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Introduction

This Ph.D. Thesis is devoted to the study of boundary value problems associated
to some nonlinear second order elliptic PDEs in bounded open subsets of RN . More
precisely, we study, first, existence and regularity results for solutions of two classes
of Dirichlet problems characterized by the interaction between a first order term
and a zero order term. The model examples are the following semilinear problems:{

−div (M(x)∇u− uE(x)) + k(x)|u|λ−1u = f(x) on Ω,
u = 0 on ∂Ω,

(0.0.1)

and {
−div (M(x)∇u) + k(x)|u|λ−1u = E(x) · ∇u+ f(x) on Ω,
u = 0 on ∂Ω.

(0.0.2)

Here Ω ⊂ RN is a bounded open subset with N ≥ 3 andM : Ω→ RN2 is a uniformly
elliptic matrix with L∞(Ω) coefficients, that is,

∃α, β ∈ (0,∞) :
M(x)ξ · ξ ≥ α|ξ|2,
|M(x)| ≤ β,
for a.e. x ∈ Ω, ∀ ξ ∈ RN .

Moreover, E : Ω→ RN is a vector field with LN (Ω) components and k : Ω→ [0,∞)
is a nonnegative function in L1(Ω) which satisfies some extra conditions (see (0.0.5)
below).

A simple application of Hölder’s and Sobolev’s inequalities shows that the linear
differential operators

u→ −div (M(x)∇u− uE(x))
and

u→ −div(M(x)∇u)− E(x) · ∇u
map the Sobolev space H1

0 (Ω) to its dual space H−1(Ω), but, in general, they fail
to be coercive. This feature produces specific difficulties in the study of problems
(0.0.1) and (0.0.2) when k ≡ 0 even if f is a smooth function on Ω, since, if no
additional assumptions on E are required (as smallness conditions on the size of
‖|E|‖LN (Ω) or sign conditions on div(E), see [72], [59] and [74]), or no absorption
terms are added in the left-hand side of the equations in (0.0.1) and (0.0.2) (see
[72]), the classical theory for linear coercive operators (Lax-Milgram’s Theorem)
cannot be applied.
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First order term in divergence form
In papers [14] and [15], existence, uniqueness and regularity results for the problem
(0.0.1) are established in the case k ≡ 0. In detail, if f ∈ Lm(Ω) for some m ∈
[(2∗)′,∞] and |E| ∈ Lr(Ω) for some r ∈ [N,∞], then there exists a unique weak
solution u which belongs to H1

0 (Ω) such thatu ∈ L
∞(Ω) if m ∈

(
N
2 ,∞

]
, r ∈ (N,∞],

u ∈ Lm∗∗(Ω) if m ∈
[
(2∗)′, N2

)
.

(0.0.3)

Furthermore, if m ∈ [1, (2∗)′), then there exists a unique weak solution u obtained
as limit of approximations (see also [43]) which satisfies{

u ∈W 1,m∗
0 (Ω) if m ∈ (1, (2∗)′) ,

u ∈W 1,q
0 (Ω) ∀ q ∈ [1, N ′) if m = 1.

(0.0.4)

These results are still valid for the problem (0.0.1), under the same assumptions
on E and f , because of the coercivity properties of the zero order term. Roughly
speaking, (0.0.3) and (0.0.4) say that we have the existence of a weak solution to
(0.0.1) which satisfies (almost) the same regularity properties achieved in [72] for the
weak solutions to (0.0.1) when |E| ≡ 0. On the other hand, explicit radial examples
(see [15], Examples 2.1 and 2.2) can be constructed to show how the regularity
properties (0.0.3) and (0.0.4) can be lost when the right-hand side f is smooth
enough on Ω, but |E| does not belong to LN (Ω). Anyway, regularity results similar
to (0.0.3) and (0.0.4) can be recovered in a borderline case (0 ∈ Ω and |E(x)| ≤ C

|x|
a.e. on Ω for some positive constant C), taking advantage of Hardy’s inequality
(provided that C is small with respect to α, m and N), as shown in [15].

In paper [15] the study of (0.0.1) when k ≡ 0 is completed considering the case
|E| 6∈ LN (Ω). In order to give a meaning to the concept of solution, the definition
of entropy solution (introduced in [4]) is used and, in this functional framework,
existence and uniqueness results are proved. Moreover, the regularizing effect of the
polynomial zero order term is investigated in the spirit of [26] and [39], assuming that
the coefficient k is a positive constant (see also [16]): if λ > N+2

N−2 , |E| ∈ L
2(λ+1)
λ−1 (Ω)

and f ∈ L
λ+1
λ (Ω), then there exists a (unique) weak solution u to (0.0.1) which

belongs to H1
0 (Ω) ∩ Lλ+1(Ω). The interesting point is that λ > N+2

N−2 implies that
2(λ+1)
λ−1 < N , λ+1

λ < (2∗)′ and λ+ 1 > m∗∗. Therefore, on the one hand, there is an
improvement in the regularity properties of unbounded finite energy weak solutions
(that is, which belong to H1

0 (Ω)) and of their distributional gradients with respect
to the case k ≡ 0; on the other hand, the regularity properties of unbounded finite
energy weak solutions established in the case k ≡ 0 are achieved even if |E| 6∈ LN (Ω)
and f 6∈ L(2∗)′(Ω).

Let us now give a description of our main contributions about problem (0.0.1).
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Introduction

Regularizing effect of a polynomial zero order term

In paper [40] we generalize the results of [15] and [16] to the case of a positive
coefficient k which only belongs to L1(Ω) and satisfies

∃h ∈ (0,∞) : k−h ∈ L1(Ω). (0.0.5)

We point out that, if k is a positive constant (or, more generally, k is bounded from
below on Ω by a positive constant), then k−1 belongs to L∞(Ω) and condition (0.0.5)
is fulfilled for every h ∈ (0,∞). Our proofs in [40] can be easily particularized to
the case k ≡ constant > 0. The results obtained in this way are the same as (0.0.6)
below just letting h→∞. Moreover, they cover also the lacking case |E| 6∈ LN (Ω)
and f ∈ L1(Ω). In detail, assuming that f ∈ Lm(Ω) for some m ∈ [1,∞), |E| ∈
Lr(Ω) for some r ∈ (2,∞) and k ∈ L1(Ω) satisfies (0.0.5), we prove the existence of
a weak solution u such that

u ∈ H1
0 (Ω), k|u|λ̃ ∈ L1(Ω) if m ∈ (1,∞), λ ∈

[
λ,∞

)
,

u ∈W 1,q̃
0 (Ω), k|u|λ̃ ∈ L1(Ω) if m ∈ (1,∞) , λ ∈

(
λ, λ

)
,

u ∈W 1,q
0 (Ω) ∀ q ∈ [1, q̃1), k|u|λ ∈ L1(Ω) if m = 1, λ ∈ [λ,∞) ,

(0.0.6)

where

λ = (h+ 1)r
(r − 2)h,

λ = max
{(r + 2)h+ 2r

(r − 2)h ,
h+m

(m− 1)h

}
,

λ̃ = min
{(λ− 1)(h+ 1)r

2h+ r
,
λ(h+ 1)m
h+m

}
,

q̃ = min
{ (λ− 1)hr

(λ+ 1)h+ r
,

2λhm
(λ+ 1)h+m

}
,

q̃1 = 2λh
(λ+ 1)h+ 1 .

Following the approach of [14] and [15] (see also [25]), we establish also the unique-
ness of finite energy weak solutions and the uniqueness of infinite energy weak
solutions which are obtained as limit of approximations.

Extension to the nonlinear case

In chapters 2 and 3 we generalize the existence and regularity results (0.0.3)-(0.0.4)
and (0.0.6) to the nonlinear problems{

−div (A(x, u,∇u)−D(x, u)) = f(x) on Ω,
u = 0 on ∂Ω,

(0.0.7)

and {
−div (A(x, u,∇u)−D(x, u)) +K(x, u) = f(x) on Ω,
u = 0 on ∂Ω.

(0.0.8)
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Here A : Ω×R×RN → RN , D : Ω×R→ RN and K : Ω×R→ R are Carathéodory
mappings (that is, measurable on Ω with respect to the first N variables and con-
tinuous on R × RN , R and R with respect to the other composition variables,
respectively), which satisfy the following structural assumptions:

∃α, β ∈ (0,∞), p ∈ (1, N), a ∈ Lp′(Ω):
A(x, σ, ξ) · ξ ≥ α|ξ|p

|A(x, σ, ξ)| ≤ β
[
|a(x)|+ |σ|p−1 + |ξ|p−1],

[A(x, σ, ξ)−A(x, σ, η)] · (ξ − η) > 0,
for a.e. x ∈ Ω, ∀σ ∈ R, ∀ ξ, η ∈ RN , ξ 6= η,

(0.0.9)


∃ d ∈ L

N
p−1 (Ω):

|D(x, σ)| ≤ |d(x)||σ|p−1

for a.e. x ∈ Ω, ∀σ ∈ R,
(0.0.10)

and 
K(x, σ)sign(σ) ≥ k(x)|σ|λ for a.e. x ∈ Ω, ∀σ ∈ R,

sup
τ∈[−σ,σ]

|K(·, τ)| ∈ L1(Ω) ∀σ ∈ (0,∞). (0.0.11)

Of course, in this case the thresholds on the regularity of f for the regularity of the
solution and of its distributional gradient (see Theorems 2.1.7-2.1.9 and 3.1.1-3.1.3
below), will also depend on the parameter p. We emphasize that the existence and
regularity results for the finite energy weak solutions to (0.0.8) which we present, are
contained in those achieved in [6] using symmetrization techniques and assuming
that b and f belong to suitable Lorentz spaces (see also [54] and [55]). Here we give
a different proof using the techniques of [14].

Problems involving increasing powers

In chapter 4 we follow the approach of [31] and [32] (see also [44] and [13]) and we
study the asymptotic behaviour as λ→∞ of the weak solution uλ to the problem
(0.0.8) in the particular case{

−div (A(x, uλ,∇uλ)−D(x, uλ)) + k(x)|uλ|λ−1uλ = f(x) on Ω,
u = 0 on ∂Ω.

(0.0.12)

In detail, we prove that, if f ∈ Lm(Ω) for some m ∈ [1,∞), then there exists a
function u which belongs to the closed convex subset of W 1,p

0 (Ω)

C =
{
v ∈W 1,p

0 (Ω): |v| ≤ 1 a.e. on Ω
}
,

such that {
uλ → u in W 1,p

0 (Ω) if m ∈ (1,∞),
uλ → u in W 1,q

0 (Ω) ∀ q ∈ [1, p) if m = 1.
Moreover, u is a solution of the following bilateral obstacle problem:∫

Ω
(A(x, u,∇u)−D(x, u)) · ∇(v − u) ≥

∫
Ω
f(x)(v − u) ∀ v ∈ C.
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Introduction

First order term not in divergence form
For what concerns problem (0.0.2), one can think to use a duality approach to
recover existence and regularity results in the case k ≡ 0, since it is (at least
formally) the dual problem of (0.0.1) when k ≡ 0 (see [2], [56], [16] and [17]).
Anyway, the existence and uniqueness of a weak solution which belongs to H1

0 (Ω)
are established in [35] when f ∈ L(2∗)′(Ω) independently from (0.0.1). This existence
result is extended in [53] to the nonlinear problem{

−div(A(x, u,∇u)) +B(x,∇u) = f(x) on Ω,
u = 0 on ∂Ω,

(0.0.13)

where A : Ω× R× RN → RN is a Carathéodory vector field which satisfies (0.0.9),
and B : Ω× RN → R is a Carathéodory function such that

∃ b ∈ LN (Ω):
|B(x, ξ)| ≤ |b(x)||ξ|p−1,

for a.e. x ∈ Ω, ∀ ξ ∈ RN .
(0.0.14)

Regularity results in Lorentz spaces are proved in [6] when b and f belong to suitable
Lorentz spaces (see also [52], [5], [7], [54], [55]). We emphasize that these results
guarantee the existence of a weak solution u ∈ W 1,p

0 (Ω) to (0.0.13) such that, if f
belongs to the Marcinkiewicz space Mm(Ω) for some m ∈ ((p∗)′,∞), then

u ∈ L∞(Ω) if m ∈
(
N
p ,∞

]
,

ec|u| ∈ L1(Ω) for some c ∈ (0,∞) if m = N
p ,

u ∈M [(p−1)m∗]∗(Ω) if m ∈
(
(p∗)′, Np

)
,

(0.0.15)

while, if f ∈ Lm(Ω) for some m ∈
[
(p∗)′, Np

)
, then

u ∈ L[(p−1)m∗]∗(Ω). (0.0.16)

In chapter 2 we present the existence result of [53] and we give a different proof of
the regularity results (0.0.15) and (0.0.16), using the techniques of [35], [53], [72]
and [28] (see Theorems 2.2.5-2.2.8 below). Adopting the same approach, we prove
also the existence of a weak solution u to (0.0.18) such that, if f ∈ Lm(Ω) for some
m ∈

(
max

{
1, N

N(p−1)+1

}
, (p∗)′

)
, then

u ∈W 1,(p−1)m∗
0 (Ω). (0.0.17)

We remark that (0.0.15)-(0.0.17) are the same regularity results proved in [72], [22],
[23] and [28] for the weak solutions to (0.0.18) in the case B ≡ 0.

Let us now give a description of our main contributions about problem (0.0.13).
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Regularizing effect of a zero order term

In paper [41] we investigate the regularizing effect of the zero order term K(x, u)
on the solutions of the problem{

−div(A(x, u,∇u)) +B(x,∇u) +K(x, u) = f(x) on Ω,
u = 0 on ∂Ω.

(0.0.18)

Roughly speaking, we adapt the approach of [40] to handle the first order term
B(x,∇u) and we obtain existence and regularity results similar to those given in
chapter 3 for the problem (0.0.8). In detail, assuming that f ∈ Lm(Ω) for some
m ∈ [1,∞) and b ∈ Lr(Ω) for some r ∈ (p,∞), we prove the existence of a weak
solution u to (0.0.18) such that

u ∈W 1,p
0 (Ω), K(·, u)|u|λ̃−λ ∈ L1(Ω) if m ∈ (1,∞), λ ∈

[
λ,∞

)
,

u ∈W 1,q̃
0 (Ω), K(·, u)|u|λ̃−λ ∈ L1(Ω) if m ∈ (1,∞), λ ∈

(
λ, λ

)
,

u ∈W 1,q
0 (Ω) ∀ q ∈ [1, q̃1) , K(·, u) ∈ L1(Ω) if m = 1, λ ∈ (λ,∞) ,

(0.0.19)
where, in this case,

λ = (p− 1)(h+ 1)r
(r − p)h ,

λ = max
{ [(p− 1)r + p]h+ pr

(r − p)h ,
h+m

(m− 1)h

}
,

λ̃ = min
{(λ− p+ 1)(h+ 1)r

ph+ r
,
λ(h+ 1)m
h+m

}
,

q̃ = min
{(λ− p+ 1)hr

(λ+ 1)h+ r
,

pλhm

(λ+ 1)h+m

}
,

q̃1 = pλh

(λ+ 1)h+ 1 .

These results are presented in the second part of chapter 3.

Local regularity properties of solutions

In paper [42] we study local regularity properties of solutions to problems (0.0.13)
and (0.0.18) with datum in L1(Ω), in the spirit of [29].

If f is only a function in L1(Ω) (or, more generally, f is a Radon measure on Ω
with bounded total variation), the question of existence of solutions to (0.0.13) is
addressed in [10]. In order to give a meaning to the concept of solution, the notion
of renormalized solution (introduced in [63], [64] and [65] in the case of datum in
L1(Ω) or L1(Ω) + W−1,p′(Ω) and then extended in [46] to the case of a general
Radon measure on Ω with bounded total variation), is used and, in this functional
framework, the existence of a solution u such that

|∇u|p−1 ∈MN ′(Ω), |u|p−1 ∈M
p∗
p (Ω), (0.0.20)
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Introduction

is proved assuming that b belongs to the Lorentz space LN,1(Ω) and working by
approximation.

The first aim in [42] is to investigate the behaviour of the mentioned solution far
from the singularities of the datum. The idea is that, as happens in the case B ≡ 0
(see [29]), the solution and its distributional gradient have suitable local regularity
properties which depend on the local regularity of f . For instance, if the support of
the datum f is not the whole Ω, we can expect that, even if u and ∇u only satisfy
(0.0.20), they have better regularity properties far away from the support of f . In
detail, we assume that f ∈ L1(Ω) and

∃U ⊂⊂ Ω, m ∈
(
(p∗)′,∞

)
: f ∈Mm(Ω \ U), (0.0.21)

or

∃U ⊂⊂ Ω, m ∈
(

max
{

1, N

N(p− 1) + 1

}
,
N

p

)
: f ∈ Lm(Ω \ U). (0.0.22)

The results are as follows: if f satisfies (0.0.21) and V ⊂⊂ Ω is such that V ⊃ U ,
then

|∇u| ∈ Lp(Ω \ V ), (0.0.23)
and 

u ∈ L∞(Ω \ V ) if m ∈
(
N
p ,∞

]
,

ec|u| ∈ L1(Ω \ V ) for some c ∈ (0,∞) if m = N
p ,

u ∈M [(p−1)m∗]∗(Ω \ V ) if m ∈
(
(p∗)′, Np

)
,

(0.0.24)

while, if (0.0.22) is fulfilled and V ⊂⊂ Ω is such that V ⊃ U , then|∇u| ∈ L
p(Ω \ V ) if m ∈

[
(p∗)′, Np

)
,

|∇u| ∈ L(p−1)m∗(Ω \ V ) if m ∈
(
max

{
1, N

N(p−1)+1

}
, (p∗)′

)
,

(0.0.25)

and
u ∈ L[(p−1)m∗]∗(Ω \ V ). (0.0.26)

We emphasize that these results concern solutions obtained as limit of approxima-
tions and which satisfy (0.0.13) in the distributional sense. The enhanced regularity
is not true for every distributional solution to (0.0.18) with datum in L1(Ω) satisfy-
ing (0.0.21) or (0.0.22). As a matter of fact, a classical counterexample in [69] (see
also [67]) shows that, in general, there is no uniqueness of distributional solutions to
(0.0.13) outside W 1,p

0 (Ω). Moreover, the local regularity properties (0.0.23)-(0.0.24)
and (0.0.25)-(0.0.26) are false for the "pathological" solution of the quoted coun-
terexample.

Then, we study from a local point of view also the regularizing effect of the
zero order term K(x, u) on the solutions of (0.0.18) with datum in L1(Ω). In this
connection, we proceed in two slightly different directions. In the first one we assume
that k satisfies (0.0.5) and we get a local version of the regularity results (0.0.19)
(see Theorem 5.0.3 below). The other one consists in replacing assumption (0.0.5)
with its own localized couterpart (see Theorem 5.0.4 below):

∃U ⊂⊂ Ω, h ∈ (0,∞) : k−h ∈ L1(Ω \ U).
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These results, together with the previous ones concerning problem (0.0.18), are
presented in chapter 5.

Singular lower order term
In chapter 6 we deal with local regularity results for solutions to elliptic Dirichlet
problems with a singular nonlinearity, whose simplest model is

−∆u = f
uµ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(0.0.27)

where f is a nonnegative datum and µ is a postive real number.
The singular nature of the problem (0.0.27) comes from asking the solution u to

be zero on the boundary ∂Ω of Ω, while the right-hand side of the equation blows
up at u = 0. Therefore, (0.0.27) cannot have solutions of class C2(Ω).

However, under suitable smoothness assumptions on ∂Ω and f , the existence
and uniqueness of a classical solution u ∈ C2(Ω) ∩ C(Ω) to (0.0.27) are established
in [48], by desingularizing the problem and performing a suitable sub- and super-
solution method. In the same paper, the boundary behaviour of u and |∇u| is also
studied and, as a consequence, stronger global regularity properties than continuity
of solutions are obtained. Some generalizations of these results are given in [60]
where, in particular, it is proved that u ∈ H1

0 (Ω) if and only if γ < 3, while
u 6∈ C1(Ω) if γ > 1.

The case of Lebesgue datum, that is, f ∈ Lm(Ω) for some m ∈ [1,∞], is taken
into account in [34] where existence and regularity results are proved in the frame-
work of distributional solutions. In detail, the existence of a locally strictly positive
function u which satisfies (0.0.27) in the distributional sense is established working
by approximation. Moreover, if µ ∈ [1,∞), then u satisfies

u
1+µ

2 ∈ H1
0 (Ω), u ∈ H1

loc(Ω),

and u ∈ L
∞(Ω) if m ∈

(
N
2 ,∞

)
,

u ∈ L
Nm(1+µ)
N−2m (Ω) if m ∈

[
1, N2

)
,

while, if µ ∈ (0, 1),
u ∈ H1

0 (Ω) ∩ L∞(Ω) if m ∈
(
N
2 ,∞

)
,

u ∈ H1
0 (Ω) ∩ L

Nm(1+µ)
N−2m (Ω) if m ∈

[(
2∗

1−µ

)′
, N2

)
,

u ∈W
1, Nm(1+µ)
N−m(1−µ)

0 (Ω) if m ∈
[
1,
(

2∗
1−µ

)′)
.

The key point in [34] is the construction of a nondecreasing approximating
sequence of solutions which satisfies a local uniform positivity property on com-
pact subsets of Ω. For this purpose, the linearity of the principal part does not

12



Introduction

play any role. Indeed, it is enough to have a monotone differential operator such
that the strong maximum principle holds, as is for example the p-Laplace operator
−∆p(u) = −div

(
|∇u|p−2∇u

)
with p ∈ (1,∞). Moreover, the same proofs of [34],

with the same techniques and under the same assumptions on f , can be performed
in the case of a more general singular nonlinearity than 1

uµ , that is, H(u) where
H : (0,∞)→ (0,∞) is a continuous, nonincreasing function such that

∃C1, C2, µ ∈ (0,∞) : C1
σµ
≤ H(σ) ≤ C2

σµ
∀σ ∈ (0,∞).

For a variational approach to the problem and extensions to the case of a nonlinear
principal part, see [37], [49] and [38]. For generalization to the case of measure
datum and more general singular nonlinearities see [50], [51], [57] and [58].

In this Thesis we consider the nonlinear problem
−div(A(x,∇u)) = f

uµ on Ω,
u > 0 on Ω,
u = 0 on ∂Ω,

(0.0.28)

where A : Ω×RN → RN is a Carathéodory vector field which satisfies (0.0.9). Our
purpose is to study, following the approach of [29], local regularity properties of a
weak solution u to (0.0.28) with datum in L1(Ω) obtained as limit of approximations.
In detail, we assume that f is a nonnegative function in L1(Ω) not identically zero,
such that

∃U ⊂⊂ Ω, m :


m ∈ (1,∞) if µ ∈ [1,∞),

m ∈
((

p∗

1−µ

)′
,∞
)

if µ ∈ (0, 1),
f ∈Mm(Ω \ U), (0.0.29)

or
∃U ⊂⊂ Ω, m ∈

(
1, N
p

)
: f ∈ Lm(Ω \ U). (0.0.30)

The results are as follows: if µ ∈ [1,∞), then u satisfies

u
p−1+µ
p ∈W 1,p

0 (Ω), u ∈W 1,p
loc (Ω);

moreover, if f satisfies (0.0.29) and V ⊂⊂ Ω is such that V ⊃ Ω, then
u ∈ L∞(Ω \ V ) if m ∈

(
N
p ,∞

]
,

ec|u| ∈ L1(Ω) for some c ∈ (0,∞) if m = N
p ,

u ∈M
Nm(p−1+µ)
N−pm (Ω \ V ) if m ∈

(
1, Np

)
,

while, if (0.0.30) is fulfilled and V ⊂⊂ Ω is such that V ⊃ Ω, then

u ∈ L
Nm(p−1+µ)
N−pm (Ω \ V ).

Otherwise, if µ ∈ (0, 1) and p ∈
(
2− (N−1)µ+1

N , N
)
, then u satisfies

u ∈W
1,N(p−1+µ)

N−1+µ
0 (Ω);

13



moreover, if f satisifes (0.0.29) and V ⊂⊂ Ω is such that V ⊃ Ω, then

|∇u| ∈ Lp(Ω \ V ),

and 
u ∈ L∞(Ω \ V ) if m ∈

(
N
p ,∞

]
,

ec|u| ∈ L1(Ω) for some c ∈ (0,∞) if m = N
p ,

u ∈M
Nm(p−1+µ)
N−pm (Ω \ V ) if m ∈

((
p∗

1−µ

)′
, Np

)
,

while, if (0.0.30) is fulfilled and V ⊂⊂ Ω is such that V ⊃ Ω, then
|∇u| ∈ Lp(Ω \ V ) if m ∈

[(
p∗

1−µ

)′
, Np

)
,

|∇u| ∈ L
Nm(p−1+µ)
N−m(1−µ) (Ω \ V ) if m ∈

(
1,
(
p∗

1−µ

)′)
,

and
u ∈ L

Nm(p−1+µ)
N−pm (Ω \ V ).

Basic notation
RN = the N -dimensional Euclidean space. R = R1.

For a number s ∈ R define:
[s] = the integer part of s, that is, min{j integer : j ≤ s}.
s+ = the positive part of s, that is, max{s, 0}.
s− = the negative part of s, that is, −min{s, 0}.
|s| = the modulus of s, that is, s+ + s−.

For a point x = (x1, . . . , xN ) ∈ RN define:
|x| = the Euclidean norm of x, that is,

√∑N
i=1 x

2
i .

x ·y = the Euclidean inner product between x and another point y = (y1, . . . , yN ) ∈
RN , that is,

∑N
i=1 xiyi.

For a subset U ⊂ RN define:
χU = the characteristic function of U , that is, χU = 1 on A and χU = 0 on RN \U .
∂U = the boundary of U .
U = the closure of U .
U ⊂⊂ V if U is compactly contained in the open subset V ⊂ RN , that is, U ⊂ U ⊂ V
and U ⊂ RN is a compact subset.

For a real function φ with domain a subset U ⊂ RN define:
{φ ≤ s} = the subset of U where φ ≤ s, that is, {x ∈ U : φ(x) ≤ s}. Analogously,
define {φ ≥ s}, {φ < s}, {φ > s}, {φ = s} and {φ 6= s}.
supp(φ) = the support of φ, that is, {φ 6= 0}.

14
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For a real differentiable function φ with domain an open subset U ⊂ RN define:
φxi = the partial derivative of φ in the direction xi.
∇φ = the gradient of φ, that is, (φx1 , . . . , φxN ).

For a (Lebesgue) measurable subset U ⊂ RN and a real (Lebesgue) measurable
function φ with domain U define:
|U | = the (N -dimensional Lebesgue) measure of U .∫
U φ = the (Lebesgue) integral of φ on U .

For an open subset U ⊂ RN define:
C(U) (C(U)) = the set of continuous function on U (U).
Cj(U) = the set of functions having all derivatives of order less than or equal to j
continuous on U , where j is a nonnegative integer.
C∞(U) =

⋂∞
j=0C

j(U).
Cj(U) = the set of functions in Cj(U) all of whose derivatives of order less than or
equal to j have continuous extensions to U , where j is a nonnegative integer.
C∞(U) =

⋂∞
j=0C

j(U).
Cjc (U) = the set of functions in Cj(U) having compact support in U , where j is a
nonnegative integer.
C∞c (U) =

⋂∞
j=0C

∞
c (U).

For a real Banach space X define:
‖x‖X = the norm of a point x ∈ X.
xn → x if {xn} is a sequence in X which converges (strongly) to a point x ∈ X,
that is, ‖xn − x‖X → 0 as n→∞.
X ′ = the dual space of X, that is, the Banach space of linear and continuous
functionals on X.
〈·, ·〉X,X′ = the duality pairing between X and X ′, that is, 〈x, ϕ〉X,X′ = ϕ(x) for
every x ∈ X and ϕ ∈ X ′.
xn ⇀ x if {xn} is a sequence in X which converges weakly to a point x ∈ X, that
is, |〈xn − x, ϕ〉X,X′ | → 0 as n→∞ for every ϕ ∈ X ′.
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Chapter 1

Preliminaries

For the convenience of the reader in this chapter we summarize some basic concepts,
definitions and results on the functional analytic framework and on the PDE theory
we are going to study. All or nearly assertions are made without proofs and the
scope has been minimized to the only material actually needed in the Thesis.

1.1 Functional spaces
Throughout this Thesis Ω will always be a bounded open subset of RN with (unless
explicitly stated) N ≥ 2. We stress the fact that no smoothness conditions will be
assumed on the boundary ∂Ω of Ω. As usual, we identify two measurable functions
on Ω which are equal almost everywhere (in abbreviation, a.e.).

1.1.1 Lebesgue spaces

We say that a measurable function φ : Ω→ R belongs to the Lebesgue space Lp(Ω),
p ∈ [1,∞], if the quantity

‖φ‖Lp(Ω) =


inf{C ∈ (0,∞) : |φ| ≤ C a.e. on Ω} if p =∞,(∫

Ω
|φ|p

) 1
p

if p ∈ [1,∞),

is finite. Endowed with the norm ‖ · ‖Lp(Ω), Lp(Ω) is a Banach space which turns
out to be separable if p ∈ [1,∞) and reflexive if p ∈ (1,∞).

For an exhaustive treatment on Lebesgue spaces we refer to [1] and [36]. We
only recall the following fundamental facts.

• Hölder’s inequality: if p ∈ [1,∞] and p′ is the Hölder conjugate exponent of
p, that is,

p′ =


1 if p =∞,
p
p−1 if p ∈ (1,∞),
∞ if p = 1,

then ∣∣∣∣∫
Ω
φψ

∣∣∣∣ ≤ ‖φ‖Lp(Ω)‖ψ‖Lp′ (Ω) ∀φ ∈ Lp(Ω), ∀ψ ∈ Lp′(Ω);

17



1.1. Functional spaces

• Fatou’s Lemma: if {φn} is a sequence of nonnegative functions in L1(Ω) such
that φn → φ a.e. on Ω, then∫

Ω
φ ≤ lim inf

n→∞

∫
Ω
φn;

• Lebesgue’s Theorem: if {φn} and {ψn} are sequences of functions in Lp(Ω) for
some p ∈ [1,∞) such that φn → φ a.e. on Ω, ψn → ψ in Lp(Ω) and |φn| ≤ ψn
a.e. on Ω, then φn → φ in Lp(Ω);

• if {φn} is a sequence of nonnegative functions in L1(Ω) such that φn → φ a.e.
on Ω and

lim
n→∞

∫
Ω
φn =

∫
Ω
φ,

then φn → φ in L1(Ω);

• if {φn} is a bounded sequence of functions in Lp(Ω) for some p ∈ (1,∞) such
that φn → φ a.e. on Ω, then φn → φ in Lq(Ω) for every q ∈ [1, p) and φn ⇀ φ
in Lp(Ω);

• Vitali’s Theorem: if {φn} is a sequence of functions in Lp(Ω) for some p ∈
[1,∞) such that φn → φ a.e. on Ω and

lim
|U |→0

∫
U
|φn|p = 0 uniformly with respect to n,

then φn → φ in Lp(Ω);

1.1.2 Marcinkiewicz spaces

We say that a measurable function φ : Ω → R belongs to the Marcinkiewicz space
Mp(Ω), p ∈ (0,∞), if there exists a positive constant C such that

|{|φ| > σ}| ≤ C

σp
∀σ ∈ (0,∞).

Endowed with the quasinorm

‖φ‖Mp(Ω) = sup
σ∈(0,∞)

{
|{|φ| > σ}|

1
p σ
}
,

Mp(Ω) is a quasi-Banach space.
We recall that the Marcinkievicz spaces are intermediate spaces between Lebesgue

spaces, in the sense that the following continuous embeddings hold:

Lp(Ω) ⊂Mp(Ω) ⊂ Lp−ε(Ω) ∀ p ∈ (1,∞), ε ∈ (0, p− 1].

Moreover, if p ∈ (1,∞), for every φ ∈ Mp(Ω) there exists a positive constant C
which depends only on p and ‖φ‖Mp(Ω) such that∫

U
|φ| ≤ C|U |

1
p′ ∀measurable subset U ⊂ Ω.
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Chapter 1. Preliminaries

1.1.3 Sobolev spaces

We say that a measurable function φ : Ω → R belongs to the local Lebesgue space
Lploc(Ω), p ∈ [1,∞], if φ ∈ Lp(U) for every open subset U ⊂⊂ Ω.

If φ ∈ L1
loc(Ω), the distributional partial derivative φxi of (the Schwartzian

distribution on Ω induced by) φ in the direction xi is the Schwartzian distribution
on Ω defined by

φxi(ζ) = −
∫

Ω
φζxi ∀ ζ ∈ C∞c (Ω).

The distributional gradient of φ is the vector field ∇φ = (φx1 , . . . , φxN ). We recall
that if φ ∈ C1(Ω), the distributional partial derivatives of φ coincide with the usual
ones, hence the notation is consistent.

We say that a measurable function φ : Ω → R belongs to the Sobolev space
W 1,p(Ω), p ∈ [1,∞], if φ ∈ Lp(Ω) and φxi ∈ Lp(Ω) for every i ∈ {1, . . . , N}.
Endowed with the norm

‖φ‖W 1,p(Ω) = ‖φ‖Lp(Ω) + ‖|∇φ|‖Lp(Ω) ,

W 1,p(Ω) is a Banach space which turns out to be separable if p ∈ [1,∞) and reflexive
if p ∈ (1,∞). For p ∈ [1,∞), the closure in W 1,p(Ω) of the subspace C∞c (Ω) will be
denoted byW 1,p

0 (Ω) and its dual space byW−1,p′(Ω). Hence,W 1,p
0 (Ω) is a separable

Banach space with the same norm of W 1,p(Ω) and it is reflexive if p ∈ (1,∞). The
local Sobolev space W 1,p

loc (Ω), p ∈ [1,∞], consists of functions belonging to W 1,p(U)
for every open subset U ⊂⊂ Ω. We set H1(Ω) = W 1,2(Ω), H1

0 (Ω) = W 1,2
0 (Ω),

H−1(Ω) = W−1,2(Ω) and H1
loc(Ω) = W 1,2

loc (Ω).
For an exhaustive treatment on Sobolev spaces we refer to [1] and [36]. We only

recall the following fundamental facts.

• Sobolev’s inequality: there exists a positive constant S0 which depends only
on N and p, such that‖φ‖L∞ ≤ S0|Ω|

1
N
− 1
p ‖|∇φ|‖Lp(Ω) if p ∈ (N,∞),

‖φ‖Lp∗ (Ω) ≤ S0 ‖|∇φ|‖Lp(Ω) if p ∈ (1, N),
∀φ ∈W 1,p

0 (Ω),

where p∗ is the Sobolev conjugate exponent of p, that is,

p∗ = Np

N − p
∀ p ∈ [1, N).

In general,W 1,p
0 (Ω) cannot be replaced byW 1,p(Ω) in the previous embedding

result. However, this replacement can be made for a large class of open sets Ω,
which includes for example open sets with Lipschitz boundary. More generally,
if Ω satisfies a uniform interior cone condition (that is, there exists a fixed cone
UΩ of height h and solid angle ω such that each x ∈ Ω is the vertex of a cone
UΩ(x) ⊂ Ω and congruent to UΩ), then there exists a positive constant S
which depends only on N and p, such that‖φ‖L∞(Ω) ≤ S

ωh
N
p

(
‖φ‖Lp(Ω) + ‖|∇φ|‖Lp(Ω)

)
if p ∈ (N,∞),

‖φ‖Lp∗ (Ω) ≤ Sω
(

1
h‖φ‖Lp(Ω) + ‖|∇φ|‖Lp(Ω)

)
if p ∈ (1, N),

∀φ ∈W 1,p(Ω);
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1.1. Functional spaces

• Rellich-Kondrachov’s Theorem: the embedding

W 1,p
0 (Ω) ⊂

{
L∞(Ω) if p ∈ (N,∞),
Lq(Ω) ∀ q ∈ [1, p∗) if p ∈ [1, N),

is compact. Moreover, if Ω satisfies a uniform interior cone condition, then
also the embedding

W 1,p(Ω) ⊂
{
L∞(Ω) if p ∈ (N,∞),
Lq(Ω) ∀ q ∈ [1, p∗) if p ∈ (1, N),

is compact.

• Poincaré’s inequality: there exists a positive constant P which depends only
on N , p and Ω, such that

‖φ‖Lp(Ω) ≤ P ‖|∇φ|‖Lp(Ω) ∀φ ∈W 1,p
0 (Ω).

Accordingly, the quantity ‖|∇ · |‖Lp(Ω) defines a norm on W 1,p
0 (Ω) which is

equivalent to ‖ · ‖W 1,p(Ω).

• Stampacchia’s Theorem (see [72]): if Φ ∈ W 1,∞(R) is such that Φ(0) = 0,
then, for every φ ∈W 1,p

0 (Ω), the composition Φ(φ) belongs to W 1,p
0 (Ω) and

∇Φ(φ) = Φ′(φ)∇φ a.e. on Ω.

Moreover, one has that

∇φ = 0 a.e. on {φ = σ} ∀φ ∈W 1,p
0 (Ω), ∀σ ∈ R.

Accordingly, we are able to consider compositions of functions inW 1,p
0 (Ω) with

some useful auxiliary functions, such as, for any positive σ, the truncation
function at level σ, that is,

Tσ(s) =
{
s if |s| ≤ σ,
sign(s)σ if |s| > σ,

and
Gσ(s) = s− Tσ(s) = (|u| − σ)+sign(u) ∀ s ∈ R.

In particular, for every φ ∈ W 1,p
0 (Ω) and σ ∈ (0,∞), Tσ(φ), Gσ(φ) belong to

W 1,p
0 (Ω) and satisfy

∇Tσ(φ) = ∇φχ{|φ|<σ}, ∇Gσ(φ) = ∇φχ{|φ|>σ} a.e. on Ω.
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Chapter 1. Preliminaries

1.2 Dirichlet problems of Leray-Lions type
The main objects of this Thesis are Dirichlet problems associated to some second
order nonlinear elliptic PDEs in bounded open subsets of RN . More precisely, we
deal with lower order perturbations of the problem{

A(u) = f on Ω,
u = 0 on ∂Ω,

(1.2.1)

where A is a differential operator of Leray-Lions type, that is,

A(u) = −div(A(·, u,∇u)), (1.2.2)

and A : Ω×R×RN → RN is a Carathéodory vector field (that is, measurable on Ω
with respect to the first N variables and continuous on R×RN with respect to the
other composition variables), which satisfies the following structural conditions:

∃α, β ∈ (0,∞), p ∈ (1, N), a ∈ Lp′(Ω):
A(x, σ, ξ) · ξ ≥ α|ξ|p

|A(x, σ, ξ)| ≤ β
[
|a(x)|+ |σ|p−1 + |ξ|p−1],

[A(x, σ, ξ)−A(x, σ, η)] · (ξ − η) > 0,
for a.e. x ∈ Ω, ∀σ ∈ R, ∀ ξ, η ∈ RN , ξ 6= η.

(1.2.3)

As it stands the representation (1.2.2) is only formal. For every function u ∈
W 1,1

loc (Ω) such that |A(·, u,∇u)| ∈ L1
loc(Ω), it is well defined the functional integral

on Ω
ζ 7→

∫
Ω
A(x, u,∇u) · ∇ζ ∀ ζ ∈ C∞c (Ω).

Accordingly, we have the following definition.

Definition 1.2.1. Let f ∈ L1(Ω). We say that a function u : Ω → R is a weak
solution to (1.2.1) if u ∈W 1,1

0 (Ω), |A(·, u,∇u)| ∈ L1
loc(Ω) and u satisfies∫

Ω
A(x, u,∇u) · ∇ζ =

∫
Ω
f(x)ζ ∀ ζ ∈ C∞c (Ω).

A simple application of Hölder’s inequality shows that, under assumptions (1.2.3),
the differential operator A maps the Sobolev space W 1,p

0 (Ω) to its dual space
W−1,p′(Ω). Therefore, since, by Sobolev’s inequality, W 1,p

0 (Ω) is continuously em-
bedded in Lp

∗(Ω) and then, by duality, L(p∗)′(Ω) is continuously embedded in
W−1,p′(Ω), W 1,p

0 (Ω) is the natural functional framework to find weak solutions to
(1.2.1) if the right-hand side f is a function in L(p∗)′(Ω). Moreover, every weak
solution in W 1,p

0 (Ω) to (1.2.1) with f ∈ L(p∗)′(Ω) satisfies∫
Ω
A(x, u,∇u) · ∇v =

∫
Ω
f(x)v ∀ v ∈W 1,p

0 (Ω). (1.2.4)
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1.2. Dirichlet problems of Leray-Lions type

1.2.1 The variational case

The model example of differential operator of Leray-Lions type is of course the well
known p-Laplace operator

−∆p(u) = −div(|∇u|p−2∇u). (1.2.5)

As a matter of fact, the vector field A(x, σ, ξ) = |ξ|p−2ξ satisfies (1.2.3) and the
corresponding operator is −∆p. The Dirichlet problem for the p-Laplace operator,
that is, {

−∆p(u) = f on Ω,
u = 0 on Ω,

(1.2.6)

represents the simplest variational case of (1.2.1). If f ∈ L(p∗)′(Ω), the natural
starting point in the study of (1.2.6) is the p-energy functional

E(u) = 1
p

∫
Ω
|∇u|p −

∫
Ω
f(x)u ∀u ∈W 1,p

0 (Ω). (1.2.7)

Since E is strictly convex, coercive and weakly lower semicontinuous on W 1,p
0 (Ω), it

has a unique minimizer u ∈ W 1,p
0 (Ω) and its first variation must vanish at u. This

condition leads to the Euler-Lagrange equation for E which is∫
Ω
|∇u|p−2∇u · ∇v =

∫
Ω
f(x)v ∀ v ∈W 1,p

0 (Ω). (1.2.8)

On the other hand, every solution inW 1,p
0 (Ω) to (1.2.8) is a minimizer for E . There-

fore, it follows that, if f ∈ L(p∗)′(Ω), the problem (1.2.6) has a unique weak solution
which belongs to W 1,p

0 (Ω) and satisfies (1.2.8).

1.2.2 Leray-Lions Theorem

The direct method of Calculus of Variations is a tool as simple as it is powerful in
the study of boundary value problems, but it does not work for general problems
like (1.2.1). Indeed, even if I : Ω×R×RN → R is a Carathéodory function satisfying
suitable assumptions which guarantee the coercivity and weak lower semicontinuity
on W 1,p

0 (Ω) for the integral functional (see for example [47])

I(u) =
∫

Ω
I(x, u,∇u) ∀u ∈W 1,p

0 (Ω), (1.2.9)

the Euler-Lagrange equation for I is given formally by∫
Ω
∇ξI(x, u,∇u) · ∇v +

∫
Ω
Iσ(x, u,∇u)v = 0 ∀ v ∈W 1,p

0 (Ω). (1.2.10)

Here ∇ξI and Iσ are, respectively, the gradient with respect to ξ and the par-
tial derivative with respect to σ of I(x, σ, ξ). Thus, equation (1.2.4) is of the
form (1.2.10) only if A(x, σ, ξ) does not depend on σ and there exists a suitable
Carathéodory function I such that A = ∇ξI.

The existence of a weak solution in W 1,p
0 (Ω) to (1.2.1) with datum in W−1,p′(Ω)

in the general case is a classical result of [61]. The proof hinges on a surjectivity
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Chapter 1. Preliminaries

result for coercive operators acting between separable reflexive Banach spaces in
duality and satisfying suitable monotonicity properties. For the convenience of the
reader, here we recall the statement of these results.

Definition 1.2.2. Let X be a reflexive Banach space and let X ′ be its dual space.
We say that an operator J : X → X ′ is:

• bounded if the image of every bounded subset of X is a bounded subset of
X ′;

• coercive if

lim
‖u‖→∞

∣∣∣〈u,J (u)
〉
X,X′

∣∣∣
‖u‖

=∞;

• pseudomonotone if it is bounded and satisfies the following (pseudomonotonic-
ity) property: if {un} is a sequence in X such that un ⇀ u in X and

lim sup
n→∞

〈
un − u,J (un)

〉
X,X′

≤ 0,

then
lim inf
n→∞

〈
un − v,J (un)

〉
X,X′

≥
〈
u− v,J (u)

〉
X,X′

∀ v ∈ X.

Theorem 1.2.1. Let X be a separable reflexive Banach space and let X ′ be its dual
space. Assume that J : X → X ′ is a coercive and pseudomonotone operator. Then,
J is surjective.

Proof. See [61].

Theorem 1.2.2. The differential operator A : W 1,p
0 (Ω)→W 1,p′(Ω) is coercive and

pseudomonotone. Therefore, by Theorem 1.2.1, A is surjective. In particular, for
every f ∈ L(p∗)′(Ω), there exists a weak solution u ∈ W 1,p

0 (Ω) to (1.2.1) which
satisfies (1.2.4).

Proof. See [61].

1.2.3 Regularity results with regular datum

Thanks to Theorem 1.2.2, we have the existence of a weak solution u ∈ W 1,p
0 (Ω)

to (1.2.1) when f ∈ L(p∗)′(Ω). Moreover, by Sobolev’s inequality, we have also that
u ∈ Lp∗(Ω). One then wonders whether an increase in the regularity properties of
f will yield more regular solution.

The regularity results we are going to state are established in [72] in the linear
framework, that is, p = 2, A(x, σ, ξ) = M(x)ξ whereM is a uniformly elliptic N×N
matrix on Ω with L∞(Ω) coefficients. For what concerns the first one, the technique
developed in [72] applies also for the general case, since the linearity of the principal
part does not play any role in the proof. The main idea is to choose

Gσ(u) = (|u| − σ)+sign(u), σ ∈ (0,∞),
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1.2. Dirichlet problems of Leray-Lions type

as a test function in (1.2.4). The crucial point is to deduce an information on the
behaviour of the measure of the super-level sets Aσ = {|u| > σ}, taking advantage
of Hölder’s and Sobolev’s inequalities. More precisely, one has that

∃C, γ, δ, σ0 ∈ (0,∞) : |Aτ | ≤ C
|Aσ|δ

(τ − σ)γ ∀ τ > σ ≥ σ0.

Then, the result is an immediate consequence of the following Real Analysis lemma.
Since we will use it repeatedly in the next chapters, for the convenience of the reader,
here we recall both the statement and the proof given in [70] and [71].

Lemma 1.2.3. Let σ0 ∈ R and Φ: [σ0,∞) → [0,∞) be a nonincresing function
such that

∃C, γ, δ ∈ (0,∞) : Φ(τ) ≤ C Φ(σ)δ

(τ − σ)γ ∀ τ > σ ≥ σ0. (1.2.11)

Then

i) if δ ∈ (1,∞), we have that

Φ(σ0 + τ0) = 0,

where
τγ0 = 2

γδ
δ−1CΦ(σ0)δ−1;

ii) if δ = 1, we have that

Φ(σ) ≤ Φ(σ0)
ec(σ−σ0)−1 ∀σ ∈ (σ0,∞),

where
c = (eC)−

1
γ ;

iii) if δ ∈ (0, 1) and σ0 ∈ (0,∞), we have that

Φ(σ) ≤
2

µ
1−δ

[
C

1
1−δ + (2σ0)µΦ(σ0)

]
σµ

∀σ ∈ [σ0,∞),

where
µ = γ

1− δ .

Proof. The proof is divided into three parts.
PART I. Assume that δ ∈ (1,∞) and define

σn = σ0 + τ0

(
1− 1

2n
)
∀n ∈ N.

We claim that
Φ(σn) ≤ Φ(σ0)

2
nγ
δ−1

∀n ∈ N. (1.2.12)
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As a matter of fact, inequality (1.2.12) is trivially true for n = 0. Proceeding by
induction, if we suppose that (1.2.12) is true for n, then, using (1.2.11) and recalling
the definition of τ0, we obtain that

Φ(σn+1) ≤ C Φ(σn)δ

(σn+1 − σn)γ ≤ C
Φ(σ0)δ

2
nγδ
δ−1

2(n+1)γ

τγ0
= Φ(σ0)

2
(n+1)γ
δ−1

.

Now, since Φ is nonnegative and nonincreasing on [σ0,∞), we have that

0 ≤ Φ(σ0 + τ0) ≤ Φ(σn) ∀n ∈ N.

Hence, from (1.2.12) we deduce that

0 ≤ Φ(σ0 + τ0) ≤ lim inf
n→∞

Φ(σn) ≤ lim
n→∞

Φ(σ0)
2
nγ
δ−1

= 0,

PART II. Assume that δ = 1 and define

σn = σ0 + n(eC)
1
γ ∀n ∈ N.

By (1.2.11), we have that

Φ(σn+1) ≤ C Φ(σn)
(σn+1 − σn)γ = Φ(σn)

e
≤ . . . ≤ Φ(σ0)

en+1 ∀n ∈ N. (1.2.13)

Now, let σ ∈ (σ0,∞). Since

lim
n→∞

σn =∞,

there exists n ∈ N such that σ ∈ [σn, σn+1). Hence, using (1.2.13) and the fact that
Φ is nonincreasing on (σ0,∞), it follows that

Φ(σ) ≤ Φ(σn) ≤ Φ(σ0)
en

,

which in turn implies that
Φ(σ) ≤ Φ(σ0)

ec(σ−σ0)−1 ,

since, recalling the definitions of σn+1 and c, we have that

n = (eC)−
1
γ (σn+1 − σ0)− 1 > c(σ − σ0)− 1.

PART III. Assume that δ ∈ (0, 1) and define

Ψ(σ) = σµΦ(σ)
C

1
1−δ

∀σ ∈ [σ0, 2σ0).

By (1.2.11), we have that

Ψ(τ) = τµΦ(τ)
C

1
1−δ

≤ Φ(σ)δ

(τ − σ)γ
τµ

C
δ

1−δ
= Ψ(σ)δ

[
τ

(τ − σ)1−δσδ

]µ
∀ τ > σ ≥ σ0.

(1.2.14)
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1.2. Dirichlet problems of Leray-Lions type

Hence, if σ ∈ [σ0,∞) and τ = 2σ, from (1.2.14) we get

Ψ(2σ) ≤ 2µΦ(σ)δ,

which in turn, iterating and recalling that δ ∈ (0, 1), implies that

Ψ(2nσ) ≤ 2µΨ(2n−1σ)δ ≤ . . . ≤ 2µ
∑n−1

i=0 δiΨ(σ)δn

≤ 2
µ

1−δΨ(σ)δn ≤ 2
µ

1−δ (1 + Ψ(σ)) ∀n ∈ N. (1.2.15)

Now, since Φ is nonincreasing on [σ0,∞), we have that

Ψ(σ) = σµΦ(σ)
C

1
1−δ

≤ (2σ0)µΦ(σ0)
C

1
1−δ

∀σ ∈ [σ0, 2σ0].

Therefore, from (1.2.15) we deduce that

Ψ(2nσ) ≤ 2
µ

1−δ

[
1 + (2σ0)µΦ(σ0)

C
1

1−δ

]
∀σ ∈ [σ0, 2σ0], ∀n ∈ N,

which yields

Ψ(σ) ≤ 2
µ

1−δ

[
1 + (2σ0)µΦ(σ0)

C
1

1−δ

]
∀σ ∈ [σ0,∞).

The result now follows by the definition of Ψ.

Theorem 1.2.4. Let f ∈ Mm(Ω) for some m ∈ ((p∗)′,∞]. Assume that u ∈
W 1,p

0 (Ω) is a weak solution to (1.2.1). Thenu ∈ L
∞(Ω) if m ∈

(
N
p ,∞

]
,

u ∈M [(p−1)m∗]∗(Ω) if m ∈
(
(p∗)′, Np

)
.

Moreover, there exists a positive constant c which depends only on α, f , N and p,
such that

ec|u| ∈ L1(Ω) if m = N

p
.

Proof. See [72].

The original proof contained in [72] of the next regularity result hinges on a linear
interpolation theorem which is of course typical of the linear framework. Anyway,
the result holds also in the general case as shown in [28]. The main idea of the proof
is to choose a suitable power of the weak solution u as a test function in (1.2.4),
but this is not possible since, in general, u is not bounded on Ω. To overcome this
difficulty, it is sufficient to replace u by its own truncature, that is,

Tσ(u) =
{
u if |u| ≤ σ,
sign(u)σ if |u| > σ,

σ ∈ (0,∞).

Then, a simple application of Hölder’s and Sobolev’s inequalities and Fatou’s Lemma
leads to the following.

Theorem 1.2.5. Let f ∈ Lm(Ω) for some m ∈
[
(p∗)′, Np

)
. Assume that u ∈

W 1,p
0 (Ω) is a weak solution to (1.2.1). Then, u belongs to L[(p−1)m∗]∗(Ω).

Proof. See [28].
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1.2.4 The case of irregular datum

If p ∈ (N,∞), Sobolev’s inequality implies that W 1,p
0 (Ω) is continuously embedded

in L∞(Ω), so that, by duality, L1(Ω) is continuously embedded inW−1,p′(Ω). Hence,
in this case, Theorem 1.2.2 guarantees the existence of a weak solution in W 1,p

0 (Ω)
to (1.2.1) even if the datum is only a function in L1(Ω).

When p ∈ (1, N), the situation is quite different. As a matter of fact, if f 6∈
L(p∗)′(Ω), we cannot expect the solution of (1.2.1) to be in W 1,p

0 (Ω). Thus, it is
necessary to change the functional setting in order to prove existence results.

In the seminal paper [72], the notion of duality solution to (1.2.1) is introduced
and studied in the linear framework, that is, p = 2 and A(x, σ, ξ) = M(x)ξ, where
M is a uniformly elliptic N × N matrix on Ω with L∞(Ω) coefficients. In this
functional setting, the existence and uniqueness of a solution u which belongs to
W 1,q

0 (Ω) for every q ∈ [1, N ′) and satisfies the equation in the distributional sense
are established. Moreover, if f ∈ Lm(Ω) for some m ∈ (1, (2∗)′), an improvement in
the regularity properties of both u and ∇u depending on the regularity of f occurs,
namely it results that u belongs to W 1,m∗

0 (Ω).
The duality arguments of [72] are extended to the nonlinear case when p = 2

(see [65]), but not to the case p 6= 2. The first successful attempts to solve the
problem (1.2.1) when f ∈ L1(Ω) (or, more generally, f is a Radon measure on
Ω with bounded total variation), in the general case are made in [22] and [23].
The idea is to approximate the datum f with a sequence {fn} of functions in
L1(Ω) ∩W−1,p′(Ω) such that fn → f in L1(Ω) and to deduce estimates in suitable
Sobolev spaces strictly contained inW 1,1

0 (Ω) on a sequence {un} of regular solutions
to the approximate problems {

A(un) = fn on Ω,
un = 0 on ∂Ω,

(1.2.16)

whose existence is guaranteed by Theorem 1.2.2. The weak convergence obtained as
a consequence of these estimates does not permit to pass to the limit as n→∞ in
(1.2.16) except when A(x, σ, ξ) is linear in ξ. The nonlinear nature of the principal
part forces to prove, up to a subsequence, the almost everywhere convergence of
the sequence {∇un}. This is the role of Lemma 1 in [23] (see also [33], [30] and
[45]). For the convenience of the reader, here we state and prove the following result
which applies for more general problems than (1.2.1), since we will need it in the
next chapters. The proof is a slight modification of that of the main lemma of [12]
(see also [19], [20] and [24]).

Lemma 1.2.6. Let D : Ω× R→ RN be a Carathéodory vector field such that
∃ d ∈ L

N
p−1 (Ω):

|D(x, σ)| ≤ |d(x)||σ|p−1,

for a.e. x ∈ Ω, ∀σ ∈ R.

Let {gn} be a bounded sequence in L1(Ω) and let {wn} be a sequence in W 1,p
0 (Ω)

27



1.2. Dirichlet problems of Leray-Lions type

such that 
∫

Ω
(A(x,wn,∇wn)−Dn(x,wn)) · ∇v =

∫
Ω
gn(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω),

(1.2.17)

where
Dn(x, σ) = D(x, σ)

1 + 1
n |D(x, σ)|

for a.e. x ∈ Ω, ∀σ ∈ R.

Assume that {wn} is bounded in W 1,1
0 (Ω) and that there exists a function w ∈

W 1,1
0 (Ω) which satisfies Tσ(w) ∈W 1,p

0 (Ω) for every σ ∈ (0,∞) and{
wn → w a.e. on Ω,
Tσ(wn) ⇀ Tσ(w) in W 1,p

0 (Ω) ∀σ ∈ (0,∞).

Then, up to a subsequence, ∇wn → ∇w a.e. on Ω.

Proof. Let θ ∈
(
0, 1

p

)
. For any n ∈ N and measurable subset U ⊂ Ω, let us define

IU,n =
∫
U
{[A(x,wn,∇wn)−A(x,wn,∇w)] · ∇(wn − w)}θ .

We claim that
lim
n→∞

IΩ,n = 0.

In order to prove the claim, we fix σ ∈ (0,∞) and we write IΩ,n as

IΩ,n = IΩ\Aσ ,n + IAσ ,n,

where
Aσ = {|w| > σ}.

By Hölder’s inequality and the fact that {un} is bounded in W 1,1
0 (Ω), we have that

IAσ ,n ≤
∫
Aσ
{[|A(x,wn,∇wn)|+ |A(x,wn,∇w)|] (|∇wn|+ |∇w|)}θ

≤ βθ
∫
Aσ

{[
2|a|+ 2|wn|p−1 + |∇wn|p−1 + |∇w|p−1

]
(|∇wn|+ |∇w|)

}θ
≤ C0|Aσ|1−pθ = ε1(σ),

where C0 is a positive constant which does not depend on n. On the other hand,
we observe that

IΩ\Aσ ,n =
∫

Ω\Aσ
{[A(x,wn,∇wn)−A(x,wn,∇Tσ(w))] · ∇(wn − Tσ(w))}θ

≤
∫

Ω
{[A(x,wn,∇wn)−A(x,wn,∇Tσ(w))] · ∇(wn − Tσ(w))}θ = JΩ,n,
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since the integrand is a positive function on Ω. For a fixed τ ∈ (0,∞), JΩ,n can be
splitted as∫

{|wn−Tσ(w)|≤τ}
{[A(x,wn,∇wn)−A(x,wn,∇Tσ(w))] · ∇Tτ (wn − Tσ(w))}θ

+
∫
{|wn−Tσ(w)|>τ}

{[A(x,wn,∇wn)−A(x,wn,∇Tσ(w))] · ∇(wn − Tσ(w))}θ .

Then, thanks to Hölder’s inequality again and the fact that {wn} is bounded in
W 1,1

0 (Ω), we get

JΩ,n ≤
(∫

Ω
[A(x,wn,∇wn)−A(x,wn,∇Tσ(w))] · ∇Tτ (wn − Tσ(w))

)θ
|Ω|1−θ

+ C1|{|wn − Tσ(w)| > τ}|1−pθ,

where C1 is a positive constant which does not depend on n.
Now, the use of Tτ (wn − Tσ(w)) as a test function in (1.2.17) yields∫
{|wn−Tσ(w)|≤τ}

[A(x,wn,∇wn)−A(x,wn,∇Tσ(w))] · ∇Tτ (wn − Tσ(w))

=
∫

Ω
gnTτ (wn − Tσ(w)) +

∫
{|wn−Tσ(w)|≤τ}

Dn(x,wn) · ∇Tτ (wn − Tσ(w))

−
∫
{|wn−Tσ(w)|≤τ}

A(x,wn,∇Tσ(w)) · ∇Tτ (wn − Tσ(w)).

Since {gn} is bounded in L1(Ω), the first integral on the right-hand side of the
previous inequality can be easily estimated as∣∣∣∣∫

Ω
gnTτ (wn − Tσ(w))

∣∣∣∣ ≤ C2τ,

where C2 is a positive constant which does not depend on n. Moreover, since

{|wn − Tσ(w)| ≤ τ} ⊂ {|wn| ≤ σ + τ}.

we have that

|Dn(·, wn)| ≤ (σ + τ)p−1|d| a.e. on {|wn − Tσ(w)| ≤ τ},

and

|A(·, wn,∇Tσ(w))|

≤ β
[
|a|+ (σ + τ)p−1 + |∇Tσ(w)|p−1

]
a.e. on {|wn − Tσ(w)| ≤ τ}.

Therefore, Lebesgue’s Theorem together with the fact that Tσ(wn) ⇀ Tσ(w) in
W 1,p

0 (Ω) yields

lim
n→∞

∫
Ω
Dn(x,wn) · ∇Tτ (wn − Tσ(w)) =

∫
Ω
D(x,w) · ∇Tτ (w − Tσ(w)) = ε2(σ),
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and

lim
n→∞

∫
Ω
A(x,wn,∇Tσ(w)) · ∇Tτ (wn − Tσ(w))

=
∫

Ω
A(x,w,∇Tσ(w)) · ∇Tτ (w − Tσ(w)) = 0.

Finally, since wn → w in measure on Ω, we have that

lim
n→∞

|{|wn − Tσ(w)| > τ}| = |{|w − Tσ(w)| > τ}| = ε3(σ).

Thus, it follows that

lim sup
n→∞

IΩ,n ≤ ε1(σ) + (C2τ + ε2(σ))θ|Ω|1−θ + ε3(σ) ∀ τ ∈ (0,∞),

that is,
lim sup
n→∞

IΩ,n ≤ ε1(σ) + (ε2(σ))θ|Ω|1−θ + ε3(σ).

which in turn implies the claim, since

lim
σ→∞

εi(σ) = 0 ∀ i ∈ {1, 2, 3}.

Thus we deduce that, up to a subsequence,

lim
n→∞

[
A(·, wn,∇wn)−A(·, wn,∇w)

]
· ∇(wn − w) = 0 a.e. on Ω.

Then, in [61], it is proved that the previous limit implies the result.

Among the existence and regularity results of [22] and [23], we recall the follow-
ing.

Theorem 1.2.7. Let f ∈ L1(Ω). Assume that p ∈
(
2− 1

N , N
)
. Then, there exists

a weak solution u to (1.2.1) which belongs to W 1,q
0 (Ω) for every q ∈ [1, N ′(p− 1)).

Proof. See [23].

Theorem 1.2.8. Let f ∈ Lm(Ω) for some m ∈
(
max

{
1, N

N(p−1)+1

}
, (p∗)′

)
. Then,

there exists a weak solution u to (1.2.1) which belongs to W (p−1)m∗
0 (Ω).

Proof. See [23].
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First order perturbations

The aim of this chapter is to introduce and study two classes of first order pertur-
bations of the problem {

A(u) = f on Ω,
u = 0 on ∂Ω.

(2.0.1)

We recall that Ω ⊂ RN is a bounded open subset with N ≥ 2, and A is a differential
operator of Leray-Lions type, that is,

A(u) = −div(A(·, u,∇u)),

where A : Ω× R× RN → RN is a Carathéodory vector field such that

∃α, β ∈ (0,∞), p ∈ (1, N), a ∈ Lp′(Ω):
A(x, σ, ξ) · ξ ≥ α|ξ|p,
|A(x, σ, ξ)| ≤ β

[
|a(x)|+ |σ|p−1 + |ξ|p−1] ,

[A(x, σ, ξ)−A(x, σ, η)] · (ξ − η) > 0,
for a.e. x ∈ Ω, ∀σ ∈ R, ∀ ξ, η ∈ RN , ξ 6= η.

More precisely, we deal with existence and regularity results for the weak solutions
to {

A(u) +D(u) = f on Ω,
u = 0 on ∂Ω,

(2.0.2)

and {
A(u) + B(u) = f on Ω,
u = 0 on ∂Ω,

(2.0.3)

where
B(u) = B(·,∇u), D(u) = div(D(·, u)),

and B : Ω × RN → R, D : Ω × R → RN are Carathéodory mappings which satisfy
the following structural assumptions:

∃ b ∈ LN (Ω):
|B(x, ξ)| ≤ |b(x)||ξ|p−1,

for a.e. x ∈ Ω, ∀ ξ ∈ RN ,
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and 
∃ d ∈ L

N
p−1 (Ω):

|D(x, σ)| ≤ |d(x)||σ|p−1,

for a.e. x ∈ Ω, ∀σ ∈ R.

Moreover, we assume that the right-hand side f is a function in Lm(Ω) for some
m ∈ [1,∞].

The model examples of mappings B and D we have in mind are, respectively,
B(x, ξ) = E(x) · |ξ|p−2ξ and D(x, σ) = |σ|p−2σE(x), where E : Ω→ RN is a vector
field such that |E| belongs to, respectively, LN (Ω) and L

N
p−1 (Ω).

Under the previous assumptions, the differential operators A + D and A + B
are pseudomonotone operators acting from the Sobolev space W 1,p

0 (Ω) to its dual
space W−1,p′(Ω). The main difficulties in the study of (2.0.2) and (2.0.3) are due,
on the one hand, to the nonlinearity nature of these problems; on the other hand,
to the lack of coercivity caused by the presence of the first order terms D and B,
as can be seen with a simple application of Hölder’s and Sobolev’s inequalities. In
particular, if no additional assumptions on d and b (as smallness conditions on the
L

N
p−1 (Ω) norm of d and on the LN (Ω) norm of b) are required, the standard theory

for coercive and pseudomonotone operator developed in [61] cannot be applied (see
Theorem 1.2.1).

2.1 First order terms in divergence form
Definition 2.1.1. Let f ∈ L1(Ω). We say that a function u : Ω → R is a weak
solution to (2.0.2) if u ∈W 1,1

0 (Ω), |A(·, u,∇u)|, |D(·, u)| ∈ L1
loc(Ω) and u satisfies∫

Ω
(A(x, u,∇u)−D(x, u)) · ∇ζ =

∫
Ω
f(x)ζ ∀ ζ ∈ C∞c (Ω).

In the papers [14] and [15], existence, uniqueness and regularity results for the
weak solutions to (2.0.2) are established in the linear framework, that is, p = 2,
A(x, σ, ξ) = M(x)ξ whereM is a uniformly elliptic N ×N matrix on Ω with L∞(Ω)
coefficients and D(x, σ) = σE(x) with |E| ∈ Lr(Ω) for some r ∈ [N,∞]. In detail, if
m ∈ [(2∗)′,∞], then there exists a unique weak solution u which belongs to H1

0 (Ω)
and satisfies u ∈ L

∞(Ω) if m ∈
(
N
2 ,∞

]
, r ∈ (N,∞],

u ∈ Lm∗∗(Ω) if m ∈
[
(2∗)′, N2

)
.

(2.1.1)

On the other hand, if m ∈ [1, (2∗)′), then there exists a unique weak solution u
obtained as limit of approximations such that{

u ∈W 1,m∗
0 (Ω) if m ∈ (1, (2∗)′),

u ∈W 1,q
0 (Ω) ∀ q ∈ [1, N ′) if m = 1.

(2.1.2)

Moreover, Tσ(u) belongs to H1
0 (Ω) for every σ ∈ (0,∞), where we recall that

Tσ(u) =
{
u if |u| ≤ σ,
sign(u)σ if |u| > σ.
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To overcome the lack of coercivity caused by the presence of the first order
term, the starting point of [14] and [15] is a nonlinear approach by approximation.
If {un} is the sequence of regular weak solutions to suitable approximate problems
(see (2.1.3) below), the first step consists in proving that∫

Ω
|∇Tσ(un)|2 ≤ σ2

α2

∫
Ω
|E|2 + 2σ

α

∫
Ω
|f | ∀n ∈ N, ∀σ ∈ (0,∞),∫

Ω
|∇ log(1 + |un|)|2 ≤

1
α2

∫
Ω
|E|2 + 2

α

∫
Ω
|f | ∀n ∈ N.

The key point is that the log-estimate provides a uniform (with respect to n) control
on the measure of the super-level sets {|un| > σ}. Then, in the search of estimates
on un the idea is to use suitable powers of

Gσ(un) = u− Tσ(u) = (|un| − σ)+sign(un), σ ∈ (0,∞),

as test functions in the approximate problem and to absorb the first order term into
the principal part choosing σ in such a way that the quantity∫

{|un|>σ}
|E|N

is sufficiently small uniformly with respect to n.
Our purpose in this section is to generalize the existence and regularity results

of [14] to the nonlinear case using the same techniques. We emphasize that the
existence and regularity results regarding weak solutions in W 1,p

0 (Ω) which we are
going to prove are contained in those achieved in [6] using symmetrization techniques
and assuming that b and f belong to suitable Lorentz spaces (see also [54] and [55]).

2.1.1 Approximate problems and preliminary results

Let f ∈ L1(Ω) and let us consider the following family approximate problems (n ∈
N): {

A(un) +Dn(un) = fn on Ω,
un = 0 on Ω,

(2.1.3)

where
Dn(u) = div(Dn(·, u)),

and 
Dn(x, σ) = D(x,σ)

1+ 1
n
|D(x,σ)| ,

fn(x) = Tn(f(x)),
for a.e. x ∈ Ω, ∀σ ∈ R.

Since 
|Dn(x, σ)| ≤ min{|D(x, σ)|, n},
|fn(x)| ≤ min{|f(x)|, n},
for a.e. x ∈ Ω, ∀σ ∈ R, ∀n ∈ N,
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2.1. First order terms in divergence form

Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]) imply that, for every n ∈ N, the
existence of a weak solution un to (2.1.3) which belongs to W 1,p

0 (Ω) ∩ L∞(Ω) and
satisfies∫

Ω
(A(x, un,∇un)−Dn(x, un)) · ∇v =

∫
Ω
fn(x)v ∀ v ∈W 1,p

0 (Ω). (2.1.4)

Lemma 2.1.1. Let f ∈ L1(Ω). Then∫
Ω
|∇Tσ(un)|p ≤ σp

αp′

∫
Ω
|d|p′ + p′σ

α

∫
Ω
|f | ∀n ∈ N, ∀σ ∈ (0,∞). (2.1.5)

Proof. We fix n ∈ N, σ ∈ (0,∞) and we choose Tσ(un) as a test function in (2.1.4).
Since

|Tσ(un)| ≤ σ, ∇Tσ(un) = ∇unχ{|un|<σ} a.e. on Ω,
we obtain that

α

∫
Ω
|∇Tσ(un)|p ≤

∫
{|un|<σ}

|d||un|p−1|∇Tσ(un)|+ σ

∫
Ω
|f |

≤ σp−1
∫

Ω
|d||∇Tσ(un)|+ σ

∫
Ω
|f |.

Hence, thanks to Young’s inequality, we deduce that
α

p′

∫
Ω
|∇Tσ(un)|p ≤ σp

p′α
1
p−1

∫
Ω
|d|p′ + σ

∫
Ω
|f |.

Lemma 2.1.2. Let f ∈ L1(Ω). Then∫
Ω
|∇ log(1 + |un|)|p ≤

1
αp′

∫
Ω
|d|p′ + p′

(p− 1)α

∫
Ω
|f | ∀n ∈ N. (2.1.6)

Proof. We fix n ∈ N and we choose

v = 1
p− 1

[
1− 1

(1 + |un|)p−1

]
sign(un)

as a test function in (2.1.4). Since

|v| ≤ 1
p− 1 , ∇v = ∇un

(1 + |un|)p
a.e. on Ω,

we obtain that

α

∫
Ω

|∇un|p

(1 + |un|)p
≤
∫

Ω
|d||un|p−1 |∇un|

(1 + |un|)p
+ 1
p− 1

∫
Ω
|f |

≤
∫

Ω
|d| |∇un|1 + |un|

+ 1
p− 1

∫
Ω
|f |.

Therefore, the use of Young’s inequality immediately yields
α

p′

∫
Ω
|∇ log(1 + |un|)|p ≤

α

p′

∫
Ω

|∇un|p

(1 + |un|)p
≤ 1
p′α

1
p−1

∫
Ω
|d|p′ + 1

p− 1

∫
Ω
|f |.
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Chapter 2. First order perturbations

Remark 2.1.1. Lemma 2.1.2 implies that

lim
σ→∞

|An,σ| = 0 uniformly with respect to n, (2.1.7)

where
An,σ = {|un| > σ}, σ ∈ (0,∞).

As a matter of fact, thanks to the estimate (2.1.6) and Sobolev’s inequality, we
deduce that

log(1 + σ)p|An,σ|
p
p∗ ≤

(∫
Ω

log(1 + |un|)p
∗
) p
p∗
≤ Sp0

∫
Ω
|∇ log(1 + |un|)|p

≤ S
p
0

αp′

∫
Ω
|d|p′ + p′Sp0

(p− 1)α

∫
Ω
|f | ∀ ∀n ∈ N, σ ∈ (0,∞),

that is,

|An,σ| ≤
Sp
∗

0
log(1 + σ)p∗

( 1
αp′

∫
Ω
|d|p′ + p′

(p− 1)α

∫
Ω
|f |
) p∗

p

∀ ∀n ∈ N, σ ∈ (0,∞).

(2.1.8)
Therefore, it follows that

∀ ε ∈ (0,∞) ∃σε ∈ (0,∞) : |An,σ| < ε ∀ ∀n ∈ N, σ ∈ (σε,∞),

which is equivalent to (2.1.7).

2.1.2 Estimates on un with regular datum

Lemma 2.1.3. Let f ∈ L(p∗)′(Ω). Then, there exists a positive constant σ0 such
that, for every σ ∈ (σ0,∞), the sequence {Gσ(un)} is bounded in W 1,p

0 (Ω).

Proof. We fix n ∈ N, σ ∈ (0,∞) and we choose Gσ(un) as a test function in (2.1.4).
Since

|Gσ(un)| = (|un| − σ)sign(un)χAn,σ , ∇Gσ(un) = ∇unχAn,σ a.e. on Ω,

where
An,σ = {|un| > σ},

and
|un|p−1 ≤ 2p−1

(
σp−1 + |Gs(un)|p−1

)
a.e. on Ω,

we obtain that

α

∫
Ω
|∇Gσ(un)|p ≤

∫
Ω
|d||un|p−1|∇Gσ(un)|+

∫
Ω
|f ||Gσ(un)|

≤ (2σ)p−1
∫

Ω
|d||∇Gσ(un)|+ 2p−1

∫
Ω
|d||Gσ(un)|p−1|∇Gσ(un)|

+
∫

Ω
|f ||Gσ(un)|.
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2.1. First order terms in divergence form

Then, by Hölder’s and Sobolev’s inequalities, we have that

2p−1
∫

Ω
|d||Gσ(un)|p−1|∇Gσ(un)|

≤ 2p−1
(∫

An,σ
|d|

N
p−1

) p−1
N (∫

Ω
|Gσ(un)|p∗

) p−1
p∗
(∫

Ω
|∇Gσ(un)|p

) 1
p

≤ (2S0)p−1
(∫

An,σ
|d|

N
p−1

) p−1
N ∫

Ω
|∇Gσ(un)|p.

Therefore, it follows thatα− (2S0)p−1
(∫

An,σ
|d|

N
p−1

) p−1
N

∫
Ω
|∇Gσ(un)|p

≤ (2σ)p−1
∫

Ω
|d||∇Gσ(un)|+

∫
Ω
|f ||Gσ(un)|. (2.1.9)

Now, recalling Remark 2.1.1, there exists a positive real number σ0 such that

α− (2S0)p−1
(∫

An,σ
|d|

N
p−1

) p−1
N

≥ α

2 ∀n ∈ N, ∀σ ∈ (σ0,∞).

Thus, from (2.1.9) we deduce that
α

2

∫
Ω
|∇Gσ(un)|p ≤ (2σ)p−1

∫
Ω
|d||∇Gσ(un)|+

∫
Ω
|f ||Gσ(un)| ∀σ ∈ (σ0,∞),

which, by Hölder’s and Sobolev’s inequalities again, finally yields

α

2

(∫
Ω
|∇Gσ(un)|p

) 1
p′
≤ (2σ)p−1

(∫
Ω
|d|p′

) 1
p′

+S0

(∫
Ω
|f |(p∗)′

) 1
(p∗)′

∀σ ∈ (σ0,∞).

Lemma 2.1.4. Let f ∈ Lm(Ω) for some m ∈
[
(p∗)′, Np

)
. Then, the sequence {un}

is bounded in L[(p−1)m∗]∗(Ω).

Proof. We fix n ∈ N, σ ∈ (0,∞) and we choose

v = |Gσ(un)|p(γ−1)+1sign(Gσ(un))
p(γ − 1) + 1 = (|un| − σ)p(γ−1)+1sign(un)

p(γ − 1) + 1 χAn,σ ,

as a test function in (2.1.4), where

γ = [(p− 1)m∗]∗

p∗
, An,σ = {|un| > σ}.

We observe that the assumption m ≥ (p∗)′ implies that γ ≥ 1, so that p(γ−1)+1 ≥
1. Since

∇v = ∇Gσ(un)|Gσ(un)|p(γ−1) = ∇un|Gσ(un)|p(γ−1)χAn,σ a.e. on Ω,

|un|p−1 ≤ 2p−1
(
σp−1 + |Gσ(un)|p−1

)
a.e. on Ω,
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Chapter 2. First order perturbations

we obtain that

α

∫
Ω
|∇Gσ(un)|p|Gσ(un)|p(γ−1) ≤ (2σ)p−1

∫
Ω
|d||∇Gσ(un)||Gσ(un)|p(γ−1)

+ 2p−1
∫

Ω
|d||∇Gσ(un)||Gσ(un)|pγ−1 + 1

p(γ − 1) + 1

∫
Ω
|f ||Gσ(un)|p(γ−1)+1,

that is,

α

γp

∫
Ω
|∇|Gσ(un)|γ |p ≤ (2σ)p−1

γ

∫
Ω
|d||Gσ(un)|(p−1)(γ−1) |∇|Gσ(un)|γ |

+ 2p−1

γ

∫
Ω
|d||Gσ(un)|(p−1)γ |∇|Gσ(un)|γ |+ 1

p(γ − 1) + 1

∫
Ω
|f ||Gσ(un)|p(γ−1)+1.

Then, by Young’s inequality, we have that

(2σ)p−1

γ

∫
Ω
|d||Gσ(un)|(p−1)(γ−1) |∇|Gσ(un)|γ |

≤ α

pγp

∫
Ω
|∇|Gσ(un)|γ |p + (2σ)p

p′α
1
p−1

∫
Ω
|d|p′ |Gσ(un)|p(γ−1).

Furthermore, by Hölder’s and Sobolev’s inequalities, we have that

2p−1

γ

∫
Ω
|d||Gσ(un)|(p−1)γ∣∣∇|Gσ(un)|γ

∣∣
≤ 2p−1

γ

(∫
An,σ
|d|

N
p−1

) p−1
N (∫

Ω
|Gσ(un)|p∗γ

) p−1
p∗
(∫

Ω
|∇|Gσ(un)|γ |p

) 1
p

≤ (2S0)p−1

γ

(∫
An,σ
|d|

N
p−1

) p−1
N ∫

Ω
|∇|Gσ(un)|γ |p .

Therefore, it follows that α

p′γp
− (2S0)p−1

γ

(∫
An,σ
|d|

N
p−1

) p−1
N

∫
Ω
|∇|Gσ(un)|γ |p

≤ (2σ)p

p′α
1
p−1

∫
Ω
|d|p′ |Gσ(un)|p(γ−1) + 1

p(γ − 1) + 1

∫
Ω
|f ||Gσ(un)|p(γ−1)+1. (2.1.10)

Now, recalling Remark 2.1.1, there exists a positive real number σ0 such that

α

p′γp
− (2S0)p−1

γ

(∫
An,σ
|d|

N
p−1

) p−1
N

≥ α

2p′γp ∀n ∈ N, ∀σ ∈ (σ0,∞).

Thus, from (2.1.10) we deduce that

α

2p′γp
∫

Ω
|∇|Gσ(un)|γ |p ≤ (2σ)p

p′α
1
p−1

∫
Ω
|d|p′ |Gσ(un)|p(γ−1)

+ 1
p(γ − 1) + 1

∫
Ω
|f ||Gσ(un)|p(γ−1)+1 ∀σ ∈ (σ0,∞),
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2.1. First order terms in divergence form

which in turn, thanks to Hölder’s and Sobolev’s inequalities again, yields

α

2p′(S0γ)p
(∫

Ω
|Gσ(un)|p∗γ

) p
p∗

≤ (2σ)p|Ω|
p
p∗γ

p′α
1
p−1

(∫
Ω
|d|

N
p−1

) p
N
(∫

Ω
|Gσ(un)|p∗γ

) p(γ−1)
p∗γ

+ 1
p(γ − 1) + 1

(∫
Ω
|f |m

) 1
m
(∫

Ω
|Gσ(un)|[p(γ−1)+1]m′

) 1
m′

∀σ ∈ (σ0,∞).

(2.1.11)

We observe that the choice of γ implies that

p∗γ = [p(γ − 1) + 1]m′ = [(p− 1)m∗]∗.

Moreover, assumption m < N
p implies that p

p∗ >
1
m′ . Hence, using Young’s inequal-

ity, from (2.1.11) we finally get that, for every σ ∈ (σ0,∞), the sequence {Gσ(un)}
is bounded in L[(p−1)m∗]∗(Ω). This concludes the proof, since

|un| = |Tσ(un) +Gσ(un)| ≤ σ + |Gσ(un)| a.e. on Ω.

2.1.3 Estimates on un with irregular datum

Lemma 2.1.5. Let f ∈ Lm(Ω) for some m ∈
(
max

{
1, N

N(p−1)+1

}
, (p∗)′

)
. Then,

there exists a positive constant σ0 such that, for every σ ∈ (σ0,∞), the sequence
{Gσ(un)} is bounded in W 1,(p−1)m∗

0 (Ω).

Proof. We fix n ∈ N, σ ∈ (0,∞) and we choose

v =

[
(1 + |Gσ(un)|)1−p(1−θ) − 1

]
sign(Gσ(un))

1− p(1− θ)

=

[
(1 + |un| − σ)1−p(1−θ) − 1

]
sign(un)

1− p(1− θ) χAn,σ ,

as a test function in (2.1.4), where

θ = [(p− 1)m∗]∗

p∗
, An,σ = {|un| > σ}.

We observe that the assumptionm < (p∗)′ implies that θ > 1
p′ , so that 1−p(1−θ) >

0. Since

∇v = ∇Gσ(un)
(1 + |Gσ(un)|)p(1−θ)

=
∇unχAn,σ

(1 + |Gσ(un)|)p(1−θ)
a.e. on Ω,
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Chapter 2. First order perturbations

and

|un|p−1

(1 + |Gσ(un)|)(p−1)(1−θ) ≤ σ
p−1 + (1 + |Gσ(un)|)(p−1)θ

≤ 2p−1 + σp−1 + 2p−1
[
(1 + |Gσ(un)|)θ − 1

]p−1
a.e. on Ω,

we obtain that

α

∫
Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)
≤
(
2p−1 + σp−1

) ∫
Ω
|d| |∇Gσ(un)|

(1 + |Gσ(un)|)1−θ

+ 2p−1
∫

Ω
|d|
[
(1 + |Gσ(un)|)θ − 1

]p−1 |∇Gσ(un)|
(1 + |Gσ(un)|)1−θ +

∫
Ω
|f ||v|. (2.1.12)

By Young’s inequality, the first term on the right-hand side of (2.1.12) can be
estimated by

α

p

∫
Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)
+
(
2p−1 + σp−1)p′

p′α
1
p−1

∫
Ω
|d|p′ ,

while, thanks to Hölder’s and Sobolev’s inequalities, the second term is controlled
by

(2S0θ)p−1
(∫

An,σ
|d|

N
p−1

) p−1
N ∫

Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)
.

Thus, from (2.1.12) we deduce thatα
p′
− (2S0θ)p−1

(∫
An,σ
|d|

N
p−1

) p−1
N

∫
Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)

≤
(
2p−1 + σp−1)p′

p′α
1
p−1

∫
Ω
|d|p′ +

∫
Ω
|f ||v|. (2.1.13)

Recalling Remark 2.1.1, there exists a positive real number σ0 such that

α

p′
− (2S0θ)p−1

(∫
An,σ
|d|

N
p−1

) p−1
N

≥ α

2p′ ∀n ∈ N, ∀σ ∈ (σ0,∞).

Hence, estimate (2.1.13) together with Sobolev’s inequality yield

α

2p′(S0θ)p
{∫

Ω

[
(1 + |Gσ(un)|)θ − 1

]p∗} p
p∗
≤ α

2p′
∫

Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)

≤
(
2p−1 + σp−1)p′

p′α
1
p−1

∫
Ω
|d|p′ +

∫
Ω
|f ||v| ∀σ ∈ (σ0,∞), (2.1.14)

so that, by Hölder’s inequality, we obtain that

α

2p′(S0θ)p
[∫

Ω
(1 + |Gσ(un)|)p∗θ

] p
p∗
≤ 2p−1α|Ω|

1
p∗

p′(S0θ)p
+
(
2p−1 + σp−1)p′

p′α
1
p−1

∫
Ω
|d|p′

+
(∫

Ω
|f |m

) 1
m
[∫

Ω
(1 + |Gσ(un)|)[1−p(1−θ)]m′

] 1
m′

∀σ ∈ (σ0,∞). (2.1.15)
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2.1. First order terms in divergence form

We observe that the choice of θ implies that

p∗θ = [1− p(1− θ)]m′ = [(p− 1)m∗]∗.

Moreover, assumption m < (p∗)′ < N
p implies that p

p∗ >
1
m′ . Therefore, thanks to

Young’s inequality, from estimate (2.1.15) we deduce that the sequence {Gσ(un)}
is bounded in L[(p−1)m∗]∗(Ω). Moreover, going back to estimate (2.1.14), we obtain
also that, for every σ ∈ (σ0,∞), the quantity∫

Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)

is uniformly bounded with respect to n.
Now, for q = (p− 1)m∗ the use of Hölder’s inequality yields∫

Ω
|∇Gσ(un)|q ≤

[∫
Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)

] q
p
[∫

Ω
(1 + |Gσ(un)|)

pq(1−θ)
p−q

] p−q
p

,

which concludes the proof, since

pq(1− θ)
p− q

= [(p− 1)m∗]∗.

Lemma 2.1.6. Let f ∈ L1(Ω). Assume that p ∈
(
2− 1

N , N
)
. Then, there exists

a positive constant σ0 such that, for every σ ∈ (σ0,∞), the sequence {Gσ(un)} is
bounded in W 1,q

0 (Ω) for every q ∈ [1, N ′(p− 1)).

Proof. We fix n ∈ N, σ ∈ (0,∞), θ ∈
[
0, 1

p′

)
and we choose

v = 1
p(1− θ)− 1

[
1− 1

(1 + |Gσ(un)|)p(1−θ)−1

]
sign(Gσ(un))

= 1
p(1− θ)− 1

[
1− 1

(1 + |un| − σ)p(1−θ)−1

]
sign(un)χAn,σ ,

as a test function in (2.1.4), where

An,σ = {|un| > σ}.

We observe that the condition θ < 1
p′ implies that p(1− θ)− 1 > 0. Since

|v| ≤
χAn,σ

p(1− θ)− 1 a.e. on Ω,

∇v = ∇Gσ(un)
(1 + |Gσ(un)|)p(1−θ)

=
∇unχAn,σ

(1 + |Gσ(un)|)p(1−θ)
a.e. on Ω,

and

|un|p−1

(1 + |Gσ(un)|)(p−1)(1−θ) ≤ σ
p−1 + (1 + |Gσ(un)|)(p−1)θ

≤ 2p−1 + σp−1 + 2p−1
[
(1 + |Gσ(un)|)θ − 1

]p−1
a.e. on Ω,
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Chapter 2. First order perturbations

we obtain that

α

∫
Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)
≤
(
2p−1 + σp−1

) ∫
Ω
|d| |∇Gσ(un)|

(1 + |Gσ(un)|)1−θ

+
∫

Ω
|d|
[
(1 + |Gσ(un)|)θ − 1

]p−1 |∇Gσ(un)|
(1 + |Gσ(un)|)1−θ

+ 1
p(1− θ)− 1

∫
Ω
|f |. (2.1.16)

By Young’s inequality, the first term on the right-hand side of (2.1.16) can be
estimated by

α

p

∫
Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)
+
(
2p−1 + σp−1)p′

p′α
1
p−1

∫
Ω
|d|p′ ,

while, by Hölder’s and Sobolev’s inequalities, the second term is controlled by

(2S0θ)p−1
(∫

An,σ
|d|

N
p−1

) p−1
N ∫

Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)
.

Thus, from (2.1.16) we deduce thatα
p′
− (2S0θ)p−1

(∫
An,σ
|d|

N
p−1

) p−1
N

∫
Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)

≤
(
2p−1 + σp−1)p′

p′α
1
p−1

∫
Ω
|d|p′ + 1

p(1− θ)− 1

∫
Ω
|f |. (2.1.17)

Recalling Remark 2.1.1, there exists σ0 ∈ (0,∞) such that

α

p′
− (2S0θ)p−1

(∫
An,σ
|d|

N
p−1

) p−1
N

≥ α

2p′ ∀n ∈ N, ∀σ ∈ (σ0,∞).

Therefore, estimate (2.1.17) together with Sobolev’s inequality yield

α

2p′(S0θ)p
{∫

Ω

[
(1 + |Gσ(un)|)θ − 1

]p∗} p
p∗
≤ α

2p′
∫

Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)

≤
(
2p−1 + σp−1)p′

p′α
1
p−1

∫
Ω
|d|p′ + 1

p(1− θ)− 1

∫
Ω
|f | ∀σ ∈ (σ0,∞). (2.1.18)

Now, thanks to Hölder’s inequality, for any fixed q ∈ [1, p) we have that∫
Ω
|∇Gσ(un)|q ≤

[∫
Ω

|∇Gσ(un)|p

(1 + |Gσ(un)|)p(1−θ)

] q
p
[∫

Ω
(1 + |Gσ(un)|)

pq(1−θ)
p−q

] p−q
p

.

By (2.1.18), the right-hand side of the previous inequality is uniformly bounded
with respect to n if σ ∈ (σ0,∞) and

pq(1− θ)
p− q

= p∗θ,
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2.1. First order terms in divergence form

that is,
θ = q∗

p∗
.

Hence, recalling that θ ∈
[
0, 1

p′

)
, it follows that for every σ ∈ (σ0,∞), the sequence

{Gσ(un)} is bounded in W 1,q
0 (Ω) for every q ∈ [1, p) such that

q∗

p∗
<

1
p′
,

that is,
q < N ′(p− 1).

2.1.4 Existence and regularity results

We are now in position to state and prove existence and regularity results.

Theorem 2.1.7. Let f ∈ L1(Ω). Assume that p ∈
(
2− 1

N , N
)
. Then, there exists

a weak solution u to (2.0.2) which belongs to W 1,q
0 (Ω) for every q ∈ [1, N ′(p − 1))

and such that Tσ(u) ∈W 1,p
0 (Ω) for every σ ∈ (0,∞).

Proof. Let {un} be the sequence of weak solutions to the approximate problems
(2.1.3) constructed above. By Lemmas 2.1.1 and 2.1.6, we have that{

{un} is bounded in W 1,q
0 (Ω) ∀ q ∈ [1, N ′(p− 1)),

{Tσ(un)} is bounded in W 1,p
0 (Ω) ∀σ ∈ (0,∞).

Hence, there exists a function u which belongs toW 1,q
0 (Ω) for every q ∈ [1, N ′(p−1))

such that Tσ(u) ∈W 1,p
0 (Ω) for every σ ∈ (0,∞), and, up to a subsequence,

un ⇀ u in W 1,q
0 (Ω) ∀ q ∈ [1, N ′(p− 1)),

un → u a.e. on Ω,
Tσ(un) ⇀ Tσ(u) in W 1,p

0 (Ω) ∀σ ∈ (0,∞).

Moreover, we get

{A(·, un,∇un)} is bounded in (Ls(Ω))N ∀ s ∈ [1, N ′).

For a fixed s ∈
[
1, N

p−1

)
, the use of Hölder’s inequality yields

∫
Ω
|Dn(x, un)|s ≤

∫
Ω
|d|s|un|(p−1)s ≤

(∫
Ω
|d|

N
p−1

) (p−1)s
N

(∫
Ω
|un|

N(p−1)
N−(p−1)s

)N−(p−1)s
N

.

Thus, exploiting the fact that {un} is bounded in Lt(Ω) for every t ∈
[
1, p

∗

p′

)
and

N(p− 1)
N − (p− 1)s <

p∗

p′
⇐⇒ s < p′,
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Chapter 2. First order perturbations

we get also
{Dn(·, un)} is bounded in (Ls(Ω))N ∀ s ∈ [1, p′).

Therefore, by Lemma 1.2.6 (see [12], [19], [20] and [24]), it follows that

∇un → ∇u a.e. on Ω,

which in turn implies that{
A(·, un,∇un)→ A(·, u,∇u) in (L1(Ω))N

Dn(·, un)→ D(·, u) in (L1(Ω))N .
(2.1.19)

Putting together (2.1.19) with the fact that fn → f in L1(Ω) and passing to the
limit as n→∞ in (2.1.4), we finally deduce that u is a weak solution to (2.0.2).

Theorem 2.1.8. Let f ∈ Lm(Ω) for some m ∈
(
max

{
1, N

N(p−1)+1

}
, (p∗)′

)
. Then,

there exists a weak solution u to (2.0.2) which belongs to W 1,(p−1)m∗
0 (Ω), such that

Tσ(u) ∈W 1,p
0 (Ω) for every positive σ.

Proof. The argument of the proof is essentially the same as the previous one. What
changes is that we use Lemma 2.1.5 instead of Lemma 2.1.6 to deduce that the
sequence {un} is bounded in W 1,(p−1)m∗

0 (Ω).

Theorem 2.1.9. Let f ∈ Lm(Ω) for some m ∈ [(p∗)′,∞]. Then there exists a weak
solution u to (2.0.2) which belongs to W 1,p

0 (Ω) and satisfies

u ∈ L[(p−1)m∗]∗(Ω) if m ∈
[
(p∗)′, N

p

)
. (2.1.20)

Moreover, if the coefficient d belongs to Lr(Ω) for some r ∈
(
N
p−1 ,∞

]
, u satisfies

u ∈ L∞(Ω) if m ∈
(
N

p
,∞
]
. (2.1.21)

Proof. The argument of the proof of existence part is essentially the same as the
previous one. What changes is that we use Lemma 2.1.3 instead of Lemma 2.1.5 to
deduce that the sequence {un} is bounded inW 1,p

0 (Ω). Moreover, the weak solution
u obtained in the limit process satisfies∫

Ω
[A(x, u,∇u)−D(x, u)] · ∇v =

∫
Ω
f(x)v ∀ v ∈W 1,p

0 (Ω). (2.1.22)

It remains to prove the extra regularity properties of u. The first one is an
immediate consequence of Lemma 2.1.4, since un → u a.e. on Ω. In order to prove
the other one, let us assume that d ∈ Lr(Ω) for some r ∈

(
N
p−1 ,∞

]
and f ∈ Lm(Ω)

for some m ∈
(
N
p ,∞

]
. We fix s ∈ (0,∞) and we choose

v =


1
p−1

[
1

(1+s)p−1 − 1
(1+|u|)p−1

]
sign(u) if |u| > s,

0 if |u| ≤ s,
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2.1. First order terms in divergence form

as a test function in (2.1.22). Since

|v| ≤ χAs
p− 1 , ∇v = ∇uχAs

(1 + |u|)p a.e. on Ω,

where
As = {|u| > s},

we obtain that

α

∫
As

|∇u|p

(1 + |u|)p ≤
∫
As
|d||u|p−1 |∇u|

(1 + |u|)p + 1
p− 1

∫
As
|f |

≤
∫
As
|d| |∇u|1 + |u| + 1

p− 1

∫
As
|f |,

which in turn, using Young’s inequality, implies that
α

p′

∫
Ω
|∇Gσ(ψ(u))|p ≤ 1

p′α
1
p−1

∫
Bσ
|d|p′ +

∫
Bσ
|f |, (2.1.23)

where

ψ(u) = log(1 + |u|)sign(u), Bσ = {|ψ(u)| > σ}, σ = log(1 + s).

Therefore, thanks to Hölder’s and Sobolev’s inequalities, from (2.1.23) we deduce
that

α

p′Sp0

(∫
Ω
|Gs(ψ(u))|p∗

) p
p∗
≤ 1
p′α

1
p−1

(∫
Ω
|d|r

) p′
r

|Aσ|
r−p′
r +

(∫
Ω
|f |m

) 1
m

|Aσ|
1
m′ .

On the other hand, we observe that∫
Ω
|Gσ(ψ(u))|p∗ ≥ (τ − σ)p∗ |Bτ | ∀ τ > σ > 0.

Hence, it follows that

|Bτ | ≤
1

(τ − σ)p∗
∫

Ω
|Gs(ψ(u))|p∗

≤ Sp
∗

0
(τ − σ)p∗

 1
αp′

(∫
Ω
|d|r

) p′
r

|Bσ|
r−p′
r + p′

α

(∫
Ω
|f |m

) 1
m

|Bσ|
1
m′


p∗
p

∀ τ > σ > 0. (2.1.24)

Now, we choose σ0 ∈ (0,∞) sufficiently large such that

|Bσ| ≤ 1 ∀σ ∈ [σ0,∞).

Hence, estimate (2.1.24) yields

|Bτ | ≤
Sp
∗

0
(τ − σ)p∗

 1
αp′

(∫
Ω
|d|r

) p′
r

+ p′

α

(∫
Ω
|f |m

) 1
m


p∗
p

|Aσ|δ ∀ τ > σ ≥ σ0,

(2.1.25)
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where
δ = p∗

p
min

{
r − p′

r
,

1
m′

}
.

Thus, applying Lemma 1.2.3 with

Φ(σ) = |Bσ|, C = Sp
∗

0

 1
αp′

(∫
Ω
|d|r

) p′
r

+ p′

α

(∫
Ω
|f |m

) 1
m


p∗
p

, γ = p∗,

from (2.1.25) we deduce the result, since
p∗(r − p′)

pr
> 1⇐⇒ r >

N

p− 1 ,

p∗

pm′
> 1⇐⇒ m >

N

p
.

2.2 First order terms not in divergence form
Definition 2.2.1. Let f ∈ L1(Ω). We say that a function u : Ω → R is a weak
solution to (2.0.3) if u ∈W 1,1

0 (Ω), |A(·, u,∇u)|, B(·,∇u) ∈ L1
loc(Ω) and u satisfies∫

Ω
A(x, u,∇u) · ∇ζ +

∫
Ω
B(x,∇u)ζ =

∫
Ω
f(x)φ ∀ ζ ∈ C∞c (Ω).

If f ∈ L(2∗)′(Ω), the existence and uniqueness of a weak solution to (2.0.3)
which belongs to H1

0 (Ω) are established in [35] in the linear case. This existence
result is extended to the nonlinear case and for every value of p ∈ (1, N) in [53].
Regularity results in Lorentz spaces are obtained in [6], by means of symmetrization
techniques, when b and f belong to suitably Lorentz spaces (see also [52], [5], [7],
[54] and [55]). We emphasize that these results guarantee the existence of a weak
solution u ∈ W 1,p

0 (Ω) to (2.0.3) such that, if f belongs to the Marcinkievicz space
Mm(Ω) for some m ∈ ((p∗)′,∞), then

u ∈ L∞(Ω) if m ∈
(
N
p ,∞

]
,

ec|u| ∈ L1(Ω) for some c ∈ (0,∞) if m = N
p ,

u ∈M [(p−1)m∗]∗(Ω) if m ∈
(
(p∗)′, Np

)
,

(2.2.1)

while, if f ∈ Lm(Ω) for some m ∈
[
(p∗)′, Np

)
, then

u ∈ L[(p−1)m∗]∗(Ω). (2.2.2)

In this section we present the existence result of [53] and we give a different
proof of the regularity results (2.2.1) and (2.2.2), using the techniques of [35] and
[53]. Adopting the same approach, we prove also the existence of a weak solution u
to (2.0.3) such that

u ∈W 1,(p−1)m∗
0 (Ω) if m ∈

(
max

{
1, N

N(p− 1) + 1

}
, (p∗)′

)
. (2.2.3)

We remark that (2.2.1)-(2.2.3) are the same regularity results proved in [72], [22],
[23] and [28] for the weak solutions to (2.0.1).
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2.2. First order terms not in divergence form

2.2.1 Approximate problems and preliminary results

Let f ∈ L1(Ω) and let us consider the following family of approximate problems
(n ∈ N): {

A(un) + Bn(un) = fn on Ω,
un = 0 on ∂Ω,

(2.2.4)

where
Bn(u) = Bn(·,∇u),

and 
Bn(x, ξ) = Tn(B(x, ξ)),
fn(x) = Tn(f(x)),
for a.e. x ∈ Ω, ∀ ξ ∈ RN .

Since 
|Bn(x, ξ)| ≤ min{|B(x, ξ)|, n},
|fn(x)| ≤ min{|f(x)|, n},
for a.e. x ∈ Ω, ∀ ξ ∈ RN ,

Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]) guarantee, for every n ∈ N, the
existence of a weak solution un ∈W 1,p

0 (Ω) ∩ L∞(Ω) to (2.2.4) which satisfies∫
Ω
A(x, un,∇un) · ∇v +

∫
Ω
Bn(x,∇un)v =

∫
Ω
fn(x)v ∀ v ∈W 1,p

0 (Ω). (2.2.5)

In the search of estimates on un, we follow the approach of [35] and [53]. To
overcome the lack of coercivity caused by the presence of the first order term, the
idea is to reduce the problem (2.0.3) to a finite sequence of problems with ‖b‖LN (Ω)
small taking advantage of the following decomposition result (see [53], Proposition
2.1).

Proposition 2.2.1. Let u0 ∈W 1,q0
0 (Ω) for some q0 ∈ [1,∞) and let b0 ∈ Lr0(Ω) for

some r0 ∈ [1,∞]. Then, for every ε0 ∈ (0,∞), there exist a number l = l(ε0) ∈ N, a
finite collection of disjoint measurable subsets Ω1, . . . ,Ωl ⊂ Ω and a finite sequence
of functions u1, . . . , ul ∈W 1,q0

0 (Ω), which satisfy the following properties:
u0 = u1 + . . .+ ul,(∫

Ω1
|b0|r0

) 1
r0 ≤ ε0, . . . ,

(∫
Ωl
|b0|r0

) 1
r0 ≤ ε0,

(2.2.6)

and 

sign(ui) = sign(u0) if ui 6= 0,{
|∇ui| 6= 0

}
⊂ Ωi,

∇ui = ∇u0χΩi ,

(∇u0)ui = (∇u1 + . . .+∇ui)ui,
∀ i ∈ {1, . . . , l}.

(2.2.7)
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Proof. For any τ > σ ≥ 0, we define

Lστ (s) = Tτ−σ(Gσ(s)), Lσ∞(s) = Gσ(s) ∀ s ∈ R,

and we observe that

∇u0 = ∇Lστ (u0) a.e. on Aστ , ∇u0 = ∇Lσ∞(u0) a.e. on Aσ∞,

where
Aστ =

{
|∇Lστ (u0)| 6= 0

}
, Aσ∞ =

{
|∇Lσ∞(u0)| 6= 0

}
.

We construct by induction a decreasing sequence of nonnegative real numbers
{σi} in the following way. Let ε0 ∈ (0,∞). If ‖b0‖Lr0 (Ω) ≤ ε0, then we set σ1 = 0.
Otherwise, we choose σ1 such that

(∫
Aσ1∞

|b0|r0

) 1
r0

= ε0.

Analogously, if σi−1 is defined and

(∫
A0σi−1

|b0|r0

) 1
r0
≤ ε0,

we set σi = 0. Otherwise, we choose σi such that(∫
Aσiσi−1

|b0|r0

) 1
r0

= ε0.

If l is first index such that σl = 0, we define

Ω1 = Aσ1∞, u1 = Lσ1∞(u0),

and
Ωi = Aσi−1σi , ui = Lσi−1σi(u0) ∀ i ∈ {2, . . . , l}.

Now, it is not difficult to verify that the disjoint measurable subsets Ω1, . . . ,Ωl ⊂ Ω
and the functions u1, . . . , ul ∈W 1,q0

0 (Ω) satisfy (2.2.6) and (2.2.7).

2.2.2 Estimates on un with regular datum

Lemma 2.2.2. Let f ∈ L(p∗)′(Ω). Then, the sequence {un} is bounded in W 1,p
0 (Ω).

Proof. We fix n ∈ N and we apply Proposition 2.2.1 with

u0 = un, b0 = b, ε0 = α

2S0
.

Hence, there exist a number l = l(α,N, p) ∈ N, a finite collection of disjoint mea-
surable subsets Ω1, . . . ,Ωl ⊂ Ω and a finite sequence of functions un,1, . . . , un,l ∈
W 1,p

0 (Ω) which satisfy (2.2.6) and (2.2.7).
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2.2. First order terms not in divergence form

The, we fix i ∈ {1, . . . , l} and we choose un,i as a test function in (2.2.5). Since

∇un,i = ∇unχΩi , (∇un)un,i =
i∑

j=1
(∇un,j)un,i a.e. on Ω,

we obtain that

α

∫
Ω
|∇un,i|p ≤

∫
Ω
|b||∇un|p−1|un,i|+

∫
Ω
|f ||un,i|

≤
i∑

j=1

∫
Ωj
|b||∇un,j |p−1|un,i|+

∫
Ω
|f ||un,i|. (2.2.8)

By Hölder’s inequality, we have that

i∑
j=1

∫
Ωj
|b||∇un,j |p−1|un,i| ≤

i∑
j=1

(∫
Ωj
|b|N

) 1
N (∫

Ω
|∇un,j |p

) 1
p′
(∫

Ω
|un,i|p

∗
) 1
p∗
,

which in turn, thanks to Sobolev’s inequality and (2.2.7), implies that

i∑
j=1

∫
Ωj
|b||∇un,j |p−1|ui| ≤ S0ε0

i∑
j=1

(∫
Ω
|∇un,j |p

) 1
p′
(∫

Ω
|∇un,i|p

) 1
p

= α

2

i∑
j=1

(∫
Ω
|∇un,j |p

) 1
p′
(∫

Ω
|∇un,i|p

) 1
p

.

Furthermore, by Hölder’s and Sobolev’s inequalities again, we have that

∫
Ω
|f ||un,i| ≤

(∫
Ω
|f |(p∗)′

) 1
(p∗)′

(∫
Ω
|un,i|p

∗
) 1
p∗

≤ S0

(∫
Ω
|f |(p∗)′

) 1
(p∗)′

(∫
Ω
|∇un,i|p

∗
) 1
p

.

Therefore, from (2.2.8) we deduce that

(∫
Ω
|∇un,i|p

) 1
p′
≤

i−1∑
j=1

(∫
Ω
|∇un,j |p

) 1
p′

+ 2S0
α

(∫
Ω
|f |(p∗)′

) 1
(p∗)′

≤ 2iS0
α

(∫
Ω
|f |(p∗)′

) 1
(p∗)′

,

which, exploiting (2.2.6), finally yields

(∫
Ω
|∇un|p

) 1
p

≤
l∑

i=1

(
2iS0
α

) 1
p−1 (∫

Ω
|f |(p∗)′

) 1
(p−1)(p∗)′

.
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Lemma 2.2.3. Let f ∈ Lm(Ω) for some m ∈
[
(p∗)′, Np

]
. Then{un} is bounded in L[(p−1)m∗]∗(Ω) if m ∈

[
(p∗)′, Np

)
,{

ec|un|
}

is bounded in L1(Ω) ∀c ∈ (0,∞) if m = N
p .

Proof. First, for every n ∈ N and σ ∈ (0,∞) we define

An,σ = {|un| > σ},

and we observe that, by the absolute continuity of the integral,
lim
σ→∞

∫
An,σ
|b|N = 0,

lim
σ→∞

∫
An,σ
|f |m = 0,

uniformly with respect to n,

(2.2.9)

since, by Lemma 2.2.2, {un} is bounded in Lp∗(Ω) and, then, |An,σ| → 0 as σ →∞
uniformly with respect to n.

Now, we divide the proof into two parts.
PART I. Assume that m ∈

[
(p∗)′, Np

)
. We fix n ∈ N, σ ∈ (0,∞) and we choose

v = |Gσ(un)|p(γ−1)+1sign(Gσ(un))
p(γ − 1) + 1 = (|un| − σ)p(γ−1)+1sign(un)

p(γ − 1) + 1 χAn,σ ,

as a test function in (2.2.5), where

γ = [(p− 1)m∗]∗

p∗
.

We observe that assumption m ≥ (p∗)′ implies that γ ≥ 1, so that p(γ− 1) + 1 ≥ 1.
Since

∇v = ∇Gσ(un)|Gσ(un)|p(γ−1) = ∇un|Gσ(un)|p(γ−1)χAn,σ a.e. on Ω,

we obtain that

α

∫
Ω
|∇Gσ(un)|p|Gσ(un)|p(γ−1) ≤ 1

p(γ − 1) + 1

∫
Ω
|b||∇Gσ(un)|p−1|Gσ(un)|p(γ−1)+1

+ 1
p(γ − 1) + 1

∫
Ω
|f ||Gσ(un)|p(γ−1)+1. (2.2.10)

By Hölder inequality, the first integral on the right-hand side of (2.2.10) can be
estimated as∫

Ω
|b||∇Gσ(un)|p−1|Gσ(un)|p(γ−1)+1

≤
(∫

An,σ
|b|N

) 1
N (∫

Ω
|∇Gσ(un)|p|Gσ(un)|p(γ−1)

) 1
p′
(∫

Ω
|Gσ(un)|p∗γ

) 1
p∗
,
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which in turn, thanks to Sobolev’s inequality, implies that∫
Ω
|b||∇Gσ(un)|p−1|Gσ(un)|p(γ−1)+1

≤ S0γ

(∫
An,σ
|b|N

) 1
N ∫

Ω
|∇Gσ(un)|p|Gσ(un)|p(γ−1).

Now, in virtue of (2.2.9), there exists σ0 ∈ (0,∞) such that

S0γ

p(γ − 1) + 1

(∫
An,σ
|b|N

) 1
N

≤ α

2 ∀σ ∈ (σ0,∞).

Therefore, using Sobolev’s inequality again, from (2.2.10) we deduce that

α

2(S0γ)p
(∫

Ω
|Gσ(un)|p∗γ

) p
p∗
≤ α

2

∫
Ω
|∇Gσ(un)|p|Gσ(un)|p(γ−1)

≤ 1
p(γ − 1) + 1

∫
Ω
|f ||Gσ(un)|p(γ−1)+1 ∀σ ∈ (σ0,∞). (2.2.11)

On the other hand, by Hölder’s inequality again, we have that

∫
Ω
|f ||Gσ(un)|p(γ−1)+1 ≤

(∫
Ω
|f |m

) 1
m
(∫

Ω
|Gσ(un)|[p(γ−1)+1]m′

) 1
m′
. (2.2.12)

We observe that the choice of γ implies that

p∗γ = [p(γ − 1) + 1]m′ = [(p− 1)m∗]∗,

thus, from (2.2.11) and (2.2.12) we finally get

α

2(S0γ)p
(∫

Ω
|Gσ(un)|p∗γ

) p
p∗−

1
m′
≤ 1
p(γ − 1) + 1

(∫
Ω
|f |m

) 1
m

∀σ ∈ (σ0,∞).

The previous estimate concludes the first part of the proof, since

m <
N

p
=⇒ p

p∗
>

1
m′
,

and
|un| = |Tσ(un) +Gσ(un)| ≤ σ + |Gσ(un)| a.e. on Ω.

PART II. Assume that m = N
p . We fix n ∈ N, c, σ ∈ (0,∞) and we choose

v =

(
epc|Gσ(un)| − 1

)
sign(Gs(un))

pc
=

(
epc(|un|−σ) − 1

)
sign(un)

pc
χAn,σ (2.2.13)

as a test function in (2.2.5). Since

∇v = ∇Gσ(un)epc|Gσ(un)| = ∇unepc|Gσ(un)|χAn,σ a.e. on Ω,
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Chapter 2. First order perturbations

we obtain that

α

∫
Ω
|∇Gσ(un)|pepc|Gσ(un)| ≤ 1

pc

∫
Ω
|b||∇Gσ(un)|p−1

(
epc|Gσ(un)| − 1

)
+ 1
pc

∫
Ω
|f |
(
epc|Gσ(un)| − 1

)
. (2.2.14)

Recalling that

|σp − 1| ≤ C|σ − 1|p + 1
C − 1 ∀σ ∈ [0,∞), ∀C ∈ (1,∞),

for a fixed C ∈ (1,∞), we have that

1
pc

∫
Ω
|b||∇Gσ(un)|p−1

(
epc|Gσ(un)| − 1

)
≤ C

pc

∫
Ω
|b||∇Gσ(un)|p−1

(
ec|Gσ(un)| − 1

)p
+ 1
pc(C − 1)

∫
Ω
|b||∇Gσ(un)|p−1e(p−1)c|Gσ(un)|, (2.2.15)

and
1
pc

∫
Ω
|f |
(
epc|Gσ(un)| − 1

)
≤ C

pc

∫
Ω
|f |
(
ec|Gσ(un)| − 1

)p
+ 1
pc(C − 1)

∫
Ω
|f |. (2.2.16)

By Hölder’s, Sobolev’s and Young’s inequalities, the right-hand side of (2.2.15) can
be estimated by

{
CS0
p

+ 1
pp′c(C − 1)

}(∫
An,σ
|b|N

) 1
N ∫

Ω
|∇Gs(un)|pepc|Gσ(un)|+ 1

p2(C − 1)

∫
Ω
|b|p′ ,

while, by Hölder’s and Sobolev’s inequalities, the right-hand side of (2.2.16) is
controlled by

C(S0c)p

pc

(∫
An,σ
|f |

N
p

) p
N ∫

Ω
|∇Gσ(un)|pepc|Gσ(un)| + 1

pc(C − 1)

∫
Ω
|f |.

Now, by (2.2.9), there exists σ0 ∈ (0,∞) such that

[
CS0
p

+ 1
pp′c(C − 1)

](∫
An,σ
|b|N

) 1
N

≤ α

4 ,

C(S0c)p

pc

(∫
An,σ
|f |

N
p

) p
N

≤ α

4 ,

∀n ∈ N, ∀σ ∈ (σ0,∞).

Therefore, from (2.2.14) we deduce that

α

2

∫
Ω
|∇Gσ(un)|pepc|Gσ(un)| ≤ 1

αp2(C − 1)

∫
Ω
|b|p′+ 1

p2(C − 1)

∫
Ω
|f | ∀σ ∈ (σ0,∞),
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2.2. First order terms not in divergence form

which in turn, thanks to Sobolev’s inequality, yields

α

2(S0c)p
[∫

Ω

(
ec|Gσ(un)| − 1

)p∗] p
p∗
≤ 1
αp2(C − 1)

∫
Ω
|b|p′

+ 1
p2(C − 1)

∫
Ω
|f | ∀σ ∈ (σ0,∞).

This concludes the proof, since

ec|un| = ec|Tσ(un)+Gσ(un)| ≤ ecσec|Gσ(un)| a.e. on Ω.

2.2.3 Estimates on un with irregular datum

Lemma 2.2.4. Let f ∈ Lm(Ω) with m ∈
(
max

{
1, N

N(p−1)+1

}
, (p∗)′

)
. Then, the

sequence {un} is bounded in W 1,(p−1)m∗
0 (Ω).

Proof. Let
θ = [(p− 1)m∗]∗

p∗
.

We observe that assumption m ∈ (1, (p∗)′) implies that θ ∈
(

1
p′ , 1

)
. We fix n ∈ N

and we apply Proposition 2.2.1 with

u0 = un, b0 = b, ε0 = α[1− p(1− θ)]
2

(
S0θ + 1

p′

)−1
.

Hence, there exist l = l(α,N, p, θ) ∈ N, a finite collection of disjoint measurable
subsets Ω1, . . . ,Ωl ⊂ Ω and a finite sequence of functions un,1, . . . , un,l ∈ W 1,p

0 (Ω)
which satisfy (2.2.6) and (2.2.7).

Now, the proof is divided into three steps.
STEP I. We fix i ∈ {1, . . . , l}, ε ∈ (0,∞) and we choose

vε =
[
(ε+ |un,i|)1−p(1−θ) − ε1−p(1−θ)

]
sign(un,i),

as a test function in (2.2.5). We observe that θ > 1
p′ implies that 1− p(1− θ) > 0.

Since

∇vε = [1− p(1− θ)] ∇un,i
(ε+ |un,i|)p(1−θ)

= [1− p(1− θ)] ∇unχΩi
(ε+ |un,i|)p(1−θ)

a.e. on Ω,

we obtain that

α[1− p(1− θ)]
∫

Ω

|∇un,i|p

(ε+ |un,i|)p(1−θ)
≤
∫

Ω
|b||∇un|p−1|vε|+

∫
Ω
|f ||vε|. (2.2.17)

Then, by (2.2.7), we have that

(∇un)vε =
i−1∑
j=1

(∇un,j)vε a.e. on Ω,
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Chapter 2. First order perturbations

so that∫
Ω
|b||∇un|p−1|vε| ≤

∫
Ωi
|b||∇un,i|p−1(ε+ |un,i|)1−p(1−θ)

+
i−1∑
j=1

∫
Ωj
|b||∇un,j |p−1|vε|. (2.2.18)

Thanks to Hölder’s inequality, the first term on the right-hand side of (2.2.18) can
be estimated by

(∫
Ωi
|b|N

) 1
N

[∫
Ω

|∇un,i|p

(ε+ |un,i|)p(1−θ)

] 1
p′ {∫

Ω

[
(ε+ |un,i|)θ − εθ

]p∗} 1
p∗

+ εθ
(∫

Ωi
|b|N

) 1
N

[∫
Ω

|∇un,i|p

(ε+ |un,i|)p(1−θ)

] 1
p′

,

which in turn, by Young’s and Sobolev’s inequalities and (2.2.7), is controlled by(
S0θ + 1

p′

)
ε0

∫
Ω

|∇un,i|p

(ε+ |un,i|)p(1−θ)
+ εpθε0

p
.

Thus, recalling the choice of ε0 and using Sobolev’s inequality, from (2.2.17) we
deduce that

α[1− p(1− θ)]
2(S0θ)p

{∫
Ω

[
(ε+ |un,i|)θ − εθ

]p∗} p
p∗

≤ α[1− p(1− θ)]
2

∫
Ω

|∇un,i|p

(ε+ |un,i|)p(1−θ)

≤ εpθε0
p

+
i−1∑
j=1

∫
Ωj
|b||∇un,j |p−1|vε|+

∫
Ω
|f ||vε|, (2.2.19)

so that, letting ε→ 0 and applying Lebesgue’s Theorem, we finally get

α[1− p(1− θ)]
2(S0θ)p

(∫
Ω
|un,i|p

∗θ
) p
p∗

≤
i−1∑
j=1

∫
Ωj
|b||∇un,j |p−1|un,i|1−p(1−θ) +

∫
Ω
|f ||un,i|1−p(1−θ). (2.2.20)

STEP II. If i = 1, estimate (2.2.20) becomes

α[1− p(1− θ)]
2(S0θ)p

(∫
Ω
|un,i|p

∗θ
) p
p∗
≤
∫

Ω
|f ||un,1|1−p(1−θ), (2.2.21)

which in turn, using Hölder’s inequality, leads to

α[1− p(1− θ)]
2(S0θ)p

(∫
Ω
|un,1|p

∗θ
) p
p∗

≤
(∫

Ω
|f |m

) 1
m
(∫

Ω
|un,1|[1−p(1−θ)]m

′
) 1
m′
. (2.2.22)
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2.2. First order terms not in divergence form

We observe that the choice of θ implies that

p∗θ = [1− p(1− θ)]m′ = [(p− 1)m∗]∗.

Moreover, we have that

m < (p∗)′ < N

p
=⇒ p

p∗
>

1
m′
.

Therefore, from (2.2.22) we deduce that

α[1− p(1− θ)]
2(S0θ)p

(∫
Ω
|un,1|[(p−1)m∗]∗

) p
p∗−

1
m′
≤
(∫

Ω
|f |m

) 1
m

,

which in turn, going back to estimate (2.2.19), implies that the quantity∫
Ω

|∇un,1|p

(ε+ |un,1)p(1−θ)

is uniformly bounded with respect to n.
Now, for q = (p− 1)m∗ the use of Hölder inequality yields

∫
Ω
|∇un,1|(p−1)m∗ ≤

[∫
Ω

|∇un,1|p

(ε+ |un,1)p(1−θ)

] q
p [∫

Ω
(ε+ |un,1)

pq(1−θ)
p−q

] p−q
p

.

Then, a simple calculation shows that

pq(1− θ)
p− q

= [(p− 1)m∗]∗,

hence it follows that there exists a positive constant C1 which depends only on α,
b, f , m, N and p such that(∫

Ω
|∇un,1|(p−1)m∗

) 1
(p−1)m∗

≤ C1.

STEP III. We proceed by induction. We fix i ∈ {2, . . . , l} and we assume that
there exist positive constants C1, . . . , Ci−1 which depend only on α, b, f , m, N and
p such that(∫

Ω
|∇un,j |(p−1)m∗

) 1
(p−1)m∗

≤ Cj ∀ j ∈ {1, . . . , i− 1}. (2.2.23)

Then, by Hölder’s inequality, we have that

i−1∑
j=1

∫
Ωj
|b||∇un,j |p−1|un,i|1−p(1−θ)

≤
i−1∑
j=1

(∫
Ωj
|b|N

) 1
N (∫

Ω
|∇un,j |(p−1)m∗

) 1
m∗
(∫

Ω
|un,i|[1−p(1−θ)]m

′
) 1
m′
,
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so that, exploiting (2.2.23), we get

i−1∑
j=1

∫
Ωj
|b||∇un,j |p−1|un,i|1−p(1−θ) ≤

i−1∑
j=1

Cp−1
j

(∫
Ω
|b|N

) 1
N
(∫

Ω
|un,i|[1−p(1−θ)]m

′
) 1
m′
.

Furthermore, by Hölder’s inequality again, we have that

∫
Ω
|f ||un,i|1−p(1−θ) ≤

(∫
Ω
|f |m

) 1
m
(∫

Ω
|un,i|[1−p(1−θ)]m

′
) 1
m′
.

Therefore, using Sobolev’s inequality, from (2.2.20) we obtain that

α[1− p(1− θ)]
2(S0θ)p

(∫
Ω
|un,i|p

∗θ
) p
p∗

≤


i−1∑
j=1

Cp−1
j

(∫
Ω
|b|N

) 1
N

+
(∫

Ω
|f |m

) 1
m


(∫

Ω
|un,i|[1−p(1−θ)]m

′
) 1
m′
, (2.2.24)

which in turn, recalling that

p∗θ = [1− p(1− θ)]m′ = [(p− 1)m∗]∗,

and
p

p∗
>

1
m′
,

implies that

α

2(S0θ)p
(∫

Ω
|un,i|[(p−1)m∗]∗

) p
p∗−

1
m′

≤
i−1∑
j=1

Cp−1
j

(∫
Ω
|b|N

) 1
N

+
(∫

Ω
|f |m

) 1
m

. (2.2.25)

Moreover, going back to (2.2.19), we obtain that the quantity∫
Ω

|∇un,i|p

(ε+ |un,i|)p(1−θ)

is uniformly bounded with respect to n.
Thus, arguing as in the last part of the previous step, we finally deduce that,

for every i ∈ {1, . . . , l}, there exists a positive constant Ci which depends only on
α, b, f , m, N and p such that(∫

Ω
|∇un,i|(p−1)m∗

) 1
(p−1)m∗

≤ Ci,

which concludes the proof, in virtue of (2.2.6).
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2.2. First order terms not in divergence form

2.2.4 Existence and regularity results

The existence of a weak solution in W 1,p
0 (Ω) to (2.0.3) is the main result of [53] and

the proof is given for more general problems than (2.0.3), that is,{
A(u) + B(u) +K(u) = f on Ω,
u = 0 on ∂Ω,

(2.2.26)

where
K(u) = K(·, u),

and K : Ω× R→ R is a Carathéodory function such that

K(x, σ)sign(σ) ≥ 0 for a.e. x ∈ Ω, ∀σ ∈ R,

and
sup

τ∈[−σ,σ]
|K(·, τ)| ∈ L1(Ω) ∀σ ∈ (0,∞).

For our convenience we state and prove the next two results for the problem (2.2.26).

Theorem 2.2.5. Let f ∈ Lm(Ω) for some m ∈
[
(p∗)′, Np

]
. Then there exists a weak

solution u to (2.2.26) which belongs to W 1,p
0 (Ω), such that K(·, u), K(·, u)u belong

to L1(Ω) and satisfies
∫

Ω
A(x, u,∇u) · ∇v +

∫
Ω
B(x,∇u)v +

∫
Ω
K(x, u)v =

∫
Ω
fv,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω) and v = u.

(2.2.27)

Moreover, we have thate
c|u| ∈ L1(Ω) ∀ c ∈ (0,∞) if m = N

p ,

u ∈ L[(p−1)m∗]∗(Ω) if m ∈
[
(p∗)′, Np

)
.

(2.2.28)

Proof. Let us consider the following family of approximate problems (n ∈ N):{
A(un) + Bn(un) +Kn(un) = f on Ω,
un = 0 on ∂Ω,

(2.2.29)

where
Bn(u) = Bn(·,∇u), Kn(u) = Kn(·, u),

and 
Bn(x, σ) = Tn(B(x, ξ)),
Kn(x, σ) = Tn(K(x, σ)),
fn(x) = Tn(f(x)),
for a.e. x ∈ Ω, ∀σ ∈ R, ∀ ξ ∈ RN .

Since 
|Bn(x, ξ)| ≤ min{|B(x, ξ)|, n},
|Kn(x, σ)| ≤ min{|K(x, σ)|, n},
|fn(x)| ≤ min{|f(x)|, n}
∀σ ∈ R, ∀ ξ ∈ RN , ∀n ∈ N,
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Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]) guarantee, for every n ∈ N, the
existence of a weak solution un ∈W 1,p

0 (Ω) ∩ L∞(Ω) to (2.2.4) which satisfies
∫

Ω
A(x, un,∇un) · ∇v +

∫
Ω
Bn(x,∇un)v +

∫
Ω
Kn(x, un)v =

∫
Ω
fn(x)v,

∀ v ∈W 1,p
0 (Ω).

(2.2.30)
We observe that it is not difficult to prove that the estimates achieved in the previous
sections are still valid for un, because of the coercivity properties of the zero order
term.

By Lemma 2.2.2, we know that {un} is bounded inW 1,p
0 (Ω). Hence, there exists

a function u ∈W 1,p
0 (Ω) such that{

un ⇀ u in W 1,p
0 (Ω),

un → u a.e. on Ω.

Moreover, we get

{A(·, un,∇un)} is bounded in (Lp′(Ω))N .

Then, the use of Hölder’s inequality gives∫
Ω
|Bn(x,∇un)|(p∗)′ ≤

(∫
Ω
|b|N

) (p∗)′
N
(∫

Ω
|∇un|p

)N−(p∗)′
N

,

so that
{Bn(·,∇un)} is bounded in (L(p∗)′(Ω))N .

Furthermore, choosing un as a test function in (2.2.30), we have that

α

∫
Ω
|∇un|p +

∫
Ω
K(x, un)un ≤

∫
Ω
|b||∇un|p−1|un|+

∫
Ω
|f ||un|.

Dropping the positive term coming from the principal part and using Hölder’s and
Sobolev’s inequalities, we obtain that∫

Ω
Kn(x, un)un ≤

(∫
Ω
|b|N

) 1
N
∫

Ω
|∇un|p + S0

(∫
Ω
|f |(p∗)′

) 1
(p∗)′

(∫
Ω
|∇un|p

) 1
p

,

which yields
{Kn(·, un)un} is bounded in L1(Ω).

Therefore, we deduce that K(·, u)u ∈ L1(Ω) and, by Lemma 1.2.6 (see [12], [19],
[20], [24] and [30]), up to a subsequence, ∇un → ∇u a.e. on Ω, so that{

A(·, un,∇un) ⇀ A(·, u,∇u) in (Lp′(Ω))N ,
Bn(·,∇un) ⇀ B(·,∇u) in (L(p∗)′(Ω))N .

(2.2.31)

Moreover, for any measurable subset U ⊂ Ω and σ ∈ (0,∞), we have that∫
U
|K(x, un)| ≤

∫
U∩{|un|≤σ}

|K(x, un)|+
∫
{|un|>σ}

|K(x, un)|

≤
∫

Ω
sup

τ∈[−σ,σ]
|K(x, τ)|+ 1

σ

∫
U
K(x, un)un,
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2.2. First order terms not in divergence form

which implies that

lim
|U |→0

∫
U
|K(x, un)| = 0 uniformly wih respect to n.

Hence, by Vitali’s Theorem, we deduce also that

Kn(·, un)→ K(·, u) in L1(Ω). (2.2.32)

Thus, putting together (2.2.31), (2.2.32) with the fact that fn → f in L(p∗)′(Ω),
passing to the limit as n→∞ in (2.2.30), we obtain that

∫
Ω
A(x, u,∇u) · ∇v +

∫
Ω
B(x,∇u)v +

∫
Ω
K(x, u)v =

∫
Ω
f(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(2.2.33)

Since un → u a.e. on Ω, from Lemma 2.2.3 we also get (2.2.28).
Finally, in order to prove that∫

Ω
A(x, u,∇u) · ∇u+

∫
Ω
B(x,∇u)u+

∫
Ω
K(x, u)u =

∫
Ω
fu,

it is sufficient to choose Tj(u) as a test function in (2.2.33), that is,∫
Ω
A(x, u,∇u) · ∇Tj(u) +

∫
Ω
B(x,∇u)Tj(u) +

∫
Ω
K(x, u)Tj(u) =

∫
Ω
fTj(u),

and pass to the limit as j →∞.

Theorem 2.2.6. Let f ∈Mm(Ω) for some m ∈ ((p∗)′,∞) and let u ∈ W 1,p
0 (Ω) be

a weak solution to (2.2.26). Thenu ∈ L
∞(Ω) if m ∈

(
N
p ,∞

)
,

u ∈M [(p−1)m∗]∗(Ω) if m ∈
(
(p∗)′, Np

)
.

(2.2.34)

Moreover, there exists a positive constant c which depends only on α, f , N and p,
such that

ec|u| ∈ L1(Ω) if m = N

p
. (2.2.35)

Proof. We fix σ ∈ (0,∞) and we apply Proposition 2.2.1 with

u0 = Gσ(u) = (|u| − σ)+sign(u), b0 = b, ε0 = α

2S0
.

Hence, there exist a number l = l(α,N, p) ∈ N, a finite collection of disjoint measur-
able subsets Ω1, . . . ,Ωl ⊂ Ω and a finite sequence of functions u1, . . . , ul ∈W 1,p

0 (Ω)
which satisfy (2.2.6) and (2.2.7).

Then, we fix i ∈ {1, . . . , l} and we choose ui as a test function in (2.2.33). Since

∇ui = ∇Gσ(u)χΩi = ∇uχΩi∩Aσ , (∇u)ui =
i∑

j=1
(∇uj)ui a.e. on Ω,
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where
Aσ = {|u| > σ},

dropping the positive zero order term, we obtain that

α

∫
Ω
|∇ui|p ≤

∫
Ω
|b||∇u|p−1|ui|+

∫
Ω
|f ||ui|

≤
i∑

j=1

∫
Ωj
|b||∇uj |p−1|ui|+

∫
Ω
|f ||ui|. (2.2.36)

By Hölder’s inequality, we have that

i∑
j=1

∫
Ωj
|b||∇uj |p−1|ui| ≤

i∑
j=1

(∫
Ωj
|b|N

) 1
N (∫

Ω
|∇uj |p

) 1
p′
(∫

Ω
|ui|p

∗
) 1
p∗
,

which in turn, thanks to Sobolev’s inequality and (2.2.7), implies that

i∑
j=1

∫
Ωj
|b||∇uj |p−1|ui| ≤ S0ε0

i∑
j=1

(∫
Ω
|∇uj |p

) 1
p′
(∫

Ω
|∇ui|p

) 1
p

= α

2

i∑
j=1

(∫
Ω
|∇uj |p

) 1
p′
(∫

Ω
|∇ui|p

) 1
p

.

Furthermore, since ui = 0 a.e. on Ω \Aσ, thanks to Hölder’s and Sobolev’s inequal-
ities we have that∫

Ω
|f ||ui| ≤

(∫
Aσ
|f |(p∗)′

) 1
(p∗)′

(∫
Ω
|ui|p

∗
) 1
p∗

≤ S0

(∫
Aσ
|f |(p∗)′

) 1
(p∗)′

(∫
Ω
|∇ui|p

) 1
p

.

Since f ∈Mm(Ω) with m > (p∗)′, there exists a positive constant C0 which depends
only on f , m, N and p, such that(∫

Aσ
|f |(p∗)′

) 1
(p∗)′
≤ C0|Aσ|

1
m′−

1
p∗ .

Therefore, from (2.2.36) we deduce that(∫
Ω
|∇ui|p

) 1
p′
≤

i−1∑
j=1

(∫
Ω
|∇uj |p

) 1
p′

+ 2C0S0
α
|Aσ|

1
m′−

1
p∗ ≤ 2iC0S0

α
|Aσ|

1
m′−

1
p∗ ,

which, by (2.2.6) and Sobolev’s inequality, yields

(∫
Ω
|Gσ(u)|p∗

) 1
p∗
≤ S0

(∫
Ω
|∇Gσ(u)|p

) 1
p

≤ S0

l∑
i=1

(
2iC0S0
α

) 1
p−1

|Aσ|
1
p−1

(
1
m′−

1
p∗
)
. (2.2.37)
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2.2. First order terms not in divergence form

On the other hand, for every τ > σ > 0 we have(∫
Ω
|Gσ(u)|p∗

) 1
p∗
≥ (τ − σ)|Aτ |

1
p∗ ,

so that

|Aτ | ≤
1

(τ − σ)p∗
∫

Ω
|Gσ(u)|p∗

≤

S0

l∑
i=1

(
2iC0S0
α

) 1
p−1

p∗

|Aσ|
1
p−1

(
p∗
m′−1

)
(τ − σ)p∗ ∀ τ > σ > 0. (2.2.38)

Thus, applying Lemma 1.2.3 with

σ0 = 0, φ(σ) = |Aσ|, C =

S0

l∑
i=1

(2iC0S0
α

) 1
p−1


p∗

, γ = p∗,

δ = 1
p− 1

(
p∗

m′
− 1

)
,

from (2.2.38) we finally deduce the result, since
δ ∈ (1,∞) if m ∈

(
N
p ,∞

]
,

δ = 1 if m = N
p ,

δ ∈ (0, 1) if m ∈
(
(p∗)′, Np

)
.

Theorem 2.2.7. Let f ∈ Lm(Ω) for some m ∈
(
max

{
1, N

N(p−1)+1

}
, (p∗)′

)
. Then,

there exists a weak solution u to (2.0.3) which belongs to W 1,(p−1)m∗
0 (Ω).

Proof. Let {un} be the sequence of weak solutions to the approximate problems
(2.2.4) constructed above. Thanks to Lemma 2.2.4, we have that {un} is bounded
in W 1,(p−1)m∗

0 (Ω). Hence, there exists a function u which belongs to W 1,(p−1)m∗
0 (Ω)

such that, up to a subsequence,{
un ⇀ u in W 1,(p−1)m∗

0 (Ω),
un → u a.e. in Ω.

Moreover, we get

{A(·, un,∇un)} is bounded in (Lm∗(Ω))N .

Then, using Hölder’s inequality, we have that∫
Ω
|Bn(x,∇un)|m ≤

∫
Ω
|b|m|∇un|(p−1)m ≤

(∫
Ω
|b|N

)m
N
(∫

Ω
|∇un|(p−1)m∗

) m
m∗

,

60



Chapter 2. First order perturbations

so that
{Bn(·,∇un)} is bounded in Lm(Ω).

Therefore, by Lemma 1.2.6 (see [13], [19], [20] and [24]), it follows that, up to a
subsequence, ∇un → ∇u a.e. in Ω, which in turn implies that{

A(·, un,∇un)→ A(·, u,∇u) in (Lm∗(Ω))N ,
Bn(·,∇un)→ B(·,∇u) in Lm(Ω).

(2.2.39)

Thus, putting together (2.2.39) with the fact that fn → f in Lm(Ω), we can pass to
the limit in as n→∞ in (2.2.4) and obtain that u is a weak solution of (2.0.3).

2.2.5 A uniqueness result in the linear case

For the sake of completeness, in this subsection we present the uniqueness result of
[35] in the linear case, that is,{

−div(M(x)∇u) = E(x) · ∇u+ f(x) on Ω,
u = 0 on ∂Ω,

(2.2.40)

where M : Ω→ RN2 is a measurable matrix such that
∃α, β ∈ (0,∞) :
M(x)ξ · ξ ≥ α|ξ|2,
|M(x)| ≤ β,
for a.e. x ∈ Ω, ∀ ξ ∈ RN ,

and E : Ω→ RN is a vector field such that

|E| ∈ LN (Ω).

Theorem 2.2.8. Let f ∈ L(2∗)′(Ω). Then, there exists a unique weak solution to
(2.2.40) which belongs to H1

0 (Ω).

Proof. Let u, z ∈ H1
0 (Ω) be two weak solutions to (2.2.40) and let w = u − z. We

apply Proposition 2.2.1 with

u0 = w, b0 = b, ε0 = α

2S0
.

Hence, there exist a number l = l(α,N, p) ∈ N, a finite collection of measurable
disjoint subsets Ω1, . . . ,Ωl ⊂ Ω and a finite sequence of functions w1, . . . , wl ∈
W 1,p

0 (Ω) which satisfy (2.2.6) and (2.2.7).
Then, we fix i ∈ {1, . . . , l} and we choose wi as a test function in (the weak for-

mulation of) (2.2.40) written with u replaced by z, and then in (2.2.40). Subtracting
the equalities obtained in this way, we get∫

Ω
M(x)∇(u− z) · ∇wi =

∫
Ω
E(x) · ∇(u− z)wi.
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2.2. First order terms not in divergence form

Since

∇wi = ∇wχΩi , (∇w)wi =
i∑

j=1
(∇wj)wi a.e. on Ω,

using Hölder’s inequality, we obtain that

α

∫
Ω
|∇wi|2 ≤

i∑
j=1

(∫
Ωj
|E|N

) 1
N (∫

Ω
|∇wj |2

) 1
2
(∫

Ω
|wi|2

∗
) 1

2∗
,

which in turn, by Sobolev’s inequality and (2.2.7), implies that

α

∫
Ω
|∇wi|2 ≤ S0ε0

i∑
j=1

(∫
Ω
|∇wj |2

) 1
2
(∫

Ω
|∇wi|2

) 1
2

= α

2

i∑
j=1

(∫
Ω
|∇wj |2

) 1
2
(∫

Ω
|∇wi|2

) 1
2
.

Hence, it follows that
(∫

Ω
|∇wi|2

) 1
2
≤

i−1∑
j=1

(∫
Ω
|∇wj |2

) 1
2
,

so that wi = 0 a.e. on Ω for every i ∈ {1, . . . , l}. Therefore, thanks to (2.2.6), we
finally deduce that w = 0 a.e. on Ω, that is, u = z a.e. on Ω.
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Chapter 3

Interaction between lower order
terms

In this chapter we study existence and regularity results for a lower order pertur-
bation of the Dirchlet problems introduced in the previous chapter. More precisely,
we consider the problems{

A(u) +D(u) +K(u) = f on Ω,
u = 0 on ∂Ω,

(3.0.1)

and {
A(u) + B(u) +K(u) = f on Ω,
u = 0 on ∂Ω.

(3.0.2)

We recall that Ω ⊂ RN is a bounded open subset with N ≥ 2,

A(u) = −div(A(·, u,∇u)), B(u) = B(·,∇u), D(u) = div(D(·, u)),

and A : Ω × R × RN → RN , B : Ω × RN → R, D : Ω × R → RN are Carathéodory
mappings which satisfy

∃α, β ∈ (0,∞), p ∈ (1, N), a ∈ Lp′(Ω):
A(x, σ, ξ) · ξ ≥ α|ξ|p,
|A(x, σ, ξ)| ≤ β

[
|a(x)|+ |σ|p−1 + |ξ|p−1] ,

[A(x, σ, ξ)−A(x, σ, η)] · (ξ − η) > 0,
for a.e. x ∈ Ω, ∀σ ∈ R, ∀ ξ, η ∈ RN , ξ 6= η,

∃ r ∈ (p,∞], b ∈ Lr(Ω):
|B(x, ξ)| ≤ |b(x)||ξ|p−1,

for a.e. x ∈ Ω, ∀ ξ ∈ RN ,

and 
∃ r ∈ (p′,∞], d ∈ Lr(Ω):
|D(x, σ)| ≤ |d(x)||σ|p−1,

for a.e. x ∈ Ω, ∀σ ∈ R.
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3.1. First order term in divergence form

Moreover, we assume that
K(u) = K(·, u)

where K : Ω× R→ R is a Carathéodory function such that
∃λ ∈ (1,∞), k ∈ L1(Ω) positive a.e. on Ω:
K(x, σ)sign(σ) ≥ k(x)|σ|λ,
for a.e. x ∈ Ω, ∀σ ∈ R,

and
sup

τ∈[−σ,σ]
|K(·, τ)| ∈ L1(Ω) ∀σ ∈ (0,∞).

The model example of function K we have in mind is K(x, σ) = k(x)|σ|λ−1σ where
λ ∈ (1,∞) and k ∈ L1(Ω) is bounded from below on Ω by a positive constant.

If the right-hand side f is a function in Lm(Ω) for somem ∈ [1,∞], the existence
of a weak solution u such that

u ∈W 1,p
0 (Ω) ∩ L[(p−1)m∗]∗(Ω) if m ∈

[
(p∗)′, Np

)
,

u ∈W (p−1)m∗
0 (Ω) if m ∈

(
max

{
1, N

N(p−1)+1

}
, (p∗)′

)
,

u ∈W 1,q
0 (Ω) ∀ q ∈ [1, N ′(p− 1)) if m = 1, p ∈

(
2− 1

N , N
)
,

(3.0.3)

is guaranteed for the problems (3.0.1) and (3.0.2) in the case K ≡ 0, under suitable
assumptions on d and b (see chapter 3). Moreover, this results are still valid for the
problems (3.0.1) and (3.0.2) because of the coercivity properties of the zero order
term. In this chapter we show that if k also satisfies

∃h ∈ (0,∞) : k−h ∈ L1(Ω), (3.0.4)

then a twofold regularizing effect of the zero order term occurs: on the one hand,
there is an improvement in the regularity properties of u and ∇u with respect to
(3.0.3); on the other hand, the regularity properties (3.0.3) are achieved even if d
and b do not belong to, respectively, L

N
p−1 (Ω) and LN (Ω).

This circumstance is discussed in [26] and [39] in the case B ≡ |D| ≡ 0, assuming
that the coefficient k is a positive constant. These results are generalized in [15]
and [16] to the problems (3.0.1) and (3.0.2) in a semilinear framework, that is,
p = 2, A(x, σ, ξ) = M(x)ξ where M is a uniformly elliptic N ×N matrix on Ω with
L∞(Ω) coefficients, D(x, σ) = σE(x) and B(x, ξ) = E(x) · ξ with |E| ∈ LN (Ω),
K(x, σ) = k|σ|λ−1σ with k ∈ (0,∞), and assuming that f ∈ Lm(Ω) for some
m ∈ (1,∞). Analogous results are obtained in [3] for the problem (3.0.2) in the
nonlinear case, assuming that b and k are positive constants. Here we extend the
results of [40] to the nonlinear case and we present those contained in [41].

3.1 First order term in divergence form

3.1.1 Statement of existence and regularity results

Definition 3.1.1. Let f ∈ L1(Ω). We say that a function u : Ω → R is a weak
solution to (3.0.1) if u ∈W 1,1

0 (Ω), |A(·, u,∇u)|, |D(·, u)|, K(·, u) ∈ L1
loc(Ω) and∫

Ω
(A(x, u,∇u)−D(x, u)) · ∇ζ +

∫
Ω
K(x, u)ζ =

∫
Ω
f(x)ζ ∀ ζ ∈ C∞c (Ω).
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Chapter 3. Interaction between lower order terms

Remark 3.1.1. We observe that, by assumption (3.0.4), if k|u|γ ∈ L1(Ω) for some
positive γ, then |u|

γh
h+1 ∈ L1(Ω). As a matter of fact, for any fixed δ ∈ (0, γ), using

Hölder’s inequality, we formally have

∫
Ω
|u|δ =

∫
Ω
k
− δ
γ k

δ
γ |u|δ ≤

(∫
Ω
k
− δ
γ−δ

) γ−δ
γ
(∫

Ω
k|u|γ

) δ
γ

.

By (3.0.4), the right-hand side of the previous inequality is finite if

δ

γ − δ
= h,

that is,
δ = γh

h+ 1 .

Remark 3.1.2. Let us suppose that the coefficient k is bounded from below on Ω by
a positive constant. Then, k−1 belongs to L∞(Ω) and condition (3.0.4) is fulfilled
for every positive h. We observe that the proofs of Theorems 3.1.1, 3.1.2 and 3.1.3
stated below can be easily particularized to the case k ≥ constant > 0 a.e. on Ω.
The results obtained in this way are the same as the following ones just letting
h→∞ and generalize those achieved in [15] and [16] in the semilinear framework.
Moreover, our results also cover the lacking case d 6∈ L

N
p−1 (Ω) and f ∈ L1(Ω).

Let us define

λ = (p− 1)(h+ 1)r
h(r − p′) , (3.1.1)

λ = max
{
h[(p− 1)r + p′] + pr

h(r − p′) ,
h+m

h(m− 1)

}
, (3.1.2)

λ̃ = min
{(λ− p+ 1)(h+ 1)r

p′h+ r
,
λ(h+ 1)m
h+m

}
, (3.1.3)

q̃ = min
{
p(λ− p+ 1)hr
p′(λ+ 1)h+ pr

,
pλhm

(λ+ 1)h+m

}
, (3.1.4)

q̃1 = pλh

(λ+ 1)h+ 1 . (3.1.5)

We recall that, for any σ ∈ (0,∞), Tσ denotes the truncation function at level σ,
that is,

Tσ(s) =
{
s if |s| ≤ σ,
sign(s)σ if |s| > σ.

Moreover, we define

Gσ(s) = s− Tσ(s) = (|s| − σ)+sign(s) ∀ s ∈ R.

In this section we prove the following existence and regularity results.
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3.1. First order term in divergence form

Theorem 3.1.1. Let f ∈ Lm(Ω) for some m ∈ (1,∞]. Assume that λ ∈
[
λ,∞

)
.

Then, there exists a weak solution u to (3.0.1) which belongs to W 1,p
0 (Ω) and such

that K(·, u)|u|λ̃−λ ∈ L1(Ω). Moreover, u satisfies
∫

Ω
(A(x, u,∇u)−D(x, u)) · ∇v +

∫
Ω
K(x, u)v =

∫
Ω
fv,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω) and v = u.

(3.1.6)

Remark 3.1.3. Theorem 3.1.1 guarantees the existence of a weak solution u ∈
W 1,p

0 (Ω) to (3.0.1) even if f 6∈ L(p∗)′(Ω) and d 6∈ L
N
p−1 (Ω). As a matter of fact,

assumption λ ∈
[
λ,∞

)
is equivalent to the following conditions:

λ > p− 1, h >
p

λ− p+ 1 , r ≥ p′(λ+ 1)h
(λ− p+ 1)h− p, m ≥ (λ+ 1)h

λh− 1 .

Since

p′(λ+ 1)h
(λ− p+ 1)h− p <

N

p− 1 ⇐⇒ λ > p∗ − 1, h >
p∗

λ− p∗ + 1 ,

(λ+ 1)h
λh− 1 < (p∗)′ ⇐⇒ λ > p∗ − 1, h >

p∗

λ− p∗ + 1 ,

we can assume that λ ∈
[
λ,∞

)
together with r < N

p−1 and m < (p∗)′, provided that
λ > p∗ − 1 and h > p∗

λ−p∗+1 .
We also get an improvement in the regularity properties of u with respect to

(3.0.3). As a matter of fact, Remark 3.1.1 implies that u ∈ L
λ̃h
h+1 (Ω). Moreover,

since
λ ≥ λ =⇒ (λ+ 1)h

λh− 1 ≤
(λ− p+ 1)hr
p′λh+ (p− 1)r ,

we have that

λ̃h

h+ 1 =


(λ−p+1)hr
p′h+r if m ≥ (λ−p+1)hr

p′λh+(p−1)r ,
λhm
h+m if (λ+1)h

λh−1 ≤ m ≤
(λ−p+1)hr
p′λh+(p−1)r .

Now, for instance, assume that

λ > p− 1, h >
p

λ− p+ 1 , r ≥ p′(λ+ 1)h
(λ− p+ 1)h− p,

(λ+ 1)h
λh− 1 ≤ m ≤

(λ− p+ 1)hr
p′λh+ (p− 1)r ,

We observe that

λhm

h+m
> [(p− 1)m∗]∗ ⇐⇒ m <

N(λ− p+ 1)h
pλh+N(p− 1) ,

λhm

h+m
> p∗ ⇐⇒ h >

p∗

λ
, m >

p∗h

λh− p∗
.
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Chapter 3. Interaction between lower order terms

On the other hand, we have that

N(λ− p+ 1)h
pλh+N(p− 1) > (p∗)′ ⇐⇒ λ > p∗ − 1, h >

p∗

λ− p∗ + 1 ,

p∗h

λh− p∗
<

(λ+ 1)h
λh− 1 ⇐⇒ λ > p∗ − 1, h >

p∗

λ− p∗ + 1 .

Hence, it follows that we can assume that λ ∈
[
λ,∞

)
together with r < N

p−1 and
(p∗)′ ≤ m < N(λ−p+1)h

pλh+(p−1)N in order to have that λ̃h
h+1 > [(p − 1)m∗]∗, and we can

assume λ ∈
[
λ,∞

)
together with r < N

p−1 and p∗h
λh−p∗ < m < (p∗)′ in order to have

that λ̃h
h+1 > p∗, provided that λ > p∗ − 1 and h > p∗

λ−p∗+1 .

Theorem 3.1.2. Let f ∈ Lm(Ω) for some m ∈ (1,∞]. Assume that λ ∈
(
λ, λ

)
.

Then, there exists a weak solution u to (3.0.1) which belongs to W 1,q̃
0 (Ω) and such

that K(·, u)|u|λ̃−λ ∈ L1(Ω). Moreover, Tσ(u) belongs to W 1,p
0 (Ω) for every positive

σ.

Remark 3.1.4. Theorem 3.1.2 provides the existence of a weak solution to (3.0.1)
which satisfies better regularity properties than (3.0.3) in the case m ∈ (1, (p∗)′).
As a matter of fact, assumption λ ∈

(
λ, λ

)
is equivalent to the following conditions:

λ > p− 1, p−1
λ−p+1 < h ≤ p

λ−p+1 , r > p′λh
(λ−p+1)h−p+1 , m > 1,

or
λ > p− 1, h > p

λ−p+1 ,
p′λh

(λ−p+1)h−p+1 < r < p′(λ+1)h
(λ−p+1)h−p , m > 1,

or
λ > p− 1, h > p

λ−p+1 , r ≥ p′(λ+1)h
(λ−p+1)h−p , 1 < m < (λ+1)h

λh−1 .

Moreover, formula (3.1.4) can be rewritten as

q̃ =


p(λ−p+1)hr
p′(λ+1)h+pr if m ≥ (λ−p+1)hr

p′λh+(p−1)r ,
pλhm

(λ+1)h+m if 1 < m ≤ (λ−p+1)hr
p′λh+(p−1)r .

Now, for instance, assume that

λ > p− 1, h >
p

λ− p+ 1 ,
p′λh

(λ− p+ 1)h− p+ 1 < r <
p′(λ+ 1)h

(λ− p+ 1)h− p,

1 < m ≤ (λ− p+ 1)hr
p′λh+ (p− 1)r .

In this case we have that
q̃ = pλhm

(λ+ 1)h+m
,

since
(λ− p+ 1)hr
p′λh+ r

<
(λ+ 1)h
λh− 1 .
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3.1. First order term in divergence form

We observe that

p′λh

(λ− p+ 1)h− p+ 1 <
N

p− 1 ⇐⇒ λ >
p∗

p′
, h >

p∗

p′λ− p∗
,

pλhm

(λ+ 1)h+m
> (p− 1)m∗ ⇐⇒ m <

N(λ− p+ 1)h
pλh+N(p− 1) ,

N(λ− p+ 1)h
pλh+N(p− 1) > 1⇐⇒ λ >

p∗

p′
, h >

p∗

p′λ− p∗
,

(λ− p+ 1)hr
p′λh+ (p− 1)r <

N(λ− p+ 1)h
pλh+ (p− 1)N ⇐⇒ r <

N

p− 1 .

Hence, it follows that we can assume λ ∈
(
λ, λ

)
together with r < N

p−1 andm < (p∗)′

in order to have q̃ > (p− 1)m∗, provided that λ > p∗

p′ and h >
p∗

p′λ−p∗ .

Theorem 3.1.3. Let f ∈ L1(Ω). Assume that λ ∈ [λ,∞). Then, there exists a
weak solution u to (3.0.1) which belongs to W 1,q

0 (Ω) for every q ∈ [1, q̃1), and such
that K(·, u) ∈ L1(Ω). Moreover, Tσ(u) belongs to W 1,p

0 (Ω) for every positive σ.

Remark 3.1.5. We recall that we cannot expect the solution of (3.0.1) to be in
W 1,1

0 (Ω) when f ∈ L1(Ω) and p ∈
(
1, 2− 1

N

]
(see [4], Appendix I). However, Theo-

rem 3.1.3 guarantees the existence of a weak solution to (3.0.1) in a Sobolev space
strictly contained in W 1,1

0 (Ω) even if f ∈ L1(Ω) and p ∈
(
1, 2− 1

N

]
.

Remark 3.1.6. Theorem 3.1.3 provides the existence of a weak solution to (3.0.1)
which satisfies better regularity properties than (3.0.3) in the case m = 1. As a
matter of fact, assumption λ ∈ [λ,∞) is equivalent to the following conditions:

λ > p− 1, h >
p− 1

λ− p+ 1 , r ≥ p′λh

(λ− p+ 1)h− p+ 1 .

We observe that

p′λh

(λ− p+ 1)h− p+ 1 <
N

p− 1 ⇐⇒ λ >
p∗

p′
, h >

p∗

p′λ− p∗
,

pλh

(λ+ 1)h+ 1 > N ′(p− 1)⇐⇒ λ >
p∗

p′
, h >

p∗

p′λ− p∗
.

Hence, it follows that we can assume λ ∈ [λ,∞) together with r < N
p−1 and m = 1

in order to have pλh
(λ+1)h+1 > N ′(p− 1), provided that λ > p∗

p′ and h >
p∗

p′λ−p∗ .

3.1.2 Statement of uniqueness results in a semilinear case

Following the approach of [14] and [15] (see also [25]), in this section we also prove
the following uniqueness results in the semilinear case{

−div[M(x)∇u− uE(x)] + k(x)|u|λ−1u = f on Ω,
u = 0 on ∂Ω,

(3.1.7)
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Chapter 3. Interaction between lower order terms

where M : Ω→ RN2 is a measurable matrix such that
∃α, β ∈ (0,∞) :
M(x)ξ · ξ ≥ α|ξ|2,
|M(x)| ≤ β,
for a.e. x ∈ Ω, ∀ ξ ∈ RN ,

and E : Ω→ RN is a vector field such that

∃ r ∈ (2,∞) : |E| ∈ Lr(Ω).

Theorem 3.1.4. Let f ∈ Lm(Ω) for some m ∈ (1,∞]. Assume that λ ∈
[
λ,∞

)
,

where λ is as in (3.1.2) but with p = 2. Then, there exists a unique weak solution
to (3.1.7) which belongs to H1

0 (Ω) and such that k|u|λ̃ ∈ L1(Ω), where λ̃ is as in
(3.1.3) but with p = 2.

Theorem 3.1.5. Let f ∈ L1(Ω). Assume that λ ∈ (λ,∞) where λ is as in (3.1.1)
but with p = 2. Let u be the weak solution to (3.1.7) given by Theorem 3.1.3. Then,
u is the unique weak solution obtained as limit of approximations, that is, if {gn}
is a sequence of functions in L∞(Ω) such that gn → f in L1(Ω) and {zn} is the
sequence of weak solutions of the approximate problems (3.1.31) constructed below
with fn replaced by gn, then un − zn → 0 a.e. on Ω.

3.1.3 Approximate problems and preliminary results

Let f ∈ L1(Ω) and let us consider the following family of approximate problems
(n ∈ N): {

A(un) +Dn(un) +K(un) = fn on Ω,
un = 0 on ∂Ω,

(3.1.8)

where
Dn(u) = div(Dn(·, u)),

and 
Dn(x, σ) = D(x,σ)

1+ 1
n
|D(x,σ)| ,

fn(x) = f(x)
1+ 1

n
|f(x)| ,

for a.e. x ∈ Ω, ∀σ ∈ R.

Clearly, we have that 
|Dn(x, σ)| ≤ min{|D(x, σ)|, n},
|fn(x)| ≤ min{|f(x)|, n},
for a.e. x ∈ Ω, ∀σ ∈ R, ∀n ∈ N.

We point out that, for any fixed n ∈ N, although Dn(·, un) and fn are bounded
functions on Ω, even if there exists a bounded solution un to (3.1.8) the zero order
term K(·, un) is only a function in L1(Ω). Anyway, despite to this lack of regularity,
thanks to Theorems 2.2.5 and 2.2.6 (see [53] and [72]), for every n ∈ N, we get the
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3.1. First order term in divergence form

existence of a weak solution un ∈W 1,p
0 (Ω) ∩ L∞(Ω) to (3.1.8) such that K(·, un) ∈

L1(Ω) and
∫

Ω
(A(x, un,∇un)−Dn(x, un)) · ∇v +

∫
Ω
K(x, un)v =

∫
Ω
fn(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(3.1.9)

3.1.4 Estimates on un with datum in Lm for some m ∈ (1,∞]

Lemma 3.1.6. Let f ∈ Lm(Ω) for some m ∈ (1,∞]. Assume that λ ∈ (λ,∞)
where λ is defined in (3.1.1). Then, the sequences {un} and

{
K(·, un)|un|λ̃−λ

}
are

bounded in, respectively, W 1,p̃
0 (Ω) and L1(Ω), where

p̃ =

p if λ ∈
[
λ,∞

)
,

q̃ if λ ∈
(
λ, λ

)
,

(3.1.10)

and λ, λ̃, q̃ are defined in (3.1.2)-(3.1.4).

Proof. First, we fix ε ∈ (0,∞), γ ∈
(

1
p′ ,∞

)
and we choose

vε =

[
(ε+ |un|)p(γ−1)+1 − εp(γ−1)+1

]
sign(un)

p(γ − 1) + 1

as a test function in (3.1.9). We observe that γ > 1
p′ implies that p(γ − 1) + 1 > 0.

Since
∇vε = ∇un(ε+ |un|)p(γ−1) a.e. on Ω,

we obtain that

α

∫
Ω
|∇un|p(ε+ |un|)p(γ−1) +

∫
Ω
K(x, un)vε

≤
∫

Ω
|d||un|p−1|∇un|(ε+ |un|)p(γ−1) +

∫
Ω
|f ||vε|. (3.1.11)

Using Young’s inequality, the first term on the right-hand side of (3.1.11) can be
estimated by

α

p

∫
Ω
|∇un|p(ε+ |un|)p(γ−1) + 1

p′α
1
p−1

∫
Ω
|d|p′(ε+ |un|)pγ .

Hence, from (3.1.11) we deduce that∫
Ω
|K(x, un)||vε| ≤

α

p′

∫
Ω
|∇un|p(ε+ |un|)p(γ−1) +

∫
Ω
K(x, un)vε

≤ 1
p′α

1
p−1

∫
Ω
|d|p′(ε+ |un|)pγ +

∫
Ω
|f ||vε|, (3.1.12)
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which in turn, letting ε→ 0 and applying Fatou’s Lemma and Lebesgue’s Theorem,
yields

1
p(γ − 1) + 1

∫
Ω
|K(x, un)||un|p(γ−1)+1

≤ 1
p′α

1
p−1

∫
Ω
|d|p′ |un|pγ + 1

p(γ − 1) + 1

∫
Ω
|f ||un|p(γ−1)+1. (3.1.13)

Furthermore, using Hölder’s inequality, we have that

∫
Ω
|d|p′ |un|pγ ≤

(∫
Ω
|d|r

) p′
r
(∫

Ω
|un|

prγ
r−p′

) r−p′
r

≤
(∫

Ω
|d|r

) p′
r
(∫

Ω
k−h

) r−p′
(h+1)r

(∫
Ω
k|un|

p(h+1)rγ
h(r−p′)

)h(r−p′)
(h+1)r

, (3.1.14)

and

∫
Ω
|f ||un|p(γ−1)+1 ≤

(∫
Ω
|f |m

) 1
m
(∫

Ω
|un|[p(γ−1)+1]m′

) 1
m′

≤
(∫

Ω
|f |m

) 1
m
(∫

Ω
k−h

) 1
(h+1)m′

(∫
Ω
k|un|

[p(γ−1)+1](h+1)m′
h

) h
(h+1)m′

. (3.1.15)

Then, we choose γ such that

λ+ p(γ − 1) + 1 ≥ max
{
p(h+ 1)rγ
h(r − p′) ,

[p(γ − 1) + 1](h+ 1)m′

h

}
.

For this purpose, we must impose that λ ∈ (λ,∞) and γ ∈
(

1
p′ , γ̃

]
, where

γ̃ = min
{(λ− p+ 1)h(r − p′)

p(p′h+ r) ,
λh(m− 1) + (p− 1)(h+m)

p(h+m)

}
.

Thus, by Hölder’s and Young’s inequalities and (3.0.4), from estimates (3.1.13)-
(3.1.15) we get the existence of a positive constant C0 which does not depend on n,
such that ∫

Ω
|K(x, un)||un|p(γ−1)+1 ≤ C0 ∀ γ ∈

( 1
p′
, γ̃

]
.

Since λ̃ = λ+ p(γ̃ − 1) + 1, in particular, we obtain that∫
Ω
|K(x, un)||un|λ̃−λ ≤ C0.

Moreover, going back to estimate (3.1.12), we obtain also that the quantity∫
Ω
|∇un|p(ε+ |un|)p(γ−1)

is uniformly bounded with respect to n for every γ ∈
(

1
p′ , γ̃

]
.
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3.1. First order term in divergence form

Now, we observe that if λ ∈
[
λ,∞

)
, then γ̃ ∈ [1,∞) so that, choosing γ = 1, we

deduce that {un} is bounded inW 1,p
0 (Ω). Otherwise, if λ ∈

(
λ, λ

)
, then γ̃ ∈

(
1
p′ , 1

)
.

In this case, for any fixed q ∈ [1, p), using Hölder inequality, we have that

∫
Ω
|∇un|q =

∫
Ω

|∇un|q

(ε+ |un|)q(1−γ̃) (ε+ |un|)q(1−γ̃)

≤
[∫

Ω

|∇un|p

(ε+ |un|)p(1−γ̃)

] q
p
[∫

Ω
(ε+ |un|)

pq(1−γ̃)
p−q

] p−q
p

≤
[∫

Ω

|∇un|p

(ε+ |un|)p(1−γ̃)

] q
p
(∫

Ω
k−h

) p−q
p(h+1)

[∫
Ω
k(ε+ |un|)

pq(h+1)(1−γ̃)
h(p−q)

] (p−q)h
p(h+1)

.

Thus, the right-hand side of the previous inequality is uniformly bounded with
respect to n if

pq(h+ 1)(1− γ̃)
h(p− q) = λ̃,

that is,

q = pλ̃h

(λ+ 1)(h+ 1)− λ̃
= min

{
p(λ− p+ 1)hr
p′(λ+ 1)h+ pr

,
pλhm

(λ+ 1)h+m

}
.

3.1.5 Estimates on un with datum in L1

Lemma 3.1.7. Let f ∈ L1(Ω). Then∫
Ω
|∇Tσ(un)|p ≤ σp

αp′

∫
Ω
|d|p′ + p′σ

α

∫
Ω
|f | ∀n ∈ N, ∀σ ∈ (0,∞). (3.1.16)

Proof. We fix n ∈ N, σ ∈ (0,∞) and we choose Tσ(un) as a test function in (2.1.4).
Since

|Tσ(un)| ≤ σ, ∇Tσ(un) = ∇unχ{|un|<σ} a.e. on Ω,

dropping the positive zero order term, we obtain that

α

∫
Ω
|∇Tσ(un)|p ≤

∫
{|un|<σ}

|d||un|p−1|∇Tσ(un)|+ σ

∫
Ω
|f |

≤ σp−1
∫

Ω
|d||∇Tσ(un)|+ σ

∫
Ω
|f |.

Hence, thanks to Young’s inequality, we deduce that

α

p′

∫
Ω
|∇Tσ(un)|p ≤ σp

p′α
1
p−1

∫
Ω
|d|p′ + σ

∫
Ω
|f |.
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Lemma 3.1.8. Let f ∈ L1(Ω). Then∫
Ω
|K(x, un)| ≤

∫
Ω
|f | ∀n ∈ N. (3.1.17)

Moreover, there exists a positive constant C which depends only on α, f , g, h, p
and r such that

∫
An,2σ

|K(x, un)| ≤ C

 1

σ
λh(r−p′)
r(h+1) −p+1

(∫
An,σ
|d|r

) p′
r

+
∫
An,σ
|f |

 ,
∀n ∈ N, ∀σ ∈ (0,∞),

(3.1.18)

where
An,σ = {|un| > σ}, σ ∈ (0,∞).

Proof. We fix n ∈ N, σ ∈ (0,∞) and we choose

vσ =


1
p−1

[
1− σp−1

|un|p−1

]
sign(un) if |un| > σ,

0 if |un| ≤ σ,

as a test function in (3.1.9). Since

|vσ| ≤
χAn,σ
p− 1 , ∇vσ =

∇unχAn,σ
|un|p

a.e. on Ω,

we obtain that

ασp−1
∫
An,σ

|∇un|p

|un|p
+
∫

Ω
K(x, un)vσ ≤ σp−1

∫
An,σ
|d| |∇un|
|un|

+ 1
p− 1

∫
An,σ
|f |,

which in turn, using Young’s inequality, implies that

ασp−1

p′

∫
An,σ

|∇un|p

|un|p
+
∫

Ω
K(x, un)vσ

≤ σp−1

p′α
1
p−1

∫
An,σ
|d|p′ + 1

p− 1

∫
An,σ
|f |. (3.1.19)

Now, we observe that

lim
σ→0
|vσ| =

1
p− 1 a.e. on Ω.

Thus, letting σ → 0 and using Lebesgue’s Theorem and Fatou’s Lemma, from
(3.1.19) we get (3.1.17). Recalling Remark 3.1.1, thanks to Hölder’s inequality,
estimate (3.1.17), in particular, yields

|An,σ| ≤
1

σ
λh
h+1

∫
An,σ
|un|

λh
h+1 ≤ 1

σ
λh
h+1

(∫
Ω
k−h

) 1
h+1

(∫
Ω
k|un|λ

) h
h+1

≤ 1
σ

λh
h+1

(∫
Ω
k−h

) 1
h+1

(∫
Ω
|f |
) h
h+1

∀σ ∈ (0,∞). (3.1.20)
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3.1. First order term in divergence form

Therefore, dropping the positive term coming from the principal part and using
Hölder’s inequality again in (3.1.19), by (3.1.20), we finally deduce that

1
p− 1

(
1− 1

2p−1

)∫
An,2σ

|K(x, un)| ≤
∫

Ω
K(x, un)vσ

≤ 1

p′α
1
p−1σ

λh(r−p′)
(h+1)r −p+1

(∫
Ω
k−h

) r−p′
(h+1)r

(∫
Ω
|f |
)h(r−p′)

(h+1)r
(∫

An,σ
|d|r

) p′
r

+ 1
p− 1

∫
An,σ
|f |.

Remark 3.1.7. We observe that, if λ ∈ [λ,∞) where λ is defined in (3.1.1), Lemma
3.1.8 implies that

lim
σ→∞

∫
An,σ
|K(x, un)| = 0 uniformly with respect to n. (3.1.21)

As a matter of fact, thanks to estimate (3.1.20) we have that

lim
σ→∞

|An,σ| = 0 uniformly with respect to n,

which in turn, by the absolute continuity of the integral, yields
lim
σ→∞

∫
An,σ
|d| = 0,

lim
σ→∞

∫
An,σ
|f | = 0,

uniformly with respect to n.

(3.1.22)

Therefore, putting together (3.1.18) and (3.1.22) we get (3.1.21).

Lemma 3.1.9. Let f ∈ L1(Ω). Assume that λ ∈ [λ,∞), where λ is defined in
(3.1.1). Then, the sequence {un} is bounded in W 1,q

0 (Ω) for every q ∈ [1, q̃1), where
q̃1 is defined in (3.1.5).

Proof. We fix n ∈ N, θ ∈
(
0, 1

p′

)
and we choose

v = 1
p(1− θ)− 1

[
1− 1

(1 + |un|)p(1−θ)−1

]
sign(un)

as a test function in (3.1.9). We observe that θ < 1
p′ implies that p(1− θ)− 1 > 0.

Since
|v| ≤ 1

p(1− θ)− 1 , ∇v = ∇un
(1 + |un|)p(1−θ)

a.e. on Ω,

we obtain that

α

∫
Ω

|∇un|p

(1 + |un|)p(1−θ)
+
∫

Ω
K(x, un)v

≤
∫

Ω
|d| |un|p−1

(1 + |un|)(p−1)(1−θ)
|∇un|

(1 + |un|)1−θ + 1
p(1− θ)− 1

∫
Ω
|f |,
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which in turn, dropping the positive zero order term and using Young’s inequality,
implies that

α

p′

∫
Ω

|∇un|p

(1 + |un|)p(1−θ)
≤ 1
p′α

1
p−1

∫
Ω
|d|p′ |un|pθ + 1

p(1− θ)− 1

∫
Ω
|f |, (3.1.23)

Thanks to Hölder’s inequality, the first integral on the right-hand side can be esti-
mated as

∫
Ω
|d|p′ |un|pθ ≤

(∫
Ω
|d|r

) p′
r
(∫

Ω
k−h

) r−p′
(h+1)r

(∫
Ω
k|un|

p(h+1)rθ
h(r−p′)

)h(r−p′)
(h+1)r

. (3.1.24)

Then we choose θ such that
p(h+ 1)rθ
h(r − p′) ≤ λ,

that is,

θ ≥ λh(r − p′)
p(h+ 1)r .

This condition is fulfilled for every θ ∈
(
0, 1

p′

)
if λ ∈ [λ,∞). Otherwise, if λ ∈ (1, λ),

we choose
θ = λh(r − p′)

p(h+ 1)r .

Thus, thanks to (3.1.17), from (3.1.23) and (3.1.24) we deduce that there exists a
positive constant C0 which does not depend on n such that∫

Ω

|∇un|p

(1 + |un|)p(1−θ̃)
≤ C0, (3.1.25)

where

θ̃ =

any θ ∈
(
0, 1

p′

)
if λ ∈ [λ,∞) ,

λh(r−p′)
p(h+1)r if λ ∈ (1, λ) .

Now, for any q ∈ [1, p), using Hölder’s inequality and (3.1.25), we have

∫
Ω
|∇un|q =

∫
Ω

|∇un|p

(1 + |un|)q(1−θ̃)
(1 + |un|)q(1−θ̃)

≤
[∫

Ω

|∇un|p

(1 + |un|)p(1−θ̃)

] q
p (∫

Ω
(1 + |un|)

pq(1−θ̃)
p−q

) p−q
p

≤ C
q
p

0

(∫
Ω
k−h

) p−q
p(h+1)

[∫
Ω
k(1 + |un|)

pq(h+1)(1−θ̃)
(p−q)h

] (p−q)h
p(h+1)

.

By (3.1.17), the right-hand side of the previous inequality is uniformly bounded
with respect to n if

pq(h+ 1)(1− θ̃)
(p− q)h ≤ λ,
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that is,

q ≤ pλh

[λ+ p(1− θ̃)]h+ p(1− θ̃)
=


any q ∈ [1, q̃1) if λ ∈ [λ,∞) ,

pλhr

h(pr + p′λ) + pr
if λ ∈ (1, λ) .

Remark 3.1.8. The proof of Lemma 3.1.9 shows that assumption λ ∈ [λ,∞) is not
necessary to obtain estimates on un in Sobolev spaces strictly contained inW 1,1

0 (Ω).
As a matter of fact, we have that

pλhr

h(pr + p′λ) + pr
> 1⇐⇒ λ >

(p− 1)(h+ 1)r
(p− 1)r − 1 .

However, if λ ∈ (1, λ), we are not able to prove the uniform integrability of the
sequence {K(·, un)} and therefore we cannot pass to the limit in the approximate
problems (3.1.8).

3.1.6 Passing to the limit as n→∞

We are now in position to prove Theorems 3.1.1, 3.1.2 and 3.1.3.

Proof of Theorem 3.1.3. Let {un} be the sequence of weak solutions to the approx-
imate problems (3.1.8) constructed above. By Lemmas 3.1.7-3.1.9, we have that

{un} is bounded in W 1,q
0 (Ω) ∀ q ∈ [1, q̃1),

{K(·, un)} is bounded in L1(Ω),
{Tσ(un)} is bounded in W 1,p

0 (Ω) ∀σ ∈ (0,∞).

where q̃1 is defined in (3.1.5). Hence, there exists a function u which belongs to
W 1,q

0 (Ω) for every q ∈ [1, q̃1), such that K(·, u) ∈ L1(Ω), Tσ(u) ∈W 1,p
0 (Ω) for every

σ ∈ (0,∞) and, up to a subsequence,
un ⇀ u in W 1,q

0 (Ω) ∀ q ∈ [1, q̃1),
un → u a.e. on Ω,
Tσ(un) ⇀ Tσ(u) in W 1,p

0 (Ω) ∀σ ∈ (0,∞).

Moreover, we get

{A(·, un,∇un)} is bounded in (Ls(Ω))N ∀ s ∈
[
1, q̃1
p− 1

)
.

For a fixed s ∈ [1, r), the use of Hölder’s inequality yields

∫
Ω
|Dn(x, un)|s ≤

∫
Ω
|d|s|un|(p−1)s ≤

(∫
Ω
|d|r

) s
r
(∫

Ω
|un|

(p−1)rs
r−s

) r−s
r

.
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Thus, recalling Remark 3.2.1 and exploiting the fact that {un} is bounded L
λh
h+1 (Ω)

and

(p− 1)rs
r − s

≤ hλ

h+ 1 ⇐⇒ s ≤ hrλ

[(p− 1)r + λ]h+ (p− 1)r ,

hrλ

[(p− 1)r + λ]h+ (p− 1)r > 1⇐⇒ λ >
(p− 1)(h+ 1)r

h(r − 1) ,

we deduce that

{Dn(·, un)} is bounded in Ls(Ω) ∀ s ∈
[
1, hrλ

[(p− 1)r + λ]h+ (p− 1)r

)
.

Therefore, by Lemma 1.2.6 (see [12], [19], [20] and [24]), ∇un → ∇u a.e. on Ω,
which in turn implies that{

A(·, un,∇un)→ A(·, u,∇u) in (L1(Ω))N ,
Dn(·, un)→ D(·, u) in (L1(Ω))N .

Now, for any fixed ζ ∈ C∞c (Ω) we obtain that
lim
n→∞

∫
Ω
A(x, un,∇un) · ∇ζ =

∫
Ω
A(x, u,∇u) · ∇ζ,

lim
n→∞

∫
Ω
Dn(x, un) · ∇ζ =

∫
Ω
D(x, u) · ∇ζ,

lim
n→∞

∫
Ω
fn(x)ζ =

∫
Ω
f(x)ζ.

(3.1.26)

Then, for any σ ∈ (0,∞) and measurable subset U ⊂ Ω, we have that∫
U
|K(x, un)| ≤

∫
U∩{|un|≤σ}

|K(x, un)|+
∫
{|un|>σ}

|K(x, un)|

≤
∫
U

sup
τ∈[−σ,σ]

|K(x, τ)|+
∫
{|un|>σ}

|K(x, un)|.

Therefore, recalling Remark 3.1.7, from the previous inequality we get

lim
|U |→0

∫
U
|K(x, un)| = 0 uniformly with respect to n,

which in turn, by Vitali’s Theorem, implies that

K(·, un)→ K(·, u) in L1(Ω).

In particular, it follows that

lim
n→∞

∫
Ω
K(x, un)ζ =

∫
Ω
K(x, u)ζ. (3.1.27)

Putting together (3.1.26) and (3.1.27), we finally deduce that u is a weak solution
of (3.0.1).
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Proof of Theorem 3.1.2. The argument of the proof is essentially the same as the
previous one. What changes is that we use Lemma 3.1.6 instead of Lemma 3.1.9 to
deduce that the sequences {un} and

{
K(·, un)|un|λ̃−λ

}
are bounded in, respectively,

W 1,q̃
0 (Ω) and L1(Ω), where λ̃ and q̃ are defined in, respectively, (3.1.3) and (3.1.4).

Proof of Theorem 3.1.1. The argument of the proof is essentially the same as the
previous one. What changes is that we use Lemma 3.1.6 to deduce that the se-
quences {un} and

{
K(·, un)|un|λ̃−λ

}
are bounded in, respectively, W 1,p

0 (Ω) and
L1(Ω), where λ̃ is defined in (3.1.3).

Moreover, we observe that assumption λ ∈
[
λ,∞

)
, where λ is defined in (3.1.2),

implies that
λ̃h

h+ 1 ≥
(λ+ 1)h
h+ 1 > max

{
pr

r − p′
,m′

}
.

Hence, recalling Remark 3.1.1, u satisfies
∫

Ω
(A(x, u,∇u)−D(x, u)) · ∇v +

∫
Ω
K(x, u)v =

∫
Ω
f(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(3.1.28)

Finally, if we choose Tσ(u) as a test function in (3.1.28), that is,∫
Ω

(A(x, u,∇u)−D(x, u)) · ∇Tσ(u) +
∫

Ω
K(x, u)Tσ(u) =

∫
Ω
f(x)Tσ(u),

then, letting σ →∞ and applying Lebesgue’s Theorem, we get that (3.1.28) is also
true for v = u.

3.1.7 Proof of the uniqueness results in the semilinear case

Proof of Theorem 3.1.4. We follow the approach of [14] (see also [25]). Let u, z be
two weak solutions to (3.1.7) which belong to H1

0 (Ω). In particular, u and z satisfy,
respectively,

∫
Ω

[M(x)∇u− uE(x)] · ∇v +
∫

Ω
k(x)|u|λ−1uv =

∫
Ω
f(x)v,

∀ v ∈ H1
0 (Ω) ∩ L∞(Ω),

(3.1.29)

and 
∫

Ω
[M(x)∇z − zE(x)] · ∇v +

∫
Ω
k(x)|z|λ−1zv =

∫
Ω
f(x)v,

∀ v ∈ H1
0 (Ω) ∩ L∞(Ω).

(3.1.30)

We fix 0 < σ < ε and we choose Tσ(u − z) as a test function in (3.1.29) and
(3.1.30). Subtracting the equalities obtained in this way, we get∫

Ω
M(x)∇(u− z) · ∇Tσ(u− z) +

∫
Ω
k(x)

(
|u|λ−1u− |z|λ−1z

)
Tσ(u− z)

=
∫

Ω
(u− z)E(x) · ∇Tσ(u− z).
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Since

|Tσ(u− z)| ≤ σ, ∇Tσ(u− z) = ∇(u− z)χ{0<|u−z|<σ} a.e. on Ω,

dropping the positive zero order term and using Young’s inequality, we obtain that

α

2

∫
Ω
|∇Tσ(u− z)|2 ≤ 2σ2

α

∫
{0<|u−z|<σ}

|E|2.

Thus, by Poincaré’s inequality, it follows that

σ2

P2 |{|u− z| > ε}| ≤ 1
P2

∫
Ω
|Tσ(u− z)|2

≤
∫

Ω
|∇Tσ(u− z)|2 ≤ σ2

α2

∫
{0<|u−z|<σ}

|E|2.

Since ⋂
σ>0
{0 < |u− z| < σ} = {0 < |u− z| ≤ 0} = ∅,

the continuity of the measure with respect to the intersection implies that

lim
σ→0
|{0 < |u− z| < σ}| = 0.

Hence, by the absolute continuity of the integral, we deduce that

1
P2 |{|u− z| > ε}| ≤ 1

α2 lim
σ→0

∫
{0<|u−z|<σ}

|E|2 = 0 ∀ ε ∈ (0,∞),

which in turn yields
|{|u− z| > ε}| = 0 ∀ ε ∈ (0,∞),

that is, u = z a.e. on Ω.

Proof of Theorem 3.1.5. We follow the approach of [15] (see also [25]). Let u be the
weak solution to (3.1.7) given by Theorem 3.1.3. We recall that u is obtained as
limit of the sequence of weak solutions un ∈ H1

0 (Ω) ∩ L∞(Ω) to
∫

Ω

(
M(x)∇un −

unE(x)
1 + 1

n |unE(x)|

)
· ∇v +

∫
Ω
k(x)|un|λ−1unv =

∫
Ω
fn(x)v,

∀ v ∈ H1
0 (Ω) ∩ L∞(Ω).

(3.1.31)
Let {gn} be a sequence of functions in L∞(Ω) such that gn → f in L1(Ω). Let {zn}
be the sequence of weak solutions to the approximate problems (3.1.31) with fn
replaced by gn. We observe that {zn} is endowed with the same properties of {un}.
In particular, there exists a weak solution z to (3.1.7) which belongs to W 1,q

0 (Ω) for
every q ∈ [1, q̃1), such that k|z|λ ∈ L1(Ω), Tσ(z) ∈ H1

0 (Ω) for every σ ∈ (0,∞) and,
up to a subsequence,

zn → z in W 1,q
0 (Ω) ∀ q ∈ [1, q̃1),

zn → z a.e. on Ω,
Tσ(zn) ⇀ Tσ(u) in H1

0 (Ω) ∀σ ∈ (0,∞),
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3.2. First order term not in divergence form

where q̃1 is as in (3.1.5) but with p = 2.
We fix 0 < σ < ε and we choose Tσ(un − zn) as a test function in (3.1.31)

written with un and fn replaced by, respectively, zn and gn and, then, in (3.1.31).
Subtracting the equalities obtained in this way, we get∫

Ω
M(x)∇(un− zn) ·∇Tσ(un− zn) +

∫
Ω
k(x)

(
|un|λ−1un − |zn|λ−1zn

)
Tσ(un− zn)

=
∫

Ω

(
unE(x)

1 + 1
n |unE(x)|

− znE(x)
1 + 1

n |znE(x)|

)
·∇Tσ(un−zn)+

∫
Ω

(fn−gn)Tσ(un−zn).

Since

|Tσ(un − zn)| ≤ σ, ∇Tσ(un − zn) = ∇(un − zn)χ{0<|un−zn|<σ} a.e. on Ω,

and ∣∣∣∣∣ unE

1 + 1
n |unE|

− znE

1 + 1
n |znE|

∣∣∣∣∣ ≤ |un − zn||E| a.e. on Ω,

dropping the positive zero order term and using Young’s inequality, we obtain that

α

2

∫
Ω
|∇Tσ(un − zn)|2 ≤ σ2

α

∫
{0<|un−zn|<σ}

|E|2 +
∫

Ω
|fn − gn||Tσ(un − zn)|.

Thus, by Poincaré’s inequality, it follows that

σ2

P2 |{|un − zn| > ε}| ≤ 1
P2

∫
Ω
|Tσ(un − zn)|2 ≤

∫
Ω
|∇Tσ(un − zn)|2

≤ σ2

α2

∫
{0<|un−zn|<σ}

|E|2 +
∫

Ω
|fn − gn||Tσ(un − zn)|.

Thanks to Lebesgue’s Theorem, we can pass to the limit as n→∞ and deduce that

1
P2 |{|u− z| > ε}| ≤ 1

α2

∫
{0<|u−z|<σ}

|E|2.

Arguing as in the proof of Theorem 3.1.4, finally we get the result.

3.2 First order term not in divergence form

3.2.1 Statement of existence and regularity results

Definition 3.2.1. Let f ∈ L1(Ω). We say a function u : Ω→ R is a weak solution
to (3.0.2) if u ∈W 1,1

0 (Ω), |A(·, u,∇u)|, |B(·,∇u)|, |K(·, u)| ∈ L1
loc(Ω), and u satisfies∫

Ω
A(x, u,∇u) · ∇ζ +

∫
Ω
B(x,∇u)ζ +

∫
Ω
K(x, u)ζ =

∫
Ω
f(x)ζ ∀ ζ ∈ C∞c (Ω).

Remark 3.2.1. We observe that, by (3.0.4), if k|u|γ ∈ L1(Ω) for some positive γ,
then |u|

γh
h+1 ∈ L1(Ω), as shown in Remark 3.1.1.
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Chapter 3. Interaction between lower order terms

Remark 3.2.2. Let us suppose that the coefficient k is bounded from below by a
positive constant. Then, k−1 ∈ L∞(Ω) and the condition (3.0.4) is fulfilled for every
positive h. We observe that the proofs of Theorems 3.2.1, 3.2.2 and 3.2.3 stated
below can be easily particularized to the case k ≥ constant > 0. a.e. on Ω. The
results obtained in this way are the same as the following ones just letting h→∞.

Let us define

λ = (p− 1)(h+ 1)r
h(r − p) , (3.2.1)

λ = max
{
h[(p− 1)r + p] + pr

h(r − p) ,
h+m

h(m− 1)

}
, (3.2.2)

λ̃ = min
{(λ− p+ 1)(h+ 1)r

ph+ r
,
λ(h+ 1)m
h+m

}
, (3.2.3)

q̃ = min
{(λ− p+ 1)hr

(λ+ 1)s+ r
,

pλsm

(λ+ 1)h+m

}
, (3.2.4)

q̃1 = pλh

(λ+ 1)h+ 1 . (3.2.5)

We recall that, for any σ ∈ (0,∞), Tσ denotes the truncation function at level σ,
that is,

Tσ(s) =
{
s if |s| ≤ σ,
sign(s)σ if |s| > σ.

Moreover, we define

Gσ(s) = s− Tσ(s) = (|s| − σ)+sign(s) ∀ s ∈ R.

In this section we prove the following existence and regularity results.

Theorem 3.2.1. Let f ∈ Lm(Ω) for some m ∈ (1,∞]. Assume that λ ∈
[
λ,∞

)
.

Then, there exists a weak solution u to (3.0.2) which belongs to W 1,p
0 (Ω) and such

that K(·, u)|u|λ̃−λ ∈ L1(Ω).

Remark 3.2.3. Theorem 3.2.1 guarantees the existence of a weak solution u ∈
W 1,p

0 (Ω) to (3.0.2) even if f 6∈ L(p∗)′(Ω) and b 6∈ LN (Ω). As a matter of fact,
assumption λ ∈ [λ,∞) is equivalent to the following conditions:

λ > p− 1, h >
p

λ− p+ 1 , r ≥ p(λ+ 1)h
(λ− p+ 1)h− p, m ≥ (λ+ 1)h

λh− 1 .

Since

p(λ+ 1)h
(λ− p+ 1)h− p < N ⇐⇒ λ > p∗ − 1, h >

p∗

λ− p∗ + 1 ,

(λ+ 1)h
λh− 1 < p∗′ ⇐⇒ λ > p∗ − 1, h >

p∗

λ− p∗ + 1 ,

we can assume λ ∈
[
λ,∞

)
together with r < N and m < p∗′, provided that

λ > p∗ − 1 and h > p∗

λ−p∗+1 .
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3.2. First order term not in divergence form

We also get an improvement in the regularity properties of u with respect to
(3.0.3). As a matter of fact, Remark 3.2.1 implies that u ∈ L

λ̃h
h+1 (Ω). Moreover,

since
λ ≥ λ =⇒ (λ+ 1)h

λh− 1 ≤
(λ− p+ 1)hr
pλh+ (p− 1)r ,

we have that

λ̃h

h+ 1 =


(λ−p+1)hr

ph+r if m ≥ (λ−p+1)hr
pλh+(p−1)r ,

λhm
h+m if (λ+ 1)h

λh− 1 ≤ m ≤
(λ−p+1)hr
pλh+(p−1)r .

Now, for instance, assume that

λ > p− 1, h >
p

λ− p+ 1 , r ≥ p(λ+ 1)h
(λ− p+ 1)h− p,

(λ+ 1)h
λh− 1 ≤ m ≤

(λ− p+ 1)hr
pλh+ (p− 1)r ,

We observe that

λhm

h+m
> [(p− 1)m∗]∗ ⇐⇒ m <

N(λ− p+ 1)h
pλh+ (p− 1)N ,

λhm

h+m
> p∗ ⇐⇒ h >

p∗

λ
, m >

p∗h

λh− p∗
.

On the other hand, we have that

N(λ− p+ 1)h
pλh+ (p− 1)N > p∗′ ⇐⇒ λ >

p∗

p∗′
, h >

p∗

λ− p∗ + 1 ,

p∗s

λh− p∗
<

(λ+ 1)h
λh− 1 ⇐⇒ λ >

p∗

p∗′
, h >

p∗

λ− p∗ + 1 .

Hence, it follows that we can assume λ ∈
[
λ,∞

)
together with r < N and p∗′ ≤

m < N(λ−p+1)h
pλh+(p−1)N in order to have λ̃h

h+1 > [(p−1)m∗]∗, and we can assume λ ∈
[
λ,∞

)
together with r < N and p∗h

λh−p∗ < m < p∗′ in order to have λ̃h
h+1 > p∗, provided that

λ > p∗

p∗′ and h >
p∗

λ−p∗+1 .

Theorem 3.2.2. Let f ∈ Lm(Ω) for some m ∈ (1,∞]. Assume that λ ∈
(
λ, λ

)
.

Then, there exists a weak solution u to (3.0.2) which belongs to W 1,q̃
0 (Ω) and such

that K(·, u)|u|λ̃−λ ∈ L1(Ω). Moreover, Tσ(u) belongs to W 1,p
0 (Ω) for every positive

σ.

Remark 3.2.4. Theorem 3.2.2 provides the existence of a weak solution to (3.0.2)
which satisfies better regularity properties than (3.0.3) in the case m ∈ (1, (p∗)′).
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As a matter of fact, assumption λ ∈
(
λ, λ

)
is equivalent to the following conditions:

λ > p− 1, p−1
λ−p+1 < h ≤ p

λ−p+1 , r > pλh
(λ−p+1)h−p+1 , m > 1,

or
λ > p− 1, h > p

λ−p+1 ,
pλs

(λ−p+1)h−p+1 < r < p(λ+1)h
(λ−p+1)h−p , m > 1,

or
λ > p− 1, h > p

λ−p+1 , r ≥ p(λ+1)h
(λ−p+1)h−p , 1 < m < (λ+1)h

λh−1 .

Moreover, formula (3.2.4) can be rewritten as

q̃ =


(λ−p+1)hr
(λ+1)h+r if m ≥ (λ−p+1)hr

pλh+(p−1)r ,
pλhm

(λ+1)h+m if 1 < m ≤ (λ−p+1)hr
pλh+(p−1)r .

Now, for instance, assume that

λ > p− 1, h >
p

λ− p+ 1 ,
pλh

(λ− p+ 1)h− p+ 1 < r <
p(λ+ 1)h

(λ− p+ 1)h− p,

1 < m ≤ (λ− p+ 1)hr
pλh+ (p− 1)r .

In this case we have that
q̃ = pλhm

(λ+ 1)h+m
,

since
(λ− p+ 1)hr
pλh+ r

<
(λ+ 1)h
λh− 1

We observe that
pλs

(λ− p+ 1)h− p+ 1 < N ⇐⇒ λ >
p∗

p′
, h >

p∗

p′λ− p∗
,

pλhm

(λ+ 1)h+m
> (p− 1)m∗ ⇐⇒ m <

N(λ− p+ 1)h
pλh+N(p− 1) ,

N(λ− p+ 1)h
pλh+N(p− 1) > 1⇐⇒ λ >

p∗

p′
, h >

p∗

p′λ− p∗
,

(λ− p+ 1)hr
pλh+ (p− 1)r <

N(λ− p+ 1)h
pλh+ (p− 1)N ⇐⇒ r < N.

Hence, it follows that we can assume λ ∈
(
λ, λ

)
together with r < N and m < p∗′

in order to have q̃ > (p− 1)m∗, provided that λ > p∗

p′ and h >
p∗

p′λ−p∗ .

Theorem 3.2.3. Let f ∈ L1(Ω). Assume that λ ∈ (λ,∞). Then there exists a
weak solution u to (3.0.2) which belongs to W 1,q̃1

0 (Ω) for every q ∈ [1, q̃1), and such
that K(·, u) ∈ L1(Ω). Moreover, Tσ(u) belongs to W 1,p

0 (Ω) for every positive σ.

Remark 3.2.5. We recall that we cannot expect the solution of (3.0.2) to be in
W 1,1

0 (Ω) when f ∈ L1(Ω) and p ∈
(
1, 2− 1

N

]
(see [4], Appendix I). However, Theo-

rem 3.1.3 guarantees the existence of a weak solution to (3.0.2) in a Sobolev space
strictly contained in W 1,1

0 (Ω) even if f ∈ L1(Ω) and p ∈
(
1, 2− 1

N

]
.
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3.2. First order term not in divergence form

Remark 3.2.6. Theorem 3.2.3 provides the existence of a weak solution to (3.0.2)
which satisfies better regularity properties that (3.0.3) in the case m = 1. As a
matter of fact, assumption λ ∈ (λ,∞) is equivalent to the following conditions:

λ > p− 1, h >
p− 1

λ− p+ 1 , r >
pλh

(λ− p+ 1)h− p+ 1 .

We observe that

pλh

(λ− p+ 1)h− p+ 1 < N ⇐⇒ λ >
p∗

p′
, h >

p∗

p′λ− p∗
, (3.2.6)

pλh

(λ+ 1)h+ 1 > N ′(p− 1)⇐⇒ λ >
p∗

p′
, h >

p∗

p′λ− p∗
. (3.2.7)

Hence, it follows that we can assume λ ∈ [λ,∞) together with r < N and m = 1 in
order to have pλh

(λ+1)h+1 > N ′(p− 1), provided that λ > p∗

p′ and h >
p∗

p′λ−p∗ .

3.2.2 Approximate problems and preliminary results

Let f ∈ L1(Ω) and let us consider the following family of approximate Dirichlet
problems (n ∈ N): {

A(un) + Bn(un) +K(un) = fn on Ω,
un = 0 on ∂Ω,

(3.2.8)

where
Bn(u) = Bn(·,∇u),

and 
Bn(x, ξ) = Tn(B(x, ξ)),
fn(x) = Tn(f(x)),
for a.e. x ∈ Ω, ∀ ξ ∈ RN .

Clearly, we have that 
|Bn(x, ξ)| ≤ min{|B(x, ξ)|, n},
|fn(x)| ≤ min{|f(x)|, n},
for a.e. x ∈ Ω, ∀ ξ ∈ RN , ∀n ∈ N.

We point out that, for any fixed n ∈ N, although Bn(·,∇un) and fn are bounded
functions on Ω, even if there exists a bounded solution un of (3.2.8) the lower order
term K(·, un) is only an integrable function on Ω. Anyway, despite to this lack of
regularity, thanks to Theorems 2.2.5 and 1.2.4 (see [53] and [72]), for every n ∈ N,
we get the existence of a weak solution un ∈W 1,p

0 (Ω) ∩ L∞(Ω) to (3.2.8) such that
K(·, un) ∈ L1(Ω) and

∫
Ω
A(x, un,∇un) · ∇v +

∫
Ω
Bn(x,∇un)v +

∫
Ω
K(x, un)v =

∫
Ω
fn(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(3.2.9)
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3.2.3 Estimates on un with datum in Lm for some m ∈ (1,∞]

Lemma 3.2.4. Let f ∈ Lm(Ω) for some m ∈ (1,∞]. Assume that λ ∈ (λ,∞),
where λ is defined in (3.2.1). Then, the sequences {un} and

{
K(·, un)|un|λ̃−λ

}
are

bounded in, respectively, W 1,p̃
0 (Ω) and L1(Ω), where

p̃ =
{
p if λ ∈ [λ,∞),
q̃ if λ ∈ (λ, λ),

(3.2.10)

and λ, λ̃, q̃ are defined in (3.2.2)-(3.2.4).

Proof. We fix ε ∈ (0,∞), γ ∈
(

1
p′ ,∞

)
and we choose

vε =
[
(ε+ |un|)p(γ−1)+1 − εp(γ−1)+1

]
sign(un)

as a test function in (3.2.9). We observe that γ > 1
p′ implies that p(γ − 1) + 1 > 0.

Since
∇vε = [p(γ − 1) + 1]∇un(ε+ |un|)p(γ−1) a.e. on Ω,

we have that

α[p(γ − 1) + 1]
∫

Ω
|∇un|p(ε+ |un|)p(γ−1) +

∫
Ω
K(x, un)vε

≤
∫

Ω
|b||∇un|p−1|vε|+

∫
Ω
|f ||vε|. (3.2.11)

Using Young’s inequality, the first term on the right-hand side of (3.2.11) can be
estimated by
α[p(γ − 1) + 1]

p′

∫
Ω
|∇un|p(ε+ |un|)p(γ−1) + 1

p {α[p(γ − 1) + 1]}p−1

∫
Ω
|b|p(ε+ |un|)pγ .

Hence, it follows that∫
Ω
K(x, un)vε ≤

α[p(γ − 1) + 1]
p

∫
Ω
|∇un|p(ε+ |un|)p(γ−1) +

∫
Ω
K(x, un)vε

≤ 1
p {α[p(γ − 1) + 1]}p−1

∫
Ω
|b|p(ε+ |un|)pγ +

∫
Ω
|f ||vε|, (3.2.12)

which in turn, letting ε→ 0 and applying Fatou’s Lemma and Lebesgue’s Theorem,
yields∫

Ω
|K(x, un)||un|p(γ−1)+1

≤ 1
p {α[p(γ − 1) + 1]}p−1

∫
Ω
|b|p|un|pγ +

∫
Ω
|f ||un|p(γ−1)+1. (3.2.13)

Furthermore, using Hölder’s inequality, we have that∫
Ω
|b|p|un|pγ ≤

(∫
Ω
|b|r
) p
r
(∫

Ω
|un|

prγ
r−p

) r−p
r

≤
(∫

Ω
|b|r
) p
r
(∫

Ω
k−h

) r−p
(h+1)r

(∫
Ω
k|un|

p(h+1)rγ
h(r−p)

)h(r−p)
(h+1)r

, (3.2.14)
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and∫
Ω
|f ||un|p(γ−1)+1 ≤

(∫
Ω
|f |m

) 1
m
(∫

Ω
|un|[p(γ−1)+1]m′

) 1
m′

≤
(∫

Ω
|f |m

) 1
m
(∫

Ω
k−h

) 1
(h+1)m′

(∫
Ω
k|un|

[p(γ−1)+1](h+1)m′
h

) h
(h+1)m′

. (3.2.15)

Then, we choose γ such that

λ+ p(γ − 1) + 1 ≥ max
{
p(h+ 1)rγ
h(r − p) ,

[p(γ − 1) + 1](h+ 1)m′

h

}
.

For this purpose, we must impose that λ ∈ (λ,∞) and γ ∈
(

1
p′ , γ̃

]
, where

γ̃ = min
{(λ− p+ 1)h(r − p)

p(ph+ r) ,
λh(m− 1) + (p− 1)(h+m)

p(h+m)

}
.

In this way, thanks to Hölder’s and Young’s inequalities and (3.0.4), estimates
(3.2.13)-(3.2.15) imply that there exists a positive constant C0 which does not de-
pend on n such that∫

Ω
|∇|un|γ |p +

∫
Ω
|K(x, un)||un|p(γ−1)+1 ≤ C0 ∀ γ ∈

( 1
p′
, γ̃

]
.

Since λ̃ = λ+ p(γ̃ − 1) + 1, in particular, we obtain that∫
Ω
|K(x, un)||un|λ̃−λ ≤ C0.

Moreover, going back to estimate (3.2.12), we obtain also that the quantity∫
Ω
|∇un|p(ε+ |un|)p(γ−1)

is uniformly bounded with respect to n for every γ ∈
(

1
p′ , γ̃

]
. Now, we observe that,

if λ ∈
[
λ,∞

)
, then γ̃ ∈ [1,∞) and, choosing γ = 1, we deduce that {un} is bounded

in W 1,p
0 (Ω). Otherwise, if λ ∈

(
λ, λ

)
, then γ̃ ∈

(
1
p′ , 1

)
. In this case, for any fixed

q ∈ [1, p), using Hölder’s inequality, we have that∫
Ω
|∇un|q =

∫
Ω

|∇un|q

(ε+ |un|)q(1−γ̃) (ε+ |un|)q(1−γ̃)

≤
[∫

Ω

|∇un|p

(ε+ |un|)p(1−γ̃)

] q
p
[∫

Ω
(ε+ |un|)

pq(1−γ̃)
p−q

] p−q
p

≤
[∫

Ω

|∇un|p

(ε+ |un|)p(1−γ̃)

] q
p
(∫

Ω
k−h

) p−q
p(h+1)

[∫
Ω
k(ε+ |un|)

pq(h+1)(1−γ̃)
h(p−q)

] (p−q)h
p(h+1)

.

Thus, the right-hand side of the previous inequality is uniformly bounded with
respect to n if

pq(h+ 1)(1− γ̃)
(p− q)h = λ̃,

86



Chapter 3. Interaction between lower order terms

that is,

q = pλ̃h

(λ+ 1)(h+ 1)− λ̃
= min

{(λ− p+ 1)hr
(λ+ 1)h+ r

,
pλhm

(λ+ 1)h+m

}
.

3.2.4 Estimates on un with datum in L1

Lemma 3.2.5. Let f ∈ L1(Ω). Assume that λ ∈ (λ,∞), where λ is defined in
(3.2.1). Then the sequence {un} is bounded in W 1,q

0 (Ω) for every q ∈ [1, q̃1), where
q̃1 is defined in (3.2.5). Moreover, there exists a positive constant C which does not
depend on n such that

∫
An,σ
|K(x, un)| ≤ C

(∫
An,σ
|b|r
) p
r

+
∫
An,σ
|f |,

∀n ∈ N, σ ∈ (0,∞),
(3.2.16)

where
An,σ = {|un| > σ}, σ ∈ (0,∞).

Proof. The proof is divided in two steps.
STEP I. We fix n ∈ N, θ ∈

(
0, 1

p′

)
and we choose

v =
[
1− 1

(1 + |un|)p(1−θ)−1

]
sign(un)

as a test function in (3.2.9). We observe that θ < 1
p′ implies that p(1− θ)− 1 > 0.

Since
|v| ≤ 1, ∇v = [p(1− θ)− 1] ∇un

(1 + |un|)p(1−θ)
a.e. on Ω,

we obtain that

α[p(1− θ)− 1]
∫

Ω

|∇un|p

(1 + |un|)p(1−θ)
+
∫

Ω
K(x, un)v

≤
∫

Ω
|b||∇un|p−1|v|+

∫
Ω
|f |,

which in turn, using Young’s inequality, implies that

α[p(1− θ)− 1]
p

∫
Ω

|∇un|p

(1 + |un|)p(1−θ)
+
∫

Ω
k|un|λ

≤ 1
p {α[p(1− θ)− 1]}p−1

∫
Ω
|b|p(1 + |un|)p(p−1)(1−θ)|v|

+
∫

Ω
k|un|λ−p(1−θ)+1 +

∫
Ω
|f |. (3.2.17)

As in (3.2.4), exploiting Hölder’s inequality, the first integral on the right-hand
side of (3.2.17) can be estimated by(∫

Ω
|b|r
) p
r
(∫

Ω
k−h

) r−p
(h+1)r

[∫
Ω
k(1 + |un|)

p(p−1)(1−θ)(h+1)r
h(r−p) |v|

]h(r−p)
(h+1)r

. (3.2.18)
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3.2. First order term not in divergence form

Then, we choose θ such that

p(p− 1)(1− θ)(h+ 1)r
h(r − p) ≤ λ.

For this purpose, we must impose that λ ∈ (λ,∞) and θ ∈
[
θ̃1,

1
p′

)
, where

θ̃1 = 1− h(r − p)λ
p(p− 1)(h+ 1)r . (3.2.19)

In this way, thanks to Hölder’s and Young’s inequalities again, estimates (3.2.17)
and (3.2.18) imply that there exists a positive constant C0 which does not depend
on n such that∫

Ω

|∇un|p

(1 + |un|)p(1−θ)
+
∫

Ω
k|un|λ ≤ C0 ∀ θ ∈

[
θ̃1,

1
p′

)
. (3.2.20)

Now, for any fixed q ∈ [1, p), using Hölder’s inequality and (3.2.20), we have
that∫

Ω
|∇un|q =

∫
Ω

|∇un|q

(1 + |un|)q(1−θ)
(1 + |un|)q(1−θ)

≤
[∫

Ω

|∇un|p

(1 + |un|)p(1−θ)

] q
p
[∫

Ω
(1 + |un|)

pq(1−θ)
p−q

] p−q
p

≤ C
q
p

0

(∫
Ω
k−h

) p−q
p(h+1)

[∫
Ω
k(1 + |un|)

pq(h+1)(1−θ)
h(p−q)

] (p−q)h
p(h+1)

.

By (3.2.20), the right-hand side of the previous inequality is uniformly bounded
with respect to n if

pq(h+ 1)(1− θ)
h(p− q) ≤ λ,

that is,
q ≤ pλh

[λ+ p(1− θ)]h+ p(1− θ) . (3.2.21)

Hence, for any q ∈ [1, q̃1), we can choose θ ∈
[
θ1,

1
p′

)
sufficiently close to 1

p′ in such
a way that (3.2.21) is fulfilled.

STEP II. We fix σ ∈ [0,∞), τ ∈ (0,∞) and we choose

vτ = Tτ (Gσ(un))
τ

as a test function in (3.2.9). Since

|vτ | ≤ χAn,σ , ∇vτ =
∇unχAn,σ∩(Ω\An,σ+τ )

τ
a.e. on Ω,

we obtain that
α

τ

∫
Ω
|∇Tτ (Gσ(un))|p +

∫
Ω
K(x, un)vτ ≤

∫
An,σ
|b||∇un|p−1 +

∫
An,σ
|f |,
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Chapter 3. Interaction between lower order terms

which in turn, dropping the positive term coming from the principal part, implies
that ∫

An,σ
|K(x, un)||vτ | ≤

∫
An,σ
|b||∇un|p−1 +

∫
An,σ
|f |. (3.2.22)

Now, for any fixed q ∈ (p − 1, q̃1), the use of Hölder’s inequality and (3.2.20)
formally yields

∫
An,σ
|b||∇un|p−1 ≤ Cp−1

0

(∫
An,σ
|b|

q
q−p+1

) q−p+1
q

. (3.2.23)

Since q̃1 > (p − 1)r′, we can choose q ∈ ((p − 1)r′, q̃1), which implies q
q−p+1 < r.

Hence, using Hölder’s inequality again, from (3.2.22) and (3.2.23) it follows that

∫
Ω
|K(x, un)||vτ | ≤ Cp−1

0 |Ω|
1
r′−

p−1
q

(∫
An,σ
|b|r
) 1
r

+
∫
An,σ
|f |, (3.2.24)

We observe that
lim
τ→0
|vτ | = χAn,σ a.e. on R.

Therefore, letting τ → 0 and using Fatou’s Lemma, from (3.2.24) we finally deduce
(3.2.16).

Remark 3.2.7. We observe that estimate (3.2.16) implies that

lim
σ→∞

∫
An,σ

K(x, un) = 0 uniformly with respect to n. (3.2.25)

As a matter of fact, choosing σ = 0 in (3.2.16) and using Remark 3.2.1, we deduce
that {un} is bounded in L

λh
h+1 (Ω). Hence, it follows that

lim
σ→∞

|An,σ| = 0 uniformly with respect to n,

so that, by absolute continuity of the integral,
lim
σ→∞

∫
An,σ
|b|r = 0,

lim
σ→∞

∫
An,σ
|f | = 0,

uniformly with respect to n

(3.2.26)

Therefore, putting together (3.2.16) and (3.2.26), we get (3.2.25).

Lemma 3.2.6. Let f ∈ L1(Ω). Then, for every positive σ, the sequence {Tσ(un)}
is bounded in W 1,p

0 (Ω).

Proof. We fix n ∈ N, σ ∈ (0,∞) and we choose Tσ(un) as a test function in (3.2.9).
Since

|Tσ(un)| ≤ σ, ∇Tσ(un) = ∇unχ{|un|≤σ} a.e. on Ω,
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3.2. First order term not in divergence form

dropping the positive zero order term, we obtain that

α

∫
Ω
|∇Tσ(un)|p ≤ σ

∫
Ω
|b||∇un|p−1 + σ

∫
Ω
|f |.

Then, the use of Hölder’s inequality formally yields

α

∫
Ω
|∇Tσ(un)|p ≤ σ

(∫
Ω
|b|r
) 1
r
(∫

Ω
|∇un|(p−1)r′

) 1
r′

+ σ

∫
Ω
|f |.

Since q̃1 > (p− 1)r′, by Lemma 3.2.5, we get the result.

3.2.5 Passing to the limit as n→∞

We are now in position to prove Theorems 3.2.1, 3.2.2 and 3.2.3.

Proof of Theorem 3.2.3. Let {un} be the sequence of weak solutions to the approx-
imate problems (3.2.8) constructed above. By Lemmas 3.2.4 and 3.2.6, we have
that 

{un} is bounded in W 1,q
0 (Ω) ∀ q ∈ [1, q̃1),

{K(·, un)} is bounded in L1(Ω),
{Tσ(un)} is bounded in W 1,p

0 (Ω) ∀σ ∈ (0,∞),

where q̃1 is defined in (3.2.5). Hence, there exists a function u which belongs to
W 1,q

0 (Ω) for every q ∈ [1, q̃1), such that K(·, u) ∈ L1(Ω), Tσ(un) ∈W 1,p
0 (Ω) for every

σ ∈ (0,∞) and, up to a subsequence,
un ⇀ u in W 1,q

0 (Ω) ∀ q ∈ [1, q̃1),
un → u a.e. on Ω,
Tσ(un) ⇀ Tσ(u) in W 1,p

0 (Ω) ∀σ ∈ (0,∞).

Moreover, we get

{A(·, un,∇un)} is bounded in (Ls(Ω))N ∀ s ∈
[
1, q̃1
p− 1

)
.

For a fixed s ∈ [1, r), the use of Hölder’s inequality formally yields

∫
Ω
|Bn(x,∇un)|s ≤

∫
Ω
|b|s|∇un|(p−1)s ≤

(∫
Ω
|b|r
) s
r
(∫

Ω
|∇un|

(p−1)rs
r−s

) r−s
r

.

Thus, exploiting the fact that {∇un} is bounded (Lq̃1(Ω))N and

(p− 1)rs
r − s

< q̃1 ⇐⇒ s <
rq̃1

(p− 1)r + q̃1
,

rq̃1
q̃1 + (p− 1)r > 1⇐⇒ q̃1 > (p− 1)r′,

q̃1 > (p− 1)r′ ⇐⇒ λ >
(p− 1)(h+ 1)r

h(r − p) ,
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we deduce that

{Bn(·,∇un)} is bounded in Ls(Ω) ∀ s ∈
[
1, rq̃1
q̃1 + (p− 1)r

)
.

Therefore, by Lemma 1.2.6 (see [12], [19], [20] and [24]), we have that ∇un → ∇u
a.e. on Ω, which in turn implies that

A(·, un,∇un)→ A(·, u,∇u) in (Ls(Ω))N ∀ s ∈
[
1, q̃1
p− 1

)
,

Bn(·, un)→ B(·, u) in Ls(Ω) ∀ s ∈
[
1, rq̃1
q̃1 + (p− 1)r

)
,

Now, for any fixed ζ ∈ C∞c (Ω) we obtain that
lim
n→∞

∫
Ω
A(x, un,∇un) · ∇ζ =

∫
Ω
A(x, u,∇u) · ∇ζ,

lim
n→∞

∫
Ω
Bn(x,∇un)ζ =

∫
Ω
B(x,∇u)ζ,

lim
n→∞

∫
Ω
fn(x)ζ =

∫
Ω
f(x)ζ.

(3.2.27)

Then, for any σ ∈ (0,∞) and measurable subset U ⊂ Ω, we have that∫
U
|K(x, un)| ≤

∫
U∩{|un|≤σ}

|K(x, un)|+
∫
{|un|>σ}

|K(x, un)|

≤
∫
U

sup
|τ |≤σ

|K(x, τ)|+
∫
{|un|>σ}

|K(x, un)|.

Therefore, recalling Remark 3.2.7, from the previous inequality we get

lim
|U |→0

∫
U
|K(x, un)| = 0 uniformly with respect to n,

which in turn, by Vitali’s Theorem, implies that

K(·, un)→ K(·, u) in L1(Ω).

In particular, it follows that

lim
n→∞

∫
Ω
K(x, un)ζ =

∫
Ω
K(x, u)ζ. (3.2.28)

Putting together (3.2.27) and (3.2.28), we finally deduce that u is a weak solution
of (3.0.2).

Proof of Theorem 3.2.2. The argument of the proof is essentially the same as the
previous one. What changes is that we use Lemma 3.2.4 instead of Lemma 3.2.5 to
deduce that the sequences {un} and

{
K(·, un)|un|λ̃−λ

}
are bounded in, respectively,

W 1,q̃
0 (Ω) and L1(Ω), where λ̃ and q̃ are defined in, respectively, (3.2.3) and (3.2.5).
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3.2. First order term not in divergence form

Proof of Theorem 3.2.1. The argument of the proof is essentially the same as the
previous one. What changes is that we use Lemma 3.2.4 to deduce that the se-
quences {un} and

{
K(·, un)|un|λ̃−λ

}
are bounded in, respectively, W 1,p

0 (Ω) and
L1(Ω), where λ̃ is defined in (3.2.3).

Moreover, we observe that assumption λ ∈
[
λ,∞

)
, where λ is defined in (3.2.2),

implies that
λ̃h

h+ 1 ≥
(λ+ 1)h
h+ 1 ≥ max

{
pr

r − p
,m′

}
.

Hence, recalling Remark 3.2.1, u satisfies
∫

Ω
A(x, u,∇u) · ∇v +

∫
Ω
B(x,∇u)v +

∫
Ω
K(x, u)v =

∫
Ω
f(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(3.2.29)

Finally, if we choose Tσ(u) as a test function in (3.2.29), that is,∫
Ω
A(x, u,∇u) · ∇Tσ(u) +

∫
Ω
B(x,∇u)Tσ(u) +

∫
Ω
K(x, u)Tσ(u) =

∫
Ω
f(x)Tσ(u),

then, letting σ →∞ and applying Lebesgue’s Theorem, we get that (3.2.29) holds
also for v = u.
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Chapter 4

Problems involving increasing
powers

Let Ω ⊂ RN be a bounded open subset with N ≥ 2. Let us consider the problem{
A(uλ) +D(uλ) + k|uλ|λ−1uλ = f on Ω,
uλ = 0 on ∂Ω.

(4.0.1)

We recall that A and D are the differential operators defined by

A(u) = −div(A(·, u,∇u)), D(u) = div(D(·, u)),

where A : Ω×R×RN → RN D : Ω×R→ RN are Carathéodory vector fields which
satisfy 

∃α, β ∈ (0,∞), p ∈ (1, N), a ∈ Lp′(Ω):
A(x, σ, ξ) · ξ ≥ α|ξ|p,
|A(x, σ, ξ)| ≤ β

[
|a(x)|+ |σ|p−1 + |ξ|p−1],

[A(x, σ, ξ)−A(x, σ, η)] · (ξ − η) > 0,
for a.e. x ∈ Ω, ∀σ ∈ R, ∀ ξ, η ∈ RN , ξ 6= η,

and 
∃ r ∈ (p′,∞], d ∈ Lr(Ω):
|D(x, σ)| ≤ |d(x)||σ|p−1,

for a.e. x ∈ Ω, ∀σ ∈ R.

Moreover, λ ∈ (1,∞) and the coefficient k is a positive function in L1(Ω) such that

∃h ∈ (0,∞) : k−h ∈ L1(Ω). (4.0.2)

By Theorems 3.1.1 and 3.1.3 we know the existence of a weak solution uλ to
(4.0.1) which satisfies{

uλ ∈W 1,p
0 (Ω), k|uλ|λ+1 ∈ L1(Ω) if m ∈ (1,∞], λ ∈ [λ,∞),

uλ ∈W 1,q
0 (Ω) ∀ q ∈ [1, q̃1), k|uλ|λ ∈ L1(Ω) if m = 1, λ ∈ (λ,∞),

(4.0.3)
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where

λ = (p− 1)(h+ 1)r
h(r − p′) , (4.0.4)

λ = max
{
h[(p− 1)r + p′] + pr

h(r − p′) ,
h+m

h(m− 1)

}
, (4.0.5)

q̃1 = pλh

(λ+ 1)h+ 1) . (4.0.6)

In this chapter we follow the approach of [31] and [32] (see also [44] and [13]), and
we study the asymptotic behaviour of uλ as λ → ∞. More precisely, we prove the
following results.

We define
C =

{
v ∈W 1,p

0 (Ω): |v| ≤ 1 a.e. on Ω
}
.

Theorem 4.0.1. Let f ∈ Lm(Ω) for some m ∈ (1,∞]. Then, there exists a function
u ∈ C such that

uλ → u in W 1,p
0 (Ω).

Moreover, u is a solution of the following bilateral obstacle problem:∫
Ω

(A(x, u,∇u)−D(x, u)) · ∇(v − u) ≥
∫

Ω
f(x)(v − u) ∀ v ∈ C.

Theorem 4.0.2. Let f ∈ L1(Ω). Then, there exists a function u ∈ C such that

uλ → u in W 1,q
0 (Ω) ∀ q ∈ [1, p).

Moreover, u is a solution of the following bilateral obstacle problem:∫
Ω

(A(x, u,∇u)−D(x, u)) · ∇(v − u) ≥
∫

Ω
f(x)(v − u) ∀ v ∈ C.

4.1 The case of datum in Lm with m ∈ (1,∞]
Let f ∈ Lm(Ω) for some m ∈ (1,∞]. By Theorem 3.1.1, we know that, for every
λ ∈

(
λ,∞

)
, there exists a weak solution uλ to (4.0.1) which belongs to W 1,p

0 (Ω)
and such that k|uλ|λ+1 ∈ L1(Ω). Moreover, uλ satisfies

∫
Ω

(A(x, uλ,∇uλ)−D(x, uλ)) · ∇v +
∫

Ω
k(x)|uλ|λ−1uλv =

∫
Ω
f(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω) and v = uλ.

(4.1.1)

We recall that uλ is constructed as limit of a sequence of weak solutions {un} ⊂
W 1,p

0 (Ω) ∩ L∞(Ω) to the approximate problems
∫

Ω
(A(x, un,∇un)−Dn(x, un)) · ∇v +

∫
Ω
k(x)|un|λ−1unv =

∫
Ω
fn(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω),

(4.1.2)
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where 
Dn(x, σ) = D(x,σ)

1+ 1
n
|D(x,σ)| ,

fn(x) = Tn(f(x)),
for a.e. x ∈ Ω, ∀σ ∈ R, ∀n ∈ N.

Choosing un as a test function in (4.1.2) and using Young inequality, we obtain
that

α

p′

∫
Ω
|∇un|p +

∫
Ω
k|un|λ+1 ≤ 1

p′α
1
p−1

∫
Ω
|d|p′ |un|p +

∫
Ω
|f ||un|.

Then, by Hölder’s inequality and (4.0.2), we have that

α

p′

∫
Ω
|∇un|p +

∫
Ω
k|un|λ+1

≤ 1
p′α

1
p−1

(∫
Ω
|d|r

) p′
r
(∫

Ω
k−h

) r−p′
(h+1)r

(∫
Ω
k|un|

p(h+1)r
h(r−p′)

)h(r−p′)
(h+1)r

+
(∫

Ω
|f |m

) 1
m
(∫

Ω
k−h

) 1
(h+1)m′

(∫
Ω
k|un|

(h+1)m′
h

) h
(h+1)m′

. (4.1.3)

Since
λ ≥ λ =⇒ λ+ 1 ≥ max

{
pr(h+ 1)
h(r − p′) ,

(h+ 1)m′

h

}
,

by Hölder’s and Young’s inequalities again, the two terms on the right-hand side of
(4.1.3) can be estimated by, respectively,

ε

∫
Ω
k|un|λ+1

+ 1
ε

p
λ−p+1

 1
p′α

1
p−1

(∫
Ω
|d|r

) p′
r
(∫

Ω
k−h

) r−p′
(h+1)r

(∫
Ω
k

)h(r−p′)
(h+1)r −

p
λ+1


λ+1
λ−p+1

∀ ε ∈ (0,∞),

and

ε

∫
Ω
k|un|λ+1

+ 1
ε

1
λ

[(∫
Ω
|f |m

) 1
m
(∫

Ω
k−h

) 1
(h+1)m′

(∫
Ω
k

) h
(h+1)m′−

1
λ+1
]λ+1

λ

∀ ε ∈ (0,∞).

Taking ε = 1
4 , we deduce that

α

p′

∫
Ω
|∇un|p + 1

2

∫
Ω
k|un|λ+1

≤ 4
p

λ−p+1

 1
p′α

1
p−1

(∫
Ω
|d|r

) p′
r
(∫

Ω
k−h

) r−p′
(h+1)r

(∫
Ω
k

)h(r−p′)
(h+1)r −

p
λ+1


λ+1
λ−p+1

+ 4
1
λ

[(∫
Ω
|f |m

) 1
m
(∫

Ω
k−h

) 1
(h+1)m′

(∫
Ω
k

) h
(h+1)m′−

1
λ+1
]λ+1

λ

, (4.1.4)
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that is, {un} is bounded in W 1,p
0 (Ω),{

k|un|λ+1
}

is bounded in L1(Ω).

Therefore, there exists a function uλ ∈W 1,p
0 (Ω) such that k|uλ|λ+1 ∈ L1(Ω) and{

un ⇀ uλ in W 1,p
0 (Ω),

un → uλ a.e. on Ω.

Moreover, we have that{
{A(·, un,∇un)} is bounded in (Lp′(Ω))N ,
{Dn(·, un)} is bounded in (Lp′(Ω))N .

By Lemma 1.2.6 (see [12], [19], [20] and [24]), it follows that ∇un → ∇uλ a.e. on
Ω, which in turn implies that{

A(·, un,∇un)→ A(·, uλ,∇uλ) in (L1(Ω))N ,
Dn(·, un)→ D(·, uλ) in (L1(Ω))N .

Then, for any measurable subset U ⊂ Ω and σ ∈ (0,∞), we have that∫
U
k|un|λ =

∫
U∩{|un|≤σ}

k|un|λ +
∫
U∩{|un|>σ}

k|un|λ

≤ σλ
∫
U
k + 1

σ

∫
Ω
k|un|λ+1, (4.1.5)

so that
lim
|U |→0

∫
U
k|un|λ = 0 unifomly with respect to n.

Hence, Vitali’s Theorem implies that

k|un|λ−1un → k|uλ|λ−1uλ in L1(Ω).

These convergence properties allow us to perform the limit process and to deduce
that uλ is a weak solution to (4.0.1) which satisfies

∫
Ω

(A(x, , uλ,∇uλ)−D(x, uλ)) · ∇v +
∫

Ω
k(x)|uλ|λ−1uλv =

∫
Ω
f(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(4.1.6)

Furthermore, if we choose Tσ(uλ) as a test function in (4.1.6), that is,∫
Ω

(A(x, uλ,∇uλ)−D(x, uλ))·∇Tσ(uλ)+
∫

Ω
k(x)|uλ|λ−1uλTσ(uλ) =

∫
Ω
f(x)Tσ(uλ),

then, passing to the limit as σ →∞, we deduce that (4.1.6) is true also for v = uλ.
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4.1.1 Proof of Theorem 4.0.1

The proof is divided into four steps.
STEP I. First, we fix λ ∈

(
λ,∞

)
and we observe that, since un → uλ and

∇un → ∇uλ a.e. on Ω, using Fatou’s Lemma, from (4.1.4) we get

α

p′

∫
Ω
|∇uλ|p + 1

2

∫
Ω
k|uλ|λ+1

≤ 4
p

λ−p+1

 1
p′α

1
p−1

(∫
Ω
|d|r

) p
r
(∫

Ω
k−h

) r−p
(h+1)r

(∫
Ω
k

)h(r−p)
(h+1)r−

p
λ+1


λ+1
λ−p+1

+ 4
1
λ

[(∫
Ω
|f |m

) 1
m
(∫

Ω
k−h

) 1
(h+1)m′

(∫
Ω
k

) h
(h+1)m′−

1
λ+1
]λ+1

λ

,

that is, {uλ}λ>λ is bounded in W 1,p
0 (Ω),{

k|uλ|λ+1
}
λ>λ

is bounded in L1(Ω).
(4.1.7)

which, in particular, implies that{
{A(·, uλ,∇uλ)}λ>λ is bounded in (Lp′(Ω))N ,
{D(·, uλ)}λ>λ is bounded in (Lp′(Ω))N .

Hence, there exist u ∈W 1,p
0 (Ω), Y , Z ∈ (Lp′(Ω))N such that, up to a subsequence,
uλ ⇀ u in W 1,p

0 (Ω),
uλ → u a.e. on Ω,
A(·, uλ,∇uλ) ⇀ Y in (Lp′(Ω))N ,
D(·, uλ) ⇀ Z in (Lp′(Ω))N .

(4.1.8)

Now, by Hölder’s inequality and (4.0.2), we have that

|{|uλ| > σ}| ≤ 1

σ
(λ+1)h
h+1

∫
Ω
|uλ|

(λ+1)h
h+1

≤ 1

σ
(λ+1)h
h+1

(∫
Ω
k−h

) 1
h+1

(∫
Ω
k|uλ|λ+1

) h
h+1

∀σ ∈ (1,∞),

so that, letting λ→∞ and exploiting (4.1.7) and (4.1.8), we deduce that

|{|u| > σ}| = 0 ∀σ ∈ (1,∞),

that is, u ∈ C.
STEP II. We fix λ ∈

(
λ,∞

)
and we choose T1(uλ)− T1(u) as a test function in

(4.1.1):∫
Ω
A(x, uλ,∇uλ) · ∇(T1(uλ)− T1(u)) +

∫
Ω
k(x)|uλ|λ−1uλ(T1(uλ)− T1(u))

=
∫

Ω
D(x, uλ) · ∇(T1(uλ)− T1(u)) +

∫
Ω
f(x)(T1(uλ)− T1(u)). (4.1.9)
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4.1. The case of datum in Lm with m ∈ (1,∞]

Let us pass to the limit in each term. The last integral in (4.1.9) goes to 0, by
Lebegsue’s Theorem. The second term on the left hand-side of (4.1.9) can be
splitted as∫

{|uλ|≤1}
k|uλ|λ−1uλ(T1(uλ)− T1(u)) +

∫
{|uλ|>1}

k|uλ|λ−1uλ(T1(uλ)− T1(u)).

By Lebesgue’s Theorem, we have that

lim
λ→∞

∫
{|uλ|≤1}

k|uλ|λ−1uλ(T1(uλ)− T1(u)) = 0,

since the integrand is dominated by 2k a.e. on {|uλ| ≤ 1}, while∫
{|uλ|>1}

k|uλ|λ−1uλ(T1(uλ)− T1(u)) ≥ 0,

since the integrand is nonnegative a.e. on {|uλ| > 1}. Concerning the first integral
in (4.1.9), we observe that

(A(x, uλ,∇uλ)−A(x, uλ,∇T1(uλ))) · ∇(T1(uλ)− T1(u))
= −(A(x, uλ,∇uλ)−A(x, uλ, 0)) · ∇T1(u)χ{|uλ|≥1} a.e. on Ω,

and we write∫
Ω
A(x, uλ,∇uλ) · ∇(T1(uλ)− T1(u))

= −
∫

Ω
(A(x, uλ,∇uλ)−A(x, uλ, 0)) · ∇T1(u)χ{|uλ|≥1}

+
∫

Ω
(A(x, uλ,∇T1(uλ))−A(x, uλ,∇T1(u))) · ∇(T1(uλ)− T1(u))

+
∫

Ω
A(x, uλ,∇T1(u)) · ∇(T1(uλ)− T1(u)). (4.1.10)

The last term in (4.1.10) goes to 0 since, by (4.1.8), T1(uλ) ⇀ T1(u) in W 1,p
0 (Ω),

while for the first one we have that

−
∫

Ω
(A(x, uλ,∇uλ)−A(x, uλ, 0)) · ∇T1(u)χ{|uλ|≥1}

= −
∫

Ω
(A(x, uλ,∇uλ)−A(x, uλ, 0)) · ∇uχ{|u|<1}χ{|uλ|≥1}

−→ −
∫

Ω
(Y −A(x, u, 0)) · ∇uχ{|u|=1} = 0.

Finally, the first term on the right-hand side of (4.1.9) can be splitted as∫
{|uλ|≤1}

D(x, uλ) · ∇(T1(uλ)− T1(u))−
∫
{|uλ|>1}

D(x, uλ) · ∇T1(u).

The first term goes to 0, since T1(uλ) ⇀ T1(u) in W 1,p
0 (Ω) and |D(·, uλ)| ≤ |d| a.e.

on {|uλ| ≤ 1} so that, by Lebesgue’s Theorem, D(·, uλ) → Z in (Lp′(Ω))N , while
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for the second one we have that∫
{|uλ|>1}

D(x, uλ) · ∇T1(u)

= −
∫

Ω
D(x, uλ) · ∇uχ{|u|<1}χ{|uλ|>1} −→ −

∫
Ω
Z · ∇uχ{|u|=1} = 0.

Putting together these results, we have proved, starting from (4.1.11), that

lim sup
λ→∞

∫
Ω

(A(x, uλ,∇T1(uλ)−A(x, uλ,∇T1(u))) · ∇(T1(uλ)− T1(u)) ≤ 0,

which in turn, by Lemma 5 in [33], yields

T1(uλ) −→ T1(u) in W 1,p
0 (Ω). (4.1.11)

STEP III. Now, we fix λ ∈
(
λ,∞

)
and we choose G1(uλ) as a test function in

(4.1.1). Dropping the positive zero order term, we obtain that

α

∫
Ω
|∇G1(uλ)|p ≤

∫
Ω
fG1(uλ). (4.1.12)

We observe that G1(uλ) → 0 a.e. on Ω since u ∈ C. Moreover, for any measurable
subset U ⊂ Ω, by Hölder’s inequality, we have that

∫
U
|f ||G1(uλ)| ≤

(∫
U
|f |m

) 1
m
(∫

Ω
|G1(uλ)|m′

) 1
m′
.

We observe that λ > λ implies that (λ+1)h
h+1 > m′, so that, recalling Remark 3.1.1

and (4.1.7), the right-hand side of the previous inequality is uniformly bounded
with respect to λ. Therefore, it follows that

lim
|U |→0

∫
U
|f ||G1(uλ)| = 0

which in turn, going back to (4.1.12), by Vitali’s Theorem, yields

G1(uλ)→ 0 in W 1,p
0 (Ω).

This convergence, together with (4.1.11), imply that

uλ → u in W 1,p
0 (Ω).

STEP IV. Finally, we fix λ ∈
(
λ,∞

)
, θ ∈ (0, 1), v ∈ C and we choose θv − uλ

as a test function in (4.1.1):∫
Ω
A(x, uλ,∇uλ) · ∇(θv − uλ) +

∫
Ω
k(x)|uλ|λ−1uλ(θv − uλ)

=
∫

Ω
D(x, uλ) · ∇(θv − uλ) +

∫
Ω
f(x)(θv − uλ). (4.1.13)
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4.2. The case of datum in L1

The second term on the left-hand side can be splitted as∫
{|uλ|≤θ}

k|uλ|λ−1uλ(θv − uλ) +
∫
{|uλ|>θ}

k|uλ|λ−1uλ(θv − uλ).

By Lebesgue’s Theorem, we have that

lim
λ→∞

∫
{|uλ|≤θ}

k|uλ|λ−1uλ(θv − uλ) = 0,

since the integrand is dominated by 2θλk a.e. on {|uλ| ≤ θ}, while∫
{|uλ|>θ}

k|uλ|λ−1uλ(θv − uλ) ≤ 0,

since the integrand is nonpositive a.e. on {|uλ| > θ}. Finally, using the strong
convergence of uλ in W 1,p

0 (Ω), we also have that
lim
λ→∞

∫
Ω
A(x, uλ,∇uλ) · ∇(θv − uλ) =

∫
Ω
A(x, u,∇u) · ∇(θv − u),

lim
λ→∞

∫
Ω
D(x, uλ) · ∇(θv − uλ) =

∫
Ω
D(x, u) · ∇(θv − u),

lim
λ→∞

∫
Ω
f(x)(θv − uλ) =

∫
Ω
f(x)(θv − u).

Therefore, putting together the results, from (4.1.13) we deduce that∫
Ω

(A(x, u,∇u)−D(x, u)) · ∇(θv − u) ≥
∫

Ω
f(θv − u),

which in turn, letting θ → 1, implies the result.

4.2 The case of datum in L1

Let f ∈ L1(Ω). By Theorem 3.1.3, we know that, for every λ ∈ (λ,∞), there exists
a weak solution uλ to (4.0.1) which belongs to W 1,q

0 (Ω) for every q ∈ [1, q̃1), such
that k|uλ|λ ∈ L1(Ω) and Tσ(uλ) ∈W 1,p

0 (Ω) for every σ ∈ (0,∞). We recall that uλ
is constructed as limit of a sequence of regular solutions {un} ⊂ W 1,p

0 ∩ L∞(Ω) of
the approximate problems (4.1.2). More precisely, we have that

un → uλ in W 1,q
0 (Ω) ∀ q ∈ [1, q̃1),

un → uλ a.e. on Ω,
∇un → ∇uλ a.e. on Ω,
k|un|λ−1un → k|uλ|λ−1uλ in L1(Ω).

(4.2.1)

Lemma 4.2.1. The following estimates hold:

∫
Ω
|∇ log(1 + |uλ|)|p ≤

1
αp′

∫
Ω
|d|p′ + p′

(p− 1)α

∫
Ω
|f |,∫

Ω
|∇Tσ(uλ)|p ≤ σp

αp′

∫
Ω
|d|p′ + p′σ

α

∫
Ω
|f |,∫

Ω
k|uλ|λ ≤

∫
Ω
|f |,

∀σ ∈ (0,∞), ∀λ ∈ (λ,∞).

(4.2.2)
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Moreover, for every q ∈ [1, p) there exists λq ∈ (λ,∞) such that the collection
{uλ}λ>λq is bounded in W 1,q

0 (Ω).

Proof. The estimates (4.2.2) are an immediate consequence of Lemmas 2.1.2, 3.1.7
and 3.1.8, since un → uλ a.e. on Ω and Tσ(un) ⇀ Tσ(uλ) in W 1,p

0 (Ω) for every
σ ∈ (0,∞).

Now, we fix n ∈ N, q ∈ [1, p) and, using Hölder’s inequality, we get

∫
Ω
|∇un|q =

∫
Ω

|∇un|q

(1 + |un|)q
(1 + |un|)q

≤
[∫

Ω

|∇un|p

(1 + |un|)p
] q
p
[∫

Ω
(1 + |un|)

pq
p−q

] p−q
p

≤
[∫

Ω

|∇un|p

(1 + |un|)p
] q
p
(∫

Ω
k−h

) p−q
p(h+1)

[∫
Ω
k(1 + |un|)

pq
p−q

] (p−q)h
p(h+1)

(4.2.3)

Thanks to (4.2.2), the right-hand side of (4.2.3) is uniformly bounded with respect
to λ and n if

pq

p− q
≤ λh

h+ 1 ,

that is
λ ≥ pq(h+ 1)

(p− q)h .

4.2.1 Proof of Theorem 4.0.2

Proof. The proof is divided into three steps.
STEP I. First, we fix q ∈ [1, p) and, applying Lemma 4.1.5, we deduce the

existence of a function u ∈W 1,q
0 (Ω) such that, up to a subsequence,

uλ ⇀ u in W 1,q
0 (Ω),

uλ → u a.e. on Ω,
Tσ(uλ) ⇀ Tσ(u) in W 1,p

0 (Ω).
(4.2.4)

Now, by Hölder’s inequality and Lemma 4.1.5 again, we have that

|{|uλ| > σ}| ≤ 1
σ

λh
h+1

∫
Ω
|uλ|

λh
h+1 ≤ 1

σ
1
σλ

(∫
Ω
k−h

) 1
h+1

(∫
Ω
|f |
) h
h+1

∀σ ∈ (0,∞),

which in turn, letting λ→∞ and using (4.2.4), implies that

|{|u| > σ}| = 0 ∀σ ∈ (1,∞),

that is, |u| ≤ 1 a.e. on Ω. But Tσ(u) ∈ W 1,p
0 (Ω) for every σ ∈ (0,∞). Hence, it

follows that u ∈ C.
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4.2. The case of datum in L1

STEP II. Now, we fix λ ∈ (λ,∞) and we observe that, arguing as in [4], it is
not difficult to show that

∫
Ω

(A(x, uλ,∇uλ)−D(x, uλ)) · ∇Tσ(uλ − v) +
∫

Ω
k(x)|uλ|λ−1uλTσ(uλ − v)

≤
∫

Ω
f(x)Tσ(uλ − v),

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω), ∀σ ∈ (0,∞).

(4.2.5)
Then, we fix σ ∈ (0,∞) and we choose v = u in (4.2.5):∫
Ω
A(x, uλ,∇uλ) · ∇Tσ(uλ − u) +

∫
Ω
k(x)|uλ|λ−1uλTσ(uλ − u)

=
∫

Ω
D(x, uλ) · ∇Tσ(uλ − u) +

∫
Ω
f(x)Tσ(uλ − u). (4.2.6)

Let us pass to the limit in each term. The last integral in (4.2.6) goes to 0, by
Lebegsue’s Theorem. The second term on the left hand-side of (4.2.6) can be
splitted as∫

{|uλ|≤1}
k|uλ|λ−1uλTσ(uλ − u) +

∫
{|uλ|>1}

k|uλ|λ−1uλTσ(uλ − u).

By Lebesgue’s Theorem, we have that

lim
λ→∞

∫
{|uλ|≤1}

k|uλ|λ−1uλTσ(uλ − u) = 0,

since the integrand is dominated by 2σk a.e. on Ω, while∫
{|uλ|>1}

k|uλ|λ−1uλTσ(uλ − u) ≥ 0,

since the integrand is nonnegative a.e. on {|uλ| > 1}. Concerning the first term on
the right-hand side of (4.2.6), we observe that

|D(·, uλ)| ≤ |d|(1 + σ)p−1 a.e. on {|uλ − u| ≤ σ},

so that, by Lebesgue’s Theorem and the fact that Tσ(uλ − u) ⇀ 0 in W 1,p
0 (Ω), we

have that
lim
λ→∞

∫
Ω
D(x, uλ) · ∇Tσ(uλ − u) = 0.

Thus, we have proved that

lim sup
λ→∞

∫
Ω
A(x, uλ,∇uλ) · ∇Tσ(uλ − u) ≤ 0,

which in turn implies that

lim
λ→∞

∫
Ω

(A(x, uλ,∇uλ)−A(x, uλ,∇u)) · ∇Tσ(uλ − u) = 0

Hence, it follows that (see [61])

∇uλ → ∇u a.e. on Ω.
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STEP III. Now, we fix σ ∈ (0,∞), θ ∈ (0, 1), v ∈ C, we choose θv in (4.2.5) and
we write∫

Ω
(A(x, uλ,∇uλ)−A(x, uλ, θ∇v))·∇Tσ(uλ−θv)+

∫
Ω
A(x, uλ, θ∇v)·∇Tσ(uλ−θv)

+
∫

Ω
k(x)

(
|uλ|λ−1uλ − |θv|λ−1θv

)
Tσ(uλ − θv) +

∫
Ω
k(x)|θv|λ−1θvTσ(uλ − θv)

=
∫

Ω
D(x, uλ) · ∇Tσ(uλ − θv) +

∫
Ω
f(x)Tσ(uλ − θv). (4.2.7)

which in turn, dropping the positive zero order term on the left-hand side, yields∫
Ω

(A(x, uλ,∇uλ)−A(x, uλ, θ∇v)) · ∇Tσ(uλ − θv)

+
∫

Ω
A(x, uλ, θ∇v) · ∇Tσ(uλ − θv) +

∫
Ω
k(x)|θv|λ−1θvTσ(uλ − θv)

≤
∫

Ω
D(x, uλ) · ∇Tσ(uλ − θv) +

∫
Ω
f(x)Tσ(uλ − θv).

Let us now pass to the limit in each term. In the first one we use Fatou’s Lemma
since the integrand is nonnegative a.e. on Ω. In the second integral we exploit the
fact that Tσ(uλ − θv) ⇀ Tσ(uλ − θv) in W 1,p

0 (Ω) and Lebesgue’s Theorem, since
|A(·, uλ, θ∇v)| ≤

[
|a|+ (σ + θ)p−1 + θ|∇v|p−1] a.e. on Ω. In the third integral we

use Lebesgue’s Theorem since the integrand is dominated by σθλk a.e. on Ω and
therefore it goes to 0. In the fourth integral we exploit the fact that Tσ(uλ− θv) ⇀
Tσ(uλ − θv) in W 1,p

0 (Ω) again and Lebesgue’s Theorem, since |D(·, uλ)| ≤ |d|(1 +
σ)p−1 a.e. on {|uλ− θv| ≤ σ}. In the last integral we use Lebsgue’s Theorem again.
Thus, it follows that∫

Ω
A(x, u,∇u) · ∇Tσ(u− θv) ≤

∫
Ω
D(x, u) · ∇Tσ(u− θv) +

∫
Ω
f(x)Tσ(u− θv).

Letting θ → 1 and σ →∞, we finally deduce the result.
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Chapter 5

Local regularity properties of
solutions

In this chapter we present the results of the paper [42] concerning local regularity
properties of solutions to some nonlinear elliptic Dirichlet problems with lower order
terms and L1 data. More precisely, first, we consider the problem{

A(u) + B(u) = f on Ω,
u = 0 on ∂Ω.

(5.0.1)

We recall that Ω ⊂ RN is a bounded open subset with N ≥ 2,

A(u) = −div(A(·, u,∇u)), B(u) = B(·,∇u),

and A : Ω × R × RN → RN , B : Ω × RN → R are Carathéodory mappings which
satisfy 

∃α, β ∈ (0,∞), p ∈ (1, N) :
A(x, σ, ξ) · ξ ≥ α|ξ|p,
|A(x, σ, ξ)| ≤ β|ξ|p−1,

[A(x, σ, ξ)−A(x, σ, η)] · (ξ − η) > 0,
for a.e. x ∈ Ω, ∀σ ∈ R, ∀ ξ, η ∈ RN , ξ 6= η,

and 
∃ r ∈ (p,∞], b ∈ Lr(Ω):
|B(x, ξ)| ≤ |b(x)||ξ|p−1,

for a.e. x ∈ Ω, ∀ ξ ∈ RN .

If the right-hand side f is only a function in L1(Ω) (or, more generally, f is a
Radon measure on Ω with bounded total variation), the question of existence of
solutions to (5.0.7) is addressed in [10]. In order to give a meaning to the concept
of solution, the definition of renormalized solution (see also [46], [63], [64] and [65])
is used and, in this functional framework, the existence of a solution u such that

|∇u|p−1 ∈MN ′(Ω), |u|p−1 ∈M
p∗
p (Ω), (5.0.2)
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is established assuming that b belongs to the Lorentz space LN,1(Ω) and working by
approximation. Moreover, if f ∈Mm(Ω) for some m ∈ ((p∗)′,∞), then u satisfies

u ∈W 1,p
0 (Ω) ∩ L∞(Ω) if m ∈

(
N
p ,∞

]
,

u ∈W 1,p
0 (Ω), ec|u| ∈ L1(Ω) for some c ∈ (0,∞) if m = N

p ,

u ∈W 1,p
0 (Ω) ∩M [(p−1)m∗]∗(Ω) if m ∈

(
(p∗)′, Np

)
,

(5.0.3)

while, if f ∈ Lm(Ω) for some m ∈
(
max

{
1, N

N(p−1)+1

}
, Np

)
, then u satisfiesu ∈W

1,p
0 (Ω) ∩ L[(p−1)m∗]∗(Ω) if m ∈

[
(p∗)′, Np

)
,

u ∈W (p−1)m∗
0 (Ω) if m ∈

(
max

{
1, N

N(p−1)+1

}
, (p∗)′

)
.

(5.0.4)

Roughly speaking, here we investigate the behaviour of u far from the singular-
ities of f , in the spirit of [29]. Hence, we assume that f ∈ L1(Ω) and

∃U ⊂⊂ Ω, m ∈
(
(p∗)′,∞

)
: f ∈Mm(Ω \ U), (5.0.5)

or

∃U ⊂⊂ Ω, m ∈
(

max
{

1, N

N(p− 1) + 1

}
,
N

p

)
: f ∈ Lm(Ω \ U). (5.0.6)

What we expect is that, as happens in the case B ≡ 0 (see [29]), even if u and ∇u
only satisfy (5.0.2), there is an improvement (depending on the regularity of f , as
in (5.0.3) and (5.0.4)) in the regularity properties of u and ∇u away from U . The
results are as follows.

Theorem 5.0.1. Let f ∈ L1(Ω) which satisfies (5.0.5) and let V ⊂⊂ Ω be such
that V ⊃ U . Assume that b ∈ LN,1(Ω). Then, there exists a renormalized solution
u to (5.0.1) which satisfies (5.0.2), such that

|∇u| ∈ Lp(Ω \ V ),

and u ∈ L
∞(Ω \ V ) if m ∈

(
N
p ,∞

)
,

u ∈M [(p−1)m∗]∗(Ω \ V ) if m ∈
(
(p∗)′, Np

)
.

Moreover, there exists a positive constant c which belongs only on α, f , N and p
such that

ec|u| ∈ L1(Ω \ V ) if m = N

p
.

Theorem 5.0.2. Let f ∈ L1(Ω) which satisfies (5.0.6) and let V ⊂⊂ Ω be such
that V ⊃ U . Assume that b ∈ LN,1(Ω). Then, there exists a renormalized solution
u to (5.0.1) which satisfies (5.0.2), such that|∇u| ∈ L

p(Ω \ V ) if m ∈
(
(p∗)′, Np

)
,

|∇u| ∈ L(p−1)m∗(Ω \ V ) if m ∈
(
max

{
1, N

N(p−1)+1

}
, Np

)
,

and
u ∈ L[(p−1)m∗]∗(Ω \ V ).
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Then, we consider the following lower perturbation of (5.0.1):{
A(u) + B(u) +K(u) = f on Ω,
u = 0 on ∂Ω,

(5.0.7)

where
K(u) = K(·, u), (5.0.8)

and K : Ω× R→ R is a Carathéodory function such that
∃λ ∈ (1,∞), k ∈ L1(Ω) nonnegative on Ω:
K(x, σ)sign(σ) ≥ k(x)|σ|λ,
for a.e. x ∈ Ω, ∀σ ∈ R,

(5.0.9)

and
sup

τ∈[−σ,σ]
|K(·, τ)| ∈ L1(Ω) ∀σ ∈ (0,∞). (5.0.10)

The regularizing effect of the zero order term is studied in chapter 4, assuming that
k satisfies

∃h ∈ (0,∞) : k−h ∈ L1(Ω). (5.0.11)

In detail, assuming that b ∈ Lr(Ω) for some r ∈ (p,N) and f ∈ Lm(Ω) for some
m ∈ [1,∞), we have the existence of a weak solution u to (5.0.7) such that

u ∈W 1,p
0 (Ω), K(·, u)|u|λ̃−λ ∈ L1(Ω) if m ∈ (1,∞], λ ∈

[
λ,∞

)
,

u ∈W 1,q̃
0 (Ω), K(·, u)|u|λ̃−λ ∈ L1(Ω) if m ∈ (1,∞], λ ∈

(
λ, λ

)
,

u ∈W 1,q
0 (Ω) ∀ q ∈ [1, q̃1), K(·, u) ∈ L1(Ω) if m = 1, λ ∈ (λ,∞) ,

(5.0.12)
where

λ = (p− 1)(h+ 1)r
h(r − p) , (5.0.13)

λ = max
{
h[(p− 1)r + p] + pr

h(r − p) ,
h+m

h(m− 1)

}
, (5.0.14)

λ̃ = min
{(λ− p+ 1)(h+ 1)r

ph+ r
,
λ(h+ 1)m
h+m

}
, (5.0.15)

q̃ = min
{(λ− p+ 1)hr

(λ+ 1)h+ r
,

pλhm

(λ+ 1)h+m

}
, (5.0.16)

q̃1 = pλh

(λ+ 1)h+ 1 . (5.0.17)

Thus, it seems natural to investigate what happens locally. In this connection, here
we assume that

∃U ⊂⊂ Ω, m ∈ (1,∞) : f ∈ Lm(Ω \ U) (5.0.18)

and we proceed in two slightly different directions. The first one consists in assuming
(5.0.11) and studying a "local" version of the regularity results (5.0.12). The result
is the following.
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Theorem 5.0.3. Let f ∈ L1(Ω) which satisfies (5.0.18) and let V ⊂⊂ Ω be such
that V ⊃ U . Assume that b ∈ Lr(Ω) for some r ∈ (p,N), k satisfies (5.0.11) and
that λ ∈ (λ,∞). Then, there exists a weak solution u to (3.0.1) which belongs to
W 1,q

0 (Ω) for every q ∈ [1, q̃1), such that|∇u| ∈ L
p(Ω \ V ) if λ ∈

[
λ,∞

)
,

|∇u| ∈ Lq̃(Ω \ V ) if λ ∈
(
λ, λ

)
,

and
K(·, u)|u|λ̃−λ ∈ L1(Ω \ V ).

We also investigate the regularizing effect of the term K(u) replacing hypothesis
(5.0.11) with its own "localized" counterpart:

∃U ⊂⊂ Ω, h ∈ (0,∞) : k−h ∈ L1(Ω \ U). (5.0.19)

We remark that, in this case, we have to require that b ∈ LN,1(Ω), which is clearly a
stronger assumption than b ∈ Lr(Ω) for some r ∈ (p,N). Therefore, the quantities
λ, λ, λ̃, q̃ which appear in the following statement (as in the statement of Theorem
5.2.2 and Lemma 5.2.4 below), are as in (5.0.13)-(5.0.16) but with r = N .

Theorem 5.0.4. Let f ∈ L1(Ω). Assume that b ∈ LN,1(Ω), k satisfies (5.0.19) and
that λ ∈ (λ,∞), where λ is as in (5.0.13) but with r = N . Let V ⊂⊂ Ω be such
that V ⊃ U . Then, there exists a renormalized solution u to (5.0.7) which satisfies
(5.0.2), such that

|∇u| ∈ Lq(Ω \ V ) ∀ q ∈ [1, q̃1),
and

K(·, u) ∈ L1(Ω \ V ),
where q̃1 is defined in (5.0.17). Moreover, if (5.0.18) is fulfilled, then|∇u| ∈ L

p(Ω \ V ) if λ ∈
[
λ,∞

)
,

|∇u| ∈ Lq̃(Ω \ V ) if λ ∈
(
λ, λ

)
,

and
K(·, u)|u|λ̃−λ ∈ L1(Ω \ V ),

where λ, λ̃, q̃ are as in (5.0.14)-(5.0.16) but with r = N .

5.1 Local regularity results for the problem (5.0.7)
First, let us recall the definition of renormalized solution to the problem (5.0.1) in
the case of L1(Ω) datum (see [10]).

Definition 5.1.1. Let u : Ω→ R be a function which is finite a.e. on Ω and satisfies
Tσ(u) ∈ W 1,p

0 (Ω) for every positive σ. Then, there exists (see [4], Lemma 2.1) a
measurable vector field Y : Ω→ RN such that

∇Tσ(u) = Y χ{|u|≤σ} a.e. on Ω, ∀σ ∈ (0,∞).

Moreover, Y is unique up to almost everywhere equivalence. We say that this vector
field Y is the gradient of u and we write ∇u = Y .
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Chapter 5. Local regularity properties of solutions

Remark 5.1.1. We recall that the gradient introduced in Definition 5.1.1 is not, in
general, the gradient in the usual distributional sense, since it is possible that u does
not belong to L1

loc(Ω) (and thus the gradient of u is not defined in the distributional
sense) or ∇u does not belong to (L1

loc(Ω))N (see [46], Example 2.16). However, if
∇u belongs to (L1

loc(Ω))N , then u belongs to W 1,1
loc (Ω) and ∇u coincides with the

gradient of u in the distributional sense (see [46], Remark 2.10).

Definition 5.1.2. Let f ∈ L1(Ω). We say that a function u : Ω→ R is a renormal-
ized solution to (5.0.1) if the following conditions are fulfilled:

• u is finite a.e. on Ω, Tσ(u) ∈ W 1,p
0 (Ω) for every positive σ, and |u|p−1 ∈

M
p∗
p (Ω);

• the gradient ∇u of u, introduced in Definition 5.1.1, satisfies |∇u|p−1 ∈
MN ′(Ω);

• finally, u satisfies

lim
n→∞

∫
{n≤|u|<2n}

A(x, u,∇u) · ∇u = 0,

and

∫
Ω
A(x, u,∇u) · ∇uφ′(u)v +

∫
Ω
A(x, u,∇u) · ∇vφ(u) +

∫
Ω
B(x,∇u)φ(u)v

=
∫

Ω
f(x)φ(u)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω), ∀φ ∈W 1,∞(R) ∩ Cc(Ω): φ(u)v ∈W 1,p

0 (Ω).

Remark 5.1.2. We remark that the function u is not assumed to be in some Lebesgue
space Ls(Ω) with s ∈ [1,∞], but u is only measurable and finite a.e. on Ω. Indeed,
it is possible that the function u does not belong to L1

loc(Ω) (see [46], Example 2.16).
Remark 5.1.3. If u is a renormalized solution to (5.0.1), then u is a also a distribu-
tional solution in the sense that u satisfies (see [10], Remark 2.4)∫

Ω
A(x, u,∇u) · ∇ζ +

∫
Ω
B(x,∇u)ζ =

∫
Ω
f(x)ζ ∀ ζ ∈ C∞c (Ω).

Moreover, every renormalized solution u to (5.0.1) belongs to W 1,q
0 (Ω) for every

q ∈ [1, N ′(p− 1)) when p ∈
(
2− 1

N , N
)
(see [46], Remark 2.10).

The existence of a renormalized solution u to (5.0.1) which satisfies (5.0.2) is
obtained in [10] working by approximation and assuming that b belongs to the
Lorentz space LN,1(Ω), that is, b satisfies

‖b‖LN,1(Ω) =
∫ |Ω|

0
b∗(σ)σ

1
N
dσ

σ
<∞,

where b∗ is the decreasing rearrangement of b, i.e., the decreasing function defined
by

b∗(σ) = inf {τ ≥ 0: |{|b| > τ}| < σ} ∀σ ∈ [0, |Ω|].
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We recall that LN,1(Ω) is the dual space of the Marcinkiewicz space MN ′(Ω), and
one has the generalized Hölder inequality∣∣∣∣∫

Ω
φψ

∣∣∣∣ ≤ ‖φ‖LN,1(Ω)‖ψ‖MN′ (Ω) ∀φ ∈ LN,1(Ω), ∀ψ ∈MN ′(Ω).

Let us recall the construction of u.
For every n ∈ N, let us consider the following approximate problem:{

A(un) + Bn(un) = fn on Ω,
un = 0 on ∂Ω,

(5.1.1)

where
Bn(u) = Bn(·,∇u),

and 
Bn(x, ξ) = Tn(B(x, ξ)),
fn(x) = Tn(f(x)),
for a.e. x ∈ Ω, ∀ ξ ∈ RN .

(5.1.2)

Since 
|Bn(x, ξ)| ≤ min{|B(x, ξ)|, n},
|fn(x)| ≤ {|f(x)|, n},
for a.e. x ∈ Ω, ∀ ξ ∈ RN , ∀n ∈ N,

Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]) imply that, for every n ∈ N, there
exists a weak solution un ∈W 1,p

0 (Ω) ∩ L∞(Ω) to (5.0.1) such that∫
Ω
A(x, un,∇un) · ∇v +

∫
Ω
Bn(x,∇un)v =

∫
Ω
fn(x)v ∀ v ∈W 1,p

0 (Ω). (5.1.3)

Then, one has that 
{
|un|p−1} is bounded in M

p∗
p (Ω),{

|∇un|p−1} is bounded in MN ′(Ω).
(5.1.4)

Moreover, up to a subsequence,{
un → u a.e. on Ω,
∇un → ∇u a.e. on Ω.

(5.1.5)

Now, suppose that f ∈ Mm(Ω \ U) or f ∈ Lm(Ω \ U) for some U ⊂⊂ Ω and
m ∈ (1,∞). Let V ⊂⊂ Ω be such that V ⊃ U . By means of standard regularization
techniques, it is possible to construct a function ψ ∈W 1,∞(Ω) such that 0 ≤ ψ ≤ 1
on Ω and

ψ =
{

0 on U,
1 on Ω \ V.

(5.1.6)

In particular, assumptions (5.0.5) and (5.0.6) imply that, respectively,
∃ψ ∈W 1,∞(Ω), m ∈ ((p∗)′,∞) :
0 ≤ ψ ≤ 1 on Ω,
fψ ∈Mm(Ω),

(5.1.7)
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and 
∃ψ ∈W 1,∞(Ω), m ∈

(
max

{
1, N

N(p−1)+1

}
, Np

)
:

0 ≤ ψ ≤ 1 on Ω,
fψ ∈ Lm(Ω).

(5.1.8)

Hence, Theorems 5.0.1 and 5.0.2 can be deduced as a consequence of the following
results.

Theorem 5.1.1. Let f ∈ L1(Ω) which satisfies (5.1.7). Assume that b ∈ LN,1(Ω).
Then, there exist a renormalized solution u to (5.0.1) which satisfies (5.0.2), and
δ0 ∈ (1,∞) which depends only on ψ, m, N and p, such thatuψ

δ0 ∈W 1,p
0 (Ω) ∩ L∞(Ω) if m ∈

(
N
p ,∞

)
,

uψδ0 ∈W 1,p
0 (Ω) ∩ L[(p−1)m∗]∗(Ω) if m ∈

(
(p∗)′, Np

)
.

Moreover, there exists a positive constant c which depends only on α, f , N and p
such that

ec|uψδ0 | ∈ L1(Ω) if m = N

p
.

Theorem 5.1.2. Let f ∈ L1(Ω) which satisfies (5.1.8). Assume that b ∈ LN,1(Ω).
Then, there exist a renormalized solution u to (5.0.1) which satisfies (5.0.2), and
δ1 ∈ (1,∞) which depends only on ψ, m, N and p, such thatuψδ1 ∈W 1,p

0 (Ω) ∩ L[(p−1)m∗]∗(Ω) if m ∈
(
(p∗)′, Np

)
,

uψδ1 ∈W 1,(p−1)m∗
0 (Ω) if m ∈ (1, (p∗)′).

5.1.1 Local estimates on un

We begin observing that, by (5.1.4),{
|un|p−1

}
is bounded in Ls(Ω) ∀ s ∈

[
1, p

∗

p

)
. (5.1.9)

Lemma 5.1.3. Let f ∈ L1(Ω) which satisfies (5.1.8). Assume that b ∈ LN,1(Ω).
Then, there exists δ1 ∈

(
1
p−1 ,∞

)
which depends only on ψ, m, N and p, such that

the sequence
{
unψ

δ1
}
is bounded in L[(p−1)m∗]∗(Ω).

Proof. The proof is divided into four steps.
STEP I. First, let φ ∈ W 1,∞(Ω) be such that 0 ≤ φ ≤ ψ on Ω. By (5.1.8), we

know that fφ ∈ Lm(Ω) for some m ∈
(
1, Np

)
. Then, we fix n ∈ N, ε ∈ (0,∞) and

we choose
vεφ

δ =
[
(ε+ |un|)p(γ−1)+1 − εp(γ−1)+1

]
sign(un)φδ

as a test function in (2.2.5), where

γ ∈
( 1
p′
,
[(p− 1)m∗]∗

p∗

)
, δ = p+ p′γ.
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5.1. Local regularity results for the problem (5.0.7)

We observe that

m > 1 =⇒ 1
p′
<

[(p− 1)m∗]∗

p∗
,

γ >
1
p′

=⇒ p(γ − 1) + 1 > 0.

Since

∇
(
vεφ

δ
)

= [p(γ − 1) + 1]∇un(ε+ |un|)p(γ−1)φδ + δ∇φvεφδ−1 a.e. on Ω,

we obtain that

α[p(γ − 1) + 1]
∫

Ω
|∇un|p(ε+ |un|)p(γ−1)φδ

≤ βδ ‖|∇φ|‖L∞(Ω)

∫
Ω
|∇un|p−1|vε|φδ−1 +

∫
Ω
|b||∇un|p−1|vε|φδ

+
∫

Ω
|f ||vε|φδ. (5.1.10)

Thanks to Young’s inequality, the first integral on the right-hand side of (5.1.10)
can be estimated by

α[p(γ − 1) + 1]
p′

∫
Ω
|∇un|p(ε+ |un|)p(γ−1)φδ

+

(
βδ ‖|∇φ|‖L∞(Ω)

)p
p {α[p(γ − 1) + 1]}p−1

∫
Ω

(ε+ |un|)pγφδ−p.

Hence, it follows that

α[p(γ − 1) + 1]
p

∫
Ω
|∇un|p(ε+ |un|)p(γ−1)φδ

≤

(
βδ ‖|∇φ|‖L∞(Ω)

)p
p {α[p(γ − 1) + 1]}p−1

∫
Ω

(ε+ |un|)pγφδ−p +
∫

Ω
|b||∇un|p−1|vε|φδ

+
∫

Ω
|f ||vε|φδ. (5.1.11)

STEP II. Without loss of generality, we assume that b 6≡ 0. Let ε0 ∈
(
0, ‖b‖LN (Ω)

)
and let U0 ⊂ RN be a cube which contains Ω. We extend b and un to vanish outside
Ω. By bisection of the edges of U0, we subdivide U0 into 2N congruent subcubes
with disjoint interiors. If there is a subcube U such that(∫

U
|b|N

) 1
N

> ε0,

then all subcubes are similarly subdivided. The process terminates in a finite num-
ber of steps, otherwise there would be an infinite sequence of nested subcubes
Uj+1 ⊂ Uj ⊂ U0 such that

|Uj | =
|U0|
2jN ,

(∫
Uj

|b|N
) 1
N

> ε0 ∀ j ∈ N,
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which is a contradiction, since, by the absolute continuity of the integral,

lim
j→∞

∫
Uj

|b|N = 0.

Thus, there exist a number l = l(ε0) ∈ N and a finite collection of congruent
subcubes U1, . . . , Ul ⊂ U0 with disjoint interiors such that

Ω ⊂ U0 = U1 ∪ . . . ∪ Ul,(∫
U1
|b|N

) 1
N

≤ ε0, . . . ,
(∫

Ul

|b|N
) 1
N

≤ ε0.
(5.1.12)

Then, using (5.1.12) and Hölder’s inequality, we have that∫
Ω
|b||∇un|p−1|vε|φδ

≤ ε0
l∑

j=1

[∫
Uj

|∇un|p(ε+ |un|)p(γ−1)φδ
] 1
p′
[∫

Uj

(ε+ |un|)p
∗γφ

p∗δ
p

] 1
p∗

Furthermore, thanks to Sobolev’s inequality and the fact that

|Uj | =
|U0|
l

∀ j ∈ {1, . . . , l},

we have that[∫
Uj

(ε+ |un|)p
∗γφ

p∗δ
p

] 1
p∗

≤
(

l

|U0|

) 1
N

S
[∫

Uj

(ε+ |un|)pγφδ
] 1
p

+ S
{∫

Uj

∣∣∣∣∇{[(ε+ |un|)γ − εγ ]φ
δ
p

}∣∣∣∣p
} 1
p

.

Hence, we get∫
Ω
|b||∇un|p−1|vε|φδ

≤
(
l

|Ω|

) 1
N

Sε0
lε∑
j=1

[∫
Uj

|∇un|p(ε+ |un|)p(γ−1)φδ
] 1
p′
[∫

Uj

(ε+ |un|)pγφδ
] 1
p

+ Sε0
l∑

j=1

[∫
Uj

|∇un|p(ε+ |un|)p(γ−1)φδ
] 1
p′
{∫

Uj

∣∣∣∣∇{[(ε+ |un|)γ − εγ ]φ
δ
p

}∣∣∣∣p
} 1
p

,

which in turn, by Hölder’s inequality and (5.1.12) again, implies that∫
Ω
|b||∇un|p−1|vε|φδ

≤
(
l

|Ω|

) 1
N

Sε0
[∫

Ω
|∇un|p(ε+ |un|)p(γ−1)φδ

] 1
p′
[∫

Ω
(ε+ |un|)pγφδ

] 1
p

+ Sε0
[∫

Ω
|∇un|p(ε+ |un|)p(γ−1)φδ

] 1
p′
{∫

Ω

∣∣∣∣∇{[(ε+ |un|)γ − εγ ]φ
δ
p

}∣∣∣∣p} 1
p

.

(5.1.13)
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Since∣∣∣∇{[(ε+ |un|)γ − εγ ]φ
η
p

}∣∣∣
≤ γ|∇un|(ε+ |un|)γ−1φ

δ
p +

δ ‖|∇φ|‖L∞(Ω)
p

(ε+ |un|)γφ
δ−p
p a.e. on Ω, (5.1.14)

using Young’s inequality and the fact that 0 ≤ φ ≤ 1 on Ω, from (5.1.13) we obtain
that∫

Ω
|b||∇un|p−1|vε|φδ

≤ C0ε0

∫
Ω
|∇un|p(ε+ |un|)p(γ−1)φδ + C1ε0

∫
Ω

(ε+ |un|)pγφδ−p, (5.1.15)

where

C0 = S
(

1
p′|Ω|

1
N

+
δ ‖|∇φ|‖L∞(Ω)

pp′
+ γ

)
,

C1 = S
(

l
p
N

p|Ω|
1
N

+
δ ‖|∇φ|‖L∞(Ω)

p2

)
.

Now, we choose ε0 such that

C0ε0 = α[p(γ − 1) + 1]
2p ,

that is,
ε0 = α[p(γ − 1) + 1]

2pC0
.

In this way, from (5.1.11) and (5.1.15) we deduce that∫
Ω
|∇un|p(ε+ |un|)p(γ−1)φδ ≤ C2

∫
Ω

(ε+ |un|)pγφδ−p + C3

∫
Ω
|f ||vε|φδ, (5.1.16)

where

C2 = C1
C0

+ 2
{
βγδ ‖|∇φ|‖L∞(Ω)
α[p(γ − 1) + 1]

}p
, C3 = 2p

α[p(γ − 1) + 1] .

Then, in virtue of Sobolev’s inequality and (5.1.14), estimate (5.1.16) yields

[∫
Ω

(ε+ |un|)p
∗γφ

p∗δ
p

] p
p∗
≤ Sp0

∫
Ω

∣∣∣∣∇{[(ε+ |un|)γ − εγ ]φ
δ
p

}∣∣∣∣p
≤ C4

∫
Ω

(ε+ |un|)pγφδ−p + C5

∫
Ω
|f ||vε|φδ, (5.1.17)

which in turn, letting ε→ 0 and applying Fatou’s Lemma and Lebesgue’s Theorem,
implies that[∫

Ω
|un|p

∗γφ
p∗δ
p

] p
p∗
≤ C4

∫
Ω
|un|pγφδ−p + C5

∫
Ω
|f ||un|p(γ−1)+1φδ. (5.1.18)
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where
C4 = (2S0)pC2 +

(2C0S0δ

p

)p
, C5 = (2S0)pC3.

STEP III. By Hölder’s inequality, we have that

∫
Ω
|f ||un|p(γ−1)+1φδ ≤

(∫
Ω
|fφ|m

) 1
m
[∫

Ω
(ε+ |un|)[p(γ−1)+1]m′φ(δ−1)m′

] 1
m′
.

We observe that

γ <
[(p− 1)m∗]∗

p∗
=⇒ [p(γ − 1) + 1]m′ < p∗γ.

Hence, by Hölder’s inequality again, from (5.1.18) we obtain that

(∫
Ω
|un|p

∗γφ
p∗δ
p

) p
p∗

≤ C4

∫
Ω
|un|pγφδ−p + C6

(∫
Ω
|fφ|m

) 1
m
(∫

Ω
|un|p

∗γφ
p∗γ(δ−1)
p(γ−1)+1

) [p(γ−1)+1]
p∗γ

, (5.1.19)

where
C6 = |Ω|

1
m′−

p(γ−1)+1
p∗γ C5.

Furthermore, since
δ > p′γ =⇒ p∗δ

p
<

p∗γ(δ − 1)
p(γ − 1) + 1 ,

exploiting the fact that 0 ≤ φ ≤ 1 on Ω and using Young’s inequality, we have that

C6

(∫
Ω
|fφ|m

) 1
m
(∫

Ω
|un|p

∗γφ
p∗γ(δ−1)
p(γ−1)+1

) p(γ−1)+1
p∗γ

≤ C6

(∫
Ω
|fφ|m

) 1
m
(∫

Ω
|un|p

∗γφ
p∗δ
p

) p(γ−1)+1
p∗γ

≤ Cp
′γ

6
p′γ

(∫
Ω
|fφ|m

) p′γ
m

+ p(γ − 1) + 1
pγ

(∫
Ω
|un|p

∗γφ
p∗δ
p

) p
p∗
.

Thus, from (5.1.19) we get(∫
Ω

∣∣∣∣unφ δ
pγ

∣∣∣∣p∗γ
) p
p∗

≤ C7

∫
Ω

∣∣∣∣unφ δ−ppγ ∣∣∣∣pγ + C8

(∫
Ω
|fφ|m

) p′γ
m

,

where
C7 = p′γC6, C8 = Cp

′γ
6 .

Recalling that δ = p+ p′γ, the previous inequality becomes

∫
Ω

∣∣∣unφ 1
p−1 + 1

γ

∣∣∣p∗γ ≤ C9(γ)

(∫
Ω

∣∣∣unφ 1
p−1
∣∣∣pγ) p∗

p

+
(∫

Ω
|fφ|m

) p∗γ
p−1

 , (5.1.20)
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where
C9(γ) = max

{
(2C7(γ))

p∗
p , (2C8(γ))

p∗
p

}
. (5.1.21)

We remark that

C7(γ) = C10γ

(
1 + γp

[p(γ − 1) + 1]p
)
,

C8(γ) = Cp
′γ

11 |Ω|
p′γ
m′ −

p′[p(γ−1)+1]
p∗

(
γp

p(γ − 1) + 1

)p′γ
,

where C10 and C11 are positive constants which do not depend on γ. Hence, C9(γ)
depends continuously on γ and satisfies

lim
γ→ 1

p′
+
C9(γ) =∞, lim

γ→ [(p−1)m∗]∗
p∗

−
C9(γ) ∈ (0,∞). (5.1.22)

In particular, we can pass to the limit as γ → [(p−1)m∗]∗
p∗

−
in (5.1.20) and, using

dominate convergence Theorem, deduce that estimate (5.1.20) holds for every γ ∈(
1
p′ ,

[(p−1)m∗]∗
p∗

]
.

STEP IV. Now, suppose that

p
[(p− 1)m∗]∗

p∗
<
p∗

p′
,

that is,
m <

N

N2 −Np+ p2 .

We consider estimate (5.1.20) with

γ = [(p− 1)m∗]∗

p∗
, φ = ψ,

that is,

∫
Ω

∣∣∣∣unψ 1
p−1 + p∗

[(p−1)m∗]∗

∣∣∣∣[(p−1)m∗]∗

≤ C9

(∫
Ω

∣∣∣unψ 1
p−1
∣∣∣p [(p−1)m∗]∗

p∗
) p∗

p

+
(∫

Ω
|fψ|m

) [(p−1)m∗]∗
(p−1)m

 . (5.1.23)

Thanks to (5.1.9), the right-hand side of (5.1.23) is uniformly bounded with respect
to n. Therefore, it follows that the sequence

{
unψ

δ1
}
is bounded in L[(p−1)m∗]∗(Ω),

where
δ1 = 1

p− 1 + p∗

[(p− 1)m∗]∗ .

Otherwise, suppose that

p
[(p− 1)m∗]∗

p∗
≥ p∗

p′
.
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In this case, we perform an iteration argument. The idea is to start from estimate
(5.1.20) with γ = [(p−1)m∗]∗

p∗ and φ a suitable power of ψ and apply (5.1.20) recur-
sively a finite number of times, choosing γ and φ in a suitably way. We point out
that, by (5.1.22), it is necessary to consider only values of γ > 1

p′ .
We define

γ0 = [(p− 1)m∗]∗

p∗

and we choose
γ1 ∈

(
pγ0
p∗

, γ0

)
.

Notice that pγ0
p∗ ≥

1
p′ , therefore γ1 >

1
p′ . If pγ1 ≥ p∗

p′ , we choose

γ2 ∈
(
pγ1
p∗

,
pγ0
p∗

)
,

which, in particular, satisfies

1
p′
≤ pγ1

p∗
< γ2 <

pγ0
p∗

< γ1.

The process terminates in a finite number of steps, otherwise there would be an
infinite sequence of real numbers γj > γj+1 >

1
p′ such that

γj <

(
p

p∗

)[ j2 ]
γ0 ∀ j ∈ N,

which is a contradiction, since

lim
j→∞

(
p

p∗

)[ j2 ]
= 0.

If I ≥ 1 is the first index for which

pγI <
p∗

p′
, (5.1.24)

we define
φI = ψ, φi = φ

1+ p−1
γi+1

i+1 ∀ i ∈ {0, . . . , I − 1}. (5.1.25)

By construction, we have that

1
p′
< γI < γI−1 ≤ . . . ≤ γ0 = [(p− 1)m∗]∗

p∗
,

and
0 ≤ φ0 ≤ φ1 ≤ . . . ≤ φI = ψ on Ω.

Hence, we set
C12 = max

i∈{0,...,I}
C9(γi) = C9(γI),
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and we consider estimate (5.1.20) with γ = γ0 and φ = φ0, that is,

∫
Ω

∣∣∣∣unφ 1
p−1 + 1

γ0
0

∣∣∣∣p
∗γ0

≤ C12

(∫
Ω

∣∣∣∣unφ 1
p−1
0

∣∣∣∣pγ0) p∗
p

+
(∫

Ω
|fφ0|m

) p∗γ0
(p−1)m

 . (5.1.26)

Since pγ0 < p∗γ1, by Hölder’s inequality and the definition of φi, we have that

(∫
Ω

∣∣∣∣unφ 1
p−1
0

∣∣∣∣pγ0) p∗
p

≤ |Ω|
p∗
p
− γ0
γ1

(∫
Ω

∣∣∣∣unφ 1
p−1
0

∣∣∣∣p∗γ1
) γ0
γ1

= |Ω|
p∗
p
− γ0
γ1

(∫
Ω

∣∣∣∣unφ 1
p−1 + 1

γ1
1

∣∣∣∣p
∗γ1
) γ0
γ1
,

which in turn, using (5.1.20), implies that

(∫
Ω

∣∣∣∣unφ 1
p−1
0

∣∣∣∣pγ0) p∗
p

≤ (2C12)
γ0
γ1 |Ω|

p∗
p
− γ0
γ1

(∫
Ω

∣∣∣∣unφ 1
p−1
1

∣∣∣∣pγ1) p∗γ0
pγ1 +

(∫
Ω
|fφ1|m

) p∗γ0
(p−1)m

 . (5.1.27)

Putting together (5.1.26) and (5.1.27), it follows that

∫
Ω

∣∣∣∣unφ 1
p−1 + 1

γ0
0

∣∣∣∣p
∗γ0

≤ C12(2C12)
γ0
γ1 |Ω|

p∗
p
− γ0
γ1

(∫
Ω

∣∣∣∣unφ 1
p−1
1

∣∣∣∣pγ1) p∗γ0
pγ1 +

(∫
Ω
|fφ1|m

) p∗γ0
(p−1)m


+ C12

(∫
Ω
|fφ0|m

) p∗γ0
(p−1)m

.

Thus, we iterate the previous inequality I times and we obtain that

∫
Ω

∣∣∣∣unφ 1
p−1 + 1

γ0
0

∣∣∣∣p
∗γ0

≤ C13

(∫
Ω

∣∣∣∣unφ 1
p−1
I

∣∣∣∣pγI)
p∗γ0
pγI +

I∑
i=0

(∫
Ω
|fφi|m

) p∗γ0
(p−1)m

 , (5.1.28)

where

C13 = C12 + C12(2C12)
∑I

i=1
γ0
γi |Ω|

∑I

i=0

(
p∗γ0
pγi
− γ0
γi+1

)
.

By (5.1.24) and (5.1.9), the right-hand side of (5.1.28) is uniformly bounded with
respect to n. Therefore, since p∗γ0 = [(p− 1)m∗]∗ and

φ
1
p−1 + 1

γ0
0 = φ

1
p−1

(
1+ p−1

γ0

)(
1+ p−1

γ1

)
1 = . . . = φ

1
p−1

∏I

i=0

(
1+ p−1

γi

)
I = ψ

1
p−1

∏I

i=0

(
1+ p−1

γi

)
,
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from (5.1.28) we, finally, deduce that
{
unψ

δ1
}
is bounded in L[(p−1)m∗]∗(Ω), where

δ1 = 1
p− 1

I∏
i=0

(
1 + p− 1

γi

)
. (5.1.29)

We recall that, for any σ ∈ (0,∞), Tσ denotes the truncation function at level
σ, that is,

Tσ(s) =
{
s if |s| ≤ σ,
sign(s)σ if |s| > σ,

and Gσ denotes the real function defined by

Gσ(s) = s− Tσ(s) = (|s| − σ)+sign(u) ∀ s ∈ R.

Furthermore, for any n ∈ N and δ, σ > 0 we define

An,δ,σ =
{
|un|ψδ > σ

}
. (5.1.30)

We observe that (5.1.9) implies that

lim
σ→∞

|An,δ,σ| = 0 uniformly with respect to n. (5.1.31)

Hence, by the absolute continuity of the integral, it follows that

lim
σ→∞

∫
An,δ,σ

|b|N = 0 uniformly with respect to n. (5.1.32)

Lemma 5.1.4. Let f ∈ L1(Ω) which satisfies (5.1.7) with m ∈ ((p∗)′,∞). Assume
that b ∈ LN,1(Ω). Then, there exists δ2 ∈ (1,∞) which depends only on ψ, N and
p such that

{
unψ

δ2
}

is bounded in L∞(Ω) if m ∈
(
N
p ,∞

)
,{

unψ
δ2
}

is bounded in M [(p−1)m∗]∗(Ω) if m ∈
(
(p∗)′, Np

)
.

Moreover, there exists a positive constant c which depends only on α, f , N and p
such that {

ec|unψδ2 |} is bounded in L1(Ω) if m = N

p
.

Proof. First, we observe that assumption (5.1.7) implies that fψ ∈ Lt(Ω) for every
t ∈ [(p∗)′,m). Therefore, by Lemma 5.1.3, for every s ∈ [p, [(p− 1)m∗]∗) there
exists δ1(s) ∈

(
1
p−1 ,∞

)
such that

{
unψ

δ1(s)
}
is bounded in Ls(Ω).

We fix s ∈ (p, [(p− 1)m∗]∗) and we define

δ2 = 1 + δ1(s). (5.1.33)

Moreover, we define

Aσ = An,δ2,σ ∀σ ∈ (0,∞), ∀n ∈ N, (5.1.34)
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and, exploiting (5.1.31) and (5.1.32), we choose σ0 ∈ (0,∞) such that
|Aσ| ≤ 1,

S0

(
1 + δ2

p′

)(∫
Aσ
|b|N

) 1
N

≤ α

2p,

∀σ ∈ [σ0,∞), ∀n ∈ N.

(5.1.35)

Then, we fix n ∈ N, σ ∈ [σ0,∞) and we choose

v = Gσ
(
unψ

δ2
)
ψ(p−1)δ2

as a test function in (5.1.3). Since

|∇v| ≤ |∇un|ψpδ2χAσ + pδ2|∇ψ||un|ψpδ2−1χAσ a.e. on Ω,

we obtain that

α

∫
Aσ
|∇un|pψpδ2 ≤ pβδ2

∫
Aσ
|∇un|p−1|∇ψ||un|ψpδ2−1

+
∫

Ω
|b||∇un|p−1|v|+

∫
Ω
|f ||v|,

which in turn, using Young’s inequality, implies that

α

p

∫
Aσ
|∇un|pψpδ2 ≤ (pβδ2)p

pαp−1

∫
Aσ
|∇ψ|p

∣∣∣unψδ2−1
∣∣∣p

+
∫

Ω
|b||∇un|p−1|v|+

∫
Ω
|f ||v|. (5.1.36)

Thanks to Hölder’s and Sobolev’s inequalities, the second integral on the right-hand
side of (5.1.36) can be estimated as∫

Ω
|b||∇un|p−1|v| ≤

∫
Ω
|b||∇un|p−1|un|ψpδ2

≤
(∫

Aσ
|b|N

) 1
N
(∫

Aσ
|∇un|pψpδ2

) 1
p′
(∫

Aσ
|un|p

∗
ψp
∗δ2

) 1
p∗

≤ S0

(∫
Aσ
|b|N

) 1
N
(∫

Aσ
|∇un|pψpδ2

) 1
p′
[∫
Aσ

∣∣∣∇ (unψδ2
)∣∣∣p] 1

p

.

Hence, using Young’s inequality again and (5.1.35), we get∫
Ω
|b||∇un|p−1|v| ≤ α

2p

∫
Aσ
|∇un|pψpδ2

+ S0δ2
p

(∫
Ω
|b|N

) 1
N
∫
Aσ
|∇ψ|p|un|pψp(δ2−1). (5.1.37)

Putting together (5.1.36) and (5.1.37), it follows that

C0

∫
Aσ
|∇un|pψpδ2 ≤ C1

∫
Aσ
|∇ψ|p|un|pψp(δ2−1) +

∫
Ω
|f ||v|, (5.1.38)
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where

C0 = α

2p, C1 = (pβδ2)p

pαp−1 + S0δ2
p

(∫
Ω
|b|N

) 1
N

.

Adding
C0

∫
Aσ

∣∣∣∇ (ψδ2
)∣∣∣p |un|p

on both sides of (5.1.38) and using Sobolev’s inequality again, we obtain that

C2

[∫
Ω

∣∣∣Gσ (unψδ2
)∣∣∣p∗] p

p∗
≤ C0

∫
Aσ
|∇un|pψpδ2 + C0

∫
Aσ

∣∣∣∇ (ψδ2
)∣∣∣p |un|p

≤ C3

∫
Aσ
|un|pψp(δ2−1) +

∫
Ω
|f ||v|, (5.1.39)

where
C2 = C0

Sp0
, C3 = C1 + C0

(
δ2 sup

Ω
|∇ψ|

)p
.

Since s > p, the use of Hölder’s inequality yields∫
Aσ
|un|pψp(δ2−1) ≤

(∫
Aσ
|un|σψσ(δ2−1)

) p
s

|Aσ|1−
p
s ,

which in turn, recalling that δ2 = 1 + δ1 and that
{
unψ

δ1
}

is bounded in Ls(Ω),
implies that ∫

Aσ
|un|pψp(δ2−1) ≤ C4|Aσ|1−

p
s . (5.1.40)

On the other hand, by Hölder’s and Young’s inequalities, we have that

∫
Ω
|f ||v| ≤ C2

p

[∫
Ω

∣∣∣Gσ (unψδ2
)∣∣∣p∗] p

p∗
+ 1

p′C
1
p−1
2

(∫
Aσ
|fψ|(p∗)′

) p′
(p∗)′

. (5.1.41)

We observe that, by assumption (5.0.5), there exists a positive constant C5 which
depends only on f , m, N , p and ψ such that(∫

Aσ
|fψ|(p∗)′

) 1
(p∗)′
≤ C5|Aσ|

1
m′−

1
p∗ .

Thus, from (5.1.41) we obtain that∫
Ω
|f ||v| ≤ C2

p

[∫
Ω

∣∣∣Gσ (unψδ2
)∣∣∣p∗] p

p∗
+ Cp

′

5

p′C
1
p−1
2

|Aσ|p
′
(

1
m′−

1
p∗
)
. (5.1.42)

Putting together (5.1.39), (5.1.40) and (5.1.42) it follows that

C6

[∫
Ω

∣∣∣Gσ (unψδ2
)∣∣∣p∗] p

p∗
≤ C7|Aσ|1−

p
s + C8|Aσ|p

′
(

1
m′−

1
p∗
)
,

where

C6 = C2
p′
, C7 = C3C4, C8 = Cp

′

5

p′C
1
p−1
2

.
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Then, we have that

C6(τ − σ)p|Aτ |
p
p∗ ≤ C6

[ ∫
Ω

∣∣∣∣Gσ (unψδ2
) ∣∣∣p∗] p

p∗

≤ C7|Aσ|1−
p
s + C8|Aσ|p

′
(

1
m′−

1
p∗
)
∀ τ > σ ≥ σ0.

Since
1− p

[(p− 1)m∗]∗ > p′
( 1
m′
− 1
p∗

)
,

we can choose s sufficiently close to [(p− 1)m∗]∗ such that

1− p

s
> p′

( 1
m′
− 1
p∗

)
.

Hence, recalling that |Aσ| ≤ 1, we obtain that

(τ − σ)p|Aτ |
p
p∗ ≤ C9|Aσ|p

′
(

1
m′−

1
p∗
)
∀ τ > σ ≥ σ0,

that is,

|Aτ | ≤ C10
|Aσ|

1
p−1

(
p∗
m′−1

)
(τ − σ)p∗ ∀ τ > σ ≥ σ0, (5.1.43)

where
C9 = C7 + C8

C6
, C10 = C

p∗
p

9 .

Thus, applying Lemma 1.2.3 with

φ(σ) = |Aσ|, γ = p∗, δ = 1
p− 1

(
p∗

m′
− 1

)
,

from (5.1.43) we finally deduce the result, since
δ ∈ (1,∞) if m ∈

(
N
p ,∞

)
,

δ = 1 if m = N
p ,

δ ∈ (0, 1) if m ∈
(
(p∗)′, Np

)
.

5.1.2 Local estimates on ∇un

Lemma 5.1.5. Let f ∈ L1(Ω) which satisfies (5.1.8) with m ∈ (1, (p∗)′). Assume
that b ∈ LN,1(Ω). Then, there exists δ3 ∈ (1,∞) which depends only on ψ, m, N
and p, such that the sequence

{∣∣∣∇ (unψδ3
)∣∣∣} is bounded in L(p−1)m∗(Ω).

Proof. First, we define
q = (p− 1)m∗, γ = q∗

p∗
,
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and
δ3 = q∗

q
max

{
δ1
m′

+ 1, pδ1
p∗

+ p, δ1

}
, (5.1.44)

where δ1 is given by Lemma 5.1.3. We observe that assumption m ∈ (1, (p∗)′)
implies that γ ∈

(
1
p′ , 1

)
. Moreover, we have that

[1− p(1− γ)]m′ = p∗γ = q∗ = [(p− 1)m∗]∗.

Then, we fix ε ∈ (0,∞) and we choose[
(ε+ |un|)1−p(1−γ) − ε1−p(1−γ)

]
sign(un)ψqδ3

as a test function in (5.1.3). Arguing as in the first two steps of the proof of Lemma
5.1.3, we get∫

Ω

|∇un|p

(ε+ |un|)p(γ−1)ψ
qδ3

≤ C0

∫
Ω

(ε+ |un|)pγψqδ3−p + C1

∫
Ω
|f |(ε+ |un|)1−p(1−γ)ψqδ3 , (5.1.45)

where C0 and C1 are positive constants which depend only on α, β, m, N , p, |Ω|, b
and ψ. By Hölder’s inequality, we have that

C0

∫
Ω

(ε+ |un|)pγψqδ3−p ≤ C0|Ω|1−
p
p∗

[∫
Ω

(ε+ |un|)q
∗
ψ
p∗(qδ3−p)

p

] p
p∗

,

and

C1

∫
Ω
|f |(ε+ |un|)p(γ−1)+1ψqδ3

≤ C1

(∫
Ω
|fψ|m

) 1
m
[∫

Ω
(ε+ |un|)q

∗
ψ(qδ3−1)m′

] 1
m′
,

which in turn, recalling the definitions of q and δ3 and the fact that 0 ≤ ψ ≤ 1 on
Ω, imply that

C0

∫
Ω

(ε+ |un|)pγψqδ3−p ≤ C0|Ω|1−
p
p∗

{∫
Ω

[
(ε+ |un|)ψδ1

][(p−1)m∗]∗
} p
p∗
, (5.1.46)

and

C1

∫
Ω
|f |(ε+ |un|)p(γ−1)+1ψqδ3

≤ C1

(∫
Ω
|fψ|m

) 1
m
{∫

Ω

[
(ε+ |un|)ψδ1

][(p−1)m∗]∗
} 1
m′
. (5.1.47)

Hence, putting together (5.1.45)-(5.1.47), by Lemma 5.1.3, it follows that{ |∇un|p

(ε+ |un|)p(γ−1)ψ
qδ3

}
is bounded in L1(Ω). (5.1.48)
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Now, using Hölder’s inequality again, we have that

∫
Ω
|∇un|qψqδ3 ≤

∫
Ω

|∇un|q

(ε+ |un|)q(1−γ) (ε+ |un|)q(1−γ)ψqδ3

≤
[∫

Ω

|∇un|p

(ε+ |un|)p(1−γ)ψ
qδ3

] p
q∗
[∫

Ω
(ε+ |un|)

pq(1−γ)
p−q ψqδ3

]1− p
q∗
.

A simple calculation shows that

pq(1− γ)
p− q

= q∗ = [(p− 1)m∗]∗.

Therefore, recalling the choice of δ3 and the fact that 0 ≤ ψ ≤ 1 on Ω, thanks
to Lemma 5.1.3 and estimate (5.1.48), from the previous inequality we deduce the
result.

Lemma 5.1.6. Let f ∈ L1(Ω) which satisfies (5.1.8) with m = (p∗)′. Assume that
b ∈ LN,1(Ω). Then, there exists δ4 ∈ (1,∞) which depends only on ψ, N and p,
such that the sequence

{∣∣∣∇ (unψδ4
)∣∣∣} is bounded in Lp(Ω).

Proof. We define
δ4 = 1 + δ1, (5.1.49)

where δ1 is given by Lemma 5.1.3, and we choose unψpδ4 as a test function in (5.1.3).
Arguing as in the first two steps of the proof of Lemma 5.1.3, we obtain that∫

Ω
|∇un|pψpδ4 ≤ C0

∫
Ω
|un|pψpδ4−p + C1

∫
Ω
|f ||un|ψpδ4 , (5.1.50)

where C0 and C1 are positive constants which depend only on α, β, m, N , p, |Ω|, b
and ψ. By (5.1.49), we have that

C0

∫
Ω
|un|pψpδ4−p = C0

∫
Ω
|un|pψpδ1 , (5.1.51)

and, using Hölder’s inequality and the fact that 0 ≤ ψ ≤ 1 ob Ω, we obtain that

C1

∫
Ω
|f ||un|ψδ4 ≤ C1

(∫
Ω
|fψ|(p∗)′

) 1
(p∗)′

(∫
Ω
|un|p

∗
ψp
∗δ1

) 1
p∗
. (5.1.52)

Hence, from (5.1.50)-(5.1.52) it follows that

∫
Ω
|∇un|pψpδ4 ≤ C0

∫
Ω
|un|pψpδ1 + C1

(∫
Ω
|fψ|(p∗)′

) 1
(p∗)′

(∫
Ω
|un|p

∗
ψp
∗δ1

) 1
p∗
,

which, thanks to Lemma 5.1.3, implies the result, since [(p− 1)m∗]∗ = p∗.
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5.1.3 Proof of Theorems 5.1.1 and 5.1.2

Let {un} be the sequence of weak solutions of the approximate problems (5.1.1)
constructed above. Closely following the outline of the proof of Theorem 2.1 in [10],
we can prove that there exists a renormalized solution u of (5.0.1) which satisfies

|∇u|p−1 ∈MN ′(Ω), |u|p−1 ∈M
p∗
p (Ω),

and such that, up to a subsequence,{
un → u a.e. on Ω,
∇un → ∇u a.e. on Ω.

Therefore, the result immediately follows from Lemmas 5.1.3-5.1.6 choosing δ0 in a
suitably way.

5.2 Local regularity results for the problem (5.0.7)
First, let us recall the definition of renormalized solution to the problem (5.0.7)
with L1(Ω) datum, which is a slight modification of Definition 5.1.2 (see [10]).

Definition 5.2.1. Let f ∈ L1(Ω). We say that a function u : Ω→ R is a renormal-
ized solution to (5.0.7) if the following conditions are fulfilled:

• u is finite a.e. on Ω, Tσ(u) ∈ W 1,p
0 (Ω) for every positive σ, and |u|p−1 ∈

M
p∗
p (Ω);

• the gradient ∇u of u, introduced in Definition 5.1.1, satisfies |∇u|p−1 ∈
MN ′(Ω);

• finally, u satisfies

lim
n→∞

∫
{n≤|u|<2n}

A(x, u,∇u) · ∇u = 0,

and

∫
Ω
A(x, u,∇u) · ∇uφ′(u)v +

∫
Ω
A(x, u,∇u) · ∇vφ(u) +

∫
Ω
B(x,∇u)φ(u)v

+
∫

Ω
K(x, u)φ(u)v =

∫
Ω
f(x)φ(u)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω), ∀φ ∈W 1,∞(R) ∩ Cc(Ω): φ(u)v ∈W 1,p

0 (Ω).

The existence of a renormalized solution u to (5.0.7) which satisfies (5.0.2) can
be deduced as in [10] assuming that b ∈ LN,1(Ω), because of the coercivity properties
of the zero order term K(u). On the other hand, if condition (5.0.11) is fulfilled, the
assumption on b can be weakened in order to get the existence of a weak solution to
(5.0.7) which satisfies (5.0.12), as shown in [41]; moreover, there is an improvement
in the regularity properties of u and ∇u with respect to (5.0.2).
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In both cases the solution u is obtained as limit of a sequence of regular solutions
to the following family of approximate problems (n ∈ N):{

A(un) + Bn(un) +K(un) = fn on Ω,
un = 0 on ∂Ω,

(5.2.1)

where Bn and fn are given by (5.1.2) above. Thanks to Theorems 2.2.5 and 2.2.6 (see
[53] and [72]), for every n ∈ N, there exists a weak solution un ∈W 1,p

0 (Ω) ∩ L∞(Ω)
to (5.2.1) such that K(·, un) ∈ L1(Ω) and

∫
Ω
A(x, un,∇un) · ∇v +

∫
Ω
Bn(x,∇un)v +

∫
Ω
K(x, un)v =

∫
Ω
fn(x)v,

∀ v ∈W 1,p
0 (Ω).

(5.2.2)

As already remarked in the previous section, by means of standard regularization
techniques, assumptions (5.0.6) and (5.0.19) imply that, respectively,

∃ψ ∈W 1,∞(Ω), m ∈ (1,∞] :
0 ≤ ψ ≤ 1 on Ω,
fψ ∈ Lm(Ω),

(5.2.3)

and 
∃ψ ∈W 1,∞(Ω), h ∈ (0,∞) :
0 ≤ ψ ≤ 1 on Ω,(
k−1ψ

)h ∈ L1(Ω).
(5.2.4)

Hence, Theorems 5.0.2 and 5.0.3 are consequence of the following results.

Theorem 5.2.1. Let f ∈ L1(Ω) which satisfies (5.2.3). Assume that b ∈ Lr(Ω) for
some r ∈ (p,N), k satisfies (5.0.11) and λ ∈ (λ,∞) where λ is defined in (5.0.13).
Then, there exist a weak solution u to (5.0.7) and δ̃0 ∈ (0,∞) which depends only
on ψ, h, m, N , p and r such thatuψ

δ̃0 ∈W 1,p
0 (Ω), K(·, u)|u|λ̃−λψδ̃0 ∈ L1(Ω) if λ ∈

[
λ,∞

)
,

uψδ̃0 ∈W 1,q̃
0 (Ω), K(·, u)|u|λ̃−λψδ̃0 ∈ L1(Ω) if λ ∈

(
λ, λ

)
,

where λ, λ̃ and q̃ are defined in (5.0.14)-(5.0.16).

Theorem 5.2.2. Let f ∈ L1(Ω). Assume that b ∈ LN,1(Ω), k satisfies (5.2.4) and
that λ ∈ (λ,∞), where λ is as in (5.0.13) but with r = N . Then, there exist a
renormalized solution u to (5.0.7) and δ̃1 ∈ (0,∞) which depends only on ψ, h, N
and p, such that

uψδ̃1 ∈W 1,q
0 (Ω) ∀ q ∈ [1, q̃1), K(·, u)ψδ̃1 ∈ L1(Ω).

where q̃1 is defined in (5.0.17). Moreover, if (5.2.3) is fulfilled, then there exists
δ̃2 ∈ (0,∞) which depends only on ψ, h, m, N and p, such thatuψ

δ̃2 ∈W 1,p
0 (Ω), K(·, u)|u|λ̃−λψδ̃2 ∈ L1(Ω) if λ ∈

[
λ,∞

)
,

uψδ̃2 ∈W 1,q̃
0 (Ω), K(·, u)|u|λ̃−λψδ̃2 ∈ L1(Ω) if λ ∈

(
λ, λ

)
,

where λ, λ̃ and q̃ are as in (5.0.14)-(5.0.16) but with r = N .
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5.2.1 Local estimates on un and ∇un

The following lemmas play the role of Lemmas 5.1.3-5.1.6 for the problem (5.0.7).

Lemma 5.2.3. Let f ∈ L1(Ω) which satisfies (5.2.3). Assume that b ∈ Lr(Ω) for
some r ∈ (p,N) and λ ∈ (λ,∞) where λ is defined in (5.0.13). Then, there exists
δ̃3 ∈ (0,∞) which depends only on ψ, h, m, p and r, such that

{
unψ

δ̃3
}

is bounded in W 1,p̃(Ω),{
K(·, un)|un|λ̃−λψδ̃3

}
is bounded in L1(Ω),

where λ, λ̃ and q̃ are defined in (5.0.14)-(5.0.16), and

p̃ =

p if λ ∈
[
λ,∞

)
,

q̃ if λ ∈
(
λ, λ

)
.

(5.2.5)

Proof. We fix γ ∈
(

1
p′ ,∞

)
, δ ∈ (1,∞), ε ∈ (0,∞) and we choose

vεψ
pδ =

[
(ε+ |un|)p(γ−1)+1 − εp(γ−1)+1

]
sign(un)ψpδ

as a test function in (5.2.2). We observe that γ > 1
p′ implies that p(γ − 1) + 1 > 0.

Since

∇
(
vεψ

δ
)

= [p(γ − 1) + 1]∇un(ε+ |un|)p(γ−1)ψpδ + pδ∇ψvεψpδ−1 a.e. on Ω,

we obtain that

α[p(γ − 1) + 1]
∫

Ω
|∇un|p(ε+ |un|)p(γ−1)ψpδ +

∫
Ω
|K(x, un)||vε|ψpδ

≤ pβδ ‖|∇ψ|‖L∞(Ω)

∫
Ω
|∇un|p−1|vε|ψpδ−1 +

∫
Ω
|b||∇un|p−1|vε|ψpδ

+
∫

Ω
|f ||vε|ψpδ. (5.2.6)

Thanks to Young’s inequality, the first two terms on the right-hand side of (5.2.6)
can be estimated by, respectively,

α[p(γ − 1) + 1]
2p′

∫
Ω
|∇un|p(ε+ |un|)p(γ−1)ψpδ

+
2p−1

(
pβδ ‖|∇φ|‖L∞(Ω)

)p
p {α[p(γ − 1) + 1]}p−1

∫
Ω

(ε+ |un|)pγψp(δ−1),

and

α[p(γ − 1) + 1]
2p′

∫
Ω
|∇un|p(ε+ |un|)p(γ−1)ψpδ

+ 2p−1

p {α[p(γ − 1) + 1]}p−1

∫
Ω
|b|p(ε+ |un|)pγψpδ.
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Hence, from (5.2.6) we obtain that∫
Ω
|K(x, un)||vε|ψpδ ≤ C0

∫
Ω
|∇un|p(ε+ |un|)p(γ−1)ψpδ +

∫
Ω
|K(x, un)||vε|ψpδ

≤ C1

∫
Ω

(ε+ |un|)pγψp(δ−1) + C2

∫
Ω
|b|p(ε+ |un|)pγψpδ

+
∫

Ω
|f ||vε|ψpδ, (5.2.7)

which in turn, letting ε→ 0 and applying Fatou’s Lemma and Lebesgue’s Theorem,
implies that∫

Ω
|K(x, un)||vε|ψpδ

≤ C1

∫
Ω
|un|pγψp(δ−1) + C2

∫
Ω
|b|p|un|pγψpδ +

∫
Ω
|f ||un|p(γ−1)+1ψpδ, (5.2.8)

where

C0 = α[p(γ − 1) + 1]
2p , C1 =

2p−1
(
pβδ ‖|∇φ|‖L∞(Ω)

)p
p {α[p(γ − 1) + 1]}p−1 ,

C2 = 2p−1

p {α[p(γ − 1) + 1]}p−1 .

Using Hölder’s inequality and recalling assumption (5.0.11), we have that

C3

∫
Ω
|un|pγψp(δ−1) ≤ C3|Ω|

p
r

(∫
Ω
|un|pγψ

pr(δ−1)
r−p

) r−p
r

≤ C3|Ω|
p
r

(∫
Ω
k−h

) r−p
(h+1)r

(∫
Ω
k|un|

p(h+1)rγ
h(r−p) ψ

(h+1)pr(δ−1)
h(r−p)

)h(r−p)
(h+1)r

, (5.2.9)

C4

∫
Ω
|b|p|un|pγψpδ ≤ C4

(∫
Ω
|b|r
) p
r
(∫

Ω
|un|pγψ

prδ
r−p

) r−p
r

≤ C4

(∫
Ω
|b|r
) p
r
(∫

Ω
k−h

) r−p
(h+1)r

(∫
Ω
k|un|

p(h+1)rγ
h(r−p) ψ

p(h+1)rδ
h(r−p)

)h(r−p)
(h+1)r

, (5.2.10)

and∫
Ω
|f ||un|p(γ−1)+1ψpδ ≤

(∫
Ω
|fψ|m

) 1
m
(∫

Ω
|un|[p(γ−1)+1]m′ψ(pδ−1)m′

) 1
m′

≤
(∫

Ω
|fψ|m

) 1
m
(∫

Ω
k−h

) 1
(h+1)m′

(∫
Ω
k|un|

[p(γ−1)+1](h+1)m′
h ψ

(h+1)(pδ−1)m′
h

) h
(h+1)m′

.

(5.2.11)

Then, we choose γ and δ such that

λ+ p(γ − 1) + 1 ≥ max
{
p(h+ 1)rγ
h(r − p) ,

[p(γ − 1) + 1](h+ 1)m′

h

}
,
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and
pδ ≤ min

{
p(h+ 1)r(δ − 1)

h(r − p) ,
(h+ 1)(pδ − 1)m′

h

}
.

For this purpose, we must impose that

λ > λ = (p− 1)(h+ 1)r
h(r − p) ,

γ ≤ γ̃ = min
{(λ− p+ 1)h(r − p)

p(ph+ r) ,
λh(m− 1) + (p− 1)(h+m)

p(h+m)

}
,

δ ≥ δ̃ = max
{(h+ 1)r
ph+ r

,
(h+ 1)m
p(h+m)

}
.

Thus, we apply Young’s inequality in (5.2.9)-(5.2.11). Putting together the es-
timates obtained in this way with (5.2.8) and using (5.0.11) and the fact that
0 ≤ ψ ≤ 1 on Ω, we deduce that∫

Ω
|K(x, un)||un|p(γ−1)+1ψpδ̃ ≤ C5 ∀ γ

( 1
p′
, γ̃

]
(5.2.12)

where C5 is a positive constant which depends only on α, β, γ, ψ, b, f , k, k−1 h,
m, p and r. Since λ̃ = λ+ p(γ̃ − 1) + 1, in particular, we deduce that∫

Ω
|K(x, un)||un|λ̃−λψpδ̃ ≤ C5. (5.2.13)

Moreover, going back to estimate (5.2.7), we obtain also that the quantity∫
Ω
|∇un|p(ε+ |un|)p(γ−1)ψpδ̃

is bounded uniformly with respect to n.
Now, we observe that, if λ ∈

[
λ,∞

)
, then γ̃ ∈ [1,∞) and, choosing γ = 1, we

get the result with p̃ = p. Otherwise, if λ ∈
(
λ, λ

)
, then γ̃ ∈

(
1
p′ , 1

)
. In this case,

for any fixed q ∈ [1, p), using Hölder’s inequality, we obtain that∫
Ω
|∇un|qψpδ̃ =

∫
Ω

|∇un|q

(ε+ |un|)q(1−γ̃) (ε+ |un|)q(1−γ̃)ψpδ̃

≤
[∫

Ω

|∇un|p

(ε+ |un|)p(1−γ̃)

] q
p
[∫

Ω
(ε+ |un|)

pq(1−γ̃)
p−q ψpδ̃

] p−q
p

≤
[∫

Ω

|∇un|p

(ε+ |un|)p(1−γ̃)

] q
p
(∫

Ω
k−h

) p−q
p(h+1)

(∫
Ω
k|un|

pq(h+1)(1−γ̃)
h(p−q) ψpδ̃

) (p−q)h
p(h+1)

.

Thus, the right-hand side of the previous inequality is uniformly bounded with
respect to n if

pq(h+ 1)(1− γ̃)
(p− q)h = λ̃,

that is,

q = pλ̃h

(λ+ 1)(h+ 1)− λ̃
= min

{(λ− p+ 1)hr
(λ+ 1)h+ r

,
pλhm

(λ+ 1)h+m

}
.
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Lemma 5.2.4. Let f ∈ L1(Ω). Assume that b ∈ LN,1(Ω), k satisfies (5.2.4) and
λ ∈ (λ,∞), where λ is as in (5.0.13) but with r = N . Then, there exists δ̃4 ∈ (1,∞)
which depends only on ψ, h, N and p, such that

{
unψ

δ̃4
}

is bounded in W 1,q
0 (Ω) ∀ q ∈ [1, q̃1),{

K(·, un)ψδ̃4
}

is bounded in L1(Ω),

where q̃1 is defined in (5.0.17). Moreover, if (5.2.3) is fulfilled, then there exists
δ̃5 ∈ (1,∞) which depends only on ψ, h, m, N and p such that

{
unψ

δ̃5
}

is bounded in W 1,p̃
0 (Ω){

K(·, un)|un|λ̃−λψδ̃5
}

is bounded in L1(Ω),

where λ, λ̃, q̃ and p̃ are as in (5.0.14)-(5.0.16) and (5.2.5) but with r = N .

Proof. The proof is divided into two steps.
STEP I. We fix θ ∈

(
0, 1

p′

)
, δ ∈

(
0, 1 + h(r−p)

p(h+1)r

)
and we choose

vψpδ =
[
1− 1

(1 + |un|)p(1−θ)−1

]
sign(un)ψpδ

as a test function in (5.2.2). We observe that θ < 1
p′ implies that p(1− θ)− 1 > 0.

Since
|v| ≤ 1, |v|ψpδ ≤ 1 a.e. on Ω,

and

∇
(
vψpδ

)
= [p(1− θ)− 1] ∇un

(1 + |un|)p(1−θ)
ψpδ + pδ∇ψvψpδ−1 a.e. on Ω,

we obtain that

α[p(1− θ)− 1]
∫

Ω

|∇un|p

(1 + |un|)p(1−θ)
ψpδ +

∫
Ω
|K(x, un)||v|ψpδ

≤ pβδ ‖|∇ψ||L∞(Ω)

∫
Ω
|∇un|p−1ψpδ−1 +

∫
Ω
|b||∇un|p−1ψpδ +

∫
Ω
|f |,

which in turn, using (5.0.11), implies that

C0

∫
Ω

|∇un|p

(1 + |un|)p(1−θ)
ψpδ +

∫
Ω
k|un|λψpδ

≤ C1

∫
Ω
|∇un|p−1ψpδ−1 +

∫
Ω
|b||∇un|p−1ψpδ +

∫
Ω
k|un|λ−p(1−θ)+1ψpδ

+
∫

Ω
|f |, (5.2.14)

where
C0 = α[p(1− θ)− 1], C1 = pβδ ‖|∇ψ||L∞(Ω) .
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Thanks to Young’s inequality, the right-hand side of (5.2.14) can be estimated by

C0
p′

∫
Ω

|∇un|p

(1 + |un|)p(1−θ)
ψpδ + 2p−1Cp1

pCp−1
0

∫
Ω

(1 + |un|)p(p−1)(1−θ)ψp(δ−1)

+ 2p−1

pCp−1
0

∫
Ω
|b|p(1 + |un|)p(p−1)(1−θ)ψpδ + 1

2

∫
Ω
k|un|λψpδ + C2,

where C2 is a positive constant which does not depend on n. Hence, from (5.2.14)
we get

C3

∫
Ω

|∇un|p

(1 + |un|)p(1−θ)
ψpδ + 1

2

∫
Ω
k|un|λψpδ

≤ C4

∫
Ω

(1 + |un|)p(p−1)(1−θ)ψp(δ−1)

+ C5

∫
Ω
|b|p(1 + |un|)p(p−1)(1−θ)ψpδ + C2, (5.2.15)

where
C3 = C0

p
, C4 = 2p−1Cp1

pCp−1
0

, C5 = 2p−1

pCp−1
0

.

By Hölder’s inequality and assumption (5.2.4), we have that

C4

∫
Ω

(1 + |un|)p(p−1)(1−θ)ψp(δ−1) ≤ C4|Ω|
p
N

[∫
Ω

(1 + |un|)(p−1)p∗(1−θ)ψp
∗(δ−1)

] p
p∗

≤ C4|Ω|
p
N

[∫
Ω

(
k−1ψ

)h] p
p∗(h+1)

×
[∫

Ω
k(1 + |un|)

(p−1)p∗(h+1)(1−θ)
h ψ

p∗(h+1)(δ−1)
h

−1
] ph
p∗(h+1)

, (5.2.16)

and

C5

∫
Ω
|b|p(1 + |un|)p(p−1)(1−θ)ψpδ ≤ C5

(∫
Ω
|b|N

) p
N
[∫

Ω
(1 + |un|)pγψp

∗δ
] p
p∗

≤ C5

(∫
Ω
|b|N

) p
N
[∫

Ω

(
k−1ψ

)h] p
p∗(h+1)

×
[∫

Ω
k(1 + |un|)

(p−1)p∗(h+1)(1−θ)
h ψ

p∗(h+1)δ
ph

−1
] ph
p∗(h+1)

. (5.2.17)

Then, we choose θ and δ such that

(p− 1)p∗(h+ 1)(1− θ)
h

≤ λ,

and
p∗(h+ 1)(δ − 1)

h
− 1 ≥ pδ.
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For this purpose, we must impose that

λ > λ = (p− 1)p∗(h+ 1)
ph

,

θ ≥ θ̃ = 1− hλ

(p− 1)p∗(h+ 1) ,

δ ≥ δ̃ = (p∗ + 1)h+ p∗

(p∗ − p)h+ p∗
.

Thus, we apply Young’s inequality in (5.2.16) and (5.2.17). Putting together the
estimates obtained in this way with (5.2.15) and using the fact that 0 ≤ ψ ≤ 1 on
Ω, we deduce that∫

Ω

|∇un|p

(1 + |un|)p(1−θ)
ψpδ̃ +

∫
Ω
k|un|λψpδ̃ ≤ C6 ∀ θ ∈

[
θ̃,

1
p′

)
(5.2.18)

where C6 is a positive constant which does not depend on n.
Now, for any fixed q ∈ [1, p), using Hölder inequality and (5.2.18), we obtain

that∫
Ω
|∇un|pψpδ̃ = 1

θq

∫
Ω

|∇un|q

(1 + |un|)q(1−θ)
(1 + |un|)q(1−θ)ψpδ̃

≤ 1
θq

[∫
Ω

|∇un|p

(1 + |un|)q(1−θ)

] q
p
[∫

Ω
(1 + |un|)

q(1−θ)
p−q ψpδ̃

] p−q
p

≤ C
q
p

6
θq

[∫
Ω

(
k−1ψ

)h] p−q
p(h+1)

[∫
Ω
k(1 + |un|)

pq(h+1)(1−θ)
h(p−q) ψpδ̃

] (p−q)h
p(h+1)

.

Thanks to (5.2.18) again, the right-hand side of the previous inequality is uniformly
bounded with respect to n if

pq(h+ 1)(1− θ)
(p− q)h ≤ λ,

that is,
q ≤ pλh

[λ+ p(1− θ)]h+ p(1− θ) . (5.2.19)

Hence, for any q ∈ [1, q̃1) where q̃1 is defined in (5.0.17), we can choose θ ∈
[
θ̃, 1

p′

)
sufficiently close to 1

p′ in such a way that (5.2.19) is fulfilled.
STEP II. Assume that f satisfies (5.2.3). Arguing as in the proof of Lemma

5.2.3, for any fixed γ ∈
(

1
p′ ,∞

)
and δ ∈ (1,∞), we obtain that

C7

∫
Ω
|∇|un|γ |p ψpδ +

∫
Ω
|K(x, un)||un|p(γ−1)+1ψpδ

≤ C8

∫
Ω
|un|pγψp(δ−1) + C9

∫
Ω
|b|p|un|pγψpδ +

∫
Ω
|f ||un|p(γ−1)+1ψpδ. (5.2.20)
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By Hölder’s inequality and assumption (5.2.4), we have that

C8

∫
Ω
|un|pγψp(δ−1) ≤ C8|Ω|

p
N

(∫
Ω
|un|p

∗γψp
∗(δ−1)

) p
p∗

≤ C8|Ω|
p
N

[∫
Ω

(
k−1ψ

)h] p
p∗(h+1)

(∫
Ω
k|un|

p∗(h+1)γ
h ψ

p∗(h+1)(δ−1)
h

−1
) ph
p∗(h+1)

, (5.2.21)

C9

∫
Ω
|b|p|un|pγψpδ ≤ C9

(∫
Ω
|b|N

) p
N
(∫

Ω
|un|p

∗γψp
∗δ
) p
p∗

≤ C9

(∫
Ω
|b|N

) p
N
[∫

Ω

(
k−1ψ

)h] p
p∗(h+1)

(∫
Ω
k|un|

p∗(h+1)γ
h ψ

p∗(h+1)δ
h

−1
) ph
p∗(h+1)

,

(5.2.22)

and

∫
Ω
|f ||un|p(γ−1)+1ψpδ ≤

(∫
Ω
|fψ|m

) 1
m
(∫

Ω
|un|[p(γ−1)+1]m′ψ(pδ−1)m′

) 1
m′

≤
(∫

Ω
|fψ|m

) 1
m
[∫

Ω

(
k−1ψ

)h] 1
(h+1)m′

×
(∫

Ω
k|un|

[p(γ−1)+1](h+1)m′
h ψ

(h+1)m′(pδ−1)
h

−1
) h

(h+1)m′
. (5.2.23)

Then, we choose γ and δ such that

λ+ p(γ − 1) + 1 ≥ max
{
p∗(h+ 1)γ

h
,
[p(γ − 1) + 1](h+ 1)m′

h

}
,

and
pδ ≤ min

{
p∗(h+ 1)(δ − 1)

h
− 1, (h+ 1)m′(pδ − 1)

h
− 1

}
.

Hence, we impose that

λ > λ = (p− 1)p∗(h+ 1)
ph

,

γ ≤ min
{
N(λ− p+ 1)h
p∗(ph+ r) ,

λh(m− 1) + (p− 1)(h+m)
p(h+m)

}
δ ≥ max

{
p∗(h+ 1)

(p∗ − p)h+ p∗
,
h(2m− 1)
p(h+m)

}
.

The result now follows proceeding as in the proof of Lemma 5.2.3.

5.2.2 Proof of Theorems 5.2.1 and 5.2.2

Proof of Theorem 5.2.1. Let {un} be the sequence of weak solutions to the approx-
imate problems (5.2.1) constructed above. The result follows immediately from
Lemma 5.2.3, since, arguing as in the proof of Theorem 3.2.3 (see [41]), we know
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that there exists a weak solution u to (5.0.7) which belongs to W 1,q
0 (Ω) for every

q ∈ [1, q̃1), where q̃1 is defined in (5.0.17), such that, up to a subsequence,{
un → u a.e. on Ω,
∇un → ∇u a.e. on Ω.

Proof of Theorem 5.2.2. Let {un} be the sequence of weak solutions to the approx-
imate problems (5.2.1) constructed above. Arguing as in the proof of Theorem 2.3
of [10], we can prove that

{
|un|p−1} is bounded in M

p∗
p (Ω),{

|∇un|p−1} is bounded in MN ′(Ω).

Then, we fix σ ∈ [0,∞), τ ∈ (0,∞) and we choose

vτ = Tτ (Gσ(un))
τ

as a test function in (5.2.2). Since

|vτ | ≤ χAn,σ a.e. on Ω, An,σ = {|un| > σ},

dropping the positive term coming from the principal part, we obtain that∫
An,σ
|K(x, un)||vτ | ≤

∫
An,σ
|b||∇un|p−1 +

∫
An,σ
|f |. (5.2.24)

By the generalized Hölder’s inequality, we have that∫
An,h

|b||∇un|p−1 ≤ ‖b‖LN,1(An,σ) ‖|∇un|‖MN′(p−1)(Ω) ≤ C0‖b‖LN,1(An,σ).

Therefore, from (5.2.24) we deduce that∫
An,σ
|K(x, un)||vτ | ≤ C0‖b‖LN,1(An,σ) +

∫
An,σ
|f |. (5.2.25)

Notice that
lim
τ→0
|vτ | = χAn,σ a.e. on R.

Thus, letting τ → 0 and using Fatou’s Lemma, estimate (5.2.25) yields∫
An,σ
|K(x, un)| ≤ C2‖b‖LN,1(An,σ) +

∫
An,σ
|f |, (5.2.26)

which, in particular, for σ = 0, implies that the sequence {K(·, un)} is bounded in
L1(Ω).

Now, in order to perform the limit process and deduce the existence of a renor-
malized solution u to (5.0.7) which satisfies (5.0.2), we just have to prove that the
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sequence {K(·, un)} is uniformly integrable on every measurable subset U ⊂⊂ Ω,
since the other terms can be treated as in the proof of Theorem 2.3 of [10].

For any fixed measurable subset U ⊂⊂ Ω and σ ∈ (0,∞), we have that∫
U
K(x, un) ≤

∫
U∩{|un|≤σ}

|K(x, un)|+
∫
An,σ
|K(x, un)|

≤
∫
U

sup
τ∈[−σ,σ]

|K(x, τ)|+
∫
An,σ
|K(x, un)|.

which in turn, exploiting (5.2.26), implies that∫
U
K(x, un) ≤

∫
U

sup
τ∈[−σ,σ]

|K(x, τ)|+ C0‖b‖LN,1(An,σ) +
∫
An,σ
|f |. (5.2.27)

Since
lim
σ→∞

|An,σ| = 0 uniformly with respect to n,

for every ε ∈ (0,∞) we can choose σ sufficiently large such that

C0‖b‖LN,1(An,σ) +
∫
An,σ
|f | ≤ ε ∀n ∈ N.

Hence, from (5.2.27) it follows that

lim
|U |→0

∫
U
|K(x, un)| = 0 uniformly with respect to n.

The result now follows by Lemma 5.2.4.
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Chapter 6

Dirichlet problems with a
singular nonlinearity

In this final chapter we study, following the approach of [29], local regularity proper-
ties of solutions to nonlinear elliptic Dirichlet problems with a singular lower order
term and L1 data. More precisely, we consider the problem

A(u) = f
uµ on Ω,

u > 0 on Ω,
u = 0 on ∂Ω,

(6.0.1)

where Ω ⊂ RN is a bounded open subset with N ≥ 2 and A is the differential
operator defined by

A(u) = −div(A(·,∇u)),
with A : Ω× RN → RN a Carathéodory vector field such that

∃α, β ∈ (0,∞), p ∈ (1, N) :
A(x, ξ) · ξ ≥ α|ξ|p,
|A(x, ξ)| ≤ β|ξ|p−1,

[A(x, ξ)−A(x, η)] · (ξ − η) > 0,
for a.e. x ∈ Ω, ∀ ξ, η ∈ RN , ξ 6= η.

Moreover, we assume that µ is a positive real number.
If f is a nonnegative function in Lm(Ω) for some m ∈ [1,∞], existence and

regularity results for the problem (6.0.1) depending on µ and m are proved in [34]
in the case of linear principal part, that is, A(σ, ξ) = M(x)ξ whereM is a uniformly
elliptic N × N matrix on Ω with L∞(Ω) coefficients. In detail, the existence of a
locally strictly positive function u which satisfies (6.0.1) in the distributional sense
is established working by approximation. Moreover, if µ ∈ [1,∞), u satisfies

u
1+µ

2 ∈ H1
0 (Ω), u ∈ H1

loc(Ω),

and u ∈ L
∞(Ω) if m ∈

(
N
2 ,∞

)
,

u ∈ L
Nm(1+µ)
N−2m (Ω) if m ∈

[
1, N2

)
,
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while, if µ ∈ (0, 1), u satisfies
u ∈ H1

0 (Ω) ∩ L∞(Ω) if m ∈
(
N
2 ,∞

)
,

u ∈ H1
0 (Ω) ∩ L

Nm(1+µ)
N−2m (Ω) if m ∈

[(
2∗

1−µ

)′
, N2

)
,

u ∈W
1, Nm(1+µ)
N−m(1−µ)

0 (Ω) if m ∈
[
1,
(

2∗
1−µ

)′)
.

In order to prove these results, the authors construct an increasing sequence {un}
of solutions to the nonsingular problems−div(M(x)∇un) = fn

(un+ 1
n)µ on Ω,

un = 0 on ∂Ω.

This sequence satisfies, for every compact subset U ⊂⊂ Ω,

un ≥ un−1 ≥ . . . ≥ u1 ≥ CU > 0 a.e. on U.

In order to prove this property, the linearity of the principal part does not play any
role. Indeed, it is enough to have a monotone differential operator such that the
strong maximum principle holds, as is the well known p-Laplace operator −∆p(u)
with p ∈ (1,∞).

The results of [34] are generalized to the case of nonlinear principal part in [49].
Here, we assume that f is a nonnegative function in L1(Ω) not identically zero, such
that

∃U ⊂⊂ Ω, m :


m ∈ (1,∞) if µ ∈ [1,∞),

m ∈
((

p∗

1−µ

)′
,∞
)

if µ ∈ (0, 1),
f ∈Mm(Ω \ U), (6.0.2)

or
∃U ⊂⊂ Ω, m ∈

(
1, N
p

)
: f ∈ Lm(Ω \ U). (6.0.3)

We consider the weak solution (in the sense of Definition 6.1.1 below) u to (6.0.1)
with datum f and we show that u and ∇u have suitable regularity properties
depending on the regularity of f away from U . The results are as follows.

Theorem 6.0.1. Let f ∈ L1(Ω) be a nonnegative function not identically zero which
satisfies (6.0.2) and let V ⊂⊂ Ω be such that V ⊃ U . Assume that µ ∈ [1,∞). Then,
there exists a weak solution u to (6.0.1) such that

u
p−1+µ
p ∈W 1,p

0 (Ω), u ∈W 1,p
loc (Ω),

and 
u ∈ L∞(Ω \ V ) if m ∈

(
N
p ,∞

]
,

ec|u| ∈ L1(Ω) for some c ∈ (0,∞) if m = N
p ,

u ∈M
Nm(p−1+µ)
N−pm (Ω \ V ) if m ∈

(
1, Np

)
.
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Theorem 6.0.2. Let f ∈ L1(Ω) be a nonnegative function not identically zero which
satisfies (6.0.3) and let V ⊂⊂ Ω be such that V ⊃ U . Assume that µ ∈ [1,∞). Then,
there exists a weak solution u to (6.0.1) such that

u
p−1+µ
p ∈W 1,p

0 (Ω), u ∈W 1,p
loc (Ω),

and
u ∈ L

Nm(p−1+µ)
N−pm (Ω \ V ).

Theorem 6.0.3. Let f ∈ L1(Ω) be a nonnegative function not identically zero
which satisfies (6.0.2) and let V ⊂⊂ Ω be such that V ⊃ U . Assume that µ ∈ (0, 1)
and p ∈

(
2− (N−1)µ+1

N , N
)
. Then, there exists a weak solution u to (6.0.1) such

that

u ∈W
1,N(p−1+µ)

N−1+µ
0 (Ω),

|∇u| ∈ Lp(Ω \ V ),

and 
u ∈ L∞(Ω \ V ) if m ∈

(
N
p ,∞

]
,

ec|u| ∈ L1(Ω) for some c ∈ (0,∞) if m = N
p ,

u ∈M
Nm(p−1+µ)
N−pm (Ω \ V ) if m ∈

((
p∗

1−µ

)′
, Np

)
.

Theorem 6.0.4. Let f ∈ L1(Ω) be a nonnegative function (not identically zero),
which satisfies (6.0.3) and let V ⊂⊂ Ω be such that V ⊃ U . Assume that µ ∈ (0, 1)
and p ∈

(
2− (N−1)µ+1

N , N
)
. Then, there exists a weak solution u to (6.0.1) such

that

u ∈W
1,N(p−1+µ)

N−1+µ
0 (Ω),

|∇u| ∈ Lp(Ω \ V ) if m ∈
[(

p∗

1−µ

)′
, Np

)
,

|∇u| ∈ L
Nm(p−1+µ)
N−m(1−µ) (Ω \ V ) if m ∈

(
1,
(
p∗

1−µ

)′)
.

and
u ∈ L

Nm(p−1+µ)
N−pm (Ω \ V ).

6.1 Approximate problems and preliminary results
In order to give a meaning to the concept of solution, we use the following definition
(see [34]).

Definition 6.1.1. Let f be a nonnegative function in L1(Ω) not identically zero.
We say that a function u : Ω→ (0,∞) is a weak solution to (6.0.1) ifu

p−1+µ
p ∈W 1,p

0 (Ω) if µ ∈ [1,∞),
u ∈W 1,1

0 (Ω) if µ ∈ (0, 1),
|A(·,∇u)| ∈ L1

loc(Ω),

∀U ⊂⊂ Ω ∃CU ∈ (0,∞) : u ≥ CU a.e. on Ω,
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and ∫
Ω
A(x,∇u) · ∇ζ =

∫
Ω

f(x)ζ
uµ

∀ ζ ∈ C∞c (Ω).

Let us consider the following family of approximate problems (n ∈ N):
A(un) = fn

(un+ 1
n)µ on Ω,

un > 0 on Ω,
un = 0 on ∂Ω,

(6.1.1)

where
fn(x) = Tn(f(x)) = min{f(x), n} for a.e. x ∈ Ω, ∀n ∈ N.

By Theorems 1.2.1, 1.2.2 and 1.2.4 (see [61] and [72]), for every n ∈ N, there exists
a function un ∈W 1,p

0 (Ω) ∩ L∞(Ω) which satisfies∫
Ω
A(x,∇un) · ∇v =

∫
Ω

fn(x)v(
|un|+ 1

n

)µ ∀ v ∈W 1,p
0 (Ω). (6.1.2)

Since fn ≥ 0 a.e. on Ω, the weak maximum principle (see for example [68]) implies
that un ≥ 0 a.e. on Ω. Moreover, we have the following (see [34] and [49]).

Lemma 6.1.1. Let f ∈ L1(Ω). Then, the sequence {un} is nondecreasing and
locally uniformly strictly positive on Ω, that is,

∀U ⊂⊂ Ω ∃CU ∈ (0,∞) : un+1 ≥ un ≥ CU a.e. on U ∀n ∈ N. (6.1.3)

Proof. We fix n ∈ N and we choose (un − un+1)+ as a test function in (6.1.2) and
then in (6.1.2) with un and fn replaced by, respectively, un+1 and fn+1. Subtracting
the equalities obtained in this way, we have that∫

Ω
[A(x,∇un)−A(x,∇un+1)] · ∇(un − un+1)+

=
∫

Ω

 fn(x)(
un + 1

n

)µ − fn+1(x)(
un+1 + 1

n+1

)µ
 (un − un+1)+. (6.1.4)

Since 0 ≤ fn ≤ fn+1 a.e. on Ω and µ > 0, we have that

fn(
un + 1

n

)µ ≤ fn+1(
un + 1

n+1

)µ a.e. on Ω,

so that

∫
Ω

 fn(x)(
un + 1

n

)µ − fn+1(x)(
un+1 + 1

n+1

)µ
 (un − un+1)+

≤
∫

Ω
fn+1(x)

 1(
un + 1

n+1

)µ − 1(
un+1 + 1

n+1

)µ
 (un − un+1)+ ≤ 0.
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Hence, from (6.1.4) it follows that∫
{un−un+1>0}

[A(x,∇un)−A(x,∇un+1)] · ∇(un − un+1)

=
∫

Ω
[A(x,∇un)−A(x,∇un+1)] · ∇(un − un+1)+ ≤ 0,

which implies that un ≤ un+1 a.e. on Ω.
If un and vn are two weak solutions to (6.1.1) which belong to W 1,p

0 (Ω), we can
repeat the same argument to deduce that un ≤ vn a.e. on Ω. By symmetry, this
implies that the weak solution in W 1,p

0 (Ω) of (6.1.1) is unique.
Now, we recall that there exists a positive constant C which depends only on α,

N , p and Ω, such that

‖u1‖L∞(Ω) ≤ C‖f1‖
1
p−1
L∞(Ω) ≤ C,

so that
f1

(u1 + 1)µ ≥
f1(

‖u1‖L∞(Ω) + 1
)µ ≥ f1

(C + 1)µ a.e. on Ω.

Thus, by the strong maximum principle (see [68] and [75]), it follows that

∀U ⊂⊂ Ω ∃CU ∈ (0,∞) : u1 ≥ CU a.e. on U. (6.1.5)

Since un ≥ u1 a.e. on Ω, (6.1.5) holds also for un.

Lemma 6.1.2. Let f ∈ L1(Ω). Assume that µ ∈ [1,∞). Then
{
u
p−1+µ
p

n

}
is bounded in W 1,p

0 (Ω),

{un} is bounded in W 1,p
loc (Ω).

Moreover, if µ ∈ (0, 1) and p ∈
(
2− (N−1)µ+1

N , N
)
, then

{un} is bounded in W
1,N(p−1+µ)

N−1+µ
0 (Ω).

Proof. We fix n ∈ N and we divide the proof into two parts.
PART I. Assume that µ ∈ [1,∞). Since

fnu
µ
n(

un + 1
n

)µ ≤ f a.e. on Ω,

choosing uµn as a test function in (6.1.2), we immediately obtain that

αµ

(
p

p− 1 + µ

)p ∫
Ω

∣∣∣∣∇(u p−1+µ
p

n

)∣∣∣∣p = αµ

∫
Ω
|∇un|puµ−1

n ≤
∫

Ω
f, (6.1.6)

that is, {
u
p−1+µ
p

n

}
is bounded in W 1,p

0 (Ω).
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In particular, by Sobolev’s inequality, it follows that

{un} is bounded in L
N(p−1+µ)
N−p (Ω).

We observe that
µ ≥ 1 =⇒ N(p− 1 + µ)

N − p
≥ p∗ > p,

hence {un} is bounded in Lp(Ω). Moreover, for any open subset U ⊂⊂ Ω, thanks
to (6.1.6) and Lemma 6.1.1, we have that∫

Ω
f ≥ αµ

∫
Ω
|∇un|p ≥ αµ

∫
U
|∇un|puµ−1

n ≥ αµCµ−1
U

∫
U
|∇un|p,

therefore {un} is bounded in W 1,p
loc (Ω).

PART II. Assume that µ ∈ (0, 1). We fix ε ∈
(
0, 1

n

)
and we choose

vε = (ε+ un)µ − εµ

as a test function in (6.1.2). Since

∇vε = µ
∇un

(ε+ un)µ ,
fnvε(

un + 1
n

)µ ≤ f a.e. on Ω,

we obtain that
αµ

∫
Ω

|∇un|p

(ε+ un)1−µ ≤
∫

Ω
f. (6.1.7)

Using Sobolev’s inequality, from (6.1.7) we have that

αµ

[
p

S0(p− 1 + µ)

]p{∫
Ω

[
(ε+ un)

p−1+µ
p − ε

p−1+µ
p

]p∗} p
p∗

≤ αµ
(

p

p− 1 + µ

)p ∫
Ω

∣∣∣∣∇ [(ε+ un)
p−1+µ
p − ε

p−1+µ
p

]∣∣∣∣p ≤ ∫
Ω
f,

which in turn, letting ε→ 0 and applying Fatou’s Theorem, implies that

αµ

[
p

S0(p− 1 + µ)

]p(∫
Ω
u
N(p−1+µ)
N−p

n

) p
p∗

≤
∫

Ω
f. (6.1.8)

Now, for q ∈ [1, p), the use of Hölder’s inequality yields∫
Ω
|∇un|q =

∫
Ω

|∇un|q

(ε+ un)
q(1−µ)
p

(ε+ un)
q(1−µ)
p

≤
[∫

Ω

|∇un|p

(ε+ un)1−µ

] q
p
[∫

Ω
(ε+ un)

pq(1−µ)
p−q

] p−q
p

.

Thanks to (6.1.7) and (6.1.8), the right-hand side of the previous inequality is
uniformly bounded with respect to n if

q(1− µ)
p− q

= N(p− 1 + µ)
N − p

,

142



Chapter 6. Dirichlet problems with a singular nonlinearity

that is
q = N(p− 1 + µ)

N − 1 + µ
.

Finally, we observe that
N(p− 1 + µ)
N − 1 + µ

> 1⇐⇒ p > 2− (N − 1)µ+ 1
N

.

Now, assume that f ∈ Mm(Ω \ U) or f ∈ Lm(Ω \ U) for some U ⊂⊂ Ω and
m ∈ (1,∞). By means of standard regularization techniques, we can construct a
function ψ ∈W 1,∞(Ω) such that 0 ≤ ψ ≤ 1 on Ω and

ψ =
{

0 on U,
1 on Ω \ V.

In particular, assumptions (6.0.2) and (6.0.3) imply that, respectively,
∃ψ ∈W 1,∞(Ω), m ∈ (1,∞) :
0 ≤ ψ ≤ 1 on Ω,
fψ ∈Mm(Ω),


m ∈ (1,∞) if µ ∈ [1,∞),

m ∈
((

p∗

1−µ

)′
,∞
)

if µ ∈ (0, 1),
(6.1.9)

and 
∃ψ ∈W 1,∞(Ω), m ∈

(
1, Np

)
:

0 ≤ ψ ≤ 1 on Ω,
fψ ∈ Lm(Ω).

(6.1.10)

Therefore, Theorems 6.0.1-6.0.4 are a consequence of the following results.
Theorem 6.1.3. Let f ∈ L1(Ω) be a nonnegative function not identically zero which
satisfies (6.1.9) and let V ⊂⊂ Ω be such that V ⊃ U . Assume that µ ∈ [1,∞). Then,
there exist a weak solution u to (6.0.1) and δµ,1 ∈ (1,∞) which depends only on ψ,
µ, m, N and p, such that

u
p−1+µ
p ∈W 1,p

0 (Ω), u ∈W 1,p
loc (Ω),

and uψ
δµ,1 ∈W 1,p

0 (Ω) ∩ L∞(Ω) if m ∈
(
N
p ,∞

)
,

uψδµ,1 ∈W 1,p
0 (Ω) ∩ L

Nm(p−1+µ)
N−pm (Ω) if m ∈

(
1, Np

)
.

Moreover, there exists a positive constant c which depends only on α, f , N , and p,
such that

ecuψ
δµ,1 ∈ L1(Ω) if m = N

p
.

Theorem 6.1.4. Let f ∈ L1(Ω) be a nonnegative function (not identically zero),
which satisfies (6.1.10). Assume that µ ∈ [1,∞). Then, there exist a weak solution
u to (6.0.1) and δµ,2 ∈ (1,∞) which depends only on ψ, µ, m, N and p, such that

u
p−1+µ
p ∈W 1,p

0 (Ω), u ∈W 1,p
loc (Ω),

and
uψδµ,2 ∈W 1,p

0 (Ω) ∩ L
Nm(p−1+µ)
N−pm (Ω).
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Theorem 6.1.5. Let f ∈ L1(Ω) be a nonnegative function not identically zero
which satisfies (6.1.9) and let V ⊂⊂ Ω be such that V ⊃ U . Assume that µ ∈ (0, 1)
and p ∈

(
2− (N−1)µ+1

N , N
)
. Then, there exist a weak solution u to (6.0.1) and

δµ,3 ∈ (1,∞) which depends only on ψ, µ, m, N and p such that

u ∈W
1,N(p−1+µ)

N−1+µ
0 (Ω),

and 
uψδµ,3 ∈W 1,p

0 (Ω) ∩ L∞(Ω) if m ∈
(
N
p ,∞

]
,

uψδµ,3 ∈W 1,p
0 (Ω) ∩M

Nm(p−1+µ)
N−pm (Ω) if m ∈

((
p∗

1−µ

)′
, Np

)
.

Moreover, there exists a positive constant c which depends only on α, f , N and p,
such that

ecuψ
δµ,3 ∈ L1(Ω) if m = N

p
.

Theorem 6.1.6. Let f ∈ L1(Ω) be a nonnegative function (not identically zero),
which satisfies (6.1.10). Assume that µ ∈ (0, 1) and p ∈

(
2− (N−1)µ+1

N , N
)
. Then,

there exist a weak solution u to (6.0.1) and δµ,4 ∈ (1,∞) which depends only on ψ,
µ, m, N and p such that

u ∈W
1,N(p−1+µ)

N−1+µ
0 (Ω),

and 
uψδµ,4 ∈W 1,p

0 (Ω) ∩ L∞(Ω) if m ∈
(
N
p ,∞

)
,

uψδµ,4 ∈W 1,p
0 (Ω) ∩ L

Nm(p−1+µ)
N−pm (Ω) if m ∈

[(
p∗

1−µ

)′
, Np

)
,

uψδµ,4 ∈W
1,Nm(p−1+µ)
N−(1−µ)m

0 (Ω) if m ∈
(

1,
(
p∗

1−µ

)′)
.

6.2 Local estimates on un

We begin observing that, by Lemma 6.1.2 and Sobolev’s inequality, if

p ∈
(

max
{

1, 2− (N − 1)µ+ 1
N

}
, N

)
, (6.2.1)

then we have that
{un} is bounded in L

N(p−1+µ)
N−p (Ω). (6.2.2)

Lemma 6.2.1. Let f ∈ L1(Ω) which satisfies (6.1.10). Assume (6.2.1). Then,
there exists δµ,5 ∈

(
1

p−1+µ ,∞
)
which depends only on ψ, µ, m, N and p, such that

the sequence
{
unψ

δ5
}
is bounded in L

Nm(p−1+µ)
N−pm (Ω).

Proof. The proof is divided into two steps.
STEP I. Let φ ∈ W 1,∞(Ω) be such that 0 ≤ φ ≤ ψ on Ω. By (6.1.10), we have

that fφ ∈ Lm(Ω). Then, we fix n ∈ N, ε ∈
(
0, 1

n

)
and we choose

vεφ
δ =

[
(ε+ un)p(γ−1)+1 − εp(γ−1)+1

]
φδ
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as a test function in (6.1.2), where

γ ∈
(
p− 1 + µ

p
,

1
p∗
Nm(p− 1 + µ)

N − pm

)
, δ = p+ pγ

p− 1 + µ
.

We observe that

m > 1 =⇒ p− 1 + µ

p
<

1
p∗
Nm(p− 1 + µ)

N − pm
,

γ >
p− 1 + µ

p
=⇒ p(γ − 1) + 1 > µ.

Since

∇
(
vεφ

δ
)

= [p(γ − 1) + 1]∇un(ε+ un)p(γ−1)φδ + δ∇φvεφδ−1 a.e. on Ω,

fnvεφ
δ(

un + 1
n

)µ ≤ f(ε+ un)p(γ−1)+1−µφδ a.e. on Ω,

we obtain that

α[p(γ − 1) + 1]
∫

Ω
|∇un|p(ε+ un)p(γ−1)φδ

≤ βδ‖|∇φ|‖L∞(Ω)

∫
Ω
|∇un|p−1(ε+ un)p(γ−1)+1φδ−1

+
∫

Ω
f(ε+ un)p(γ−1)+1−µφδ,

which in turn, by Young’s inequality, implies that

α[p(γ − 1) + 1]
p

∫
Ω
|∇un|p(ε+ un)p(γ−1)φδ

≤

(
βδ‖|∇φ|‖L∞(Ω)

)p
p{α[p(γ − 1) + 1]}p−1

∫
Ω

(ε+ un)pγφδ−p +
∫

Ω
f(ε+ un)p(γ−1)+1−µφδ. (6.2.3)

Thanks to Sobolev’s and Hölder’s inequalities, estimate (6.2.3) yields

[∫
Ω

(ε+ un)p∗γφ
p∗δ
p

] p
p∗
≤ Sp0

∫
Ω

∣∣∣∣∇{[(ε+ un)γ − εγ ]φ
δ
p

}∣∣∣∣p
≤ (2S0γ)p

∫
Ω
|∇un|p(ε+ un)p(γ−1)φδ +

(
2S0δ‖|∇φ|‖L∞(Ω)

p

)p ∫
Ω

(ε+ un)pγφδ−p

≤ C0

∫
Ω

(ε+ un)pγφδ−p +C1

(∫
Ω
|fφ|m

) 1
m
[∫

Ω
(ε+ un)[p(γ−1)+1−µ]m′φ(δ−1)m′

] 1
m′
,

where

C0 =
(

2S0βγδ‖|∇φ|‖L∞(Ω)
α[p(γ − 1) + 1]

)p
+
(

2S0δ‖|∇φ|‖L∞(Ω)
p

)p
, C1 = p(2S0γ)p

α[p(γ − 1) + 1] .
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Letting ε → 0 and applying Fatou’s Lemma and Lebesgue’s Theorem, we obtain
that(∫

Ω
up
∗γ
n φ

p∗δ
p

) p
p∗

≤ C0

∫
Ω
upγn φ

δ−p + C1

(∫
Ω
|fφ|m

) 1
m
(∫

Ω
u[p(γ−1)+1−µ]m′
n φ(δ−1)m′

) 1
m′
, (6.2.4)

Now, we observe that the choice of γ implies that

[p(γ − 1) + 1− µ]m′ < p∗γ.

Thus, by Hölder’s inequality again, from (6.2.4) we obtain that(∫
Ω
up
∗γ
n φ

p∗δ
p

) p
p∗

≤ C0

∫
Ω
upγn φ

δ−p + C2

(∫
Ω
|fφ|m

) 1
m
(∫

Ω
up
∗γ
n φ

p∗γ(δ−1)
p(γ−1)+1−µ

) p(γ−1)+1−µ
p∗γ

, (6.2.5)

where
C2 = |Ω|

1
m′−

p(γ−1)+1−µ
p∗γ C1.

Furthermore, since

δ >
pγ

p− 1 + µ
=⇒ p∗γ(δ − 1)

p(γ − 1) + 1− µ >
p∗δ

p
,

using the fact that 0 ≤ φ ≤ 1 on Ω and the Young’s inequality, we have that

C2

(∫
Ω
|fφ|m

) 1
m
(∫

Ω
up
∗γ
n φ

p∗γ(δ−1)
p(γ−1)+1−µ

) p(γ−1)+1−µ
p∗γ

≤ C2

(∫
Ω
|fφ|m

) 1
m
(∫

Ω
up
∗γ
n φ

p∗δ
p

) p(γ−1)+1−µ
p∗γ

≤ p− 1 + µ

pγ

[
C2

(∫
Ω
|fφ|m

) 1
m

] pγ
p−1+µ

+ p(γ − 1) + 1− µ
pγ

(∫
Ω
up
∗γ
n φ

p∗δ
p

) p
p∗
,

(6.2.6)

so that, going back to (6.2.5), we deduce that(∫
Ω
up
∗γ
n φ

p∗δ
p

) p
p∗
≤ C3

∫
Ω
upγn φ

δ−p + C4

(∫
Ω
|fφ|m

) pγ
(p−1+µ)m

(6.2.7)

where
C3 = C0pγ

p− 1 + µ
, C4 = C

pγ
p−1+µ
2 .

Recalling the definition of δ, estimate (6.2.7) becomes∫
Ω

(
unφ

1
p−1+µ+ 1

γ

)p∗γ
≤ C5(γ)


[∫

Ω

(
unφ

1
p−1+µ

)pγ] p∗p
+
(∫

Ω
|fφ|m

) p∗γ
(p−1+µ)m

 (6.2.8)
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where
C5(γ) = max

{
(2C3(γ))

p∗
p , (2C4(γ))

p∗
p

}
.

We remark that

C3(γ) = C6γ

(
1 + γp

[p(γ − 1) + 1− µ]p
)
,

C4(γ) = C
pγ

p−1+µ
7 |Ω|

pγ
[p−1+µ]m′−

p[p(γ−1)+1]
p∗(p−1+µ)

(
γp

p(γ − 1) + 1− µ

)p′γ
,

where C6 and C7 are positive constants which do not depend on γ. Hence, C5(γ)
depends continuously on γ and satisfies

lim
γ→ p−1+µ

p

C5(γ) =∞, lim
γ→ 1

p∗
Nm(p−1+µ)
N−pm

C5(γ) ∈ (0,∞). (6.2.9)

In particular, passing to the limit as γ → 1
p∗
Nm(p−1+µ)

N−pm in (6.2.8), by Lebesgue’s The-
orem, we deduce that the estimate (6.2.8) holds for every γ ∈

(
p−1+µ

p , 1
p∗
Nm(p−1+µ)

N−pm

]
.

STEP II. Now, suppose that

p

p∗
Nm(p− 1 + µ)

N − pm
≤ N(p− 1 + µ)

N − p
,

that is
m ≤ N

N2 −Np+ p2 ,

and consider the estimate (6.2.8) with γ = 1
p∗
Nm(p−1+µ)

N−pm and φ = ψ:

∫
Ω

(
unψ

1
p−1+µ+p∗ N−mp

Nm(p−1+µ)

)Nm(p−1+µ)
N−pm

≤ C5


[∫

Ω

(
unψ

1
p−1+µ

) p
p∗

Nm(p−1+µ)
N−pm

] p∗
p

+
(∫

Ω
|fψ|m

) N
N−pm

 . (6.2.10)

Thanks to (6.2.2), the right-hand side of (6.2.10) is uniformly bounded with respect
to n. Therefore, it follows that the sequence

{
wnψ

δµ,1
}
is bounded in L

Nm(p−1+µ)
N−pm (Ω),

where
δµ,1 = 1

p− 1 + µ
+ p∗

N − pm
Nm(p− 1 + µ) .

Otherwise, suppose that

p

p∗
Nm(p− 1 + µ)

N − pm
>
N(p− 1 + µ)

N − p
.

In this case, we perform an iteration argument, as in the proof of Lemma 5.1.3. The
idea is to start from the estimate (6.2.8) with γ = 1

p∗
Nm(p−1+µ)

N−pm and φ a suitable
power of ψ and apply (6.2.8) recursively a finite number of times, choosing γ and
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φ in a suitably way. It is worth nothing that, by (6.2.9), it is necessary to consider
only values of γ > p−1+µ

p .
We define 

I = min
{
i ∈ N : Nm

N−pm ≤
(
p∗

p

)i+2
}
,

γi = 1
p∗
Nm(p−1+µ)

N−pm

(
p
p∗

)i
,

φI = ψ, φi = φ
1+ p−1+µ

γi+1
i+1 ,

∀ i ∈ {0, . . . , I}.
By construction, we have that I ≥ 1 and

p− 1 + µ

p
< γI < γI−1 ≤ . . . ≤ γ0,

0 ≤ φ0 ≤ φ1 ≤ . . . ≤ φI on Ω.

Hence, we set
C8 = max

i=0,...,I
C5(γi) = C5(γI),

and we consider estimate (6.2.8) with γ = γ0 and φ = φ0:∫
Ω

(
unφ

1
p−1+µ+ 1

γ0
0

)p∗γ0

≤ C8


[∫

Ω

(
unφ

1
p−1+µ
0

)pγ0] p∗p
+
(∫

Ω
|fφ0|m

) p∗γ0
(p−1+µ)m

 . (6.2.11)

By the definitions of γi and φi, we have that

[∫
Ω

(
unφ

1
p−1+µ
0

)pγ0] p∗p
=
[∫

Ω

(
unφ

1
p−1+µ
0

)p∗γ1
] p∗
p

=
[∫

Ω

(
unφ

1
p−1+µ+ 1

γ1
1

)p∗γ1
] p∗
p

,

which in turn, using (6.2.8), implies that

[∫
Ω

(
unφ

1
p−1+µ
0

)pγ0] p∗p

≤ (2C10)
p∗
p


[∫

Ω

(
unφ

1
p−1+µ
1

)pγ1]( p∗p )2

+
(∫

Ω
|fφ1|m

) p∗γ0
(p−1+µ)m

 . (6.2.12)

Putting together (6.2.11) and (6.2.12), it follows that∫
Ω

(
unφ

1
p−1+µ+ 1

γ0
0

)p∗γ0

≤ C8(2C8)
p∗
p


[∫

Ω

(
unφ

1
p−1+µ
1

)pδ1
]( p∗

p

)2

+
(∫

Ω
|fφ1|m

) p∗γ0
(p−1+µ)m


+ C8

(∫
Ω
|fφ0|m

) p∗γ0
(p−1+µ)m

.
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Thus, we iterate the previous inequality I times and we obtain that

∫
Ω

(
unφ

1
p−1+µ+ 1

γ0
0

)p∗γ0

≤

C9

[∫
Ω

(
unφ

1
p−1+µ
I

)pγI]( p∗p )2

+ C9

I∑
i=0

(∫
Ω
|fφi|m

) p∗γ0
(p−1+µ)m

, (6.2.13)

where

C9 = C8 + C8(2C8)
∑I

i=1

(
p∗
p

)i
.

Since
pγI = Nm(p− 1 + µ)

N − pm

(
p

p∗

)I+1
≤ N(p− 1 + µ)

N − p
,

by (6.2.2), the right-hand side of (6.2.13) is uniformly bounded with respect to n.
Therefore, since

p∗γ0 = Nm(p− 1 + µ)
N − pm

,

and

φ
1

p−1+µ+ 1
γ0

0 = φ

1
p−1+µ

(
1+ p−1+µ

γ0

)(
1+ p−1+µ

γ1

)
1

= . . . = φ

1
p−1+µ

∏I

i=0

(
1+ p−1+µ

γi

)
I = ψ

1
p−1+µ

∏I

i=0

(
1+ p−1+µ

γi

)
,

from (6.2.13) we finally deduce that
{
unψ

δµ,1
}
is bounded in L

Nm(p−1+µ)
N−pm (Ω), where

δµ,5 = 1
p− 1 + µ

I∏
i=0

(
1 + p− 1 + µ

γi

)
.

We recall that, for any σ ∈ (0,∞), Tσ denotes the truncation function at level
σ, that is,

Tσ(s) =
{
s if |s| ≤ σ,
sign(s)σ if |s| > σ,

and Gσ denotes the real function defined by

Gσ(s) = s− Tσ(s) = (|s| − σ)+sign(u) ∀ s ∈ R.

Furthermore, for any n ∈ N and δ, σ > 0 we define

An,δ,σ =
{
unψ

δ > σ
}
. (6.2.14)

We observe that (5.1.9) implies that

lim
σ→∞

|An,δ,σ| = 0 uniformly with respect to n. (6.2.15)
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Lemma 6.2.2. Let f ∈ L1(Ω) which satisfies (6.1.9). Assume (6.2.1). Then, there
exists δµ,6 ∈ (1,∞) which depends only on µ, ψ, m, N and p, such that

{
unψ

δµ,6
}

is bounded in L∞(Ω) if m ∈
(
N
p ,∞

)
,{

ecunψ
δµ,6
}

is bounded in L1(Ω) for some c ∈ (0,∞) if m = N
p ,{

unψ
δµ,6
}

is bounded in Mm(Ω) if m ∈
(
1, Np

)
.

Proof. First, we observe that assumption (6.1.9) implies that fψ ∈ Lt(Ω) for every
t such that 

t ∈ (1,m) if µ ∈ [1,∞),

t ∈
[(

p∗

1−µ

)′
,m

)
if µ ∈ (0, 1).

Therefore, by Lemma 6.2.1, for every s ∈
[
p, Nm(p−1+µ)

N−pm

)
there exists δµ,5(s) ∈(

1
p−1+µ ,∞

)
such that

{
unψ

δµ,5(s)
}
is bounded in Ls(Ω).

We fix s ∈
(
p, Nm(p−1+µ)

N−pm

)
and we define

δµ,6 = 1 + δµ,5(s).

Moreover, we define

Aσ = An,δµ,6,σ ∀σ ∈ (0,∞), ∀n ∈ N,

and, exploiting (6.2.15), we choose σ0 ∈ (0,∞) such that

|Aσ| ≤ 1 ∀σ ∈ [σ0,∞), ∀n ∈ N. (6.2.16)

Then, we fix n ∈ N, σ ∈ [σ0,∞) and we choose

v = Gσ
(
unψ

δµ,6
)
ψ(p−1)δµ,6

as a test function in (5.1.3). Since

|∇v| ≤ |∇un|ψpδµ,6χAσ + pδµ,6|∇ψ|unψpδµ,6−1χAσ a.e. on Ω,
v ≤ χAσ a.e. on Ω,

we have that

α

∫
Aσ
|∇un|pψpδµ,6 ≤ pβδµ,6

∫
Aσ
|∇un|p−1|∇ψ|unψpδµ,6−1 +

∫
Ω

fv(
un + 1

n

)µ ,
which in turn, using Young’s inequality and the fact that∫

Aσ

fv(
un + 1

n

)µ ≤ 1
hµ

∫
Aσ
fv ≤

∫
Aσ
fv,

implies that

α

p

∫
Aσ
|∇un|pψpδµ,6 ≤

(pβδ6)p

pαp−1

∫
Aσ
|∇ψ|pupnψpδµ,6−p +

∫
Ω
fv. (6.2.17)

Now, the result follows arguing as in the proof of Lemma 5.1.4 (see (5.1.38)).
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6.3 Local estimates on ∇un

Lemma 6.3.1. Let f ∈ L1(Ω) which satisfies (6.1.10). Assume (6.2.1), µ ∈
(0, 1) and that m ∈

(
1,
(
p∗

1−µ

)′)
. Then, there exists δµ,7 ∈ (1,∞) which depends

only on µ, ψ, m, N and p, such that the sequence
{∣∣∣∇ (unψδµ,7)∣∣∣} is bounded in

L
Nm(p−1+γ)
N−m(1−γ) (Ω).

Proof. First, we define

q = Nm(p− 1 + µ)
N −m(1− µ) , γ = q∗

p∗
,

and
δµ,7 = q∗

q
max

{
δµ,5
m′

+ 1, pδµ,5
p∗

+ p, δµ,5

}
,

where δµ,5 is given by Lemma 6.2.1. We observe that

m >

(
p∗

1− µ

)′
=⇒ γ >

p− 1 + µ

p
.

Moreover, we have that

[1− p(1− γ)− µ]m′ = p∗γ = q∗ = Nm(p− 1 + µ)
N − pm

.

Then, we fix n ∈ N, ε ∈
(
0, 1

n

)
and we choose[

(ε+ un)1−p(1−γ) − ε1−p(1−γ)
]
ψqδµ,7

as a test function in (6.1.2). Arguing as in the first step of the proof of Lemma
6.1.2, we get
∫

Ω

|∇un|p

(ε+ un)p(1−γ)ψ
qδµ,7

≤ C0

∫
Ω

(ε+ un)pγψqδµ,7−p + C1

∫
Ω
f(ε+ un)1−p(1−γ)−µψqδµ,7 , (6.3.1)

where C0 and C1 are positive constants which does not depend on n. By Hölder’s
inequality, we have that

C0

∫
Ω

(ε+ un)pγψqδµ,7−p ≤ C0|Ω|1−
p
p∗

[∫
Ω

(ε+ un)q∗ψ
p∗(qδµ,7−p)

p

] p
p∗

, (6.3.2)

and

C1

∫
Ω
f(ε+ un)1−p(1−γ)−µψqδ7 ≤ C1

[∫
Ω

(fψ)m
] 1
m
[∫

Ω
(ε+ un)q∗ψ(qδµ,7−1)m′

] 1
m′
,

(6.3.3)
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which in turn, recalling the definitions of q and δµ,7 and the fact that 0 ≤ ψ ≤ 1 on
Ω, imply that

C0

∫
Ω

(ε+ un)pγψqδµ,7−p ≤ C0|Ω|1−
p
p∗

{∫
Ω

[
(ε+ un)ψδµ,5

]Nm(p−1+γ)
N−pm

} p
p∗

, (6.3.4)

and

C1

∫
Ω
f(ε+ un)1−p(1−γ)−µψqδµ,7

≤ C1

[∫
Ω

(fψ)m
] 1
m

{∫
Ω

[
(ε+ un)ψδµ,5

]Nm(p−1+γ)
N−pm

} 1
m′

. (6.3.5)

Hence, putting together (6.3.1)-(6.3.5), by Lemma 6.1.2, it follows that{ |∇un|p

(ε+ un)p(1−γ)ψ
qδµ,7

}
is bounded in L1(Ω). (6.3.6)

Now, the use of Hölder’s inequality yields∫
Ω
|∇un|qψqδµ,7 ≤

∫
Ω

|∇un|q

(ε+ un)q(1−γ) (ε+ un)q(1−γ)ψqδµ,7

≤
[∫

Ω

|∇un|p

(ε+ un)p(1−γ)ψ
qδµ,7

] p
q∗
[∫

Ω
(ε+ un)

pq(1−γ)
p−q ψqδµ,7

]1− p
q∗
.

A simple calculation shows that

pq(1− γ)
p− q

= q∗ = Nm(p− 1 + µ)
N − pm

.

Therefore, recalling the choice of δµ,7 and the fact that 0 ≤ ψ ≤ 1 on Ω, thanks
to Lemma 6.2.1 and estimate (6.3.6), from the previous inequality we deduce the
result.

Lemma 6.3.2. Let f ∈ L1(Ω) which satisfies (6.1.10). Assume (6.2.1), µ ∈ (0, 1)
and that m =

(
p∗

1−µ

)′
. Then, there exists δµ,8 ∈ (1,∞) which depends only on µ, ψ,

N and p, such that the sequence
{∣∣∣∇ (unψδµ,8)∣∣∣} is bounded in Lp(Ω).

Proof. We define
δµ,8 = 1 + δµ,5,

where δ5 is given by Lemma 6.2.1, and we choose unψpδµ,8 as a test function in
(6.1.2). Arguing as in the first part of the proof of Lemma 6.2.1, we obtain that∫

Ω
|∇un|pψpδµ,8 ≤ C0

∫
Ω
upnψ

pδµ,8−p + C1

∫
Ω
fu1−µ

n ψpδµ,8 , (6.3.7)

where C0 and C1 are positive constants which does not depend on n. By the
definition of δµ,8, we have that

C0

∫
Ω
upnψ

pδµ,8−p = C0

∫
Ω
upnψ

pδµ,1 , (6.3.8)

152



Chapter 6. Dirichlet problems with a singular nonlinearity

and, using Hölder inequality and the fact that 0 ≤ ψ ≤ 1 in Ω, we obtain that

C1

∫
Ω
fu1−µ

n ψδµ,8 ≤ C1

[∫
Ω

(fψ)m
] 1
m
[∫

Ω

(
unψ

δµ,5
)p∗] 1−µ

p∗
. (6.3.9)

Hence, from (6.3.7)-(6.3.9) it follows that

∫
Ω
|∇un|pψpδµ,8 ≤ C0

∫
Ω
upnψ

pδµ,5 + C1

[∫
Ω

(fψ)m
] 1
m
[∫

Ω

(
unψ

δµ,5
)p∗] 1−µ

p∗
,

which in turn, thanks to Lemma 6.2.1, implies the result, since

Nm(p− 1 + µ)
N − pm

= p∗.

6.4 Proof of Theorems 6.1.3-6.1.6
Let {un} be the sequence of weak solutions of the approximate problems (6.1.1)
constructed above. Thanks to the compactness properties of {un} (see [49], [50]
and [51]), the results are an immediate consequence of Lemmas 6.2.1, 6.2.2, 6.3.1
and 6.3.2 choosing δµ,i, i ∈ {1, 2, 3, 4}, in a suitably way.
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