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Abstract 

Modelling the pavement deterioration process is essential for a successful pavement 

management system (PMS). The pavement deterioration process is highly influenced by 

uncertainties related to data acquisition and condition assessment. This paper presents a novel 

approach for predicting a pavement deterioration index. The model builds on a negative 

binomial (NB) regression used to predict pavement deterioration as a function of the pavement 

age. Network-level pavement condition models were developed for interstate, primary, and 

secondary pavement road families and were compared with traditional non-linear regression 

models. The linear empirical Bayesian (LEB) approach was then used to improve the 

predictions by combining the deterioration estimated by the fitted model and the 

observed/measured condition recorded in the PMS.  The proposed approach can improve the 

mean square error prediction of the next-year pavement condition by 33%, 36% and 41% for 

Interstate, Primary, and Secondary roads, respectively, compared with the measured pavement 

condition without further modelling of the pavement deterioration. 
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Introduction 

One of the primary objectives of a road agency is to maintain and manage the entire network at a 

high level of service. To achieve this goal, managers need accurate pavement deterioration 

prediction models. Road agencies collect a large amount of pavement condition data from 

inspections performed on their network. Because of uncertainties in the data collection methods, 

interpretation of distresses, and the inherent variability of individual sections, the pavement’s 

recorded condition can have a high variance. Deterioration models can provide a good 

representation of the overall condition of the network, but are bad at representing the performance 

of individual pavement sections. This paper proposes a linear empirical Bayesian (LEB) approach 

to combine the pavement condition estimated by network-level pavement deterioration models for 

families of pavements, with the most recent observed/measured condition recorded from the 

inspection of the network. This approach results in a better estimate of the pavement condition 

compared to the family deterioration model or the measured condition. Compared to the measured 

condition, that is, with not using a pavement deterioration technique, the LEB approach is estimated 

to reduce the mean square error (MSE) of predicting the future condition (next year’s condition) by 

as much as 33%, 36%, and 41% for the Interstate, Primary, and Secondary network families, 

respectively.  A more accurate estimate of the future condition addresses the critical need of 

predicting the future pavement condition to support network-level decision-making. 

Objective 

The objective of this paper is to present a novel deterioration modelling approach that is illustrated 

by predicting the pavement Critical Condition Index (CCI) used by the Virginia Department of 

Transportation (VDOT). The proposed model builds on the negative binomial (NB) regression that 

has been used to model pavement deterioration as a function of pavement age (Katicha et al. 
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2016a). The pavement condition is calculated using the LEB approach, which combines the 

deterioration estimated by the fitted model and the observed/measured condition recorded from the 

inspections for each section.  

The proposed technique is also compared with the default pavement deterioration models 

currently in use by VDOT. 

Background 

Starting in the 1980s, road agencies in the United States began developing deterministic regression 

models to predict network-level pavement condition (George et al. 1989). The U.S. Army Corps of 

Engineers proposed grouping data by sections with similar characteristics into pavement families 

(i.e., homogeneous sections) to develop pavement deterioration models (Nunez and Shahin 1986, 

Shahin et al. 1987, PAVER 2014). According to this approach, a pavement family should belong to 

the same maintenance system according to functional classification and have the same pavement 

type surface, similar traffic levels, and similar repair and maintenance records. It is assumed that 

sections belonging to the same pavement family have the same pattern of deterioration over time 

and this pattern is considered to be representative of the overall performance of that pavement 

family. 

The pavement families approach is currently used and implemented in pavement 

management system (PMS) software by many U.S. departments of transportation (DOTs) such as 

TxDOT (Stampley et al. 1995), Indiana DOT (Gulen et al. 2001), Louisiana DOT (Khattak et al. 

2009), PennDOT (Wolters and A 2010), Delaware DOT (Mills et al. 2012), Colorado DOT (Saha et 

al. 2017), and North Carolina DOT (Chen and Mastin 2016). 

The use of pavement family modelling techniques allows agencies to incorporate simple 

default models capable of predicting the average behavior/pattern of a pavement family into the 

agency PMS. However, pavement deterioration and performance are highly variable due to many 

factors that introduce heterogeneity, bias, and uncertainty in the pavement condition. Furthermore, 
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there often are important factors that affect pavement deterioration that are not included in the 

model.  These sources of uncertainty and high variability appear as “noise” that could affect 

expected pavement deterioration rates and patterns that could be inconsistent with engineering 

judgment (Pierce et al. 2013). In fact, due to the high level of heterogeneity bias in pavement 

prediction (Prozzi and Madanat 2004, Chen and Mastin 2016), the pavement condition of specific 

sections will differ from the average model-predicted pavement condition. 

Recently, researchers have developed statistical models for transportation asset management 

with the capability of incorporating uncertainties into deterioration forecasting (Lethanh et al. 2014, 

Chang and Ramirez-Flores 2015). 

Particularly, deterioration models used in PMSs are limited because predictions do not 

accurately reflect actual pavement conditions, creating a gap between pavement network models 

and the specific pavement sections (Giummarra et al. 2007). Some authors have worked on the 

development of mathematical methods used in other disciplines, such as the empirical Bayesian 

(EB) approach (Zellner 1996), to combine existing knowledge (prior) and information obtained 

from recent observations. Some researchers have been working to apply this approach to pavement 

deterioration modelling based on updated pavement deterioration curves using pavement 

performance monitored in subsequent years (Han and Do 2015). Bayesian inference is used in 

Markov models which are widely applied to the deterioration process of civil infrastructures to 

periodically update Markovian Transition Probability Matrices (TPM) between deterioration 

discrete condition states (CS) as new inspection data become available. Tabatabaee and Ziyadi 

(2013) used Bayesian inference to accommodate uncertainties between expert-derived TPM and 

measurement error from inspections using the Minnesota DOT MnROAD test facility. Hong and 

Prozzi (2006) studied the Bayesian approach using a Markov Chain Monte Carlo simulation for the 

bridge deck deterioration process to update model parameters as data become available. Prozzi and 

Madanat (2004) developed pavement performance models using the EB approach based on the 

Pavement Serviceability Index (PSI).  Abaza (2016) proposed a technique based on the “back-



 

5 

calculation” of the discrete Markov model using two consecutive cycles of pavement distress 

assessment.  Other researchers used the Bayesian approach to analyse average pavement indicators 

and identify homogenous sections (Cafiso and Di Graziano 2012, de León Izeppi et al. 2011). 

More recently, Katicha et al. (2016b) proposed a pavement model for the Virginia interstate 

network that includes the structural condition of the pavement as a variable considered in the 

deterioration modelling technique. This model assumes that the deterioration process can be 

expressed as an NB regression and uses the LEB approach to better estimate the future pavement 

condition. 

Although previous work has used similar models to evaluate the pavement deterioration 

process, this work contributes to the current state of the knowledge on the topic by providing a 

methodology for modelling pavement deterioration using the NB regression model and the LEB 

approach at the network level to obtain a better estimate of future pavement deterioration. The LEB 

is used to combine the average pavement condition estimated by network-level NB pavement 

deterioration models for families of pavements (Interstate, Primary, and Secondary) using VDOT 

PMS data, with the most recent observed/measured condition recorded from the inspection of the 

network. This methodology has the main advantage that it can be applied by DOTs that evaluate 

pavement condition in terms of a composite index based on the Pavement Condition Index (PCI) 

and can be included in the network-level decision-making process to improve the prediction of 

future pavement deterioration. This methodology uses the LEB approach as an adjustment of the 

Bayesian approach, introducing a parameter α to effectively account for the variance of observed 

condition data in the deterioration model by minimizing the MSE between the estimated pavement 

deterioration and the actual deterioration. The effective use of the LEB approach requires an effort 

by the road agency to calibrate the Bayesian estimator to their local conditions. Therefore, a 

methodology for the calibration of the LEB estimator using the leave-one-out cross-validation 

process has been provided. 
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Development of pavement deterioration curves 

VDOT summarizes pavement condition data using a CCI pavement rating, a numerical composite 

index ranging between 100 (perfect condition) and 0 (failed condition). This index, similar to the 

widely used PCI, reflects the road surface’s condition as a function of the type, level of severity, 

and quantity of distress (Shahin (2005), McGhee (2002), and Loprencipe and Pantuso (2017)). The 

CCI is determined as the minimum of two rating indexes: the Load-Related Distress (LDR) and 

Non-Load Related Distress (NDR) (McGhee 2004). 

Virginia’s roadway system is classified into three categories: interstate, primary, and 

secondary. The system is surveyed annually for interstate and primary roads and every five years 

for secondary roads by automated data collection techniques using digital images and automated 

crack detection and rutting measuring methodologies (VDOT 2012). VDOT uses a comprehensive 

PMS to support decisions regarding the preservation and renewal of the networks. 

The current network-level pavement performance models used by VDOT give an adequate 

prediction of the average pavement condition for each pavement family as a function of age, but do 

not consider the deviation of specific pavement sections from the average family performance. 

Thus, the pavement deterioration process is processed using two types of models: specific-site, 

project-level models based on the construction and maintenance historical records, and default 

network-level models when the data for specific sections is not available. The default models are 

nonlinear regression models for interstate and primary roads developed by Stantec Inc. (2007) to 

estimate the CCI as a function of the pavement age, where the pavement age is defined as the 

number of years since construction or last significant maintenance treatment.  Katicha et al. (2016a) 

also included the pavement structural condition along with pavement age to develop deterioration 

for the interstate network and applied an LEB to combine the model estimate with the measured 

condition to obtain a better prediction of pavement future condition. 
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Methods 

Overview 

This study used pavement data available in the VDOT PMS for flexible pavement sections in 

interstate, primary, and secondary networks for three maintenance districts (Richmond, Hampton 

Roads, and Northern Virginia). The data included pavement condition data and repair and 

maintenance records from 2007 to 2016. The pavement condition rating table (pavement condition 

in terms of CCI) and the structure data table (including the year and type of last maintenance 

treatment performed on each 0.1-mile section) were merged using geographical location. The 

location is based on VDOT’s Linear Referencing System (LRS), which uses milepost position along 

the routes. The matching procedure took into account that possibility that the begin and end point of 

the condition data and repair and maintenance treatments and even the inspection sections may not 

always match. The matching produced a list of values (age, CCI) for a total of 61,501 pavement 

sections (0.1-mile road segments) and 343,589 observations of different pavement age, number of 

years between CCI inspections, and year of last significant treatment record that reset pavement age 

(each pavement section had between 5 and 6 years of data).  

Analysis of CCI data: Data cleansing and filtering process considerations 

The use of suitable filtering and cleansing procedures for the pre-processing of data analysis is a 

key aspect to developing a pavement deterioration model that can accurately explain the observed 

data. The following considerations have been found relevant in this study: 

(1) Pavement condition data at old ages is often inherently biased: One of the main objectives 

of highway agencies is to provide road users with a high level of service. When the CCI of a 

section falls below a minimum value, the section typically receives a corrective maintenance 

(CM), restorative maintenance (RM), or reconstruction (RC) treatment, which resets its life. 

Thus, there are not many sections with low CCI condition. This can lead to a biased 
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deterioration model because condition data for old pavements may not represent the average 

pavement condition of all typical sections, but rather the behavior of the best-performing 

pavements in the family. To account for this, the model should be fitted to a range of 

pavement ages for which this effect is not too pronounced. 

(2) Some treatments are not recorded: Analysis of the CCI data revealed that there are many 

instances of sections with significant differences in condition between two consecutive years. 

More importantly, there are instances where the CCI difference between two consecutive 

years is highly positive, which is unusual for the process of deterioration of pavements. Some 

of these are thought to be due to maintenance treatments that are not recorded in the database. 

Figure 1, Figure 2, and Figure 3 present box plots of pavement condition CCI as a function 

of pavement age for the three systems studied. Pavement CCI data grouped by pavement age is 

depicted using a box plot where the median value of CCI condition is represented by a solid line, 

and the box represents the data between the 25th and 75th CCI percentiles. The figure shows that 

the distribution of pavement condition has a high variability within each pavement family. This is 

due to the grouping of various pavement sections in the family, in addition to the inherent pavement 

data condition variability (related to the collection techniques, use of a composite index, and 

localization of the distress within the sections).  
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Figure 1. Pavement CCI as function of pavement age of Interstate network. 

 

Figure 2. Pavement CCI as function of pavement age of Primary network. 
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Figure 3. Pavement CCI as function of pavement age of Secondary network. 
 

The Empirical distribution of pavement condition: Negative binomial (Poisson-Gamma 

model) 

The measured pavement deterioration (DI) can be defined according to equation (1) as the 

complementary to the measured CCI. 

 𝐷𝐷𝐷𝐷 = 100 − 𝐶𝐶𝐶𝐶𝐷𝐷 (1) 

The distributions of DI for each pavement family were fitted with different theoretical 

statistical distributions: a normal distribution, a Poisson distribution, and an NB distribution. Figure 

4, Figure 5, and Figure 6 illustrate the distribution fittings and the empirical distribution for the 

Interstate, Primary, and Secondary systems, respectively. 
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Figure 4. Distribution of pavement deterioration (DI) of the Interstate network. 

 

Figure 5. Distribution of pavement deterioration (DI) of the Primary network. 
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Figure 6. Distribution of pavement deterioration (DI) of the Secondary network. 
 

This analysis showed that the Poisson distribution (with equal mean and variance by 

definition) provides a poor representation of pavement data; however, the Poisson distribution 

combined with the Gamma distribution which arises to the NB distribution provides a good 

representation of the pavement data, with each pavement family outperforming the normal 

distribution. The NB distribution (Poisson-Gamma model) is a discrete distribution that is more 

flexible than the Poisson distribution (for which the mean is equal to the variance) that allows the 

variance to be greater than the mean. Statistical analysis of the empirical distribution of the 

pavement deterioration data showed that the NB distribution provides a better representation of 

observed data compared with a normal distribution (Ercisli 2015). 

The empirical distribution of the pavement condition over time has been studied for each 

pavement family. Figure 7, Figure 8, and Figure 9 explain the observed pavement condition (CCI) 

with descriptive histograms and the empirical distribution cummulative distribution function (CDF) 

and NB distribution fitting for each pavement family. These figures help to better understand CCI 

boundaries and the distribution of the CCI along pavement age. 
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Figure 7. Empirical distribution of pavement CCI and NB distribution fit along pavement age 
for the Interstate system. 

 

Figure 8. Empirical distribution of pavement CCI and NB distribution fit along pavement age 
for the Primary system. 
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Figure 9. Empirical distribution of pavement CCI and NB distribution fit along pavement age 
for the Secondary system. 

 

Table 1 provides descriptive CCI statistics for different pavement ages (age=1, age =3, 

age=7, and age =12). The NB distribution fitting parameters have been provided. The χ2 test was 

used for testing the goodness of fit for the NB distribution of the empirical distribution of DI 

(complementary of CCI). 

Table 1. Descriptive Statistics and χ2 test of NB Distribution Fitting 
Family NB size NB μ χ2 test DF p-value 

Interstate age=1 0.234 6.862 395.561 82 1.37E-42 

 
age=3 0.661 10.454 396.362 76 7.46E-45 

 
age=7 1.014 22.903 526.278 88 1.21E-63 

 
age=12 2.231 34.809 526.278 88 1.21E-63 

Primary age=1 0.234 6.862 395.561 82 1.37E-42 

 
age=3 0.661 10.454 396.362 76 7.46E-45 

 
age=7 1.014 22.903 526.278 88 1.21E-63 

 
age=12 2.231 34.809 373.335 89 1.72E-36 

Secondary age=1 0.234 6.862 395.561 82 1.37E-42 

 
age=3 0.661 10.454 396.362 76 7.46E-45 
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age=7 1.014 22.903 526.278 88 1.21E-63 

 
age=12 2.231 34.809 373.335 89 1.72E-36 

Data cleansing and filtering process  

As highlighted in Figure 1, Figure 2, and Figure 3 the general CCI trends are reasonable, as the 

average CCI decreases as the age increases, but the average CCI reaches an almost constant level 

for the age of 14, 11, and 8 for the Interstate, Primary and Secondary pavement families, 

respectively. After these ages, the average CCI for each family is inconsistent with the engineering 

expectation because there is a positive trend of the average of CCI for some years. This could be 

due to missing treatments in the database and/or the bias previously discussed because bad 

pavements are treated at younger ages. Considering old sections with very good condition for the 

development of the pavement model can lead to a biased model that would not be representative of 

the average performance of all pavement sections. For this reason, the regression models were fitted 

to sections with ages less than 14, 11, and 8 years for the Interstate, Primary, and Secondary 

network pavement families, respectively. For the Interstate system, the model was fitted for 29,971 

observations in 3,601 sections, 91% of the data. Thus, for the primary system, only the sections 

with age greater than 11 years were filtered out (leaving 170,810 observations in 22,316 sections, or 

74% of the data). 

For the Secondary network, there seems to be even more uncertainty about repair and 

maintenance treatments recorded in the database. This can significantly influence the general 

behaviour of pavement models because it introduces bias, which shows in Figure 3. The average 

pavement condition for the Secondary network family after the age of 4 years is approximately 

constant and the average CCI increases as pavement age increases, opposite to the usual 

deterioration process. Specifically, 16,773 measurements (21% of the data set) have CCI values 

greater than 80 points for pavement ages greater than 4 years. Since such good performance is 

unusual, this set of measurements has been excluded from the data set used to fit the model for the 
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Secondary roads pavement family (the model was fitted for 38,354 observations in 26,167 sections, 

or 48% of the data). Table 2 summarizes the sample sizes considered to fit the deterioration models 

for each family. 

Table 2. Sample Size of Pavement Families Included in the Study 
Pavement family model No. sections No. observations No. sections model No. observations model 

Interstate Network 3,601 32,685 3,601 29,971 
Primary Network 22,316 231,197 18,272 170,810 

Secondary Network 35,584 79,707 26,167 38,354 
Total 61,501 343,589 48,040 239,135 

 

Negative binomial model development and VDOT pavement deterioration models 

Because the NB model provides a good representation of the data, NB regression, which is a type of 

Generalized Linear Model, was used to determine the deterioration model for each type of 

pavement family. 

The deterioration model relates the pavement deterioration as a function of pavement age as 

shown in equation (2). NB regression is performed to determine the parameters β0, β1, β2, and an 

overdispersion parameter ϕ, which is related to the model variance as shown in Equation (3).  

𝐷𝐷𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = exp(𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽2 ∙ log(𝑎𝑎𝑎𝑎𝑎𝑎)) = 𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽2 ∙ exp (𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎) (2) 

 𝑉𝑉𝑎𝑎𝑉𝑉(𝐷𝐷𝐷𝐷) = 𝐷𝐷𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(1 + 𝜙𝜙𝐷𝐷𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) (3) 

Current VDOT default network-level pavement deterioration models are used whenever 

there are no section-specific data available to predict the pavement condition in terms of CCI for a 

given pavement age. Thus, as a baseline, three VDOT default models—Power model Eq. (4), 

Sigmoidal model Eq. (5), and the VDOT exponential model Eq. (6) developed by Stantec Inc. 

(2007)—were fitted to the filtered and cleaned data for the Interstate, Primary, and Secondary 

networks: 

 𝐶𝐶𝐶𝐶𝐷𝐷𝑃𝑃_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏 + 𝑐𝑐 (4) 
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 𝐶𝐶𝐶𝐶𝐷𝐷𝑆𝑆_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 100 − 𝑑𝑑 ∙ exp ( −𝑚𝑚
𝑎𝑎𝑎𝑎𝑚𝑚

) (5) 

 𝐶𝐶𝐶𝐶𝐷𝐷𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 100 − 𝑎𝑎𝑒𝑒𝑒𝑒 �𝑓𝑓 + 𝑎𝑎 ∙ ℎ�
1

𝑎𝑎𝑎𝑎𝑚𝑚�� (6) 

where the regression parameters were obtained using ordinary least-squares fitting. The VDOT 

default deterioration models fitted for the pavement condition data from the PMS were compared 

with the proposed NB deterioration model. 

Empirical Bayesian approach 

The NB distribution arises as a compound mixture of Poisson distributions where the mixing 

distribution of the Poisson rate is the Gamma distribution (Poisson-Gamma model) and can be 

expressed parametrically as in Eq.(7) (Hilbe 2011). 

𝑓𝑓𝑁𝑁𝐵𝐵(𝑒𝑒; 𝑉𝑉, 𝑒𝑒) = ∫ 𝑓𝑓𝑝𝑝(𝑒𝑒; 𝜆𝜆) ∙ 𝑓𝑓𝐺𝐺(𝜆𝜆; 𝑉𝑉, 𝑒𝑒) ∙ 𝑑𝑑𝜆𝜆 = ∫ �𝜆𝜆
𝑥𝑥

𝑥𝑥!
∙ exp (−𝜆𝜆)� ∙ � 𝜆𝜆𝑟𝑟−1

� 𝑝𝑝
1−𝑝𝑝�

𝑟𝑟
∙Г(𝑟𝑟)

∙ exp �−𝜆𝜆 ∙ (1−𝑝𝑝)
𝑝𝑝
�� ∙ 𝑑𝑑𝜆𝜆∞

0
∞
0   (7) 

The Poisson-Gamma model gives rises to a Bayesian model with the Gamma distribution 

prior (conjugate prior of the Poisson distribution). The Gamma distribution prior is parametrized by 

two parameters which are related to the mean and overdispersion, according to Eqs. (8), (9), and 

(10). 

 𝐷𝐷𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝∙𝑟𝑟
1−𝑝𝑝

 (8) 

 𝑉𝑉𝑎𝑎𝑉𝑉(𝐷𝐷𝐷𝐷) = 𝑝𝑝∙𝑟𝑟
(1−𝑝𝑝)2 (9) 

 𝜙𝜙 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑉𝑉𝐷𝐷)−𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=
𝑝𝑝∙𝑟𝑟

(1−𝑝𝑝)2−
𝑝𝑝∙𝑟𝑟
1−𝑝𝑝

𝑝𝑝2∙𝑟𝑟2

(1−𝑝𝑝)2

=
𝑝𝑝∙𝑟𝑟−𝑝𝑝∙𝑟𝑟∙(1−𝑝𝑝)

(1−𝑝𝑝)2

𝑝𝑝2∙𝑟𝑟2

(1−𝑝𝑝)2

= 1
𝑟𝑟
 (10) 
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In the EB approach, these are DINB_model and φ, determined from the data using the NB 

regression. Once the Gamma distribution parameters are evaluated, the posterior distribution is 

obtained as expressed in Eq. (11). 

𝑓𝑓𝐺𝐺_𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑟𝑟𝑃𝑃𝑚𝑚𝑟𝑟 �𝜆𝜆; 1
𝜙𝜙

+ 𝐷𝐷𝐷𝐷, 𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+1

� =
1
𝜆𝜆𝜙𝜙
+𝑉𝑉𝐷𝐷−1

� 1
𝜙𝜙∙𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�

1
𝜙𝜙+𝐷𝐷𝐷𝐷

∙Г�1𝜙𝜙+𝑉𝑉𝐷𝐷�

∙ 𝑎𝑎𝑒𝑒𝑒𝑒 �−𝜆𝜆 ∙ �
𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+1

𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�� (11) 

Consequently, a point estimate (the posterior mean) of the pavement deterioration, DIEB, can 

be calculated as a weighted average of the pavement condition predicted from the prior distribution 

(DINB_Model) and the observed mean pavement deterioration (DI), obtained as follows in Eq. (12): 

 𝐷𝐷𝐷𝐷𝐸𝐸𝐵𝐵 = �1
𝜙𝜙

+ 𝐷𝐷𝐷𝐷� ∙ �
𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+1
� = �

𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∙𝑉𝑉𝐷𝐷

𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+1
� (12) 

The posterior pavement deterioration estimated (DIEB) is calculated by rewriting Eq. (12) in 

Eq. (13) as follows: 

 𝐷𝐷𝐷𝐷𝐸𝐸𝐵𝐵 = 1
𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+1

∙ 𝐷𝐷𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + �1 − 1
𝜙𝜙∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+1

� ∙ 𝐷𝐷𝐷𝐷 (13) 

In practical terms, Bayes’ formula combines the average behavior of all pavement sections 

(expressed by the prior, DINB_model) with recent observations of specific sections (observed DI) to 

obtain a better estimate of the pavement condition DIEB (complementary of CCIEB, which is the 

posterior). 

For example, from the latest pavement inspections, 10 pavement observations of different 

pavement ages (data retrieved from PMS after applying the matching procedure explained before) 

were picked randomly. For each of these observations, EB was applied to get a better estimate of 

the pavement condition for that specific section (see Figure 10). Questionable observed data 

unusual for the process of deterioration of pavements (pavements with high deterioration at early 

ages or little deterioration at late ages) were corrected to a better estimate of the deterioration 



 

19 

prediction closer to the mean performance of pavement sections (represented by the proposed 

deterioration model). 

 

Figure 10. Example of application of the EB approach. 
According to Efron and Morris (1973), the improvement of the LEB approach is such that 

the MSE is reduced by the factor shown in Equation (14): 

 𝜎𝜎𝑠𝑠2

𝑉𝑉𝑎𝑎𝑟𝑟(𝑉𝑉𝐷𝐷)
= 𝜎𝜎𝑠𝑠2

𝜎𝜎𝑠𝑠2+𝜎𝜎𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟2  (14) 

where σ2
s is the variance of the data and Var(DI) is the total variance of the observed data. 

According to the assumption of the Poisson-Gamma model, Var(DI) can be decomposed by 

the variance of the pavement sections’ performance, σ2
s estimated by the Gamma distribution, and 

the variance of the error estimated from the pavement data, estimated by the Poisson distribution, 

σ2
Poisson. However, the variance of the estimated error σ2

error in the measured pavement deterioration 

is higher than what is predicted by the Poisson distribution (see Figure 11), thus the error of the 

measured/observed deterioration is underestimated, leading to a suboptimal use of the EB estimator. 
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Figure 11. Error in estimating the pavement condition with the EB method as a function of 
estimated error variance. 

 

Figure 11 illustrates the error in estimating the pavement condition with the EB method as a 

function of estimated error variance. When the measurement error is assumed to be practically zero, 

the EB estimate is equal to the observed pavement condition and the error is equal to 1. As the 

estimate of the measurement error gets closer to the observed measurement error variance, the MSE 

of estimating the pavement condition using the EB method decreases. On the other hand, when the 

estimate of the measurement error variance is greater than the observed measurement error of the 

variance, the error of EB starts to increase. The best estimate is obtained when the measurement 

error variance is correctly estimated. 

Therefore, an adjustment has been made in the model to minimize the MSE between the 

estimated pavement deterioration and the true deterioration, σ2
error = α‧σ2

Poisson, and the EB approach 

becomes an LEB. The adjustment can be done by modifying Eq. (13) as shown in Eq. (15), where ϕc 

=ϕ/α. 

 𝐷𝐷𝐷𝐷𝐸𝐸𝐵𝐵 = � 1
𝜙𝜙𝑐𝑐∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+1

� ∙ 𝐷𝐷𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + �1 − 1
𝜙𝜙𝑐𝑐∙𝑉𝑉𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+1

� ∙ 𝐷𝐷𝐷𝐷 (15) 
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Alternatively, by substituting Eqs. (10) and (14) in Eq. (13), the LEB estimator is calculated 

using Eq. (16), which can be used for any distribution and without the knowledge of the appropriate 

form. 

 𝐷𝐷𝐷𝐷𝐸𝐸𝐵𝐵 = �1 − 𝜎𝜎𝑠𝑠2

𝜎𝜎𝑠𝑠2+𝜎𝜎𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟2 � ∙ 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + � 𝜎𝜎𝑠𝑠2

𝜎𝜎𝑠𝑠2+𝜎𝜎𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟2 � ∙ 𝐷𝐷𝐷𝐷 (16) 

where σ2
error=α σ2

Poisson; σ2
Poisson is the variance predicted by the Poisson distribution (the mean 

value of the data that fit the model), and σ2
error is the variance estimated from the data using the 

difference sequence method Katicha et al., (2016b, 2016a). 

Results 

Deterioration model development 

For each pavement family, the parameters of the NB pavement deterioration model Eq. (3) were 

estimated using the NB regression on the filtered data measurements. In addition, the filtered data 

were fitted with the VDOT default deterioration models. Table 3 summarizes the estimated 

parameters obtained using the various models and the coefficient of determination. 

Table 3. Goodness of Fit Pavement Deterioration Models for the Defined Pavement Families 
Pavement family model Estimated Parameters R2 

Interstate Network   
Power model a=-5.150; b=0.756; c=100 0.292 

Sigmoidal model d=56.030; e=5.956 0.275 
VDOT model f=-16.070; g=17.710; h=0.961 0.291 

NB β0=1.658; β1=0.018; β2=0.654; ϕ=1.125; α = 15.86 0.289 
Primary Network   

Power model a=-0.09; b=2.27; c=95.29 0.227 
Sigmoidal model d=46.360; e=7.856 0.184 

VDOT model f=1.384; g=0.115; h=0.313 0.226 
NB β0=1.353; β1=0.228; β2=-0.250; ϕ=1.322; α = 30.50 0.227 

Secondary Network   
Power model a=-21.9; b=0.412; c=105.000 0.190 

Sigmoidal model d=46.230; e=1.132 0.184 
VDOT model f=-16.040; g=18.880; h=0.975 0.190 

NB β0=2.837; β1=0.001; β2=0.487; ϕ=0.709; α = 16.64 0.190 
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The four models are represented graphically for the Interstate family (Figure 12), Primary 

family (Figure 13), and Secondary family (Figure 14). In general, all the models adequately fit the 

average value of the pavement deterioration. However, due to the high variability of the data, the 

fitted models will not fit well with individual pavement sections. 

The parameter ϕ presented for the NB model in Table 3 is the overdispersion parameter as 

defined previously. The R2 was calculated manually for the NB regression using the residual sum of 

squares (SSE) of the model and the total variance of the data used to fit the models. 

  

Figure 12. Comparison between CCI deterioration curves using VDOT default models and 
NB regression model for the Interstate system. 
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Figure 13. Comparison between CCI deterioration curves using VDOT default models and 
NB regression model for the Primary system. 

 

Figure 14. Comparison between CCI deterioration curves using VDOT default models and 
NB regression model for the Secondary system. 

Validation of modelling procedure 

As mentioned previously, the EB approach can provide a better estimation of pavement condition 

compared with the estimation of the CCI model prediction or the CCI value recorded in the 

database.  The best way to validate the LEB approach would be to estimate the “true” value that is 

being calculated by the model and verify that the chosen procedure gives a better estimation of the 

true value (next year’s condition) compared with that obtained from estimation of pavement 

condition (actual condition) without the use of any modelling procedure. Therefore, a leave-one-out 
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cross-validation procedure was implemented and five different methods were compared using the 

MSE as the evaluation criterion. The procedure followed including the following steps: 

(1) Process the data to get the measurements (observations) O on each section S and 

determine the inspection year for each measurement. 

(2) Remove from pavement section Si all the measurements obtained after year Yi. 

(3) Fit the model to the remaining data in the data set. 

(4) Evaluate the different methods to determine estimation of the removed measurements and 

calculate the MSE. 

Five different approaches were compared in terms of their ability to predict the pavement 

deterioration (illustrated in Figure 15): 

(1) Method 1. Predict the future pavement condition with the most recent observations on 

the section Si in the PMS. This choice implies not modelling the pavement condition and 

assumes that the pavement does not deteriorate from last recorded inspection: 

 𝐶𝐶𝐶𝐶𝐷𝐷𝑃𝑃+1𝑀𝑀1 = 𝐶𝐶𝐶𝐶𝐷𝐷𝑃𝑃 (17) 

(2)  Method 2. Predict the pavement condition using the fitted family model using the NB 

model, Eq. (2): 

 𝐶𝐶𝐶𝐶𝐷𝐷𝑃𝑃+1𝑀𝑀2 = 𝐶𝐶𝐶𝐶𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖+1
 (18) 

(3) Method 3. Predict the pavement condition using the LEB approach using Eqs. (15) and 

(16): 

 𝐶𝐶𝐶𝐶𝐷𝐷𝑃𝑃+1𝑀𝑀3 = 𝐶𝐶𝐶𝐶𝐷𝐷𝐸𝐸𝐵𝐵_𝑃𝑃 (19) 

(4) Method 4. Predict the condition from the most recent observations of section Si and add 

the deterioration of section Si obtained as follows: 
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 𝐶𝐶𝐶𝐶𝐷𝐷𝑃𝑃+1𝑀𝑀4 = 𝐶𝐶𝐶𝐶𝐷𝐷𝑃𝑃 + �𝐶𝐶𝐶𝐶𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖+1
− 𝐶𝐶𝐶𝐶𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

� (20) 

(5) Method 5. Predict the future condition using the LEB approach adding the deterioration 

of the section Si obtained from the model: 

 𝐶𝐶𝐶𝐶𝐷𝐷𝑃𝑃+1𝑀𝑀5 = 𝐶𝐶𝐶𝐶𝐷𝐷𝐸𝐸𝐵𝐵_𝑃𝑃 + �𝐶𝐶𝐶𝐶𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖+1
− 𝐶𝐶𝐶𝐶𝐷𝐷𝑁𝑁𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

� (21) 

 

Figure 15. Illustration of the approaches to calculate the estimate of future pavement 
condition. 

 

Each pavement condition measurement recorded in the database is excluded from the model, 

and the value is estimated by fitting the model for the remaining measurements in the database, and 

the obtained estimate of the “true” observation is compared with the observed measurement that it 

is recorded in the database. 
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Table 4. MSE of Prediction of the Estimate of Pavement Condition using Different Approaches 
VDOT System Family MSE 

Prediction 
MSE Ratio with respect to 

Method 1 
Improvement Prediction Ratio 

with respect to Method 1 
Interstate Network Family 

Method 1 292.17 1.000 - 
Method 2 325.68 1.115 -12 % 
Method 3 247.69 0.873 13 % 
Method 4 228.60 0.782 22 % 
Method 5 188.83 0.666 33 % 

Primary Network Family 
Method 1 94.99 1.000 - 
Method 2 113.69 1.197 -20 % 
Method 3 87.89 0.925 8 % 
Method 4 67.05 0.706 29 % 
Method 5 60.91 0.641 36 % 

Secondary Network Family 
Method 1 499.79 1.000 - 
Method 2 474.17 0.949 5 % 
Method 3 459.33 0.919 8 % 
Method 4 461.32 0.923 8 % 
Method 5 295.94 0.592 41 % 

 

The results for the five different approaches (Figure 15) are summarized in Table 4, 

including the MSE prediction of each method. Method 1 represents the results of not considering 

any modelling technique; that is, the future pavement condition is considered the same as the most 

recent observation recorded in the database, and thus is used as the baseline for comparison with the 

other methods. Method 2 represents the results of predicting pavement condition using the NB 

regression model, the cross-validation process showed that for the tested data sets (affected by high 

variance such as Interstate family and Primary family) is ineffective to predict future pavement 

condition. The ratio of prediction error compared with the Method 1 was -12% for the Interstate 

family and -20% for the Primary family. However, Method 2 is more effective for the Secondary 

family (+5% ratio of prediction error compared with Method 1) because is affected by less variance 

of specific pavement section deterioration prediction compared with the other pavement families. 

The EB approach used in Method 5, which predicts the future pavement condition as the 

combination of the EB of the individual pavement section and the expected deterioration predicted 

by the model, has the best prediction ability. It gives the lowest prediction error with an 
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improvement of 33% for the Interstate family, 36% for the Primary family, and 41% for the 

Secondary family compared with not considering any pavement deterioration technique (Method 1). 

Colour maps were created to visually illustrate the effectiveness of the proposed modelling 

technique for the Interstate (Figure 16), Primary (Figure 17), and Secondary (Figure 18) pavement 

families. Pavement condition data in terms of VDOT CCI are represented as a function of pavement 

age. Density is the estimated average density across the observed data points using a color scale: 

darker colours represent a greater density of observations and brighter colours represent a lower 

density of observations. The same scale of colours is used in Figure 16, Figure 17, and Figure 18 (a) 

and (b). Visual inspection indicates that the application of the linear EB estimator is effective 

because more reasonable deterioration trends were observed in the colour map after applying the 

modelling technique. The LEB estimator corrects unreasonable pavement condition predictions for 

specific pavement sections (pavement sections with little deterioration at late ages and/or highly 

deteriorated sections at early ages), getting closer to the mean deterioration of the pavement family. 

A significant reduction of the variance of the pavement condition data is thus obtained. 

 

            (a) 

 

             (b) 

Figure 16. Colour map plot of the Interstate network pavement family; (a) Raw observed 
pavement condition data; (b) Pavement condition modelled using the LEB approach. 
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            (a) 

 

             (b) 

Figure 17. Colour map plot of the Primary network pavement family; (a) Raw observed 
pavement condition data; (b) Pavement condition modelled using the LEB approach. 

 

 

            (a) 

 

             (b) 

Figure 18. Colour map plot of the Secondary network pavement family; (a) Raw observed 
pavement condition data; (b) Pavement condition modelled using the LEB approach. 

Discussion 

The results presented in this paper show that the presented deterioration modelling approach can 

improve the prediction of future pavement condition in terms of CCI for VDOT for the pavement 

families studied (Interstate, Primary, and Secondary). 

The empirical distribution of the data is better represented by the NB distribution than the 

normal distribution). The resulting model using this distribution provides a similar coefficient of 
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determination with respect to the current default models but has the advantage of allowing the 

pavement condition to be estimated using the LEB approach as a weighted combination of the 

average condition provided by the model and the observed pavement condition. Furthermore, the 

definition of the NB distribution as a Poisson-Gamma model allows the use of the EB approach to 

improve the overall performance of the model by calculating the best estimate of the pavement 

condition based on the average condition predicted by the model and the last measurement recorded 

in the network for each specific section. This approach can be useful for pavement network-level 

predictions by combining the prediction of the fitted model with the observations of the pavement 

condition. 

The main advantage of this method is that it allows better predictions of next year’s 

pavement condition if compared with the prediction of the family pavement deterioration regression 

model, improving consistency between the network- and project-level deterioration curves. 

However, there are still inherent errors in the PMS collected data (missing construction 

record data, uncertainties in the data collection process) that are necessary to deal with. The cross-

validation process proves that estimating the pavement condition from the new deterioration 

regression model would cause significant errors in the prediction of the deterioration in pavement 

sections (Method 2). Nevertheless, the model is still needed to account for the mean deterioration of 

pavement sections and to obtain the LEB estimator. 

The use of the LEB approach turns out to be an effective method to estimate the future 

pavement condition (next year) by subtracting the modelled pavement deterioration from the LEB 

estimator (Method 5). Method 5 improves the MSE prediction of the future (next year) pavement 

condition between the observed and predicted future condition by 33% for the Interstate family, by 

36% for the Primary family, and by 41% for the Secondary family. 

Conclusions 

This paper presents a methodology for modelling the pavement deterioration process at the network 
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level using the LEB. The methodology was tested for historical pavement data for three roadway 

systems from the VDOT PMS (Interstate, Primary, and Secondary). Based on the analysis 

performed, some key observations can be summarized as follows: 

(1) The deterioration process can be expressed using the NB regression model. 

(2) The proposed LEB modelling approach can account for the variance of pavement condition 

data. It allows the effectiveness of the EB estimator to be maximized to obtain a 

deterioration model that can get the estimate of the measurement error as the observed 

measurement error. 

(3) The LEB approach can improve the prediction of future pavement condition in terms of CCI 

for the VDOT for the pavement families studied. 

Although, the CCI was used as the performance indicator to analyse the pavement 

deterioration model at the network level, the methodology proposed is not limited to this indicator; 

it can be applied to pavement condition data from other road agencies collected in terms of a 

composite index, such as the PCI. Nevertheless, the effectiveness of the application of this 

methodology would be limited by the quality of fit between empirical distribution of the pavement 

data and the NB distribution. 

The proposed LEB shows how to effectively adjust the traditional EB approach to maximize 

the effectiveness of the Bayesian estimator. The calibration methodology presented in the paper 

tested the LEB for VDOT Interstate, Primary, and Secondary systems with pavement historical data 

from 2006 to 2017, providing a suitable validation of the approach. Regardless, the validation 

process is specific to the historical data available, and the application of this approach by other 

agencies would be suboptimal.  However, in the future, with more performance data available, a 

better validation of the approach can be achieved. 
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Notation List 

The following symbols are used in this paper: 

CCI = Critical Condition Index 
DI = Deterioration Index 
Γ = Gamma function 
f = probability mass function 
p = probability of success, negative binomial distribution. 
r = number of failures, negative binomial distribution. 
α = correction parameter linear empirical Bayes estimator 
β = parameters of the negative binomial model 
θ = scale of Gamma distribution 
λ = expected value of Poisson distribution 
μ = mean value of the negative binomial distribution 
size = dispersion parameter of negative binomial distribution 
χ2 = Chi-Squared distribution 
DF = Degrees of freedom of chi-squared distrubution 
DI = mean value of the distribution of observed pavement data 
DIEB = mean value of the posterior distribution of the observed pavement data 
DINB_Model = mean value of the prior distribution of observed pavement data 
MSE = mean squared error 
σ2

error = variance of the estimated error 
Var(DI) = total variance of the observed pavement data 
σ2

Poisson = variance of Poisson distribution 
σ2

s = variance of observed pavement data 
ϕ = overdispersion parameter of negative binomial regression 
ϕc = corrected overdispersion parameter of negative binomial regression 
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Table 1. Descriptive Statistics and χ2 test of NB Distribution Fitting 

Table 2. Sample Size of Pavement Families Included in the Study 

Table 3. Goodness of Fit Pavement Deterioration Models for the Defined Pavement Families 

Table 4. MSE of Prediction of the Estimate of Pavement Condition using Different Approaches 

 

Figure 1. Pavement CCI as function of pavement age of Interstate network. 

Figure 2. Pavement CCI as function of pavement age of Primary network. 

Figure 3. Pavement CCI as function of pavement age of Secondary network. 

Figure 4. Distribution of pavement deterioration (DI) of the Interstate network. 

Figure 5. Distribution of pavement deterioration (DI) of the Primary network. 

Figure 6. Distribution of pavement deterioration (DI) of the Secondary network. 

Figure 7. Empirical distribution of pavement CCI and NB distribution fit along pavement age for 

the Interstate system. 

Figure 8. Empirical distribution of pavement CCI and NB distribution fit along pavement age for 

the Primary system. 

Figure 9. Empirical distribution of pavement CCI and NB distribution fit along pavement age for 

the Secondary system. 

Figure 10. Example of application of the EB approach. 

Figure 11. Error in estimating the pavement condition with the EB method as a function of 

estimated error variance. 

Figure 12. Comparison between CCI deterioration curves using VDOT default models and NB 

regression model for the Interstate system. 

Figure 13. Comparison between CCI deterioration curves using VDOT default models and NB 

regression model for the Primary system. 
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Figure 14. Comparison between CCI deterioration curves using VDOT default models and NB 

regression model for the Secondary system. 

Figure 15. Illustration of the approaches to calculate the estimate of future pavement condition. 

Figure 16. Colour map plot of the Interstate network pavement family; (a) Raw observed pavement 

condition data; (b) Pavement condition modelled using the LEB approach. 

Figure 17. Colour map plot of the Primary network pavement family; (a) Raw observed pavement 

condition data; (b) Pavement condition modelled using the LEB approach. 

Figure 18. Colour map plot of the Secondary network pavement family; (a) Raw observed 

pavement condition data; (b) Pavement condition modelled using the LEB approach. 
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