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Introduction

During the twentieth century many efforts have been made in the study of the charge
transport mechanisms in doped semiconductor at low temperature. Until the middle
of the twentieth century it was thought that the conductivity of doped semiconductors
should have had an Arrenhius decay when the temperature tends to zero. In 1950
Hung and Gliessmann (see [22]) found a counter-example for such decay studying the
conductivity of doped germanium at low temperature and some years later Conwell
(see [3]) and Mott (see [25]) gave more evidence for the hopping transport mechanism
that have been introduced in those years. Starting from their theories, Miller and
Abrahams in 1960 (see [24]) showed that the hopping transport could be studied also
in terms of a random resistor network (known as Miller–Abrahams random resistor
network) and they used the new model to evaluate the conductivity in disordered
solids. Nevertheless their model had some deficiencies and was revisited by Mott
some years later (see [26], [32, Chapter 13]). In [26] Mott introduced the so called
Mott variable–range hopping as a transport mechanism to model the phonon-assisted
electron transport in disordered solids in the regime of strong Anderson–localization,
such as in doped semiconductors. In the same paper, he gave also an heuristic
proof for the anomalous behavior of the conductivity. Few years later Ambegoakar,
Halperin and Langer (see [1]), Shklovskii and Efros (see [33]), and Pollak (see [30])
have independently modeled Mott variable–range hopping in terms of percolation
theory. Other different approaches to this transport mechanism are based on the
theory of exclusion processes and random walks (see [15, 18]). In the following we
will describe these models, focusing more on the use of the percolation theory, which
is the base of the work of this thesis.

Mott variable range hopping and Mott’s law

Doped semiconductors are semiconductors in which atoms of some other materials,
called impurities, are introduced at random positions {xi}. To each impurity it is
possible to associate a random variable Ei, called energy mark, that takes value
in some bounded interval [−A,A]. In the strong Anderson–localization regime, a
single conduction electron is well described by a quantum wave-function localized
around some impurity xi and Ei is its energy at the ground state.1 In Mott variable
range hopping an electron localized around xi jumps (by quantum tunneling) to
another impurity localized around xk, if xk is not occupied by another electron2,

1To simplify the problem, we consider spinless electrons.
2This constraint is due to Pauli exclusion principle.
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Introduction

with probability rate

C(β) exp
{
−2
γ
|xi − xk| − βmax{Ek − Ei, 0}

}
, (0.1)

where β is the inverse temperature, γ is the localization length3 and C(β) is a positive
term that has a negligible β-dependence w.r.t. the exponential decay. Thinking to
work with classical particles instead of localized electrons, such a mechanism can be
interpreted as an exclusion process on the sites {xi} with the jump rates from xi to
xk given by (0.1) if xk is free.

Calling η a generic configuration in {0, 1}{xi}, the product measure µ on {0, 1}{xi}
such that

µ(ηxi) = e−β(Ei−π)

1 + e−β(Ei−π)

is reversible for the exclusion process (see [10]). In the expression above, π is the
chemical potential and it is determined by the density of conduction electrons. It is
possible to take π = 0 by shifting the energy so that the Fermi energy equals zero.

Since the site disorder makes the problem very challenging, in physics in the
regime of low impurity density, the exclusion process on {xi} described above is
approximated by independent continuous time random walks for which the probability
rate for a jump from xi to xk 6= xi is given by the product

µ(ηxi = 1, ηxk = 0) · C(β) exp
{
−2
γ
|xi − xk| − βmax{Ek − Ei, 0}

}
.

The independence of the random walks allows to consider only one of them and when
the temperature is low, that is for β large, the above jump rate behaves like (see [1,
Formula (3.7)])

exp
{
−2
γ
|xi − xk| −

β

2 (|Ei|+ |Ek|+ |Ei − Ek|)
}
. (0.2)

Hence Mott variable–range hopping consists of a random walk in a random spatial
and energetic environment given by {xi} and {Ei} with jump rate from xi to xk
given by (0.2).

In this charge transport mechanism, when β is large, arbitrarily long jumps are
facilitated if energetically convenient. Indeed it has been proved that such long jumps
contribute to most of the charge transport in dimension d ≥ 2 (see [15], [18]), but not
in dimension d = 1 (see [2]). This difference has been justified also in physical terms.
Indeed, for an isotropic medium and for d ≥ 2, denoting by I the d-dimensional
identity matrix, the conductivity σ(β) in doped semiconductors goes to zero as β
tends to ∞ following the so called Mott’s law (or Mott-Efros-Shklovskii law)

σ(β) ∼ exp
{
−κβ

α+1
α+1+d

}
I , (0.3)

where κ > 0 is a constant and the energy marks are i.i.d. r.v.’s with probability
density ν(dE) = c(α)Eα1[−A,A](E)dE for some A > 0 and α ≥ 0 (that are the

3The localization length is the inverse of the rate of decay for the wave function in the strong
Anderson localization regime.
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significant energy distributions in physics). On the other hand, in dimension d = 1,
the conductivity has an Arrenhius decay

σ(β) ∼ exp{−cβ} , (0.4)

where c > 0 is a constant.
The decay (0.3) was derived by Mott, Efros, Shklovskii (see [30], [33]), always in

a physical style, through heuristic arguments and by Ambegaokar et al., Miller and
Abrahams (see [1] and [24]) using random resistor networks and percolation. The
decay (0.4) has been obtained by Kurkijärvi through random resistor network (see
[21]) and then it was rigorously proved in [2]. Rigorous derivations of upper and
lower bounds in agreement with (0.3) for the diffusion coefficient d(β) of the random
walk with jump rates (0.2) (called Mott random walk) have been proved in [15] and
[18], respectively. Assuming the validity of the Einstein relation σ(β) = βD(β) with
D(β) := d(β)I, the same estimates are translated in terms of σ(β). The constants c
at the exponent in (0.3) that appear in the two bounds in [15] and [18] are different.
A conjecture for the value of such a constant is given in [11] using percolation and a
rigorous proof is given in [14] by using also the results presented in this thesis. For
more details about Mott variable–range hopping from a physical point of view we
refer to [1, 24, 25, 26, 27, 28, 30, 31, 32, 33].

Basic facts on resistor networks and the Miller–Abrahams
random resistor network
As explained at the beginning of the chapter, other approaches to Mott variable–
range hopping use the theories of random resistor networks and percolation to derive
estimates on the conductivity. The most famous model in this field is the Miller–
Abrahams random resistor network, introduced by Miller and Abrahams (see [24])
to investigate the conductivity at low temperature for doped semiconductors in
the regime of strong Anderson–localization and low impurity density. This model
has been also the starting point for many important works in this context (see
[1, 30, 33]). Before describing the Miller–Abrahams random resistor network, we
introduce some basic concepts in the theory of resistor networks that will be useful
to better understand the problem.

Resistor networks

A resistor network is an undirected weighted graph G = (V, E) with non-negative
weight function w : E → [0,∞] in which each edge e ∈ E with weight w(e) can
be seen as a filament with conductance w(e). We recall that a conductance w(e)
corresponds to a resistance 1/w(e), with the convention that 0−1 :=∞ and∞−1 := 0.
For convenience, we set w({x, y}) := 0 if {x, y} 6∈ E .

Let A,B be two disjoint subsets of V such that each vertex x ∈ V is connected
to A ∪B. The potential function with fixed value 0 and 1 in A and B, respectively,
is defined as the unique function u : V → R that satisfies the following properties:

• u(x) = 0 if x ∈ A,
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• u(x) = 1 if x ∈ B,

• for all x ∈ V \ (A ∪B) the Kirchhoff’s law holds:∑
y∈V

w({x, y})(u(x)− u(y)) = 0 .

Then, given x, y ∈ V, we define the current on the oriented edge (x, y) through
Ohm’s first law

i(x, y) := w({x, y})[u(y)− u(x)] .

The effective conductivity from A to B is defined as the total current flowing out
from A ⊂ V, that is

σ :=
∑
x∈A

∑
y∈V\A

i(x, y) .

It is simple to prove that the value of σ is also given by

σ = 1
2
∑
x,y∈V

w({x, y})(u(y)− u(x))2 .

The Dirichlet’s Principle gives a variational formula for σ.

Proposition 0.0.1 (Dirichlet’s Principle). Let g : V → R be a function and let F
be a functional whose value in g is given by

F(g) := 1
2
∑
x,y∈V

w({x, y})(g(y)− g(x))2 . (0.5)

Let H be the space of the functions

H := {g : V → R | g(x) = 0 if x ∈ A, g(x) = 1 if x ∈ B} . (0.6)

Then
σ = inf{F(g) | g ∈ H} .

For further properties of random resistor networks we refer to [9].

The Miller–Abrahams random resistor network

Let ξ be a simple point process on Rd, that is a random locally finite subset of Rd,
and assume that its law is isotropic. We think at the points of ξ as the location of the
impurities. Given a realization of ξ, we attach to each vertex x ∈ ξ a random variable
Ex, called energy mark, in such a way that {Ex}x∈ξ are i.i.d. r.v.’s with common
law ν. This operation is done afresh for any realization of ξ. The Miller–Abrahams
random resistor network (MA resistor network, for short) is given by the complete
graph on ξ in which to each unordered pair of sites {x, y}, with x 6= y, we associate
a filament of conductivity (see [1], [24], [31])

cx,y := exp
{
−2
γ
|x− y| − β

2 (|Ex|+ |Ey|+ |Ex − Ey|)
}
, (0.7)
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where γ is the localization length in Anderson localization and β is the inverse
temperature. In what follows, for simplicity and without loss of generalization, we
take γ = 2.

As explained in [1] one expects that the effective conductivity of the MA resistor
network is well approximated by the critical conductance cc(β) as β →∞. To define
such quantity, given a number c∗, we denote by G(c∗) the subgraph obtained from the
MA random resistor network by keeping only the filaments with conductivity at least
c∗. The critical conductance is then characterized by the following two conditions:

(i) for any value c∗ > cc(β) a.s. the graph G(c∗) does not percolate, that is, a.s. it
has no unbounded clusters;

(ii) for any value c∗ < cc(β) a.s. the graph G(c∗) percolates, that is, a.s. it has
some unbounded cluster.

In [11, 14] Faggionato derives the Mott’s law for cc(β) in the case in which the
energy marks have law4

ν(dE) = c(α)|E|α1[−A,A](E)dE or ν(dE) = c(α)Eα1[0,A](E)dE , (0.8)

with A > 0 and α ≥ 0, that is, as β →∞

cc(β) ∼ exp
{
−κβ

α+1
α+1+d

}
,

for some β-independent constant κ > 0. In particular, if ξ is a homogeneous Poisson
point process of density ρ and ν is the first distribution in (0.8), Faggionato has
characterized the constant κ in percolation terms as follows

κ := exp
{
−
(
ρc
ρ

) 1
α+1+d

(βA)
α+1
α+1+d

}
, (0.9)

where ρc is defined in the following Lemma (proved in [11] as Lemma 2.3).

Lemma 0.0.2. Consider the graph with vertex set given by the homogeneous Poisson
point process ξ on Rd with density ρ, while the edge set is given by the unordered
pairs {x, y} of points of ξ such that

|x− y|+ |Ex|+ |Ey|+ |Ex − Ey| ≤ 1 ,

where the energy marks {Ex}x∈ξ are i.i.d. r.v.’s with law

ν∗(du) = α+ 1
2 |u|α1{−1≤u≤1}(u)du .

Then there exists ρc > 0 such that if ρ < ρc, then the graph does not percolate a.s.,
while if ρ > ρc then a.s. the graph percolates.

When ν is the section distribution in (0.8) the characterization of κ is similar. In
[18] Faggionato et al. provide also arguments that support the universality of the
constant κ for ergodic stationary simple point processes on Rd with density ρ.

4These types of laws are the ones relevant in physics.
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Our contribution

The rigorous proof of Mott’s law and the characterization of the constant κ in (0.3)
provided in [14] is a byproduct of results of homogenization and percolation. As
already observed in [15] and [18], lower and upper bounds in agreement with Mott’s
law rely on the analysis, respectively, of the vertex disjoint left-right crossings in
G(c) with c < cc(β), and on the size of the cluster around a generic point in G(c)
when c > cc(β). The lower and upper bounds obtained in [15] and [18] are not close
enough up to characterize the constant κ. A more refined analysis of the above
percolation properties is necessary to catch the right asymptotic behavior. This
analysis is provided in [16] and [17] and furnishes the percolation tools in [14]. Before
giving a brief description of such analysis, we formalize the definition of σ(β) involved
in (0.3).

Fixed a positive integer N , let AN , BN and ΛN be subsets of Rd defined as

AN := {x ∈ Rd |x1 ≤ −N, |xi| ≤ N for i = 2, . . . , d} ,

BN := {x ∈ Rd |x1 ≥ N, |xi| ≤ N for i = 2, . . . , d} ,

ΛN := [−N,N ]d ,

and consider their union DN := AN ∪ ΛN ∪ BN . We define σN (β) as the effective
conductivity for the resistor network given by the complete graph with vertex set
ξ ∩DN in which to each edge {x, y} is associated a filament with conductivity (0.7)
when the electrical potential is set equal to 0 on AN and to 1 on BN . In [13]
Faggionato has proved that P-a.s. (2N)2−dσN (β) converges to a non-random limit
σ(β) as N → +∞.

Let us go back to [16] and [17]. To better describe the results that we have
obtained in these papers, we need to introduce some useful definitions. At first, we
simplify the notation by taking γ = 2 and substituting β

2 with β in (0.7) without
loss of generality5.

Let ξ be a homogenous Poisson point process on Rd, d ≥ 2 with density ρ and
let {Ex}x∈ξ be a family of i.i.d. random variables with law ν that is independent of
ξ. Fixed some positive constant ζ > 0, define the graph Gζ,β,ρ that has ξ as vertex
set, while the edge set is given by the unordered pairs {x, y} that satisfy

|x− y|+ β(|Ex|+ |Ey|+ |Ex − Ey|) ≤ ζ . (0.10)

Note that Gζ,β,ρ is the subgraph of the MA resistor network that has ξ as vertex set
and edge set given by the filaments with conductivity at least e−ζ .

In [16] we have discussed the phase transition for this graph when varying ζ and
we have also proved that the phase transition is sharp, under some assumptions on
the law ν of the energy marks. More precisely, without loss of generality, we have
studied the graph Gζ,1,ρ instead of Gζ,β,ρ and, assuming a polynomial probability
distribution ν as in (0.8), we have used the existence of the scaling proposed in [11]
to study the phase transition varying ρ and fixing ζ instead of varying ζ and fixing ρ.
In this framework it is easy to construct a coupling under which the graph Gζ,1,ρ is

5We still think of β as the inverse temperature.
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sandwiched between two realizations of two different Boolean models with different
fixed deterministic radius. Since it is well known that such a model has a phase
transition when varying the density of the point process (see [23]), we have deduced
(see [16, Proposition 2.2]) that if ν satisfies

ν

([
−ζ2 ,

ζ

2

])
> 0 , (0.11)

then there exists ρc ∈ (0,+∞) such that the graph Gζ,1,ρ percolates a.s. if ρ > ρc
and it does not percolate a.s. if ρ < ρc.

This information is not enough to obtain an upper bound for the conductivity
and for this reason we have investigated more the phase transition studying the
connection probabilities in the subcritical regime. Indeed they are key instruments to
understand the size of clusters in the subcritical regime. In particular, by applying
the method of randomized algorithms recently developed by Duminil–Copin et al.
(see [5, 6]), we have proved that the phase transition is sharp, that is the probability
that points at uniform distance n are connected in Gζ,1,ρ decays exponentially fast
in n as n→∞. The method of randomized algorithms allows to obtain estimates
on the probability of “increasing” events applying the OSSS inequality (see [29]).
A key feature of this method is that it relates the variance of the characteristic
function of the event under consideration with specific properties (influence and
revealement) of the random algorithm that we use to discover whether or not this
event occurs. In order to give a gentle presentation of the method of randomized
algorithms, in Chapter 3 we discuss its application to the Bernoulli bond percolation
on Zd (cf. [4]). Indeed in [4] Duminil-Copin shows how the proof of Menshikov’s
theorem (see [19, Theorem 5.4]) can be really simplified. As explained in [29], to
apply the method we need a product probability space and, since this is not the
case for Gζ,1,ρ, as suggested in [6], we use a discretization of the model that allows to
approximate Gζ,1,ρ with a graph built on the grid εZd. The smaller ε is, the better
the approximation will be. Hence, applying the randomized algorithm method to
the discrete model and then letting ε tend to 0, we have proved the sharpness of
the phase transition for the original model. Another technical difficulty that we
have faced in this paper is related to the fact that the event “there is a point of ξ
at the origin” has zero probability and hence the event “the origin is connected to
points at uniform distance at least n” has zero probability too. For this reason it
has been necessary to work with the Palm distribution and use the Palm formula
(see [8, Formula (12.2.4), Theorem 12.2.II]). In the case of the homogeneous Poisson
point process ξ, the Palm distribution becomes the law of the point process given by
ξ̃ := ξ ∪ {0} in which we add to ξ a point at the origin. Let us call by P0,ρ the law of
Gζ,1,ρ with ξ̃ as vertex set. In [16, Theorem 1] we have proved the following theorem.

Theorem 0.0.3. Call h : (0,+∞)→ [0, 1] the function defined as the probability of
the event {|E|+ |E′|+ |E − E′| ≤ ζ − u} , where E,E′ are i.i.d. r.v.’s with law ν.
Suppose that h is such that there exists a finite family of points 0 < r1 < r2 < . . . <
rm−1 < rm such that

• h(r) = 0 for all r ≥ rm;

• h is uniformly continuous in (ri, ri+1) for all i = 0, . . . ,m− 1, where r0 = 0.
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Then the following statements hold:

• for any ρ < ρc there exists c = c(ρ) > 0 such that

P0,ρ(0↔ Sn) ≤ e−cn , ∀n ∈ N ;

• there exists C > 0 such that

P0,ρ(0↔∞) ≥ C(ρ− ρc) , ∀ ρ > ρc ,

where the event {0↔ Sn} occurs when there exists a path in Gζ,1,ρ from 0 to points
in the complementary of the box (−n, n)d, while the event {0↔∞} is equivalent to
the fact that 0 is connected in Gζ,1,ρ to points of the graph that are arbitrarily far
from it.

The above condition on ν is satisfied in particular by the distributions in (0.8).
We point out that in [16] we have proved also a result similar to the above theorem
for the random connection model and the Boolean model with uniformly bounded
edges. Actually, in the case of the Boolean model, a more powerful result has been
obtained by Duminil–Copin et al. in [7] and by Ziesche in [35] after the submission
of [16] on arXiv.

We point out that all the results in [16] that we have briefly described above
will be analyzed in a deeper way in Chapter 4, which consists of the article [16],
published on ALEA in 2019.

The analysis of the left-right crossings in Gζ,1,ρ in the supercritical regime has
been done in [17]. The main result in this paper states that in this regime, apart
an event of exponentially small probability, the maximal number of vertex disjoint
left-right crossings of a box of size n in the graph Gζ,1,ρ is typically lower bounded by
O(nd−1). More precisely, let ζc > 0 be the critical value for which Gζ,1,ρ percolates
a.s. if ζ > ζc and it does not percolate a.s. if ζ < ζc (we recall that the existence of
ζc has been proved in [11]). Given L > 0, a left-right crossing of the box [−L,L]d in
the graph Gζ,1,ρ is given by any sequence of distinct points x1, x2, . . . , xn ∈ ξ such
that

• {xi, xi+1} is an edge of Gζ,1,ρ for all i = 1, 2, . . . , n− 1;

• x1 ∈ (−∞,−L)× [−L,L]d−1;

• x2, x3, . . . , xn−1 ∈ [−L,L]d;

• xn ∈ (L,+∞)× [−L,L]d−1.

We also define RL(Gζ,1,ρ) as the maximal number of vertex-disjoint left-right crossings
of [−L,L]d in Gζ,1,ρ. The main result in [17] is the following.

Theorem 0.0.4. Suppose that ν has bounded support contained in [0,+∞) and that
0 belongs to the support of ν. Then, given ρ > 0 and ζ > ζc, there exist positive
constants c, c′ such that

P
(
RL(Gζ,1,ρ) ≥ cLd−1

)
≥ 1− e−c′Ld−1

, (0.12)

for L large enough, where P(·) is the law of the graph Gζ,1,ρ.
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The proof of this theorem follows the renormalization technique introduced
by Grimmett and Marstrand in [20] to prove that the critical probability for the
bond percolation on a slab of Zd converges to the critical probability for the bond
percolation on Zd when the thickness of the slab goes to +∞. More precisely, after a
discretization procedure that reduces the original problem to a similar one on the grid
εZd, we have combined the renormalization method of Grimmett and Mastrandt in
[20] with a procedure introduced by Tanemura in [34, Section 4] to study the left-right
crossings in the supercritical regime for a Boolean model with deterministic radius.
The application of these two techniques to our case has not been straightforward
due to spatial correlations in the MA resistor network. The main technical novelty
in [17] is that we have built a quasi-cluster in our graph through a renormalization
procedure similar to the one described in [20]. By “quasi-cluster” in our graph we
mean a cluster that is not necessarily connected as in [20] and can present some
cuts in suitable localized regions. This construction has been realized by expressing
the Poisson point process of density ρ as superposition of two independent Poisson
point processes with density ρ − δ and δ, respectively. Indeed the quasi-cluster is
composed by disjoint clusters made only by points of the point process of density
ρ− δ. Then the above superposition creates junctions between these disconnected
clusters using points of the point process of density δ with very small mark. The
final geometrical set obtained from the quasi-cluster by adding the above junctions
is connected and provides by construction a set of vertex-disjoint left-right crossings
of the right cardinality.

We underline that the renormalization method in [20] uses the FKG inequality.
In our case we can introduce a natural ordering of the random objects, but the FKG
inequality is valid only in the case in which the energy marks are a.s. nonnegative,
since in that case the energy-term in (0.10), that is |Ex|+ |Ey|+ |Ex − Ey|, reduces
to 2 max{Ex, Ey} which is increasing in the variables Ex and Ey. So Theorem 0.0.4
can be applied only in the case of energy marks with probability distributions of
the second form in (0.8). Even if this second type of distributions does not cover all
the interesting physical cases, it shares with the physical distributions (the ones of
the first form in (0.8)) several scaling properties which are relevant in the heuristic
derivation of Mott’s law.

We point out that all the results in [17] that we have briefly described above will
be analyzed in a deeper way in Chapter 5, which consists of the paper [17], that will
be submitted soon on arXiv.

Outline of the thesis

In Chapters 1 and 2 we give, respectively, a brief introduction to point processes and
percolation theory. In Chapter 3 we introduce the reader to randomized algorithms
through their application to the Bernoulli bond percolation. In Chapters 4 and 5 we
show the results that we have obtained in [16] and [17], respectively.
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Chapter 1

Marked simple point processes

In this chapter we introduce the theory of the marked simple point processes giving
just the statements of some important results and referring to [1] for the proofs. Note
that in [1] many results are written for simple point processes, but, as pointed out by
the authors, they can be extended to the context of marked simple point processes
with some slight changes.

Let K be a Polish space, i.e. a complete separable metric space, endowed with a
metric dK.

We define a metric d on the space Rd×K as follows: for any (x, k), (y, j) ∈ Rd×K

d((x, k), (y, j)) := max{|x− y|, dK(k, j)} ,

where | · | is the euclidean norm on Rd.
Note that Rd × K is a Polish space endowed with the metric d since it is the

product of two Polish spaces (see [2, Proposition 3.3 (iii)]).
In the following, given a topological space S, we denote by B(S) the Borel

σ-algebra on S.

1.1 Counting measures and marked simple point pro-
cesses

Definition 1.1.1 (Boundedly finite measure). A Borel measure µ on Rd × K is
called boundedly finite if µ(A) <∞ for every bounded Borel set A ⊂ Rd ×K.
We denote byM the space of the boundedly finite measures on Rd ×K.

As in [1, Section A2.6], we can define a metric d̂ onM as an extension of the
Prohorov metric in the space of the finite measures on Rd ×K. More precisely, given
µ, ν ∈M, denoting respectively by µ(r), ν(r) the restrictions of µ and ν to the ball
Br((x0, k0)) ⊂ Rd ×K for some (x0, k0) ∈ Rd ×K and some r ∈ (0,+∞), we define
the distance between µ and ν as

d̂(µ, ν) =
∫ ∞

0
e−r

d̃(µ(r), ν(r))
1 + d̃(µ(r), ν(r))

dr , (1.1)
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1. Marked simple point processes

where d̃ is the Prohorov metric on the space of the totally finite measures on Rd ×K
(see [1, Formula (A2.5.1)]), that is

d̃(µ(r), ν(r)) := inf{ε : ε ≥ 0 and for all closed F ⊂ (Rd ×K) ∩Br((x0, k0)) it holds
µ(r)(F ) ≤ ν(r)(F ε) + ε, ν(r)(F ) ≤ µ(r)(F ε) + ε} ,

(1.2)

with F ε := {(x, k) ∈ Rd ×K | ∃ (y, j) ∈ F such that d((x, k), (y, j)) < ε}.
Since Rd × K is a Polish space, one can proceed as in [1, Section A2.6] to prove
that d̂ is indeed a metric and it induces onM a topology that does not depend on
the choice of the point (x0, k0) ∈ Rd × K. Moreover such a topology makes M a
Polish space (see [1, Theorem A2.6.III]) and the convergence with respect to d̂ can
be characterized in many ways described in the following result (see [1, Proposition
A2.6.II]).

Proposition 1.1.2. Let {µk}k∈N and µ be measures on M. Then the following
statements are equivalent:

(i) d̂(µk, µ)→ 0;

(ii)
∫
Rd×K f(x)µk(dx)→

∫
Rd×K f(x)µ(dx) for all bounded continuous functions f

on Rd ×K vanishing outside a bounded set;

(iii) there exists a sequence of balls Bn ↑ Rd ×K as n→∞ such that, if µ(n)
k , µ(n)

denote the restrictions of the measures µk, µ to Bn, then d̃(µ(n)
k , µ(n))→ 0 as

k →∞ for any n ∈ N;

(iv) µk(A)→ µ(A) for all bounded Borel set A ⊂ Rd ×K with µ(∂A) = 0.

The counting measures on Rd × K are a particular type of boundedly finite
measures on Rd ×K as stated in the following definition.

Definition 1.1.3 ((Simple) counting measure). A boundedly finite measure µ is
called counting measure if µ(A) ∈ N for any bounded Borel set A ⊂ Rd × K. In
particular a counting measure µ is said to be simple if µ({(x, k) | k ∈ K}) ∈ {0, 1}
for any (x, k) ∈ Rd ×K.
We denote by N and Ñ# the spaces of the counting measures and simple counting
measures on Rd ×K, respectively. In particular we have Ñ# ⊂ N ⊂M.

There exists a bijective application that allows to write any µ ∈ N as sum of
Dirac measures on Rd ×K and, in particular, it is also a bijection between Ñ# and
the locally finite subsets of Rd × K. More precisely, a boundedly finite measure µ
is an element of N if and only if there exists a locally finite countable set of points
{(xi, ki)}i ⊂ Rd × K and a set of positive integers {ci}i such that µ =

∑
i ciδ(xi,ki).

In particular if µ ∈ N is simple, then µ =
∑
i δ(xi,ki) (see [1, Proposition 7.1.II]) and

we can associate to such a measure a unique locally finite set given by {(xi, ki)}i. If
(x, k) ∈ {(xi, ki)}i, we say that x is a point of µ and k is the mark of the point at x.

The space N inherits many properties byM. Indeed, since N is a closed subset
ofM (see [1, Proposition 7.1.III]), it is also a Polish space endowed with the metric
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1.1 Counting measures and marked simple point processes

d̂ (see [2, Proposition 3.3 (ii)] and [1, Corollary 7.1.IV]). Moreover one can show
that the Borel σ-algebra on N , that we denote by B(N ), is generated by the sets
{µ(A) = c}, where µ ∈ N , A is a Borel subset of Rd×K and c ∈ N (see [1, Corollary
7.1.VI]).

Many properties of N can be stated also for its subset Ñ#. Indeed Ñ#, as subset
of N , is separable too (see [2, Section 1.B]), but it is not closed (see [1, Section 7.1]).
Moreover the Borel σ-algebra on Ñ#, that we denote by B(Ñ#), is generated by the
sets {µ(A) = c}, where µ ∈ Ñ#, A is a Borel subset of Rd ×K and c ∈ N.

Definition 1.1.4 (Point process). A point process µ on Rd × K is a measurable
mapping from a probability space (Ω,F ,P) into (N ,B(N )). In the whole chapter we
will denote by bold character µ the point process, while we write µ for its realizations
(which are elements of N ).

Definition 1.1.5. We define the Borel subset N# of Ñ# as the set made by the
simple counting measures µ for which µ({(x, k1)}) = 1 = µ({(x, k2)}) for some
x ∈ Rd and some k1, k2 ∈ K if and only if k1 = k2.

In simple words, N# is made by the simple counting measures µ =
∑
i δ(xi,ki)

for which there do not exist two points of Rd ×K contained in {(xi, ki)}i with the
same positions and different marks. Since N# is a subset of the separable space Ñ#,
we have that N# is separable too. Moreover the Borel σ-algebra on N#, that we
denote by B(N#), is generated by the sets {µ(A) = c}, where µ ∈ N#, A is a Borel
subset of Rd ×K and c ∈ N.

Any element of N# can be considered as a realization of a marked simple point
process on Rd with marks in K. More precisely we have the following definition.

Definition 1.1.6 (Marked simple point process). A marked simple point process µ
on Rd with marks in K is a measurable mapping from a probability space (Ω,F ,P)
into (N#,B(N#)).
In the whole chapter we will denote by bold character µ the point process, while we
write µ for its realizations (which are elements of N#). Moreover we will denote by
P the law of µ and by E[·] the expectation associated with the law P.

Remark 1.1.7. If the set K contains only one point, the marked simple point
process reduces to the so called simple point process on Rd. Indeed Rd is isomorphic
to Rd×K when K has only one element and a simple point process on Rd is defined as
a measurable mapping from a probability space into the space of the simple counting
measures on Rd.

It is possible to describe a point process by a family of integer-valued random
variables (see [1, Proposition 7.1.IX]). Indeed, given a family of integer-valued random
variables defined on the same probability space

{NA |A is a Borel subset of Rd ×K} ,

there exists a point process µ on Rd ×K such that µ(A) = NA almost surely if and
only if the following statements are satisfied:

3



1. Marked simple point processes

• NA∪B = NA +NB almost surely for any pairs of disjoint bounded Borel sets
A,B ⊂ Rd ×K;

• for all sequences {An}n of bounded Borel subsets of Rd×K with An ↓ ∅ we have
NAn → 0 almost surely, where An ↓ ∅ if the sequence {1An} of the indicator
functions of the sets {An} satisfies

lim sup
n→∞

1An = 0 .

One can characterize the distribution of a point process by the finite dimensional
(fidi for short) distributions (see [1, Proposition 6.2.III]): for bounded Borel subsets
{Ai}i of Rd ×K and nonnegative integers {ni}i, we define

Pk(A1, . . . , Ak;n1, . . . , nk) = P(µ(Ai) = ni for i = 1, . . . , k) .

The following theorem is an existence result for such distributions (see [1, Theorem
7.1.XI]).

Theorem 1.1.8. A family {Pk(A1, . . . , Ak;n1, . . . , nk)} of discrete fidi distributions
defined on bounded Borel subsets of Rd × K is the family of fidi distributions of a
point process if and only if the following statements are satisfied:

(i) for any permutation i1, . . . , ik of the indexes 1, . . . , k, we have

Pk(A1, . . . , Ak;n1, . . . , nk) = Pk(Ai1 , . . . , Aik ;ni1 , . . . , nik) ;

(ii) ∑∞r=0 Pk(A1, . . . , Ak−1, Ak;n1, . . . , nk−1, r) = Pk−1(A1, . . . , Ak−1;n1, . . . , nk−1);

(iii) for each disjoint pair A1, A2 of bounded Borel subsets Rd × K we have that
P3(A1, A2, A1 ∪A2;n1, n2, n3) = 0 if n3 6= n1 + n2;

(iv) for sequences {An} of bounded Borel subsets of Rd ×K with An ↓ ∅ as n→∞,
we have P1(An; 0)→ 0 as n→∞.

Definition 1.1.9 (Intensity measure). We define the intensity measure of a marked
simple point process µ as the set function M(·) := E[µ(· × K)] on B(Rd).

In the rest we restrict without further mention to marked simple point processes
such that M(·) is bounded on bounded Borel subsets A of Rd. Note that in this case
M(·) is a boundedly finite measure on Rd.

1.2 Stationarity and ergodicity

Given x ∈ Rd we define the translation operator Tx : B(Rd ×K)→ B(Rd ×K) as

Tx : A 7→ TxA := {(x+ z, k) ∈ Rd ×K | (z, k) ∈ A} (1.3)

for any A ∈ B(Rd × K). Moreover for any B ∈ B(Rd) and x ∈ Rd, we denote by
x+B (or equivalently B + x) the set {x+ y | y ∈ B}.
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1.2 Stationarity and ergodicity

The operator Tx induces a transformation Sx : N# → N# through the relation

(Sxµ)(A) = µ(TxA)

for any µ ∈ N# and A ∈ B(Rd ×K), that is

Sxµ =
∑
i

δ(xi−x,ki) if µ =
∑
i

δ(xi,ki) .

In the following we denote by Sxµ the random variable whose image is given by
Sxµ whenever µ is the realization of µ. Moreover, for any A ∈ B(N#), we denote by
SxA the set {Sxµ |µ ∈ A}.

Since Sx : N# → N# is continuous (see [1, Lemma 10.1.I]), if µ is a marked
simple point process, then Sxµ is obtained by the composition of two measurable
mappings and hence Sxµ is a marked simple point process.

Definition 1.2.1 (Stationary marked simple point process). A marked simple point
process µ on Rd with marks in K (or equivalently, its law P) is called stationary (with
respect to the shifts {Sx} for x ∈ Rd) if, for all x ∈ Rd, µ and Sxµ have the same
law. Equivalently, µ is stationary if the fidi distributions of µ and Sxµ coincide, that
is

Pk(A1, . . . , Ak;n1, . . . , nk) = Pk(TxA1, . . . , TxAk;n1, . . . , nk)

for any bounded Borel subsets {Ai}i of Rd ×K and nonnegative integers {ni}ki=1.

The previous definition can be written in a more compact way by defining another
operator Ŝx that operates on the probability measures on the Borel sets of N#: for
any Borel subset B of N#, we define

ŜxP(B) := P(SxB) .

In such terms, Definition 1.2.1 can be read as follows: µ is stationary if its law on
N# is invariant under shifts {Ŝx}, that is ŜxP(B) = P(B) for any Borel subset of
N# and for any x ∈ Rd.

An important consequence of the stationarity is that a stationary marked simple
point process µ cannot have realizations with a finite positive number of points in
the whole space P-almost surely, that is (see [1, Proposition 10.1.IV])

P(µ(Rd ×K) ∈ {0,∞}) = 1.

Moreover if µ is stationary, the intensity measure M (see Definition 1.1.9) has a
more explicit structure, as stated in the following result.

Proposition 1.2.2. If µ is a stationary marked simple point process andM([0, 1]d) =
λ ∈ (0,+∞), then for any A ∈ B(Rd)

M(A) = λ l(A) ,

where l(·) is the Lebesgue measure on Rd.
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Proof. Since µ is stationary, we have

M(A) = E[µ(A×K)] = E[µ(Tx(A×K))] = E[µ((A+ x)×K)] = M(A+ x)

for any A ∈ B(Rd) and x ∈ Rd. Then M is a translation invariant measure on Rd
and hence it is a multiple of the Lebesgue measure, that is M(A) = λ l(A) for some
λ ∈ R∪{∞}. Since by hypothesisM([0, 1]d) ∈ (0,+∞), we get that λ ∈ (0,+∞).

We now move to ergodic marked simple point processes.

Definition 1.2.3 (Invariant set). We say that B ∈ B(N#) is an invariant set under
the shifts {Sx} if SxB = B for any x ∈ Rd. We denote by I the σ-algebra of such
invariant sets.

Definition 1.2.4 (Ergodic marked simple point process). A marked simple point
process µ on Rd with marks in K (or equivalently, its law P) is ergodic or metrically
transitive (with respect to the shifts {Sx} for x ∈ Rd) if, for all invariant sets
B ∈ B(N#) with respect to the shifts {Sx}, we have P(B) ∈ {0, 1}.

To state the ergodic theorem for stationary marked simple point process we
need to define before a convex averaging sequence of sets: given a sequence {An} of
bounded Borel sets in Rd, we say that {An} is a convex averaging sequence if

(i) each An is convex;

(ii) An ⊂ An+1 for n ∈ N;

(iii) sup{r ≥ 0 |An contains a ball of radius r} → ∞ as n→∞.

We have the following results (see [1, Proposition 10.2.II(a)] and [1, Theorem
10.2.IV] respectively).

Theorem 1.2.5. Let µ be a marked simple point process on Rd with marks in K.
Suppose that µ is stationary. Then for all measurable functions f on N# with
E[|f |] <∞ and for all convex averaging sequences {An} of bounded Borel subsets of
Rd, we have P-almost surely

1
l(An)

∫
An
f(Sxµ)dx→ E[f | I]

as n→∞, where l(·) is the Lebesgue measure on Rd.
Note that if µ is also ergodic, then E[f | I] = E[f ].

Theorem 1.2.6. Let µ be a marked simple point process on Rd with marks in K and
suppose that µ is stationary. Let {An} be a convex averaging sequence of bounded
Borel subsets of Rd. Then as n→∞ we have P-almost surely

µ(An ×K)
l(An) → E[µ([0, 1]d ×K) | I] ,

where l(·) is the Lebesgue meaure in Rd.
Note that if µ is also ergodic, then E[µ([0, 1]d × K) | I] = E[µ([0, 1]d × K)] =

M([0, 1]d).
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1.3 Campbell measure and Palm distribution
Let us consider a marked point process µ on Rd with marks in K and denote by P
and E its law and the expectation associated with P, respectively. It is possible to
define a measure on Rd ×N# by setting for A ∈ B(Rd) and U ∈ B(N#)

CP(A× U) = E[µ(A×K)1U (µ)] =
∫
U
P(dµ)

∫
A
µ(dx×K) .

The measure CP is countably additive and extends uniquely to a σ-finite measure on
B(Rd)⊗ B(N#) (see [1, Section 12.1]), that we still denote by CP. Such a measure
is called Campbell measure (see [1, Definition 12.1.I]).

Hence for any B(Rd)⊗ B(N#)-measurable nonnegative function g we have the
following formula (see [1, Lemma 12.1.II])

E
[∫

Rd
g(x, µ)µ(dx×K)

]
=
∫
N#

P(dµ)
∫
Rd
g(x, µ)µ(dx×K) =

=
∫
Rd×N#

g(x, µ)CP(dx× dµ) .
(1.4)

Note that CP(A ×N#) = M(A) for any A ∈ B(Rd × K) (see Definition 1.1.9).
Hence for any U ∈ B(N#) the measure CP(· × U) is absolutely continuous with
respect to the measure M(·). Hence we can define the Radon-Nikodym derivative as
a B(Rd)-measurable function P(x, U) such that for any A ∈ B(Rd) it holds∫

A
P(x, U)M(dx) = CP(A× U) . (1.5)

P(x, U) is defined uniquely up to values on sets of zero M -measure. Furthermore
the family {P(x, U)} can be chosen so that (see [1, Formulas (12.1.5a) and (12.1.5b),
Sec. 12.1])

(i) for any fixed U ∈ B(N#), P(x, U) is a measurable function of x, M -integrable
on bounded Borel subsets of Rd;

(ii) for any fixed x ∈ Rd, P(x, U) is a probability measure on U ∈ B(N#).

For any x ∈ Rd the measure P(x, ·) is called local Palm distribution and a family
of such measures that satisfies (i) and (ii) is defined a Palm kernel associated with µ
(or its law P).

By (1.5), it is possible to rewrite (1.4) in the following way (see [1, Proposition
12.1.IV])

E
[∫

Rd
g(x, µ)µ(dx×K)

]
=
∫
Rd×N#

g(x, µ)CP(dx× dµ) =
∫
Rd
M(dx)E(x)[g(x, µ)] ,

(1.6)

where
E(x)[g(x, µ)] =

∫
N#

g(x, µ)P(x, dµ)

and g is a B(Rd)⊗ B(N#)-measurable nonnegative function.
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1. Marked simple point processes

The following result gives a characterization of the Palm kernel associated to
the law P in terms of the so called Laplace functional. Given a nonnegative B(Rd)-
measurable function f with bounded support, we define, respectively, the Laplace
functionals associated to the law P and its local Palm distribution P(x, ·) as

L[f ] =
∫
N#

exp
(
−
∫
Rd
f(y)µ(dy ×K)

)
P(dµ) , (1.7)

L[f ;x] =
∫
N#

exp
(
−
∫
Rd
f(y)µ(dy ×K)

)
P(x, dµ) , for x ∈ Rd . (1.8)

We have the following result (see [1, Proposition 12.1.V]).

Proposition 1.3.1. Let µ be a marked simple point process on Rd with marks in K
and denote by P and M its law and its intensity measure, respectively. Given two
nonnegative B(Rd)-measurable functions f, g with bounded support, we have

lim
ε↓0

L[f ]− L[f + εg]
ε

=
∫
Rd
g(x)L[f ;x]M(dx) , (1.9)

where L[f ] and L[f ;x] are defined as in (1.7) and (1.8), respectively.
Conversely, if a family {L[f ;x]} satisfies (1.9) for all nonnegative and B(Rd)-

measurable functions f, g with bounded support and for some point process µ with
Laplace functional L[·] and intensity measure M(·), then the functionals {L[f ;x]}
coincide M -a.e. with the Laplace functionals of the Palm kernel associated with µ.

This characterization will be useful to derive the explicit form of the Palm kernel
for marked Poisson point processes (see Section 1.4).

1.3.1 The stationary case

We define N#
0 := {µ ∈ N# |µ({0}) = 1}. Suppose that µ is stationary and that

M([0, 1]d) = λ ∈ (0,+∞) (see Proposition 1.2.2). In this case, the local Palm
distributions become translated versions of a single basic distribution P0 (see [1,
Formula (12.1.7)]) and hence, using (1.6) and Proposition 1.2.2, it is possible to prove
the following identity (see [1, Formula (12.2.4), Theorem 12.2.II and Section 12.3]):

E
[∫

Rd
g(x, Sxµ)µ(dx×K)

]
=
∫
N#

P(dµ)
∫
Rd
g(x, Sxµ)µ(dx×K) =

= λ

∫
N#

0

P0(dµ)
∫
Rd
g(x, µ) dx

(1.10)

for any B(Rd)⊗ B(N#)-measurable nonnegative function g. The above probability
measure P0 is the so called Palm distribution associated with the stationary marked
simple point process µ or with its law P. The identity (1.10) is known as Campbell’s
formula and allows to characterize the probability measure P0 in the following way

P0(A) = 1
λ
E
[∫

Rd
1A(Sxµ)µ(dx×K)

]
, (1.11)

for any A ∈ B(N#
0 ). We point out that P0 has support inside N#

0 .
The introduction of the Palm measure allows us to state the following results

(see [1, Proposition 12.2.VI] and [1, Theorem 12.3.V]).
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1.4 Poisson point process

Proposition 1.3.2. Let µ be a stationary ergodic marked simple point process on
Rd with marks in K and suppose that M([0, 1]d) = λ ∈ (0,+∞). Denote by P and
P0 its law and the associated Palm distribution, respectively. Then for any B(N#)-
measurable nonnegative function g on N# and for any convex averaging sequence
{An}, we have P-almost surely

1
l(An)

∫
An
g(Sxµ)µ(dx×K)→ λ

∫
N#

0

g(µ)P0(dµ) as n→∞ .

Proposition 1.3.3. Let µ be a stationary marked simple point process on Rd with
marks in K and suppose that M([0, 1]d) = λ ∈ (0,+∞). Denote by P and P0 its law
and the associated Palm measure. Let {An} be a sequence of bounded Borel subsets
of Rd with positive Lebesgue measure such that An ⊂ An−1 for all n and

diam(An) := max{|x− y| : x, y ∈ An} → 0 as n→∞ .

Then we have as n→∞
P(µ(An) > 0)

l(An) → λ .

In particular, if {An} are balls in Rd centered at the origin, then for any bounded
continuous nonnegative B(N#)-measurable function f on N# we have

E[f(µ) |µ(An) > 0]→
∫
N#

0

P0(dµ)f(µ) .

1.4 Poisson point process

In this section we will introduce the Poisson point process as a particular type of
simple point process. As discussed in Remark 1.1.7, simple point processes can be
seen as marked simple point processes in which the space of the marks contains only
one element. Hence all the definitions that have been given in the previous sections
about marked simple point processes can be immediately transferred to simple point
processes.

Definition 1.4.1 (Poisson point process). Let Λ be a boundedly finite measure on
Rd. We say that a simple point process µ is a Poisson point process with intensity Λ
if its law P satisfies the following properties:

• for every B ∈ B(Rd) we have that µ(B) is a Poisson random variable with
mean Λ(B), that is

P(µ(B) = k) = e−Λ(B) Λ(B)k

k! , for k ∈ N , (1.12)

with the convention that, when Λ(B) =∞, (1.12) reads P(µ(B) = k) = 0 for
any k ∈ N;

• if B1, . . . , Bm are disjoint elements of B(Rd), then µ(B1), . . . ,µ(Bm) are inde-
pendent random variables.

9



1. Marked simple point processes

The intensity measure of µ (see Definition 1.1.9) coincide with the measure
Λ, since for any A ∈ B(Rd) we have M(A) = E[µ(A)] = Λ(A), where E is the
expectation associated to the law P. Hence we will refer to Λ as the intensity measure
of the Poisson point process µ.

In particular we say that µ is homogeneous if Λ(·) = λ · l(·) for some λ ∈
[0,+∞), where l(·) is the Lebesgue measure on Rd (otherwise we say that µ is
non-homogeneous). In this case we define λ as the density of the homogeneous
Poisson point process. Moreover, if µ is homogeneous, λ coincide with the expected
number of points in the d-dimensional cube [0, 1]d, that is E[µ([0, 1]d)] = λ.

Note that for any measure Λ on Rd there exists at most one Poisson point process
on Rd with intensity measure Λ up to equality in distribution. Moreover, if µ1 and
µ2 are two independent Poisson point process on Rd with intesity measures Λ1 and
Λ2, their superposition µ1 +µ2 is again a Poisson point process on Rd with intensity
measure Λ1 + Λ2 (see [4, Section 1.3]).

Definition 1.4.2 (Thinning of a Poisson point process). Let g : Rd → [0, 1] be a
measurable function and let µ be a homogeneous Poisson point process on Rd with
density λ. We define a new point process µ̃ on Rd in the following way: given a
realization µ of µ and a point x ∈ Rd for which µ({x}) = 1, we take the point away
with probability 1− g(x) and leave it where it is with probability g(x), independently
of all other points of the Poisson point process. This operation is done independently
also when changing µ. We say that µ̃ is a thinning of µ.

One can prove the point process µ̃ described in Definition 1.4.2 is a non-
homogenous Poisson point process on Rd with intensity measure Λ that satisfies
the identity Λ(A) = λ

∫
A g(x)dx for any A ∈ B(Rd) (see [4, Proposition 1.3]). In

particular, if g(x) = c ∈ [0, 1] is a constant function, then µ is a homogeneous Poisson
point process on Rd with density λc.

Note that, since the Lebesgue measure l(·) is invariant under translations on Rd,
by (1.12) we have that the homogeneous Poisson point process is stationary with
respect to translations on Rd (see Definition 1.2.1). Moreover, one has the following
result (see [4, Proposition 2.6]).

Proposition 1.4.3. The homogeneous Poisson point process on Rd is ergodic (see
Definition 1.2.4).

Now let us consider the Laplace functional (see (1.7)) for the Poisson point process
on Rd with intensity measure Λ. We have that, for all nonnegative B(Rd)-measurable
function f with bounded support, L[f ] is of the form (see [3, Theorem 3.9])

L[f ] = exp
(
−
∫
Rd

(1− e−f(x))Λ(dx)
)
.

By Proposition 1.3.1 it is possible to prove that for all the B(Rd)-measurable function
f with bounded support and for all x ∈ Rd the Laplace functional L[f ;x] satisfies
the identity

L[f ;x] = L[f ]Lδx [f ] ,

10
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where Lδx [f ] is the Laplace functional of a point process µ whose law is concentrated
on the counting measure δx ∈ N# defined by the relation δx({y}) = 1{x=y}(y) for
any y ∈ Rd (see [1, Example 12.1(b)]). Hence the local Palm distribution of the
Poisson point process P(x, ·) coincide with the distribution of the Poisson point
process on Rd with the exception that a point at x is added in all realizations of
the process (see [1, Formula (12.1.12)]). Moreover one can prove that the Poisson
point process is the unique point process whose Palm kernel is of that form (see [1,
Proposition 12.1.VI]).

In particular, since the homogeneous Poisson point process is stationary, we can
use the Campbell’s formula (1.10) in which the law P0 coincide with the law of
a homogeneous Poisson point process on Rd with the same density, but with the
exception that a point at 0 is added in all realizations of the process.

In Chapter 4 and Chapter 5 we will focus on the ν-randomization of a homogeneous
Poisson point process, where ν will be a given probability measure. We describe
below this concept.

Definition 1.4.4 (ν-randomization of a homogeneous Poisson point process). Given
a Polish space K, a probability measure ν on (K,B(K)) and a positive constant λ > 0,
the ν-randomization of the homogeneous Poisson point process with density λ is the
marked simple point process µ obtained as follows: calling {xi} a realization of a
homogeneous Poisson point process with density λ, a realization µ of µ is obtained
by marking each point xi with a random variable ki such that {ki} are i.i.d. random
variables with law ν. This operation is done independently also when changing {xi}.
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Chapter 2

Discrete and continuum
percolation

Many phenomena in physics, biology and chemistry can be modelled by spatial
random processes where the randomness concerns the geometry of the space instead
of the random motion of a body in a deterministic environment. Basic models of
random geometry are given by discrete and continuum percolation models.

In this chapter we give an overview of some important properties about the most
famous models in this two groups: the bond/site percolation on Zd for the discrete
field, the random connection model and the Boolean model for the continuous one.
The main references in this field are [5] and [8].

2.1 Discrete percolation
Let us define G = (V, E) as the graph whose vertex set is given by V := Zd and edge
set E := {{x, y} : x, y ∈ Zd, ||x− y||1 = 1}, where for any v = (v1, . . . , vd) ∈ Rd

||v||1 =
d∑
i=1
|vi| .

Definition 2.1.1 (Configuration). We define a configuration on E as an element
ω := {ωe}e∈E of the space Ω := {0, 1}E .

Fixed a parameter p ∈ [0, 1], in the Bernoulli bond percolation each edge of G is
said to be open with probability p and closed with probability 1− p, independently
of the other edges.

Hence, if we associate to each edge e ∈ E a random variable ωe such that

ωe =
{

1 , if e is open,
0 , if e is closed,

we have that {ωe}e∈E are i.i.d. Bernoulli random variables (equivalently, ω is a
Bernoulli random field) of parameter p. Moreover we have that ω := {ωe}e∈E is a
random variable whose realizations are elements ω ∈ Ω. For this reason we will refer
to ω as a random configuration and we denote, respectively, by Pp and Ep its law
and the expectation associated to Pp, that obviously depend on p.
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2. Discrete and continuum percolation

Warning 2.1.1. As in the previous chapter, we use bold letters as ω for random
objects, while we will use non-bold letters as ω for their realizations.

Definition 2.1.2 (Open path). Fixed a configuration ω ∈ Ω, an open path π in the
graph G is given by an ordered set of vertexes x1, . . . , xk of the graph G such that
{xi, xi+1} is an open edge of G for i = 1, . . . , k − 1. We will write π := (x1, . . . , xk)
when we want to specify the vertexes in the path and we will refer to x1 and xk as
extremal vertexes of the path π.

Definition 2.1.3. Given a configuration ω ∈ Ω and two points x, y ∈ V, we say that
x is connected to y (in the configuration ω), and we write x↔ y, if there exists an
open path π (in the configuration ω) whose extremal vertexes are x and y. Given
two subsets A and B of V, we say that A is connected to B (in the configuration
ω), and we write A↔ B, if there exists x ∈ A and y ∈ B such that x↔ y (in the
configuration ω). If A = {x} with x ∈ V, we write x ↔ B instead of {x} ↔ B to
simplify the notation.

Definition 2.1.4 (Open cluster). Fixed a configuration ω ∈ Ω and a vertex x ∈ V,
we denote by C(ω, x) the open cluster of x in the configuration ω, i.e. the set of
all the vertexes of V that are connected to x in the configuration ω. When x is the
origin, to simplify the notation we drop the dependence on x and we simply write
C(ω) instead of C(ω, 0). Moreover we write C and C(x) for the random variables
C(ω) and C(ω, x), respectively.

We adopt the convention that for any vertex x ∈ V, x ∈ C(ω, x) for any configu-
ration ω.

In the following, given a subset A of V , we denote by |A| its cardinality. Morevoer,
fixed an integer n > 0, we define the sets

Λn = {y ∈ V : ||y||∞ ≤ n} , ∂Λn := {y ∈ V : ||y||∞ = n} .

We are interested in studying the cardinality of C(x) for x ∈ V. Note that by
translation invariance of the lattice G, we have that C and C(x) have the same law
for all x ∈ V and hence it is enough to study |C|.

We define the percolation probability as

θ(p) = Pp(|C| =∞) .

Obviously θ(0) = 0, θ(1) = 1 and, by a coupling argument (see [5, Section 1.3]), one
can show that θ is non-decreasing. Hence, by defining the critical probability as

pc(d) = sup{p : θ(p) = 0} ,

we have that {
θ(p) > 0 ; if p > pc,

θ(p) = 0 ; if p < pc,

that is we have a phase transition. We refer to the regimes p > pc, p < pc and p = pc
as the supercritical, the subcritical and the critical phases, respectively.
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2.1 Discrete percolation

It is easy to show that pc(1) = 1 (see [5, Section 1.4]) and pc(d+ 1) < pc(d) (see
[5, Section 1.4 and Section 3.3]), that implies pc(d) ∈ [0, 1) if d ≥ 2 (see [5, Theorem
1.10]). In dimension d = 2 we have that the critical probability equals 1

2 (see [5,
Theorem 11.11]).

A natural question concerns the value of θ(p) when p = pc(d). We know that θ is
an infinitely differentiable function of p on (pc, 1] (see [5, Theorem 8.92]), but we are
still not able to say that in general θ is continuous at pc(d) for any d. If d = 2, we
have that θ(pc(2)) = θ(1/2) = 0 (see [5, Theorem 11.12]). For d ≥ 19 Hara and Slade
proved that θ(pc(d)) = 0 (see [7]) and a more delicate use of their techniques has
allowed an extension of their result for d ≥ 11 (see [3]). The identity θ(pc(d)) = 0 for
d ≥ 3 is one of the major conjectures in this field.

Consider now the function

ψ(p) := Pp(there exists an infinite open cluster) .

By the Kolmogorov’s zero-one law (see [6, Theorem 15 in Section 7.3]), one can show
that (see [5, Theorem 1.11])

ψ(p) =
{

0 , if θ(p) = 0,
1 , if θ(p) > 0.

(2.1)

Note that when we compute ψ(p) we look for an open cluser of a general node of V,
while θ(p) looks only at the cluster of the origin.

Before looking with more details at the supercritical and subcritical phases,
we want to introduce the model of the Bernoulli site percolation on G. In this
case, fixed p ∈ [0, 1], a vertex v ∈ V is said to be occupied with probability p and
unoccupied with probability 1− p, independently of the other vertexes. So the set of
the configurations will be given by Ω := {0, 1}V and we denote by Pp the law of the
random configuration ω. By defining an open path as a sequence of occupied vertexes
x1, . . . , xk such that |xi − xi−1| = 1 for i = 1, . . . , k, Definition 2.1.3 and Definition
2.1.4 can be transferred directly into this setting. Moreover we can similarly define
θ(p) and pc(d). To state the relation between the site and the bond percolation
we will denote by psitec (d) and pbondc (d) the critical probabilities for site and bond
percolation, respectively. One can prove that (see [5, Theorem 1.33 and Theorem
3.28])

1
2d− 1 ≤ p

bond
c (d) < psitec (d) ≤ 1− (1− pbondc (d))2d .

Hence, studying one model, one can deduce many properties of the other one.
In the rest of the section we will focus only on the Bernoulli bond percolation

and we will continue to denote by pc(d) its critical probability.

2.1.1 The supercritical phase

In the supercritical regime by (2.1) we know that Pp-almost surely there exists an
infinite open cluster. In particular it is possible to show that such a cluster is unique
Pp-almost surely (see [5, Theorem 8.1]) and its “surface” has the same order as its
volume. More precisely, denoting by I the infinite cluster, Ie the set of the open
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2. Discrete and continuum percolation

edges with both endpoints in I and by ∆I the set of the closed edges that have at
least one endpoint in I, if p > pc we have Pp-almost surely (see [5, Theorem 8.99])

|∆I ∩ Λn|
|Ie ∩ Λn|

→ 1− p
p

as n→∞ .

We can also focus on the properties of the finite clusters in the supercritical
regime. Indeed when p > pc one has (see [5, Theorem 8.18])

Pp(0↔ ∂Λn, |C| <∞) ∼ e−σ(p)n as n→∞

and (see [5, Theorem 8.61 and 8.65])

exp
(
−γ(p)n(d−1)/d

)
≤ Pp(|C| = n) ≤ exp

(
−η(p)n(d−1)/d

)
for all n ,

where σ(p), γ(p), η(p) are positive constants depending on p.
Another interesting problem that has been analyzed in the supercritical regime

concerns the number of edge-disjoint open left-right crossings of a fixed box. More
precisely, we define an open left-right crossing of the box Λn (with respect to the
first direction) in the graph G as a path π = (x(1), . . . , x(k)) in G such that

• x(i) ∈ Λn for i = 1, . . . , k;

• the edge {x(i), x(i+1)} is open;

• x
(1)
1 = −n and x(k)

1 = n.

Denoting by Mn the maximal number of edge-disjoint open left-right crossing of Λn,
we have the following result (see [5, Theorem 7.68] in the case d ≥ 3 and [5, Theorem
11.22] when d = 2).

Theorem 2.1.5. If p > pc(d), there exist strictly positive constants β(p) and γ(p),
depending on p, such that

Pp(Mn ≥ β(p)nd−1) ≥ 1− e−γ(p)nd−1
, for n ≥ 1 .

2.1.2 The subcritical phase

In the subcritical phase by (2.1) we know that there does not exist an infinite open
cluster Pp-almost surely. Hence we analyze the finite clusters wondering about their
size. Indeed Menshikov’s theorem holds (see [5, Theorem 5.4]): if p < pc, then there
exists a positive constant c(p) depending on p such that

Pp(0↔ ∂Λn) < e−c(p)n for n ≥ 1 .

This result is known also as sharpness of the phase transition and says in particular
that the size of the biggest cluster in a box of side-length n is typically of order
logn if p < pc. Moreover it implies that in the subcritical regime Ep[|C|] <∞ (see
[5, Theorem 5.2]) and in particular (see [5, Theorem 6.75]) there exists a postive
constant α(p) depending on p such that

Pp(|C| ≥ n) ≤ e−α(p)n for n ≥ 1 .
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2.1 Discrete percolation

2.1.3 FKG inequality and Russo’s formula

In this paragraph we introduce two key elements in this field: the FKG inequality
and Russo’s formula.

Let F be the σ-algebra of subsets of Ω generated by the finite-dimensional
cylinders (cf. Definition 2.1.1).

Definition 2.1.6. Given two configurations ω1, ω2 ∈ Ω, we say that ω1 � ω2 if
ω1(e) ≤ ω2(e) for any e ∈ E. A F-measurable function f : Ω → R is said to be
increasing (respectively decreasing) if f(ω1) ≤ f(ω2) (respectively f(ω1) ≥ f(ω2))
whenever ω1 � ω2. An event A ∈ F is said to be increasing (respectively decreasing)
if its indicator function is increasing (respectively decreasing).

The following proposition gives a fundamental inequality that allows to give a
bound to the probability of an intersection of two events in terms of the probability
of the single events even if they are not independent (see [5, Theorem 2.4]).

Proposition 2.1.7 (FKG inequality). Let f1 : Ω → R and f2 : Ω → R be both
increasing or both decreasing F-measurable functions with finite second moment.
Then

Ep[f1f2] ≥ Ep[f1]Ep[f2] .

Consequently, if A,B ∈ F are both increasing or both decreasing events, we have

Pp(A ∩B) ≥ Pp(A)Pp(B) .

Remark 2.1.8. Note that if A is an increasing event, then its complement is a
decreasing event. Hence if A and B are an increasing and a decreasing event,
respectively, from the FKG inequality we have

Pp(A ∩B) ≤ Pp(A)Pp(B) .

Consider now an increasing event A ∈ F that depends only on finitely many edges
and let us analyze the application p 7→ Pp(A). Russo’s formula (see [5, Proposition
2.25]), also known as Russo-Margulis formula, gives an estimate for the rate of change
of this function. To write this identity, we need to define the pivotal edges for A.

Definition 2.1.9. Given a configuration ω and an edge e ∈ E, we define ωe ∈ Ω as
the configuration that coincide with ω in all the edges f 6= e and ωe(e) = 1− ω(e).
The edge e is said to be pivotal for the event A if 1A(ω) 6= 1A(ωe). In words, an edge
e is pivotal for A if the occurence or non-occurence of A depends crucially on the
opening state of e.

Proposition 2.1.10 (Russo’s formula). Let A ∈ F be an increasing event that
depends only on finitely many edges. Then

d

dp
Pp(A) = Ep[N(A)] =

∑
e∈E

Pp(e is pivotal for A) ,

where N(A) is the number of pivotal edges for the event A.
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2. Discrete and continuum percolation

2.2 Continuum percolation
In continuum percolation models the vertexes of the graph under investigation are
given by some simple point process and an edge is inserted in the graph if some
relation is satisfied. Such relation could depend on some quantities defined in the
model such as the distance between the endpoints of the edge that we are analyzing
or some marks associated with the edges or with the vertexes. We will describe
some properties of two fundamental models in continuum percolation: the random
connection model and the Boolean model.

2.2.1 The random connection model

Let us consider a stationary simple point process ξ on Rd with d ≥ 2 and let us
associate with each pair {x, y} of points of ξ a uniform random variable Ux,y on
[0, 1], independently of the other pairs of points of ξ. Let g : [0,+∞)→ [0, 1] be a
non-increasing function. Given two points x, y of ξ we say that {x, y} is an edge if
Ux,y ≤ g(|x− y|). For this reason the function g is usually called connection function.

Let us denote by G the resulting random graph with vertex set ξ and edges as
above. A path π in G is given by an ordered set of points x1, . . . , xk in ξ such that
Uxi,xi+1 ≤ g(|xi+1 − xi|) for i = 1, . . . , k− 1. In this case we say that x1 is connected
to xk and we write x1 ↔ xk. Moreover we we write π = (x1, . . . , xk) and we refer to
x1 and xk as extremal vertexes of π.

Suppose now that the origin is a point of ξ and define Sn := {y ∈ Rd : ||y||∞ = n}.
We say that 0↔ Sn if 0 is connected to a point y of ξ such that ||y||∞ ≥ n. Moreover
we write 0↔∞ if for all n > 0 we have 0↔ Sn. Finally we define the cluster of the
point x of ξ as the set C(x) of the points of ξ that are connected to x.

The rigorous construction of such a process is described in [8, Section 1.5].
One can prove that if ξ is also ergodic, the number of infinite clusters is constant

almost surely (see [8, Theorem 2.1]). To establish such a value we need some
additional hypothesis on the point process and on the function g.

From now on we assume that ξ is a simple point process on Rd sampled according
to the Palm distribution associated to the homogeneous Poisson point process on Rd
with density λ. Denote by P0,λ the law of the resulting graph G and by Pλ the law
of G when ξ is sampled as a homogeneous Poisson point process.

We define the percolation probability as

θg(λ) = P0,λ(|C(0)| =∞)

and the critical density as

λc = λc(g) = inf{λ ≥ 0 : θg(λ) > 0} .

As observed in [8, Theorem 6.1, Sec. 6.1], the model has a non-trivial phase
transition, that is λc ∈ (0,+∞), if and only if

0 <
∫ ∞

0
rd−1g(r) dr <∞ .

If such hypothesis is satisfied, one can prove that in the supercritical regime there
exists a unique unbounded cluster Pλ-almost surely (see [8, Theorem 6.3, Sec. 6.4]).
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2.2 Continuum percolation

Moreover, as we will explain in details in the Chapter 4, it is possible to show that the
phase transition is sharp under the following additional conditions on the function g:

• g is positive on a subset of positive Lebesgue measure;

• there exists a finite family of points 0 < r1 < r2 < . . . < rm−1 < rm such
that g(r) = 0 for r ≥ rm and g is uniformly continuous on (ri, ri+1) for all
i = 0, ...,m− 1, where r0 := 0.

Indeed if such hypotheses are satisfied, one has that (see [2, Theorem 1] or equivalently
Chapter 4)

• for any λ > λc there exists c(λ) > 0 such that

P0,λ(0↔ Sn) ≤ e−c(λ)n for all n ∈ N ;

• there exists C > 0 such that

P0,λ(0↔∞) ≥ C(λ− λc) for any λ > λc .

2.2.2 The Boolean model

Let us consider a stationary simple point process ξ on Rd with d ≥ 2 (we will say that
the model is driven by ξ). To each point x of ξ we associate a nonnegative random
variable rx, independently of the other points. We suppose that such variables are
identically distributed. Given two points x, y of ξ, we say that {x, y} is an edge if
|x− y| ≤ rx + ry.

Let us denote by G the resulting random graph with vertex set ξ and edges as
above. A path π in G is given by an ordered set of points x1, . . . , xk in ξ such that
|xi+1− xi| ≤ rxi+1 + rxi for i = 1, . . . , k− 1. In this case we say that x1 is connected
to xk and we write x1 ↔ xk. Moreover we write π = (x1, . . . , xk) and we refer to x1
and xk as extremal vertexes of π.

Suppose now that the origin is a point of ξ and define Sn := {y ∈ Rd : ||y||∞ = n}.
We say that 0↔ Sn if 0 is connected to a point y of ξ such that ||y||∞ ≥ n. Moreover
we write 0↔∞ if for all n > 0 we have 0↔ Sn. Finally we define the cluster of the
point x of ξ as the set C(x) of the points of ξ that are connected to x.

The rigorous construction of such a process is described in [8, Section 1.4].
It is possible to prove that if the point process ξ is also ergodic, then the number

of infinite clusters is constant almost surely (see [8, Theorem 2.1, Sec. 2.1]).
From now on we suppose that ξ is a simple point process on Rd sampled according

to the Palm distribution associated to the homogeneous Poisson point process on
Rd with density λ and we write (ξ, ν, λ) for the Boolean model driven by ξ where
the random variable rx associated to a point x of ξ has law ν. Let us denote by
P0,λ the law of the resulting graph G and by Pλ the law of G when ξ is sampled as a
homogeneous Poisson point process.

We define the percolation probability as

θν(λ) = P0,λ(|C(0)| =∞)
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2. Discrete and continuum percolation

and the critical density as

λc = λc(ν) = inf{λ ≥ 0 : θν(λ) > 0} .

Note that a necessary condition to have a non-trivial value for λc is that∫ +∞

0
rd ν(dr) <∞ . (2.2)

Indeed if this condition is not satisfied, one can prove that the whole space Rd is
covered by balls almost surely (see [8, Proposition 3.1, Sec. 3.1]). Actually one can
prove that condition (2.2) is also sufficient to have λc(ν) ∈ (0,+∞) (see [4, Theorem
2.1]).

If we assume some additional hypothesis on the distribution ν, it is possible to
show that the phase transition is sharp. More precisely, we have the following result
(see [1, Theorem 1 and Theorem 2]):

Theorem 2.2.1. If ∫ +∞

0
r5d−3ν(dr) <∞ , (2.3)

then we have θν(λ) ≥ c(λ− λc), for some constant c > 0 whenever λ ≥ λc.
Moreover if (2.3) holds and there exists a constant k > 0 such that∫ +∞

s
ν(dr) ≤ e−ks for every s ≥ 1 ,

then we have that for any λ < λc there exists cλ > 0 such that for every n ≥ 1

P0,λ(0↔ Sn) ≤ e−cλn .

Using the ergodicity of the Poisson point process, one can prove that in the
supercritical case, that is λ > λc, the infinite cluster is unique (see [8, Theorem 3.6]).
Moreover the function λ 7→ θν(λ) is continuous for any λ 6= λc(ν) (see [8, Theorem
3.9]).

It is possible to extend the FKG inequality introduced in Proposition 2.1.7 to
this setting. Let us suppose now that the Boolean model is driven by a homogeneous
Poisson point process and denote by Pλ its law. Given two realizations of the model
ω = (ξ, {rx}) and ω′ = (ξ′, {r′x}), we say that ω � ω′ if and only if ξ ⊂ ξ′ and for
any point x of ξ we have rx ≤ r′x. An event A is said to be increasing (respectively
decreasing) if 1A(ω) ≤ 1A(ω′) (respectively 1A(ω) ≥ 1A(ω′)) whenever ω � ω′.

With these definitions Proposition 2.1.7 is transferred to this context in the
following way (see [8, Theorem 2.2]).

Proposition 2.2.2 (FKG inequality for the Boolean model). If A,B are both
increasing or both decreasing events, then

Pλ(A ∩B) ≥ Pλ(A)Pλ(B) ,

where Pλ is the law of the model.
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Chapter 3

Randomized algorithms: an
application to Bernoulli bond
percolation

In the last years many results in percolation have been proved again with different
techniques which have much simplified the proofs. Moreover these new techniques
have been very useful to prove new results in percolation and in other fields. For
example, one of the most important result proved in the eighties is Menshikov’s
Theorem which establishes that in the subcritical regime for the Bernoulli bond-
percolation the probability that the origin is connected to points at uniform distance
n decays exponentially fast in n. The proof of such a result is really long and involves
a lot of technical tools. Recently H. Duminil-Copin et al. have developed new
techniques based on randomized algorithms and have consequently simplified many
proofs and proved new results concerning the “sharpness of the phase transition” for
many models. In this chapter we focus on this new technique showing its application
to the Bernoulli bond percolation to obtain the same result of Menshikov as described
in [1] (see also [3] and [4]). The final result will be Theorem 3.1.4 below.

3.1 Randomized algorithms

In theoretical computer science it is often really hard to calculate the computational
complexity of problems. Computer scientists introduced the so-called randomized
algorithms to simplify this issue. Informally speaking, a randomized algorithm
associated to a Boolean function f of n variables takes ω ∈ {0, 1}n as an input and
reveals algorithmically the value of ω at different coordinates one by one stopping
when the information revealed is enough to determine f(ω) as output. At each step,
which coordinate will be revealed next depends on the values of ω revealed so far.
The question is to determine how many bits of information must be revealed before
the algorithm stops.

Formally speaking, a randomized algorithm is defined as follows. Consider a finite
set E of cardinality n. A randomized algorithm (or decision tree) T := (e1, {ψt}nt=2)
takes ω ∈ {0, 1}E as an input and gives back an ordered sequence e = (e1, . . . , en)
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3. Randomized algorithms: an application to Bernoulli bond percolation

constructed inductively as follows: for any t integer with 2 ≤ t ≤ n,

et = ψt(e[t−1], ωe[t−1]) ∈ E \ {e1, . . . , et−1} ,

where
e[t] := (e1, . . . , et) , ωe[t] = (ωe1 , . . . , ωet)

and ψt is a function interpreted as the decision rule at time t, that is ψt takes the
location and the value of the bits for the first t− 1 steps of the procedure and decides
of the next bit to examine.

For f : {0, 1}E → R, define

τ(ω) = τf,T (ω) := min{t ≥ 1 : ∀ω′ ∈ {0, 1}E , ω′e[t]
= ωe[t] ⇒ f(ω) = f(ω′)} , (3.1)

that is, τ(ω) is the smallest time that we need to determine the value of f .

The OSSS inequality, introduced for the first time in [6, Theorem 3.1], allows
to compute an upper bound for the variance of a Boolean function in terms of
the influence of the variables and the computational complexity of the randomized
algorithm for this function (that in the following will be called “revealment” of
the variables). We state below this inequality in the case of the Bernoulli bond
percolation.

Let us consider the Bernoulli bond percolation on Zd in which each edge is open
with probability p ∈ [0, 1] independently from the other edges. Let us call Gp the
graph with vertex set given by Zd and edge set given by the open edges in the
d-dimensional cubic lattice. Let us denote by Pp(·), Ep[·] and Var p(·) the law, the
associated expectation and variance of Gp. The OSSS inequality for the Bernoulli
percolation has the following form.

Theorem 3.1.1 (OSSS inequality for Bernoulli percolation). Consider p ∈ [0, 1]
and a finite set of edges E. Fix a function f : {0, 1}E → {0, 1} and an algorithm T
to compute f . We have

Varp(f) ≤
∑
e∈E

δ pe (T )Inf pe (f) ,

where δ pe (T ) and Inf pe (f) are respectively the revealment of ωe by T and the influence
of ωe on f . More precisely

δ pe (T ) = Pp(∃ t ≤ τ(ω) : e(t) = e) ,

Inf pe (f) := P p (f(ω) 6= f(ωe)) ,

where ωe ∈ {0, 1}E is the randomization of ω characterized by the following conditions:

• ωeu = ωu for any u ∈ E with u 6= e;

• ωee has the same distribution of ωe;

• ωee is independent on the family ω.
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3.1 Randomized algorithms

We want to apply this inequality with f(ω) := 1{0↔∂Λn}(ω), where Λn =
[−n, n]d ∩ Zd and the event {0 ↔ ∂Λn} occurs if there exists an open path that
connects the origin to a point x ∈ ∂Λn.

Let us call θn(p) = Pp(0↔ ∂Λn). We will use the OSSS inequality and Russo’s
formula (see Proposition 2.1.10) to prove the following claim.

Lemma 3.1.2. It holds

θ′n(p) ≥ n

8Sn(p) · θn(p)(1− θn(p)) , (3.2)

where Sn(p) :=
∑n−1
k=0 θk(p).

Proof. The proof is based on the Russo’s formula and the OSSS inequality applied to
a well chosen randomized algorithm determining 1{0↔Λn}. One may simply choose
the trivial algorithm checking every edge of the box Λn. Unfortunately the revealment
of the randomized algorithm would be 1 for every edge and the OSSS inequality
would not bring us much information. We could also use the randomized algorithm
that discovers the cluster of the origin starting from such a point. Edges far from the
origin would then be revealed by the randomized algorithm if and only if one of their
endpoints is connected to the origin. This provides a good bound for the revealment
of edges far from the origin, but not for edges close to it. To avoid this problem,
following [1], we will consider a family of random algorithms {Tk}nk=1, where Tk
discovers the clusters in Λn intersecting ∂Λk. With this choice we will be able to
show that the average of the revealment of {Tk}nk=1 for a fixed edge is always small.
We divide the proof into three parts: in the first one we describe the algorithm and
provide an upper bound for the revealment; in the second one we use Russo’s formula
to compute the derivative of θn and we relate it to the influence term in the OSSS
inequality; in the final part we apply the OSSS inequality in which we insert the
estimates obtained in the previous parts.
• Construction of the algorithm and upper bound on the average of

the revealments: For 1 ≤ k ≤ n we wish to construct a randomized algorithm Tk
determining 1{0↔∂Λn} such that for any edge e = {u, v} it holds

δ pe (Tk) ≤ Pp(u↔ ∂Λk) + Pp(v ↔ ∂Λk) . (3.3)

We describe the randomized algorithm Tk which explores the open clusters in Λn
intersecting ∂Λk.

We construct three growing sequences ∂Λk ⊂ V0 ⊂ V1 ⊂ · · · ⊂ V , ∅ = F0 ⊂
F1 ⊂ · · · ⊂ En and ∅ = W0 ⊂ W1 ⊂ · · · ⊂ En, where V := Λn and En := {{x, y} ∈
E |x, y ∈ Λn}. At step t, Vt represents the set of the vertexes that the randomized
algorithm have found to be connected to ∂Λk up to time t, Ft is the set of the
explored edges discovered by Tk until time t, Wt is the set of open edges discovered
by Tk until time t that have their endpoints in Vt.

Fix an ordering of the edges in En. Set V0 = ∂Λk and F0 = W0 = ∅. Assum-
ing that Vt, Ft and Wt have been constructed, we define the decision rule ψt+1
distinguishing between two cases:
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3. Randomized algorithms: an application to Bernoulli bond percolation

(C1) if there exists an edge e = {x, y} ∈ En \ Ft with x ∈ Vt and y 6∈ Vt (if there is
more than one edge that satisfies these hypotheses, pick the smallest one for
the ordering), then define et+1 := e = ψt+1(e[t], ωe[t]), Ft+1 = Ft ∪ {e} and

(Vt+1,Wt+1) :=
{

(Vt ∪ {x},Wt ∪ {e}), if ωe = 1;
(Vt,Wt), otherwise.

(C2) if e does not exists, define T := t and the algorithm stops.
If 0 ∈ VT and there exists a path from 0 to VT ∩∂Λn inside the graph (VT ,WT ), then
give as output “1{0↔∂Λn} = 1”, otherwise “1{0↔∂Λn} = 0”.

Note that T <∞ since En is finite and FT ⊆ En. Note also that the algorithm
discovers all the open clusters in Λn intersecting ∂Λk.

We claim that the algorithm Tk is correct for any k = 1, 2, . . . , n (i.e. it determines
whether or not the event {0↔ ∂Λn} occurs). Indeed, if it gives output “1{0↔∂Λn} =
1”, since (VT ,WT ) is a subgraph of Gp, by construction there exists an open path from
0 to ∂Λn and hence the event {0↔ ∂Λn} occurs. Moreover, if the event {0↔ ∂Λn}
takes place, then there exists an open path π that connects 0 to a point x ∈ ∂Λn.
Since 1 ≤ k ≤ n, such a path must intersect ∂Λk and hence 0 and x are contained
in the same cluster intersecting ∂Λk. Since the algorithm Tk reveals all the open
clusters intersecting ∂Λk, it discovers also the path π. Hence, when it stops, it must
give as output “1{0↔∂Λn} = 1”. So we have shown that the algorithm is correct and
it stops in a finite number of steps.

Note that τ (see (3.1)) is not greater than T and hence (3.3) is satisfied. Moreover
given u ∈ Λn

n∑
k=1

Pp(u↔ ∂Λk) ≤
n∑
k=1

Pp(u↔ ∂Λ|k−d(u,0)|(u)) ≤ 2Sn(p) ,

where d(u, 0) is the uniform distance between u and 0 and Λ|k−d(u,0)|(u) := u +
Λ|k−d(u,0)|. Hence given an edge e = {u, v}

1
n

n∑
k=1

δe(Tk) ≤
1
n

n∑
k=1

[Pp(u↔ ∂Λk) + Pp(v ↔ ∂Λk)] ≤
4Sn(p)
n

. (3.4)

•Derivative of θn: Let us consider the following ordering on the space Ω =
{0, 1}E : given ω, ω′ ∈ Ω we say that ω � ω′ if ωe ≤ ω′e for any e ∈ E. Note that the
event {0↔ ∂Λn} is increasing w.r.t. � and hence we can apply Russo’s formula (see
Proposition 2.1.10) to obtain that

θ′n(p) =
∑
e∈E

Pp(e is pivotal for the event {0↔ ∂Λn}) =

=
∑
e∈En

Pp(e is pivotal for the event {0↔ ∂Λn}) .
(3.5)

Remember that e is pivotal for an event A and a configuration ω if 1A(ω) 6= 1A(γe),
where γe ∈ Ω is defined by the following relation

γeu :=
{
ωu, if u 6= e;
1− ωu, if u = e.
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3.1 Randomized algorithms

Recall the definition of influence and of ωe given in Theorem 3.1.1. Note that,
calling A := {0↔ ∂Λk}, we have

Inf pe (1A) = Pp(1A(ω) 6= 1A(ωe)) =
= 2Pp(1A(ω) 6= 1A(ωe), ωe = 1, ωee = 0) =
= 2Pp(1A(ω) 6= 1A(γe), ωe = 1, ωee = 0),

(3.6)

The inequality 1A(ω) 6= 1A(γe) is equivalent to the fact that e is pivotal for the
event A and the configuration ω. Moreover this event is independent from ωe and
ωee. Hence (3.6) implies that

Inf pe (A) ≤ 2Pp(e is pivotal for the event A) . (3.7)

So combining (3.5) and (3.6) we get

θ′n(p) ≥ 1
2
∑
e∈En

Inf pe

(
1{0↔∂Λk}

)
. (3.8)

•Application of the OSSS inequality and conclusion of the proof: Let
us consider the OSSS inequality for the algorithm Tk and the function 1{0↔∂Λn}.
Note that, even if defined Ω, such a function depends only on {ωe}e∈En . So we can
consider {0, 1}En as domain of the function 1{0↔∂Λn}.

Observe that
Varp

(
1{0↔∂Λn}

)
= θn(p)(1− θn(p)) . (3.9)

Hence by the OSSS inequality

θn(p)(1− θn(p)) ≤
∑
e∈En

δ pe (Tk) Inf pe
(
1{0↔∂Λn}

)
. (3.10)

Summing over k = 1, . . . , n and dividing by n both the l.h.s. and the r.h.s. of (3.10),
by (3.4) and (3.8) we get

θn(p)(1− θn(p)) ≤
∑
e∈En

(
1
n

n∑
k=1

δ pe (Tk)
)
Inf pe

(
1{0↔∂Λn}

)
≤ 4Sn(p)

n

∑
e∈En

Inf pe

(
1{0↔∂Λk}

)
≤ 4Sn(p)

n
2θ′n(p) = 8Sn(p)

n
θ′n(p)

(3.11)

and hence
θ′n(p) ≥ n

8Sn(p) θn(p)(1− θn(p)) (3.12)

that concludes the proof.

We now want to use Lemma 3.1.2 to prove the sharpness of the phase transition
and hence Menshikov’s Theorem. We need the following general lemma (see [2,
Lemma 3]).
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3. Randomized algorithms: an application to Bernoulli bond percolation

Lemma 3.1.3. Consider a converging sequence of increasing differentiable functions
fn : [0, x0]→ (0,M ] satisfying

f ′n ≥
n∑n−1

k=0 fk
· fn ∀n ≥ 1 . (3.13)

Then there exists x1 ∈ [0, x0] such that

• for any x < x1, there exists cx > 0 such that for any n large enough fn(x) ≤
e−cxn;

• for any x > x1 the function f := limn→∞ fn satisfies f(x) ≥ x− x1.

Note that θn : [0, 1]→ [0, 1] is an increasing function and it is also differentiable
since it is a polynomial in p. Moreover limn→∞ θn(p) = θ(p) := Pp(0↔∞), where
0 ↔ ∞ means that the origin is connected to arbitrarily far points through an
open path. Let us consider p0 ∈ (pc(d), 1], where pc(d) is the critical probability for
the Bernoulli bond percolation in Zd. Since θn(p) is increasing in p and decreasing
in n, we have that θn(p) ≤ θ1(p0) < 1 for all p ∈ [0, p0] and n ≥ 1. So we have
1− θn(p) ≥ 1− θ1(p0) > 0 and hence (3.12) implies

θ′n(p) ≥ n

8Sn(p) θn(p)(1− θ1(p0)) = n

Sn(p) · α θn(p) , (3.14)

where α := 1−θ1(p0)
8 > 0.

So we can apply Lemma 3.1.3 with fn := α−1θn : [0, p0] → (0,M ], with M :=
α−1θn(p0), noting that the condition (3.13) is equivalent to (3.14) and hence there
exists p∗ ∈ [0, p0] such that

(i) for any p < p∗ there exists c = c(p, p0) > 0 such that for any n large enough
θn(p) ≤ e−cn;

(ii) there exists a constant β = β(p0) ∈ [0, 1) such that for any p > p∗ it holds
Pp(0↔∞) ≥ β(p− p∗).

Since p0 > pc(d) and

Pp(0↔∞)
{

= 0, p < pc(d) ,
> 0, p > pc(d) ,

we have that pc(d) = p∗ and Menshikov’s Theorem follows from item (i).
We recap what has been proved (which covers also the supercritical case).

Theorem 3.1.4. The following hold:

• for any p < pc(d) there exists a constant c = c(p) > 0 such that for any n large
enough θn(p) ≤ e−cn.

• there exists a constant β ∈ [0, 1) such that for any p > pc(d) it holds Pp(0↔
∞) ≥ β(p− pc(d)).
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We consider random graphs with uniformly bounded edges on a Poisson point process
conditioned to contain the origin. In particular we focus on the random connection
model, the Boolean model and the Miller–Abrahams random resistor network with
lower–bounded conductances. The latter is relevant for the analysis of conductivity
by Mott variable range hopping in strongly disordered systems. By using the method
of randomized algorithms developed by Duminil–Copin et al. we prove that in
the subcritical phase the probability that the origin is connected to some point at
distance n decays exponentially in n, while in the supercritical phase the probability
that the origin is connected to infinity is strictly positive and bounded from below
by a term proportional to (λ− λc), λ being the density of the Poisson point process
and λc being the critical density.

4.1 Introduction

We take the homogeneous Poisson point process (PPP) ξ on Rd, d ≥ 2, with density
λ conditioned to contain the origin. More precisely, ξ is sampled according to the
Palm distribution associated to the homogeneous PPP with density λ, which is the
same as sampling a point configuration ζ according to the homogeneous PPP with
density λ and setting ξ := ζ ∪ {0}.

We start with two random graphs with vertex set ξ: the random connection
model GRC = (ξ, ERC) with radial connection function g [9] and the Miller–Abrahams
random resistor network GMA = (ξ, EMA) with lower–bounded conductances (above,
ERC and EMA denote the edge sets).

The edges in ERC are determined as follows. Recall that the connection function
g : (0,+∞) → [0, 1] is a given measurable function. Given a realization ξ, for any
unordered pair of sites x 6= y in ξ one declares {x, y} to be an edge (i.e. one sets
{x, y} ∈ ERC) with probability g(|x− y|), independently from the other pairs of sites.
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4. Connection probabilities in Poisson random graphs

In what follows, we write PRC
0,λ for the law of the above random connection model

(shortly, RC model).

We now move to the Miller–Abrahams random resistor network, explaining first
the physical motivations. This random resistor network has been introduced by
Miller and Abrahams in [10] as an effective model to study the conductivity via
Mott variable range hopping in disordered solids, as doped semiconductors, in the
regime of strong Anderson localization and low impurity density. It has been further
developed by Ambegoakar et al. [1] to give a more robust derivation of Mott’s law
for the low temperature asymptotics of the conductivity [6, 5, 7, 12, 13]. Recently
developed new materials, as new organic doped seminconductors, enter into this
class.

The Miller–Abrahams random resistor network is obtained as follows. Given a
realization ξ of a generic simple point process, one samples i.i.d. random variables
(Ex)x∈ξ, called energy marks, and attaches to any unordered pair of sites x 6= y in ξ
a filament of conductance [1, 12]

exp
{
− 2
γ
|x− y| − β

2 (|Ex|+ |Ey|+ |Ex − Ey|)
}
. (4.1)

Above γ denotes the localization length and β the inverse temperature (in what
follows we take γ = 2 and β = 2 without loss of generality). Note that the skeleton of
the resistor network is the complete graph on ξ. In the physical context of inorganic
doped semiconductors, the relevant distributions of the energy marks have density
function c|E|αdE supported on some interval [−a, a], c being the normalization
constant, where α ≥ 0 and a > 0. In this case, the physical Mott’s law states that
the conductivity scales as exp{−Cβ

α+1
α+1+d } for some β–independent constant C. We

refer to [5] for a conjectured characterization of the constant C.
A key tool (cf. [6]) to rigorously upper bound the conductivity of the Miller–

Abrahams resistor network is provided by the control on the size of the clusters
formed by edges with high conductance, when these clusters remain finite, hence in
a subcritical regime. In particular, we are interested in the subgraph given by the
edges {x, y} such that

|x− y|+ |Ex|+ |Ey|+ |Ex − Ey| ≤ ζ , (4.2)

for some threshold ζ > 0 for which the resulting subgraph does not percolate.
We point out that a lower bound of the conductivity would require (cf. [7]) a

control on the left–right crossings in the above subgraph when it percolates (we will
address this problem in a separate work). To catch the constant C in Mott’s law for
the Miller–Abrahams resistor network on a Poisson point process, one needs more
information on the connection probabilities and on the left–right crossings than what
used in [6, 7]. For the connection probabilities this additional information will be
provided by Theorem 1 below.

As discussed in [5], by the scaling properties of the model, instead of playing
with ζ we can fix the threshold ζ and vary the Poisson density λ.

We now give a self–contained mathematical definition of GMA = (ξ, EMA). To
this aim we fix a probability distribution ν on R and a threshold ζ > 0. Given
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a realization ξ of the λ–homogeneous PPP conditioned to contain the origin, we
consider afresh a family of i.i.d. random variables (Ex)x∈ξ with common distribution
ν. For any unordered pair of sites x 6= y in ξ, we declare {x, y} to be an edge (i.e.
we set {x, y} ∈ EMA) if (4.2) is satisfied. In what follows, we write PMA

0,λ for the law
of the above random graph, and we will refer to this model simply as the MA model.

We introduce the function h defined as

h(u) := P (|E|+ |E′|+ |E − E′| ≤ ζ − u) , u ∈ (0,+∞) , (4.3)

where E,E′ are i.i.d. random variables with law ν. In what follows we will use the
following fact:

Lemma 4.1.1. The following properties are equivalent:

(i) The function h is not constantly zero;

(ii) The probability measure ν satisfies

ν
(

(−ζ/2, ζ/2)
)
> 0 . (4.4)

The proof of Lemma 4.1.1 is given in Section 4.2.
To state our main results we fix some notation. We write Sn for the boundary

of the box [−n, n]d, i.e. Sn = {x ∈ Rd : ‖x‖∞ = n} and we give the following
definition:

Definition 4.1.2. Given a point x ∈ Rd and given a graph G = (V,E) in Rd, we
say that x is connected to Sn in the graph G, and write x↔ Sn, if x ∈ V and x is
connected in G to some vertex y ∈ V such that (i) ‖y‖∞ ≥ n if ‖x‖∞ ≤ n or (ii)
‖y‖∞ ≤ n if ‖x‖∞ > n. We say that a point x ∈ Rd is connected to infinity in G,
and write x↔∞, if x ∈ V and for any ` > 0 there exists y ∈ V with ‖y‖∞ ≥ ` such
that x and y are connected in G.

Both the RC model when 0 <
∫∞

0 rd−1g(r)dr < +∞ and the MA model when
(4.4) is satisfied exhibit a phase transition at some critical density λc ∈ (0,∞):λ < λc =⇒ PRC/MA

0,λ
(
0↔∞

)
= 0 ,

λ > λc =⇒ PRC/MA
0,λ

(
0↔∞

)
> 0 .

(4.5)

Above, and in what follows, we do not stress the dependence of the constants on the
dimension d, the connection function g (for the RC model), the distribution ν and
the threshold ζ (for the MA model). The above phase transition (4.5) follows from
[9, Theorem 6.1] for the RC model and from Proposition 4.2.2 in Section 4.2 for the
MA model.

Following the recent developments [3, 4] on percolation theory by means of
decision trees (random algorithms) we can improve the knowledge of the above phase
transition by providing more detailed information on the behavior of the connection
probabilities. To state our main result we need to introduce the concept of good
function:
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4. Connection probabilities in Poisson random graphs

Definition 4.1.3. A function f : (0,+∞) → [0, 1] is called good if f is positive
on a subset of positive Lebesgue measure and if there is a finite family of points
0 < r1 < r2 < · · · < rm−1 < rm such that (i) f(r) = 0 for r ≥ rm and (ii) f is
uniformly continuous on (ri, ri+1) for all i = 0, . . . ,m− 1, where r0 := 0.

We point out that the function h defined in (4.3) is weakly decreasing and satisfies
h(u) = 0 for u > ζ. In particular, due to Lemma 4.1.1, h is positive on a subset of
positive Lebesgue measure if and only if (4.4) is satisfied. Moreover, due to Lemma
4.1.1, if ν has a probability density which is bounded and which is strictly positive
on a subset of (−ζ/2, ζ/2) of positive Lebesgue measure, then the function h is good.
In particular, if ν has density function c|E|αdE supported on some interval [−a, a]
(as in the physically relevant cases), then h is good.

Theorem 1. Consider the random connection model GRC with good radial connection
function g. Consider the Miller–Abrahams model GMA, associated to the distribution
ν and the threshold ζ, and assume that the function h defined in (4.3) is good (cf.
Lemma 4.1.1). In both cases, let the vertex set be given by a Poisson point process
with density λ conditioned to contain the origin.

Then for both models the following holds:
• (Subcritical phase) For any λ < λc there exists c = c(λ) > 0 such that

PRC/MA
0,λ

(
0↔ Sn

)
≤ e−c n , ∀n ∈ N . (4.6)

• (Supercritical phase) There exists C > 0 such that

PRC/MA
0,λ

(
0↔∞

)
≥ C(λ− λc) , ∀λ > λc . (4.7)

4.1.1 Extension to other Poisson models

We point out that the arguments presented in the proof of Theorem 1 are robust
enough to be applied to other random graphs on the Poisson point process with
uniformly bounded edge length. We discuss here the Poisson Boolean model GB [9].
Let ν 6= δ0 be a probability distribution with bounded support in [0,∞). Given a
realization ξ of the PPP with density λ conditioned to contain the origin, let (Ax)x∈ξ
be i.i.d. random variables with common law ν. The graph GB = (ξ, EB) is then
defined by declaring {x, y}, with x 6= y in ξ, to be an edge in EB if and only if
|x− y| ≤ Ax +Ay. It is known that the model exhibits a phase transition for some
λc ∈ (0,+∞) as in (4.5).

The reader can check that the proof of Theorem 1 for the MA model can be
easily adapted to the Boolean model (the latter is even simpler) if one takes now

h(u) := P (u ≤ A+A′) , u ∈ (0,+∞) , (4.8)

where A,A′ are i.i.d. with law ν, and if one assumes h to be good.
We collect the above observations in the following theorem:

Theorem 2. Consider the Poisson Boolean model GB with radius law ν 6= δ0 having
bounded support and such that the function h defined in (4.8) is good. Let the vertex
set be given by a Poisson point process with density λ conditioned to contain the
origin. Then the thesis of Theorem 1 remains true in this context, where λc is the
critical density for the Poisson Boolean model [9].
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4.2 Phase transition in the MA model

We point out that the above result has been obtained, in part with different
techniques, in [14].

4.2 Phase transition in the MA model
In this section we prove Lemma 4.1.1 and also show that the phase transition (4.5)
takes place in the MA model.

We start with Lemma 4.1.1:
Proof of Lemma 4.1.1. Let us show that Items (i) and (ii) are equivalent. Suppose
first that (4.4) is violated and let E,E′ be as in (4.3). Then a.s. we have |E| ≥ ζ/2
and |E′| ≥ ζ/2, thus implying that P (|E|+ |E′|+ |E − E′| ≥ ζ) = 1 and therefore
h(u) = 0 for any u > 0. Suppose now that (4.4) is satisfied. Then it must be
ν
(
[0, ζ/2)

)
> 0 or ν

(
(−ζ/2, 0]

)
> 0. We analyze the first case, the other is similar.

Consider the measure ν∗ given by ν restricted to [0, ζ/2). Let ` be the minimum
of the support of ν∗. Then for each δ > 0 it holds ν

(
[`, ` + δ]

)
> 0. Since ` < ζ/2

we can fix δ > 0 such that 2` + 3δ < ζ. Take now E,E′ i.i.d. random variables
with law ν. If E,E′ ∈ [`, ` + δ], then |E| + |E′| + |E − E′| ≤ 2` + 3δ ≤ ζ − u
for any u > 0 such that 2` + 3δ ≤ ζ − u (such a u exists). This implies that
h(u) ≥ P

(
E,E′ ∈ [`, `+ δ]

)
= ν

(
[`, `+ δ]

)2
> 0, hence h is not constantly zero. This

completes the proof that Items (i) and (ii) are equivalent.

Remark 4.2.1. We point out that in the above proof we have shown the following
technical fact which will be used in the proof of Proposition 4.2.2. If ν

(
[0, ζ/2)

)
> 0,

then there are ` ≥ 0 and δ > 0 such that (i) 2`+ 3δ < ζ, (ii) ν([`, `+ δ]) > 0, (iii) if
e, e′ ∈ [`, `+δ] then u+ |e|+ |e′|+ |e−e′| ≤ ζ for any u ∈ (0, ζ−2`−3δ]. On the other
hand, if ν

(
(−ζ/2, 0]

)
> 0, then there are ` ≥ 0 and δ > 0 such that (i) 2`+ 3δ < ζ,

(ii) ν
(
[−`− δ,−`]

)
> 0, (iii) if e, e′ ∈ [−`− δ,−`] then u+ |e|+ |e′|+ |e− e′| ≤ ζ for

any u ∈ (0, ζ − 2`− 3δ]. Note that, due to Lemma 4.1.1, when h 6≡ 0 the above two
cases are exhaustive.

Proposition 4.2.2. There exists λc ∈ (0,+∞) such that the phase transition (4.5)
takes place in the MA model when h is not constantly zero, equivalently when (4.4)
holds (cf. Lemma 4.1.1).

The proof of the above proposition is a generalization of the one given in [5], in
which ν is the physically relevant distribution ν = c|E|αdE.

Proof. Since two Poisson point processes (possibly conditioned to contain the origin)
with density λ < λ′ can be coupled in a way that the one with smaller density is
contained in the other, we get that the function φ(λ) := PMA

0,λ (0 ↔ ∞) is weakly
increasing. Hence, to get the thesis it is enough to exhibit positive λm, λM such that
φ(λm) = 0 and φ(λM ) > 0.

Let us consider the graph G∗MA = (ξ, E∗MA) where a pair of sites x 6= y in ξ forms
an edge {x, y} ∈ E∗MA if and only if |x− y| ≤ ζ. Trivially, GMA ⊂ G∗MA. On the other
hand, by the property of the Poisson Boolean model, the event {0↔∞ in G∗MA} has
probability zero for λ small enough. This proves that φ(λ) = 0 for λ small enough.

Now take `, δ as in Remark 4.2.1. We treat the case ν([0, ζ/2)) > 0, the comple-
mentary case ν((−ζ/2, 0]) > 0 is similar. Given a realization ξ of the point process
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4. Connection probabilities in Poisson random graphs

and given random variables (Ex)x∈ξ as in the Introduction, we build a new graph
ĜMA =

(
V̂MA, ÊMA

)
as follows. As vertex set V̂MA we take {x ∈ ξ : Ex ∈ [`, `+ δ]}.

We say that a pair of sites x 6= y in V̂MA forms an edge {x, y} ∈ ÊMA if and only if
|x− y| ≤ ζ − 2`− 3δ. By Remark 4.2.1 if {x, y} ∈ ÊMA then (4.2) is satisfied, and
therefore {x, y} ∈ EMA. We have therefore that ĜMA ⊂ GMA. On the other hand,
with positive probability we have E0 ∈ [`, ` + δ], i.e. 0 ∈ V̂MA, and conditioning
to this event ĜMA becomes a Boolean model on a PPP with density λν([`, ` + δ])
conditioned to contain the origin, where two points x, y are connected by an edge if
and only if |x− y| ≤ ζ − 2`− 3δ. By the properties of the Poisson Boolean model
[9] if λ is large enough with positive probability we have 0 ↔ ∞ in ĜMA. Since
ĜMA ⊂ GMA, this proves that φ(λ) > 0 for λ large enough.

4.3 Outline of the proof of Theorem 1

In this section we outline the proof of Theorem 1. Further details are given in the
remaining sections.

Warning 4.3.1. Without loss of generality we assume, here and in what follows,
that g(r) = 0 for r ≥ 1 in the RC model, and that ζ < 1 in the MA model.

4.3.1 Probability P0,λ and Pλ
We write N for the space of possible realizations of a point process in Rd [2]. We
denote by Pλ the law on N of the λ–homogeneous Poisson point process and by P0,λ
the associated Palm distribution. As in [9, Sections 1.4, 1.5], given k ∈ Zd and n ∈ N,
we define the binary cube of order n

K(n, k) :=
d∏
i=1

(ki 2−n, (ki + 1) 2−n].

Given x ∈ Rd there exists a unique binary cube of order n, say K(n, k(n, x)), that
contains x. Moreover, both for Pλ–a.e. ξ and for P0,λ–a.e. ξ, for each x ∈ ξ there
exists a unique smallest number n(x) such that K(n(x), k(n(x), x)) contains no other
point of ξ.

We then consider a separate probability space (Σ, P ). For the RC model we take
Σ = [0, 1]R, R =

{(
(n1, k1), (n2, k2)

)
: n1, n2 ∈ N , k1, k2 ∈ Zd}, and let P be the

product probability measure on Σ with marginals given by the uniform distribution on
[0, 1]. For the MA resistor network we take Σ = RR, R =

{
(n, k), : n ∈ N , k ∈ Zd},

and let P be the product probability measure on Σ with marginals given by ν. Finally,
we take the following probabilities on N × Σ:

Pλ := Pλ × P , P0,λ := P0,λ × P .

We write σ for a generic element of Σ. When treating the RC model, given x 6= y in
ξ we shorten the notation by writing σx,y for σ(n1,k1),(n2,k2) where

(n1, k1) :=
(
n(x), k(n(x), x)

)
, (n2, k2) :=

(
n(y), k(n(y), y)

)
. (4.9)
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4.3 Outline of the proof of Theorem 1

Similarly, when treating the MA model, given x ∈ ξ we write σx for σn,k where
(n, k) =

(
n(x), k(n(x), x)

)
.

In what follows we write ≺lex for the lexicographic order on Rd. To a generic
element (ξ, σ) ∈ N × Σ we associate a graph G = (V, E) defined as follows. We set
V := ξ for the vertex set. In the RC model we define the edge set E as the set of
pairs {x, y} with x ≺lex y in ξ such that σx,y ≤ g(|x− y|). When treating the MA
model we define E as the set of pairs {x, y} with x 6= y such that

|x− y|+ |σx|+ |σy|+ |σx − σy| ≤ ζ .

Then the law of G(ξ, σ) with (ξ, σ) sampled according to P0,λ equals PRC
0,λ in the

RC model, while it equals PMA
0,λ in the MA model. In particular, the phase transition

(4.5) can be stated directly for the probability P0,λ, and to prove Theorem 1 it
is enough to consider P0,λ instead of PRC/MA

0,λ . Note that when (ξ, σ) is sampled
according to Pλ, the graph G(ξ, σ) gives a realization of GRC/GMA with the exception
that now ξ is sampled according to a λ–homogeneous Poisson point process.

4.3.2 Discretisation

We point out that, due to our assumptions, the graph G has all edges of length
strictly smaller than 1, both in the RC model and in the MA model.

Given a positive integer n and given k = 0, 1, . . . , n, we define the functions

θ̃k(λ) := P0,λ
(
0↔ Sk

)
, ψ̃k(λ) := λθ̃k(λ) . (4.10)

Warning 4.3.2. Above, and in what follows, we adopt the convention that, when
considering P0,λ or the associated expectation E0,λ, graphical statements as “ 0↔ Sk”
refer to the random graph G, if not stated otherwise. The same holds for Pλ and Eλ.

We have θ̃k(λ) = P0,λ
(
0↔ Sk

)
= Pλ

(
0↔ Sk in G(ξ ∪ {0}, σ)

)
. Due to [8, Thm.

1.1] (which remains valid when considering the additional random field σ), the
derivative θ̃′n(λ) of θ̃n(λ) can be expressed as follows:

θ̃′n(λ) = 1
λ
E0,λ

[
|Piv+(0↔ Sn) \ {0}|

]
, (4.11)

where Piv+(0↔ Sn) denotes the set of points which are (+)–pivotal for the event
0↔ Sn. We recall that given an event A in terms of the graph G and a configuration
(ξ, σ) ∈ N × Σ, a point x ∈ Rd is called (+)–pivotal for the event A and the
configuration (ξ, σ), if (i) x ∈ ξ, (ii) the event A takes place for the graph G(ξ, σ),
(iii) the event A does not take place in the graph obtained from G(ξ, σ) by removing
the vertex x and all edges containing x.

Note that P0,λ(0 ∈ Piv+(0↔ Sn)) = P0,λ(0↔ Sn) = θ̃n(λ). Hence, from (4.11)
we get

ψ̃′n(λ) = θ̃n(λ) + λθ̃′n(λ) = E0,λ
[
|Piv+(0↔ Sn)|

]
. (4.12)

The first step in the proof of Theorem 1 is to approximate the functions ψ̃n(λ)
and ψ̃′n(λ) in terms of suitable random graphs built on a grid. To this aim, we
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introduce the scale parameter ε of the form ε = 1/m, where m ≥ 2 is an integer.
Moreover we set

Λk := [−k, k)d , Sk := ∂Λk = {x ∈ Rd : ‖x‖∞ = k} ;
Rεx := x+ [0, ε)d where x ∈ εZd ,
Γε := {x ∈ εZd |Rεx ⊂ Λn+1} ,

and

Wε :=
{{
{x, y} |x 6= y in Γε , g(|x− y|) > 0} for the RC model ,

Γε for the MA model .
(4.13)

We then consider the product space Ωε := {0, 1}Γε × RWε and write (ηε, σε) for
a generic element of Ωε. We endow Ωε with the product probability measure P(ε)

λ

making ηεx, as x varies in Γε, a Bernoulli random variable with parameter

P(ε)
λ (ηεx = 1) = pλ(ε) := λεd

1 + λεd
, (4.14)

and making σεw, as w varies in Wε, a random variable with uniform distribution on
[0, 1] when considering the RC model, and with distribution ν when considering the
MA model. To (ηε, σε) ∈ Ωε we associate the graph Gε = (Vε, Eε) built as follows.
We set

Vε := {x ∈ Γε : ηεx = 1} .

In the RC model we take

Eε :=
{
{x, y} : x 6= y in Vε , x ≺lex y , σ

ε
x,y ≤ g(|x− y|)

}
and in the MA model we take

Eε :=
{
{x, y} : x 6= y in Vε , |x− y|+ |σεx|+ |σεy|+ |σεx − σεy| ≤ ζ

}
.

Given an event A concerning the graph Gε, we define Piv(A) as the family of sites
of Γε which are pivotal for the event A. More precisely, given a configuration (ηε, σε)
in Ωε and a site x ∈ Γε, we say that x is pivotal for A if

1A(ηε, σε) 6= 1A(ηε,x, σε) ,

where ηε,x is obtained from ηε by replacing ηεx with 1− ηεx. We point out that the
event {x ∈ Piv(A)} and the random variable ηεx (under P(ε)

λ ) are independent.
In what follows, we write E(ε)

λ for the expectation associated to P(ε)
λ and (recall

Definition 4.1.2) we set

θ̃
(ε)
k (λ) := P(ε)

λ

(
0↔ Sk | ηε0 = 1

)
, θ

(ε)
k (λ) := P(ε)

λ

(
0↔ Sk

)
.

Warning 4.3.3. Above, and in what follows, we adopt the convention that, when
considering P(ε)

λ or the associated expectation E(ε)
λ , graphical statements as “ 0↔ Sk”

refer to the random graph Gε, if not stated otherwise.
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4.3 Outline of the proof of Theorem 1

The following result allows to approximate the functions in (4.10) and their
derivatives by their discretized versions:

Proposition 4.3.1. For any n ≥ 1 and for all k = 0, 1, . . . , n it holds

θ̃k(λ) = lim
ε↓0

θ̃
(ε)
k (λ) , (4.15)

ψ̃′n(λ) = lim
ε↓0

E(ε)
λ

[∣∣Piv(0↔ Sn)
∣∣] . (4.16)

In particular, it holds ψ̃k(λ) = λ limε↓0 θ̃
(ε)
k (λ).

The last statement in Proposition 4.3.1 is an immediate consequence of (4.15).
The proof of (4.15) is given in Section 4.6, while the proof of (4.16) is given in Section
4.7.

4.3.3 A crucial inequality on θ(ε)
n (λ)

As explained in [4], due to the phase transition (4.5), to prove Theorem 1 it is enough
to show that given δ ∈ (0, 1) there exists a positive constant c0 = c0(δ) such that for
each n ≥ 1

ψ̃n(λ) ≤ c0

∑n−1
k=0 ψ̃k(λ)
n

ψ̃′n(λ) , ∀λ ∈ [δ, δ−1] . (4.17)

Indeed, since the functions λ 7→ ψ̃k(λ) are increasing in λ and converging as k →∞,
due to [4, Lemma 3] applied to the functions fn(λ) := c0ψ̃n(λ), (4.17) implies that
there exists λ∗ ∈ [δ, δ−1] fulfilling the following property for any λ ∈ [δ, δ−1]:{

λθ̃n(λ) ≤Me−c n if λ < λ∗ and n ∈ N ,
λθ̃(λ) ≥ C(λ− λ∗) if λ > λ∗ ,

(4.18)

where M = M(δ) > 0, C = C(δ) > 0, c = c(λ, δ) > 0 and θ̃(λ) = limn→∞ θ̃n(λ) =
P0,λ(0↔∞). By taking δ small to have λc ∈ [δ, δ−1], as a byproduct of (4.5) and
(4.18) we get the identity λ∗ = λc and the thesis of Theorem 1.

Due to Proposition 4.3.1, we have (4.17) if we prove that, given δ ∈ (0, 1), there
exists a positive constant c = c(δ) such that

θ̃(ε)
n (λ) ≤ o(1) + c

∑n−1
k=0 θ̃

(ε)
k (λ)

n
E(ε)
λ

[∣∣Piv(0↔ Sn)
∣∣] (4.19)

for any λ ∈ [δ, δ−1] and n ≥ 1, where the term o(1) goes to zero uniformly in
λ ∈ [δ, δ−1] as ε ↓ 0. Since the event {0 ↔ Sk} implies that ηε0 = 1 and since
pλ(ε) = O(εd) uniformly in λ ∈ [δ, δ−1], (4.19) is proved whenever we show the
following proposition containing the crucial inequality on θ(ε)

n (λ):

Proposition 4.3.2. Given δ ∈ (0, 1), there exists a positive constant c = c(δ) such
that

θ(ε)
n (λ) ≤ o(εd) + c

∑n−1
k=0 θ

(ε)
k (λ)

n
E(ε)
λ

[∣∣Piv(0↔ Sn)
∣∣] (4.20)

for any λ ∈ [δ, δ−1] and n ≥ 1, where o(εd)/εd goes to zero uniformly in λ ∈ [δ, δ−1]
as ε ↓ 0.
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4.3.4 Proof of Proposition 4.3.2 by the OSSS inequality

It is possible to derive (4.20) by applying the OSSS inequality for product probability
spaces (cf. [11, Theorem 3.1], [4, Remark 5]). To recall it and fix the notation in our
context, we first introduce the index set Iε as the disjoint union

Iε := Γε tWε .

Since in the MA model Wε = Γε, given x ∈ Γε we write ẋ for the site x thought as
element of Wε inside Iε. More precisely, for the MA model it is convenient to slightly
change our notation and set Wε := {ẋ : x ∈ Γε}, thus making Wε and Γε disjoint.
We will keep the notation σεx, instead of σεẋ, since no confusion arises. To have a
uniform notation for random variables, given i ∈ Iε we set

γεi :=
{
ηεi if i ∈ Γε,
σεi if i ∈Wε.

By construction, γε = (γεi : i ∈ Iε) is a family of independent random variables with
law P(ε)

λ .
We consider an algorithm T to establish if the event {0 ↔ Sn} takes place in

Gε, having input the values γεi ’s. At the beginning the algorithm does not reveal
(read) all the values γεi ’s, but it reveals some of them during the execution. The
OSSS inequality (cf. [11, Theorem 3.1], [4, Remark 5]) then reads

Varε(1{0↔Sn}) ≤
∑
i∈Iε

δεi (T )Inf εi (0↔ Sn), (4.21)

where the above variance refers to P(ε)
λ , δεi (T ) and Inf εi (0↔ Sn) are respectively the

revealment and the influence of γεi . More precisely, one sets

δεi (T ) := P(ε)
λ (T reveals the value of γεi ) ,

Inf εi (0↔ Sn) := P(ε)
λ

(
1{0↔Sn}(γ

ε) 6= 1{0↔Sn}(γ
ε,i)
)
,

where γε,i = (γε,ij : j ∈ Iε) appearing in the second identity is characterized by the
following requirements: (a) γε,ij := γεj for all j 6= i, (b) γε,ii has the same distribution
of γεi , (c) γ

ε,i
i is independent of the family γε (with some abuse, we have kept the

notation P(ε)
λ for the joint law).

Since Varε(1{0↔Sn}) = θ
(ε)
n (λ)(1− θ(ε)

n (λ)), (4.21) implies for any ε0 > 0 that

θ(ε)
n (λ) ≤ c

∑
i∈Iε

δεi (T )Inf εi (0↔ Sn) ∀ε < ε0 , (4.22)

where c := supλ∈[δ,δ−1] supε≤ε0(1− θ(ε)
1 (λ))−1 (note that θ(ε)

n (λ) ≤ θ(ε)
1 (λ) for n ≥ 1).

As θ(ε)
1 (λ) ≤ P(ε)

λ (ηε0 = 1) ≈ λεd, by taking a suitable ε0 = ε0(δ), we get that c is
strictly positive and that c depends only on δ.

Similarly to [4], in order to derive (4.20) from (4.22), for each k = 1, . . . , n we
construct an algorithm Tk to determine if the event {0↔ Sn} occurs such that the
following Lemmas 4.3.3 and 4.3.4 are valid:
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4.4 The algorithm Tk

Lemma 4.3.3. For any k ∈ {1, 2, . . . , n} given δ ∈ (0, 1) it holds∑
i∈Wε

δεi (Tk)Inf εi (0↔ Sn) = o(εd) , (4.23)

where o(εd)/εd goes to zero uniformly in λ ∈ [δ, δ−1] as ε ↓ 0.

Lemma 4.3.4. Given δ ∈ (0, 1) there exists c = c(δ) > 0 such that, for any
λ ∈ [δ, δ−1] and any n ≥ 1, it holds

1
n

n∑
k=1

δεi (Tk) ≤ c ε−d
1
n

n−1∑
a=0

θ(ε)
a (λ) ∀i ∈ Γε . (4.24)

The algorithm Tk is described in Section 4.4, while Lemmas 4.3.3 and 4.3.4 are
proved in Section 4.5.

From (4.22), by averaging among k, we have

θ(ε)
n (λ) ≤ c

∑
i∈Iε

[ 1
n

n∑
k=1

δ
(ε)
i (Tk)

]
Inf εi (0↔ Sn) (4.25)

for any ε ≤ ε0(δ) and for c = c(δ). By combining (4.25) with Lemmas 4.3.3 and 4.3.4
we get

θ(ε)
n (λ) ≤ o(εd) + c ε−d

∑n−1
k=0 θ

(ε)
k (λ)

n

∑
i∈Γε

Inf εi
(
0↔ Sn

)
(4.26)

for any ε ≤ ε0(δ) and for c = c(δ).
Hence the crucial inequality (4.20) in Proposition 4.3.2 follows from (4.26) and

the following lemma:

Lemma 4.3.5. There exists c = c(δ) > 0 such that, for each event A ⊂ Ωε which is
increasing in the random variables ηεi ’s, it holds

Inf εi (A) ≤ c εdP(ε)
λ (i ∈ Piv(A)) ∀i ∈ Γε , ∀λ ∈ [δ, δ−1] .

The proof of the above lemma is given in Section 4.5. This concludes the proof
of Proposition 4.3.2.

4.4 The algorithm Tk

Fixed k ∈ {1, . . . , n} we are interested in constructing an algorithm Tk that determines
if the event {0↔ Sn} takes place in Gε. We introduce the sets

Lε = {{x, y} : x 6= y in Γε , f(|x− y|) > 0} ,
Hk
ε = {{x, y} ∈ Lε : xy intersects Sk} ,

where f := g in the RC model, f := h in the MA model and xy denotes the segment
in Rd with extremes x, y. For simplicity, we set xy := {x, y} with the convention
that x ≺lex y.
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4. Connection probabilities in Poisson random graphs

We fix an ordering in Lε such that the elements of Hk
ε precede the elements of

Lε \Hk
ε . Finally, we introduce the random variables

(
U εx,y : xy ∈ Lε

)
defined on

(Ωε,P
(ε)
λ ) as follows:

U εx,y :=
{

1
(
σεx,y ≤ g(|x− y|)

)
in the RC model ,

1
(
|x− y|+ |σεx|+ |σεy|+ |σεx − σεy| ≤ ζ

)
in the MA model .

Note that, by definition of the edge set Eε of the graph Gε, we have that {x, y} ∈ Eε
with x ≺lex y if and only if xy ∈ Lε and ηεx = ηεy = U εx,y = 1.

The algorithm is organised by meta-steps parameterised by the elements of Lε.
t(r) will be the number of revealed variables up to the rth meta-step included. At
each meta-step the algorithm will provide two sets Fr, Vr: Vr is roughly the set of
vertices connected to some edge in Eε ∩Hk

ε discovered up to the rth meta-step, while
Fr is roughly the set of edges connected to some edge in Eε ∩Hk

ε discovered up to
the rth meta-step. We recall that Eε denotes the set of edges of the graph Gε.

Beginning of the algorithm

First meta-step. Let xy be the first element ofHk
ε . Reveal the random variables

ηεx and ηεy. Set e1 := x, e2 := y.
• If ηεxηεy = 0, then set (F1, V1) := (∅, ∅) and t(1) = 2, thus completing the

first-meta step in this case.
• If ηεxηεy = 1, then in the RC model reveal the random variable σεx,y and set

e3 := xy, t(1) := 3, while in the MA model reveal the random variables σεx, σεy and
set e3 := ẋ, e4 := ẏ, t(1) := 4. In both cases set

(F1, V1) :=
{

({xy}, {x, y}) if U εx,y = 1 ,
(∅, ∅) otherwise ,

(4.27)

thus completing the first meta–step in this case.

∗ End of the first meta–step ∗

Generic rth meta-step for r ≥ 2. Distinguish two cases. If r ≤ |Hk
ε |, then let

xy be the rth element of Hk
ε . If r > |Hk

ε |, look for the minimum edge xy in Lε \Hk
ε

such that {x, y} ∩ Vr−1 6= ∅. If such an edge does not exist, then set Rend := r − 1
and Tend := t(r − 1), all the generic meta-steps are completed hence move to the
final step.

Set N = 0 (N will play the role of counter).

• If ηεx has not been revealed yet, do the following: reveal the random variable
ηεx, increase N by +1, and set et(r−1)+N := x.
• If ηεy has not been revealed yet, then reveal the random variable ηεy, increase N

by +1 and set et(r−1)+N := y.
• If ηεxηεy = 0, then set (Fr, Vr) := (Fr−1, Vr−1) and t(r) := t(r − 1) + N , thus

completing the rth meta–step in this case.
• If ηεxηεy = 1, then:
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4.5 Proof of Lemmas 4.3.3, 4.3.4 and 4.3.5

? In the RC model reveal the random variable σεx,y, increase N by +1, set
et(r−1)+N := xy;

? In the MA model, if σεx has not been revealed yet, then reveal it, increase N
by +1, set et(r−1)+N := ẋ. In addition, if σεy has not been revealed yet, then
reveal it, increase N by +1, set et(r−1)+N := ẏ.

In both the above ?–cases set t(r) := t(r − 1) +N ,

(Fr, Vr) :=
{

(Fr ∪ {xy}, Vr ∪ {x, y}) if U εx,y = 1,
(Fr−1, Vr−1) otherwise,

thus completing the rth meta-step.

Final step. If 0 ∈ VRend and there exists a path from 0 to VRend \ (−n, n)d inside
the graph (VRend , FRend) then give as output “0 ↔ Sn”, otherwise give as output
“0 6↔ Sn”.

End of the algorithm

We conclude with some comments on the algorithm.
First, since Lε is finite, the algorithm always stops. Moreover we note that, when

the algorithm has to check if U εx,y = 1, this is possible using only the revealed random
variables.

By construction, in the algorithm Tk, VRend := {x ∈ Γε : x ↔ Sk}. Moreover,
FRend is the set of edges belonging to some path in Gε for which there is an edge {x, y}
such that the segment xy intersects Sk (we shortly say that the paths intersect Sk).
If 0↔ Sn then there must be a path in Gε from 0 to some point x in Γε \ (−n, n)d,
and this path must intersect Sk. As a consequence, if 0↔ Sn then there exists a path
from 0 to VRend \ (−n, n)d inside the graph (VRend , FRend). The other implication is
trivially fulfilled, hence the output of the algorithm is correct.

Finally, we point out that the revealed random variables are, in chronological
order, the ones associated to the indexes e1, e2, . . . , . . . , eTend (in the cases ei = x,
ei = ẋ and ei = xy, the associated random variables are given by ηεx, σεx and σεx,y,
respectively).

4.5 Proof of Lemmas 4.3.3, 4.3.4 and 4.3.5

In this section we prove Lemmas 4.3.3, 4.3.4 and 4.3.5 which enter in the proof of
Proposition 4.3.2 as discussed in Section 4.3.4.

To simplify the notation, given α ∈ R, we will denote by O(εα) any quantity
which can be bounded from above by Cεα, where the constant C can depend on δ
but not on the particular value λ ∈ [δ, δ−1]. Similarly, we denote by o(1) any quantity
which can be bounded from above by Cf(ε), where limε↓0 f(ε) = 0, and both f and
C can depend on δ but not on the particular value λ ∈ [δ, δ−1]. We point out that
the above quantities could depend on n.
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4. Connection probabilities in Poisson random graphs

4.5.1 Proof of Lemma 4.3.3

We consider first the RC model. Recall that in this case Wε = Lε (cf. (4.13)). Let
i = {x, y} ∈ Lε with x ≺lex y. If σεx,y is revealed by the algorithm, then it must be
ηεx = ηεy = 1. Hence we have δεi (Tk) ≤ P(ε)

λ (ηεx = ηεy = 1) = O(ε2d). On the other
hand, by definition,

Inf εi (0↔ Sn) = P(ε)
λ (1A(γε) 6= 1A(γε,i)) with A := {0↔ Sn} . (4.28)

If 1A(γε) 6= 1A(γε,i) then it must be ηε0 = 1, ηεx = 1, ηεy = 1. As a consequence, we get
that Inf εi (0 ↔ Sn) ≤ P(ε)

λ (ηε0 = 1, ηεx = 1, ηεy = 1). The last probability is O(ε2d) if
the edge {x, y} contains the origin (and there are O(ε−d) of such edges in Wε), while
it is O(ε3d) if the edge {x, y} does not contain the origin (and there are O(ε−2d) of
such edges in Wε). Using that δεi (Tk) = O(ε2d), we get (4.23).

We now move to the MA model. Let i = ẋ ∈Wε. If σεx is revealed by the algorithm,
then it must be ηεx = 1. Hence, δεi (Tk) = O(εd). On the other hand, by (4.28), if
1A(γε) 6= 1A(γε,i) then it must be ηε0 = ηεx = 1. Hence, Inf εi (0 ↔ Sn) = O(εd) if
x = 0 and Inf εi (0↔ Sn) = O(ε2d) if x 6= 0. Since |Wε| = O(ε−d), we get (4.23), thus
concluding the proof of Lemma 4.3.3.

4.5.2 Proof of Lemma 4.3.4

In what follows, constants c∗(d), c(d),.. are positive constants depending only on the
dimension d. We also write i ∈ Hk

ε if the site i belongs to some edge in Hk
ε . Since the

edges in Hk
ε have length smaller than 1, if i ∈ Hk

ε then de(i, Sk) < 1, where de(·, ·)
denotes the Euclidean distance. This implies that |{k ∈ N : i ∈ Hk

ε }| ≤ 2.
We observe that, when i 6∈ Hk

ε ,

{ηεi is revealed by Tk} ⊂ {i↔ Sk} ∪ {∃j ∈ Γε \ {i} : |i− j| < 1 , j ↔ Sk} .

Hence we can bound

δεi (Tk)1(i 6∈ Hk
ε ) ≤

∑
j∈Γε:|i−j|≤1

P(ε)
λ (j ↔ Sk) . (4.29)

By translation invariance we have P(ε)
λ (j ↔ Sk) ≤ θ

(ε)
d(j,Sk)(λ), where d(j, Sk) denotes

the distance in uniform norm between j and Sk. Note that d(j, Sk) ≤ n. Hence we
can write

δεi (Tk)1(i 6∈ Hk
ε ) ≤

∑
j∈Γε:|i−j|≤1

P(ε)
λ (j ↔ Sk) ≤

∑
j∈Γε:|i−j|≤1

θ
(ε)
d(j,Sk)(λ) .

If the integer a ≥ 0 satisfies a ≤ d(j, Sk) ≤ a+ 1, then we can bound θ(ε)
d(j,Sk)(λ) ≤

θ
(ε)
a (λ). Hence we can write

δεi (Tk)1(i 6∈ Hk
ε ) ≤

n−1∑
a=0

θ(ε)
a (λ)|{j ∈ Γε : |i− j| ≤ 1, a ≤ d(j, Sk) ≤ a+ 1}| . (4.30)
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4.6 Proof of (4.15) in Proposition 4.3.1

Let us now consider, for a fixed a,
n∑
k=1
|{j ∈ Γε : |i− j| ≤ 1, a ≤ d(j, Sk) ≤ a+ 1}| . (4.31)

If |i − j| ≤ 1 and a ≤ d(j, Sk) ≤ a + 1, then it must be a − c∗ ≤ d(i, Sk) ≤ a + c∗,
for some constant c∗ = c∗(d). Since k varies among the integers, there are at most
c(d) values of k for which a− c∗ ≤ d(i, Sk) ≤ a+ c∗. For the other values of k the
associated addendum in (5.29) is simply zero. We conclude that the sum in (5.29) is
bounded by c(d)ε−d. Therefore, averaging (4.30) among k, we get

1
n

n∑
k=1

δεi (Tk)1(i 6∈ Hk
ε ) ≤ c(d)ε−d 1

n

n−1∑
a=0

θ(ε)
a (λ) . (4.32)

On the other hand, by the observation made at the beginning of the proof, we
can bound

∑n
k=1 δ

ε
i (Tk)1(i ∈ Hk

ε ) ≤ 2, while

ε−d
n−1∑
a=0

θ(ε)
a (λ) ≥ ε−dθ(ε)

0 (λ) = ε−dP(ε)
λ (0↔ S0) = ε−dP(ε)

λ (ηε0 = 1) = λ

1 + λεd
.

(4.33)
We therefore conclude that

1
n

n∑
k=1

δεi (Tk)1(i ∈ Hk
ε ) ≤ c(δ)ε−d 1

n

n−1∑
a=0

θ(ε)
a (λ) . (4.34)

The thesis then follows from (4.32) and (4.34).

4.5.3 Proof of Lemma 4.3.5

By symmetry we have

Inf εi (A) = 2P(ε)
λ (1A(γε) 6= 1A(γε,i), γεi = 1, γε,ii = 0)

= 2P(ε)
λ (1A(γε) 6= 1A(γ̂ε), γεi = 1, γε,ii = 0) ,

(4.35)

where the configuration γ̂ε is obtained from γε by changing the value of γεi = ηεi .
The inequality 1A(γε) 6= 1A(γ̂ε) is equivalent to the fact that i is pivotal for the
event A and the configuration γε. Moreover, this event is independent from γεi , γ

ε,i
i .

Hence (4.35) implies that

Inf εi (A) ≤ 2P(ε)
λ (i ∈ Piv(A), ηεi = 1) ≤ 2P(ε)

λ (i ∈ Piv(A))pλ(ε) .

This concludes the proof of Lemma 4.3.5.

4.6 Proof of (4.15) in Proposition 4.3.1
In the proof below, constants c, c1, c2 . . . are understood as positive and ε–independent
and they can change from line to line. To simplify the notation, given α ∈ R, we will
denote by O(εα) any quantity which can be bounded from above by Cεα, where the
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constant C can depend on λ. Similarly, we denote by o(1) any quantity which can be
bounded from above by Cf(ε), where limε↓0 f(ε) = 0, and both f and C can depend
on λ. All the above quantities can depend also on n, which is fixed once and for all.

Recall that n ≥ 1. To simplify the notation we take k = n (the general case
is similar). Recall the notation introduced in Section 4.3.1. We use the standard
convention to identify an element ξ of N with the atomic measure

∑
x∈ξ δx, which

will be denoted again by ξ. In particular, given U ⊂ Rd, ξ(U) equals |ξ ∩ U |. In
addition, given ξ ∈ N and x ∈ Rd, we define the translation τxξ as the new set ξ− x.

We define the events

Aε :=
{
ξ ∈ N : ξ(Rεx) ∈ {0, 1} ∀x ∈ Γε

}
,

Bε :=
{
ξ ∈ N : ξ(Rε0) = 1

}
.

If ξ(Rεx) = 1, then we define x̄ as the unique point of ξ ∩ Rεx. On the space N we
define the functions

ϕεx = 1(ξ(Rεx) = 1) , x ∈ Γε . (4.36)

Recall Warning 4.3.2 in Section 4.3.2.

Lemma 4.6.1. It holds

θ̃n(λ) = P0,λ(0↔ Sn) = lim
ε↓0

Pλ(0̄↔ Sn |Bε) . (4.37)

Proof. We use the properties of the Campbell measure and Palm distribution stated
in [2, Thm. 12.2.II and Eq. (12.2.4)]. We apply [2, Eq. (12.2.4)] with

g(x, ξ) := 1(x ∈ Rε0)
∫

Σ
P (dσ)1

(
0↔ Sn in G(ξ, σ)

)
(see the notation of Section 4.3.1) and get

λεdP0,λ(0↔ Sn) = λE0,λ
[ ∫

Rd
dx g(x, ξ)

]
= Eλ

[ ∫
Rd
ξ(dx)g(x, τxξ)

]
= Eλ

[ ∫
Rε0

ξ(dx)1(x↔ Sn(x))
]
,

(4.38)

where Sn(x) := Sn + x. We set Nε := ξ(Rε0). Nε is a Poisson random variable with
parameter λεd. We point out that

Eλ
[ ∫

Rε0

ξ(dx)1(x↔ Sn(x))1(Nε ≥ 2)
]
≤ Eλ[Nε1(Nε ≥ 2)]

= Eλ[Nε]− Pλ(Nε = 1) = λεd(1− e−λεd) = O(ε2d) .
(4.39)

Moreover, we can bound

Pλ({0̄↔ Sn+ε} ∩Bε) ≤ Eλ
[ ∫

Rε0

ξ(dx)1(x↔ Sn(x))1(Nε = 1)
]

≤ Pλ({0̄↔ Sn−ε} ∩Bε) .
(4.40)
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Since Pλ(Bε) = λεd(1 + o(1)), from (4.38), (4.39) and (4.40) we conclude that

P0,λ(0↔ Sn) ≥ Pλ(0̄↔ Sn+ε |Bε) + o(1) , (4.41)
P0,λ(0↔ Sn) ≤ Pλ(0̄↔ Sn−ε |Bε) + o(1) . (4.42)

On the other hand, Pλ
(
ξ(Λn+ε \

◦
Λn−ε) ≥ 1

)
= O(ε). Since for ε small (as we assume

from now on) the events {ξ(Λn+ε \
◦
Λn−ε) ≥ 1} and Bε are independent, we conclude

that Pλ
(
ξ(Λn+ε \

◦
Λn−ε) ≥ 1 |Bε

)
= O(ε). As a consequence, we have

Pλ(0̄↔ Sn |Bε) = Pλ(0̄↔ Sn and ξ(Λn+ε \
◦
Λn−ε) = 0|Bε) + o(1)

≤ Pλ(0̄↔ Sn+ε |Bε) + o(1) ,
(4.43)

and

Pλ(0̄↔ Sn−ε |Bε) = Pλ(0̄↔ Sn−ε and ξ(Λn+ε \
◦
Λn−ε) = 0|Bε) + o(1)

≤ Pλ(0̄↔ Sn |Bε) + o(1) .
(4.44)

By combining (4.41) with (4.43), and (4.42) with (4.44), we get

P0,λ(0↔ Sn) = Pλ(0̄↔ Sn|Bε) + o(1) , (4.45)

which is equivalent to (4.37).

We now enlarge the probability space (Σ, P ) introduced in Section 4.3.1 as follows.
For the RC model the enlarged probability space is obtained from (Σ, P ) by adding
independent uniform random variables σx,y indexed by the pairs (x, y) with x 6= y
and such that x, y ∈ Γε for some ε = 1/m, m being a positive integer. We take
these additional random variables independent from the original random variables
σ(n1,k1),(n2,k2) defined in (Σ, P ). We point out a slight abuse of notation, since in
Section 4.3.1 we have defined σx,y by means of (4.9) when x, y ∈ ξ. On the other
hand, the probability that the realization ξ of a Poisson point process has some
vertex in ∪∞m=1Γ1/m is zero, thus implying that the notation σx,y is not ambiguous
with probability 1. For the MA model the enlarged probability space is obtained
from (Σ, P ) by adding i.i.d. random variables σx with distribution ν, indexed by
the points x belonging to some Γε as ε = 1/m and m varies among the positive
integers. Again the new random variables are independent from the ones previously
defined in (Σ, P ) and again the notation is not ambiguous with probability 1. To
avoid new symbols, we denote by (Σ, P ) the enlarged probability space and we keep
the definition Pλ := Pλ × P , P0,λ := P0,λ × P , where now P refers to the enlarged
probability space.

Given points x 6= y and x′ 6= y′ we define

ψx
′,y′
x,y :=

{
1(σx,y ≤ g(|x′ − y′|)) in the RC model ,
1(|x′ − y′|+ |σx|+ |σy|+ |σx − σy| ≤ ζ) in the MA model .

We now introduce a new graph Gε = (Vε, Eε) which is (as the graph G introduced
in Section 4.3.1) a function of the pair (ξ, σ) ∈ N × Σ. We set

Vε := {x ∈ Γε : ξ(Rεx) = 1}
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while we define Eε as

Eε = {{x, y} |x, y ∈ Vε , x ≺lex y , Ψx,y
x,y = 1} . (4.46)

When the event Aε (defined at the beginning of the section) takes place we define a
new graph G#

ε = (Vε, E#
ε ) as function of (ξ, σ) ∈ N × Σ by setting

E#
ε = {{x, y} |x, y ∈ Vε , x ≺lex y , Ψx̄,ȳ

x,y = 1} . (4.47)

Similarly, when the event Aε takes place, we define a new graph G∗ε = (Vε, E∗ε ) as
function of (ξ, σ) ∈ N × Σ by setting

E∗ε = {{x, y} |x, y ∈ Vε , x ≺lex y , Ψx̄,ȳ
x̄,ȳ = 1} . (4.48)

We note that G∗ε is the graph with vertex set Vε and with edges given by the pairs
{x, y} where x, y vary between the sites in Vε with {x̄, ȳ} ∈ E . Roughly, G∗ε is the
graph obtained from G restricted to Λn+1 by sliding the vertex at x̄ (with x ∈ Γε) to
x.

Finally we observe that

Pλ(Acε ∩Bε) = Pλ(Bε ∩ {∃y ∈ Γε \ {0} : ξ(Rεy) ≥ 2})

≤ Pλ(Bε)
∑

y∈Γε\{0}
Pλ(ξ(Rεy) ≥ 2) = Pλ(Bε)O(εd) , (4.49)

thus implying that Pλ(Acε |Bε) = O(εd).

Lemma 4.6.2. The event {0̄ ↔ Sn in G} equals the event {0 ↔ Sn in G∗ε} if
ξ(Λn+ε \

◦
Λn−ε) = 0.

Proof. Let {a, b} be an edge of G with ‖a‖∞ < n and ‖b‖∞ ≥ n. Since ξ(Λn+ε \
◦
Λn−ε) = 0 we have ‖a‖∞ < n−ε and ‖b‖∞ ≥ n+ε. On the other hand, the Euclidean
distance between a and b is smaller than 1, thus implying that ‖a‖∞ ≥ n + ε − 1
and ‖b‖∞ < n + 1 − ε. Suppose now that 0̄ ↔ Sn in G and let a, b ∈ ξ be such
that 0̄ ↔ a, {a, b} is an edge of G, ‖a‖∞ < n and ‖b‖∞ ≥ n. As already observed,
n + ε ≤ ‖b‖∞ < n + 1 − ε, thus implying that b = z̄ for some z ∈ Γε and that
n ≤ ‖z‖∞ < n+ 1. Since 0↔ z in G∗ε , we conclude that 0↔ Sn in G∗ε .

Suppose now that 0↔ Sn in G∗ε . Then there exists z ∈ Γε such that ‖z‖∞ ≥ n,
0↔ z in G∗ε . As a consequence, 0̄↔ z̄ in G. Since ξ(Λn+ε \

◦
Λn−ε) = 0, it must be

z̄ ∈ Λ̄cn+ε, thus implying that 0̄↔ Sn in G.

Lemma 4.6.3. It holds

Pλ(0̄↔ Sn |Bε) = Pλ(0↔ Sn in Gε |Aε ∩Bε) + o(1) . (4.50)

Proof. Since Pλ(Acε |Bε) = O(εd) we can write

Pλ(0̄↔ Sn |Bε) = Pλ(0̄↔ Sn |Aε ∩Bε) +O(εd) . (4.51)
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4.6 Proof of (4.15) in Proposition 4.3.1

From now on we suppose the event Aε ∩ Bε to take place. We want to apply
Lemma 4.6.2. By independence, Pλ

(
{ξ(Λn+ε \

◦
Λn−ε) ≥ 1} ∩ Bε

)
= O(εd+1), while

Pλ(Aε ∩Bε) ≥ Cεd by (4.49). As a consequence,

Pλ
(
ξ(Λn+ε \

◦
Λn−ε) = 0 |Aε ∩Bε) = 1 + o(1) .

By the above observation and Lemma 4.6.2, in the r.h.s. of (4.51) we can replace the
event {0̄↔ Sn in G} with the event {0↔ Sn in G∗ε} with an error o(1). In particular
to get (4.50) it is enough to show that

Pλ(0↔ Sn in Gε |Aε ∩Bε) = Pλ(0↔ Sn in G∗ε |Aε ∩Bε) + o(1) . (4.52)

Since the events Aε, Bε do not depend on σ, and since the random variables of
σ–type are i.i.d. w.r.t. Pλ conditioned to ξ, we conclude that G∗ε and G#

ε have the
same law under Pλ(·|Aε ∩Bε). Hence, in order to prove (4.52) it is enough to show
that

Pλ(0↔ Sn in Gε |Aε ∩Bε) = Pλ(0↔ Sn in G#
ε |Aε ∩Bε) + o(1) . (4.53)

Trivially, (4.53) follows from Lemma 4.6.4 below. The result stated in Lemma
4.6.4 is stronger than what we need here (we do not need the term ξ(Λn+2) in the
expectation), and it is suited for a further application in the next section.

Lemma 4.6.4. It holds Eλ
[
ξ(Λn+2)1(G#

ε 6= Gε) |Aε ∩Bε
]

= o(1).

Proof. Recall definition (4.36). Since the graphs Gε and G#
ε have the same vertex

set Vε, by an union bound we can estimate

Eλ
[
ξ(Λn+2)1(G#

ε 6= Gε) |Aε ∩Bε
]

≤
∑

x≺lexy in Γε
Eλ
[
ξ(Λn+2)1

(
ϕεx = 1 , ϕεy = 1 , ϕε0 = 1 , Ψx̄,ȳ

x,y 6= Ψx,y
x,y

)
|Aε ∩Bε

]
.

(4.54)

Note that ξ(Λn+2) ≤ ξ
(
Λn+2 \ (Rεx ∪Rεy ∪Rε0)

)
+ 3 =: Z whenever ϕεx = ϕεy = ϕε0 =

1. We also observe that, under Pλ
(
· |Aε ∩ Bε

)
, the random variables Z, ϕεx, ϕεy,

1
(
Ψx̄,ȳ
x,y 6= Ψx,y

x,y

)
are independent. As a consequence, (4.54) implies that

Eλ
[
ξ(Λn+2)1(G#

ε 6= Gε) |Aε ∩Bε
]
≤ c

∑
x∈Γε

∑
y∈Γε\{0,x}

pλ(ε)2−δ0,xP
(
Ψx̄,ȳ
x,y 6= Ψx,y

x,y

)
,

(4.55)

where δ0,x denotes the Kronecker delta.
Above we have used the definition of pλ(ε) given in (4.14), the fact that

Pλ
(
ϕεz = 1 |Aε ∩Bε

)
=
{

1 if z = 0 ,
pλ(ε) if z ∈ Γε \ {0} ,

(4.56)

and the estimate (recall that Pλ(Acε|Bε) = o(1))

Eλ
[
Z |Aε ∩Bε

]
≤

Eλ
[
Z1(Bε)

]
Pλ(Aε ∩Bε)

= Eλ
[
Z
] Pλ(Bε)
Pλ(Aε ∩Bε)

=
Eλ
[
Z
]

Pλ(Aε|Bε)
= O(1) .
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4. Connection probabilities in Poisson random graphs

From now on we distinguish between the RC model and the MA model.
• We consider the RC model. Recall that the connection function g is good. To
simplify the notation we restrict to m = 2 and r2 = 1 in Definition 4.1.3 (the general
case is similar). For i = 1, 2, we set

ωi(δ) := sup{|g(a)− g(b)| : a, b ∈ (ri−1, ri) and |a− b| ≤ δ} .

Since g is uniformly continuous in (ri−1, ri) we know that ωi(δ)→ 0 when δ → 0, for
i = 1, 2. Since g has support inside (0, 1), P

(
Ψx̄,ȳ
x,y 6= Ψx,y

x,y

)
= 0 if |x − y| ≥ 1 and

|x̄− ȳ| ≥ 1. By taking ε small, this always happens if |x− y| ≥ 2. Hence, in the sum
inside (4.54) we can restrict to x, y with |x− y| < 2.

As a consequence we have

r.h.s. of (4.55) ≤ c
∑
x∈Γε

∑
y∈Γε\{0,x}:
|x−y|<2

pλ(ε)2−δ0,x |g(|x− y|)− g(|x̄− ȳ|)| .
(4.57)

It remains to prove that the r.h.s. of (4.57) is o(1).
Since |z − z̄| <

√
dε for all z ∈ Γε, |x− y| differs from |x̄− ȳ| by at most 2

√
dε.

We set Mx,y := max{|x − y|, |x̄ − ȳ|} and mx,y := min{|x − y|, |x̄ − ȳ|}. Note that
mx,y > 0. Since g has support inside (0, 1), in (4.57) we can restrict to the case
mx,y < r2 = 1. Moreover, if we consider the following cases:

(i) 0 = r0 < mx,y < Mx,y < r1,

(ii) r1 < mx,y < Mx,y < r2 = 1,

we can bound

|g(|x− y|)− g(|x̄− ȳ|)| ≤ ω1(2
√
dε) in the case (i),

|g(|x− y|)− g(|x̄− ȳ|)| ≤ ω2(2
√
dε) in the case (ii).

As a consequence the contribution in the r.h.s. of (4.57) of the pairs x, y with x 6= 0
and Mx,y, mx,y which satisfy case (i) or (ii), is bounded by cε−2dpλ(ε)2(ω1(2

√
dε) +

ω2(2
√
dε)
)

= O
(
ω1(2
√
dε) + ω2(2

√
dε)
)

= o(1). Similarly the contribution in the
r.h.s. of (4.57) of the pairs x = 0, y with Mx,y, mx,y which satisfy case (i) or (ii), is
O
(
ω1(2
√
dε) + ω2(2

√
dε)
)

= o(1).
The other pairs x, y in (4.57) we have not considered yet satisfy (a) mx,y ≤ r1 ≤Mx,y

or (b) mx,y ≤ r2 ≤Mx,y. Defining r := r1 in case (a) and r := r2 in case (b), we can
restrict to study the contribution in the r.h.s. of (4.57) of the pairs x, y which satisfy
mx,y ≤ r ≤Mx,y. We now estimate such contribution. Since mx,y ≥ |x− y| − 2

√
dε

and Mx,y ≤ |x− y|+ 2
√
dε, it must be

r − 2
√
dε ≤ |x− y| ≤ r + 2

√
dε . (4.58)

The number of points y ∈ Γε satisfying (4.58) are of order O(ε−d+1), hence the pairs
x, y with mx,y ≤ r ≤ Mx,y and x 6= 0 are of order O(ε−2d+1) while the pairs x, y
with mx,y ≤ r ≤Mx,y and x = 0 are O(ε−d+1). Bounding in both cases |g(|x− y|)−
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4.7 Proof of (4.16) in Proposition 4.3.1

g(|x̄− ȳ|)| by 1, we conclude that the contribution in the r.h.s. of (4.57) of the pairs
x, y with mx,y ≤ r ≤Mx,y is bounded by O(ε−2d+1)pλ(ε)2 +O(ε−d+1)pλ(ε) = o(1).

• We consider the MA model. As for (4.57) we have

r.h.s. (4.55) ≤
∑
x∈Γε

∑
y∈Γε\{0} ,
|x−y|<2

pλ(ε)2−δ0,x
∣∣h(|x− y|)− h(|x̄− ȳ|)

∣∣ .
(4.59)

Since by assumption h is good, one can proceed exactly as done for the RC model
and conclude that the r.h.s. of (4.59) is of order o(1).

4.6.1 Conclusion of the proof of (4.15) in Proposition 4.3.1

By combining Lemmas 4.6.1 and 4.6.3 we get that θ̃n(λ) = Pλ(0↔ Sn in Gε |Aε ∩
Bε) + o(1). On the other hand, by construction the random graph Gε sampled
according to Pλ(· |Aε ∩ Bε) has the same law of the random graph Gε sampled
according to P(ε)

λ (· | ηε0 = 1). This implies that

Pλ(0↔ Sn in Gε |Aε ∩Bε) = P(ε)
λ (0↔ Sn | ηε0 = 1) = θ̃(ε)

n (λ) .

This completes the proof of (4.15) for n = k. As stated at the beginning, the choice
n = k was to simplify the notation, the proof is the same for general k.

4.7 Proof of (4.16) in Proposition 4.3.1

We use the same convention on constants c, c1, c2 . . . , on O(εα) and o(1) as stated at
the beginning of the previous section. Below we restrict to n ≥ 1.

Due to (4.12) we need to prove that

E0,λ
[
|Piv+(0↔ Sn)|

]
= lim

ε↓0
E(ε)
λ

[∣∣Piv(0↔ Sn)
∣∣] (4.60)

(recall the definition of Piv+(0 ↔ Sn) given after (4.11)). We define the function
g : Rd ×N → R as

g(x, ξ) = 1(x ∈ Rε0)
∫

Σ
P (dσ)

∣∣Piv+(0↔ Sn)(ξ, σ)
∣∣ .

Then, by the property of the Palm distribution and of P (cf. [2, Thm. 12.2.II and
Eq. (12.2.4)] and Section 4.3.1),

λεdE0,λ[|Piv+(0↔ Sn)|] = λE0,λ
[ ∫

Rd
dxg(x, ξ)

]
= Eλ

[ ∫
Rd
ξ(dx)g(x, τxξ)

]
=

= Eλ
[ ∫

Rε0

ξ(dx)|Piv+(x↔ Sn(x))|
]
.

(4.61)

We recall that Sn(x) = Sn + x. We can write the last member of (4.61) as C1 + C2,
with C1 and C2 defined below. We set Nε := ξ(Rε0). Then, using independence and
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4. Connection probabilities in Poisson random graphs

that Nε is a Poisson r.v. with parameter λεd, we get

C1 := Eλ
[ ∫

Rε0

ξ(dx)|Piv+(x↔ Sn(x))|1(Nε ≥ 2)
]

≤ Eλ
[
ξ(Λn+2)Nε1(Nε ≥ 2)

]
= Eλ

[
(Nε + ξ(Λn+2 \Rε0))Nε1(Nε ≥ 2)

]
≤ Eλ

[
N2
ε 1(Nε ≥ 2)

]
+ c1Eλ

[
Nε1(Nε ≥ 2)

]
≤ c2Eλ

[
N2
ε 1(Nε ≥ 2)

]
= c2(Eλ

[
N2
ε

]
− Pλ

[
Nε = 1

]
) = c2(λεd + λ2ε2d − λεde−λεd) = O(ε2d).

(4.62)

Remark 4.7.1. For the first inequality in (4.62) we point out that, given x ∈ Rε0∩ ξ,
the set Piv+(x↔ Sn(x)) (referred to G) must be contained in ξ ∩ Λn+2. Indeed, if
we take a path in G from x to the complement of x + (−n, n)d and call y the first
vertex of the path outside x+ (−n, n)d, then the euclidean distance between y and
x+ (−n, n)d is smaller than 1 (recall that all edges in G have length smaller than
1). In particular, we have that ‖y‖∞ < ‖x‖∞ + n + 1 ≤ n + 2. As a consequence,
to know if x↔ Sn(x) in G (or in the graph obtained by removing from G a vertex z
and the edges containing z), it is enough to know the vertexes of G inside Λn+2 and
the edges formed by these vertexes.

We now bound the remaining contribution C2:

C2 := Eλ
[ ∫

Rε0

ξ(dx)|Piv+(x↔ Sn(x))|1(Nε = 1)
]

= Eλ
[
|Piv+(0̄↔ Sn(0̄))|1(Nε = 1)

]
= Eλ

[
|Piv+(0̄↔ Sn(0̄))|1(Nε = 1)1(Aε)

]
+ Eλ

[
|Piv+(0̄↔ Sn(0̄))|1(Nε = 1)1(Acε)

]
.

(4.63)

We note that (see also the computation of Eλ
[
N2
ε 1(Nε ≥ 2)

]
in (4.62))

Eλ
[
|Piv+(0̄↔ Sn(0̄))|1(Nε = 1)1(Acε)

]
≤ Eλ

[
ξ(Λn+2)1(Nε = 1)1(Acε)

]
≤

∑
y∈Γε\{0}

Eλ
[
ξ(Λn+2)1(Nε = 1)1

(
ξ(Rεy) ≥ 2

)]
≤

∑
y∈Γε\{0}

Eλ
[
ξ(Λn+2 \ (Rεy ∪Rε0))

]
Pλ
(
Nε = 1

)
Pλ
(
ξ(Rεy) ≥ 2

)
+ 2

∑
y∈Γε\{0}

Eλ
[
ξ(Rεy)1(ξ(Rεy) ≥ 2)

]
Pλ(Nε = 1) ≤

∑
y∈Γε\{0}

O(ε3d) = O(ε2d).

(4.64)

Since (4.61)= C1 + C2, by (4.62),(4.63) and (4.64), we get (note that Bε = {Nε = 1})

E0,λ[|Piv+(0↔ Sn)|] = Eλ
[
|Piv+(0̄↔ Sn(0̄))|1(Aε ∩Bε)

]
· 1
λεd

+ o(1) . (4.65)

In what follows, given one of our random graphs on the grid Γε as Gε (cf. Section
4.3.2), Gε, G∗ε and G#

ε (cf. Section 4.6), and given an event A regarding the graph,
we call Piv+(A) the set of vertexes x of the graph for which the following property
holds: the event A is realized by the graph under consideration, but it does not take
place when removing from the graph the vertex x and all edges containing the vertex
x.
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4.7 Proof of (4.16) in Proposition 4.3.1

Lemma 4.7.2. It holds

Eλ
[
|Piv+(0̄↔ Sn(0̄))|1(Aε ∩Bε)

]
=

Eλ
[
|Piv+(0↔ Sn in G∗ε )|1(Aε ∩Bε)

]
+ o(εd) . (4.66)

Proof. We can bound

Eλ
[
|Piv+(0̄↔ Sn(0̄))|1(Aε ∩Bε)1

(
ξ(Λn+ε \

◦
Λn−ε) ≥ 1

)]
≤ Eλ

[
ξ(Λn+2)1(Aε ∩Bε)1

(
ξ(Λn+ε \

◦
Λn−ε) ≥ 1

)]
≤ Eλ

[
W1(Bε)1

(
ξ(Λn+ε \

◦
Λn−ε) ≥ 1

)]
+ Eλ

[
ξ(Λn+ε \

◦
Λn−ε)1(Bε)

]
≤ cPλ

(
Bε
)
Pλ
(
ξ(Λn+ε \

◦
Λn−ε) ≥ 1

)
+ Eλ

[
ξ(Λn+ε \

◦
Λn−ε)

]
Pλ(Bε)

= O(εd+1) = o(εd) ,

(4.67)

where W := ξ(Λn+2 \Λn+ε) + ξ(
◦
Λn−ε \Rε0) + 1 (note that the third inequality follows

from the independence property of the Poisson point process). As a consequence,
(4.66) follows by observing that

Eλ
[
|Piv+(0̄↔ Sn(0̄))|1(Aε ∩Bε)1

(
ξ(Λn+ε \

◦
Λn−ε) = 0

)]
=

Eλ
[
|Piv+(0↔ Sn in G∗ε )|1(Aε ∩Bε)1

(
ξ(Λn+ε \

◦
Λn−ε) = 0

)]
. (4.68)

Let us justify the above observation. We assume that event Aε ∩Bε is fulfilled and
that ξ(Λn+ε \

◦
Λn−ε) = 0. Recall that G∗ε is obtained by restricting the graph G to

Λn+1 and by sliding any vertex x̄ to x. Since Sn(0̄) ⊂ Λn+ε \
◦
Λn−ε, if 0̄ ↔ Sn(0̄)

in G then 0̄ ↔ y for some point y ∈ Λn−ε+1 \ Λn+ε (using that edges have length
smaller than 1). It must be y = v̄ for some v ∈ Γε. Since ‖y − v‖∞ ≤ ε, we conclude
that v ∈ Λn+1 \ Λn. Since we can restrict to paths from 0 to y with intermediate
points lying inside Λn−ε, we have that all the intermediate points are of the form z̄
for some z ∈ Γε. We therefore get that the above path realizing the event 0̄↔ Sn(0̄)
in G corresponds to a path in G∗ε from 0 to v, ‖v‖∞ ≥ n. On the other hand, since
ξ(Λn+ε \

◦
Λn−ε) = 0, any path in G∗ε from 0 to v, with ‖v‖∞ ≥ n, is obtained by

sliding some path in G from 0̄ to Λc
n+ε. As Sn(0̄) ⊂ Λn+ε \

◦
Λn−ε, these paths in G

must realize the event 0̄ ↔ Sn(0̄). This correspondence between paths implies a
correspondence between (+)–pivotal points, leading to identity (4.68).

In the last term in (4.66) we can replace G∗ε with G#
ε , since they have the same

law under Pλ conditioned to ξ. Now we would like to replace G#
ε with Gε. This is

possible due to Lemma 4.6.4. Indeed, we have

Pλ(Aε ∩Bε) = Pλ(Bε)[1− Pλ(Acε|Bε)] = Pλ(Bε)(1 + o(1)) = λεd(1 + o(1)) , (4.69)

thus implying that Lemma 4.6.4 is equivalent to the property

Eλ
[
ξ(Λn+2)1(Aε ∩Bε)1(Gε 6= G#

ε )] = o(εd) . (4.70)
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By combining (4.65), (4.66), (4.69) and (4.70) we conclude that

E0,λ[|Piv+(0↔ Sn)|] = Eλ
[
|Piv+(0↔ Sn in Gε)| |Aε ∩Bε

]
+ o(1) . (4.71)

Due to the definition of the graph Gε built on
(
Ωε,P

(ε)
λ

)
we have

Eλ
[
|Piv+(0↔ Sn in Gε)| |Aε ∩Bε

]
= E(ε)

λ

[
|Piv+(0↔ Sn)| | ηε0 = 1

]
. (4.72)

Above, and in what follows, events appearing in E(ε)
λ ,P(ε)

λ are referred to the graph
Gε.

By combining (4.71) and (4.72) we have achieved that

E0,λ[|Piv+(0↔ Sn)|] = lim
ε↓0

E(ε)
λ

[
|Piv+(0↔ Sn)| | ηε0 = 1

]
. (4.73)

To derive (4.60) from (4.73) it is enough to apply the following result:

Lemma 4.7.3. It holds E(ε)
λ

[
|Piv+(0↔ Sn)| | ηε0 = 1

]
= E(ε)

λ

[∣∣Piv(0↔ Sn)
∣∣].

Proof. Using the fact that {Piv+(0↔ Sn)} is empty if ηε0 6= 1, we get

E(ε)
λ

[
|Piv+(0↔ Sn)| | ηε0 = 1

]
= 1
pλ(ε)

∑
x∈Γε

E(ε)
λ

[
1
(
x ∈ Piv+(0↔ Sn)

)
ηε0
]

= 1
pλ(ε)

∑
x∈Γε

E(ε)
λ

[
1
(
x ∈ Piv+(0↔ Sn)

)]
= 1
pλ(ε)

∑
x∈Γε

E(ε)
λ

[
1
(
x ∈ Piv(0↔ Sn)

)
ηεx
]
.

(4.74)

Since the events {x ∈ Piv(0↔ Sn)} and {ηεx = 1} are independent, the last expression
equals

∑
x∈Γε E

(ε)
λ

[
1
(
x ∈ Piv(0↔ Sn)

)]
, thus concluding the proof.
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Chapter 5

Left-right crossings in the
Miller-Abrahams random
resistor network on a Poisson
point process
Alessandra Faggionato and Hlafo Alfie Mimun

Preliminary version with additional pictures

We consider the Miller-Abrahams (MA) random resistor network built on a homoge-
neous Poisson point process (PPP) on Rd, d ≥ 2. Points of the PPP are marked by
i.i.d. random variables and the MA random resistor network is obtained by plugging
an electrical filament between any pair of distinct points in the PPP. The conductivity
of the filament between two points decays exponentially in their distance and depends
on their marks in a suitable form prescribed by electron transport in amorphous
materials. The graph obtained by keeping filaments with conductivity lower bounded
by a threshold ϑ exhibits a phase transition at some ϑcrit. Under the assumption
that the marks are nonnegative (or nonpositive) and bounded, we show that in the
supercritical phase the maximal number of vertex-disjoint left-right crossings in a box
of size n is lower bounded by Cnd−1 apart an event of exponentially small probability.
This result is one of the main ingredients entering in the proof of Mott’s law in [5].

5.1 Introduction

The Miller-Abrahams (MA) random resistor network has been introduced in [13] to
study the anomalous conductivity at low temperature in amorphous materials as
doped semiconductors, in the regime of Anderson localization and at low density of
impurities. It has been further investigated in the physical literature (cf. [1], [14] and
references therein), where percolation properties have been heuristically analyzed. A
fundamental target has been to get a more robust derivation of the so called Mott’s
law, which is a physical law predicting that at low temperature the conductivity of
the above amorphous materials decays in a stretched exponential form as

exp{−κβ
α+1
α+d+1 } (5.1)
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5. Left-right crossings in the Miller-Abrahams random resistor network

for some constant κ > 0. Above β is the inverse temperature, d ≥ 2 is the dimension
of the medium and α ≥ 0 is a constant entering in the distribution of the ground
state energies of the electron wavefunctions.

The MA random resistor network is defined from a translation invariant and
ergodic simple point process {xi}, marked by i.i.d. random variables {Exi} with
common law ν. It is obtained as follows. Given a realization {(xi, Exi)} of the above
marked simple point process, we associate to any unordered pair of distinct points
xi 6= xj a filament with electrical conductivity

c(xi, xj) := exp
{
− 2
γ
|xi − xj | −

β

2 (|Exi |+ |Exj |+ |Exi − Exj |)
}
, (5.2)

where γ is the so–called localization length. The physically relevant distributions ν
(for inorganic materials) are of the form νphys(dE) ∝ 1(|E| ≤ a0)|E|αdE with α ≥ 0
and a0 > 0.

We call σn(β) the effective conductivity of the MA random resistor network
restricted to the box centered at the origin with radius n. For simplicity we restrict
to marked point processes {(xi, Ei)} with isotropic law. Then, as proved in [4]
under suitable assumptions, as n goes to ∞ a.s. the rescaled effective conductivity
(2n)2−dσn(β) converges to a non random finite limit σ∞(β). In addition, σ∞(β)
equals the diffusion coefficient d(β) of the so–called Mott’s random walk introduced
in [8]. The latter is the continuous–time random walk on {xi} with probability rate
for a jump from xi to xj 6= xi given by c(xi, xj). As a consequence, Mott’s law can be
stated both for the limiting conductivity σ∞(β) in the MA random resistor network
and for the diffusion coefficient d(β) in Mott’s random walk. We recall that, for
Mott’s random walk, upper and lower bounds of d(β) in agreement with Mott’s law
have been proved in [6] and [8], respectively.

We suppose here that {xi} is a homogeneous Poisson point process (PPP) with
density λ. Given ϑ ∈ (0, 1) we denote by MA(ϑ) the subgraph obtained from the MA
resistor network by keeping only filaments of conductivity lower bounded by ϑ. It is
known (cf. [2, 5, 7]) that there exists ϑcrit ∈ (0, 1) such that MA(ϑ) a.s. percolates for
ϑ < ϑcrit and a.s. does not percolate for ϑ > ϑcrit. As discussed in [5], an important
tool to rigorously prove Mott’s law and characterize the constant κ in (5.1) consists
in showing for ϑ < ϑcrit that, apart an event of exponentially small probability, there
are in MA(ϑ) at least Cnd−1 disjoint left-right (LR) crossings, i.e. linear chains along
the first direction. This is indeed our main result (cf. Theorem 3 in Section 5.2) under
the assumption that the mark distribution ν has finite support included in [0,+∞)
and including the origin. We point out that a positive lower bound of σ∞(β) can be
obtained by standard methods (cf. [11]) when having the above LR crossings property
for MA(ϑ) with ϑ small enough. In this case a stochastic domination argument
would allow to recycle the LR crossings property for supercritical percolation on Zd
[9]. On the other hand, to have a fine control on σ∞(β) as necessary for Mott’s law,
one needs the LR crossings property for all ϑ < ϑc. We also remark that an analysis
of the subcritical MA(ϑ) (i.e. with ϑ > ϑc) has been provided in [7].

We comment now some technical aspects in the derivation of our contribution.
To prove Theorem 3 we first show that it is enough to derive a similar result (given
by Theorem 4 in Section 5.3) for a suitable random graph G∗ with vertexes in εZd,
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5.1 Introduction

defined in terms of i.i.d. random variables parametrized by points in εZd (cf. Section
5.3). The proof of Theorem 4 is then inspired by the renormalization procedure
developed by Grimmett and Marstrand in [10] for site percolation on Zd and by a
construction presented in [15, Section 4]. We recall that in [10] it is proved that the
critical probability of a slab in Zd converges to the critical probability of Zd when the
thickness of the slab goes to +∞. Moreover, in [15] Tanemura studies the left–right
crossings in the supercritical Boolean model with deterministic radius.

We point out that the renormalization method developed in [10] does not apply
verbatim to our setting. In particular the adaptation of Lemma 6 in [10] to our setting
presents several obstacles due to the spatial correlations in the MA resistor network.
A main novelty here is to build, by a Grimmett-Marstrand-like renormalization
procedure, an increasing family of quasi-clusters in our graph G∗. We use the term
“quasi-cluster” since usually these sets are not connected in G∗ and can present some
cuts at suitable localized regions. By expressing the PPP of density λ as superposition
of two independent PPP’s with density λ− δ and δ � 1, respectively, a quasi-cluster
is built only by means of points in the PPP with density λ− δ. On the other hand,
we will show that, with high probability, when superposing the PPP with density
δ we will insert a family of points x with very small mark Ex, which will link with
the quasi-cluster, making the resulting set connected in G∗. The quasi–clusters are
produced by iterative steps, in which we attempt to enlarge the set. A lower bound
of the probability that this attempt is successful, conditioned to the previous steps,
is provided in Lemma 5.6.1, while measurability and the geometric properties of the
quasi-clusters are analyzed in Section 5.7.

We finally comment our assumptions. We point out that the Grimmett-Marstrand
method relies on the FKG inequality. Also for the MA resistor network one can
introduce a natural ordering of the random objects, but it turns out that the FKG
inequality is valid only when the marks are a.s. nonnegative (or nonpositive). In fact,
in this case, the term |Exi |+ |Exj |+ |Exi −Exj | in (5.2) equals 2 max{Exi , Exj}, and
therefore it increases when increasing Exi or Exj . The restriction to marks with a
given sign is therefore motivated by the use of the FKG inequality. On the other hand,
our results cover mark distributions ν of the form ν(dE) ∝ 1(0 ≤ E ≤ a0)EαdE
for α ≥ 0 and a0 > 0, which share several scaling properties with the physical
distributions νphys. We stress that these scaling properties are relevant in the
heuristic derivation of Mott’s law as well in its rigorous analysis [5]. Our other
assumption concerns the choice of the point process {xi}, which is a PPP. From
a technical viewpoint, this choice avoids to introduce further spatial dependence
in the model. On the other hand, the PPP plays a special role for Mott’s law.
Due to (5.2) one expects that, when β � 1, points x with |Ex| not small give a
negligible contribution to the conductivity. Hence one expects that, asymptotically
as β → +∞, the conductivity is the same as for the Miller-Abrahams resistor
network obtained from the set {xi : |Exi | ≤ E(β)} for a suitable function E(β)
with limβ→+∞E(β) = 0. If in general {xi} is sampled according to a stationary
ergodic point process with finite density ρ, it then follows that the thinned set
{xi : |Exi | ≤ E(β)} converges to a PPP with density ρ when rescaling points as
x 7→ ν([−E(β), E(β)])1/dx. Hence the PPP should be the emerging point process
when β → +∞. This argument was indeed used in [8] to motivate the universality
of Mott’s law.
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5. Left-right crossings in the Miller-Abrahams random resistor network

5.2 Model and main results
Given λ > 0 and a probability measure ν on R, we consider the marked Poisson
point process (PPP) obtained by taking a homogeneous PPP ξ of density λ on Rd
and marking each point x ∈ ξ independently with a random variable Ex having
distribution ν (i.e., conditionally to ξ, the marks (Ex)x∈ξ are i.i.d. random variables
with distribution ν). The above marked point process is usually called the ν-
randomization of the PPP with density λ. We call Ω the configuration space of the
above marked point process and write ω = {(x,Ex) : x ∈ ξ} for a generic element in
Ω.
Definition 5.2.1. Given ζ > 0 we associate to ω = {(x,Ex) : x ∈ ξ} the graph
G = G(λ, ν, ζ) with vertex set ξ and edge set given by the pairs {x, y} ⊂ ξ with x 6= y
and such that

|x− y|+ |Ex|+ |Ey|+ |Ex − Ey| ≤ ζ . (5.3)
For later use, we point out that, given E,E′ ∈ R, it holds

|E|+ |E′|+ |E − E′| =
{

2 max
(
|E|, |E′|

)
if E · E′ ≥ 0 ,

2|E − E′| if E · E′ ≤ 0 .
(5.4)

The above graph G corresponds to the resistor network obtained from the Miller–
Abrahams resistor network by keeping only filaments with conductivity lower bounded
by e−ζ (without loss of generality we have set γ := 2 and β := 2, γ being the
localization length and β being the inverse temperature).

Given a generic graph with vertexes in Rd, one says that it percolates if it has an
unbounded connected component. We recall (see [2, 5]) that there exists a critical
length ζc(λ, ν) such that

P
(
G(λ, ν, ζ) percolates ) =

{
1 if ζ > ζc(λ, ν) ,
0 if ζ < ζc(λ, ν) .

(5.5)

Definition 5.2.2. Given L > 0, a left-right (LR) crossing of the box [−L,L]d in the
graph G = G(λ, ν, ζ) is any sequence of distinct points x1, x2, . . . , xn ∈ ξ such that

• {xi, xi+1} ∈ E for all i = 1, 2, . . . , n− 1;

• x1 ∈ (−∞,−L)× [−L,L]d−1;

• x2, x3, . . . , xn−1 ∈ [−L,L]d;

• xn ∈ (L,+∞)× [−L,L]d−1.
We also define RL(G) as the maximal number of vertex-disjoint LR crossings of
[−L,L]d in G.

Our main result is the following one:
Theorem 3. Suppose that ν has bounded support contained in [0,+∞) or in (−∞, 0]
and suppose that 0 belongs to the support of ν. Then, given λ > 0 and ζ > ζc(λ, ν),
there exist positive constants c, c′ such that

P
(
RL(G) ≥ cLd−1

)
≥ 1− e−c′Ld−1

, (5.6)

for L large enough, where G = G(λ, ν, ζ).
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5.3 Discretization
In this section we show how to reduce the problem of estimating the probability
P
(
RL(G) ≥ cLd−1

)
to a similar problem for a graph with vertexes contained in a

lattice.

Lemma 5.3.1. To prove Theorem 3 it is enough to consider the case ζ = 1 > ζc(λ, ν).

Proof. We fix ζ > ζc(λ, ν) and we let G be as in Theorem 3. The linear map
x 7→ ψ(x) := x/ζ gives a graph isomorphism between G and its image G′. Note that
G′ has the same law of G(λ′, ν, 1), where λ′ := λζd. Due to the above isomorphism, we
also have that ζc(λ′, ν) = ζc(λ, ν)/ζ and the condition ζ > ζc(λ, ν) reads 1 > ζc(λ′, ν).
To conclude it is enough to observe that RL(G) ≥ cLd−1 if and only if RL′(G′) ≥
c ζd−1(L′)d−1 where L′ := L/ζ, hence it is enough to focus on G′ = G(λ′, ν, 1).

Warning 5.3.1. Due to Lemma 5.3.1, without any loss of generality we take once
and for all ζ = 1 in Theorem 3 and assume that ζ = 1 > ζc(λ, ν). In particular, G
will always denote the graph G(λ, ν, 1). Moreover, we fix once and for all a constant
C0 > 0 such that ν has support inside [0, C0]. By symmetry, the case of nonpositive
marks can be treated similarly.

Lemma 5.3.2. There exist λ∗ ∈ (0, λ) and u∗ ∈
(
ζc(λ, ν), 1

)
such that

P (G(ρ, ν, u) percolates) = 1 ∀ρ ≥ λ∗, ∀u ≥ u∗ . (5.7)

Proof. Let ζc := ζc(λ, ν). It is trivial to build a coupling such that G(ρ, ν, u) ⊂
G(ρ′, ν, u′) if ρ ≤ ρ′ and u ≤ u′. As a consequence, we only need to show that there
exist λ∗ < λ and u∗ ∈

(
ζc, 1

)
such that P (G(ρ∗, ν, u∗) percolates) = 1. To this aim

we fix ζ ′ ∈ (ζc, 1). Fixed γ ∈ (0, 1), G(λ, ν, ζ ′) can be described also as the graph
with vertex set ξ given by a PPP with density λ and edge set E ′ given by the pairs
{x, y} ⊂ ξ with x 6= y and
∣∣x/γ − y/γ∣∣+ |Ex|+ |Ey|+ |Ex − Ey|

≤ ζ ′/γ − (1/γ − 1)(|Ex|+ |Ey|+ |Ex − Ey|) , (5.8)

where the marks come from the ν-randomization of the PPP ξ. Note that the
r.h.s. of (5.8) is bounded from above by ζ ′/γ − 3C0(1/γ − 1), which goes to ζ ′
as γ ↑ 1. In particular, we can fix γ very near to 1 (from the left) to have u∗ :=
ζ ′/γ−3C0(1/γ−1) ∈ (ζc, 1). We now introduce the graph Ĝ = (ξ, Ê) where {x, y} ∈ Ê
if {x, y} ⊂ ξ, x 6= y and∣∣x/γ − y/γ∣∣+ |Ex|+ |Ey|+ |Ex − Ey| ≤ u∗ . (5.9)

Since the r.h.s. of (5.8) is bounded by u∗ by our choice of γ, Ĝ contains G(λ, ν, ζ ′).
Since P(G(λ, ν, ζ ′) percolates) = 1 by (5.5), we get that P(Ĝ percolates) = 1. On the
other hand, due to (5.9), the graph obtained by rescaling Ĝ according to the map
x 7→ x/γ has the same law of the graph G(λγd, ν, u∗). Since P(Ĝ percolates) = 1,
we conclude that P(G(λγd, ν, u∗) percolates) = 1. It is therefore enough to take
λ∗ := λγd.
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5. Left-right crossings in the Miller-Abrahams random resistor network

We need to introduce some notation since we will deal with several couplings:

• We write PPP(ρ) for the Poisson point process with density ρ.

• We write PPP(ρ, ν) for the marked PPP obtained as ν–randomization of a
PPP(ρ).

• We write L(ρ, ν) for the law of inf{X1, X2, . . . , XN}, where (Xn)n≥1 is a
sequence of i.i.d. random variables with law ν and N is a Poisson random
variable with parameter ρ. When N = 0, the set {X1, X2, . . . , XN} is given by
∅.

Above, and in what follows, we use the convention inf ∅ := +∞.

Definition 5.3.3 (Parameters α, ε). We fix α small enough such that 1− 10α ≥ u∗
(see Lemma 5.3.2) and such that

√
d/α ∈ N+. We define ε by ε

√
d := α/100 (note

that 1/ε ∈ N+). For each z ∈ εZd we set Rz := z + [0, ε]d.

We fix a positive integer K, very large. In Section 5.14 we will explain how to
choose K.

Definition 5.3.4. Let λ∗ ∈ (0, λ) be as in Lemma 5.3.2. We introduce the following
independent random fields defined on a common probability space (Θ,P):

• Let (Az)z∈εZd be i.i.d. random variables with law L
(
λ∗ε

d, ν
)
.

• For j = 1, 2, . . . ,K let (T (j)
z )z∈εZd be i.i.d. random variables with law L

(
(λ−

λ∗)εd/K, ν
)
.

Definition 5.3.5. On the probability space (Θ,P) we define the graphs G\ = (V,E\),
G = (V,E) and G∗ = (V∗,E∗) with vertexes in εZd as follows.

The vertex set V is given by V := {z ∈ εZd : Az < +∞}. The edge set E is given
by the unordered pairs {z, z′} with z 6= z′ in V such that

|z − z′|+ 2 max{Az, Az′} ≤ 1− 2α , (5.10)

while the edge set E\ is given by the unordered pairs {z, z′} with z 6= z′ in V such that

|z − z′|+ 2 max{Az, Az′} ≤ 1− 3α . (5.11)

The vertex set V∗ is given by

V∗ := {z ∈ εZd : Az ∧ min
1≤j≤K

T (j)
z < +∞} . (5.12)

The edge set E∗ is given by the unordered pairs {z, z′} with z 6= z′ in V∗ and

|z − z′|+ 2 max
{
Az ∧ min

1≤j≤K
T (j)
z , Az′ ∧ min

1≤j≤K
T

(j)
z′
}
≤ 1− α . (5.13)

Trivially G\ ⊂ G ⊂ G∗. Note also that the graphs G and G\ depend only on
the random field (Az)z∈εZd . The graph G will play an important role in the next
sections.

62



5.3 Discretization

Definition 5.3.6. Given L > 0, a left-right (LR) crossing of the box ∆L := [−L−
2, L+2]×[−L,L]d−1 in the graph G∗ is any sequence of distinct vertexes x1, x2, . . . , xn
of G∗ such that

• {xi, xi+1} ∈ E∗ for all i = 1, 2, . . . , n− 1;

• x1 ∈ (−∞,−L− 2)× [−L,L]d−1;

• x2, x3, . . . , xn−1 ∈ ∆L;

• xn ∈ (L+ 2,+∞)× [−L,L]d−1.

We also define RL(G∗) as the maximal number of vertex-disjoint LR crossings of ∆L

in G∗.

Theorem 4. Let G∗ be the random graph given in Definition 5.3.5. Then there exist
positive constants c, c′ such that

P
(
RL(G∗) ≥ cLd−1

)
≥ 1− e−c′Ld−1 (5.14)

for L large enough.

The rest of the paper will be devoted to the proof of Theorem 4 due to the
following fact:

Proposition 5.3.7. Theorem 4 implies Theorem 3.

An important tool to prove Theorem 4 will be the following:

Lemma 5.3.8. The graph G\ percolates P–a.s.

At this point, we can disregard the original problem and the original random
objects. One could start afresh keeping in mind only Definitions 5.3.3, 5.3.4, 5.3.5
and 5.3.6 and Lemma 5.3.8. The next sections will be devoted to the proof of Theorem
4.

The proofs of Proposition 5.3.7 and Lemma 5.3.8 are postponed to Subsections
5.3.1 and 5.3.2 below, respectively. We end with some observations concerning the
FKG inequality.

On the probability space (Θ,P) we introduce the partial ordering � as follows:
given θ1, θ2 ∈ Θ we say that θ1 � θ2 if, for all z ∈ εZd and j ∈ {1, 2, . . . ,K}, it holds

Az(θ1) ≥ Az(θ2) , T (j)
z (θ1) ≥ T (j)

z (θ2) .

We point out that, if θ1 � θ2, then G](θ1) ⊂ G](θ2), G(θ1) ⊂ G(θ2) and G∗(θ1) ⊂
G∗(θ2). We stress that the above inclusions follow from Definition 5.3.5 and ex-
pressions (5.10), (5.11), (5.13) there come from our restriction to nonnegative
marks in the original Miller–Abrahams random resistor network, thus ensuring
that |E|+ |E′|+ |E − E′| = 2 max(E,E′).

Since dealing with i.i.d. random variables, we have also that the partial ordering
� satisfies the FKG inequality: if F,G are increasing events for �, then P(F ∩G) ≥
P(F )P(G).
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5. Left-right crossings in the Miller-Abrahams random resistor network

5.3.1 Proof of Proposition 5.3.7

We first clarify the relation of the random fields introduced in Definition 5.3.4 with
the marked PPP(λ, ν). We observe that a PPP(λ, ν) can be obtained as follows. Let

{(x,Ex) : x ∈ σ} , (5.15)
{(x,Ex) : x ∈ ξ(j)} j = 1, 2, . . . ,K , (5.16)

be independent marked PPP’s, respectively with law PPP(λ∗, ν) and PPP((λ −
λ∗)/K, ν). The random sets σ and ξ(j), with 1 ≤ j ≤ K, are disjoint a.s. . To
simplify that notation, at cost to remove an event of probability zero, from now on
we suppose that σ and ξ(j), with 1 ≤ j ≤ K, are disjoint subsets of Rd. Then, setting
ξ := σ ∪

(
∪Kj=1ξ

(j)), we have that {(x,Ex) : x ∈ ξ} is a PPP(λ, ν). We define

Bz := inf{Ex : x ∈ σ ∩Rz} , z ∈ εZd , (5.17)
B(j)
z := inf{Ex : x ∈ ξ(j) ∩Rz} , z ∈ εZd , j = 1, 2, . . . ,K . (5.18)

We note that (Bz)z∈εZd has the same law of (Az)z∈εZd and (B(j)
z )z∈εZd has the same

law of (T (j)
z )z∈εZd , for j = 1, 2, . . . ,K. Moreover the above fields in (5.17) and (5.18)

are independent. Trivially, we have

Bz ∧ min
1≤j≤K

B(j)
z = inf{Ex : x ∈ ξ ∩Rz} , z ∈ εZd . (5.19)

By the above discussion G∗ has the same law of the following graph Ḡ built
in terms of the marked point processes (5.15) and (5.16). The vertex set of Ḡ is
given by {z ∈ εZd : Bz ∧min1≤j≤K B

(j)
z < +∞}. The edges of Ḡ are given by the

unordered pairs {z, z′} with z 6= z′ in the vertex set and

|z − z′|+ 2 max
{
Bz ∧ min

1≤j≤K
B(j)
z , Bz′ ∧ min

1≤j≤K
B

(j)
z′
}
≤ 1− α . (5.20)

Due to (5.19) for each vertex z of Ḡ we can fix a point x(z) ∈ ξ ∩ Rz such that
Ex(z) = Bz ∧min1≤j≤K B

(j)
z . Hence, if {z, z′} is an edge of Ḡ, then x(z) and x(z′)

are defined and it holds |z− z′|+ 2 max{Ex(z), Ex(z′)} ≤ 1−α. As x(z) ∈ Rz it must
be |x(z) − z| ≤

√
dε = α/100 and, similarly, |x(z′) − z′| ≤ α/100. It then follows

that |x− y|+ 2 max{Ex, Ey} ≤ 1 where x = x(z) and y = x(z′). This implies that
{x, y} is an edge of G(λ, ν, 1) (recall Warning 5.3.1).

We extend Definition 5.3.6 to Ḡ (it is enough to replace G∗ by Ḡ there). Due
to the above discussion, if z1, z2, . . . , zn is a LR crossing of the box ∆L for Ḡ, then
we can extract from x(z1), x(z2), . . . , x(zn) a LR crossing of the box [−L− 1, L+ 1]d
for G(λ, ν, 1) (we use that ε < 1). Since disjointness is preserved, we deduce that
RL+1

(
G(λ, ν, 1)

)
≥ RL(Ḡ). Due to this inequality Theorem 4 implies Theorem 3 (by

changing the constants c, c′ when moving from Theorem 4 to Theorem 3).

5.3.2 Proof of Lemma 5.3.8

Let {(x,Ex) : x ∈ σ} be a PPP(λ∗, ν) as in (5.15) and let (Bz)z∈εZd be the random
field introduced in (5.17). We recall that (Bz)z∈εZd has the same law of (Az)z∈εZd .
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In particular, it is enough to prove that the graph Ḡ\ percolates a.s., where Ḡ\ is
defined as G\ with Az replaced by Bz. Take x 6= y in σ such that

|x− y|+ 2 max{Ex, Ey} ≤ u∗ . (5.21)

Equivalently, {x, y} is an edge of the graph G(λ∗, ν, u∗) built by means of the marked
PPP {(x,Ex) : x ∈ σ}. Let z(x) and z(y) be the points in εZd such that x ∈ Rz(x)
and y ∈ Rz(y). Trivially, |z(x) − x| ≤ ε

√
d, |z(y) − y| ≤ ε

√
d, Bz(x) ≤ Ex and

Bz(y) ≤ Ey. Then from (5.21) and Definition 5.3.3 we get

|z(x)− z(y)|+ 2 max{Bz(x), Bz(y)} ≤ u∗ + 2ε
√
d ≤ 1− 3α . (5.22)

As a consequence, for each edge {x, y} in G(λ∗, ν, u∗), either we have z(x) = z(y) or
we have that {z(x), z(y)} is an edge of Ḡ\. Since G(λ∗, ν, u∗) percolates a.s., due to
the above observation we conclude that Ḡ\ percolates a.s. .

5.4 Basic geometrical objects in the discrete context

In the rest we will often write P(E1, E2, . . . , En) instead of P(E1 ∩ E2 ∩ · · · ∩ En),
also for other probabilities.

Recall the Definition 5.3.5 of the graphs G\ = (V,E\), G = (V,E) and G∗ =
(V∗,E∗). We introduce the following conventions:

• Given x ∈ V and C ⊂ V with x 6∈ C, we say that x is directly connected to C
inside G if there exists y ∈ C such that {x, y} ∈ E.

• Given A,B,C ⊂ εZd, we say that “A ↔ B in C for G” if there exist
x1, x2, . . . , xk ∈ C ∩ V such that x1 ∈ A, xk ∈ B and {xi, xi+1} ∈ E for
all i : 1 ≤ i < k.

• Given a bounded set A ⊂ Rd we say that “A ↔ ∞ for G” if there exists an
unbounded path in G starting at some point in A.

Similar definitions hold for the graphs G\ = (V,E\) and G∗ = (V∗,E∗).

Definition 5.4.1. For m ≤ n ∈ N+, z ∈ εZd, σ ∈ {−1, 1}d, J ∈ {1, 2, . . . , d} we
define the following sets (see Figure 5.1–(left) and Figure 5.2)

B(m) := [−m,m]d ∩ εZd and B(z,m) := z +B(m) ,
A(n) := {x ∈ εZd : n− 1 < ‖x‖∞ ≤ n} ,
T (n) := {x ∈ εZd : n− 1 < ‖x‖∞ ≤ n, 0 ≤ xi ≤ x1 ∀i = 1, 2, . . . , d} ,
Tσ,J(n) := {x ∈ εZd : n− 1 < ‖x‖∞ ≤ n, 0 ≤ σixi ≤ σJxJ ∀i = 1, 2, . . . , d} ,
T (m,n) :=

(
[n+ ε, n+ ε+ 2m]× [0, n]d−1) ∩ εZd .

Note that T1,1(n) = T (n), where 1 := (1, 1, . . . , 1). The following fact can be
easily checked:
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5. Left-right crossings in the Miller-Abrahams random resistor network

Figure 5.1. Left: sets T (n) and T (m,n). Right: sets T ∗(n) and T ∗(m,n).

Lemma 5.4.2. We have the following properties:

(i) A(n) = ∪σ∈{−1,1}d ∪dJ=1 Tσ,J(n);

(ii) given (σ, J) the map

ψσ,J(x1, x2, . . . , xd) := (y1, y2, . . . , yd) ,

where

yk :=


xJσ1 if k = 1 ,
x1σJ if k = J ,

xkσk otherwise ,
(5.23)

is an isometry from T (n) to Tσ,J(n) and it is the identity when σ = 1 and
J = 1.

Proof. To prove Item (i) we take x ∈ εZd with n− 1 < ‖x‖∞ ≤ n. We take J as any
coordinate such that |xJ | = ‖x‖∞ = max{|x1|, |x2|, . . . , |xd|} and define σi := +1 if
xi ≥ 0, otherwise we set σi := −1, for any i = 1, . . . , d. By this choice σixi = |xi|,
thus implying that 0 ≤ |xi| = σixi ≤ ‖x‖∞ = σJxJ . This completes the proof of
Item (ii).

We move to Item (ii). Since any permutation of coordinates is an isometry and
since changing the sign of a coordinate is an isometry, the map ψσ,J is an isometry of
Rd. Trivially, ‖x‖∞ = ‖y‖∞. Note that x1 = σJyJ and xJ = σ1y1, while xi = σiyi
for i 6= 1, J . Therefore the bound 0 ≤ xi ≤ x1 reads 0 ≤ σiyi ≤ σJyJ for i 6= 1, J ,
it reads 0 ≤ σJyJ ≤ σJyJ for i = 1 and reads 0 ≤ σ1y1 ≤ σJyJ for i = 1. This
proves that ψσ,J maps T (n) into Tσ,J(n). Being an isometry on all Rd, ψσ,J must be
bijective from T (n) to Tσ,J(n). The fact that ψ1,1 is the identity is trivial.

Definition 5.4.3. Given z ∈ εZd and m ∈ N+, we say that B(z,m) is a seed if
B(z,m) ⊂ V and Ax ≤ α/100 for all x ∈ B(z,m).

Definition 5.4.4. Given m ≤ n ∈ N+, K(m,n) is given by the points x ∈ T (n)
which are directly connected inside G to a seed contained in T (m,n). Equivalently,
K(m,n) is given by the points x ∈ V ∩ T (n) such that, for some z ∈ εZd, the box
B(z,m) ⊂ T (m,n) is a seed and ∃y ∈ B(z,m) with {x, y} ∈ E.
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Figure 5.2. The sets Tσ,J(n).

Lemma 5.4.5. If B(z,m) is a seed, then B(z,m) is a connected subset in the graph
G.

Proof. Recall that B(z,m) ⊂ V since B(z,m) is a seed. Let x, y be points in B(z,m)
with |x − y| = ε. Since ε = α/100

√
d, we get |x − y| ≤ α/100. By definition of

seed, we have |Ax|, |Ay| ≤ α/100. Then trivially |x− y|+ 2 max{Ax, Ay} ≤ 3α/100.
By Definition 5.3.3 it holds 1 − 10α ≥ u∗ > 0, hence α < 0.1 and therefore
3α/100 < 1−2α. This proves that {x, y} ∈ E for any x, y in B(z,m) with |x−y| = ε.
It is trivial to conclude.

Proposition 5.4.6. Given η ∈ (0, 1), there exist positive integers m = m(η) and
n = n(η) such that m > 2, 2m < n, 2m|n and

P
(
B(m)↔ K(m,n) in B(n) for G

)
> 1− η . (5.24)

5.5 Proof of Proposition 5.4.6
Recall Definition 5.4.1. The following lemma and its proof are inspired by [10, Lemma
3] and its proof.

Lemma 5.5.1. Let m and n be positive integers such that n > m. Let Un be the set
of points x ∈ A(n) such that B(m)↔ x in B(n) for G\ and

d
(
x,B(n)c

)
+ 2Ax ≤ 1− 3α , (5.25)

where d(·, ·) denotes the Euclidean distance. Then, for each integer k, it holds
∞∑

n=m+1
P(|Un| < k, B(m)↔∞ for G\) < ec(d)λ∗k . (5.26)

for a positive constant c(d) depending only on the dimension.

Proof. We claim that the event {B(m)↔∞ for G\} implies that |Un| ≥ 1. To prove
our claim we observe that, since the edges in G\ have length at most 1−3α, the event
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5. Left-right crossings in the Miller-Abrahams random resistor network

{B(m)↔∞ for G\} implies that there exists x ∈ A(n) such that B(m)↔ x in B(n)
for G\ and {x, y} ∈ E\ for some y ∈ B(n)c ∩V. Indeed, it is enough to take any path
from B(m) to ∞ for G\ and define y as the first visited point in B(n)c and x as the
point visited before y. Note that the property {x, y} ∈ E\ implies (5.25) by (5.11).
Hence x ∈ Un. This concludes the proof of our claim. Due to the above claim we
have

P(|Un| < k, B(m)↔∞ for G\) ≤ P(1 ≤ |Un| < k) . (5.27)

We now want to estimate P(Un+1 = ∅ | 1 ≤ |Un| < k) from below (the result will
be given in (5.29) below).

For each x ∈ Un we denote by In+1(x) the set of points y in A(n+ 1) such that
|x− y| ≤ 1− 3α. We call Gn the event that V has no points in ∪x∈UnIn+1(x). We
now claim that Gn ⊂ {Un+1 = ∅}. To prove our claim let z be in Un+1. Then there
is a path in G\ from z to some point in B(m) visiting only points in B(n+ 1). We
call v the last point in the path inside A(n+ 1) and x the next point in the path.
Then x ∈ A(n) and all the points visited by the path after x are in B(n). Hence,
B(m)↔ x in B(n) for G\. Moreover, since {x, v} ∈ E\, property (5.25) is verified.
Then x ∈ Un and V has some point (indeed v) in In+1(x). In particular, we have
shown that, if Un+1 6= ∅, then Gn does not occur, thus proving our claim.

Recall that the graph G\ depends only on the random field (Az)z∈εZd and that
P(Az = +∞) = e−λ∗ε

d for any z ∈ εZd. We call Fn the σ–algebra generated by the
random variables Az with z ∈ B(n). Note that the set ∪x∈UnIn+1(x) and the event
{1 ≤ |Un| < k} are Fn–measurable. Moreover, on the event {1 ≤ |Un| < k}, the set
∪x∈UnIn+1(x) has cardinality bounded by c(d)kε−d, where c(d) is a positive constant
depending only on d. By the independence of the Az’s we conclude that that P–a.s.
on the event {1 ≤ |Un| < k} it holds

P(Gn | Fn) = P(Az = +∞ ∀z ∈ ∪x∈UnIn+1(x) | Fn)

≥ P(A0 = +∞)c(d)kε−d = e−c(d)λ∗k .
(5.28)

Hence, since Gn ⊂ {Un+1 = ∅}, by (5.28) we conclude that

P(Un+1 = ∅ | 1 ≤ |Un| < k) ≥ P(Gn | 1 ≤ |Un| < k) ≥ exp{−c(d)λ∗k} . (5.29)

As a byproduct of (5.27) and (5.29) we get

e−c(d)λ∗kP(|Un| < k, B(m)↔∞ for G\) ≤ e−c(d)λ∗kP(1 ≤ |Un| < k)
≤ P(Un+1 = ∅ | 1 ≤ |Un| < k)P(1 ≤ |Un| < k)

= P(Un+1 = ∅ , 1 ≤ |Un| < k) . (5.30)

Since the events {Un+1 = ∅ , 1 ≤ |Un| < k} are disjoint, we get (5.26).

We now present the analogous of [10, Lemma 4].

Lemma 5.5.2. Let w := 2dd and call Vn the set of points x ∈ T (n) satisfying (5.25)
and such that B(m)↔ x in B(n) for G\ . Then, for any ` ∈ N, it holds

lim inf
n→∞

P(|Vn| ≥ `) ≥ 1− P(B(m) 6↔ ∞ for G\)1/w . (5.31)
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Proof. Let σ, J be as in Definition 5.4.1. If in the definition of Vn we take Tσ,J(n)
instead of T (n), then we call Vσ,J,n the resulting set. Note that V1,1,n = Vn. By
Lemma 5.4.2–(i) we get that |Un| ≤

∑
(σ,J) |Vσ,J,n|, hence

{|Un| < w`} ⊃ ∩(σ,J){|Vσ,J,n| < `} . (5.32)

By the FKG inequality and since each event {|Vσ,J,n| < `} is decreasing, and by the
isometries given in Lemma 5.4.2–(ii), we have

P(|Un| < w`) ≥
∏

(σ,J)
P(|Vσ,J,n| < `) = P(|Vn| < `)w .

The above bound implies that P(|Vn| ≥ `) ≥ 1−P(|Un| < w`)1/w. On the other hand
we have

P(|Un| < w`) ≤ P(|Un| < w` , B(m)↔∞ for G\)
+ P(B(m) 6↔ ∞ for G\)

(5.33)

and by Lemma 5.5.1 the first term in the r.h.s. goes to zero as n→∞, thus implying
the thesis.

We can finally give the proof of Proposition 5.4.6.

Proof of Proposition 5.4.6. By Lemma 5.3.8 G\ percolates P–a.s., hence we can fix
an integer m > 2 such that

P(B(m) 6↔ ∞ for G\) < (η/2)w , w := d2d . (5.34)

Then, by Lemma 5.5.2, for any ` ∈ N we have

lim inf
n→∞

P(|Vn| ≥ `) ≥ 1− P(B(m) 6↔ ∞ for G\)1/w > 1− η/2 . (5.35)

We set ρ := P(B(m) is a seed) ∈ (0, 1) and fix an integer M large enough that
(1 − ρ)M < η/2. We set ` := (2m)d−13d−1Mε−d and, by (5.35), we can fix n large
enough that P(|Vn| ≥ `) > 1− η/2, 2m < n and 2m|n.

Since 2m|n we can partition [0, n]d−1 in non–overlapping (d − 1)–dimensional
closed boxes D∗i , i ∈ I, of side length 2m (by “non–overlapping” we mean that the
interior parts are disjoint). We set Di := D∗i ∩ εZd. Note that T (n) ⊂ ∪i∈I(n −
1, n]×Di and T (m,n) = ∪i∈I([n+ ε, n+ ε+ 2m] ∩ εZ)×Di (see Figure 5.3).

By construction, any set (n − 1, n] × Di contains at most (2m)d−1ε−d points
x ∈ T (n). Since ` = (2m)d−13d−1Mε−d, the event {|Vn| ≥ `} implies that there
exists I∗ ⊂ I with |I∗| = 3d−1M fulfilling the following property: for any k ∈ I∗
there exists x ∈ Vn with x ∈ (n−1, n]×Dk. We can choose univocally I∗ by defining
it as the set of the first (w.r.t. the lexicographic order) M indexes k ∈ I satisfying
the above property. We now thin I∗ since we want to deal with disjoint sets Dk’s.
To this aim we observe that each Dk can intersect at most 3d−1 − 1 other sets of the
form Dk′ . Hence, there must exists I\ ⊂ I∗ such that Dk ∩Dk′ = ∅ for any k 6= k′

in I\ and such that |I\| = M (again I\ can be fixed deterministically by using the
lexicographic order). We introduce the events

Gk := {([n+ ε, n+ ε+ 2m] ∩ εZ)×Dk is a seed} . (5.36)
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5. Left-right crossings in the Miller-Abrahams random resistor network

Figure 5.3. The dotted region corresponds to the boxes ([n + ε, n + ε + 2m] ∩ εZ) ×Di

with i ∈ I∗

We claim that
P
(
{|Vn| ≥ `} ∩ (∪k∈I\Gk)

)
≥ 1− η . (5.37)

To this aim we call Fn the σ–algebra generated by the r.v.’s Az with z ∈ B(n). We
observe that the event {|Vn| ≥ `} belongs to Fn, the set I\ is Fn–measurable and
w.r.t. P(·|Fn) the events {Gk : k ∈ I\} are independent (recall that Dk ∩Dk′ = ∅ for
any k 6= k′ in I\) and each Gk has probability ρ := P(B(m) is a seed). Hence, P–a.s.
on the event {|Vn| ≥ `} we can bound

P(∪k∈I\Gk | Fn) ≥ 1− (1− ρ)M > 1− η/2 . (5.38)

Note that the last bound follows from our choice of M . Since, by our choice of n,
P(|Vn| ≥ `) > 1 − η/2, we conclude that the l.h.s. of (5.37) is lower bounded by
(1− η/2)2 > 1− η. This concludes the proof of (5.37).

Let us now suppose that |Vn| ≥ ` and that the event Gk takes place for some
k ∈ I\. We claim that necessarily B(m) ↔ K(m,n) in B(n) for G. Note that the
above claim and (5.37) lead to (5.24). We prove our claim. As discussed before
(5.36), since k ∈ I\ there exists x ∈ Vn ∩ ((n − 1, n] × Dk). Let S be the seed
([n+ ε, n+ ε+ 2m]∩ εZ)×Dk. By definition of Vn, d

(
x,B(n)c

)
+ 2Ax ≤ 1− 3α and

B(m)↔ x in B(n) for G\. Note that x′ ∈ {n}×Dk as Vn ⊂ T (n). Let y := x′ + εe1.
Then y ∈ S and therefore Ay ≤ α/100 (since S is a seed) and |x′ − y| = ε ≤ α/100.
Then we have

|x− y|+ 2 max{Ax, Ay} ≤ |x− x′|+ |x′ − y|+ 2Ax + 2Ay
≤ d

(
x,B(n)c

)
+ α/100 + 2Ax + α/50 ≤ 1− 3α+ 3α/100 < 1− 2α . (5.39)

We have therefore shown that B(m) ↔ x in B(n) for G\ for some x ∈ T (n) with
{x, y} ∈ E for some y ∈ S. As a consequence, x ∈ K(m,n). Since G\ ⊂ G, we get
that B(m)↔ K(m,n) in B(n) for G.

5.6 The fundamental lemma

Given a finite set R ⊂ εZd, we define the non–random boundary set

∂R := {y ∈ εZd \R : d(y,R) ≤ 1− 2α} , (5.40)
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where d(·, ·) denotes the Euclidean distance. To avoid ambiguity, we point out that
in what follows the set ∂R ∩B(n) has to be thought of as (∂R) ∩B(n) and not as
∂(R ∩B(n)).

Recall Definition 5.3.4. Since the support of ν contains zero, the constant
γ := P(T (j)

0 ≤ α/100) is strictly positive.

Lemma 5.6.1. Fix ε′ ∈ (0, 1). Then there exist positive integers m and n, with
m > 2, 2m < n and 2m|n, satisfying the following property.

Consider the following sets (see Figure 5.4):

• Let R be a finite subset of εZd satisfying

B(m) ⊂ R , (R ∪ ∂R) ∩ (T (n) ∪ T (m,n)) = ∅ . (5.41)

• For any x ∈ R ∪ ∂R, let Λ(x) be a subset of {1, 2, . . . ,K}. We suppose that
there exists k∗ ∈ {1, 2, . . . ,K} such that

k∗ 6∈ ∪x∈DΛ(x) , (5.42)

where D ⊂ εZd is defined as

D := (∂R ∩B(n))
∪ {x ∈ R : ∃y ∈ ∂R ∩B(n) with |x− y| ≤ 1− 2α} .

(5.43)

Consider the following events:

• Let H be any measurable event w.r.t. the σ–algebra F generated by the random
variables (Ax)x∈R∪∂R and (T (j)

x )x∈R∪∂R , j∈Λ(x).

• Let G be the event that there exists a string (z0, z1, z2, . . . , z`) in V such that

(P1) z0 ∈ R;
(P2) z1 ∈ ∂R ∩B(n);
(P3) z2, . . . , z` ∈ B(n) \

(
R ∪ ∂R

)
;

(P4) z2, . . . , z` is a path in G;
(P5) z` ∈ K(m,n);

(P6) T (k∗)
z0 ≤ α/100 and T (k∗)

z1 ≤ α/100;
(P7) |z0 − z1| ≤ 1− 2α;
(P8) |z1 − z2|+ 2Az2 ≤ 1− 2α.

Then P(G |H) ≥ 1− ε′.

We point out that the above properties (P6), (P7), (P8) (which can appear a
little exotic now) will be crucial to derive the G∗–connectivity issue stated in Lemma
5.7.2. Indeed, although (z0, z1, z2, . . . , z`) could be not a path in G, one can prove
that it is a path in G∗ (in Lemma 5.7.2 we will state and prove the G∗–connectivity
property in the form relevant for our applications).
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Figure 5.4. ∂R is the very dark grey contour. R is given by the light/dark grey region
around the origin. D is the dark grey subset of R.

5.6.1 Proof of Lemma 5.6.1

Recall that γ := P(T (j)
0 ≤ α/100) > 0. We can fix a positive constant c(d) such that

the ball {y ∈ Rd : |y| ≤ 2} contains at most c(d)ε−d points of εZd. We then choose t
large enough that (1−γ2)tεd/c(d)−1 ≤ ε′/2. Afterwards we choose η > 0 small enough
so that (1− p)−tη ≤ ε′/2, where

p := P(Ax < +∞) = 1− exp{−λ∗εd} < 1 . (5.44)

Then we take m = m(η) and n = n(η) as in Proposition 5.4.6. In particular, (5.24)
holds and moreover

[1− (1− p)−tη] [1− (1− γ2)tεd/c(d)−1] ≥ (1− ε′/2)2 > 1− ε′ . (5.45)

Remark 5.6.2. As η ≤ ε′/2, from (5.24) we get that

P
(
B(m)↔ K(m,n) in B(n) for G

)
> 1− ε′ . (5.46)

This will be used in other sections.

Lemma 5.6.3. In the same context of Lemma 5.6.1 let

VR := {x ∈ ∂R ∩B(n) : ∃y ∈ B(n) \ (R ∪ ∂R) such that
|x− y|+ 2Ay ≤ 1− 2α and
{y} ↔ K(m,n) in B(n) \ (R ∪ ∂R) for G} .

Then we have (recall (5.44))

P
(
|VR| > t

)
≥ 1− (1− p)−tη . (5.47)

We postpone the proof of Lemma 5.6.3 to Subsection 5.6.2.

Remark 5.6.4. The random set VR depends only on Ax with x ∈ B(n) \ (R ∪ ∂R)
and Ax with x ∈ T (m,n). Indeed, to determine K(m,n), one needs to know the seeds
inside T (m,n).
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Given x ∈ ∂R we define x∗ as the minimal (w.r.t. lexicographic order) point
y ∈ R such that |x− y| ≤ 1− 2α. Note that x∗ exists for any x ∈ VR since VR ⊂ ∂R.
Let us show that F ⊂ G, where

F := {∃x ∈ VR with T (k∗)
x ≤ α/100 , T (k∗)

x∗ ≤ α/100} .

To this aim, suppose the event F to be fulfilled and take x ∈ VR with T (k∗)
x ≤ α/100

and T (k∗)
x∗ ≤ α/100. Since x ∈ VR, by definition of VR there exists y ∈ B(n)\ (R∪∂R)

such that |x− y|+ 2Ay ≤ 1− 2α and there exists a path (y, z3, z4, . . . , z`) inside G
connecting y to K(m,n) with vertexes in B(n) \ (R ∪ ∂R). We set z0 := x∗, z1 = x,
z2 := y. Then the event G is satisfied by the string (z0, z1, . . . , z`). This proves that
F ⊂ G.

Since F ⊂ G we can estimate

P(G | H) ≥ P
(
|VR| > t , F |H

)
=

∑
B⊂∂R∩B(n):
|B|>t

P
(
VR = B , FB |H

)
, (5.48)

where
FB := {∃x ∈ B with T (k∗)

x ≤ α/100 , T (k∗)
x∗ ≤ α/100} .

The event FB is determined by the random variables {T (k∗)
x }x∈D. In particular (cf.

Remark 5.6.4) the event {VR = B} ∩ FB is determined by{
T

(k∗)
x with x ∈ D ,

Ax with x ∈ B(n) \ (R ∪ ∂R) and with x ∈ T (m,n) .

Since by assumption H is F–measurable, and due to conditions (5.41) and (5.42),
we conclude that the event {VR = B} ∩ FB and H are independent. Hence P

(
VR =

B, FB |H
)

= P
(
VR = B, FB

)
. In particular, coming back to (5.48), we have

P(G | H) ≥
∑

B⊂∂R∩B(n):
|B|>t

P(VR = B , FB) . (5.49)

To deal with P(VR = B, FB) we observe that the events {VR = B} and FB are
independent (see Remark 5.6.4), hence we get

P(VR = B , FB) = P(VR = B)P(FB) . (5.50)

It remains to lower bound P(FB). We first show that there exists a subset B̃ ⊂ B
such that

|B̃| ≥ |B|εd/c(d)− 1 (5.51)

and such that all points of the form x or x∗, with x ∈ B̃, are distinct. We recall that
the positive constant c(d) has been introduced at the beginning of Subsection 5.6.1.
To build the above set B̃ we recall that B ⊂ ∂R and that, for any x ∈ B, it holds
|x − x∗| ≤ 1 − 2α and x∗ ∈ R. As a consequence, given x, x′ ∈ B, x∗ and x′∗ are
distinct if |x − x′| ≥ 2 and moreover any point of the form x∗ with x ∈ B cannot
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coincide with a point in B. Hence it is enough to exhibit a subset B̃ ⊂ B satisfying
(5.51) and such that all points in B̃ have reciprocal distance at least 2. We know
that the ball B of radius 2 contains at most c(d)ε−d points of εZd. The set B̃ is
then built as follows: choose a point a1 in B1 := B and define B2 := B1 \ (a1 + B),
then choose a point a2 ∈ B2 and define B3 := B2 \ (a2 + B) and so on until possible
(each ak can be chosen as the minimal point w.r.t. the lexicographic order). We
call B̃ := {a1, a2, . . . , as} the set of chosen points. Since |Bk| ≥ |B| − (k− 1)c(d)ε−d,
we get that s = |B̃| is bounded from below by the maximal integer k such that
|B| > (k − 1)c(d)ε−d, i.e. b|B|εd/c(d)c > k − 1. Hence, s = |B̃| ≥ b|B|εd/c(d)c. By
the above observations, B̃ fulfills the desired properties.

Using B̃ and independence, we have

P(FB) = 1− P(∩x∈B{T (k∗)
x ≤ α/100, T (k∗)

x∗ ≤ α/100}c)
≥ 1− P(∩x∈B̃{T

(k∗)
x ≤ α/100, T (k∗)

x∗ ≤ α/100}c)
= 1−

∏
x∈B̃

(1− P(T (k∗)
x ≤ α/100)P(T (k∗)

x∗ ≤ α/100))

= 1− (1− γ2)|B̃| .

(5.52)

As a byproduct of (5.49), (5.50), (5.51) and (5.52) and finally using (5.47) in
Lemma 5.6.3 we get

P(G | H) ≥
∑

B⊂∂R∩B(n):
|B|>t

P(VR = B)
(
1− (1− γ2)|B̃|

)

≥
(
1− (1− γ2)tεd/c(d)−1

) ∑
B⊂∂R∩B(n):
|B|>t

P(VR = B)

=
(
1− (1− γ2)tεd/c(d)−1

)
P(|VR| > t)

≥
[
1− (1− γ2)tεd/c(d)−1

] [
1− (1− p)−tη

]
.

(5.53)

Finally, using (5.45) we conclude the proof of Lemma 5.6.1.

5.6.2 Proof of Lemma 5.6.3

Suppose that B(m) ↔ K(m,n) in B(n) for G. Take a path (x0, x1, . . . , xk) from
B(m) to K(m,n) inside G with all vertexes xi in B(n). Recall that K(m,n) ⊂ T (n)
and R ∪ ∂R is disjoint from T (n) by (5.41). In particular, R ∪ ∂R is disjoint from
K(m,n). Since B(m) ⊂ R, the path starts at R. Let xr be the last point of the
path contained in R. Since R is disjoint from K(m,n) and xk ∈ K(m,n), it must be
r < k. Necessarily, xr+1 ∈ ∂R. Call x` the last point of the path contained in ∂R. It
must be ` < k since ∂R is disjoint from K(m,n) 3 xk. We claim that x` ∈ VR and
Ax` < +∞. To prove our claim we observe that the last property follows from the
fact that all points x0, x1, . . . , xk are in V. Recall that these points are also in B(n).
Hence x` ∈ ∂R ∩B(n). Since {x`, x`+1} ∈ E, we have |x− y|+ 2Ay ≤ 1− 2α with
x := x` and y := x`+1. Finally, it remains to observe that (x`+1, . . . , xk) is a path
connecting x`+1 to xk ∈ K(m,n) in B(n) \ (R ∪ ∂R) for G. Hence, x` ∈ VR.
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5.7 The sets E
[
C,B,B′, i

]
and F

[
C,B,B′, i

]
We have proved that if B(m) ↔ K(m,n) in B(n) for G, then VR contains at

least a vertex of V. As a byproduct with (5.24) (see the first paragraph of Subsection
5.6.1) we therefore have

η > P
(
B(m) 6↔ K(m,n) in B(n) for G

)
≥ P(VR ∩ V = ∅) , (5.54)

On the other hand, we can bound

P(VR ∩ V = ∅) ≥ P(VR ∩ V = ∅ , |VR| ≤ t) . (5.55)

Note that VR and (Ax)x∈∂R are independent (see Remark 5.6.4). Hence

P(VR ∩ V = ∅ , |VR| ≤ t) =
∑

B⊂∂R :
|B|≤t

P(VR = B , Ax = +∞ ∀x ∈ B)

=
∑

B⊂∂R :
|B|≤t

P(VR = B)P(Ax = +∞ ∀x ∈ B)

=
∑

B⊂∂R :
|B|≤t

P(VR = B)(1− p)|B|

≥
∑

B⊂∂R :
|B|≤t

P(VR = B)(1− p)t = P(|VR| ≤ t)(1− p)t .

(5.56)

By combining (5.54), (5.55) and (5.56) we get that η ≥ P(|VR| ≤ t)(1− p)t, which is
equivalent to (5.47).

5.7 The sets E
[
C,B,B′, i

]
and F

[
C,B,B′, i

]
In the next sections we will iteratively construct random subsets of εZd sharing the
property to be connected in G∗. We isolate here the fundamental building procedure.

Definition 5.7.1. Given three sets C,B,B′ ⊂ εZd and given i ∈ {1, 2, . . . ,K}, we
define the subsets E,F ⊂ εZd as follows:

• E is given by the points z1 in (∂C)∩B such that T (i)
z1 ≤ α/100 and there exists

z0 ∈ C with |z0 − z1| ≤ 1− 2α and T (i)
z0 ≤ α/100;

• F is given by the points z ∈ B′ such that there exists a path (z2, . . . , zk) inside
G where zk = z, all points z2, · · · , zk are in B′ \(C∪∂C) and |z1−z2|+2Az2 ≤
1− 2α for some z1 ∈ E.

To stress the dependence from C,B,B′, i, we will also write E
[
C,B,B′, i

]
and

F
[
C,B,B′, i

]
.

Note that the sets E,F,C are disjoint.

Lemma 5.7.2. Given sets C,B,B′ ⊂ εZd and an index i ∈ {1, 2, . . . ,K}, we define
E := E

[
C,B,B′, i

]
and F := F

[
C,B,B′, i

]
. If C ⊂ V∗ is connected in the graph

G∗ = (V∗,E∗), then the set C ′ := C ∪ E ∪ F is contained in V∗ and is connected in
the graph G∗.
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5. Left-right crossings in the Miller-Abrahams random resistor network

Proof. Recall (5.12). If z ∈ E, then T (i)
z < +∞ and therefore z ∈ V∗. If z ∈ F , then

z ∈ V (by definition of F ) and therefore z ∈ V∗. This implies that E,F ⊂ V∗, hence
C ′ ⊂ V∗.

Since C is connected in G∗ and since G ⊂ G∗ (in particular the string (z2, . . . , zk)
appearing in the definition of F is a path in G∗), to prove the connectivity of C ′ in
G∗ it is enough to show the following:

(i) if z0, z1 ∈ V∗ satisfy T (i)
z0 ≤ α/100, T (i)

z1 ≤ α/100 and |z0 − z1| ≤ 1− 2α, then
{z0, z1} ∈ E∗;

(ii) if z1, z2 ∈ V∗ satisfy T
(i)
z1 ≤ α/100 and |z1 − z2| + 2Az2 ≤ 1 − 2α, then

{z1, z2} ∈ E∗.

Using the assumptions of Item (i) we get

|z1 − z0|+ 2 max{Az1 ∧ min
1≤j≤K

T (j)
z1 , Az0 ∧ min

1≤j≤K
T (j)
z0 } ≤

|z1 − z0|+ 2 max{T (i)
z1 , T

(i)
z0 } ≤

|z1 − z0|+ 2T (i)
z1 + 2T (i)

z0 ≤ 1− 2α+ α/50 + α/50 < 1− α .

(5.57)

Using the assumptions of Item (ii) we get

|z1 − z2|+ 2 max{Az1 ∧ min
1≤j≤K

T (j)
z1 , Az2 ∧ min

1≤j≤K
T (j)
z2 } ≤

|z1 − z2|+ 2 max{T (i)
z1 , Az2} ≤

|z1 − z2|+ 2Az2 + 2T (i)
z1 ≤ 1− 2α+ α/50 < 1− α .

(5.58)

The thesis then follows from Definition 5.3.5.

5.8 The success–events S1 and S2

From now on ε′ ∈ (0, 1) is fixed and we choose m,n as in Lemma 5.6.1.
Let e1, e2, . . . , ed be the canonical basis of Rd. We denote by L1, L2, L3, L4 the

isometries of Rd given respectively by I, θ, θ2, θ3, where I is the identity and θ is the
unique rotation such that

θ(e1) = e2 θ(e2) = −e1 , θ(ei) = ei for all i = 3, . . . , 2d . (5.59)

We define B′1 ⊂ εZd as

B′1 := B(n) ∪
(
∪4
j=1Lj

(
T (m,n)

))
. (5.60)

We call K(j)(m,n) the random set of points defined similarly for K(m,n) but with
T (m,n) and T (n) replaced by Lj

(
T (m,n)

)
and Lj

(
T (n)

)
, respectively.

Definition 5.8.1. We define S1 as the success-event that B(m) is a seed. We define
C2 as the set of points x ∈ B′1 such that

{x} ↔ B(m) in B′1 for G .

Furthermore, we denote by S2 the success–event that C2 contains a point of K(j)(m,n)
for each j = 1, 2, 3, 4.
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5.8 The success–events S1 and S2

Figure 5.5. The set C2 when the success–event S2 occurs.

We refer to Fig. 5.5 for an example of the set C2 when S2 occurs.

Remark 5.8.2. If the event S1 occurs, then C2 is a connected subset of G (and
therefore of G∗) by Lemma 5.4.5.

We note that the event S1 implies that B(m) ⊂ V, hence B(m) ⊂ C2.

Lemma 5.8.3. Given B(m) ⊂ R ⊂ B′1, the event S1 ∩ {C2 = R} is determined by
the random variables {Ax}x∈R∪∂R.

Proof. The claim is trivially true for S1. It is therefore enough to show that, if S1
takes place, then the event {C2 = R} is equivalent to the following: (i) for any x ∈ R
there is a path from x to B(m) inside R for G and (ii) any x ∈ ∂R∩B′1 is not directly
connected to R in G, i.e. there is no y ∈ R such that {x, y} ∈ E. In fact, trivially
the event {C2 = R} implies (i) and (ii). On the other hand, let us suppose that (i)
and (ii) are satisfied (in addition to S1). Then (i) implies that R ⊂ C2. Take, by
contradiction, x ∈ C2 \R. By definition of C2 there exists a path from x to B(m) in
B′1 for G. Since x 6∈ R and B(m) ⊂ R, there exists a last point x′ in Rc visited by
the path. Since the path ends in B(m) ⊂ R, after x′ the path visits another point y
which must belong to R. Hence we have {x′, y} ∈ E (and therefore x′ ∈ ∂R ∩ B′1)
and y ∈ R, thus contradicting (ii).

Lemma 5.8.4. It holds P(S2|S1) ≥ 1− 4ε′.

Proof. Since S0 and S1 are increasing events w.r.t. �, by the FKG inequality
(see Section 5.3) we have P(S2|S1) ≥ P(S2). To show that P(S2) ≥ 1 − 4ε′, we
note that the event Fj := {B(m) ↔ K(j)(m,n) in B(n) for G} implies that C2
contains a point of K(j)(m,n). Hence, ∩4

j=1Fj ⊂ S2 and therefore (see Remark 5.6.2)
P(Sc2) ≤ P

(
∪4
j=1F

c
j

)
≤ 4ε′.
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5. Left-right crossings in the Miller-Abrahams random resistor network

5.9 The success-event S3

As 2m < n and 2m|n, we have n ≥ 4m and therefore n−m ≥ 3m > 2.
If the event S2 takes place, we define b(1) as the minimal (w.r.t. the lexicographic

order) point z in εZd such that B(z,m) is a seed contained in C2 ∩ T (m,n). Let us
show that the definition is well posed, i.e. there is some seed B(z,m) ⊂ C2∩T (m,n).
The event S2 implies that C2 contains a point x ∈ K(m,n), hence there is some seed
B(z,m) ⊂ T (m,n) such that x is directly connected in G to B(z,m). By Lemma
5.4.5 we get that x is connected in G to all points of B(z,m). Since x ∈ C2, we
conclude that B(z,m) is a seed contained in C2 ∩ T (m,n).

If S2 does not take place, we set b(1) := 0 (just to complete the definition, this
case will be irrelevant). We define

T ∗(m,n) := f (T (m,n)) and T ∗(n) := f (T (n)) , (5.61)

where f : Rd → Rd is the isometry f(x1, x2, . . . , xd) := (x1,−x2, . . . ,−xd) (see Fig.
5.1).

Let K∗(m,n) be defined as the set of points x in b(1) + T ∗(n) which are directly
connected inside G to a seed contained in b(1) + T ∗(m,n). We set B′2 := b(1) +
(B(n) ∪ T ∗(m,n)).

Definition 5.9.1. We define the sets E2, F2 and C3 as

E2 := E
[
C2, b

(1) +B(n), B′2, 1] ,
F2 := F

[
C2, b

(1) +B(n), B′2, 1] ,
C3 := C2 ∪ E2 ∪ F2 .

Moreover, we call S3 the success-event that C3 contains at least one vertex inside
K∗(m,n).

Note that C2, E2, F2 are disjoint sets and that C3 ⊂ B′1 ∪ B′2. We refer to Fig.
5.6 for an example of the set C3 when S3 occurs.

Remark 5.9.2. If the event S1 ∩ S2 occurs, then C3 is a connected subset of G∗ by
Lemma 5.7.2 and Remark 5.8.2.

Lemma 5.9.3. P(S3|S1, S2) ≥ 1− ε′.

Proof. We can write

P(S3|S1, S2) =
∑
R,b̃

P(S3|S1, S2, C2 = R, b(1) = b̃)P(C2 = R, b(1) = b̃|S1, S2) , (5.62)

where in the above sum R ⊂ εZd and b̃ ∈ εZd are taken such that P(C2 = R, b(1) =
b̃|S1 ∩ S2) > 0. Note that B(m) ⊂ R ⊂ B′1 and B(b̃,m) ⊂ R ∩ T (m,n) (cf. (5.60)).
Hence we have (R∪∂R) ⊂ (B′1∪∂B′1). We point out that, given x ∈ B′1∪∂B′1, it must
be x1 ≤ n+ ε+ 2m+ 1− 2α. On the other hand, given x ∈ b̃+

(
T ∗(n) ∪ T ∗(m,n)

)
,
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5.9 The success-event S3

Figure 5.6. The set C3 when the success–event S3 occurs. Points in C2 correspond to
circles, while points in C3 \ C2 correspond to triangles.

it must be x1 ≥ 2n+m+ ε− 1. Since n > m+ 2, x cannot belong to both sets. In
particular, we haveB(b̃,m) ⊂ R ,

(R ∪ ∂R) ∩
(
b̃+

(
T ∗(n) ∪ T ∗(m,n)

))
= ∅ .

(5.63)

Due to (5.63) and Lemma 5.9.4 below, we can therefore apply Lemma 5.6.1 with b̃
as new origin and with Λ(x) := ∅ for any x ∈ R ∪ ∂R. and k∗ := 1. By Lemma 5.9.5
below and Lemma 5.6.1 we get that

P(S3|H) ≥ P(G|H) ≥ 1− ε′ . (5.64)

The above bound and (5.62) imply that P(S3|S1, S2) ≥ 1− ε′.

Lemma 5.9.4. The event

H := S1 ∩ S2 ∩ {C2 = R} ∩ {b(1) = b̃}

belongs to the σ–algebra generated by {Ax}x∈R∪∂R.

Proof. As already observed, B(m) ⊂ R ⊂ B′1 and B(b̃,m) ⊂ R ∩ T (m,n). Due to
Lemma 5.8.3, the event S1 ∩ {C2 = R} is determined by {Ax}x∈R∪∂R. If the event
S1 ∩ {C2 = R} takes place, then the event S2 ∩ {b(1) = b̃} becomes equivalent to the
following:

1. B(b̃,m) is a seed;
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5. Left-right crossings in the Miller-Abrahams random resistor network

2. if B(z,m) ⊂ R∩T (m,n) and z is lexicographically smaller than b̃, then B(z,m)
is not a seed;

3. the set R ∩ Lj
(
T (m,n)

)
contains a seed for any j = 2, 3, 4.

The above properties (1), (2), (3) can be checked when knowing {Ax}x∈R∪∂R.

Lemma 5.9.5. The event G in Lemma 5.6.1, with B(n) replaced by B(b̃, n) and
K(m,n) replaced by K∗(m,n), satisfies

G ∩H ⊂ S3 ∩H .

Proof. Let us suppose that G ∩H takes place. Let (P1),...,(P8) be the properties
entering in the definition of G in Lemma 5.6.1, when replacing B(n) and K(m,n)
by B(b̃, n) and K∗(m,n), respectively. To get the thesis it is enough to show that
z` ∈ C3 since z` ∈ K∗(m,n) by (P5). Note that by H, (P1), (P2), (P6) and (P7)
we have that z0 ∈ C2 and z1 ∈ E2, while by H, (P3), (P4) and (P8) we get that
z2, . . . , z` ∈ F2. Since C3 := C2 ∪ E2 ∪ F2, we have that z` ∈ C3.

5.10 The success-event S4

If the event S2 takes place, we define b(2) as the minimal (w.r.t. the lexicographic
order) point z in εZd such that B(z,m) is a seed contained in C2∩L2(T (m,n)). The
existence of such a seed is proved by the same arguments presented at the beginning
of Section 5.9. If S2 does not take place, we set b(2) := 0 (just to complete the
definition, this case will be irrelevant).

Recall the definition (5.61) of T ∗(n) and T ∗(m,n). We define K∗2(m,n) as the
set of points of b(2) + L2(T ∗(n)) which are directly connected inside G to a seed
contained in b(2) + L2(T ∗(m,n)).

We set B′3 := b(2) + (B(n) ∪ L2(T ∗(m,n))).

Definition 5.10.1. We define the sets E3, F3 and C4 as

E3 := E
[
C3, b

(2) +B(n), B′3, 2] ,
F3 := F

[
C3, b

(2) +B(n), B′3, 2] ,
C4 := C3 ∪ E3 ∪ F3 .

Moreover, we call S4 the success-event that C4 contains at least one vertex inside
K∗2 (m,n).

Note that C3, E3, F3 are disjoint sets and C4 ⊂ B′1 ∪ B′2 ∪ B′3. We refer to Fig.
5.7 for an example of the set C4 when S4 occurs.

Remark 5.10.2. If the event S1 ∩ S2 occurs, then C4 is a connected subset of G∗
by Lemma 5.7.2 and Remark 5.9.2.

Lemma 5.10.3. P(S4|S1, S2, S3) ≥ 1− ε′.
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5.10 The success-event S4

Figure 5.7. The set C4 when the success–event S4 occurs. Points in C2, C3 \C2 and C4 \C3
correspond to circles, triangles and crosses, respectively.
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5. Left-right crossings in the Miller-Abrahams random resistor network

Proof. Given R2, R3 ⊂ εZd and b̃1, b̃2 ∈ εZd, define the events S123 := S1 ∩ S2 ∩ S3
and

H := S123 ∩ {C2 = R2} ∩ {C3 = R3} ∩ {b(1) = b̃1} ∩ {b(2) = b̃2} . (5.65)

We can write

P(S4|S123) =
∑

R1,R2,b̃1,b̃2

P(S4|H)P(C3 = R3, b
(2) = b̃2|S123, C2 = R2, b

(1) = b̃1)

× P(C2 = R2, b
(1) = b̃1|S123) ,

(5.66)

where in the above sum R2, R3 ⊂ εZd and b̃1, b̃2 ∈ εZd are taken such that

P(C3 = R3, b
(2) = b̃2|S123, C2 = R2, b

(1) = b̃1)P(C2 = R2, b
(1) = b̃1|S123) > 0 .

(5.67)
The above inequality implies that R2 ⊂ R3 ⊂ B′1 ∪ B′2 and that B(b̃2,m) ⊂ R2 ∩
L2(T (m,n)). As a consequence, (R3 ∪ ∂R3) ⊂ (B′1 ∪ ∂B′1 ∪B′2 ∪ ∂B′2). We point out
that, given x ∈ B′1 ∪ ∂B′1 ∪B′2 ∪ ∂B′2, it must be x2 ≤ n+ ε+ 2m+ 1− 2α. On the
other hand, given x ∈ b̃1 +

(
L2(T ∗(n))∪L2(T ∗(m,n))

)
, it must be x2 ≥ 2n+m+ε−1.

Since n > m+ 2, x cannot belong to both sets. In particular, we haveB(b̃2,m) ⊂ R3 ,

(R3 ∪ ∂R3) ∩
(
b̃2 +

(
L2(T ∗(n)) ∪ L2(T ∗(m,n))

))
= ∅ .

(5.68)

Due to (5.68) and Lemma 5.10.4 below, we can therefore apply Lemma 5.6.1 with
R := R3 (by taking b̃2 as origin there) with

Λ(x) :=
{
∅ if x ∈ (R3 ∪ ∂R3) \B(b̃1, n+ 1) ,
1 if x ∈ (R3 ∪ ∂R3) ∩B(b̃1, n+ 1) ,

(5.69)

and k∗ := 2. Lemma 5.10.6 below and Lemma 5.6.1 imply that

P(S4|H) ≥ P(G|H) ≥ 1− ε′ . (5.70)

The above bound and (5.66) imply that P(S4|S1, S2, S3) ≥ 1− ε′.

Lemma 5.10.4. The event H in (5.65) belongs to the σ–algebra generated by
{Ax}x∈R3∪∂R3 and {T (1)

x }x∈R3∪∂R3.

Proof. We call F the σ–algebra generated by {Ax}x∈R3∪∂R3 and {T (1)
x }x∈R3∪∂R3 .

Due to Lemma 5.9.4 the event D1 := S1 ∩ S2 ∩ {C2 = R2} ∩ {b(1) = b̃1} belongs
to the σ–algebra generated by {Ax}x∈R2∪∂R2 , which is included in F since R2 ⊂
R3. Hence, it remains to prove that, if the event D1 takes place, then the event
D2 := S3 ∩ {C3 = R3} ∩ {b(2) = b̃2} is determined when knowing {Ax}x∈R3∪∂R3 and
{T (j)

x }x∈R3∪∂R3,j∈Λ(x).
By writing D2 as a suitable union of sets, it is enough to prove the same for the

event D3 := D2 ∩ {E2 = Ẽ2} ∩ {F2 = F̃2}, where Ẽ2 and F̃2 are subsets of εZd such
that Ẽ2 ⊂ (∂R2)∩ (b̃1 +B(n)), F̃2 ⊂ B′2 \ (R2 ∪ ∂R2) and {R2, Ẽ2, F̃2} is a partition
of R3.
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5.10 The success-event S4

Claim 5.10.5. D1 ∩D3 = D1 ∩ {Items (1),..,(7) are fulfilled}, where

1. B(b̃2,m) is a seed;

2. if B(z,m) ⊂ R2 ∩ L2(T (m,n)) and z is lexicographically smaller than b̃2, then
B(z,m) is not a seed;

3. Ẽ2 is given by the points z1 ∈ (∂R2)∩ (b̃1 +B(n)) with T (1)
z1 ≤ α/100 for which

there exists z0 ∈ R2 with |z0 − z1| ≤ 1− 2α and T (1)
z0 ≤ α/100;

4. for any points z ∈ F̃2 there exists a path (z2, z3, . . . , zk) inside G where zk = z,
all points z2, . . . , zk are in F̃2 and |z1 − z2|+ 2Az2 ≤ 1− 2α for some z1 ∈ Ẽ2;

5. if z1 ∈ Ẽ2 and z2 ∈ ∂{z1} satisfy z2 ∈ B′2 \ (R2 ∪ ∂R2) and |z1 − z2|+ 2Az2 ≤
1− 2α, then z2 ∈ F̃2;

6. any x ∈ ∂F̃2 with x ∈ B′2 \ (R2 ∪ ∂R2) is not directly connected to F̃2 in G;

7. there exist x ∈ R3 ∩
(
b̃1 + T ∗(n)

)
and z ∈ εZd and y ∈ B(z,m) such that

B(z,m) ⊂
(
b̃1 + T ∗(m,n)

)
∩R3, B(z,m) is a seed and {x, y} ∈ E.

Proof of Claim 5.10.5. Let us prove the above claim. One direction is immediate: if
D1 ∩D3 is verified, then the above Items (1),...,(7) are fulfilled.

Suppose that D1 and also Items (1),...,(7) are fulfilled.
• Since C2 = R2 by the event D1 and since B(b̃2,m) ⊂ R2 ∩ L2(T (m,n)) (as

already observed in the proof of Lemma 5.10.3), Items (1) and (2) imply that b(2) = b̃2.
• Since C2 = R2 by the event D1, Item (3) implies that E2 = Ẽ2.
• We now prove that F2 = F̃2. As we know that C2 = R2 and E2 = Ẽ2, Item (4)

implies that F̃2 ⊂ F2. Suppose that there exists z ∈ F2 \ F̃2. Then there exists a path
(z2, z3, . . . , zk) inside G where zk = z, all points z2, . . . , zk are in B′2 \ (R2 ∪ ∂R2) and
|z1 − z2|+ 2Az2 ≤ 1− 2α for some z1 ∈ Ẽ2 (we have used the definition of F2 and
that C2 = R2 and E2 = Ẽ2). As |z1 − z2| ≤ 1 − 2α, we have that z2 ∈ ∂{z1} and
therefore Item (5) implies that z2 ∈ F̃2. Let r be the maximal integer 2 ≤ r ≤ k such
that zr ∈ F̃2. Since by hypothesis z = zk ∈ F2 \ F̃2, it must be r < k. Let us now
focus on zr+1. By the maximality of r it holds zr+1 6∈ F̃2. Since {zr, zr+1} ∈ E we
have that zr+1 ∈ ∂F̃2. Since we already know that zr+1 ∈ B′2 \ (R2 ∪ ∂R2), we arrive
to a contradiction of Item (6). As a consequence, it must be F2 = F̃2.
• Since C3 = C2 ∪ E2 ∪ F2 and at this point we know that C2 = R2, E2 = Ẽ2,

F2 = F̃2, we conclude that C3 = R3 (recall that {R2, Ẽ2, F̃2} is a partition of R3).
• To conclude that the event D3 is fulfilled, it remains to prove that the success-

event S3 is verified. As we have proved that C3 = R3, Item (7) implies S3.

As B(b̃2,m) ⊂ R2 ⊂ R3, Ẽ2 ⊂ R3 and F̃2 ⊂ R3, the validity of Items (1),...,(7) is
determined by knowing {Ax}x∈R3∪∂R3 and {T (j)

x }x∈R3∪∂R3,j∈Λ(x).

Lemma 5.10.6. The event G in Lemma 5.6.1, with B(n) replaced by B(b̃2, n),
K(m,n) replaced by K∗2 (m,n) and R replaced by R3, satisfies

G ∩H ⊂ S4 ∩H .
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5. Left-right crossings in the Miller-Abrahams random resistor network

Proof. Let us suppose that G ∩H takes place. Let (P1),...,(P8) be the properties
entering in the definition of G in Lemma 5.6.1, when replacing B(n) by B(b̃2, n),
K(m,n) by K∗2(m,n) and R by R3, respectively. To get the thesis it is enough to
show that z` ∈ C4 since z` ∈ K∗2(m,n) by (P5). Note that by H, (P1), (P2), (P6)
and (P7) we have that z0 ∈ C3 and z1 ∈ E3, while by H, (P3), (P4) and (P8) we get
that z2, . . . , z` ∈ F3. Since C4 := C3 ∪ E3 ∪ F3, we have that z` ∈ C4.

5.11 The success-events S5, S6 and the occupation of B(N)
Recall the definition of the isometry Lj given at the beginning of Section 5.8.
Fix i = 5, 6. If the event S2 takes place, we define b(i−2) as the minimal (w.r.t.
the lexicographic order) point z in εZd such that B(z,m) is a seed contained in
C2 ∩ Li−2(T (m,n)). If S2 does not take place, we set b(i−2) := 0.

We define K∗i−2(m,n) as the set of points x in b(i−2) + Li−2(T ∗(n)) which are
directly connected inside G to a seed contained in b(i−2) + Li−2(T ∗(m,n)). We set
B′i−1 := b(i−2) + (B(n) ∪ Li−2(T ∗(m,n))) and we define E4, F4, C5, S5, E5, F5, C6,
S6 as follows.

Definition 5.11.1. For i = 5 and afterwards for i = 6, we define the sets Ei−1, Fi−1
and Ci as

Ei−1 := E
[
Ci−1, b

(i−2) +B(n), B′i−1, i− 2] ,
Fi−1 := F

[
Ci−1, b

(i−2) +B(n), B′i−1, i− 2] ,
Ci := Ci−1 ∪ Ei−1 ∪ Fi−1 .

Moreover, we call Si the success-event that Ci contains at least one vertex inside
K∗i−2(m,n).

Note that Ci−1, Ei−1, Fi−1 are disjoint sets and Ci ⊂ ∪i−1
k=1B

′
k.

Remark 5.11.2. If the event S1 ∩ S2 occurs, then C5, C6 are connected subsets of
G∗. This can be proved by induction using Lemma 5.7.2 and Remark 5.10.2.

In order to define objects once and for all, given j ≥ 2 and given setsR2, R3, . . . , Rj
and points b̃1, b̃2, . . . , b̃j−1 we set

Hj :=
(
∩jk=1Sk

)
∩
(
∩jk=2

{
Ck = Rk

})
∩
(
∩j−1
k=1

{
b(k) = b̃k

})
, (5.71)

Λj(x) :=
{
k : 1 ≤ k ≤ j − 2 , x ∈ B(b̃k, n+ 1)

}
, ∀x ∈ Rj ∪ ∂Rj , (5.72)

Fj := σ
(
{Ax}x∈Rj∪∂Rj , {T

(k)
x }x∈Rj∪∂Rj ,k∈Λj(x)

)
. (5.73)

Lemma 5.11.3. For i = 5, 6 it holds P(Si |S1, S2, . . . , Si−1) ≥ 1− ε′ .

The proof of the above lemma follows the same arguments used to prove Lemmata
5.9.3 and 5.10.3, hence it is omitted. We just make some comments, which will be
useful in the sequel. Iteratively, one has to lower bound the conditional probability
P(Si |Hi−1), where Hi−1 is assumed to have positive probability. To this aim one has
to apply Lemma 5.6.1 with R := Ri−1, Λ(x) := Λi−1(x) and with B(n), T (n) and
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Figure 5.8. Colored small boxes are the seeds B(m) and B(b(i),m), while bigger boxes are
given by B(n) and B(b(i), n).

T (m,n) replaced by B(b̃i−2, n), b̃i−2 +Li−2
(
T ∗(n)

)
and b̃i−2 +Li−2

(
T ∗(m,n)

)
. Part

of the proof is to show that the event Hi−1 belongs to the σ-algebra Fi−1. This can
be done by induction as in the proof of Lemma 5.10.4, observing that H3 equals the
event H in Lemma 5.10.4, hence the above property holds for H3 and this would be
the starting point of the induction. We point out that, when Lemma 5.6.1 is applied
to lower bound P(Si |Hi−1), we fulfill condition (5.42) by taking k∗ := i− 2.

Definition 5.11.4. Let N := n+m+ ε. We say that the box B(N) is occupied if
the event ∩6

i=1Si takes place.
Proposition 5.11.5. P(B(N) is occupied |S1) ≥ (1− 4ε′)(1− ε′)4 ≥ (1− 8ε′).
Proof. It is enough to apply Lemmata 5.8.4, 5.9.3, 5.10.3 and 5.11.3 and, at the end,
Bernoulli’s inequality.

5.12 The success events S7, S8

Recall that N = n+m+ ε and that e1, e2, . . . , ed is the canonical basis of Zd. We
will work in the renormalized lattice 4NZd.

Recall Definition 5.11.4 for the occupation of B(N). Note that if B(N) is
occupied, then the set C6 intersects the box B(2Ne1, N). Indeed (see Fig. 5.6)
the success-event S3 implies that C3 contains a seed inside

(
b(1) + T ∗(m,n)

)
and(

b(1) + T ∗(m,n)
)
⊂ B(2Ne1, N), since

b
(1)
1 = N, b

(1)
i ∈ [m,n−m] ⊂ [−N,N ] (5.74)

and for all x ∈
(
b(1) + T ∗(m,n)

)
the following items hold:
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5. Left-right crossings in the Miller-Abrahams random resistor network

• x1 ∈ [b(1)
1 + n+ ε, b

(1)
1 + n+ ε+ 2m] = [2N −m, 2N +m] ⊂ (2N + [−N,N ]);

• for i = 2, · · · , d, xi ∈ [b(1)
i − n, b

(1)
i ] ⊂ [m− n, n−m] ⊂ [−N,N ].

As in [10] we extend the set C6 in two steps, i.e. introducing the increasing sets C7
and C8, in such a way that they intersect respectively B(3Ne1, N) and B(4Ne1, N)
when both the two steps are successful. This will be done in Subsections 5.12.1 and
5.12.2 below.

In order to shorten the presentation, we will define geometric objects only in the
successful cases relevant to continue the procedure (in the other cases, the definition
can be chosen arbitrarily).

5.12.1 Linking B(2Ne1, N) to B(3Ne1, N)

In what follows we assume that B(N) is occupied, i.e. the event ∩6
i=1Si occurs.

Since S3 occurs, the cluster C6 contains at least one seed in b(1) + T ∗(m,n) and, by
construction, this seed is contained in B(2Ne1, N). We define b(5) as the minimal
point z ∈ εZd such that B(z,m) is a seed contained in C6 ∩

(
b(1) + T ∗(m,n)

)
. Let

us call

T ∗∗(m,n) := g
(
T (m,n)|b(5)

)
and T ∗∗(n) := g

(
T (n)|b(5)

)
,

where, given a ∈ Rd, g(·|a) : Rd → Rd is the isometry

g(x|a) := (x1,−sgn(a2)x2, . . . ,−sgn(ad)xd) (5.75)

and sgn(·) is the sign function, with the convention that sgn(0) = +1. We point out
that we need to use T ∗∗(m,n) instead of T (m,n) or T ∗(m,n) to assure that, if this
and the next two steps are successful, the new cluster C6 intersects B(4Ne1, N). Let
K(5)(m,n) be defined as the set of the points x in b(5) + T ∗∗(n) which are directly
connected inside G to a seed contained in b(5) + T ∗∗(m,n).

We define
B′6 := b(5) + (B(n) ∪ T ∗∗(m,n)) .

Definition 5.12.1. We define the sets E6, F6 and C7 as

E6 := E
[
C6, b

(5) +B(n), B′6, 5] ,
F6 := F

[
C6, b

(5) +B(n), B′6, 5] ,
C7 := C6 ∪ E6 ∪ F6 .

Moreover, we call S7 the success-event that C7 contains at least one vertex inside
K(5)(m,n).

We claim that
P(S7 |S1, S2, . . . , S6) ≥ 1− ε′ . (5.76)

Recall (5.71), (5.72) and (5.73). The proof of the above claim follows the same
arguments used to prove Lemmata 5.9.3, 5.10.3 and 5.11.3. Hence we only specify
the role of the relevant objects involved in the proof when we apply Lemma 5.6.1
and we show that the hypotheses of Lemma 5.6.1 are indeed satisfied. To prove
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(5.76) we have to lower bound the conditional probability P(S7 |H6). To this aim
we want to apply Lemma 5.6.1 with R := R6, Λ(x) := Λ6(x) and with B(n), T (n)
and T (m,n) replaced by B(b̃5, n), b̃5 + T ∗∗(n) and b̃5 + T ∗∗(m,n), respectively. One
has to apply the iterative method described after Lemma 5.11.3. In particular recall
(5.71) and (5.73). One gets that H6 ∈ F6 using that H5 ∈ F5 (the last property was
proved after Lemma 5.11.3).

We also note that (5.41) with b̃5 + T ∗∗(n) and b̃5 + T ∗∗(m,n) instead of T (n)
and T (m,n), respectively, is satisfied. In fact, we have b̃5 + B(m) ⊂ R6 since we
are supposing P(H6) > 0. To get that b̃5 +

(
T ∗∗(n) ∪ T ∗∗(m,n)

)
and R6 ∪ ∂R6 are

disjoint, we observe that R6 ∪ ∂R6 ⊂ ∪5
k=1(B′k ∪ ∂B′k) and points in ∪5

k=1(B′k ∪ ∂B′k)
have their first coordinate not bigger than 2N +m+ 1 (cf. Fig. 5.8). On the other
hand, points in b̃5 +

(
T ∗∗(n)∪T ∗∗(m,n)

)
have their first coordinate not smaller than

2N + n+ ε, thus implying (5.41). Finally, note that condition (5.42) in Lemma 5.6.1
is satisfied if we take k∗ = 5.

We conclude this subsection explaining why the above procedure builds a linking
between B(2Ne1, N) and B(3Ne1, N). By construction C7 contains at least a seed
in b(5) + T ∗∗(m,n). We claim that b(5) + T ∗∗(m,n) ⊂ B(3Ne1, N) (see Fig. 5.8).
Indeed b(5)

1 = b
(1)
1 +N , b(5)

i ∈ [b(1)
i − n+m, b

(1)
i −m] for any i = 2, · · · , d and hence

by (5.74)
b
(5)
1 = 2N, b

(5)
i ∈ [2m− n, n− 2m] ⊂ [−N,N ] . (5.77)

So, for x ∈ (b(5) + T ∗∗(m,n)), we have (using (5.75) and (5.77))

• x1 ∈ [3N −m, 3N +m] ⊂ (3N + [−N,N ]);

• if b(5)
i ≥ 0 it follows that xi ∈ [b(5)

i − n+m, b
(5)
i −m] ⊂ [−n+m, b

(5)
i −m] ⊂

[−n+m,n− 3m] ⊂ [−N,N ];

• if b(5)
i < 0 it follows that xi ∈ [b(5)

i + m, b
(5)
i + n −m] ⊂ [−n + 3m,n −m] ⊂

[−N,N ].

This proves that (b(5) + T ∗∗(m,n)) ⊂ B(3Ne1, N).

5.12.2 Linking B(3Ne1, N) to B(4Ne1, N).

Assume that the event S1 ∩ S2 ∩ · · · ∩ S7 occurs. We define b(6) as the minimal
point in εZd such that B(z,m) is a seed contained in C7 ∩

(
b(5) + T ∗∗(m,n)

)
. Recall

(5.75). We set

T̃ (m,n) := g
(
T (m,n) | b(6)) and T̃ (n) := g

(
T (n) | b(6)) ,

B′7 := b(6) + (B(n) ∪ T̃ (m,n)) and we define K(6)(m,n) as the set of the points x in
b(6) + T̃ (n) which are directly connected inside G to a seed contained in b(6) + T̃ (m,n).

Definition 5.12.2. We define the sets E7, F7 and C8 as

E7 := E
[
C7, b

(6) +B(n), B′7, 6] ,
F7 := F

[
C7, b

(6) +B(n), B′7, 6] ,
C8 := C7 ∪ E7 ∪ F7 .
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5. Left-right crossings in the Miller-Abrahams random resistor network

Moreover, we call S8 the success event that C8 contains at least one vertex inside
K(6)(m,n).

We claim that
P(S8 |S1, S2, . . . , S7) ≥ 1− ε′ . (5.78)

Recall (5.71), (5.72), (5.73) and the arguments and notation presented just after
Lemma 5.11.3. Again one has to apply Lemma 5.6.1 to lower bound P(S8|H7), now
taking R := R7, Λ(x) := Λ7(x) and B(n), T (n) and T (m,n) replaced respectively by
B(b̃6, n), b̃6 + T̃ (n) and b̃6 + T̃ (m,n). By the discussion in Section 5.12.1 we have
that H6 ∈ F6. By iteration one gets that H7 ∈ F7 (cf. the proof of Lemma 5.10.4).
Hence, when applying Lemma 5.6.1, condition (5.42) is satisfied by taking k∗ = 6.

Moreover note that the second condition (5.41) with b̃6 + T̃ (n) and b̃6 + T̃ (m,n)
instead of T (n) and T (m,n), respectively, is satisfied. Indeed R7 ∪ ∂R7 ⊂ ∪6

k=1(B′k ∪
∂B′k) and points in ∪6

k=1(B′k ∪ ∂B′k) have their first coordinate not bigger than
3N + m + 1. On the other hand, points in b̃6 + T̃ (n) ∪ T̃ (m,n) have their first
coordinate not smaller than 3N +n− 1 and hence b̃6 + T̃ (n)∪ T̃ (m,n) and R7 ∪ ∂R7
are disjoint, that is the second inclusion in (5.41) holds. Note also that the first
condition in (5.41) is verified since b̃6 +B(m) ⊂ R7 when the event ∩7

k=1Sk occurs.

5.13 Occupation of the box B(4Ne1, N) after being linked
to B(N)

Warning 5.13.1. While in Section 5.8 we have defined L1, L2, L3, L4 as I, θ, θ2, θ3

(cf. (5.59)), respectively, in this section we set L1 := I, L2 := h ◦ θ, L3 := θ3, where
h(x) = (−x1, x2, . . . , xd) if x = (x1, x2, . . . , xd).

Lemma 5.13.1. The following holds:

(i) The random variables {{T (j)
x }x∈εZd | j = 1, · · · , 4} that have been considered

during the construction of {Ci}6i=2, are all associated only with points x ∈
B(2N +m+ 1).

(ii) The random variables {{T (j)
x }x∈εZd | j = 5, 6} that have been considered during

the construction of C7 and C8, are all associated only with points x ∈ εZd for
which x1 ∈ [2N − n− 1, 4N +m+ 1] and xj ∈ [−2N − 1, 2N + 1] for j ≥ 2.

The proof of the above lemma is based on straightforward but cumbersome
computations and therefore it is omitted. On the other hand, the validity of the
lemma is confirmed also by Figure 5.8.

Let us assume that the event S1 ∩ · · · ∩ S8 occurs. By construction C8 contains
at least a seed in b(6) + T̃ (m,n). We define b(7) as minimal point in εZd such that
B(z,m) is such a a seed. The idea now is to connect the cluster C8 to seeds lying on
the remaining three faces of the cube b(5) +B(n+ ε) in directions e1 and ±e2. We
want to extend the cluster in a way similar to the one used to construct C2, paying
attention to some slight changes due to the information that we already know about
the cluster that we have constructed. Indeed note that b(7) can differ from 4Ne1 and
we have already connected b(7) +B(m) to the seed b(6) +B(m). For this reason, we
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connect b(7) +B(m) to seeds that have only points with first coordinate not smaller
than 4N . This necessity motivates the new definition of L1, L2, L3. Indeed, below
we will connect b(7) +B(m) with a seed contained in b(7) + T̂j(m,n) for j = 1, 2, 3,
where

T̂j(m,n) := Lj(g(T (m,n) | b(7))) j = 1, 2, 3 . (5.79)

We define
B′8 := b(7) +

(
B(n) ∪

[
∪j=1,2,3T̂j(m,n)

])
,

and we call K(6+j)(m,n) the set of the points x in b(7) + T̂j(n) which are directly
connected inside G to a seed contained in b(7) + T̂j(m,n).

Definition 5.13.2. We define the sets E8, F8 and C9 as

E8 := E
[
C8, b

(7) +B(n), B′8, 1] ,
F8 := F

[
C8, b

(7) +B(n), B′8, 1] ,
C9 := C8 ∪ E8 ∪ F8 .

Moreover, we call S9 the success event that C9 contains at least one vertex inside
K(6+j) for all j = 1, 2, 3.

If for j = 1, 2, 3, we define the event

Fj := {C9 contains at least one vertex inside K(6+j)} ,

then we have that that S9 = ∩j=1,2,4Fj . Hence

P(S9 |S1, S2, · · · , S8) = 1− P
(
∪j=1,2,3F

c
j

∣∣S1, S2, · · · , S8
)

≥ 1−
∑

j=1,2,3
P(F cj |S1, S2, · · · , S8) . (5.80)

We claim that for any j = 1, 2, 3

P(Fj |S1, S2, · · · , S2d+4) ≥ 1− ε′ , (5.81)

thus implying that
P(S9 |S1, S2, · · · , S8) ≥ 1− 3ε′ . (5.82)

The proof of the above claim uses the arguments adopted in the proof of Lemma 5.9.3
and Lemma 5.10.3. Recall (5.71), (5.72), (5.73). To prove (5.81) we lower bound the
conditional probability P(Fj |H8) when P(H8) > 0. To this aim we apply Lemma
5.6.1 with R := R8, Λ(x) := Λ8(x) and with B(n), T (n) and T (m,n) replaced by
B(b̃7, n), b̃7 + T̂j(n) and T̂j(m,n) respectively, where T̂j(n) := Lj(g(T (m,n) | b(7))).
The validity of (5.42) with k∗ := 1 is assured by Lemma 5.13.1–(i).

Observe now that if also S9 occurs, then the box 4Ne1 + B(N) is linked-up
with the boxes {Nv +B(N) | v = ±e1,±e2}. To conclude the occupation of the box
4Ne1 + B(N), we have to link-up the above box Nv + B(N) with 2Nv + B(N).
Observe that this operation, for v = −e1, has already been done when we have
constructed C7 from C6 and C8 from C7. In the present setting, suppose that the
event ∩9

k=1Sk occurs. Since S9 occurs, the cluster C9 contains at least one seed in
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C9 ∩ (b(7) + T̂j(m,n)) for any j ∈ 1, 2, 3 . We define b(7+j) as the minimal point
z ∈ εZd such that B(z,m) is such a seed. Let us define

T̂ ∗1 (n) := g(T (n) | b(8)) T̂1(m,n) := g(T (m,n) | b(8))

T̂ ∗2 (n) := g′(T̂2(n) | b(9)) T̂2(m,n) := g′(T̂2(m,n) | b(9))
T̂ ∗3 (n) := g′(T̂3(n) | b(10)) T̂3(m,n) := g′(T̂3(m,n) | b(10))

where g′(x | a) = (−sgn(a1)x1, x2,−sgn(a3)x3, . . . ,−sgn(ad)xd). moreover we define
B′6+j := b(7+j) + (B(n) ∪ T̂ ∗j (m,n)) and K(7+j)(m,n) as the set of the points x
in b(7+j) + T̂ ∗j (n) which are directly connected inside G to a seed contained in
b(7+j) + T̂ ∗j (m,n).
Definition 5.13.3. For j = 1, 2, 3 we define the sets E9+j , F9+j and C9+j as

E8+j := E
[
C8+j , b

(7+j) +B(n), B′8+j , 1 + j] ,
F8+j := F

[
C8+j , b

(7+j) +B(n), B′8+j , 1 + j] ,
C9+j := C8+j ∪ E8+j ∪ F8+j .

Moreover, we call S9+j the success-event that C9+j contains at least one vertex inside
K(7+j)(m,n).

We claim that

P(S9+j |S1, S2, · · · , S8+j) ≥ 1− ε′ ∀j = 1, 2, 3 . (5.83)

To get (5.83), again, one has to apply Lemma 5.6.1 with with R := R8+j , Λ(x) :=
Λ8+j(x) and with B(n), T (n) and T (m,n) replaced respectively by B(b̃7+j , n), b̃7+j +
T̂ ∗j (n) and b̃7+j + T̂ ∗j (m,n). Note that condition (5.42) is satisfied with k∗ := 1 + j
due to Lemma 5.13.1–(i).
Definition 5.13.4. We say that the box 4Ne1 +B(N) is occupied and linked to the
box B(N) if the event S7 ∩ · · · ∩ S12 occurs.

So, by (5.76), (5.78), (5.82), (5.83) and Bernoulli’s inequality, we get

P(4Ne(1) +B(N) is occupied and linked to B(N) |B(N) is occupied)
≥ (1− ε′)5(1− 3ε′) ≥ 1− 8ε′ .

(5.84)

Note that for the entire construction up to now we have used the random variables
{T (j)

z } with j = 1, 2, . . . , 6. Due to the localization properties stated in Lemma 5.13.1
and the periodicity of the lattice 4NZd, for the future steps in the construction of
the cluster in the renormalized lattice 4NZd we do not need more fields. Indeed, if
for example we want to connect the boxes B(N) and 4Ne2 +B(N), we can repeat
the same procedure used to connect B(N) and 4Ne1 + B(N) using {T (j)

z } with
j = 1, 2, . . . , 6, since the sets 4Ne1 +B(N) and 4Ne2 +B(N) are far enough away.
In particular, in the general step, one has to modify (5.72) as

Λj(x) :=
{
k ∈ {1, 2, . . . , 6} : ∃k′ ∈ k + 6Z such that

1 ≤ k′ ≤ j − 2 , x ∈ B(b̃k′ , n+ 1)
}
, ∀x ∈ Rj ∪ ∂Rj . (5.85)

Finally we point out that the region of εZd explored during the construction up
to C12 is localized inside suitable corridors (cf. Figure 5.9):
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5.14 Extended construction by success-events

Figure 5.9. The black points in the figure are the points of the renormalized lattice 4NZd.
The black boxes are made of points of εZd that we do not visit when we construct the sets
{Ci ∪ ∂Ci}i. In the picture are drown the boxes obtained as translations of B(n) (drawn
in white) and B(m) (drawn in grey) that have been considered to establish the occurrence
of the events {B(N) is occupied} and {4Ne1 +B(N) is occupied and linked to B(N)}.
Note that the drawn white and grey boxes do not intersect the black boxes. The corridors
that appear in the picture between black boxes have half–width 2n−m.

Proposition 5.13.5. For y ∈ 4NZd, define

Zy := y + {x ∈ εZd | min{|x1|, |x2|} ≤ 2n−m, |xj | ≤ 2n−m for j = 3, . . . , d} .

Suppose that the event S1 ∩ . . . ∩ S12 occurs. The following inclusions hold

(a) ∪11
k=1B

′
k ⊂ Z0 ∪ Z4Ne1 ,

(b) ∪5
k=1B

′
k ⊂ B(2N +m) ,

(c) ∪11
k=7B

′
k ⊂ 4Ne1 +B(2N + n) ,

(d) B′6 ∪B′7 ⊂ [2N − n, 4N +m]× [−2n+m, 2n−m]d−1 .

The proof of the above fact is given in Section 5.16.

5.14 Extended construction by success-events
In the following we say that 0 is occupied if B(N) is occupied and e1 is occupied
and linked to 0 if B(4Ne1, N) is occupied and linked to B(N).

In the previous sections we have explained how to check if the origin is occupied
and (in affermative case) if e1 is occupied and linked to the origin. These will be the
two basic steps in the algorithmic construction presented in Section 5.15. There we
will start with a point, which we take now equal to the origin, and we will iteratively
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5. Left-right crossings in the Miller-Abrahams random resistor network

define an increasing set X of occupied and linked points, by means of success-events,
until the algorithm stops. In general when X 6= ∅ we will provide in Section 5.15
a rule to decide if we have to stop the algorithm or not. If the algorithm is not
stopped, the rule will also indicate how to choose points v 6∈ X and w ∈ X such that
‖v − w‖1 = 1. Roughly, the algorithm is structured as follows. First we check if the
origin is occupied according to Definition 5.11.4. If it is not occupied, then we end
the algorithm with output X := ∅, otherwise we temporary set X := {0} and apply
the above rule. Suppose the algorithm is not stopped by the rule. In this case, as
X = {0}, necessarily w = 0 and v is nearest neighbor to the origin. We therefore
check if v is occupied and linked to the origin according to Definition 5.13.4 (with e1
replaced by v). If this happens, then we update the value of X by temporary setting
X := {0, v}, otherwise we do not update the set X. At this point, we apply again the
above rule and proceed as before continuing iteratively in this way. We stress that
the rule will definitely stop the algorithm.

We point out that in order to decide if the origin is occupied or not we reveal
only random variables associated to points in B(2N +m) (cf. Fig. 5.8). If the origin
is occupied, in order to decide if e.g. e1 is occupied and linked to the origin, we
reveal only random variables associated to points in B(4Ne1, 2N +n)∪B(2Ne1, 2N)
(cf. Fig. 5.8). When extending the construction by the algorithm mentioned above
and described in Section 5.15, since we explore uniformly bounded regions, by taking
K large enough in Definition 5.3.4 we can iteratively apply Lemma 5.6.1 assuring
condition (5.42) to be fulfilled simply by using some index k∗ ∈ {1, 2, . . . ,K} not
already used in the region under exploration.

We point out another relevant issue when adapting the steps described in the
previous sections to the extended construction of Section 5.15. In order to check if
e1 is occupied and linked to the origin we have considered also the success-events
S10, S11, S12. These success-events are thought in order to assure the presence of
seeds localized in b(i) + Ti(m,n) for i = 9, 10, 11, which would allow to continue the
construction in direction e1, e2 and −e2, respectively. In the extended construction,
when we need to check if a vertex v is occupied and linked to some vertex w, we
remove the success-events associated to seeds which would direct the construction
towards a box already explored. For example, suppose that 0 is occupied and e1
is occupied and linked to 0. Suppose that the rule requires now to check if e2
is occupied and linked to 0. We do this by success-events similar to the events
S3, . . . , S12 described in the previous sections, now in direction e2. Suppose now
that the rule requires to check if e2 + e1 is occupied and link to e2. We do this
by success-events similar to the events S3, . . . , S11 described before. Note that the
analogous of S12 has been removed since the region around 4Ne1 has already been
explored.

In Section 5.15, after constructing the set X, we construct iteratively other sets
X′ by a similar procedure. In order to lower bound the conditional probability one
can anyway apply Lemma 5.6.1. We also point out that in Section 5.15 we first check
the occupation of the starting points of the X′–type sets (the points analogous to
the origin for X) and afterwards proceed with the construction described above. The
final result is the same.

At the end, conditioned to the previous construction, the probability that the first
point in X′ is occupied is lower bounded by 1− 8ε′, and that a point v is occupied

92



5.15 Proof of Theorem 4 in Section 5.3

and linked to a given point w of the built set X′ is lower bounded by 1− 8ε′.

5.15 Proof of Theorem 4 in Section 5.3

Having recovered results on the renormalized lattice similar to the ones in [10], the
proof of Theorem 4 follows the main strategy developed in [15, Section 4] with
suitable modifications and extensions.

Let pc(2) be the critical probability for the 2–dimensional site percolation. We
take ε′ small enough that 1−8ε′ ≥ 3/4 > pc(2). We first show that it is enough to deal
with 2-dimensional slices. To this aim recall that ∆L = [−L− 2, L+ 2]× [−L,L]d−1.
We introduce the set V (a, r) := a+ [−r, r)d−2, we denote by L the set 4NZd−2 and,
for each z ∈ L, we consider the slice

∆(z) := ([−L− 2, L+ 2]× [−L,L]× V (z, 4N)) ∩ εZd .

Note that, when varying z ∈ L, the above slices are disjoint and that ∆L contains at
least b2L/8Ncd−2 � c0L

d−2 slices of the above form.
We denote by RL the maximal number of vertex-disjoint LR crossings of ∆L in

G∗ which are included in the slice ∆(0). We claim that there exist positive constants
c1, c2 such that, for L large enough, it holds

P(RL ≥ c1L) ≥ 1− e−c2L . (5.86)

Let us first show that (5.86) implies Theorem 4. To this aim we assume (5.86). By
translation invariance and independence (cf. Definition 5.3.4) the number of disjoint
slices ∆(z) ⊂ ∆L including at least c1L vertex-disjoint LR crossings of ∆L for G∗
stochastically dominates a binomial random variable Y with parameters n � c0L

d−2

and p := 1− e−c2L. Setting δ := e−c2L we get

P(RL < n/2) ≤ P (Y < n/2) = P (δY > δ
n
2 ) ≤ δ−

n
2E
[
δY
]

= δ−
n
2 [δp+ 1− p]n

= δ−
n
2 [δ − δ2 + δ]n ≤ δ−

n
2 [2δ]n = 2c0(1+o(1))Ld−2

e−c0c2(1+o(1))Ld−1/2 ,

thus implying (5.14) in Theorem 4.
It remains now to prove (5.86). In order to have a notation close to the one in

[15, Section 4], we consider the box

Λ := ([0,M + 1]× [0,M − 1]) ∩ Z2 ,

where M will be linearly related to L as explained at the end.
Let (x1, x2, . . . , xn) be a string of points in Λ, such that the set {x1, x2, . . . , xn}

is connected when thinking to Λ as a graph with edges {xi, xj} with |xi − xj | = 1.
We introduce a total order on ∆{x1, . . . , xn} (in general, given A ⊂ Z2, ∆A := {y ∈
Z2 \ A : |x − y| = 1 for some x ∈ A}). We have to modify the definition in [15,
Section 4] which is restricted there to the case that (x1, x2, . . . , xn) is a path in Z2.
For later use, it is more convenient to describe the ordering from the largest to the
smallest element. We denote by Ψ the anticlockwise rotation of π/2 around the
origin in R2 (in particular, Ψ(e1) = e2 and Ψ(e2) = −e1). We first introduce an
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order ≺k on the sites in Z2 neighboring xk as follows. Putting x0 := x1 − e1, for
k = 1, 2, . . . , n we set

xk + Ψ(v) �k xk + Ψ2(v) �k xk + Ψ3(v) �k xk + Ψ4(v) = xa(k) ,

where v := xa(k) − xk and a(k) := max{j : 0 ≤ j ≤ n and |xk − xj | = 1}. The
order on ∆{x1, . . . , xn} is obtained as follows. The largest elements are the sites of
∆{x1, . . . , xn} neighboring xn (if any), ordered according to �n. The next elements,
in decreasing order, are the sites ∆{x1, . . . , xn} neighboring xn−1 but not xn (if any),
ordered according to �n−1. As so on, in the sense that in the generic step one has to
consider the elements of ∆{x1, . . . , xn} neighboring xk but not xk+1, . . . , xn (if any),
ordered according to �k.

Let F0 be the event

F0 := {B(4Nx,m) is a seed ∀x ∈ Λ with x = (0, s) for some s}.

We now define a random field ζ = (ζ(x) : x ∈ Λ) with ζ(x) ∈ {0, 1} on the probability
space

(
Θ,Q

)
where Q := P

(
·|F0

)
(cf. Definition 5.3.4).

To define the field ζ, we have to build the sets Csj = (Esj , F sj ), with s ∈
{0, 1, . . . ,M − 1} and j = 1, 2, . . . ,M2, and the sites xsj such that Esj ∪ F sj =
{xs1, xs2, . . . , xsj}. The construction will fulfill the following properties: Esj will be a
connected subset of Λ; (Esj+1, F

s
j+1) will be obtained from (Esj , F sj ) by adding exactly

a point (called xsj+1) either to Esj or to F sj ; ζ ≡ 1 on Esj and ζ ≡ 0 on F sj .
In what follows, the index s will vary in {0, 1, . . . ,M−1}. We also set xs1 := (0, s).

We build the sets C0
1 , C1

1 ,...,CM−1
1 as follows. We say that xs1 is occupied if the

analogous of Definition 5.11.4, with removed success-events S3, S4, S5, is fulfilled. If
the point xs1 is occupied, then we set

ζ(xs1) := 1 and Cs1 := (Es1, F s1 ) := ({xs1}, ∅) , (5.87)

otherwise we set

ζ(xs1) := 0 and Cs1 := (Es1, F s1 ) := (∅, {xs1}) . (5.88)

We then define iteratively

C0
2 , C

0
3 , . . . , C

0
M2 , C1

2 , C
1
3 , . . . , C

1
M2 , . . . , C

M−1
2 , CM−1

3 , . . . , CM−1
M2 (5.89)

as follows. If Es1 = ∅, then we set Csj := Cs1 for all j : 2 ≤ j ≤M2. We restrict now
to the case Es1 6= ∅. Suppose we have defined all the sets preceding Csj+1 in the above
string (5.89) and we want to define Csj+1. We call W s

j the points of Λ involved in
the construction up to this moment, i.e.

W s
j = {xk1 : 0 ≤ k ≤M − 1} ∪ {xs′r : 0 ≤ s′ < s, 1 < r ≤M2} ∪ {xsr : 1 < r ≤ j} .

As already mentioned, it must be Es0 ⊂ Es1 ⊂ · · · ⊂ Esj and at each inclusion either
the two sets are equal or the second one is obtained from the first one by adding
exactly a point. We then write Ēsj for the non–empty string obtained by ordering
the points of Esj according to the chronological order with which they have been
added. Equivalently, xsa precedes xsb in Ēsj if a < b. Hence the total order in ∆Ēsj is
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well defined. We call Psj the following property: Esj is disjoint from the right vertical
face of Λ, i.e. Esj ∩ ({M + 1} × {0, 1, . . . ,M − 1}) = ∅, and (Λ ∩∆Ēsj ) \W s

j 6= ∅. If
property Psj is satisfied, then we denote by xsj+1 the last element of (Λ ∩∆Ēsj ) \W s

j .
We define k as the largest integer k such that xsk ∈ Esj and |xsj+1 − xsk| = 1. If xsj+1
is occupied and linked to xsk (cf. Definition 5.13.4), then we set

ζ(xsj+1) := 1 and Csj+1 :=
(
Esj ∪ {xsj+1}, F sj

)
, (5.90)

otherwise we set

ζ(xsj+1) := 0 and Csj+1 :=
(
Esj , F

s
j ∪ {xsj+1}

)
. (5.91)

On the other hand, if property Psj is not verified, then we set xsj+1 := xsj (hence
ζ(xsj+1) has already been defined) and Csj+1 := Csj .

It is possible that the set ∪M−1
s=0 ∪M

2
j=1

(
Esj ∪ F sj

)
does not fill all Λ. In this case

we set ζ ≡ 0 on the remaining points. This completes the definition of the random
field ζ.

Above we have constructed the sets Csj in the following order: C0
1 , C1

1 , . . . , CM−1
1 ,

C0
2 , C0

3 , . . . , C0
M2 , C1

2 , C
1
3 , . . . , C

1
M2 , . . . , C

M−1
2 , CM−1

3 , . . . , CM−1
M2 . By Proposition

5.11.5 and (5.84), at every step the probability to add a point to a set of the form
E∗∗ , conditioned to the construction performed before such a step, is lower bounded
by 1− 8ε′ ≥ 3/4.

Call NM the maximal number of vertex-disjoint LR crossings of the box Λ for ζ
(here crossings are the standard ones for percolation on Zd [9]). Note that NM also
equals the number of indexes s ∈ {0, 1, . . . ,M − 1} such that EsM2 intersect the right
vertical face of Λ. By establishing a stochastic domination on a 2–dimensional site
percolation in the same spirit of [10, Lemma 1] (cf. [15, Lemma 4.1]) and using the
above lower bound on the conditional probability to add a point to a set of the form
E∗∗ , one obtains that NM stochastically dominates the corresponding number in a
site percolation of parameter p = 3/4 > pc(2). Hence there exist c3, c4 > 0 such that
Q(NM ≥ c3M) ≥ 1− e−c4M for M large enough [9].

In the rest we derive (5.86) from the above bound on Q(NM ≥ c3M). Due to
the translation invariance of P, it is enough to prove (5.86) with ∆(0) replaced by
∆(0)′ :=

(
[m+ 1, 2L+ 5 +m]× [0, 2L]× [−4N, 4N)d−2) ∩ εZd. We take M as the

minimal integer such that (M + 1)4N > 2L+ 5 +m+N . Without loss of generality,
when referring to the LR crossings of the box Λ for ζ we restrict to crossings such
that only the first and the last points intersect the vertical faces of Λ (which would
not change the random number NM ). We fix a set Γ′ of vertex–disjoint LR crossings
of Λ for ζ with cardinality NM . Then we define Γ as the set of paths (x1, x2, . . . , xk)
in Γ′ such that xi has second coordinate in [1,M − 2] for each i. Note that, since Λ
is bidimensional, |Γ| ≥ |Γ′| − 2. Given x ∈ Z2 we set x̄ := (x, 0, 0, . . . , 0) ∈ Zd.

Take a LR crossing (x1, x2, . . . , xk) in Γ. By the discussion in the previous sections,
we get that there is a path γ in G∗ from B(4Nx̄1,m) to B(4Nx̄k, N) without self-
intersections. Moreover, this path is included in the region R obtained as union of
the boxes B(4Nx̄i, 3N) with i = 1, . . . , k (see Fig. 5.8). We point out that the second
coordinate of any point in B(4Nx̄i, 3N) is in [4N − 3N, 4N(M − 2) + 3N ] ⊂ [0, 2L]
due to the definition of Γ and since 4NM ≤ 2L+ 5 +m+N by the minimality of M .
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In addition, the box B(4Nx̄1,m) lies in the halfspace {(z1, . . . , zd) ∈ εZd : z1 ≤ m},
while the box B(4Nx̄k, N) lies in the halfspace {(z1, . . . , zd) ∈ εZd : z1 > 2L+5+m}
(by our choice of M). As a consequence we can extract from the above path γ a
new path γ̃ for G∗ lying in R∩ {(z1, . . . , zd) ∈ εZd : m ≤ z1 ≤ 2L+ 5 +m, 0 ≤ z2 ≤
2L} ⊂ ∆(0)′. At cost to further refine γ̃ we have that γ̃ is a LR crossing of ∆(0)′.
Moreover, due to the dimension 2, there is an integer ` such that every path γ̃ can
share some vertex with at most ` paths γ̃′ with γ′ ∈ Γ. Since M ≥ c5L, by the above
observations we have proved that the event {NM ≥ c3M} implies the event F that
∆(0)′ has at least c6L vertex–disjoint LR crossings for G∗. Hence, by our bound on
Q(NM ≥ c3M) and since M ≤ c7L, we get that Q(F ) ≥ 1− e−c8L. Since edges in
G∗ have length bounded by 1, the event F does not depend on the vertexes of G∗ in
∪M−1
s=0 B(4Nx̄s1,m), neither on the edges exiting from the above region. In particular,

F and F0 are independent, thus implying that P(F ) = P(F |F0) = Q(F ) ≥ 1− e−c8L,
and in particular (5.86) is verified.

5.16 Proof of Proposition 5.13.5
Proposition 5.13.5 is a direct consequence of all the following lemmas.

Lemma 5.16.1. If x ∈ (∪5
k=1B

′
k), then x ∈ Z0. Moreover ∪5

k=1B
′
k ⊂ B(2N +m).

Proof. Note that for j = 2, 4 it holds

|b(j−1)
1 | = N and |b(j−1)

i | ∈ [m,n−m] for i = 2, 3, . . . , d ,

while for j = 3, 5 it holds

|b(j−1)
2 | = N and |b(j−1)

i | ∈ [m,n−m] for i = 1, 3, 4, . . . , d .

Let (i, j) be an element of ({1, 3, 4, . . . , d} × {3, 5}) ∪ ({2, 3, 4, . . . , d} × {2, 4}).
Consider x ∈ B′j . We have |xi − b(j−1)

i | ≤ n and, since |b(j−1)
i | ∈ [m,n−m], we get

|xi| ≤ |xi − b(j−1)
i |+ |b(j−1)

i | ≤ n+ n−m = 2n−m.

Moreover, since points in B(n) have uniform norm not bigger than n ≤ 2n−m,
we get that

∪5
k=2B

′
k ∪B(n) = ∪5

k=1B
′
k ⊂ Z0 .

Using the above inclusion and noting that 2n−m ≤ 2N +m, the second part of the
lemma is trivial and can be easily checked looking at Figure 5.8

Lemma 5.16.2. If x ∈ B′6 ∪ B′7, then |xi| ≤ 2n −m for i = 2, 3, . . . , d and hence
x ∈ Z0 ∩ Z4Ne1. Moreover B′6 ⊂ [2N − n, 3N + m] × [−2n + m, 2n − m]d−1 and
B′7 ⊂ [3N − n, 4N +m]× [−2n+m, 2n−m]d−1.

Proof. Recall that b(1)
1 = N and b(1)

i ∈ [m,n−m] for i = 2, 3, . . . , d.
We first localize b(5) and b(6). Note that

b
(5)
1 = b

(1)
1 +N = 2N , b

(6)
1 = b

(5)
1 +N = 3N .
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Moreover by construction for i = 2, . . . , d

b
(5)
i ∈ [b(1)

i − n+m, b
(1)
i −m] ⊂ [−n+m,n−m] , (5.92)

and hence

• if b(5)
i > 0 (that is, by (5.92), b(5)

i ∈ [0, n−m]), then

b
(6)
i ∈ [b(5)

i − n+m, b
(5)
i −m] ⊂ [−n+m,n− 2m] ,

• if b(5)
i ≤ 0 (that is, by (5.92), b(5)

i ∈ [−n+m, 0]), then

b
(6)
i ∈ [b(5)

i +m, b
(5)
i + n−m] ⊂ [−n+ 2m,n−m] .

So
b
(6)
i ∈ [−n+m,n−m] . (5.93)

Let i ∈ {2, 3, . . . , d} and j ∈ {6, 7}. If x ∈ B′j , by (5.92) for j = 6 and (5.93) for
j = 7, we have xi ∈ [−n+ b

(j−1)
i , b

(j−1)
i + n] ⊂ [−2n+m, 2n−m].

So we have the first part of the lemma. Since we have just proved that B′6 ∪B′7 ⊂
{x ∈ εZd : |xi| ≤ 2n−m for i = 2, . . . , d}, the second part of the lemma is trivial
when looking at Figure 5.8.

Lemma 5.16.3. If x ∈ ∪11
k=8B

′
k, then x ∈ Z4Ne1. Moreover ∪11

k=7B
′
k ⊂ 4Ne1 +

B(2N + n).

Proof. First we localize b(7), . . . , b(10). By construction b(1)
1 = N , b(5)

1 = b
(1)
1 +N = 2N

and b(j)1 = b
(j−1)
1 +N for j = 6, 7. So b(7)

1 = 4N .
Moreover for i = 2, 3, . . . , d

• if b(6)
i > 0 (that is, by (5.93), b(6)

i ∈ [0, n−m]), then

b
(7)
i ∈ [b(6)

i − n+m, b
(6)
i −m] ⊂ [−n+m,n− 2m] ,

• if b(6)
i ≤ 0 (that is, by (5.93), b(5)

i ∈ [−n+m, 0]), then

b
(7)
i ∈ [b(6)

i +m, b
(6)
i + n−m] ⊂ [−n+ 2m,n−m] .

So
b
(7)
i ∈ [−n+m,n−m] . (5.94)

Moreover for i = 2, 3, 4, . . . , d and j ∈ {9, 10, 11} we have

• if b(7)
i > 0 (that is, by (5.94), b(7)

i ∈ [0, n−m]), then

b
(j−1)
i ∈ [b(7)

i − n+m, b
(7)
i −m] ⊂ [−n+m,n− 2m] ,

• if b(7)
i ≤ 0 (that is, by (5.94), b(7)

i ∈ [−n+m, 0]), then

b
(j−1)
i ∈ [b(7)

i +m, b
(7)
i + n−m] ⊂ [−n+ 2m,n−m] .
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So for i = 2, 3, 4, . . . , d and j ∈ {9, 10, 11}

b
(j−1)
i ∈ [−n+m,n−m] . (5.95)

Applying (5.95), given x ∈ B′j with j ∈ {9, 10, 11}, it is possible to localize xi for
i ∈ {3, 4, . . . , d}. Indeed

xi ∈ [b(j−1)
i − n, b(j−1)

i + n] ⊂ [−2n+m, 2n−m] . (5.96)

We prove now the following items:

(i) if x ∈ B′j with j ∈ {10, 11}, it holds |x1| ≤ 4N + 2n−m

(ii) if x ∈ B′9, it holds |x2| ≤ 2n−m.

Indeed by proving items (i) and (ii), we conclude the proof of the first part of the
lemma.

Let us start from item (i). Suppose that x ∈ B′j with j ∈ {10, 11} and observe
that |x1 − b(j−1)

1 | ≤ n. Moreover by construction |b(j−1)
1 − b(7)

1 | ≤ n−m. Hence

|x1| ≤ |x1 − b(j−1)
1 |+ |b(j−1)

1 − b(7)
1 |+ |b

(7)
1 | ≤ n+ n−m+ 4N = 2n−m+ 4N ,

where we have used the identity b(7)
1 = 4N . So by the above inequality and (5.96)

we have B′10 ∪B′11 ⊂ Z4Ne1 .

Consider now item (ii). Suppose now that x ∈ B′9 and observe that |x2− b(8)
2 | ≤ n

and hence by (5.95) we get

|x2| ≤ |x2 − b(8)
2 |+ |b

(8)
2 | ≤ n+ n−m = 2n−m.

So by the above inequality and (5.96) we have B′9 ⊂ Z4Ne1 .
Moreover note that all the points x ∈ b(7) +B(n) satisfy |x1− 4N | ≤ n and hence

∪11
k=9B

′
k ∪ (b(7) +B(n)) = ∪11

k=8B
′
k ⊂ Z4Ne1 .

Note that ∪11
k=7B

′
k ⊂ b(7) + B(2N + m) (this fact can be easily checked using the

inclusion that we have just proved, Lemma 5.16.2 and Figure 5.8). By (5.94), the
above inequality implies the second part of the lemma.
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