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Abstract 

Increasing application of composite structures in engineering field inherently speed up the 

studies focusing on the investigation of non-homogeneous bodies. Due to their capability on 

capturing the size effects, and offering solutions independent of spatial discretization, enriched 

non-classical continuum theories are often more preferable with respect to the classical ones. 

In the present study, the sample problem of a plate with a circular inclusion subjected to a 

uniform tensile stress is investigated in terms of both ‘implicit’/’weak’ and ‘explicit’/’strong’ 

non-local descriptions: Cosserat (micropolar) and Eringen theories, by employing the finite 

element method. The material parameters of ‘implicit’ model is assumed to be known, while 

the nonlocality of ‘explicit’ model is optimized according to stress concentration factors 

reported for infinite Cosserat plates. The advantages/disadvantages, and correspondence/non-

correspondence between both non-local models are highlighted and discussed apparently for 

the first time, by comparing the stress field provided for reference benchmark problem under 

various scale ratios, and material parameter combinations for matrix-inclusion pair. The results 

reveal the analogous character of both non-local models in case of geometric singularities, 

which may pave the way for further studies considering problems with noticeable scale effects 

and load singularities. 

 

Keywords: 

Non-local models; Cosserat; Eringen; nonhomogeneous solids; finite elements; scale effects
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1 Introduction 

When internal (e.g. atomic distance, size of heterogeneities, etc.) and external (e.g. wave length 

of loading conditions, sample length, etc.) time and/or length scales become comparable, the 

discrete nature of structure starts to play a key role on properly describing the overall 

mechanical behaviour. Since classical (local) theory of elasticity is incapable of capturing the 

size effects [1-5], and direct discrete modelling techniques are not practical due to their 

computational expense [6-10], enriched non-classical continuum theories [11-16] have been 

often proposed in the literature. Among them, the micropolar (Cosserat) theory [17-19] and 

Eringen’s nonlocal theory [16, 20, 21], both of which incorporate size effects associated with 

the material’s internal structure by different principles [1-5, 11-25], will be the main object of 

this study. 

Non-locality, by definition, implies the presence of internal lengths and spatial dispersion 

properties in wave propagation [22]. Within this framework, as suggested in [13, 14, 23, 25], 

we can distinguish between ‘implicit’/’weak’ and ‘explicit’/’strong’ non-local formulations. 

The former is referred to continua with extra degrees of freedom of various kind (i.e. [12, 14, 

15]), in which there exist additional equations of motion containing non-standard primal fields, 

named generalised continua, microcontinua, or even multifield continua. While in the latter 

(i.e. [16, 20, 21]) primal fields of classical elasticity are preserved, yet the equations of motion 

contain integral, integro-differential or finite-difference operators in the spatial fields. In the 

end, both approaches avoid physical inadequacies, theoretical/computational problems related 

to ill-posedness in the field equations and mesh-dependency in numerical solutions [1,2]. 

Among ‘implicit’ non-local models, many papers showed the advantages of micropolar theory, 

which has been widely exploited for describing heterogeneous materials with microstructures 

(e.g. masonry-like structures, granular, blocked and layered materials, rock assemblages, 

reinforced composites, and so on [26-33]). The micropolar model was first developed by 

Cosserat brothers [17], and improved by many researchers over the years such as, Eringen [18], 

Nowacki [19], etc. The theory accounts for the rotation of individual material points by 

integrating size effects through an additional kinematic and work-conjugated dynamic 

descriptors representing the material microstructure. Respectively, the stress tensor is 

expressed in terms of skew-symmetric stress and couple-stress parts. Due to its limited non-

local character, the theory is classified as ‘implicit’ or ‘weak’ non-local model. Meanwhile, 

Eringen’s nonlocal theory, which was first introduced by Kröner [34], Krumhansl [35], Kunin 

[22], and Eringen [36] and were further improved by Eringen and Edelen [20], and Eringen 
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[16, 37, 38], is extensively employed to investigate the mechanical behaviour of nano/micro 

sized structures (e.g. carbon nanotubes, graphene sheets, non-homogenous elastic continua, 

etc.) [39-41]. The theory possesses ‘explicit’ or ‘strong’ non-locality, since the small-scale 

parameter is integrated directly into the convolution type constitutive equation to capture the 

size effects. Accordingly, stress at each point is related to the strain of entire domain through 

an attenuation-type kernel function that contains information about internal length. As the 

internal lengths may have many different interpretations depending on the structure [16, 23], 

‘explicit’ non-local continua may also be used represent the material microstructure like 

‘implicit’ one, even if it has often not. 

As an inevitable outcome of widespread application of composite materials, the studies that 

have focused on quantifying the effect of heterogeneities through investigation of interface 

between inclusion and matrix materials gained speed. This problem has been widely studied 

considering both classical [42, 43, 44] and non-classical theories via employing different 

solution techniques. As examples of early studies focused on non-local models, Lubarda [45] 

provided the analytical solutions in the context of anti-plane strain couple-stress elasticity, 

while Zhang and Sharma [46] employed strain gradient elasticity with couple stresses. From a 

different point of view, Dong, Wang and Rubin [47], treated the interface as a finite thickness 

Cosserat shell/membrane medium and compared their results with explicit solutions. More 

recently, Atroshchenko et al. [48], modelled the matrix-inclusion structure as Cosserat media 

considering various material properties and showed the effect of imperfect and perfect 

interfaces via employing boundary element method (BEM), while Fantuzzi et al., [32] 

investigated the classical matrix-inclusion problem considering micropolar theory using both 

strong and standard forms of the finite element method. 

Due to its rather complex character in the implementation, integral form of Eringen’s non-local 

theory based finite element (FE) formulation, originally derived by Polizzotto [49], has been 

only conducted by a limited number of researchers. Pisano, Sofi and Fuschi [50] are the first 

ones, who implemented the FE formulation in a two-dimensional (2D) nonlocal elasticity 

context for solving boundary-value problems. Inherently, the inclusion problem was first 

addressed by the same authors on the basis of a so-called “enhanced” strain-difference based 

Eringen-type nonlocal model [39] via modelling a piecewise-homogenous domain [51, 52]. 

Although the effect of the non-local material parameters on strain field was widely and clearly 

discussed, the studies are limited with square inclusion and the stress evaluation of mentioned 

problem is only recently examined by Pisano and Fuschi [53], who obtained spurious stress 

oscillations around the inclusion when full integration is considered. 
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After the descriptions of ‘implicit’ and ‘explicit’ non-locality had been suggested [13, 14, 23], 

Trovalusci [25] has focused on their definitions in a comparative way, for the first time. Yet, 

these different descriptions of non-locality have not been employed to study a common 

problem to look for possible correspondences and differences. With this motivation, in the 

present study, the effect of a circular inclusion as in particle and/or fibre reinforced composite 

materials is investigated on the basis of both Cosserat (‘implicit’) and the integral form of 

Eringen’s two-phase local/nonlocal (‘explicit’) theories under uniaxial loading by employing 

the finite element method. Hence, Eringen’s theory is not here used to model solids at atomistic 

scale, but rather the focus is on structures at a larger scale dominated by other kinds of discrete 

nature (e.g. heterogeneity) yielding an apparent non-local mechanical behaviour. The inclusion 

is incorporated into the model as a heterogeneity possessing different material properties than 

the surrounding matrix. The intrinsic length scale parameter of Cosserat model is assumed to 

be known while the non-locality of Eringen model is optimized using an evolutionary algorithm 

to minimize the difference between stress concentration factors obtained for infinite ‘implicit’ 

and ‘explicit’ non-local plates. After constitutive parameter detection of ‘explicit’ model, the 

plates are investigated under various material combinations for matrix-inclusion pair. To mimic 

the effect of both finite and infinite plates, wide range of edge lengths for a fixed radius of 

inclusion is considered. To the best of our knowledge, this represents the first attempt to 

investigate the possible analogous/dissimilar characters between conducted ‘implicit’ and 

‘explicit’ non-local continuum theories in the simplified context of a two dimensional 

inclusion-matrix problem under plane strain assumption. 

The paper is organized as follows. In Section 2, the governing equations are outlined, and 

corresponding finite element formulations are derived in the context of both ‘implicit’ and 

‘explicit’ non-local theories. Section 3 is devoted to numerical examination of matrix-inclusion 

problem, alongside with a brief explanation about optimization process. The comparison of 

‘explicit’ and ‘implicit’ type non-local theories and the influence of small-scale parameters are 

also discussed focusing on the normal stress field. Finally, some concluding remarks about 

capabilities, advantages/disadvantages of both non-local models are presented in Section 4. 

2 Materials and methods 

Continuum theories considered in the present study are briefly explained, and the displacement-

based finite element formulations are derived regarding two-dimensional plane-strain problems 

within the linearized kinematical framework. Matrix and inclusion are assumed as linear, 

elastic and isotropic materials possessing different mechanical properties. FE formulation of 
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micropolar continuum model is implemented within the environment of the software 

COMSOL Multiphysics© [54], while for Eringen’s nonlocal model an in-house code is 

developed using Wolfram Mathematica [55]. The superscripts E and M, that refer to Eringen’s 

and micropolar model, respectively, are used to distinguish the parameters appearing in both 

theories, and possessing different interpretations. 

The body under investigation can be regarded as a set of material points in 3D Euclidean space, 

occupying a domain 0 , and enclosed with a boundary, 0  which is subjected to traction 

vector, t , and couple-traction vector, m (considered for Cosserat media only). A Cartesian 

coordinate system xyz is used with a suitable origin for the parameterization of positions of 

material points, x. In the two-dimensional framework (2D) it is assumed that 0  is formed 

with a uniform and symmetric thickening of a 2D region  yx, , enclosed with boundary 

 , along z axis by an amount of h.   

2.1 Micropolar model 

2.1.1 Overview 

In micropolar theory, material particles that constitute continuum are described in terms of both 

their positions and orientations leading to following linearized kinematic relations: 

jkkjkijkji

M

ij eu ,, ,    (1) 

where k  stands for the components of micro-rotation vector, and 
M

ij  and kj  denote the 

components of strain and curvature tensors with eijk being the usual third-order permutation 

tensor. One may recognize that, if the micro-rotations are constrained to follow the local rigid 

rotations, (macro-rotations): 

kjijki ue ,
2

1
   (2) 

the classical kinematic relations, i.e.,   2,, ijjiij uu  , will be recovered and the continuum 

becomes a couple-stress continuum [26, 56].  

From balance considerations, each component of surface traction and surface couple-traction, 

denoted by 
M

it  and mk, respectively, are described as: 

jkjkj

M

ij

M

i nmnt   ,   (3) 
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where 
M

ij  and kj are the components of the non-symmetric stress and couple-stress tensors, 

respectively, and nj being the components of unit outward normal vector of the continuum 

boundary. Hence, if body forces and body couples are neglected, the equilibrium equations 

take the following form 

0,0 ,,  M

ijijkjkj

M

jij e    (4) 

Considering linear elasticity, the stress-strain relation of an isotropic micropolar continua can 

be represented as: 

kjjkkjiikj

M

ji

M

ijij

M

kk

M

ij   ,)(   (5) 

which requires six elastic material constants for the complete description, i.e., Lamé’s constants 

λ and μ, and four additional parameters, α, β, γ and χ related to micropolar theory [57]. It is 

important to note that, in the present work, second Lamé’s parameter, μ, is not equal to shear 

modulus, G, as in the classical convention, but holds following relation: 

2
G


    (6) 

Accordingly, Poisson’s ratio, ν, can be described as follows: 

 
  













222 G
v   (7) 

In Cosserat model, the size effects and relative rotations are incorporated through an internal 

characteristic length, lc, and a coupling number, N, in such a way that: 

   
2 2,

2 2 2
cl N

 

   
 

 
  (8) 

If these parameters (i.e. lc, N) are taken small enough. the Cosserat effects become negligible 

and the body behaves as Cauchy continua. Note that this finding is valid only in the case of 

materials with at least the orthotetragonal symmetry, or materials belonging to more restricted 

symmetry classes, as of course isotropic materials [26, 58].  

2.1.2 Finite Element Formulation 

For FE modelling, the field variables within an element e (i.e. 
eu , 

eφ ) are approximated 

considering a natural coordinate system  , and using related interpolation function matrices: 

eee

M

ue φNφuNu ~,~
  (9) 

where the over tilde symbol is used to indicate the nodal values. Since the present study 

restrained with 2D media only, the degrees of freedom (DOFs) per each point is reduced to two 
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in-plane displacement components along x and y directions, i.e., 
xu and 

yu , and one out-of-

plane micro-rotation component along z direction, i.e., z . 

   
(a) (b) 

                      
Fig. 1  The (a) 9-node quadrangular, (b) 4-node quadrilateral element  

illustrated in natural coordinate system ( 11,11   ). 

M

uN is employed for interpolation of nodal in-plane displacements and consists of quadratic 

interpolation functions, while 
N  is employed for nodal out-of-plane micro-rotations, and 

includes linear type shape functions. As it was mentioned in Fantuzzi et al., [32], and Fantuzzi 

et al., [33], and clearly showed in the Fig. 1(a), all the nodes of the nine-node Lagrange element 

possess displacement-type DOFs, whereas micro-rotation DOFs are attached only to the four 

corner nodes:  

 41

9

9

1

1

,
0

0

0

0
 NN

N

N

N

N

u

u

u

uM

u  







 NN   (10) 

Accordingly, strain and curvature fields, that are ordered in vectors;  

 T
e

M

yx

M

xy

M

yy

M

xx

M

e ε ,        T
ezyzxe χ   (11) 

are obtained using differential matrix operator, M
L , permutation vector M, and gradient 

operator, : 

 

   

 T419911 ~~~~~~

~

~
0~

,~

~
~~

ezzyxyx
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eee
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ee

MM

e

uuuu 










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
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







d

dB
φ

u
NφNφχ

dB
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MNNLφMNuNLMφuLε

  (12) 
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where M

ed  indicates the unknown vector of nodal displacements, and the superscripts appeared 

in Eq. 123 (and also in Eq. 10) refer to node numbers, while the matrices M

eB  and M

eB  include 

the derivation of interpolation functions considering following relations 

 
T

T

T

,1100,

00

00





















































yx

xy

yxM
ML   (13) 

Since 
M

uN and N are taken as functions of natural coordinates, the derivations with respect to 

physical coordinate systems given in Eq. 131 and Eq. 132 should be performed using chain rule, 

and inverse Jacobian matrix of element e, 
1

eJ . Inherently, constitutive relations given in Eq. 5 

are transformed to: 

M

e

M

e

M

ee

M

e

M

e

M

e

M

e dBDμdBDσ   ,   (14) 

where 
M

eσ  and 
eμ  vectors, described as  

   TT
,

ezyzxee

M

yx

M

xy

M

yy

M

xx

M

e   μσ    (15) 

denote non-symmetric stress field and couple stress field of an element, while constitutive 

matrices, 
M

eD  and 
M

eD  are defined as follows: 
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A standard displacement-based FE formulation is provided using the principle of minimum 

total potential energy, where for the static analysis, total potential energy functional, MΠ , 

which is written in terms of total elastic strain energy, 
MU and external work potential 

MW : 
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must be minimum for equilibrium:  
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with
totalN , Am and dM being the total number of elements, area of mth element, and global nodal 

displacement vector. One can see that, Eq. 18 is simplified to following form, 
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since the remaining terms (e.g.     ,, 3121

MMMMMM ΠΠ dddd  ) vanish due to ‘weak’ non-

local character of constitutive equation. Accordingly, the stiffness matrix of an element m is 

derived as: 
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By including the derivative of external work potential, and performing the proper assemblage 

operations, the well-known linear equation system is achieved:  

MMM
fdK    (21) 

where KM, and fM refer to global stiffness matrix, and global nodal force vector of discretized 

2D micropolar media. For integration operations in Eqs. 17 and 20, a standard Gauss 

integration technique is adopted. 

2.2 Eringen’s two-phase local/nonlocal model 

2.2.1 Overview 

The assumptions of linear elasticity provide the following kinematic relations for Eringen’s 

nonlocal model: 

 
ijji

E

ij uu ,,
2

1
   (22) 

where E

ij  refer to components of the strain tensor. For the continuum to be in balance, 

interactions between material points, that are characterized through traction forces only, tE, can 

be described as follows: 

j

E

ij

E

i nt    (23) 

where E

ij refers to components of the symmetric stress tensor. In the absence of body forces, 

the following equilibrium equation is carried out, similar to classical (local) elasticity theory: 

0, E

jij   (24) 
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In fact, the localisation of global (integral) balance laws (e.g. mass, momentum, moment of 

momentum, energy) would introduce non-local residuals (localisation residuals) as declared 

by Eringen and Edelen [20] and Eringen [21, 37]. This phenomenon appears due to the long-

range effects of all material points of the body at a reference point, and would contradict with 

the state that the global balance laws are valid for each infinitesimal volume element isolated 

from the body [16, 20, 21, 37]. However, with proposing a new interpretation for stress tensor 

and internal energy density, the local form of balance laws is recovered except for jump 

conditions [16]. Since for chemically inert bodies the contribution of non-local mass residual 

dies out, and as a result of axiom of objectivity the contribution of non-local body force 

residuals as well as non-local body couple residual should vanish, the only remaining residual 

associated with non-locality is the non-local energy residual. Nevertheless, as studied via 

Polizotto et al. [39] and Marotti de Sciarra [59], it is represented as a function of strain rate, 

hence omitted in the present study under the quasi-static condition and yielding following 

constitutive equation for linear elastic isotropic solids: 
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as also demonstrated in Eringen [16, 37]. To avoid any conflict with its previous interpretation 

in micropolar model, constitutive equation is expressed using shear modulus, G, instead of 

second Lamé’s parameter, μ, while first Lamé’s parameter, λ, is retained. The convolution type 

constitutive equation of the integral form of Eringen’s two phase local/nonlocal model implies 

that the stress at a point is linked to the strain of the entire domain through a kernel function, τ, 

which is assumed to be bi-exponential in the present study, in accordance with literature [60, 

61], and represented as follows: 

 
dd
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e
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   (26) 

where r (i.e. xx r ) refers to the Euclidian distance between investigated point of interest, 

x, and its neighbour points, x , [49, 51, 52], and d being the dimension of the structure, while κ 

stands for nonlocal parameter. In fact, different type of kernel functions (e.g. bell-shaped, 

gauss-like, etc.), that could be more suitable for the problem under investigation exist, yet their 

influence will be reported in another forthcoming study of the authors. As one can see, two 

additional parameters, ξ and κ, both of which attribute to non-local character of structure, are 

introduced with Eringen’s non-local theory. The former symbol stands for fraction coefficient, 

that ranges from 0 to 1, and is used to regulate the weights of local and non-local parts, while 
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the non-local parameter that depends on both internal length scale, a0, and material constants 

e0: 

00ae   (27) 

defines the characteristic of the kernel function. Hence, assuming ξ equals to 1 yields full local 

model, and 0 corresponds to full non-local one, while the increasing values of κ produces more 

pronounced non-locality.  

2.2.2 Finite Element Formulation 

For FE modelling of 2D non-local media, the domain is discretized using four-node 

quadrilateral elements (see Fig. 1 (b)), and displacement field within an element e (i.e. 
eu ) is 

approximated using interpolation matrix including linear shape functions, 
uN , and nodal 

displacement vector, 
E

ed as in the form:  
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Corresponding approximate strain field within an element e, i.e.,  T
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where E
L  and 

E

eB  refer to differential operator, and strain matrices. As previously mentioned, 

the derivations with respect to physical coordinate systems given in Eq. 292 are performed by 

the chain rule, and employing the inverse of Jacobian matrix of element e, 
1

eJ . The 

constitutive relation given in Eq. 25 is then transformed to: 
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while stress tensor and constitutive matrix are described as below: 
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Note that the over bar in Eq. 30, denotes that the related matrix is written in terms of   , as a 

requirement of convolution form of Eringen’s constitutive relation, hence, should not be 

confused with overbars in prescribed surface traction, t , and surface couple-traction, m .  

Finally, the weak form of displacement based FE formulation is derived based on minimum 

total potential energy principle as explained previously,  
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However as different from micropolar model, in Eringen’s nonlocal theory, all derivatives (e.g. 

    ,, 3121

EEEEEE ΠΠ dddd  ) are recovered due to its ‘strong’ non-local character, and 

resulting stiffness matrix is attained for an element m:  
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  (33) 

The subscripts m and n stand for element number. The term with coefficient    represents the 

local part of two-phase model, while the terms with coefficient 1  correspond to the non-
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local part. In the non-local part, the first term stands for the contribution of the mth element to 

its own energy, while second and third terms account for the influence exerted on the mth 

element by the remaining elements, and the influence exerted by the mth element to other 

elements, respectively. Second and third terms in the non-local part, which expand element 

stiffness matrix to overall dimension are equal to each other only for homogenous material 

properties: 
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Finally, by including the derivative of external work potential, 
E

mf  the formulation of the mth 

element is provided: 
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One can see that, Eqs. 33 and 35 have the same nature with the corresponding ones reported in 

literature [47], and to be accordance with the literature, 
E

mnk  and 
E

nmk  are called as cross-

stiffness matrices from now on. At last, the following linear equation system is obtained after 

proper assemblage operations. 

EEE
fdK    (36) 

 
Fig. 2  Illustration of the influence zone of a quadrilateral element m  

(Neighbour elements that fall within the zone, and contribute to the  

stiffness matrix of element m are shown in grey)
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The integration operations given in Eq. 33 are performed using GQ method. For the local part 

(i.e. km), 2 x 2 Gauss sampling points are sufficient, while for the nonlocal part, the number of 

Gauss sampling points varies depending on nonlocal parameter, element length and calculated 

part of stiffness matrix (i.e. kmm or kmn). To reduce the computational burden, only the elements 

inside the influence zone (see Fig. 2) are assumed to contribute to cross-stiffness matrices kmn 

and knm, while the effect of others is negligible due to the decaying nature of attenuation 

function [50, 62]. It should also be noted that, this simplification inherently leads to some sort 

of banding of the global stiffness matrix E
K . 

3 Numerical Simulations 

This section is devoted to the numerical examination of linear elastic plates with a circular 

inclusion under uniform tensile stress. As loading condition, a constant tensile stress of 100 

[MPa] is applied to left and right vertical boundary edges, while boundary conditions are 

imposed by limiting the horizontal and vertical displacements of vertical and horizontal axes 

located in the middle, respectively (Fig. 3).  

 
Fig. 3 Geometry, boundary and loading conditions  

of a square plate containing a circular inclusion. 

Despite the symmetric character of the problem (along both x and y axes), analyses are 

performed regarding the full domain, since in the context of Eringen’s nonlocal theory, 

imposing symmetry is much more complicated than only considering the symmetric part of the 

model [63]. It is a result of the missing neighbour elements that should have contributed to 

cross-stiffness matrices due to long-range interactions. The simulations are repeated 

considering two different mesh configurations of different refinement, both characterized by 

different scale ratios:  for all models, respectively named Model 1, 2, 3, the radius of inclusion, 
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a, is assumed constant, 0.05 [m], while the width of the plate (structural/macro length), L, is 

modified in size: L/a = 3.0, 10.0, 20.0 to consider both finite and infinite domains (see Fig. 4). 

Model 1 (L/a = 3.0) Model 2 ( L/a = 10.0) Model 3 ( L/a = 20.0) 

 
340 elements, 

361 nodes 

 
540 elements, 

561 nodes 

 
620 elements, 

641 nodes 

 
832 elements, 

865 nodes 

 
1088 elements, 

1121 nodes 

 
1344 elements, 

1377 nodes 

Fig. 4 Mesh configuration (top: coarse mesh, bottom: fine mesh) of the three Models  

 

As the main purpose of the present study, the effect of different material configurations (see 

Table 1) is studied in the context of two distinct non-classical theories, Cosserat (micropolar) 

and Eringen’ nonlocal models, as described below: 

Mat (1): Both the matrix and the inclusion are modelled as Cauchy. 

Mat (2): The inclusion is Cauchy and the matrix is Cosserat/Eringen. 

Mat (3): The inclusion is Cosserat/Eringen and the matrix is Cauchy. 

Mat (4): Both the matrix and inclusion are modelled as Cosserat/Eringen. 

Table 1 Dimensionless material data for matrix-inclusion pairs. 
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In this way, it is aimed to examine the incorporation of size effects through ‘implicit’ and 

‘explicit’ non-local, scale dependent continua, specifically focusing on stress concentration 

factor (SCF) as one of the main design parameters for the problem under investigation: 

0

maxSCF



   (37) 

where 
0  and 

max correspond to nominal stress and maximum stress (e.g. obtained at interface 

point A), respectively.  

For the transition between Cauchy (classical) and Cosserat/Eringen (non-classical) models, 

different strategies are developed based on the conducted continuum theory. For micropolar 

theory, it is achieved via tailoring the value of internal characteristic length, lc and coupling 

number, N, as given in Table 1. For small values of corresponding material parameters, the 

size effect becomes negligible, and the model behaves as a Cauchy continuum, while an 

opposite trend is obtained for larger values. On the other hand, when Eringen’s nonlocal theory 

is considered, the locality and/or non-locality of inclusion and matrix can simply be arranged 

by changing the fraction coefficient, ξ, and/or the non-local parameter, κ, appearing in the 

constitutive equation. For a fully local media, fraction coefficient should be equal to unity (i.e. 

ξ =1), while any smaller value (i.e. ξ <1) lets the incorporation of size effects. To modify the 

non-locality of Eringen’s model in accordance with micropolar theory (regarding the sample 

problem), an evolutionary algorithm called Differential Evolution Method [64], which has been 

widely employed as a global optimization tool in engineering problems, is utilized. To this aim, 

it is intended to reduce the relative difference between stress concentration factors obtained 

through Eringen’s nonlocal theory based FE models (for L/a = 20.0) and explicit expressions 

of stress concentration factors reported for infinite plates employing Cosserat theory [48]. As 

it is less expensive computationally, the parameter to be optimized is selected as ξ (

0.10.0  ), while κ is taken as 0.2a [m] for all the models, and the radius of influence zone 

(i.e. RI), is assumed as 0.05 [m] for given κ. It should be noted that, although an arbitrary value 

in accordance with literature [53] is assigned for κ, the attention was paid to keep it reasonable 

in comparison with radius of inclusion. Eventually, the objective function to be minimized, 

takes the following form. 

   
 

 

 

 

 

 

T

4C

E

3C

E

2C

E 1
SCF

SCF
,1

SCF

SCF
,1

SCF

SCF
,OF
















 ff   (38) 

where the double bracket refers to norm operation, the subscripts E and C stand for Eringen 
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and Cosserat models, respectively, and the sub-numbers in parenthesis correspond to the 

material configurations (i.e. Mat (2), Mat (3), Mat (4)). The numerical values of parameters 

used for different material configurations can be found in Table 2. 

Table 2 Material properties of matrix and inclusion pairs 

  Inclusion Matrix 

  1 2 3 4 1 2 3 4 

E
ri

n
g
en

 

N
o

n
lo

ca
l 

T
h

eo
ry

 G (GPa) 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 

ν 1/4 1/4 1/4 1/4 1/3 1/3 1/3 1/3 

κ (m) - - 0.01 0.01 - 0.01 - 0.01 

ξ 1.0 1.0 opt  
opt  1.0 opt  1.0 opt  

M
ic

ro
p

o
la

r 
T

h
eo

ry
 G (GPa) 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 

μ (GPa) 0.4999 0.4999 -1.632 -1.632 0.999 -3.263 0.999 -3.263 

ν 1/4 1/4 1/4 1/4 1/3 1/3 1/3 1/3 

lc
 (m) 5.10-5 5.10-5 0.05 0.05 5.10-5 0.05 5.10-5 0.05 

N 0.001 0.001 0.9 0.9 0.001 0.9 0.001 0.9 

χ (GPa) 1.10-6 1.10-6 4.2632 4.2632 2.10-6 8.5263 2.10-6 8.5263 

γ (kN) 0.005 0.005 5.103 5.103 0.01 1.105 0.01 1.105 

Before any further progress, the procedure that is followed to attain nodal stresses should be 

explained. After the normal stress field of an element that is obtained in terms of natural 

coordinates is directly used to calculate the stresses at nodes of corresponding element (i.e. 

direct evaluation method), single nodal stress values are calculated by averaging the stress 

contribution of all the elements sharing the corresponding node. Note that, this approach is 

valid only if the nodes are surrounded by the elements possessing same kind of material 

properties. Hence, to obtain the correct stress values for interfacial nodes (e.g. point A), the 

contributions of matrix and inclusion elements are handled separately resulting in two distinct 

values. 

 
Fig. 5 Rate of convergence during optimization of  

fraction coefficient (x axis refers to iteration number) 
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It is assumed that, the optimization is achieved either the total number of stall iterations exceeds 

50, or the objective function is minimized up to 0.1%. For this problem, the former condition 

is fulfilled and optimum fraction coefficient is obtained as: 597873.0opt  with a convergence 

rate illustrated in Fig. 5. Once the nonlocal material parameters of Eringen’s model are fixed, 

the results of finite element plate models employing either Eringen or Cosserat theories are 

analysed considering all scale ratios, material configurations, and domain discretization. 

Corresponding SCFs of both approaches are listed in Table 3, while the effect of discretization 

is studied through calculating the relative differences: 

1SCFSCF finecoarsem    (39) 

Table 3 Stress concentration factors for plates regarding both mesh configurations and sensitivity 

through difference (Δm%) 

L/a Mat 

Eringen’s Nonlocal 

four-node element 

Micropolar 

four-node element 

Micropolar 

nine-node element 

coarse fine Δm% coarse fine Δm% coarse fine Δm% 

3.0 

1 1.78606 1.78202 0.23 1.78605 1.78201 0.23 1.73393 1.70319 1.80 

2 1.52022 1.50976 0.69 1.51411 1.50737 0.45 1.48545 1.47719 0.56 

3 1.82143 1.82863 0.39 1.80043 1.79016 0.57 1.73912 1.70772 1.84 

4 1.54508 1.5424 0.17 1.48863 1.48308 0.37 1.46474 1.45855 0.42 

10.0 

1 1.67799 1.68808 0.60 1.67799 1.68808 0.60 1.64709 1.63256 0.89 

2 1.42931 1.43197 0.19 1.46891 1.47091 0.14 1.44386 1.43921 0.32 

3 1.70709 1.72469 1.02 1.6892 1.69607 0.41 1.64774 1.63248 0.93 

4 1.45055 1.45891 0.57 1.44673 1.4479 0.08 1.42418 1.42011 0.29 

20.0 

1 1.65415 1.6768 1.35 1.65415 1.6768 1.35 1.6605 1.6143 2.86 

2 1.41681 1.41495 0.13 1.47089 1.46087 0.69 1.44571 1.4315 0.99 

3 1.67154 1.71626 2.61 1.67149 1.68252 0.66 1.66275 1.61416 3.01 

4 1.4289 1.44371 1.03 1.44908 1.43874 0.72 1.42349 1.41348 0.71 

Even though second-order elements clearly suppress the first-order ones in problems with high 

gradients (e.g. stress concentration), the capability of ‘explicit’ non-local model is studied only 

in terms of four-node elements. This restriction is a result of excessive computational burden 

of formation of cross-stiffness matrices (i.e. kmn, knm) that emerges due to different Jacobians 

of quadrilateral elements. Hence, for comparison purposes, linear formulation is also 

implemented to ‘implicit’ non-local model. According to results listed for Mat (1), it is evident 

that the solutions are independent from the program used (i.e. COMSOL Multiphysics© and 

Wolfram Mathematica). To see the global behaviour, the zoom-in and zoom-out looks of 

contour plots of normal stresses are illustrated at Figs. 6-7, together with their variation along 

vertical axis y (see Fig. 8). It is worth underlining that since FE method enforces continuity of 

the displacement field only, the discontinuity of contour maps of the normal stresses among 
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linear elements were required to be averaged by performing linear interpolation to achieve 

smooth and physically meaningful stress fields.  

L/a = 3.0 L/a = 10.0 L/a = 20.0 

   
(a) 

   
(b) 

   
(c) 

   
(d) 

   
Fig. 6 Zoom-in looks of contour plots of the normal stress field of Cosserat (left) and Eringen (right) 

non-local four-node, fine meshed FE models for (a) Mat (1), (b) Mat (2), (c) Mat (3), (d) Mat (4) 

For all scale ratios following inferences can be made independent of the conducted non-local 

continuum theory: 

- As the scale ratio decreases, SCF increases regardless of size effects, 

- Having a matrix with size effects leads to decrease in the SCFs (e.g. approximately 14% for 

Mats (2) and (4)), which highlights the necessity of using a non-classical type theory in such a 

case, 

- The presence of internal length in inclusion seems to have negligible effect on the stress field 

of matrix region,  

- For matrix with size effects, the dependence of SCFs on spatial discretization is weakened 

compared to Cauchy type matrix. This situation is more evident for second order elements, 

which may be due to the following reason: Since the error of stresses are known to be minimum 
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at GQ points, moving away from GQ points would introduce more numerical errors in 

quadratic elements compared to linear elements of same dimensions due to higher estimation 

of stress gradients. 

The above-mentioned results are in accordance with the existing literature [32, 48]. In the 

following subsections, the comments about each model with different scale ratios will be 

detailed with focusing on the conducted non-local theory. 

L/a = 3.0 L/a = 10.0 L/a = 20.0 

   
(a) 

   
(b) 

   
(c) 

   
(d) 

   
Fig. 7 Zoom-out looks of contour plots of the normal stress field of Cosserat (left) and Eringen (right) 

non-local four-node, fine meshed FE models for (a) Mat (1), (b) Mat (2), (c) Mat (3), (d) Mat (4) 

3.1 Plate Model 1 (L/a = 3.0) 

As the first step, a plate with scale ratio of L/a = 3.0 is examined. In this particular case, the 

dimension of inclusion is comparable with the length of the plate which indicates the presence 

of a more definite non-locality with respect to other scale ratios. According to Figs. 6-8, two 

major differences are encountered between the results of ‘explicit’ and ‘implicit’ non-local 

models: 
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- An increase of stress close to interface is attained for non-local type inclusion (i.e. Mat (3) 

and Mat (4)), 

- A decrease in stress close to boundaries of the domain is attained for non-local type matrix 

(i.e. Mat (2) and Mat (4)) 

when Eringen’s nonlocal theory is employed.  

(a) 

(b) 

(c) 

Fig. 8 Normal stress variation along the vertical axis y for (a) L/a = 3.0, (b) L/a = 10.0, (c) L/a = 20.0 
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Both phenomenon can be explained as a result of ‘strong’ non-local character of the Eringen 

model. For the former, the high strain field of matrix around interface, which falls into the 

influence zone of the inclusion part, results in a rise in stress field of inclusion; while for 

micropolar theory, such behaviour is not observed. In fact, for micropolar theory, the stress 

field of inclusion changes depending on the presence of size effects in matrix. One must bear 

in mind that if an imperfect interface is present, such an interaction between the two regions 

may weaken or even vanish for both non-local theories. For the latter, the reason of discrepancy 

seems to be the well-known boundary effect, which occurs due to missing contribution of non-

existing neighbour elements. It is important to notice that boundary effects may be of 

importance for domains that have dimensions comparable with the influence zone of nonlocal 

parameter: In order to compensate the decreasing stresses, close to boundaries, the stress at 

remaining regions needs to be higher due to balance requirement. Indeed, for this particular 

scale ratio, SCFs of ‘explicit’ non-local model turns out to be higher than expected for Mats 

(2) and (4). It is evident if one compares the difference between SCFs of ‘implicit’ and 

‘explicit’ non-local models regarding all scale ratios: As illustrated in Fig. 8., the stresses of 

both non-local models overlap at point A (i.e. x = 0, y = 0.05 [m]) except for L/a = 3.0, in which 

case ‘explicit’ non-local model ends up with a higher estimation of normal stress. 

3.2 Plate Model 2 (L/a = 10.0) and Model 3 (L/a = 20.0) 

In this section, plates with scale ratios of L/a = 10.0 and L/a = 20.0 are commented together 

since no significant difference in terms of stress fields are attained for Models 2 and 3. What 

is said for L/a = 3.0 about ‘explicit’ and ‘implicit’ non-local models holds with a slight 

adjustment: although boundary effects still exist, it has negligible effect around inclusion.   

As for L/a = 20.0, the plate can be assumed as an infinite medium with a small inclusion, SCFs 

tabulated in Table 3 are compared with the analytical values reported in the literature 

(Atroshchenko et al. [48]), by calculating their relative difference (i.e. at point A): 

1
SCF

SCF

analytical

numerical    (40) 

Comparative results determined via Eq. 40 are listed in Table 4. The solutions of both non-

local models appear to be in a good agreement with existing literature except for Mat (3): The 

relative error with respect to the analytical solution tends to increase for both non-local models 

with linear elements as the mesh is refined. This drawback is suppressed with nine-node 

elements, and the inherent advantage of using a second-order element formulation in case of 
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strong material discontinuity is pointed out. Moreover, very similar situation is encountered for 

Mat (1), which suggests this drawback is stemmed from purely computational issues.  

Contrarily, for material configurations possessing a non-classical type matrix as in Mat (2) and 

Mat (4), the results tend to be independent from the spatial discretization (see Fig. 8) and tend 

to converge to explicit solutions for ‘implicit’ non-local model. Although this seems a bit 

different for ‘explicit’ non-local model, the slight increase in error is most likely due to the 

simplifications made for numerical calculations: number of Gauss Quadrature points and range 

of influence zone is selected such that the numerical integration with GQ technique provides 

less than %2 error with respect to numerical integration schemes embedded in Mathematica. 

Consideration of larger number of GQ points and wider range of influence zone will reduce 

the errors, but will increase the computational burden dramatically. Note that ‘implicit’ model 

formulation does not require any more effort for numerical integration than local elasticity 

formulation. 

Table4. Error (Δ%) with respect to explicit results reported in literature for infinite plates 

Mat 
Analytical 

results 

Eringen’s Nonlocal 

four-node element 

Micropolar 

four-node element 

Micropolar 

nine-node element 

coarse fine coarse fine coarse fine 

1 1.576 4.96 6.40 4.96 6.40 5.36 2.43 

2 1.427 0.71 0.84 3.08 2.37 1.31 0.32 

3 1.576 6.06 8.90 6.06 6.76 5.50 2.42 

4 1.412 1.20 2.25 2.63 1.89 0.81 0.10 

5 Conclusion 

In the present study, the elasticity problem of a plate with a circular inclusion under uniaxial 

tensile loading is investigated in terms of both ‘implicit’/‘weak’ and ‘explicit’/‘strong’ non-

classical continuum models, Cosserat (micropolar) and Eringen’s nonlocal theory, 

respectively, by employing the finite element method. For both theories, inclusion is 

incorporated as a heterogeneity possessing different material properties than matrix. The 

internal characteristic length of Cosserat model is assumed to be known while the non-locality 

of Eringen’s model is tuned via optimizing the value of fraction coefficient in order to be in 

accordance with the analytical expressions of SCF reported for infinite Cosserat plates. Hence, 

Eringen’s theory is not here used to model solids at atomistic scale, but rather the focus is on 

structures dominated by other kinds of discrete nature (e.g. heterogeneity) yielding an apparent 

non-local mechanical behaviour. In this way, apparently for the first time, a comparison 

between micropolar and Eringen’s nonlocal theory of elasticity is performed, both in local and 
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global manners, in the simplified context of two-dimensional inclusion-matrix problem that 

possess geometric singularities. 

According to the numerical simulations performed for different scale ratios and material 

configurations, optimization of fraction coefficient of ‘explicit’ description seem to provide a 

reasonable approximation to stress concentration factors obtained by ‘implicit’ theory, in which 

the peak stresses at the interface are reduced approximately about 14% for non-local type 

matrix configuration. Such significant decrease in SCFs highlights the necessity of utilizing a 

non-local type theory in the presence of size effects. On the other hand, major are observed 

especially at the boundaries of non-local type inclusion and non-local type matrix. This 

discrepancy is attributed to ‘strong’ non-local character of Eringen model, that captures the 

interaction of particles within a neighbourhood which, also, paves the way to modelling the 

well-known boundary effect in atomic simulations.  

These observations provide an insight to possible advantages and drawbacks of both non-local 

descriptions, depending on the application. For instance, if this problem is a sub-model 

extracted from inner parts of a structure, boundary effects are unlikely to play a role, at least as 

far as the stress concentration factor is concerned, which justifies the use of ‘implicit’ 

description. On the other hand, to examine possible inclusions close to boundaries by sub-

modelling, it is apparent that boundary effects may alter the stress concentration, and, in the 

end, the ultimate strength of the structure. In that case, ‘explicit’ model seems to be the better 

option. However, the computational burden introduced by ‘explicit’ modelling, both due to 

cross-stiffness matrices and numerical integration, should not be underestimated. This naturally 

brings into consideration using a coupled non-local modelling in which the interior of the 

domain is modelled by ‘implicit’ approximation while the boundaries are modelled by 

‘explicit’ description when necessary, by suitable displacement and traction conditions. This 

may be the next step once a correspondence between two different non-local descriptions are 

put into evidence. 

The numerical examples presented herein can be considered as a first evolution for matrix-

inclusion problem, while more rigorous treatment may be required for a better approximation 

to the actual physical phenomena. For instance, in further studies inclusion and matrix parts 

can be considered as separate regions, with enforcing some contact constrains for interfacial 

relation. In that case, the Euclidian distance appeared in kernel function of Eringen’s nonlocal 

model cannot be taken equal to spatial distance, which will yield different results from those 

currently obtained. In any case, a connection between two different descriptions of non-locality 

has been demonstrated quantitatively, which is expected to pave the way to more enhanced 
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modelling of the structures with size effects by unifying the superior aspects of these 

approaches both theoretically and computationally. To look for deeper correspondences, 

comparison between both non-local theories are going to be extended to problems that possess 

load singularities by focusing on both displacement and stress fields. 
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