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Abstract 

In this article we investigated the structural and dynamical evolutionary behaviour of a set of 

10 thioredoxin proteins as formed by three extant forms and seven resurrected ones in 

laboratory. Starting from the crystallographic structures, we performed all-atoms molecular 

dynamics simulations and compare the trajectories in terms of structural and dynamical 

properties. Interestingly, the structural properties related to the protein density (i.e. the number 

of residues divided by the excluded molecular volume) well describe the protein evolutionary 

behaviour. Our results also suggest that the changes in sequence as occurred during the 

evolution have affected the protein essential motions, allowing us to discriminate between 

ancient and extant proteins in terms of their dynamical behaviour. Such results are yet more 

evident when the bacterial, archeal and eukaryotic thioredoxins are separately analysed. 
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Introduction 

The knowledge of the causes which have driven the evolution of proteins – in terms of sequence 

and structure from their first appearance on the earth – represents a very intriguing challenge. 

In fact, the possibility to describe the factors which have ultimately determined the protein 

molecular evolution could pave the way to rationalize the adaption of different forms of life to 

external changes as well as to a better understanding of the proteins as molecular machines. 

However, dealing with protein evolution requires information on extinct molecules which have 

disappeared along the history. Starting from the seminal observation that “most or all 

apparently heterologous gene derive ultimately from a common gene ancestor” (Pauling et al. 

1963)�, different strategies have been proposed to reconstruct, with a certain degree of 

accuracy,  putative sequences of proteins that no longer exist. These Ancestral Sequence 

Reconstruction (ASR) methods (Fitch 1971; Chang and Donoghue 2000; Hall 2006; Benner et 

al. 2007; Liberles 2008; Arenas et al. 2017) combine multiple alignments of extant protein 

sequences, phylogenetic analysis and the probability of amino acid substitution to infer a 

putative ancient protein sequence. 

Differently from “horizontal” approaches, where the process determining the protein structure 

and function evolution is inferred from sequence comparison of extant proteins, thus losing the 

evolutionary aspects, phylogenetic approaches give the possibility to estimate protein 

sequences along the history. That is, a phylogenetic tree obtained from the analysis of extant 

protein family members belonging to the three different domains of life might be combined 

with a multiple sequence alignment and a substitution model of evolution to provide a statistical 

inference on the ancestral sequence at any internal node of the tree (Arenas 2015)�. By such 

an approach, many different ancestral proteins were resurrected (Chang et al. 2002; Benner et 
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al. 2007; Ortlund et al. 2007; Harms and Thornton 2010; Perez-Jimenez et al. 2011; Hart et al. 

2014) ��, and some of them crystallized (Ortlund et al. 2007; Ingles-Prieto et al. 2013)�. From 

an evolutionary point of view, such data constitute an invaluable source of knowledge which 

can be used to shed light on the key factors regulating the evolution of the protein along the 

history. It is worth to mention here that ASR methods are affected by errors because of the 

limits of the substitution model used. Therefore, new strategies are continuously proposed to 

improve the ASR accuracy and those considering structural constraints represent one of the 

more promising approaches (Arenas et al. 2017)�. However, the evaluation of the ASR 

accuracy in the case of the resurrected proteins studied in this work is beyond the scope of this 

paper. 

To the best of our knowledge, two recent papers on thioredoxins represent the most complete 

study on resurrected proteins, where a set of seven Precambrian thioredoxin enzymes were 

resurrected, crystallized and tested to measure their enzymatic activity (Perez-Jimenez et al. 

2011; Ingles-Prieto et al. 2013)�. These enzymes – ubiquitous in all living organisms 

(Holmgren et al. 1975)� – were probably present in primitive life forms, as suggested by the 

archetypical active site (CXXC) and the conserved fold. It is worth noting that this structural 

dataset is actually the largest present in literature (Perez-Jimenez et al. 2011; Ingles-Prieto et 

al. 2013)�. In those papers (Perez-Jimenez et al. 2011; Ingles-Prieto et al. 2013)�, the melting 

temperature (Tm) was suggested as a possible evolutionary observable, which left genetic 

footprints on ancestral organisms (Boussau et al. 2008)�. 

Considering the well-established link between protein function, structure and dynamics and the 

availability of this set of thioredoxin protein structures mentioned above, several questions 

immediately arise: how do the changes in protein sequences due to the selective pressure 

influence the protein motions? To what extent? Do such differences depend on the organism 

life domain? 
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Inspired by such questions, we report here our investigation on the structural and dynamical 

behaviour (as provided by molecular dynamics simulations) of this set of thioredoxin proteins 

(Fig. 1) with the aim to provide a link between protein evolution and protein structure and 

dynamics. 

 

Materials and Methods 

The structures of the 10 thioredoxin (Trx) proteins were taken from the Protein Data Bank: 

1ERU, extant eukaryota (Human); 2TRX, extant bacteria (Ecoli); 2E0Q, extant archea 

(Archea); 4BA7, last bacterial common ancestor (LBCA); 2YJ7, last common ancestor of the 

cyanobacterial, deinococcus and thermus groups (LPBCA); 2YN1, last common ancestor of γ-

proteobacteria (LGPCA); 3ZIV, archaea/eukaryota common ancestor (AECA); 2YNX, last 

archaeal common ancestor (LACA); 2YOI, last eukaryotic common ancestor (LECA); 2YPM, 

last common ancestor of fungi and animals (LAFCA). The reconstruction of the ancestral Trx 

enzymes as well the associated divergence times (Fig. 1) have been taken from the literature 

(Ingles-Prieto et al. 2013)�. Briefly, in that paper the sequences of ancient thioredoxins have 

been estimated by phylogenetic tree encompassing more than 200 diverse Trxs sequences from 

the three domains of life. The associated phylogenetic tree has been used to estimate the 

divergence dates to nodes in the tree using multiple fossil calibrations (Yang et al. 2006; 

Rannala et al. 2007) on the hypothesis that root of the tree lies between bacteria and the 

common ancestor of archaea and eukaryotes. 

In this work, we used the reconstruction of the ancestral Trx enzymes previously published 

(Perez-Jimenez et al. 2011; Ingles-Prieto et al. 2013)� (i.e., the inferred sequences of the 

ancient thioredoxins, the corresponding X-ray structures and the estimated divergence dates) 

to describe the behavior of different structural and dynamical properties of this protein set along 

the history as explained in the following subsections. 
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Note that all the definitions of ancestors depend on the accuracy of the reconstructed tree and 

the ancestral state reconstruction algorithms used. 

 

Molecular Dynamics simulations 

The Molecular Dynamics (MD) simulations were performed using the Gromacs software 

package (Hess et al. 2008) and the amber99sb-ildn force field. The SPC model (Berendsen et 

at. 1993)� was used to mimic the water and sodium ions were added to neutralize the total 

thioredoxin charge. All the ten thioredoxins were simulated with periodic boundary conditions 

in the isothermal-isochoric ensemble (NVT), using an integration step of 2 fs and keeping the 

temperature constant (298 K) by the velocity rescaling thermostat (Bussi et al. 2007)�. The 

bonds were constrained using the LINCS algorithm (Hess et al. 1997)� and for short range 

interactions a cut-off radius of 1.1 nm was employed. To compute long range interactions the 

particle mesh Ewald method (Darden et al. 1997)� was used with grid search and cut-off radii 

of 1.1 nm. We calibrated the density of the boxes containing the water-protein solutions in order 

to obtain an identical pressure, within the noise (~ 10 bar), to the one provided by an MD 

simulation of a pure SPC box with a density corresponding to the liquid water experimental 

density at 298 K (we used as reference density 33.32 molecules per nm3) according to the 

procedure described in our recent work (Del Galdo et al. 2015)�. We performed for all the 

systems a productive MD simulation lasting 100 ns. Essential dynamics analysis (Amadei et 

al. 1993)� was applied to each single trajectory and to a combination of them in order to 

highlight the phylogenetic-based differences in protein essential motions. The overlap (s) 

between the covariance matrices (A, B) is defined by (Hess 2002)�: 

s (A, B) = 1 – d (A, B)/(tr A + tr B)1/2 

where tr is the trace of the covariance matrix and d(A,B) is the difference between the 

covariance matrices A and B as defined by Hess (2002)�. 
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Structural analysis 

The protein mean excluded volume, i.e. the mean volume enclosed by the solvent-accessible 

surface, has been estimated by averaging (over the productive MD simulation) the protein 

excluded volume along MD and using a probe radius of 0.14 nm according to the method 

reported in literature (Eisenhaber et al. 1995)�. The protein partial molecular volume was 

computed by the method reported in our previous work (Del Galdo et al. 2015)�, which is 

based on the evaluation of the mean protein excluded volume, the mean volume of the protein 

hydration shell and the hydration shell SPC density increment with respect to the reference 

SPC density (bulk density). 

The number of hydrogen bonds and the residues with secondary structures have been calculated 

by Gromacs tools. The solvent (polar, apolar and total) accessible and excluded surface areas 

were calculated by finding solvent-exposed vertices of intersecting atoms (Fraczkiewicz et al. 

1998)�. The number of proline residues as well as the B-factors have been directly extracted 

by the corresponding pdb files. 

 

Principal component analysis of the structural observables 

For these structure-related properties a principal component analysis has been performed. The 

melting temperature was added to this set, because it has been suggested as a possible 

evolutionary observable, as indicated by its increase along the history (Perez-Jimenez et al. 

2011)�. Due to the different magnitude and physical meaning of such observables, the 

covariance matrix was built using the adimensional rescaled shifts with respect to their 

averages for all the observables. That is, for the melting temperature and density-related 

properties 

ΔT’m= (Tm - ⟨Tm⟩) / σTm 
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Δρ’ = (ρ - ⟨ρ⟩) / σρ 

Δv’ = (v - ⟨v⟩) / σv 

with the angle brackets indicating the mean over time and σ the square root of the variance. 

 

Results 

To investigate the evolutionary behaviour of the 10 thioredoxin proteins, we analysed the 

corresponding molecular dynamics trajectories using both fluctuation-related properties 

(protein principal motions and entropy estimates) and structure-related observables (protein 

density, molecular volume, hydrogen bond contents, amount of secondary structures and 

solvent accessible surface area). 

It is worth noting that although our set is composed by proteins belonging to the same class, 

these proteins span a quite large sequence identity interval (between 0.25 and 0.92, see Table 

1).   

 

Structural behaviour 

 

To address the evolutionary behaviour of thioredoxin observables and possibly uncover their 

correlation, we considered 12 different properties: the experimental melting temperature, the 

solvent excluded surface area, the polar, apolar and total solvent accessible surface area, the 

number of proline residues, the B-factors, the number of hydrogen bonds, the fraction of 

residues having secondary structure, the residue density within the protein excluded volume 

(ρ) and the partial molecular volume (v). 

We excluded the relative density increment of the solvent density within the protein hydration 

shell with respect to the solvent bulk density, because it is nearly constant all along the 

evolutionary time (Fig. S1 in S.I.). This set of 11 observables was analyzed by means of 
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principal component analysis, thus providing a set of eigenvectors and associated eigenvalues 

describing the evolutionary behaviour within such an 11-dimensional space. 

 

The spectrum of eigenvalues (Fig. S2 in S.I.) obtained from the diagonalisation of the 

covariance matrix shows that the first eigenvector accounts for ~ 50 % of the total fluctuations, 

the second for ~ 30 % and the third for ~ 10 %.  The first eigenvector has the (nearly identical) 

major component values for the Tm, the residue density (ρ) and the partial molecular volume 

(v). Due to the limited sample size formed by 10 proteins, which is further reduced in the case 

of separate analysis for the archeal (3 structures), eukaryotic (4 structures), and bacterial (4 

structures) subsets, we decided to restrict our analysis on these three observables. Such a choice 

is largely justified by the principal component analysis performed on the global observable 

space defined by the 12 observables previously described, which shows that the major 

component of the first eigenvector (explaining about the 50% of the total fluctuations) is 

dominated by the Tm, the residue density (ρ) and the partial molecular volume (v). 

Therefore, these three observables not only represent the best choice for the description of the 

evolutionary behaviour, but also include the melting temperature and the density related 

properties which are simple, physically-sound observables. We recently observed that the 

protein density well correlates with the protein optimal growth temperature (Amadei et al. 

2017)�. We would like to stress here that there are not direct thermodynamic relations 

connecting the difference in the heat capacity and/or the melting temperature – experimentally 

found to be correlated with thioredoxin evolution – with the protein density and/or the partial 

molecular volume. 

In figure 2, we show the evolutionary trend of these three observables for archeal, eukaryiotic 

and bacterial thioredoxins. 
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From this figure, it is evident that the Tm, the residue density (ρ) and the partial molecular 

volume (v) significantly change along the evolutionary time (the sole exception being the Tm  

of the archeal thioredoxins, which decreases of only 3 K along the history). 

In figure 3 we report the evolutionary trajectory for the sample of proteins considered within 

such a re-scaled 3-D observable space. Very interestingly, all the points are not spread over the 

planes, but they are rather well aligned along the diagonal, indicating a significant correlation 

among these properties. 

In order to identify a possible single generalised observable able to describe the evolutionary 

trend, we performed the diagonalization of the ΔT’m, Δρ’, Δv’ covariance matrix, providing by 

means of its eigenvectors, the relevant modes and corresponding observables within such a 

space (Amadei et al. 1993). 

By using such eigenvectors (v1, v2, v3) as new basis set of the observable space, we can express 

the evolutionary trajectory in terms of the three corresponding generalised observables (g1, g2, 

g3, each corresponding to a specific linear combination of the original properties and defined 

by the projection of the observable trajectory on the eigenvectors). For eukaryotes, archea and 

bacteria the largest covariance matrix eigenvalue (corresponding to the v1 eigenvector) 

provides 90%, 99% and 94% of the total square fluctuations, respectively, clearly indicating 

that the essential information on the evolutionary trend of thioredoxins can be obtained by the 

g1 evolutionary behaviour (i.e. filtering out the small fluctuations along v2 and v3). It is worth 

to note that the v1 eigenvectors have nearly identical component absolute values (~0.58) with 

the Δρ’ component sign opposite to the others, thus indicating that the corresponding 

generalized observable is given by a virtually homogenous mixing of the original properties 

(ΔT’m, Δρ’, Δv’), which are characterized by anti-correlation between Δρ’ vs ΔT’m,Δv’. 

As shown in figure 3 (lower right panel) the evolutionary trajectories along v1, show a 

remarkable variation around 2 Gyears ago, well matching the archaean-proterozoic era 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 
 

transition believed to correspond to a significant decrease of the global earth temperature 

(Lowe et al. 2004). 

Therefore, our results suggest that global temperature decrease not only induced the Tm 

decrease as reported in literature (Perez-Jimenez et al. 2011)�, but possibly provided a 

significant residue density increase (partial molecular volume decrease), at least for 

thioredoxins. Interestingly, the partial molecular volume decrease is essentially due to the 

protein volume decrease as the hydration shell water density is virtually constant for all the 

investigated thioredoxins (see Fig. S1 for the eukaryotic thioredoxins). Finally, it is worth to 

mention that our results pinpoint the evolutionary trend of these three observables as occurring 

in thioredoxins; in different proteins, as bacterial ribonuclease H1 (RNH) proteins where the 

Tm is poorly correlated with evolution (Hart et al. 2014), it has been found that the low heat 

capacity of unfolding, due to the presence of residual structure in the unfolded state, is the 

major determinant for the RNHs difference in thermostability. Unfortunately, in that paper 

(Hart et al. 2014) � only one structure of a resurrected RNH was made available, preventing 

the possibility to estimate the behavior of the observables used in the Trxs data set along the 

history. 

 

Dynamical behavior 

Principal motions 

The essential motions describing the overall thioredoxin dynamics were calculated by principal 

component analysis performed on a single trajectory obtained by concatenating the ten 

thioredoxin trajectories of the C-alpha atoms. 

The first eigenvector describes the 60% of the total variance, indicating that a remarkable 

amount of the protein motion of the thioredoxins is concentrated along this direction. The 

components of the first eigenvector (Fig. S3) show that the first essential motion is mainly 
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described by the N-terminal region, the α-helix 1, 2 and 3 and the β-sheet 1, 4 and 5, (see Fig. 

1 for the secondary structure assignment). 

 

The analysis of the sampled structures on the essential subspace as characterized by their 

projection on the first two eigenvectors shows three main regions, each corresponding to a 

different branch (Fig. S4). That is, the region of the subspace explored is characteristic of the 

life-domain. It is worth noting that the first eigenvector discriminates between archeal/bacterial 

vs eukaryotic thioredoxins, whereas the second eigenvector is able to discriminate between 

archeal and bacterial proteins, too. 

 

To shed light on this different behaviour among eukaryotic, archeal and bacterial branches, the 

essential motions as described by the single thioredoxin trajectories were compared by pairs. 

The degree of similarity between the essential motions as well as the sequence identities are 

reported in the Table 1 for all the couples. 

These values clearly show that the essential motions within the bacterial branch are well 

conserved, being the overlap between 0.65 (E. coli vs LGPCA) and 0.48 (E. coli and LPBCA). 

The comparison between the overlap of the essential motions and the sequence identities also 

points out that consecutive (along the history) thioredoxins share high sequence identities and 

high motion overlaps only within the same branch. In fact, LACA and LECA although sharing 

a high sequence identity (0.56) shows a relatively low motion overlaps (0.209), thus indicating 

that evolutionary steps have affected the protein essential motions. 

Interestingly, also the AECA and LACA show a quite large overlap of the essential motions 

when compared to the bacterial thioredoxins, whereas the three remaining thioredoxins 

belonging to the eukaryotic branch (LECA, LAFCA and Human) show a very limited overlap 
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with respect to the other thioredoxins, i.e. the maximum overlap is 0.49 between LAFCA and 

Human which share the 85% of sequence identity. 

 

All these results indicate that the archeal thioredoxins are rather similar in terms of sequence 

identity (Fig. S5) and protein motions to their ancestor as well as to the bacterial thioredoxins. 

The eukaryotic branch thioredoxins, on the other hand, are more distant in both sequence 

identity and essential motions with respect to the other thioredoxins. 

 

Entropy 

To obtain further insights in the thioredoxin protein behaviour, the estimation of their 

configurational fluctuation entropies has been performed using the covariance matrix of atomic 

coordinates as indicated by Schlitter (1993)�. In all the branches, the entropy shows a 

remarkable decrease along the history (Fig. 4), with a pronounced variation around 2 Gyears 

ago corresponding to the archaean-proterozoic era transition, believed to correspond to a 

significant decrease of the global earth temperature (Lowe et al. 2004)�. Interestingly, such a 

steep variation is also observed – in the same time interval – for the Tm, the partial molecular 

volume, the residue density and the associated generalised observable derived in the previous 

section. 

 

From these results, it is tempting to suggest the hypothesis that the evolutionary behaviour of 

thioredoxins could be essentially entropically driven, with unfolded states of ancient and extant 

proteins similar in free energy and the ancient folded states (characterized by high melting 

temperatures) entropically stabilized by the residue density decrease. 
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After the Archean period, proteins were allowed to enhance local interactions – for example to 

optimize their biological functions – with a consequent entropy loss and melting temperature 

decrease, both permitted by the lower earth temperature. 

 

Conclusions 

In this work we calculated several global protein observables to characterize the 

structural/molecular evolution of thioredoxins. 

In addition to the melting temperature, which was already found to change along the evolution, 

we calculated several other properties routinely used in large-scale classification of proteins as 

well as a new set of properties related to the protein density. 

Our data point out that the melting temperature, the protein density and the partial molecular 

volume are the major components of the main evolutionary motion in thioredoxins. Therefore, 

by means of principal component analysis, we studied the evolutionary behavior within such a 

3-dimensional space, which highlights an interesting trend along the history. In fact, the 

supposed global earth temperature decrease, dated in the archaean-proterozoic era transition, 

well matches the remarkable variation of the evolutionary trajectory along the main essential 

evolutionary mode. 

The analysis of the molecular dynamics trajectories points out that the dynamical behavior of 

the thioredoxins is – as expected – driven by the structural changes induced by the protein 

sequence variations (upon evolution). However, the evolutionary step corresponding to the 

archaean-proterozoic era transition determines remarkable changes of the protein entropy.

 

Our study shows that structural-molecular evolution of thioredoxin proteins can be well 

described by a set of generalized protein observables, and that, among several properties, those 

related to the protein density are some of the most representative. The possibility to extend our 
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study to different protein families – using experimental and/or homology modeling approaches 

– could provide additional information on the relationship between protein structure and 

protein evolution, thus representing a very interesting research theme to investigate in the next 

future. 
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Table 1. The Matrix of the sequence identity (elements below the diagonal) and overlap between 

essential motions as obtained from the overlap of the covariance matrices (elements above the diagonal) 

Protein  LBCA LPBCA LGPCA Ecoli AECA LACA LECA LAFCA Human Archea 

 pdb id. 4ba7 2yj7 2yn1 2trx 3ziv 2ynx 2yoi 2ypm 1eru 2e0q 

LBCA 4ba7 1 0.653 0.618 0.546 0.682 0.406 0.238 0.264 0.169 0.401 

LPBCA 2yj7 0.87 1 0.544 0.476 0.614 0.463 0.216 0.224 0.157 0.390 

LGPCA 2yn1 0.67 0.68 1 0.655 0.476 0.283 0.206 0.223 0.159 0.299 

Ecoli 2trx 0.56 0.57 0.83 1 0.449 0.261 0.201 0.258 0.154 0.243 

AECA 3ziv 0.85 0.76 0.60 0.53 1 0.469 0.272 0.277 0.181 0.426 

LACA 2ynx 0.77 0.72 0.56 0.51 0.92 1 0.209 0.208 0.148 0.228 

LECA 2yoi 0.57 0.53 0.44 0.37 0.59 0.56 1 0.490 0.390 0.201 

LAFCA 2ypm 0.51 0.48 0.42 0.36 0.54 0.51 0.85 1 0.323 0.187 

Human 1eru 0.36 0.34 0.30 0.25 0.38 0.35 0.55 0.58 1 0.154 

Archea 2e0q 0.51 0.46 0.41 0.40 0.61 0.53 0.48 0.46 0.38 1 
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Figure Captions  

 

Fig. 1 Sequence alignment for the ten thioredoxins studied in this work and the associated 

secondary structure (upper panel). Thioredoxin protein names and associated geological time 

(lower left table). Lower right panel: ribbon representation of the bacterial extant thioredoxin 

(PDB id. 2trx) 

 

Fig. 2 Time evolution of the melting temperature (Tm upper left panel), the partial molecular 

volume (lower left panel) and the residue density within the protein excluded volume (ρ, upper 

right panel). Black, red and green circles refer to proteins associated to the eukaryotic, bacterial 

and archeal branch, respectively. The dashed lines serve as a guide for the eye. Note that the 

melting temperatures of the two oldest resurrected thioredoxins belonging to the archeal-

eukaryotic and bacterial branches coincide 

 

Fig. 3 Plot of the adimensional rescaled shifts (ΔT’m, Δρ’, Δv’) for the ten thioredoxin proteins 

(upper plots and lower left plot) and the projection of the protein observables (ΔT’m, Δρ’, Δv’) 

on the first eigenvector along the time (lower right plot; the dashed lines serve as a guide for 

the eye). Black, green and red circles refer to eukaryotic, archeal and bacteria thioredoxins, 

respectively 

 

Fig. 4 Changes in the thioredoxin entropy with respect to the corresponding common ancestors 

(AECA and LBCA). Black, green and red points indicate eukaryotic, archeal and bacterial 

thioredoxins, respectively. The dashed lines serve as a guide for the eye 
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