + K(un) = fn on Q, (3.2.8)

Uy =0 on 02,

where
B, (u) = By(-, Vu),
and
Bn(z,£) = Tn(B(,§)),
fa(@) = To(f (),

for a.e. x € Q, V€ € RV,

Clearly, we have that

’Bn($,§)| é mln{|B(m,§)],n},
|[fn(2)| < min{[f(z)],n},
for a.e. 2 € Q,VE€RY, Vn eN.

We point out that, for any fixed n € N, although B, (-, Vu,) and f,, are bounded
functions on (2, even if there exists a bounded solution wu,, of (3.2.8) the lower order
term K (-,u,) is only an integrable function on Q. Anyway, despite to this lack of
regularity, thanks to Theorems 2.2.5 and 1.2.4 (see [53] and [72]), for every n € N,
we get the existence of a weak solution u,, € Wol’p(Q) N L>®(£) to (3.2.8) such that
K(-,u,) € LY(Q) and

{/S)A(a:,un,Vun)-VU—F/QBn(x,Vun)v—i-/QK(x,un)v:/an(a:)v, (3.2.9)

Yo e WyP(Q) N L®(Q).
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Chapter 3. Interaction between lower order terms

3.2.3 Estimates on u, with datum in L™ for some m € (1, ]

Lemma 3.2.4. Let f € L™(Q2) for some m € (1,00]. Assume that A € (A, 00),
where X\ is defined in (3.2.1). Then, the sequences {u,} and {K(',un)|un\)‘_)‘} are
bounded in, respectively, Wol’ﬁ(ﬂ) and L*()), where

fAe
s P Ao, (3.2.10)
g ifxe(\N),
and X, \, G are defined in (3.2.2)-(3.2.4).
Proof. We fix € € (0,00), v € (1%, oo) and we choose

ve = [(e+ [un)PO7IH = @O-D sign(u,)

as a test function in (3.2.9). We observe that v > ]% implies that p(y — 1) +1 > 0.
Since
Voe = [p(y — 1) + 1Vun(e + |u, )P0 ae. on Q,

we have that
alp(y =) +1) | [VunP(e+ a0 + | K(aua)e
Q Q

< [Tl e + [ 1fled. (3210
Q Q

Using Young’s inequality, the first term on the right-hand side of (3.2.11) can be
estimated by

Ap(Y =D +1] [ 1o ey -1 L (e + [up] )P
oy Ve PO e [P

Hence, it follows that

[p(y = 1) +1]

/ K (z,up)ve < a / [V |P (€ + || )P0 —l—/ K(z,up)ve
Q p Q Q

1 /

: + 1]} b (e Ju m+/fv7 3.2.12

plalp(y — 1) +1}77! Q‘ (e + lun]) Q| [lvel,  ( )

which in turn, letting e — 0 and applying Fatou’s Lemma and Lebesgue’s Theorem,
yields

1B @) 04
Q
< 1
~ plalp(y =1+ 13

Furthermore, using Holder’s inequality, we have that

ya r—p
r pry r
Lo < ([ 1r) ([ el )
Q Q Q
g (f::lp)r p(ht1)ry %
< (/ |b|7’> (/ k:_h> ( k|| =P ) . (3.2.14)
Q Q Q
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3.2. First order term not in divergence form

and

1 1
S0t < ([ ) ([ fugro-ein)
Q Q Q
1 1 , h ;
< (/ mm)’” (/ k:_h> (h+1)m (/ kmﬂ,W)(bﬂ)m (3.2.15)
Q Q Q

Then, we choose v such that

/\+p(7—1)+12max{p(h+1)7"7 [p(7—1)+1}(h+1)m’}_

h(r—p) ' h

For this purpose, we must impose that A € (A, 00) and v € (1%, ’Ny}, where

(A—=p+ 1)h(r —p) )\h(m—l)+(p—1)(h+m)}
pph+r) p(h+m) '
In this way, thanks to Holder’s and Young’s inequalities and (3.0.4), estimates

(3.2.13)-(3.2.15) imply that there exists a positive constant Cy which does not de-
pend on n such that

’y:min{

1
19l P+ [ 1) P < G vy (2]
Q Q p
Since A = A + p(¥ — 1) 4+ 1, in particular, we obtain that
[ 1 @) < Co
Moreover, going back to estimate (3.2.12), we obtain also that the quantity

[ 19ual? e+ a0
Q

is uniformly bounded with respect to n for every v € (11%’ ’y} . Now, we observe that,
if\e [X, oo), then 4 € [1, 00) and, choosing v = 1, we deduce that {u,} is bounded

in WyP(Q). Otherwise, if A € (A, X), then 7 € (1%, 1). In this case, for any fixed
q € [1,p), using Holder’s inequality, we have that

|V, |? 1-3

< ’Vun|p % pq(l:i) pp%q
< [/Q <e+|un|>p<w>} UQ(”'“"“ o ]

|Vun|p % oh p(ph_+q1) i ptI(’;LJ(rD(l)‘v)] ;’Zﬂ)ﬁ
< —_— - €+ |u P—aq )
- {/ﬂ (e+ \Un)p(l_y)] </Q > [/Q (€4 fual)

Thus, the right-hand side of the previous inequality is uniformly bounded with
respect to n if

pg(h +1)(1 —7)
(p—q)h
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Chapter 3. Interaction between lower order terms

that is,

_ pAh . ((A=p+1)hr pAhm
q_(A+1)(h+1)—5\_ {()\+1)h+r’(/\+1)h+m}

3.2.4 Estimates on u, with datum in L'

Lemma 3.2.5. Let f € L'(Q2). Assume that A € ()\,00), where ) is defined in
(3.2.1). Then the sequence {uy,} is bounded in Wol’q(Q) for every q € [1,q1), where
G is defined in (3.2.5). Moreover, there exists a positive constant C which does not
depend on n such that

/A K (2, un)] < c(/A ]b|7’>f 4 /A 171, 5216)

VneN, oe(0,00),

where
Apo =A{lun| >0}, o€ (0,00).

Proof. The proof is divided in two steps.
STEPI. We fixn e N, 0 € (0, 1%) and we choose

1 .
v= {1 0T |un|)p(19)1} sign(uy,)
as a test function in (3.2.9). We observe that 6 < 1% implies that p(1 —60) — 1 > 0.

Since
Vun,

W a.e. on Q,

W <1, Vo=[pl-6)—1]

we obtain that

alp(l — 0) — 1]/ V] +/ K (2, un)v

(1 + |uy| )P0

< [ Blvual o+ [ 171,
Q Q

which in turn, using Young’s inequality, implies that

DO [Vl

P 1+ |uy|)Pa=9
1

<
~ plalp(1-6)-1

]}Pfl /Q|b‘p(1 + |“n|)p(p_1)(1_0)‘v|

+/ k\un\A—P(1—9>+1+/ Ifl. (3.2.17)
Q Q

As in (3.2.4), exploiting Holder’s inequality, the first integral on the right-hand
side of (3.2.17) can be estimated by

L e (=D (hi1)r | R
(/ |b|7"> (/ - > U k(L + up]) ) |v|] L (32.18)
Q Q
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3.2. First order term not in divergence form

Then, we choose 6 such that

plp— DA - 0)(h+1)r

= p) <A\

For this purpose, we must impose that A € (A, 00) and 6 € [él, ]%), where

5 h(r —p)A
O ) (RS

(3.2.19)

In this way, thanks to Holder’s and Young’s inequalities again, estimates (3.2.17)
and (3.2.18) imply that there exists a positive constant C which does not depend
on n such that

Vuy|P 1
/Q(l +|\u \)|p(1—6> +/Q’“‘“n\A =G Voe {917p,>. (3.2.20)

Now, for any fixed ¢ € [1,p), using Holder’s inequality and (3.2.20), we have
that

[Vug|? 1-6
Vel = s (e

q
|V, |P r’ {/ Pq(l—e)]
< T o(i—a) 1 p—d
<[t L0+ b
q P 3 (p—a)h
<cy (/ k‘h) v [/ k(1 + un|)’W]”(“”_
Q Q

By (3.2.20), the right-hand side of the previous inequality is uniformly bounded
with respect to n if

pb—gq
P

pq(h+1)(1—0)
h(p —q) =N

that is,
pAh

A+p(1—0)]h+p(l—06)

4= (3.2.21)

Hence, for any ¢ € [1,G1), we can choose 6 € [01, i%) sufficiently close to z% in such

a way that (3.2.21) is fulfilled.
STEP II. We fix o € [0,00), T € (0,00) and we choose

17 (Go(un))

T

vy =
as a test function in (3.2.9). Since

_ VUnXA, o (\Apotr)
.

lvr| < XAn,> Vor a.e. on {2,

we obtain that

& VT Gotun)P + [ Koo < [ plITul 4 [ 111,
T JQ Q o An,o

n
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Chapter 3. Interaction between lower order terms

which in turn, dropping the positive term coming from the principal part, implies

that
| K@l < |
An,o A

Now, for any fixed ¢ € (p — 1,41), the use of Holder’s inequality and (3.2.20)
formally yields

\b\|vun|f’*1+/A ). (3.2.22)

n,o

g—p+1
/ 1b]| V[P~ < € ( / |b|q—Z+1) . (3.2.23)
An,n‘ An,o’

Since q1 > (p — 1), we can choose ¢ € ((p — 1)r’,q1), which implies —L5 <.
Hence, using Holder’s inequality again, from (3.2.22) and (3.2.23) it follows that

1
— 1_p-1 A\
/ | K (2, un)|[vr] < Cg 1’Q|T/ ! </ Id ) +/ | fl, (3.2.24)
Q An,o An,o

We observe that
lim |v;| = x4,, a.e. onR.
7—0 ’

Therefore, letting 7 — 0 and using Fatou’s Lemma, from (3.2.24) we finally deduce
(3.2.16). O

Remark 3.2.7. We observe that estimate (3.2.16) implies that

aT—00

lim / K(x,uy,) =0 uniformly with respect to n. (3.2.25)
An,o‘

As a matter of fact, choosing o = 0 in (3.2.16) and using Remark 3.2.1, we deduce
Ah
that {u,} is bounded in L#+1(2). Hence, it follows that

lim A, | =0 uniformly with respect to n,
g—00

so that, by absolute continuity of the integral,

lim / B” =0,
g—00 An,a
lim / 1f] =0, (3.2.26)

ag—00 An. o

uniformly with respect to n

Therefore, putting together (3.2.16) and (3.2.26), we get (3.2.25).

Lemma 3.2.6. Let f € LY(Q). Then, for every positive o, the sequence {Ty(uy)}
is bounded in W, ().

Proof. We fix n € N, 0 € (0,00) and we choose T, (uy,) as a test function in (3.2.9).
Since
To(un)| <o, VIg(up)= VunX{jus|<o} @€ on £,
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3.2. First order term not in divergence form

dropping the positive zero order term, we obtain that

o [ IVEn(u)P <o [ blIVa o [ 11
Q Q Q

Then, the use of Holder’s inequality formally yields
1

o [ IWEw)r <o ([ |b|r)i( [ v @) o [,

Since ¢ > (p — 1)7’, by Lemma 3.2.5, we get the result. O

3.2.5 Passing to the limit as n — o

We are now in position to prove Theorems 3.2.1, 3.2.2 and 3.2.3.

Proof of Theorem 3.2.3. Let {u,} be the sequence of weak solutions to the approx-
imate problems (3.2.8) constructed above. By Lemmas 3.2.4 and 3.2.6, we have
that

{un} is bounded in Wol’q(Q) Yqellq),

{K(-,u,)} is bounded in L'(Q),

{T,(uy)}  is bounded in W,?() Vo € (0,00),
where §; is defined in (3.2.5). Hence, there exists a function u which belongs to
W,4(9) for every ¢ € [1,q1), such that K (-,u) € LY(Q), Ty (un) € Wy (Q) for every
o € (0,00) and, up to a subsequence,

Up — U in Wol’q(Q) Vqgell,q),
Up —> U a.e. on €,
Ty (un) = Ty(u) in WyP(Q) Vo e (0,00).

Moreover, we get

{A(-, upn, Vu,)} is bounded in (L5(Q))N Vs e [1’ pq_l 1) _

For a fixed s € [1,r), the use of Holder’s inequality formally yields

r—s

S S (pfl)s r % (p=Drs -
| Bn (2, Vun)[* < [ [b]°| V| <([m a2 |
Q Q o A

Thus, exploiting the fact that {Vu,} is bounded (L% ())" and

-1
u<ql<:>$<$~7
r—s (p—=Dr+a
L>1<:>q~1>(p—1)7“'
Gg+@-1)r ’

(p—1(h+1)r

G>p—-Dr <= \> ,
1> =1 h(r —p)
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Chapter 3. Interaction between lower order terms

we deduce that

. . rq
B, (-, Vuy)} is bounded in L°(Q2) Vs € { ,~> .
(Bal-, V) @ —
Therefore, by Lemma 1.2.6 (see [12], [19], [20] and [24]), we have that Vu,, — Vu
a.e. on €2, which in turn implies that

A(-ytn, Vup) — A(-u, Vu)  in (L5(Q)V Vs e {1’ p(f_1~1> ’
in L° Cora
Bp(-;un) — B(,u) in L*(Q?) Vse {17514-( 5 ) 7

Now, for any fixed ¢ € C2°(§2) we obtain that

lim /Aa:un,Vun )- V(= /A:cuVu) V¢,

lenio / (2, V)€ = / Bz, Va)C, (3.2.27)
d [ s = [ G

Then, for any o € (0,00) and measurable subset U C ), we have that

[ K@< [ K+ [ K w)
u Un{lun|<o} {lun|>c}

< /U sup |K(x,7)| + | K (2, un)|-

I7|<e {lun|>a}

Therefore, recalling Remark 3.2.7, from the previous inequality we get

lim / |K(x,up)| =0 uniformly with respect to n,
lUl=0Ju

which in turn, by Vitali’s Theorem, implies that
K(-up) = K(-,u) in LY(Q).

In particular, it follows that

JLHC}O‘/SQK($,UTL)C=/QK($,U)C. (3.2.28)

Putting together (3.2.27) and (3.2.28), we finally deduce that u is a weak solution
of (3.0.2). O

Proof of Theorem 3.2.2. The argument of the proof is essentially the same as the
previous one. What changes is that we use Lemma 3.2.4 instead of Lemma 3.2.5 to

deduce that the sequences {u,} and {K (-, un)]un|;\_’\} are bounded in, respectively,

W, 9(Q) and L(Q), where X and § are defined in, respectively, (3.2.3) and (3.2.5).
0
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3.2. First order term not in divergence form

Proof of Theorem 3.2.1. The argument of the proof is essentially the same as the
previous one. What changes is that we use Lemma 3.2.4 to deduce that the se-

quences {uy} and {K (-, un)]un|’~\_’\} are bounded in, respectively, WO1 P(Q) and
LY(Q), where X is defined in (3.2.3).
Moreover, we observe that assumption A € {X, oo), where ) is defined in (3.2.2),

implies that ~
Ah A+ 1)h pr ,}
> > .
h+1° h+i —max{r—p’m

Hence, recalling Remark 3.2.1, u satisfies

{/AwuVu Vv—i—/ :UVuv—l—/KxuU—/f (3.2.20)

Yo e WyP(Q) N Lo(Q

Finally, if we choose T, (u) as a test function in (3.2.29), that is,

/A:z:uVu)VT —i—/BmVu +/Kwu ):/Qf(x)Tgu

then, letting ¢ — oo and applying Lebesgue’s Theorem, we get that (3.2.29) holds
also for v = w. O
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Chapter 4

Problems involving increasing
powers

Let © ¢ RY be a bounded open subset with N > 2. Let us consider the problem

{A(ux) +D(up) + klua} uy = f on Q, (4.0.1)

uy =0 on 0f).
We recall that A and D are the differential operators defined by
A(u) = =div(A(-,u, Vu)),  D(u) = div(D(:,u)),

where A: QxR xRY - RN D: QxR — RY are Carathéodory vector fields which
satisfy

Ja, f € (0,00), pe (1,N), a e LV (Q):

A(z,0,8) - & > algf?,

[A(z,0,8)| < Blla(@)] + |o[P~! + ¢,

[A(z,0,8) — Az, 0,m)] - (§ —n) >0,

fora.e. 1€ Q, Vo e R, VE neRN, €40,

and
dr e (p,o0], d € L"(Q):
|D(a,0)| < |d(z)[|o"~,
fora.e. x € Q, Vo € R.

Moreover, A € (1,00) and the coefficient k is a positive function in L!(Q) such that
Jhe (0,00): khe LY(Q). (4.0.2)

By Theorems 3.1.1 and 3.1.3 we know the existence of a weak solution wuy to
(4.0.1) which satisfies

uy € Wo(),  kluyM! e LY(Q) if m e (1,00], A € [\, 00),
uy €W '(Q) Ve la), kluaeLl(Q) ifm=1, A€} 00),
(4.0.3)
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4.1. The case of datum in L™ with m € (1, x]

where
_ =D+ Dr
A= W —p) (4.0.4)
T — o hl(p—1L)r+pl+pr h+m
pAh
Q= O DhtD) (4.0.6)

In this chapter we follow the approach of [31] and [32] (see also [44] and [13]), and
we study the asymptotic behaviour of uy as A — oco. More precisely, we prove the
following results.
We define
C= {v e WyP(Q): |v]<1ae. on Q}

Theorem 4.0.1. Let f € L™(Q2) for some m € (1,00]. Then, there exists a function
u € C such that
uy —u in WyP().

Moreover, u is a solution of the following bilateral obstacle problem:
/Q(A(x,u, Vu) — D(z,u)) - V(v —u) > /Qf(:c)(v —u) Vwec
Theorem 4.0.2. Let f € LY(Q)). Then, there exists a function u € C such that
uy —u in Wol’q(Q) Vqell,p).

Moreover, u is a solution of the following bilateral obstacle problem:

/ (A(z, u, V) — D(w,u)) - V(v — u) > / f@)(v—u) YveC.
Q Q

4.1 The case of datum in L™ with m € (1, 00

Let f € L™(R) for some m € (1,00]. By Theorem 3.1.1, we know that, for every
A€ (X, oo)7 there exists a weak solution u)y to (4.0.1) which belongs to Wol’p(Q)
and such that k|uy|[*™! € L1(Q2). Moreover, u, satisfies

{/Q (A(z,ux, Vuy) — D(z,uy)) - Vo + /Q k() [ux M uso = /Qf(ac)v, (4.1.1)

Vo e WyP(Q)NL®(Q) and v = uy.

We recall that uy is constructed as limit of a sequence of weak solutions {u,} C
Wol P(Q) N L>(N) to the approximate problems

{/ (A(z, un, Vuy) — Dp(z,uy)) - Vo —I—/ k() [ |t v :/ fn(z)v,
Q Q Q
Yo e Wy (Q) N LX),

(4.1.2)
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Chapter 4. Problems involving increasing powers

where

_ _ D(=z,0)
Dy(z,0) = THLD@e)]’

fa(@) = To(f (),
forae. x €Q,VoeR, VneN.

Choosing u,, as a test function in (4.1.2) and using Young inequality, we obtain

that 1
« ’
& 19wl + [ < —— [ (a7l + [ 1]l
p Q Q p/ap—l Q Q

Then, by Hoélder’s inequality and (4.0.2), we have that
& 19wl + [ KM
pJa Q

1
<— ([ ar)
plar1 V&
()
Q

)\Z/\=>/\—|—12max{

/
p
s

(L) ([ w5 5
(/k: )““ (/k\un\(”” )h“ . (4.1.3)
Q

pr(h+1) (h+1)m/
h(r —p')’ h } ’

by Hélder’s and Young’s inequalities again, the two terms on the right-hand side of
(4.1.3) can be estimated by, respectively,

6/ k‘|un|>‘+1
Q
A+1

1 1 NN = Tty <k | T
b | (1) " (5 X Vee (0,50),
6)\*17“’1 plapTl Q Q Q
d
A+1

6/ k’un|)\+1
Q

1 1 h _A_1~_1 by
m h m/’ h+1)m/
(/ ‘f’m) (/ k_h)(+1> (/ k:)<+) ] Ve e (0,00).
Q Q Q

Taking € = %, we deduce that

« 1
= [V + / !
P Ja 2 Ja
5 it ) G T
()" ()™ ()
pait Q@
1 1 __h 2

3=

Since

1
T
A

S 4A7f;+1
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4.1. The case of datum in L™ with m € (1, x]

that is,
{un} is bounded in W, (),
{k‘|un|A+1} is bounded in L(Q).

Therefore, there exists a function uy € Wol’p(Q) such that k|uy|[**! € LY(Q) and

{un —~ oy in WyP(Q),

Uy — Uy a.e. on ).
Moreover, we have that

{{A(-, U, V) }  is bounded in (L (Q))V,
{Dn(-,un)} is bounded in (L¥' (Q))V.

By Lemma 1.2.6 (see [12], [19], [20] and [24]), it follows that Vu, — Vuy a.e. on
Q, which in turn implies that

{A(-,un,Vun) — A(-,ux, Vuy) in (LY(Q)V,
Dy (-, un) = D(-,uy) in (LY(Q))N.

Then, for any measurable subset U C Q and o € (0,00), we have that

/k!un|’\:/ Flun | + oy
U Un{|un|<c} UN{|un|>c}
1
ga*/ k+—/ klun MY, (4.1.5)
U g JQ

so that
lim / klu,|* =0 unifomly with respect to n.
U

|U|—0
Hence, Vitali’s Theorem implies that
k| M tu, — klualuy  in LH(Q).
These convergence properties allow us to perform the limit process and to deduce

that uy is a weak solution to (4.0.1) which satisfies

{/Q (A(z,,ur, Vuy) — D(z,uy)) - Vo + /Q k(@) Jua M uye = /Qf(x)v, (4.1.6)

Yo e WyP(Q) N L®().

Furthermore, if we choose T,(uy) as a test function in (4.1.6), that is,

[ (A ur, Fus) = D)) 9T () + | ka)ul unTo(un) = [ (@) Ta(un),
Q Q Q

then, passing to the limit as ¢ — oo, we deduce that (4.1.6) is true also for v = uy.
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Chapter 4. Problems involving increasing powers

4.1.1 Proof of Theorem 4.0.1

The proof is divided into four steps.
STEP 1. First, we fix A € (X, oo) and we observe that, since u, — wu) and
Vu, — Vuy a.e. on , using Fatou’s Lemma, from (4.1.4) we get

1
3/ vauf/ NG
P Ja 2 Ja
A+1

i : N - b
S 4)\724»1 i (/ |d‘7ﬁ) r (/ k_h) (h+1)r (/ k) (h+1)r +
par1 \Ja Q Q

1 1 h 1 %
+ 4% (/ mm) m (/ kh) e Dm’ (/ k) ey’ 341
Q 0 0 ’
that is,
{un}yox is bounded in W, (), (417
{k:\u,\|)‘“})\>X is bounded in L(). o

which, in particular, implies that

{A(,ux, Vuy)}y o5 is bounded in (LY ()N,
{D(un)}yox is bounded in (L*' (Q))V.

Hence, there exist u € Wol’p(ﬂ), Y, Z € (L-”/(Q))N such that, up to a subsequence,

uy — u in W,*(9),

Uy — U ‘a.e. or/l Q, N (4.1.8)
Alyun, Vi) = Y in (L (@)Y,

D(-uy) = Z in (LP' (Q))V.

Now, by Holder’s inequality and (4.0.2), we have that

1 (A1D)h
{lual > o} < =g [ ual 55
o ht+1

1 h
1 2\ AT A+l
< e ([ 7) 7 ([l )™ voe (1o0)
o htl Q Q

so that, letting A — oo and exploiting (4.1.7) and (4.1.8), we deduce that

Hlu| >0c} =0 Voe(l,0),

that is, u € C.
STEP II. We fix A € (X, oo) and we choose T7(uy) — 11 (u) as a test function in
(4.1.1):

/ Az, uy, Vuy) - V(T (uy) — Th(u)) —l—/ k(a:)|u>\|)‘_1u>\(T1(uA) —T1(u))
Q Q

= /QD(.CU,U)\) . V(Tl(U)\) — Tl(u)) +/Qf(l’)(T1(u>\) - Tl(u)). (4.1.9)
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4.1. The case of datum in L™ with m € (1, x]

Let us pass to the limit in each term. The last integral in (4.1.9) goes to 0, by
Lebegsue’s Theorem. The second term on the left hand-side of (4.1.9) can be
splitted as

[ Mot @) - Ti@) + [ kP (T ) - Tiw)
{lur|<1} {Jux|>1}

By Lebesgue’s Theorem, we have that

lim Flua | un (T (uy) — Ti(u)) =0,
A=r00 J{juy|<1}

since the integrand is dominated by 2k a.e. on {|uy| < 1}, while
[ kP T w) - Tiw) > o,
{lual>1}

since the integrand is nonnegative a.e. on {|uy| > 1}. Concerning the first integral
in (4.1.9), we observe that

(A(:L’,U)\, VU)\) — A(.I, Uy, VTl(U)\))) . V(Tl(U)\) - Tl(u))
= —(A(w,ux, Vuy) — A(z,ux, 0)) - VT1(U)X{juy>1} @ on Q,

and we write
/QA(x, ux, V) - V(T (uy) — Ti(w)
- —/Q(A(x,uA,VuA) — Az, 1y, 0)) - VT3 ()X {juy (51}
+ /Q (A, ux, VT3 (up)) — Az, uy, VT1(w))) - V(Ti (uy) — T3 (u))

—1—/A(m,uA,VTl(u))~V(T1(u,\)—T1(u)). (4.1.10)
Q

The last term in (4.1.10) goes to 0 since, by (4.1.8), T1(uy) — Ti(u) in Wol’p(Q),
while for the first one we have that

— | (A(z,ux, Vuy) — A(z,ux, 0)) - VT1 (W)X {juy|>1}
Q
= - /Q(A(l‘,ux, Vuy) = Az, ux, 0) - VUX{ju<13X{[ux|>1}
— = [V = Alw,0,0)) - Tuxguiey =0

Finally, the first term on the right-hand side of (4.1.9) can be splitted as

| D) V@i - Tiw) - [ D) Vi),
{Jur|<1}

{lux>1}

The first term goes to 0, since T7(uy) — T1(u) in Wol’p(Q) and |D(-,uy)| < |d] a.e.
on {|uy| < 1} so that, by Lebesgue’s Theorem, D(-,uy) — Z in (L¥' (Q))V, while
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Chapter 4. Problems involving increasing powers

for the second one we have that
/ D(x,uy) - VTi(u)
{luxl>1}
= —/QD(%UA) - VUX {lu|< 13X {Jur |51} — — /Q Z - Nux{juj=1} = 0.
Putting together these results, we have proved, starting from (4.1.11), that

lim sup/Q (A(z,un, VT1(uy) — A(z,ux, VT (w))) - V(T1(uy) — Ti(u)) <0,

A—00

which in turn, by Lemma 5 in [33], yields
Ti(uy) — Ti(u) in WyP(). (4.1.11)

STEP III. Now, we fix A € (X, oo) and we choose G1(uy) as a test function in
(4.1.1). Dropping the positive zero order term, we obtain that

a/ |VG1(u,\)|p§/fG1(u,\). (4.1.12)
Q Q

We observe that Gi(uy) — 0 a.e. on 2 since u € C. Moreover, for any measurable
subset U C 2, by Holder’s inequality, we have that

[isict< ([ 1) ([ e

We observe that A > X implies that ()‘hJ:Lll)h > m/, so that, recalling Remark 3.1.1

and (4.1.7), the right-hand side of the previous inequality is uniformly bounded
with respect to A. Therefore, it follows that

lim /U |F11G1 (uy)] = 0

U~
which in turn, going back to (4.1.12), by Vitali’s Theorem, yields
Gi(uy) = 0 in WyP(Q).
This convergence, together with (4.1.11), imply that
uy = u in WyP(Q).

STEP IV. Finally, we fix \ € (X, oo), 6 € (0,1), v € C and we choose v — u)
as a test function in (4.1.1):

/ Az, uy, Vuy) - V(0v —uy) + / k() Jux M tuy (0o — uy)
Q )

:/ D(x,u,\)~V(6v—u,\)—i—/ F(@)(00 —wy).  (4.1.13)
Q Q
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4.2. The case of datum in L!

The second term on the left-hand side can be splitted as

/ Eluy | tun (Bv — uy) + Eluy | Lux(Bv — uy).
{lux|<6} {lux[>6}

By Lebesgue’s Theorem, we have that

lim klua|* tuy(0v — uy) = 0,
A=00 J{Jux|<0}

since the integrand is dominated by 20*k a.e. on {|uy| < 6}, while
/ Eluy |}ty (Bv — uy) <0,
{lux|>0}

since the integrand is nonpositive a.e. on {|uy| > 0}. Finally, using the strong
convergence of uy in Wol P(2), we also have that

lim/A(:c,uA,Vu,\)-V(Gv—uA :/Ax u, Vu) - V(v — u),

A—00

lim fD($ uy) - V(0v —uy) = /D z,u) - V(0v — u),
A—00 JO

lim/f( (Ov — uy) /f Ov — u)

A—=o0 JO

Therefore, putting together the results, from (4.1.13) we deduce that

/ (A(x,u,Vu) — D(z,u)) - V(Ov — u) > / f(6v —u),
Q Q

which in turn, letting # — 1, implies the result.

4.2 The case of datum in !

Let f € L'(Q2). By Theorem 3.1.3, we know that, for every A\ € (), 00), there exists
a weak solution uy to (4.0.1) which belongs to W Q) for every q € [1,G1), such
that kluy|* € L1(Q) and T, (uy) € Wo P(Q) for every o € (0,00). We recall that wuy
is constructed as limit of a sequence of regular solutions {u,} C W P L>(Q) of
the approximate problems (4.1.2). More precisely, we have that

Up —> Uy in Wol’q(ﬂ) Vqgell,q),
Uy —> U a.e. on {2, (4.2.1)
Vu, = Vuy a.e. on £, -

Kl Mty — Ky} tuy i LY(Q).

Lemma 4.2.1. The following estimates hold:

[ 19 10(1+ fu) |p<*/ a7+ e AL
To‘ p < 7/ p - )
[ vTtp < 2 [ jar+ 2 /Q 1 (422
| ks < [ 111,
Q Q

Vo e (0,00), VA€ (A 00).
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Chapter 4. Problems involving increasing powers

Moreover, for every q € [1,p) there exists Ay € (A, 00) such that the collection
{ur}asa, is bounded in W, ().

Proof. The estimates (4.2.2) are an immediate consequence of Lemmas 2.1.2, 3.1.7
and 3.1.8, since u, — uy a.e. on  and Ty (u,) — Tp(uy) in Wol’p(Q) for every
o € (0,00).

Now, we fix n € N, ¢ € [1,p) and, using Holder’s inequality, we get

|Vu,|?
q_ q
/Q|Vun| _/Q (1 + \un’)q (14 |unl)
pP—q

<5t [ m]

< [/ |V, |P ]Z (/ k:_h) Pt D) {/ k(14| |)pq} gg;ﬂ’; (4.2.3)
P—q L.
~ o (14 |ug|)P Q Q tn

Thanks to (4.2.2), the right-hand side of (4.2.3) is uniformly bounded with respect
to A and n if

pqgkh

that is

4.2.1 Proof of Theorem 4.0.2

Proof. The proof is divided into three steps.
STEP 1. First, we fix ¢ € [1,p) and, applying Lemma 4.1.5, we deduce the
existence of a function u € I/VO1 1(Q)) such that, up to a subsequence,

U\ — U in WOLQ(Q)’
Uy — U a.e. on €, (4.2.4)
Ty (up) — Ty(u) in WyP(Q).

Now, by Holder’s inequality and Lemma 4.1.5 again, we have that

1 h
1 Ah 1 2\ AT 1
[l > o} < — [l < — ([5)7 ([171)™ Vo .00

oghtl JQ gor

which in turn, letting A — oo and using (4.2.4), implies that
Hlu| >0} =0 Voe(l,0),

that is, [u| < 1 a.e. on Q. But T,(u) € W,?() for every o € (0,00). Hence, it
follows that v € C.
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4.2. The case of datum in L!

STEP II. Now, we fix A € (A, 00) and we observe that, arguing as in [4], it is
not difficult to show that

[ (Al ur, Van) = Dl un) - VT(un = o)+ [ ba)uaP unT(un ~ o)
Q Q

< [ F@Ta(wr— )
Yo e WyP(Q)NLX(Q), Vo e (0,00).

(4.2.5)
Then, we fix o € (0,00) and we choose v = u in (4.2.5):

[ Al Vun) - (un = w) + [ k@luaP anTs(wr — )
Q Q
= / D(z,uy) - VT, (uy —u) —I—/ f@)Ty(uy —u). (4.2.6)
Q Q

Let us pass to the limit in each term. The last integral in (4.2.6) goes to 0, by
Lebegsue’s Theorem. The second term on the left hand-side of (4.2.6) can be
splitted as

/ Elua |} tun Ty (uy — ) +/ Eluy |} tun Ty (uy — u).
{lual<1} {lux|>1}
By Lebesgue’s Theorem, we have that

lim k|u>\\)‘_1uATg(u>\ —u) =0,
A=00 J{juy [<1}

since the integrand is dominated by 20k a.e. on {2, while
/ klua |} YupT, (uy —u) > 0,
{lux|>1}

since the integrand is nonnegative a.e. on {|uy| > 1}. Concerning the first term on
the right-hand side of (4.2.6), we observe that

ID(-,uy)| < |d|(1+0)P1 ae. on {|uy —u| <o},

so that, by Lebesgue’s Theorem and the fact that T, (uy —u) — 0 in Wol’p(Q), we
have that

lim / D(z,uy) - VTy(uy —u) =0.
Q

A—00

Thus, we have proved that

limsup/ A(z,uy, Vuy) - VIg(uy —u) <0,
Q

A—00

which in turn implies that

lim [ (A(x,uy, Vuy) — A(z,uy, Vu)) - VIg(uy —u) =0

A—=00 JO

Hence, it follows that (see [61])

Vuy — Vu a.e. on €.
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Chapter 4. Problems involving increasing powers

STEP III. Now, we fix o € (0,00), 8 € (0,1), v € C, we choose v in (4.2.5) and
we write

/Q(A(x,uA,VuA) —A(:C,u,\7HVU))-VTU(U,\—OU)—I—/Q Az, ux, 0Vv)-VT,(uyr—6v)
+/Qk:(x) (jur P~ — 60"~ 00) Tg(uA—eu)+/ﬂk(x)|9v|HevTa(uA—ev)
:/D(:U,UA)-VTO(UA—GU)—F/ F(@) Ty (un — Ov). (4.2.7)
Q Q

which in turn, dropping the positive zero order term on the left-hand side, yields

/Q (A(x,uy, Vuy) — A(x, uy, 0Vv)) - VT, (uy — Ov)
+ /Q A(z,uy, Vo) - VT, (uy — 0v) + /Q k(x)|0v>L0uT, (uy — Ov)
< /QD(ZL‘,U)\) -VTy(uy —0v) + /Q f(2)T,(uy — 6v).

Let us now pass to the limit in each term. In the first one we use Fatou’s Lemma
since the integrand is nonnegative a.e. on €). In the second integral we exploit the
fact that T, (uy — 0v) — Ty(uy — Ov) in Wol’p(Q) and Lebesgue’s Theorem, since
|A(- up, V)| < [la] + (o +0)P~1 +0|Vo[P~1] a.e. on Q. In the third integral we
use Lebesgue’s Theorem since the integrand is dominated by c6*k a.e. on Q and
therefore it goes to 0. In the fourth integral we exploit the fact that T, (uy — Ov) —
To(uy — 6v) in Wol’p(Q) again and Lebesgue’s Theorem, since |D(-,uy)| < |d|(1 +
o)~ ae. on {|uy—6v| < o}. In the last integral we use Lebsgue’s Theorem again.
Thus, it follows that

/QA(a:,u, Vu) - VTy(u—6v) < /QD(SU, u) - VI, (u—0v)+ /Q f(z)T,(u— 6v).

Letting # — 1 and 0 — oo, we finally deduce the result. O
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Chapter 5

Local regularity properties of
solutions

In this chapter we present the results of the paper [42] concerning local regularity
properties of solutions to some nonlinear elliptic Dirichlet problems with lower order
terms and L' data. More precisely, first, we consider the problem

{A(u) +B(u) =f on, (5.0.1)

u=~0 on 0.

We recall that © ¢ RY is a bounded open subset with N > 2,
A(u) = —div(A(u, Vu)),  Blu) = B(-, Vu),

and A: Q xR x RY — RN, B: Q x RY — R are Carathéodory mappings which
satisfy

Ja, € (0,00),p € (1,N):

A(z,0,8) - &= af¢fP,

|A(z,0,8)| < BlEP,

[A(z,0,8) — A(z,0,m)] - (§ —n) >0,

for a.e. x € Q, Vo e R, VE ne RN, € £,

and
dr e (p,o0], be L"(Q):

|B(z,&)| < [b(2)|lg[P~1,
for a.e. € Q, VE € RV,

If the right-hand side f is only a function in L!(Q) (or, more generally, f is a
Radon measure on Q with bounded total variation), the question of existence of
solutions to (5.0.7) is addressed in [10]. In order to give a meaning to the concept
of solution, the definition of renormalized solution (see also [46], [63], [64] and [65])
is used and, in this functional framework, the existence of a solution u such that

VulP~te MV'(Q), |ufP~te M7 (R), (5.0.2)
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is established assuming that b belongs to the Lorentz space L' (Q) and working by
approximation. Moreover, if f € M™(Q) for some m € ((p*)’,o0), then u satisfies

u € WEP(Q) N L=(Q) if m € (&, o00],
uwe WyP(Q), el e LY(Q) for some ¢ € (0,00) if m =L, (5.0.3)
u € WIP() A MIe-Dm T (@) itm e (7, 2),

while, if f € L™(Q2) for some m € (max {1 L}

s N(p=1)F1 ﬁ), then u satisfies

’p

s | ATy
UEWO (Q) 1fm€(max{l,m},(p))

Roughly speaking, here we investigate the behaviour of w far from the singular-
ities of f, in the spirit of [29]. Hence, we assume that f € L'(Q) and

{u e W (@) N L= (@) it me [(pry, Y

JU cc Q,me ((p*),00): feM™Q\U), (5.0.5)
JU cCccQ,me <maX{1’]\7(]9;]V1)—{—1}’]]\9[) . feLl™Q\U). (5.0.6)

What we expect is that, as happens in the case B =0 (see [29]), even if u and Vu
only satisfy (5.0.2), there is an improvement (depending on the regularity of f, as
in (5.0.3) and (5.0.4)) in the regularity properties of v and Vu away from U. The
results are as follows.

Theorem 5.0.1. Let f € L'(Q) which satisfies (5.0.5) and let V. CC Q be such
that V. > U. Assume that b € L™'1(Q). Then, there exists a renormalized solution
u to (5.0.1) which satisfies (5.0.2), such that

V| € LP(Q\ V),

and
{uELOO(Q\V) ifme %,oo),

ue M=V T (Q\ V) ifme ((p*), %> _

Moreover, there exists a positive constant ¢ which belongs only on «, f, N and p
such that

N
el e LYQ\ V) ifm= >

Theorem 5.0.2. Let f € L'(Q) which satisfies (5.0.6) and let V. CC Q be such
that V. > U. Assume that b € LN1(Q). Then, there exists a renormalized solution
u to (5.0.1) which satisfies (5.0.2), such that

{\w e LM(Q\ V) ifme (@), %),

|Vu| EL(p_l)m*(Q\V) meE maX{l,ﬁ},%)7

and
w e LIP=Hm T\ v).
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Chapter 5. Local regularity properties of solutions

Then, we consider the following lower perturbation of (5.0.1):

{A(u) +B(u)+K(u) = f on €,

(5.0.7)
u=20 on 0f),

where

K(u) = K(-,u), (5.0.8)
and K: Q x R — R is a Carathéodory function such that

I\ € (1,00), k € LY(Q) nonnegative on Q:
K(x,0)sign(o) > k(z)|o|*, (5.0.9)
for a.e. x € Q, Vo € R,

and
sup |K(-,7)| € LY(Q) Vo € (0,00). (5.0.10)
TE|—0,0]
The regularizing effect of the zero order term is studied in chapter 4, assuming that
k satisfies
Jhe (0,00): k™heLY(Q). (5.0.11)

In detail, assuming that b € L"(Q2) for some r € (p,N) and f € L™(Q) for some
€ [1,00), we have the existence of a weak solution u to (5.0.7) such that

we WyP(Q), K(ulu*~ e LY(Q) if m € (1,00], A € [X,00) .
we Wol(Q), K(,u)luP e LY(Q) if m € (1,00, A€ (A1),
wueWyi(Q) Vge[l,q), K(,u)eLY(Q) ifm=1,Xe ) o0),
(5.0.12)
where
(p—1)(h+1)r
A= LT 5.0.13
- h(r = p) (50.13)
—1T+p]+pr h+m }
.0.14
{ (m — 1) (5.0.14)
_mm{ (A — p+ h+ )7“7)\(h+1)m}7 (5.0.15)
ph—i—r h+m
_ . [A=p+1)hr pAhm }
= .0.1
q mm{(w Dh4r’ Ot Dhtm (5.0-16)
. pAh
= . .0.1
"= T Dh1 (5.0.17)

Thus, it seems natural to investigate what happens locally. In this connection, here
we assume that
AU cCcCcQ,me(l,00): feL™Q\U) (5.0.18)

and we proceed in two slightly different directions. The first one consists in assuming
(5.0.11) and studying a "local" version of the regularity results (5.0.12). The result
is the following.
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5.1. Local regularity results for the problem (5.0.7)

Theorem 5.0.3. Let f € LY(Q) which satisfies (5.0.18) and let V. CC Q be such
that V.2 U. Assume that b € L"(Q) for some r € (p, N), k satisfies (5.0.11) and
that X € (A,00). Then, there exists a weak solution u to (3.0.1) which belongs to
Wol’q(Q) for every q € [1,q1), such that

Vul € LP(Q\ V) if A€ [}, 00),

Vul € LIQ\V) ifAe (AN),
and )

K(u)lu** e LY(Q\ V).

We also investigate the regularizing effect of the term IC(u) replacing hypothesis
(5.0.11) with its own "localized" counterpart:

JUccQ he(0,00): k"eLY(Q\U). (5.0.19)

We remark that, in this case, we have to require that b € L™1(Q), which is clearly a
stronger assumption than b € L"(Q2) for some r € (p, N). Therefore, the quantities
A, N\, A\, G which appear in the following statement (as in the statement of Theorem
5.2.2 and Lemma 5.2.4 below), are as in (5.0.13)-(5.0.16) but with r = N.

Theorem 5.0.4. Let f € L'(Q). Assume that b € LN'1(Q), k satisfies (5.0.19) and
that A € (A, 00), where A is as in (5.0.13) but with r = N. Let V. CC § be such
that V. > U. Then, there exists a renormalized solution u to (5.0.7) which satisfies
(5.0.2), such that

[Vul € LY(QA\V) Vg ell,q),

and
K(,u)e LY(Q\ V),

where qy is defined in (5.0.17). Moreover, if (5.0.18) is fulfilled, then
Vul € LQ\ V) if A€ [X,00),
Vul € LIQ\V) ifxe (AR),

and 3
K(u)lul™* € L{Q\ V),

where X, X, § are as in (5.0.14)-(5.0.16) but with r = N.

5.1 Local regularity results for the problem (5.0.7)

First, let us recall the definition of renormalized solution to the problem (5.0.1) in
the case of L1(2) datum (see [10]).

Definition 5.1.1. Let v: 2 — R be a function which is finite a.e. on 2 and satisfies
T,(u) € WyP(Q) for every positive o. Then, there exists (see [4], Lemma 2.1) a
measurable vector field Y: Q — R¥ such that

VT, (u) = YX{ju<o} a-e on Vo€ (0,00).

Moreover, Y is unique up to almost everywhere equivalence. We say that this vector
field Y is the gradient of v and we write Vu =Y.
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Chapter 5. Local regularity properties of solutions

Remark 5.1.1. We recall that the gradient introduced in Definition 5.1.1 is not, in
general, the gradient in the usual distributional sense, since it is possible that u does
not belong to L () (and thus the gradient of u is not defined in the distributional
sense) or Vu does not belong to (L (92))Y (see [46], Example 2.16). However, if
Vu belongs to (Li.(92))Y, then u belongs to I/Vlicl (©) and Vu coincides with the
gradient of u in the distributional sense (see [46], Remark 2.10).

Definition 5.1.2. Let f € L'(Q). We say that a function u: Q — R is a renormal-
ized solution to (5.0.1) if the following conditions are fulfilled:

e u is finite a.e. on Q, T,(u) € Wy*(Q) for every positive o, and |u[P~!

P

M# (Q);
o the gradient Vu of u, introduced in Definition 5.1.1, satisfies |Vu[P~! €
MY (Q);

o finally, u satisfies
lim A(z,u, Vu) - Vu = 0,

n=00 J{n<|u|<2n}

and

/QA(:c,u, Vu) - Vug' (u)v —}—/QA(:c,u, Vu) - Vop(u) + /Q B(z, Vu)p(u)v

= | r@o.
VoeWyP(Q)NL®(Q), Vo e WhR(R)NC(Q):  ¢(u)v € WP ().

Remark 5.1.2. We remark that the function u is not assumed to be in some Lebesgue
space L*(§) with s € [1, 00, but w is only measurable and finite a.e. on €. Indeed,
it is possible that the function u does not belong to Li .(2) (see [46], Example 2.16).

Remark 5.1.3. If u is a renormalized solution to (5.0.1), then u is a also a distribu-
tional solution in the sense that u satisfies (see [10], Remark 2.4)

/QA(x,u,vu)-vg+/QB(x,vu)g:/Qf(x)g V(e ox(Q).

Moreover, every renormalized solution u to (5.0.1) belongs to VVO1 9(Q) for every
qg€[1,N'(p—1)) when p € (2 — %,N) (see [46], Remark 2.10).

The existence of a renormalized solution u to (5.0.1) which satisfies (5.0.2) is
obtained in [10] working by approximation and assuming that b belongs to the
Lorentz space L™'1(Q), that is, b satisfies

2] d
fblixaey = [ b (@0 < oo,
0

o

where b* is the decreasing rearrangement of b, i.e., the decreasing function defined
by
b*(o) =inf {7 > 0: [{|b| > 7} <o} Voe]l0,|Q].
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5.1. Local regularity results for the problem (5.0.7)

We recall that LN1(Q) is the dual space of the Marcinkiewicz space M (Q), and
one has the generalized Hélder inequality

[ o8] < 1olnsalblm Yo L¥@), v e 3V (@),

Let us recall the construction of u.
For every n € N, let us consider the following approximate problem:

{A(un) + Bu(un) = fn on Q, (5.1.1)
Uy =0 on 0f2,
where
B, (u) = By(-, Vu),
and
Bp(z,&) = Tn(B(x,€)),
fn(x) :Tn(f(x))v (5'1'2>
for a.e. x € Q, V€ e RV,
Since

| Bn (2, ¢)| < min{|B(z, )|, n},
[fo(@)] < A{If(@)],n},
fora.e. 1€ Q,VEERY, Vn eN,

Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]) imply that, for every n € N, there
exists a weak solution u,, € Wol’p(Q) N L>*(£2) to (5.0.1) such that

/A(m,un,Vun)~Vv+/ Bn(:c,Vun)v:/ ful@ Yoe WiP(Q).  (5.1.3)
Q Q Q

Then, one has that

{lun/P~}  is bounded in M%(Q), (5.1.4)
{|Vun|[P~'} is bounded in MN'(1).
Moreover, up to a subsequence,
Up — U a.e. on €,
(5.1.5)
Vu, — Vu a.e. on (.

Now, suppose that f € M™(Q\U) or f € L™(Q\ U) for some U CC Q and
m € (1,00). Let V CC Q be such that V O U. By means of standard regularization
techniques, it is possible to construct a function 1 € W1>°(Q) such that 0 < < 1

on ) and B
w={0 ol (5.1.6)
1 onQ\V.

In particular, assumptions (5.0.5) and (5.0.6) imply that, respectively,

Jyp € Wh(Q), m € ((p*),00):
0<¢¥<1 onQ, (5.1.7)
f e M™(Q),
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Chapter 5. Local regularity properties of solutions

and
Jp € WLo(Q), m € (max{1, ﬁ} : %) :

0<¥$ <1 onf, (5.1.8)
fy e L™(Q).

Hence, Theorems 5.0.1 and 5.0.2 can be deduced as a consequence of the following
results.

Theorem 5.1.1. Let f € L'(Q) which satisfies (5.1.7). Assume that b € LN"1(Q).
Then, there exist a renormalized solution u to (5.0.1) which satisfies (5.0.2), and
0o € (1,00) which depends only on ¢, m, N and p, such that

W € WEP(Q) 0 Lo(Q) ifme (¥,00),
wp® € Wy (Q) N LIe=DmT(Q)  ifm e ((p*)’, %)-

Moreover, there exists a positive constant ¢ which depends only on o, f, N and p

such that N
el e LY Q) ifm=—.
p

Theorem 5.1.2. Let f € LY(Q) which satisfies (5.1.8). Assume that b € LN:1(€).
Then, there exist a renormalized solution u to (5.0.1) which satisfies (5.0.2), and
01 € (1,00) which depends only on ¥, m, N and p, such that

p

™ € Wy P() N Le-Dm T (@) ifme (), X)),
uwél c Wolv(p—l)m* (Q) me e (1’ (p*)l)

5.1.1 Local estimates on u,

We begin observing that, by (5.1.4),
{Jun|?"1} is bounded in L*(2) Vs € {1,1’) . (5.1.9)
p

Lemma 5.1.3. Let f € L'(Q) which satisfies (5.1.8). Assume that b € LN:1(€).
Then, there exists 61 € (p%l,oo> which depends only on v, m, N and p, such that

the sequence {unwél} is bounded in LIP=Dm"1"(Q)).

Proof. The proof is divided into four steps.
STEP 1. First, let ¢ € W1°°(Q) be such that 0 < ¢ < 9 on Q. By (5.1.8), we

know that f¢ € L™(Q) for some m € (1, %) Then, we fix n € N, € € (0,00) and

we choose
0 = [ P

as a test function in (2.2.5), where

1 — 1)m*|*
AS (/7[(p*)})7 6:p+pl’y.
p b
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5.1. Local regularity results for the problem (5.0.7)

We observe that

Since
V (ved®) = [p(y = 1) + V(e + [un] POV + 5Vv6"" ac. on @,

we obtain that
alp(y =1+ 1 [ [VunlP(e+ ualP0D"
< B8Nl [ IVl ek + [ BV o’

)
+Agﬂmw. (5.1.10)

Thanks to Young’s inequality, the first integral on the right-hand side of (5.1.10)
can be estimated by

afp(y = 1) +1]

|Vl e+ ual P00

(B3 IVl ()"
p{alp(y — 1) + 1]}

[ e+ tunlyrres .
Q
Hence, it follows that

alp(y =1) +1]

19l (e ual P08
p Q

(B3 IVl ()"
= plalp(y - 1)+ 137!

(e lunly 7+ [ oV ol
Q Q
0
+Agﬂmw. (5.1.11)

STEP II. Without loss of generality, we assume that b # 0. Let ¢g € (0, ||bHLN(Q))

and let Uy C RN be a cube which contains 2. We extend b and u,, to vanish outside
Q. By bisection of the edges of Uy, we subdivide Uy into 2%V congruent subcubes
with disjoint interiors. If there is a subcube U such that

1
(/U |b‘N) " > €q,

then all subcubes are similarly subdivided. The process terminates in a finite num-
ber of steps, otherwise there would be an infinite sequence of nested subcubes
Uj4+1 C U; C Uy such that

1
\UW:E@r wW’N>e VjeN
J 2]N’ U7- 0 9
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Chapter 5. Local regularity properties of solutions

which is a contradiction, since, by the absolute continuity of the integral,

nm/ BN =0
J—00 U,

Thus, there exist a number | = [(ey) € N and a finite collection of congruent
subcubes Uy, ...,U; C Uy with disjoint interiors such that

QcUy=U,U...UU;,

> ¥ 5.1.12
([ ) <o ([ 1) < (112)
Uy Ul

Then, using (5.1.12) and Holder’s inequality, we have that

[ 1bl1Van oo’
Q

l Y
S € Z l/U [Vun[P(e + ‘un‘)p(vl)¢6] l
=1 LU

Furthermore, thanks to Sobolev’s inequality and the fact that

U, .
o= e,

[~

1
3

[ e+ \um%ﬂ ”
U

J

we have that

1
*

[ | e+ |un|>p*7¢”?f] p

J

< (|Ulg|)§78 l/Uj(e-f—\un’)mgbﬂ;-{-S{/U

J

Hence, we get

1

[ 1011V oo
Q

<(Q|> Seoz / \Vun\pe—i-\un\) ]
1

(v—1) 5"
+$ij1 [/U] |Vun[P(€ + |un|)PY qﬁ] {/U

J

[ e et
U.

v{I(e+ funl) — ) ¢3}\p}; |

which in turn, by Hoélder’s inequality and (5.1.12) again, implies that

JRED
Q

< (é,)b Seo {/Q |Vu,|P(e + |un‘)P(71)¢5} v [/ (e + |un|)m¢5];

e [ 19uaPte-+ a6 { [ [9 {1+l — 105
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5.1. Local regularity results for the problem (5.0.7)

Since

[V {lte+ lual)” =97 }|

N S IVl oo ()

5—
< 3|V (e + [un]) "5 (e+ |un|)'6 7 ae. onQ, (5.1.14)

using Young’s inequality and the fact that 0 < ¢ < 1 on £, from (5.1.13) we obtain
that

JRE
Q

< 0060/ VP (e + |un|)p(7_1)¢6+0160/(6—|— lun )76, (5.1.15)
Q Q

where
1 [Vl Lo (o
Co = T / ) +77,
QN pp
v IVl e
01_3< T S
plQ™ p
Now, we choose ¢y such that
_alp(y—-1)+1]
Coeo = 5 ;
that is,
ey -1+
’ 2pCo

In this way, from (5.1.11) and (5.1.15) we deduce that

/Q Vg [P (€ + [un PO~ V¢° < Cy /Q (e + un)PY¢7P + C5 /Q fllvel¢®,  (5.1.16)

where

o) By IVl ooy |” 2p
02 - ) -
alp(y

Co alp(y = 1) + 1] - -+1)
Then, in virtue of Sobolev’s inequality and (5.1.14), estimate (5.1.16) yields

L
*

[t tualro™ |7 < sp [ {ite+tualy - 168 |

S04/Q(€+‘un‘)P’YgZ)&*p_i_CE)/Q‘f||ve|¢§’ (5'1'17)

which in turn, letting ¢ — 0 and applying Fatou’s Lemma and Lebesgue’s Theorem,
implies that

p_
*

[ /Q \unr”"w”ﬂ” <c /Q T e /Q FllunPO-DHES (5.1.18)

114



Chapter 5. Local regularity properties of solutions

where OS5\ P
020 ) . Cs = (280)PC5.

Cy = (280)PCy + (
STEP III. By Hélder’s inequality, we have that

1
m!

/ | flJun PO < (/ |f¢>|m>m U (€ + | )P DI’ g(6=1ym’ | ™
Q 0 A

We observe that
[(p — Dm*]*

¥< S—— = p(y - 1)+ 1m’ <p*y.

Hence, by Holder’s inequality again, from (5.1.18) we obtain that

D
A
([ s
Q
o [P(y=1D)+1]

5— m (=1 P

< Cy | |un|P¢°P + Cs |fol |un\P (rcert . (5.1.19)
Q Q

where

1 _ply=1)+1

Co = Qw75 Cs.

Furthermore, since
po _ py(0-1)
p(y—1)+1

exploiting the fact that 0 < ¢ <1 on €2 and using Young’s inequality, we have that

d>py =

—1+1

I P y(5-1) p(’yp*w
Co ([ 1761m)" ([ lunp 67571 )
Q

1 p(y—1)+1

<o [1som)" ([ uape) 7

/

CM(/ \f¢\m)"7 DL ([ o)

Thus, from (5.1.19) we get

(I

P
=

P
*

5 PV P
§C7/
Q

/
P

e ([irem) ™

3—p
un¢ Py

Uy PPV

where /
Cr =p'vCs, Cy=Cg 7.

Recalling that § = p + p’v, the previous inequality becomes

/Q’uncbp%ﬁ% (/ ’unm 1
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where i}
Colr) = max{ (2Cx(1) 7 (2Cs(1) 7 }. (5.1.21)
We remark that
C Crov (1 "
= o,
() = Cuoy ( p(y - 1) + 1]p)
/ Py Plp(y=1)+1] P p'y
Cal~) = PO — <7> 7
8(7) 11 | | P p(W’ — 1) 1

where C1g and Cy; are positive constants which do not depend on 7. Hence, Cy(7)
depends continuously on « and satisfies

lim Cy(v) = oo, lim Cy(y) € (0,00). (5.1.22)

+ _ —
'yai -l ;)*m*]*

In particular, we can pass to the limit as v — [(p_;%i in (5.1.20) and, using
dominate convergence Theorem, deduce that estimate (5.1.20) holds for every ~ €
1 [(p=Dm*]*
'’ p* ’
STEP IV. Now, suppose that

that is,

<
TS NTTNp 1

We consider estimate (5.1.20) with
szpf], 6=,
that is,

*

S P [(p—1)m*]*
Uptpp—1 " [p—1m*]*

[(p=1)ym*]*

(/ ’unWl pleet ) (/ |f¢|m) ST (51.3)

Thanks to (5.1.9), the right-hand side of (5.1.23) is uniformly bounded with respect
to n. Therefore, it follows that the sequence {unw‘sl} is bounded in LIP—Dm"1" (),
where

Otherwise, suppose that
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In this case, we perform an iteration argument. The idea is to start from estimate
(5.1.20) with v = [(177110% and ¢ a suitable power of ¥ and apply (5.1.20) recur-
sively a finite number of times, choosing v and ¢ in a suitably way. We point out
that, by (5.1.22), it is necessary to consider only values of v > }%.
We define
[(p —1)m*]*

p*
y29(0]
Y€ (p*j’m) .
Notice that % > %, therefore ~; > ]%. If py1 > ’I’)—t, we choose

pPy1 P
Y2 € PEER )
p p

Y0 =

and we choose

which, in particular, satisfies

1
7<p’71<72<1770

p — p* p*

<m7M-

The process terminates in a finite number of steps, otherwise there would be an
infinite sequence of real numbers v; > ;11 > 1% such that

p\12 .
%‘<<p*) Y% VjeEN,

N[,

which is a contradiction, since

o\l
j‘)OO p

If 7 > 1 is the first index for which

*

pi <2 (5.1.24)
p
we define
1422
pr=1, ¢i=¢; " Vie{o,...,] -1} (5.1.25)
By construction, we have that
1 — 1)m*|*
— <1 <"7I1-1 S.-.S’YOZM7
p p

and
0<¢gg<p1<...<¢pr=1 onfd

Hence, we set

Ci2 = e Co(vi) = Co(71),
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and we consider estimate (5.1.20) with v = v and ¢ = ¢y, that is,

/Q (/Q m) (/ !f¢o\m) . ”m]. (5.1.26)

Since pyy < p*v1, by Holder’s inequality and the definition of ¢;, we have that

()

P*Y0
< Ci2

1,1
p—1 " v
Un @)

1
un¢0

*
1

L proN 2*_0
1 ) < |Q| P M /
Q

1

« 20
5 P Y1\ 1
e
Un¢0

p* 20
= ’Q| P 7 /
Q

70
1, 1Pp"
p—1 Y1
Un¢1 ,

which in turn, using (5.1.20), implies that

(e ")
s(ﬂhgﬁuuf‘¥[<4

Putting together (5.1.26) and (5.1.27), it follows that

J

*

1

un¢

1

un¢f_l

b7 M (p7W§
>p"/1 +</Q|f¢1|m)p

' ’"] . (5.1.27)

1 1 P"Y0
p— Y0
Un P

< 012(2012)%\Q|%_% [(/
Q

1

un¢f71

P 0 p*v
PTIN m (p—1)m
)7 (1)
0

+ C12 (/ ’f¢0m> S

Thus, we iterate the previous inequality I times and we obtain that

J

1 1P

70

un¢571

=0

1 pW)ppw +z]: (L\f¢z\m>m] , (5.1.28)

where

1 P 0 _ 70
Ci3=Ci2+ 012(2012>Zz 1 % ‘Q’ ( PV %‘+1).

By (5.1.24) and (5.1.9), the right-hand side of (5.1.28) is uniformly bounded with
respect to n. Therefore, since p*yp = [(p — 1)m*]* and

¢(§h+%:¢fl<l+p 1)(1+‘°7_11):”.:¢;1H1 o( V,) = P 1Hzo( %‘)

)
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from (5.1.28) we, finally, deduce that {u, } is bounded in LIZ=Dm"I"(02), where

R p—1
s1=—T1(1+ . (5.1.29)
p—1:=5 Vi

(2

O
We recall that, for any o € (0,00), T, denotes the truncation function at level
o, that is,
i <
Tols) = {;gn(s)a i :z: ; Z:
and G, denotes the real function defined by
Gy(s) =5 —T,(s) = (|s| — o) Tsign(u) VseR.
Furthermore, for any n € N and d, o > 0 we define
Anpo = {lualt® > a}. (5.1.30)
We observe that (5.1.9) implies that

lim |A, 5+ =0 uniformly with respect to n. (5.1.31)

T—00

Hence, by the absolute continuity of the integral, it follows that

lim 6| =0 uniformly with respect to n. (5.1.32)

o—00 An,é,a

Lemma 5.1.4. Let f € LY(Q) which satisfies (5.1.7) with m € ((p*)’,00). Assume
that b € LNY(Q). Then, there exists 65 € (1,00) which depends only on ¥, N and
p such that

U | is bounded in L>®(Q) ifm e %, oo) ,
un®  is bounded in MIP=D™1(Q) if m e ((p*), %) .

Moreover, there exists a positive constant ¢ which depends only on «, f, N and p

such that N
{ec|“"w62|} is bounded in L*(Q) if m = —.
p

Proof. First, we observe that assumption (5.1.7) implies that fi» € L*(Q) for every
t € [(p*),m). Therefore, by Lemma 5.1.3, for every s € [p,[(p — 1)m*]*) there

exists 01(s) € (ﬁ, oo) such that {unw‘sl(s)} is bounded in L*(92).

We fix s € (p, [(p — 1)m*]*) and we define
02 =14 61(s). (5.1.33)
Moreover, we define

A, =An5,0 YVoe(0,00),7VneN, (5.1.34)
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5.1. Local regularity results for the problem (5.0.7)

and, exploiting (5.1.31) and (5.1.32), we choose o € (0, 00) such that

Ay <1,

So( 5;) (/A \b\N>le < %, (5.1.35)

Then, we fix n € N, o € 09, 00) and we choose

v =G, (Un¢52) w(pfl)f;z

as a test function in (5.1.3). Since

Vol < [Vun |2 x a, + pda| Vb [un P2 xa, a.e. on €,

o

we obtain that
o [ 1Vunpur < pssa [ V] g
+ [ BTl el + [ 110l
Q Q
which in turn, using Young’s inequality, implies that
1P
Ry e

par—t
+/ |b\|vun|1’*1\v|+/ fllol. (5.1.36)
Q Q

Thanks to Holder’s and Sobolev’s inequalities, the second integral on the right-hand
side of (5.1.36) can be estimated as

L1001Vt el < [ 1V a7
Q Q
1 1 1
N\ 52 \ P’ * p*ea \ P
<(f )" (] wunrer) (]
Ao Ao Ao
% P
< SO (/ ’b’N) (/ vun’pwp(b)p [/ ‘V (un¢52)

Hence, using Young’s inequality again and (5.1.35), we get

1

p]p

L blivun o < 5 [ e
Q 2p Ja,

1
+S°52(/ |b|N>N/ VO Pun[Py®=7D. (5.1.37)
p \Ja Ao

Putting together (5.1.36) and (5.1.37), it follows that

Co / Vg PP < Cy / V1Pt [P C2D) 4 / 1], (5.1.38)
Ay As Q
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Chapter 5. Local regularity properties of solutions

where )

02)P Sy N
00237 Cl: (pIB 3)1 + 002 (/ ’b’N)N
paP P Q

G [ [v ()]

on both sides of (5.1.38) and using Sobolev’s inequality again, we obtain that

s [ 6o (unt®)["]

Adding

|unl?

L
%

T <o [ Vuaper o [ [V ()
As Ao
<Cy [ a0 4 [ fllel, (5139)
Ao Q

p
|unl?

where

Co
Sig,
Since s > p, the use of Holder’s inequality yields

P
S ualir o < (a2 ) gk

which in turn, recalling that do = 1 + 0; and that {un¢51} is bounded in L*(£2),
implies that

p
Cy = C3=C1+Cy ((52 sup ’V'Iﬂ) .
Q

/ Ju [PyP02 1) < Oy | Ag 5. (5.1.40)
Ao

On the other hand, by Hélder’s and Young’s inequalities, we have that

Lol < [ [ 6o (uv®)

We observe that, by assumption (5.0.5), there exists a positive constant C5 which
depends only on f, m, N, p and 1 such that

(f, 1ot )“’ " < Chla, [

Thus, from (5.1.41) we obtain that

Lol < [ [ |6 (uv®)

Putting together (5.1.39), (5.1.40) and (5.1.42) it follows that

[ [ 6 ()]

| < a4 cuanp G,

/

_p
(P*)’> T (5.1.41)

r
¥

e

/C2P

L
PF

A, P ), (5.1.42)

:| /Cp 1

where .
C Cc?
Ce = ]7,2, Cr=C3Cy, Cg=—21.
pCy
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5.1. Local regularity results for the problem (5.0.7)

Then, we have that

= < Cﬁ[/Q ‘Ga (un¢62> ‘p*:| 7

(1 1
< Cr| Ao |5 + Cs|Ag | (=) w7 > o > 0.

Co(T — 0)P|A;

Since
p

(o — Dm "~ p(ni B pl)

we can choose s sufficiently close to [(p — 1)m*|* such that

1 1
1—p>p/</—*)
s m' p

Hence, recalling that |A,| < 1, we obtain that

1—

(1 1
(T_o-)p|AT|p% §C9|Aa|p (W_’T*) VT>O’ZO‘0,

that is,
1 (Pt
|A-| < CIOW Y71 >0 > oy, (5.1.43)
where .
Cy = Crt s Cio = C’g%.

Cs
Thus, applying Lemma 1.2.3 with

* L (p
¢(0):’A0|7 Y=D, 5:(,_1>7
from (5.1.43) we finally deduce the result, since

€ (l,00) ifme (%,oo),

§=1 itm=2=x,

0€(0,1) ifme ((p*)’,];).

5.1.2 Local estimates on Vu,

Lemma 5.1.5. Let f € LY(Q) which satisfies (5.1.8) with m € (1, (p*)'). Assume
that b € L™N'Y(Q). Then, there exists 3 € (1,00) which depends only on ¥, m, N

and p, such that the sequence {)V (un1/153) } is bounded in LP=D™"(Q).

Proof. First, we define

. q
qg=(p-1m", ~v=—,
p
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and . 5 5
(53—qmax{l+1,l;*l+p,51}, (5.1.44)
q

m/

where 07 is given by Lemma 5.1.3. We observe that assumption m € (1, (p*)")
implies that v € (1%, 1). Moreover, we have that

[1—pd=)m' =p™y=q"=[p-m"T"
Then, we fix € € (0,00) and we choose
[(6 + Jup )P - El—p(l—v)} sign (uy, )1h7%

as a test function in (5.1.3). Arguing as in the first two steps of the proof of Lemma
5.1.3, we get

/ |vun|p wq(Sg
& (e + [un] 70D

< CO/(6+ \un!)p”wq‘SS’erCl/ | F1 (e + [un )t 7PE=Dp®s - (5.1.45)
Q Q

where Cy and C are positive constants which depend only on «, 8, m, N, p, ||, b
and . By Holder’s inequality, we have that

N P
p* (¢63—p) ] p*
)

Co / (e + ’uanwqagip < CO‘Q|17P% [/ (e + ‘un‘)q*ib P
Q Q

and

Cu [ 1f1(e + un P01y
Q
1

<af \fw)’; [ (el tatn 07

which in turn, recalling the definitions of ¢ and d3 and the fact that 0 <1 <1 on
Q, imply that

}[(p—l)m*]*

Co [ (el < ol { [ [ ualyu } (5.1.46)

and

Cu [ 1f1(e+ un 015
Q
1

<o/ \fw\m);{ [ e fuahu] "R Gan

Hence, putting together (5.1.45)-(5.1.47), by Lemma 5.1.3, it follows that

p
{%WS} is bounded in L'(9). (5.1.48)
€+ |luy,
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5.1. Local regularity results for the problem (5.0.7)

Now, using Holder’s inequality again, we have that

Vu,|? _
Vu,|? q53</ [Vun )23 =7)q008
/Q’ un[ W1 < Q(e+|un|)q(1’7)(6+’u ) v

|Vun|p 5 ql* pa1-y) o 1_%
< _ VPl ads = qd3
> l;/f; (6 + ’un’)p(l_,y)w :| |:/Q(6 + ‘UTLD P—q w .

A simple calculation shows that

pq(1 —7)
pP—q
Therefore, recalling the choice of d3 and the fact that 0 < ¢ < 1 on 2, thanks

to Lemma 5.1.3 and estimate (5.1.48), from the previous inequality we deduce the
result. O

=q¢ =[lp—-DmT".

Lemma 5.1.6. Let f € L'(Q) which satisfies (5.1.8) with m = (p*)’. Assume that
b e LNYQ). Then, there erists 64 € (1,00) which depends only on 1, N and p,

such that the sequence {‘V (Un"lﬁé“) } is bounded in LP(S).

Proof. We define
04 =1+ 6y, (5.1.49)

where 6, is given by Lemma 5.1.3, and we choose u,,%P** as a test function in (5.1.3).
Arguing as in the first two steps of the proof of Lemma 5.1.3, we obtain that

/Q IV PEP < Cp /Q [ PP £ Oy /Q |l 0%, (5.1.50)

where Cp and C are positive constants which depend only on «a, 3, m, N, p, ||, b
and 1. By (5.1.49), we have that

Co/ g [PpP2 P = Co/ [ [P, (5.1.51)
Q Q

and, using Holder’s inequality and the fact that 0 < <1 ob €, we obtain that

C [ \flluale <6 ( |f¢|<p*>’)“°}”’ (f |un|p*¢p*51)”l*. (5.1.52)

Hence, from (5.1.50)-(5.1.52) it follows that

1
3

1
/ | Vg [Py < CO/ |un PPt + Cy (/ \fqp‘(P*)') @) (/ ’un’p*wp*&)” 7
Q Q Q 0

*

which, thanks to Lemma 5.1.3, implies the result, since [(p — 1)m*|* = p*. O
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Chapter 5. Local regularity properties of solutions

5.1.3 Proof of Theorems 5.1.1 and 5.1.2

Let {u,} be the sequence of weak solutions of the approximate problems (5.1.1)
constructed above. Closely following the outline of the proof of Theorem 2.1 in [10],
we can prove that there exists a renormalized solution u of (5.0.1) which satisfies

VP~ e MY(Q), JulrTt e M (@),
and such that, up to a subsequence,

Uy — U a.e. on {2,
Vu, — Vu a.e. on (.

Therefore, the result immediately follows from Lemmas 5.1.3-5.1.6 choosing dp in a
suitably way.

5.2 Local regularity results for the problem (5.0.7)

First, let us recall the definition of renormalized solution to the problem (5.0.7)
with L'(Q)) datum, which is a slight modification of Definition 5.1.2 (see [10]).

Definition 5.2.1. Let f € L'(Q). We say that a function u: Q — R is a renormal-
ized solution to (5.0.7) if the following conditions are fulfilled:

o wu is finite a.e. on Q, Ty(u) € Wol’p(ﬂ) for every positive o, and |u[P~! €
M7 (Q);
 the gradient Vu of wu, introduced in Definition 5.1.1, satisfies |Vul[P~! €
MY (9);
o finally, u satisfies
lim A(z,u,Vu) - Vu =0,

n=0 JIin<|u|<2n}

and

/A:EuVu) Vud' (u U+/A£L"UVU) Vup(u +/B$VU)¢()

/Kxu v—/f

Yo e WyP(Q)NL®(Q), Vo e Wl 00( )NC(Q):  plu)v € Wy (Q).

The existence of a renormalized solution u to (5.0.7) which satisfies (5.0.2) can
be deduced as in [10] assuming that b € LV'1(Q), because of the coercivity properties
of the zero order term K(u). On the other hand, if condition (5.0.11) is fulfilled, the
assumption on b can be weakened in order to get the existence of a weak solution to
(5.0.7) which satisfies (5.0.12), as shown in [41]; moreover, there is an improvement
in the regularity properties of v and Vu with respect to (5.0.2).
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5.2. Local regularity results for the problem (5.0.7)

In both cases the solution u is obtained as limit of a sequence of regular solutions
to the following family of approximate problems (n € N):

{A(un) + Bn(un) + Ic(un) = fn on Qa

(5.2.1)
Up =0 on 0,

where B,, and f,, are given by (5.1.2) above. Thanks to Theorems 2.2.5 and 2.2.6 (see
[53] and [72]), for every n € N, there exists a weak solution wu,, € VVO1 P(Q) N L>(Q)
to (5.2.1) such that K(-,u,) € L*(Q) and

{é)i(;ﬁ;,(z)un)-Vv—i—/QBn(x,Vun)v—i-/QK(x,un)v:/an(a:)v, (5.2.2)
v 0 .

As already remarked in the previous section, by means of standard regularization
techniques, assumptions (5.0.6) and (5.0.19) imply that, respectively,
Jp € WHhe(Q), m € (1, 0]
0<¢¥<1 onQ, (5.2.3)
fy e L™(Q),
and
e € WH(Q), h € (0,00):
0<#$ <1 onf, (5.2.4)
(k=) e L1(9).

Hence, Theorems 5.0.2 and 5.0.3 are consequence of the following results.

Theorem 5.2.1. Let f € L'(Q) which satisfies (5.2.3). Assume that b € L"(Q) for
some r € (p,N), k satisfies (5.0.11) and X € (A, 00) where X is defined in (5.0.13).
Then, there exist a weak solution u to (5.0.7) and &y € (0,00) which depends only
on v, h, m, N, p and r such that

wp® € Wo (), K(,u)lu % € LHQ) if A€ [X,00),
wp® € Wil(Q),  K(uwluAgh e 1HQ) ifde (A X)),
where X, \ and G are defined in (5.0.14)-(5.0.16).

Theorem 5.2.2. Let f € L'(Q). Assume that b € L™Y(Q), k satisfies (5.2.4) and
that A € (A, 00), where A is as in (5.0.13) but with r = N. Then, there exist a
renormalized solution u to (5.0.7) and 61 € (0,00) which depends only on 4, h, N
and p, such that

w e WH(Q) Ygel,q), K(,uuh e LQ).

where Gi is defined in (5.0.17). Moreover, if (5.2.3) is fulfilled, then there exists
d2 € (0,00) which depends only on 1, h, m, N and p, such that

wp € WpP (@), K( w9 € INQ) i A€ [N 00),
wi € Wy l(Q), K(ulul 0% € LY(Q) i de (M),

where X, X and G are as in (5.0.14)-(5.0.16) but with r = N.
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Chapter 5. Local regularity properties of solutions

5.2.1 Local estimates on u, and Vu,

The following lemmas play the role of Lemmas 5.1.3-5.1.6 for the problem (5.0.7).

Lemma 5.2.3. Let f € LY(Q) which satisfies (5.2.3). Assume that b € L™(Q) for
some r € (p,N) and X € (A, 00) where A is defined in (5.0.13). Then, there exists
03 € (0,00) which depends only on v, h, m, p and r, such that

und)‘%} is bounded in W1P(Q),
K(-, un)|un|5‘_>‘¢53} is bounded in L' (£2),

where X, \ and § are defined in (5.0.14)-(5.0.16), and

_r z'f)\e[x,oo),
p—{q Z'f)\E(A,X). (5.2.5)

Proof. We fix v € (%, oo), d € (1,00), € € (0,00) and we choose
v = (e + un )P = P00 sign (u, )P

as a test function in (5.2.2). We observe that v > ]% implies that p(y — 1) +1 > 0.
Since

A\ <v€¢6) =[p(y = 1)+ 1]Vuy(e + \un])p(7_1)¢p5 +p6V¢ve1/Jp6_1 a.e. on €,
we obtain that
olp(y =1+ 1] [ [Fual? e+ fua 0097 4 [ | @)
< B8 V¥l [ [Vual o0 [ I Vunl o7

+ /Q |Fllvelp?. (5.2.6)

Thanks to Young’s inequality, the first two terms on the right-hand side of (5.2.6)
can be estimated by, respectively,

T 2p/1 = [ 19+ fun 200
2 (33| Vel (e )
p{alp(y — 1) + 1]}

| (e o=,
Q

O‘[p() _1)+1] -1 &
—,/ |Vun|p(e—|— |un|)p(7 )wp
2p—1

TR

1P+ fualyr.
Q
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5.2. Local regularity results for the problem (5.0.7)

Hence, from (5.2.6) we obtain that

J 1l e?® < Co [ [Vl (et lunh 0007 4 [ 15 ) o
Q Q Q
< O [ (et a0 4 Cy [ (b7 (e -+ fun 7
Q Q
+ [ 1flloder, (527

which in turn, letting ¢ — 0 and applying Fatou’s Lemma and Lebesgue’s Theorem,
implies that

[V ) s
< Cy [ a0 + Gy [ ol [l PO, (5.2.8)
Q Q Q

where

ool =D+1 2v—1 (pﬁéHIW\HLw(m)p
w0 T e -y

2r—1
plalp(y - D+ 1P

Using Holder’s inequality and recalling assumption (5.0.11), we have that

Co

-
@ Q

r—p h(r—p)
P _ (h+1)r p(h+)ry  (h+D)pr(6—1) \ (A+1)r
<l ([ K) ([ bl T T 2)

g ré %
Ca [Pt < o ([ 108) ([ el
Q Q Q
h( )P)

p T—Pp r—
r ( Y (h+1)r (h+1)ré (
< Cy (/Q |b|’“) (/Q k:_h> B < Qk\unyphwp)vq/,‘ph(ﬁp) ) e , (5.2.10)

and

A

1
1l =418 < </ !fw’”)m (/ Iunﬂp(v1>+um'¢<psl>m'>m/
Q = \Un 0
h

1 1
m _p\ GrDm’ [Py =D +1](h+1)m’ (A1) (ps—1)m’ \ (ht1)m/
S R R U R U e e e E
Q 9) Q

(5.2.11)

Then, we choose v and § such that

p(h+1Dry [p(y —1) +1](h+ 1)m’}

— >
A+ p(y 1)+1_max{ e —p) -
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Chapter 5. Local regularity properties of solutions

and

P < min{p(’“r Dr(8 —1) (h+1)(ps — 1)m’} |

h(r—p) h
For this purpose, we must impose that

(p—1(h+ )r

A>A= )
h(zx_p)ﬂ)h( ) M(m—1)+ (p—1)(h+m)
N—min —p T—p m — p— m
V=Y { p(ph +r) ’ p(h+m) }
5>8_max{(h+1)r (h—i—l)m}
= ph+r "plh+m))"

Thus, we apply Young’s inequality in (5.2.9)-(5.2.11). Putting together the es-
timates obtained in this way with (5.2.8) and using (5.0.11) and the fact that
0 <4 <1on ) we deduce that

K (@, wn) [un[PO P < 05 vy (25 (5.2.12)
Q p

where Cj is a positive constant which depends only on «, 3, v, ¥, b, f, k, k~' h,
m, p and r. Since A = A + p(¥ — 1) + 1, in particular, we deduce that

1 w09 < (5:2.13)
Q
Moreover, going back to estimate (5.2.7), we obtain also that the quantity

[ 19unl? et 7017
Q
is bounded uniformly with respect to n.
Now, we observe that, if A € [X, oo)7 then 4 € [1,00) and, choosing v = 1, we

get the result with p = p. Otherwise, if A € (A, X), then 4 € (1%’ 1). In this case,
for any fixed ¢ € [1,p), using Holder’s inequality, we obtain that

q,,p0 _ Vg |® q(1-%),,/,p6
/g'vu”| v /g (€ [uno@ T a0
q

|V, |P a in) 5%
< irmatrn) [t ]

a P—q (p—a)h
Yu, |P (ht1) pa(h+1)(1=%) =\ p(h+D)
<[ [Vl “"‘(1~)r(/ B R )
Q (€ + |uy|)Pt=7 Q Q

Thus, the right-hand side of the previous inequality is uniformly bounded with

respect to n if
pg(h+1)(1 —7)

:X,
(p—q)h
that is,
B pAh B min{(/\ —p+1)hr pAhm }
LRGN TANIE D G A+Dh+r A+ Dh+m/’
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Lemma 5.2.4. Let f € L}(Q). Assume that b € LNY(Q), k satisfies (5.2.4) and
A € (A, 00), where X\ is as in (5.0.13) but with r = N. Then, there exists 64 € (1,00)
which depends only on i, h, N and p, such that

un¢g4} is bounded in Wol’q(Q) Yqell,q),
K(-,un)w&} is bounded in L'(£2),

where 1 is defined in (5.0.17). Moreover, if (5.2.3) is fulfilled, then there exists
05 € (1,00) which depends only on 1, h, m, N and p such that

un¢g5} is bounded in Wol’ﬁ(Q)
K(-, un)]un|5‘_A1/JS5} is bounded in L'(£2),

where X, \, § and p are as in (5.0.14)-(5.0.16) and (5.2.5) but with r = N.

Proof. The proof is divided into two steps.

STEP I. We fix 0 € (0, ]%), o€ (0, 1+ piz(}:lp))r) and we choose

vz/Jm = {1 — sign(un)wm

1
(1+ Iunl)”(“’)l]
as a test function in (5.2.2). We observe that 6 < z% implies that p(1 —6) —1 > 0.
Since
lv| <1, |v[Y?® <1 a.e. on,

and

Yitn =0) PP 4 pdVpuy? 1 ace. on Q,

v (00") = b= 0) U

we obtain that

Vu,|P
olp(1 =) =1] | e+ [ 1K el
< B8 190l gy [ IVanl 167k [ (0l Tunp e [ 1],

which in turn, using (5.0.11), implies that

|Vun|p 5 / X 06
C — P k|, | MpP
O/Q(l—i—]un])P(l—@)w + ) Bl
§C1/ |Vun|p_1¢p5_1+/ |b\|Vun|P—1¢P5+/ ke | P00 Lgppd
Q 9} Q
+/ . (5.2.14)
Q

where

Co=alp(l-0)—-1], C; :pﬂ(5||‘v¢HL°°(Q)'
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Chapter 5. Local regularity properties of solutions

Thanks to Young’s inequality, the right-hand side of (5.2.14) can be estimated by

Co |Vuy, [P . 2p_10‘f/ ~1)(1-0),p(5—1
=0 + 1+ |uy,| )PP~ DE=0),p(0-1)
P’ Q(1+\un\)p(1_9)¢ pCh! Q( funl) ¥
p—1
.2 _1/\b\p(1+]un|)p(p’1)(1’9)1/zp5+1/k\un\Azp”‘SJng,
pCy— Ja 2 Ja

where C is a positive constant which does not depend on n. Hence, from (5.2.14)
we get

|V, |P 5 1/ \,.po
C G Y
3/Q (1 + |u”‘)p(1_9)¢ + 9 o "LL | w

< 04/ (1 + || )PP DA=0)p(6-1)
Q
+ 05/ BP(1 + [un )PP~ DA=OyP 4, (5.2.15)
Q

where c Lo .
0 2P~ 2P~
03:77 C4ZT11, 5:?‘

p pCy pC

By Holder’s inequality and assumption (5.2.4), we have that

b
C4/ (1 4 Juy, | )PP~ DA=0)yp0=1) < C4‘Q|% [/ (1+ ‘un’)(pl)p*ﬂ@)wp*(t?l)] !
Q Q
D
h] 7 hFD)
< cylal¥ [/ (k) } Y
Q
» {/ k(14 |un|)(p_1)p*(2+l)(l_6) p*<h+]11><6—1)_1} D . (5.2.16)
Q
and
z z
Cs [ 161+ un P00 < 5 ([ ) [ [ (1t funlyror ]
Q Q Q
x Ay
o () [L6
Q Q
. __ph
X {/ k(1+ |un\)—(p_1)p (Tl)(l_e)wip (231)5—1} ey (5.2.17)
Q

Then, we choose 6 and § such that

(p—Dp*(h+1)(1—-0)

and
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5.2. Local regularity results for the problem (5.0.7)

For this purpose, we must impose that

A= = Dp (h+1)’
P
0>0=1- ,
- . (pl—hl)p*thrl)
(p* —p)h + p*

Thus, we apply Young’s inequality in (5.2.16) and (5.2.17). Putting together the
estimates obtained in this way with (5.2.15) and using the fact that 0 < ¢ <1 on
Q, we deduce that

T ’)
— Elun| " < Cg VO € |6,— 5.2.18
Jy e e+l <00 o< (a5 o219

where Cg is a positive constant which does not depend on n.
Now, for any fixed ¢ € [1,p), using Holder inequality and (5.2.18), we obtain
that

s 1 |Vu,|? —0) 08
Ppd _ - n 1 q(1-0),/,p0
/Q’V””’ v eq/n(1+|un|>q<1—">( T
pP—q

1 |V, |P v a1-0) <175
S T (1= 1 W) Pma P
A {/Q (1+ ’uan(l—é))} {/Q( + lunl) =7 9 ]

4 (p=q)h
< Cé)

p—q 3 B
6 {/ (k;_lq/))h] p(h+1) [/ k‘(l " ]un|)W¢p6] p(h+1) .
= pq o .

Thanks to (5.2.18) again, the right-hand side of the previous inequality is uniformly
bounded with respect to n if

pq(h +1)(1 - 0)
(p—q)h

<A,

that is,
pAh

IS D p0—0h+p(—0)

(5.2.19)

Hence, for any g € [1,G1) where §; is defined in (5.0.17), we can choose 6 € [é, 1%)

sufficiently close to :r% in such a way that (5.2.19) is fulfilled.
STEP II. Assume that f satisfies (5.2.3). Arguing as in the proof of Lemma

5.2.3, for any fixed v € (1%, oo) and 0 € (1,00), we obtain that

C?/ ’V‘un"y‘pwpé_i_/ |K(x7un)”un‘p('yfl)+1¢p§
Q Q

s%/mﬁwmﬂ+@/w%wwwﬁﬂm%WAWwé@zm
Q Q Q
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Chapter 5. Local regularity properties of solutions

By Hélder’s inequality and assumption (5.2.4), we have that

b
08/ ‘un‘pm/}p(éfl) < CS‘Q’% (/ un’p*v¢p*(61)> P
Q Q

_» ) . ) _ph
< CsllF [/ (klw)hr e (/ | P g ”1)p Y (52.21)
Q Q
b

P
Co [ 10Plual 0 < Co ([ 1) ([ funl 070"
Q Q Q
~ h] PO Sy phens |\ FORTD
_ P P A _ p*(h
< O (o) [ [ 0me) T (SRS T

(5.2.22)

and

1

1
/ |f|‘un’p(7*1)+1¢p5 < (/ |f¢|m) m (/ ‘un‘[p('yl)+l]m/w(p61)m/> m!

(o) [f e

h
(=41t D)m! (A Dm (p5—1) 1\ (ht)m/
X (/ K| D 0 D 1) . (5.2.23)
Q

Then, we choose v and § such that

Aply -1 +1> max{p*(h+ Dy [py =1 +1](h + 1)m’},

h ’ h

and

pd < min 1,

{p*(h—l— -1 - (h+m'(ps 1) 1}
. :

h

Hence, we impose that

A A= (p—l)p;(thl),
7<min{N()\£)p—i—1)h /\h(m—1)+(p—1)(h+m)}
- p*(ph+7) p(h+m)
5>max{ p*(h+1) h(2m—1)}.
= (p* —p)h+p*" p(h+m

The result now follows proceeding as in the proof of Lemma 5.2.3. O

5.2.2 Proof of Theorems 5.2.1 and 5.2.2

Proof of Theorem 5.2.1. Let {u,} be the sequence of weak solutions to the approx-
imate problems (5.2.1) constructed above. The result follows immediately from
Lemma 5.2.3, since, arguing as in the proof of Theorem 3.2.3 (see [41]), we know
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5.2. Local regularity results for the problem (5.0.7)

that there exists a weak solution u to (5.0.7) which belongs to VVO1 9(Q) for every
q € [1,41), where §; is defined in (5.0.17), such that, up to a subsequence,

Uy — U a.e. on {2,
Vu, — Vu a.e. on (.

O]

Proof of Theorem 5.2.2. Let {uy,} be the sequence of weak solutions to the approx-
imate problems (5.2.1) constructed above. Arguing as in the proof of Theorem 2.3
of [10], we can prove that

{lun/P~}  is bounded in M7 (Q),
{|Vun|[P~'}  is bounded in MN'(1).

Then, we fix o € [0,00), 7 € (0,00) and we choose

17 (Go(un))

T

Uy =
as a test function in (5.2.2). Since
lvr| < XA, a.e. onfl, Ao = {lun| > o},

dropping the positive term coming from the principal part, we obtain that

| E@uled < [ wVerte [ 22
An,o- An,o’ An,o‘

By the generalized Hoélder’s inequality, we have that

[ IV < v ) 1Vl @) < Collblzs s,

n,h

Therefore, from (5.2.24) we deduce that

| K@l < Colblmsan + [ 151 (5.2.25)

Notice that
lim |v;| = x4,, ae. onR.
70 ’

Thus, letting 7 — 0 and using Fatou’s Lemma, estimate (5.2.25) yields
[ K@)l < Callbllraa + [ 111 (5.2.26)

which, in particular, for o = 0, implies that the sequence {K (-, u,)} is bounded in
LY(9Q).

Now, in order to perform the limit process and deduce the existence of a renor-
malized solution u to (5.0.7) which satisfies (5.0.2), we just have to prove that the
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Chapter 5. Local regularity properties of solutions

sequence {K(-,up)} is uniformly integrable on every measurable subset U CC €,
since the other terms can be treated as in the proof of Theorem 2.3 of [10].
For any fixed measurable subset U CC © and o € (0,00), we have that

| K< [ K + [, K@)
U Uﬂ{|un|§0} An,a

S/ sup ]K(:z:,v‘)]—k/ | K (2, up)|.
U An,o

T€[—0,0]

which in turn, exploiting (5.2.26), implies that

| K@) < [ sw K@)+ Colblpvaia,+ [ 11 (5:227)

TE|—0,0]

Since

lim |A, | =0 uniformly with respect to n,
g—00

for every € € (0,00) we can choose o sufficiently large such that
Collbllvsga, ) + /A f|<e VneN.
Hence, from (5.2.27) it follows that
|llfi|ri>10/U |K(x,up)| =0 uniformly with respect to n.

The result now follows by Lemma 5.2.4. O
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Chapter 6

Dirichlet problems with a
singular nonlinearity

In this final chapter we study, following the approach of [29], local regularity proper-
ties of solutions to nonlinear elliptic Dirichlet problems with a singular lower order
term and L' data. More precisely, we consider the problem

Au) = uiu on

u>0 on €, (6.0.1)
u=20 on 012,

where Q@ C RY is a bounded open subset with N > 2 and A is the differential
operator defined by
A(u) = =div(A(-, Vu)),

with A: Q x RV — RN a Carathéodory vector field such that

Ja, p€(0,00),p € (1,N):
Az, &) - € = alg,

|A(z, €)| < BlePP,

[A(z, &) — Az, n)] - (§ —n) >0,
fora.e. 1€ Q,VE, ne RN, €4y,

Moreover, we assume that u is a positive real number.

If f is a nonnegative function in L™ () for some m € [1,00], existence and
regularity results for the problem (6.0.1) depending on p and m are proved in [34]
in the case of linear principal part, that is, A(c, &) = M (x)§ where M is a uniformly
elliptic N x N matrix on 2 with L>°(Q) coefficients. In detail, the existence of a
locally strictly positive function v which satisfies (6.0.1) in the distributional sense
is established working by approximation. Moreover, if u € [1,00), u satisfies

14+p

uT € Hy(Q), u€ H(9),

and
u € L>®(Q) if m e (%,oo),
m(1+p)
u € LNNfl;nu (Q) ifme [1, %) ,
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while, if p € (0,1), u satisfies

u € HE(Q)NL>®(Q) if me %,oo),
Nm( ) *
we Hi(Q)NL "2 (Q) ifme (f_M)',f;) ,
1, Nm(1+p) N
w e WETE (g if m € {1, (f_u)') .

In order to prove these results, the authors construct an increasing sequence {u,}
of solutions to the nonsingular problems

—div(M (z)Vuy,) = @ er"l)u on €,
Up =0 on 0.

This sequence satisfies, for every compact subset U CC €2,
Up > Up—1 > ...>u1 >Cy >0 a.e. onU.

In order to prove this property, the linearity of the principal part does not play any
role. Indeed, it is enough to have a monotone differential operator such that the
strong maximum principle holds, as is the well known p-Laplace operator —A,(u)
with p € (1, 00).

The results of [34] are generalized to the case of nonlinear principal part in [49].
Here, we assume that f is a nonnegative function in L!(2) not identically zero, such
that

m € (1,00) if € [1,00),
JU cC Q, m: -
m€<<

fiu),m) if 1€ (0,1), feM™Q\U), (6.0.2)

or

SU ccQ,me <1,JZ>: Fe L™\ ). (6.0.3)

We consider the weak solution (in the sense of Definition 6.1.1 below) u to (6.0.1)
with datum f and we show that u and Vu have suitable regularity properties
depending on the regularity of f away from U. The results are as follows.

Theorem 6.0.1. Let f € L'(Q) be a nonnegative function not identically zero which
satisfies (6.0.2) and let V . CC Q be such that V D U. Assume that p € [1,00). Then,
there exists a weak solution u to (6.0.1) such that

p=1+p

u v e WyP(Q), ue WEP(Q),

and
ue L®Q\V) ifme(%,oo},
eclul € LY(Q)  for some ¢ € (0,00) if m = %’
m(p—1+4p)
ueMNN;iPi:# (Q\V) ifme(l,%).
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Chapter 6. Dirichlet problems with a singular nonlinearity

Theorem 6.0.2. Let f € L' () be a nonnegative function not identically zero which
satisfies (6.0.3) and let V. CC Q be such that V D U. Assume that p € [1,00). Then,
there exists a weak solution u to (6.0.1) such that

p—1l+p

u v e Wyt(Q), we WEP(Q),

and
Nm(p—1+p)

we L  Nam (Q\ V).

Theorem 6.0.3. Let f € L'(Q) be a nonnegative function not identically zero
which satisfies (6.0.2) and let V. CC Q be such that V D U. Assume that u € (0,1)

and p € (2 — %,N). Then, there exists a weak solution u to (6.0.1) such
that
1,N(p71+;4)
ue W, " (Q),
Vul € 2@\ V),
and
u€ L*X(Q\V) ifme(%,oo},
el € LY Q) for some ¢ € (0,00) if m = %’
Nm(p—1+p) N
T N-pm ; p N
ueE M N-p (Q\V) mee((l,u)’p)'

Theorem 6.0.4. Let f € L'(Q) be a nonnegative function (not identically zero),
which satisfies (6.0.3) and let V.CC Q be such that V 2> U. Assume that u € (0,1)

and p € (2 — %,N). Then, there exists a weak solution u to (6.0.1) such
that
N(p—1+p)
we W, VU (Q),
* !/
Vul € L/(Q\ V) me | (). 5).
IjVM(prHu) . )

V| € LNRT (Q\ V) Ume(LQM)>

and

Nm(p—1+p)

we L N (Q\ V).

6.1 Approximate problems and preliminary results

In order to give a meaning to the concept of solution, we use the following definition
(see [34]).

Definition 6.1.1. Let f be a nonnegative function in L'(£2) not identically zero.
We say that a function u: Q — (0,00) is a weak solution to (6.0.1) if

W e WP(Q) i pe [, 00), .
|A(7 vu)| € Lloc(Q)a

ue Wy (Q) if e (0,1),
YU cCc 3Cpye(0,00): u>Cpy ae. onfl,

139



6.1. Approximate problems and preliminary results

and

f(”;)c V(e OP(Q).

/QA(x,Vu)~VC:/Q -

Let us consider the following family of approximate problems (n € N):

A(uy) = (un]rl)” on €2,
Uy >0 on {2, (6.1.1)
Up =0 on 0,

where

fo(z) = To(f(x)) = min{f(z),n} fora.e x€Q, VneN.

By Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]), for every n € N, there exists
a function u, € WyP(€2) N L°°(Q) which satisfies

N fn(z)v D
/QA(x,Vun)-Vv_/QW Yo e WiP(Q). (6.1.2)

Since f, > 0 a.e. on {2, the weak maximum principle (see for example [68]) implies
that u, > 0 a.e. on 2. Moreover, we have the following (see [34] and [49]).

Lemma 6.1.1. Let f € LY(Q). Then, the sequence {u,} is nondecreasing and
locally uniformly strictly positive on 2, that is,

VUCCQ 3Cpye€(0,0): tupy1 >up>Cy ae. onU ¥YneN.  (6.1.3)

Proof. We fix n € N and we choose (u, — un+1)" as a test function in (6.1.2) and
then in (6.1.2) with u,, and f,, replaced by, respectively, u,+1 and f,11. Subtracting
the equalities obtained in this way, we have that

[ 146, Fun) = A, Tuna)] - Vi = i)

. / fn(l‘) . fn-l—l(x)

= Iz Iz
(o o

Since 0 < f,, < fny1 a.e. on  and p > 0, we have that

fn < fn+1
(s +3)" " (et )"

] (U, — uny1) ™. (6.1.4)

a.e. on €,

so that

J

fn() fr1()

_ _ +
(i 1) (umﬂ;)“] =)

S /an—i—l(x) ! !

B - +
(u” + #1)# (un+1 + #1)# (up = Unt1)" < 0.
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Chapter 6. Dirichlet problems with a singular nonlinearity

Hence, from (6.1.4) it follows that

/{ S0} [A(JI, Vun) - A([E, Vun+1)] : v(un - un—i—l)
Unp —Un+1
_ /Q (A2, Vi) — Az, Vit 1)] - V(tn — tuns1)t <0,

which implies that u, < u,4+1 a.e. on €.

If u,, and v, are two weak solutions to (6.1.1) which belong to T/VO1 P(Q), we can
repeat the same argument to deduce that u, < v, a.e. on . By symmetry, this
implies that the weak solution in I/VO1 P(Q) of (6.1.1) is unique.

Now, we recall that there exists a positive constant C' which depends only on «,
N, p and ), such that

1
luallpoo @) < Cllfill 7y < C,
so that
fl f1 fl

> > a.e. on €.
(D (s ey +1)" ~ (C D

Thus, by the strong maximum principle (see [68] and [75]), it follows that
VYUCCQ 3JCpye(0,00): w3 >Cy ae onl. (6.1.5)
Since u, > up a.e. on 2, (6.1.5) holds also for wu,,. O

Lemma 6.1.2. Let f € LY(Q). Assume that p € [1,00). Then
p—1l+p 1
{un ’ } is bounded in Wy (Q),
{un} is bounded in W,LP ().

Moreover, if u € (0,1) and p € (2 - %,N), then

N(p—1+pu)

{un} is bounded in W, ~ ' (Q).

Proof. We fix n € N and we divide the proof into two parts.
PART 1. Assume that p € [1,00). Since

“w
fniu”u < f a.e. on ()
1
(un + ﬁ)

choosing v/ as a test function in (6.1.2), we immediately obtain that
P P/ < p]l)+u>
ap | ———— Viu
a (p —1+ u) Q !

that is,
p—1l+4p 1
{un v } is bounded in W,?(Q).

p

:oz,u/ |V, [Puti §/f, (6.1.6)
Q Q
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6.1. Approximate problems and preliminary results

In particular, by Sobolev’s inequality, it follows that

(p 1+u)

{uy} is bounded in L™ ¥=»  (Q).

We observe that

N(p—1+p)
N-—p

hence {u,} is bounded in LP(§2). Moreover, for any open subset U CC {2, thanks

0 (6.1.6) and Lemma 6.1.1, we have that

[ £z an |19l > ap [ (VunPus > apc ™ [ 19wl
Q Q U U

therefore {uy,} is bounded in W7 ().
PART II. Assume that p € (0,1). We fix € € (O, %) and we choose
Ve = (€ + up)t — €
as a test function in (6.1.2). Since

Vuy, Fnve
€+ up)H’ (un + ;)“

Vvez,u( < f ae. onf,

n

o T f

Using Sobolev’s inequality, from (6.1.7) we have that

we obtain that

P
E3

oot

<[ 1
which in turn, letting ¢ — 0 and applying Fatou’s Theorem, implies that

et () e

Now, for ¢ € [1,p), the use of Holder’s inequality yields

Vu, |4 q(1—p)
/]Vun]q:/ |—"q|(17u)(e+un) v
“ (

€+ up) P
q p—gq
’Vun’p P pa(l—p) ] p

Thanks to (6.1.7) and (6.1.8), the right-hand side of the previous inequality is
uniformly bounded with respect to n if

gl —p) Np-1+u)

P—q N-p

p—1l+p p 1+u:|

v [(e—i—un) ;

)
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Chapter 6. Dirichlet problems with a singular nonlinearity

that is
g= N-14p)
N—-1+p
Finally, we observe that

N(p—1+p)

(N-1p+1
N—-1+pu '

>1e=p>2—
]

Now, assume that f € M™(Q\U) or f € L"™(Q\ U) for some U CC Q and
m € (1,00). By means of standard regularization techniques, we can construct a
function ¢ € W1H*(Q) such that 0 <9 < 1 on  and

» = 0 onU,
1 omQ\ W
In particular, assumptions (6.0.2) and (6.0.3) imply that, respectively,

Jyp € Whee(Q), m € (1,00):

m € (1,00) if € [1,00),
0<y <1 Q " 6.1.9
_¢_m On R m€<(1p_u),,oo> if p € (0,1), ( )
fi e M™(9Q),
and
3y e Whe(@), me (1,4
0<¢¥<1 onQ, (6.1.10)

fu e L™(Q).
Therefore, Theorems 6.0.1-6.0.4 are a consequence of the following results.

Theorem 6.1.3. Let f € L' () be a nonnegative function not identically zero which
satisfies (6.1.9) and let V. CC Q be such that V O U. Assume that p € [1,00). Then,
there exist a weak solution u to (6.0.1) and 6,1 € (1,00) which depends only on 1,
w, m, N and p, such that

p—1+p

u v e WyP(Q), ue WP,

and
wpder € WEP(Q) N L2(Q) ifme (¥, 00),
Nm(p—1+4p)
updnt € Wol’p(ﬂ) NL N (Q) ifme (1, %) .

Moreover, there exists a positive constant ¢ which depends only on «, f, N, and p,

such that N
5
eV e LY(Q) Um:;n

Theorem 6.1.4. Let f € LY(Q) be a nonnegative function (not identically zero),
which satisfies (6.1.10). Assume that p € [1,00). Then, there exist a weak solution
u to (6.0.1) and d,2 € (1,00) which depends only on 1, u, m, N and p, such that

p—1+p

u v e WyP(Q), ue WP,

and
Nm(p—1+p)

w2 € Wy P(Q) N L~ N-pm
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6.2. Local estimates on u,

Theorem 6.1.5. Let f € LY(Q) be a nonnegative function not identically zero
which satisfies (6.1.9) and let V .CC Q be such that V > U. Assume that pu € (0,1)

and p € (2 — (N_I#,N). Then, there exist a weak solution u to (6.0.1) and
du3 € (1,00) which depends only on v, u, m, N and p such that

N(p—1+n)

we W, VT (Q),

and
wpdns € WEP(Q) N L¥(Q) ifme (¥,00]

Nm(p—1+p)

wpns € WrPQ) N M- Mo (Q) ifm e ((lp_*“y?];) .

Moreover, there exists a positive constant ¢ which depends only on o, f, N and p,
such that

N
eeut? ¢ LYQ) ifm=—.
p

Theorem 6.1.6. Let f € LY(Q) be a nonnegative function (not identically zero),
which satisfies (6.1.10). Assume that € (0,1) and p € (2 (N=Dptd )“H N) Then,

there exist a weak solution u to (6.0.1) and 6,4 € (1,00) which depends only on 1,
w, m, N and p such that

N(p—1+p)

wew, VI (Q),

and
wpds € WP (Q) N L(9) ifme (¥, 00),
Nm(p—1+p)
uapOnn GW&’p(Q)ﬂL# Q) ifme [( pu ]I\j)v
1’Nm(p71+u) ’
ugpdns € Wy NI (@) ifm e (1, (&) ) .

6.2 Local estimates on u,

We begin observing that, by Lemma 6.1.2 and Sobolev’s inequality, if
N -1 1
pe (max{1,2—(N)“+},N>, (6.2.1)

then we have that
+u)

{un} is bounded in L (Q). (6.2.2)

Lemma 6.2.1. Let f € L'(Q2) which satisfies (6.1.10). Assume (6.2.1). Then,

there exists 0,5 € ( oo) which depends only on ¥, u, m, N and p, such that

1
p—1+p
s . . Nm(p—1+p)
the sequence {unw 5} is bounded in L~ N-rm ()

Proof. The proof is divided into two steps.
STEP 1. Let ¢ € W1H*°(Q) be such that 0 < ¢ < 3 on Q. By (6.1.10), we have
that f¢ € L™(§2). Then, we fix n € N, € € (0, %) and we choose
’U6¢6 _ [(6 + un)p('y—l)-&-l N 6p(’y—l)-i-l} (bd
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as a test function in (6.1.2), where

—1+4+pu 1 Nm(p—1+

76(19 w1 (p u))7 PO s
P P N —pm p—1+np

We observe that

p—14+p 1 Nm(p—1+p)
< =
P P N —pm

—1+

m>1—

)

Since

\% (Usﬁf)(s) = [p(y — 1) + 1]V (e + un)PO V¢’ + 6Vpvd® ! a.e. on 9,

fnve¢6

] \& < fle+ 71,1)1’(“**1)“*%#S a.e. on 2,
(Un + g)

we obtain that

alp(y = 1) +1] | V(e )P0
Q
< B3IV Ellieqey [ [Tunl? e+ a0 1601
Q
+ / fle+ up PO~ DF1m0gd,
Q
which in turn, by Young’s inequality, implies that

alp(y—1) +1] (v=1) 4o
e /Q |Vun[P(e + un)P 7"V o

(BNl ()
<
= plalp(y = 1) + 1]}

Thanks to Sobolev’s and Hoélder’s inequalities, estimate (6.2.3) yields

/(e+un)m¢5‘1’+/ Fe4 un)PO~ D=1y (6.2.3)
Q Q

P
3

e up o F | < [V {ie s u)r -0t}

2506V |l Lo e) \
< (2807 [ [VuaPle-+ )0 1><z>5+< ool “”) [+ ummar

= 1
9] Q 0
where

O 2850876V 9| o= (@) p+ 250011Vl =)\ o = p(28507)?
T\ ab(y = 1)+ 1] p T T ap(y -1+ 1]

p
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Letting ¢ — 0 and applying Fatou’s Lemma and Lebesgue’s Theorem, we obtain
that

* p*6 P
(o)
Q
<Co [upet ey ([ Irolm)" ([ akOiangum ) (60
Q Q Q

Now, we observe that the choice of v implies that
[p(y = 1) + 1 — pm” < p*y.
Thus, by Hélder’s inequality again, from (6.2.4) we obtain that

p

* *6 I
(e=)’
1 p(y=D+1—p
5 m)\™ p*y(5—1) p*y
<Co | u?¢” P+ Co| | [f0l upy TG , (6.2.5)
Q Q Q

where

1 py=D+1—p
= |Q’7n/ p*y Cl

Furthermore, since

v —1 *
oo -1 P
p=1l4+p  py-1)+1-p " p
using the fact that 0 < ¢ <1 on €2 and the Young’s inequality, we have that

o>

p(y=D+1l-p

C (/Q\fmm)% ([ ottt
<o) rfcbrm)"l”‘ (/ upw)(’
(/ \f¢|m)m]p‘°f+u +p<v—1;y+1_ﬂ (/Quz*wpii‘s)p*,

so that, going back to (6.2.5), we deduce that

S 1+u

o BB\ 7 5 N\ G thm
[wros)" s [ g +on( [ 159 (6.2.7
Q Q Q

p

03 — COP'V C Cp 1’Y+u
p—1+p
Recalling the definition of §, estimate (6.2.7) becomes

/Q(u pr—1tn 1+u+ )p7 * *
<C5(7){[ i (wm)mru (f |f¢>|m)“"q+y“””} (6.2:5)

146

where




Chapter 6. Dirichlet problems with a singular nonlinearity

where

Cs) = max { (2Cs(1) 7, (2Cs (1) }.

We remark that

,-Yp
Cs() = i (1 + RN u]p> ’

o p Pﬁru Q p[pE'yfﬂjl)] fyp 'y
— p— 1+u m!  p*(p—1+p
«7) = ((’Y—l)+1—ﬂ) ’

where Cg and C7 are positive constants which do not depend on . Hence, C5(7)
depends continuously on « and satisfies

7%1}}%” C5(v) = o0, o #g(lp - Cs(7y) € (0,00). (6.2.9)
P p* N—pm

In particular, passing to the limit as y — L w in (6.2.8), by Lebesgue’s The-

pm
p=lt+p 1 Nm(p—1+p)
p ’'p* N-pm ’

orem, we deduce that the estimate (6.2.8) holds for every v € (
STEP II. Now, suppose that

p Nmp—1+p) _ Np—1+p)
p N-pm = N-p
that is
< N
G
and consider the estimate (6.2.8) with v = L %pﬂ“) and ¢ = -
N—mp Nm]\EP__i:H)
/ (u PP 57 TP TG 1+#)) ?
Q

p*
Nm(p—1+p) ] 5

< Cs [/ﬂ (unwﬁ)’% N=pm (/ |f¢|m) o . (6.2.10)

Thanks to (6.2.2), the right-hand side of (6.2.10) is uniformly bounded with respect
Nm(p—1+p)

to n. Therefore, it follows that the sequence {wnw% 1} is bounded in L™ N-rm — (Q),
where

M 1t u P Nmp— L4 p)
Otherwise, suppose that

pNmp—1+p Np-1+p
p* N —pm N-p

In this case, we perform an iteration argument, as in the proof of Lemma 5.1.3. The

idea is to start from the estimate (6.2.8) with v = %%}};“) and ¢ a suitable

power of 1) and apply (6.2.8) recursively a finite number of times, choosing v and
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¢ in a suitably way. It is worth nothing that, by (6.2.9), it is necessary to consider
> p=lip
P

. . ] Nm p* i+2
I = min {zEN. N—pm < (;) ,

_ 1 Nmp—1+p) (p\'
’YZ - p* N—pm p* 9

¢I:1/}7 ¢i:¢i+1w+l )
vie{0,...,I}.

By construction, we have that I > 1 and

only values of ~
We define

p—1+p

p—1+
TM<71<’YI—1S---S’YO;
0<¢g<¢1<...<¢; onQ.

Hence, we set
Cs = max C5(v) = C5(71),

and we consider estimate (6.2.8) with v =~y and ¢ = ¢y:

1 1\ P"0
INC
Q
1\ e
< Cy UQ (und%’”“) ] +</ny¢o|m> . (6.2.11)

By the definitions of +; and ¢;, we have that

" p*
P 1 1 P

o < f )] [ )]

which in turn, using (6.2.8), implies that

1\ P
Q

< e [ uner=)" ] 4 (L)) g2

Putting together (6.2.11) and (6.2.12), it follows that

11

P70
/ < p1+u+vo)
Q

< Cy(2C8)F VQ <un¢f—%w)”51](f) +</ny¢1|m)m

( pl-zo)
p—1t+u)m
4Gy (/Qlfqbo’") |
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Thus, we iterate the previous inequality I times and we obtain that

1, 1\ P
—1
/ (“”5 h ) =
¢

Co [ (waof )" <p;)2+09§< i rf¢im)“p:13”", (6.2.13)

where
I (p*)'
Cy=Cg+ Cg(QCs)ZiZI( P ) .

Since

Nm(p—1+ 41 N(p—1+
— (p u)(p) < (p 1)

N—pm  \p* N-p
by (6.2.2), the right-hand side of (6.2.13) is uniformly bounded with respect to n.

Therefore, since
Nm(p -1+ p)
N —pm

*
P 7 =
and
1 1 1 p—1l+p p—1l+p
p=1tn g _ P lHR (1+ 0 )(1+ " )
b0 =¢

1 I p—1l+4p I —1
T S

— ¢p—1+#

... =¢

9

Nm(p—1+p)

from (6.2.13) we finally deduce that {u,ﬂb‘s#vl} is bounded in L™ ¥-rm (Q), where

[1(1+ 2100

s = ————
- p_]‘—"_IU/,L:O Vi

O]

We recall that, for any o € (0,00), T, denotes the truncation function at level

o, that is,
T,(5)=1" £ls] <o
sign(s)o if |s| > o,

and G, denotes the real function defined by
Gy(s) =s—T,(s) = (|s| — o) Tsign(u) VseR.
Furthermore, for any n € N and §, ¢ > 0 we define
Apso = {unw5 > a}. (6.2.14)
We observe that (5.1.9) implies that

lim |A, 5, =0 uniformly with respect to n. (6.2.15)
g—00
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Lemma 6.2.2. Let f € L'(Q) which satisfies (6.1.9). Assume (6.2.1). Then, there
exists 0,6 € (1,00) which depends only on p, 1, m, N and p, such that
{unwéﬂvﬁ} is bounded in L*(2) ifme (%, oo) ,
ecunwa”’e} is bounded in L*(Q) for some c € (0,00) if m = %,
unw‘sﬂﬁ} is bounded in M™ () if m e (1, %) .
)

Proof. First, we observe that assumption (6.1.9) implies that fi € L*(
t such that

for every

te(l,m) if e [1,00),
te {(1*M)/,m> if 11 € (0,1).

Therefore, by Lemma 6.2.1, for every s € [ ,M) there exists 0,5(s) €

pm

(pjﬂl, oo) such that {un¢5“’5(s)} is bounded in L*(£2).

We fix s € (p, W) and we define

Oue =1+08,5(s).
Moreover, we define
Ay =Ans,60 Yo €(0,00),VneN,
and, exploiting (6.2.15), we choose oy € (0, 00) such that
|As| <1 Vo € [og,0), Vn e N. (6.2.16)
Then, we fix n € N, o € |09, 00) and we choose
v=Gy (un¢5u,6) w(p—l)%,e
as a test function in (5.1.3). Since

w61y, a.e. on Q,

Vol < [Vun[¢70 x4, + o
v<x4, a.e. onfl

we have that

o [ 1FunlPie0 < pBag [V T e 1+/

o+ )’“
which in turn, using Young’s inequality and the fact that
v < v
/Ao' (u + h‘u' / f / f
implies that
0
—/ |V, [PypPoms < (p6p6)1 / |V¢|pu§’z¢p5“*6*p+/ fu. (6.2.17)
pbo Ag Q

Now, the result follows arguing as in the proof of Lemma 5.1.4 (see (5.1.38)). O
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6.3 Local estimates on Vu,

Lemma 6.3.1. Let f € L'(Q) which satisfies (6.1.10). Assume (6.2.1), p €

(0,1) and that m € (17 (&)) Then, there exists 0,7 € (1,00) which depends

only on u, v, m, N and p, such that the sequence {’V (und)‘sw)
Nm(p—1+v)

LY ().

} 18 bounded in

Proof. First, we define

q_Nm(p—1+u) 7_£
Nom(ow Ty

and
*

0 0
Sur = qmax{“’?—l—l,p 15 +p,5u75},
q m p

*

where d, 5 is given by Lemma 6.2.1. We observe that

* ! _1
m>< p ) IOV ek )
L—p P

Moreover, we have that

[1=p(l—7)—pm =py=gq :
Then, we fix n € N, € € (0, %) and we choose

{(6 )P (=) | g0

as a test function in (6.1.2). Arguing as in the first step of the proof of Lemma
6.1.2, we get

/ ‘V’Lbn‘p ,(/}q(s#j
a (

€+ un)p(lf'Y)

< Co/(e+un)’”wq5’”‘p + Cl/ Fe 4 up) P71y (6.3.1)
Q Q

where Cy and (' are positive constants which does not depend on n. By Holder’s
inequality, we have that

. P @b, 7-p)

p*
C’o/ (€ + up )PV Pu77P < C’0|Q|1_PL* [/ (e+up)?yp 7 ] , (6.3.2)
Q Q
and

Cl/ﬂf(€+un)1—p(1—w)—u¢qé7 < {/ﬂ(ﬁmm]i‘ [/Q(e—kun)q*iﬁ(qé“”_l)m/} ’
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which in turn, recalling the definitions of ¢ and §,, 7 and the fact that 0 < <1 on
Q, imply that

|_» Nm(p—1+7) pl*
Co [ (e-+ un)18emr < ol { [ [+ unyutes] } C(6.34)
Q Q
and

C1/ f(€+un)1—p(1—v)—u¢q5u,7
Q

S(l[Axﬂmmyi{é[&+““¢%ﬂN%zﬁw}él.(6&&

Hence, putting together (6.3.1)-(6.3.5), by Lemma 6.1.2, it follows that
|vun|p qdu.7 . . 1
{(6—}—un)p(l_7)w K is bounded in L (Q) (636)
Now, the use of Holder’s inequality yields

Q0,007 [Vun|? q(1=7) ,/,a0p.7
/Q V[T < /Q (€ + )= (€ + un) pr
p

_ -5
< {/ —]Vun|p ¢f15u,7} ! [/ (e + un)%wqéuﬂ o
o ( Q

€+ un)p(l_V)
A simple calculation shows that

pg(1—v) . Nm(p—1+p)
P—q N —pm

Therefore, recalling the choice of d,, 7 and the fact that 0 < ¢» < 1 on €, thanks
to Lemma 6.2.1 and estimate (6.3.6), from the previous inequality we deduce the
result. O

Lemma 6.3.2. Let f € L'(Q) which satisfies (6.1.10). Assume (6.2.1), u € (0,1)

« N/
and that m = (pfu) . Then, there exists 0,8 € (1,00) which depends only on p, ¥,

1
N and p, such that the sequence {‘V (unwéu,s) } is bounded in LP ().

Proof. We define
Oug =14 0,5,

where 05 is given by Lemma 6.2.1, and we choose u,1P’*3 as a test function in
(6.1.2). Arguing as in the first part of the proof of Lemma 6.2.1, we obtain that

/ |V [PpPos < C'o/ Uﬁwpa”’sfp-i-a/ Fuy HpPons, (6.3.7)
Q Q 0

where Cy and C are positive constants which does not depend on n. By the
definition of ¢, 8, we have that

CO/ uzzlwp%,sfp:(jo/ uﬁlppauvl, (6.3.8)
Q Q
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and, using Holder inequality and the fact that 0 < <1 in €, we obtain that

e [ purtes < | [ (fWV I (unw%)p*]l”?. (6.3.9)

Hence, from (6.3.7)-(6.3.9) it follows that

L 1Vunpures < ¢y [ s o [ <fw>m]*L I (unwﬁ)ﬂw,

which in turn, thanks to Lemma 6.2.1, implies the result, since

Nmp—1+pu)
N —pm o

6.4 Proof of Theorems 6.1.3-6.1.6

Let {u,} be the sequence of weak solutions of the approximate problems (6.1.1)
constructed above. Thanks to the compactness properties of {u,} (see [49], [50]
and [51]), the results are an immediate consequence of Lemmas 6.2.1, 6.2.2, 6.3.1
and 6.3.2 choosing d,,;, 7 € {1,2,3,4}, in a suitably way.
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