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Abstract

The realization problem is fundamental in control systems theory and is well under-
stood for linear systems. The situation is quite different for nonlinear systems with or
without time delays. New results are given herein either as an abstract characterization
of the class of delay–free nonlinear systems which are known to admit a realization,
or by characterizing the existence of a realization for a wider class of retarded type or
neutral type time delay nonlinear systems. The problem is motivated by the very prac-
tical modelling and realization problem of diabetes with or without gastroparesis. Up
to 4% to 12% patients with diabetes are affected by the so-called gastroparesis which
delays the digestion process. Several concurrent state space mathematical models do
exist for diabetes and require a re-evaluation based on physiologic facts. These are
reviewed herein to derive a (minimal) realization.

Keywords: Biomedical systems, Systems biology, time-delay systems, realization,
glucose dynamics

1. Introduction

The realization problem is one of those very fundamental problems tracing back to
the early history of control systems theory, just like the controllability problem and the
observability one. Its solution is well established for linear systems but surprisingly
remains open for the class of nonlinear systems despite the availability of partial so-
lutions. The contribution in this paper is threefold. First, a state of the art is given on
the realization problem for a broad class of delay–free nonlinear control systems. An
abstract definition is given for the class of systems for which the realization problem is
well posed. Secondly, the existence of a realization is characterized for a wide class of
nonlinear time-delay systems. Finally, a nonlinear and minimal realization is derived
for diabetes of type 1 with gastroparesis, which involves a delay in the digestion.

Though realization is a fundamental problem in control theory, major contributions
were obtained only recently for nonlinear systems. Some milestones are as follows. A
necessary condition for the existence of a realization was given in Crouch et al. (1992)
which states that the higher order input-output differential equation has to be affine in
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the highest order derivative of the input. In practice, there is no state realization for
the input-output system described by the equation ÿ = u̇2, although the latter is strictly
proper. Stronger conditions are available for Hamiltonian systems in Crouch et al.
(1995).
The necessary and sufficient polynomial structure which is required for the input-
output differential equation to admit a realization was described in Liu et al. (1994)
thanks to a so-called realization algorithm. Unfortunately, no concise abstract interpre-
tation of those conditions was given.
The first abstract necessary and sufficient condition for the existence of a realization for
continuous time nonlinear systems is found in Moog (1999) in terms of integrability
conditions.
The discrete time case is nicely treated in Kotta et al. (2001) within a suitable algebraic
framework. In this context also, the main result for the existence of a realization relies
on concise integrability necessary and sufficient conditions.
The differential algebraic framework is updated and completed in Zhang et al. (2010)
for continuous time nonlinear systems.
Minimality of realizations is worked out in Kotta et al. (2018) to characterize the
largest class of delay free nonlinear systems for which the realization problem is well
posed.
A necessary and sufficient condition for the existence of a strongly observable realiza-
tion is given in Kaldmäe et al. (2018) for input-output systems with delays of retarded
type.

Major open problems about the realization for nonlinear systems with or without
delays are as follows.

1. Characterization of the largest class of delay free nonlinear systems which admit
a realization (through a concise and abstract definition).

2. Characterization of the largest class of delay free nonlinear systems which admit
a minimal realization (through a concise and abstract definition).

3. Characterization of the existence of a general (weakly observable or not) realiza-
tion for retarded type input-output systems.

4. Characterization of the existence of a realization for neutral type input-output
systems.

Some of those principles are illustrated by deriving a real-life state space realization of
the plasma glucpse and insulin dynamics. There are basically two antagonistic prac-
tical or theoretic constraints to cope with. The first one is imposed by the practical
Flexible Insulin Therapy (FIT) and yields an affine dynamics, i.e. a linear dynamics up
to some nonzero basal equilibrium. The second constraint is imposed by the positivity
of concentrations and inputs. These positivity properties display the limits of the affine
dynamics and necessarily impose a nonlinear functions instead of constant model pa-
rameters. These points are argued in Section 3 and a resulting Diabetes Concordance
Model is derived.

Basically, the system which is considered is a cascade composition of a second
order insulin subsystem driven by the exogenous insulin infusion for patients with di-
abetes, a second order digestion subsystem driven by the ingested carbohydrates and a
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first order plasma glucose subsystem. The latter is the focus of our argument in Section
3.

The state space model is widely used to develop the so-called artificial pancreas
which closes the loop for an automatic regulation of the blood glucose thanks to an
automatic infusion of exogenous insulin. One mainstream for this regulation of blood
glucose relies on MPC (Model Predictive Control) which is computed from the state
space model.

In addition, patients with diabetes, the evolution of this chronic disease goes to-
gether with the risk of gastroparesis, that is, with delayed gastric emptying (GE). Gas-
troparesis is characterized by a constellation of gastrointestinal symptoms Shin et al.
(2013). It introduces a time delay in the mathematical model.

This paper aims to contribute to some of the above mentioned open theoretical
problems as well as to derive a suitable mathematical state space model for type 1
diabetes with gastroparesis. Preliminary results are found in Califano et al. (2018)
without any argument on realizability, but a focus on observability and an observer
design for the special diabetes model.

Section 2 is fully devoted to the realization theory including recalls and theoretical
contributions as announced above. After recalling some basic facts from the so-called
Bergman model in Section 3, the diabetes state space model is detailed step by step.
The process ends up with the so-called Diabetes Concordance Model as it is consistent
with the constraints of positive systems, and with the medical practice that is flexible
insulin therapy. Clinical data are worked out in Section 4 to illustrate the efficiency
of the Diabetes Concordance Model developed in Section 3, with and without delay.
In the Appendix of the paper, some notions of observability for time-delay systems are
shortly argued for completeness.

2. Realizations and minimal realizations

2.1. Delay free nonlinear systems

Let us recall some facts from Liu et al. (1994), Kotta et al. (2001), Zhang et al.
(2010). Consider a higher order nonlinear retarded type input-output equation as

y(n) = F(y, ẏ, ...,y(n−1),u, u̇, ...,u(s)). (1)

The nice feature of (1) is that the differential ideal spanned by y(n)−F(·) is prime,
since y(n)−F(·) cannot be factored out. Implicit systems as ẏ2−3uẏ+2u2 = 0 are not
considered since ẏ2−3uẏ+2u2 = (ẏ−u)(ẏ−2u).

In opposition to linear systems, with or without delays, it is not true that any non-
linear system (1), with n > s, admits a state realization in the form

ẋ = f (x,u)
y = h(x).

An easy counter-example is given by ÿ = u̇2. Recall now a necessary and sufficient
condition for the existence of such a (possibly non-minimal) realization with dimen-
sion n. Given (1), associate the following extended system which is defined from the

3



notation z1 = y, z2 = ẏ,..., zn = y(n−1), zn+1 = u,..., zn+s+1 = u(s) so that

ż =



z2
...

zn
F(z1,z2, ...,zn,zn+1,zn+2, ...,zn+s+1)

z(n+2)
...

zn+s+1
0


+



0
...
0
0
0
...
0
1


u(s+1)

y = z1.

(2)

The so-called accessibility filtration Hk associated to (2) is defined by H1 = span{dz}
and Hk+1 = {ω ∈Hk | ω̇ ∈Hk}. Then, the following result was proven in (Conte et
al. (2014), Theorem 2.16).

Theorem 1. A (possibly non-minimal) realization exists for (1) if and only if

(i) n > s, and

(ii) Hs+2 is integrable.

This condition is not fulfilled for the 2nd-order system ÿ = u̇2; the dimension of the
extended system is 4:

d
dt


y
ẏ
u
u̇

=


ẏ
u̇2

u̇
0

+


0
0
0
1

 ü,

and H3 = span{dy,2u̇du−dy} is not integrable.

Minimality of the state realization for nonlinear systems
For linear systems, minimality in the sense of a minimal number of state variables is

equivalent to minimality in the sense of simultaneous observability and controllability.
This feature is much more arguable for nonlinear systems.

Consider the second order input/output equation ÿu− ẏu̇+ ẏu= 0 proposed in Kotta
et al. (2013). A state space realization is easily derived when writing down the associ-
ated extended system (2) and applying Theorem 1. Since s = 1, (2) becomes

d
dt


y
ẏ
u
u̇

=


ẏ

ẏ u̇
u − ẏ
u̇
0

+


0
0
0
1

 ü.

Compute H3 = span{dy,d( ẏ
u )}; setting x1 = y and x2 =

ẏ
u for u 6= 0 yields the second

order non-minimal realization  ẋ1 = x2u
ẋ2 = 0
y = x1.
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Obviously, this realization is not accessible. This is due to the fact that the dif-
ferential ideal spanned by ÿu− ẏu̇+ ẏu is not equal to its radical. The latter is in fact
spanned by ẏ

u . As a matter of fact, in Kotta et al. (2013) it was shown that an accessible
and observable first order realization may be derived for ÿu− ẏu̇+ ẏu = 0, but it would
necessarily be time-varying.

Recall that any ideal I has a primary decomposition, i.e. I can be written as the
intersection of a finite number of prime ideals: I =

⋂
j

I j. Define the closure Ī of I as the

ideal Ī =
⋃
j

√
I j, where

√
I j denotes the radical of I j.

Examples
(i) Let I =< d

dt [(ẏ−u)(ẏ−2u)]> which is prime. We get Ī =< (ẏ−u),(ẏ−2u)>
which has two irredundant generators.

(ii) Let I =< d
dt [(ẏ−u)2]+y(3)− ü > which is prime. Its closure Ī =< (ẏ−u)> has

one single generator ; consequently Ī is an irreducible ideal.

The following result can now be stated which gives sufficient conditions for the
existence of a state space realization for a given input-output equation.

Theorem 2. Given the input-output equation (1), denote by

I =< y(n)−F(y, ẏ, ...,y(n−1),u, u̇, ...,u(s))>

the differential ideal spanned by y(n) − F(y, ẏ, ...,y(n−1),u, u̇, ...,u(s)). There exists a
minimal realization for (1) if

1. the closure Ī of I is an irreducible ideal, i.e. it is generated by one single element
ϕ(y, ...,y(n

′),u, ...,u(s
′)), such that

2. ϕ(0, ...,0) = 0, and
3. ϕ(·) fulfills the conditions of Theorem 1.

Consider for instance the following counter example.

ÿ =
3ẏu̇−4uu̇
2ẏ−3u

,

which has the form (1) and which can be rewritten as d
dt [(ẏ− u)(ẏ− 2u)] = 0. The

differential ideal I is generated by d
dt [(ẏ−u)(ẏ−2u)] and its closure Ī =< (ẏ−u),(ẏ−

2u) > is generated by both (ẏ− u) and (ẏ− 2u). The first condition in Theorem 2 is
not fulfilled.

The second condition in Theorem 2 is designed to avoid equivalence of the systems
ÿ = u̇, ẏ = u+1 and ẏ = u. The two last systems should not have the same first order
realization.

Proof. From item 1. in Theorem 2, there exists one single function ϕ(y, ...,y(n
′),u, ...,u(s

′)),
such that the given input-output equation can be written in terms ϕ and its deriva-
tives. Set ϕ(y, ...,y(n

′),u, ...,u(s
′)) = 0, then the implicit function theorem yields (lo-

cally) y(n
′) = ψ(y, ...,y(n

′−1),u, ...,u(s
′)) for some ψ . The latter is in the form (1). Item

3. in Theorem 2 and Theorem 1 yield the result.
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2.2. Nonlinear time-delay systems
In Kaldmäe et al. (2018), it was shown that a retarded type input/output equation

of the form

Φ(y(n)(t),y(n−1)(t),y(n−1)(t−1), ...,u(n−1)(t),u(n−1)(t−1), ...) = 0

admits a strongly observable realization if and only if some Hn+1 is integrable, where
Hn+1 is defined in analogy with the delay free case above but on the non-commutative
ring K (δ ]1 introduced to deal with time–delay systems in Marquez-Martinez et al.
(2000), Marquez-Martinez et al. (2002), Xia et al. (2002), that is:

H1 = spanK (δ ]{dy, · · · ,dy(n−1),du, · · · ,du(r)}
... (3)

Hk = spanK (δ ]{ω(x,δ ) ∈Hk−1|ω̇(x,δ ) ∈Hk−1}.

Example
Consider the 1st order retarded type system borrowed from Garcia-Ramirez et al.

(2016) (Example 10):

ẋ(t) = x(t−1)u(t)
(4)

y(t) = x(t)+ x(t−1).

Straightforward, but tedious, computations to eliminate the state yield the 1st order
neutral type input/output differential equation

ẏ(t)[u(t−2)−u(t−1)]+ ẏ(t−1)[u(t−1)−u(t)]+
+[u(t−1)−u(t)][y(t−1)(u(t−2)−u(t−1))− y(t−2)u(t−2)]+
−u(t−1)y(t−1)[u(t−2)−u(t−1)] = 0.

According to Halas et al. (2013) (Theorem 13), there is an equivalent higher order
retarded type input/output differential equation which represents the system. In the
special case of our example, we get

ÿ(t) = ẏ(t)−y(t−1)u(t−1)
u(t)−u(t−1) [u̇(t)−u(t)u(t−1)− u̇(t−1)+u(t−2)u(t−1)]+

+y(t−1)[u(t)u(t−1)+ u̇(t−1)−u(t−2)u(t−1)]+
+y(t−2)u(t−2)u(t−1).

1Denote by K the field of causal meromorphic functions f (x(t), · · ·x(t − s),u(t), · · · ,u(t − j)), with
s, j ∈ N. Accordingly, f (−l) = f (x(t− l), · · · ,x(t− s− l),u(t− l), · · · ,u(t− j− l)). Let δ be the backward
time-shift operator: for a(.), f (.) ∈K : δ [ad f ] = a(−1)δd f = a(−1)d f (−1). Denoting by ε the vector
space spanned by the differentials dx(t− i); i ∈ N over the field K , the elements of ε are called one-forms.
The shift operator is applied to the vector space ε in this way: if ω is the one-form ω =∑

n
i=1 ∑

k
j=0 aidxi(t− j)

then δω is given by δω = ∑
n
i=1 ∑

k
j=0 δ (ai)dxi(t − j− 1). In this framework K (δ ] is the (left) ring of

polynomials in δ with coefficients in K . Every element of K (δ ] may be rewritten as α(δ ] = ∑
rα

j=0 α j(.)δ
j

with α j(.) ∈ K and rα = deg(α(δ ]) the polynomial degree in δ .

6



The existence of a 2nd order retarded type, strongly observable (and non-minimal)
realization may be checked for the latter using the techniques in Kaldmäe et al. (2018).

Nevertheless, a retarded type minimal realization is obtained setting

x(t) = y(t)− 1
u(t)−u(t−1)

[ẏ(t)−u(t−1)y(t−1)]

which yields the first order dynamics (4).

3. Mathematical modeling of the glucose-insulin dynamics

The so-called Bergman model (Bergman et al. (1981)) is certainly one of the
most popular mathematical models for the glucose-insulin dynamics, and it gave rise
to numerous modifications and improvements.

The two first equations in (Bergman et al. (1981), page 1458) read as

Ġ = −(p1 +X)G+ p4
Ẋ = −p2X + p3I (5)

for some constant parameters p1, p2, p3, p4 and where G denotes the glucose concen-
tration in plasma, X is the active insulin in some ”remote compartment” and I repre-
sents the plasma insulin concentration. Assume that (5) is driven by some constant Ieq;
then the equilibrium points (Geq,Xeq) of (5) are easily computed as

Geq =
p2 p4

p1 p2 + p3Ieq

Xeq =
p3

p2
Ieq

Note that any constant (basal candidate) Ieq is able to stabilize any plasma glucose
concentration Geq. In fact, Bergman model displays a one to one relationship between
constant plasma insulin values and constant plasma glucose values. Thus, it yields a
nice disputation argument as two contradictory theoretical and practical features stand
in apparent opposition, as detailed right now.

3.1. Two antagonistic facts
1. On one hand, the physiology imposes that concentrations as the plasma glucose

G and insulin I remain positive under any condition although an almost zero
plasma glucose concentration does not make sense in practice. Plasma glucose
concentration decreases under the action of insulin, at a rate kis which is known
as the insulin sensitivity factor. Thus the decay of plasma glucose concentration
incorporates a term −kis(·)I. To avoid plasma glucose concentration to become
negative at very low values of G whatever other conditions are, it is mandatory
that the insulin sensitivity factor vanishes when G vanishes

2. On the other hand, the mathematical model is assumed to be consistent with the
well accepted flexible insulin therapy. The latter implies linearity of the glucose
dynamics, and insulin sensitivity factor should just be constant.
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Next, we start with the physiologic description which leads to a (positive) nonlinear
dynamics. Then, the model underlying the flexible insulin therapy is just an approxi-
mation valid in some domain of interest.

3.2. The diabetes concordance model
The full model of the glucose-insulin dynamics includes the behaviour of several

quantities, and in particular of
G - the blood plasma glucose concentration,
Ip - the blood plasma insulin concentration,
Isc - the subcutaneous insulin concentration,
Xs - the amount of assimilated carbohydrates that are transferred from the stomach into
the duodenum,
Xd - the amount of assimilated carbohydrates that is transferred from the duodenum
to the plasma. Consequently the raise of blood glucose concentration when a meal is
digested can be taken into account by adding a linear term of the form θ4Xd with θ4 > 0
in the plasma glucose concentration dynamics.
u - the injected insulin rate
r - the carbohydrates absorbed through the meal.

Glucose dynamics
Basically, plasma glucose concentration is subject to glucose consumption fm by

the muscle cells (under the action of insulin), to glucose consumption by the brain fb
which is not insulin dependent, to glucose storage or delivery by the liver Fl and to
glucose release from the digestion of carbohydrates.

The glucose dynamics is represented as a first order subsystem subject to two in-
puts, the blood insulin concentration Ip which has an hypoglycemic effect, and to some
exogenous input Xd which results from the digestion of carbohydrates and which has
an hyperglycemic effect.

At this stage, the general input-output equation is as follows for the plasma glucose
subsystem.

Ġ =− fm(G, Ip)− fb(G)+Fl(G, Ip)+θ4Xd (6)

At the cellular level the glucose dynamics is governed directly by GLUT transporters
Lodish H et al. (2013). These are membrane proteins that allow the transport of
glucose inside the cells. The main membrane proteins are GLUT1 (red blood cells),
GLUT2 (hepatocytes), GLUT3 (neurons) and GLUT4 (muscle and fat cells). These
transporters are involved in a specific way in the glucose metabolism depending on the
tissue where they are expressed and physiological conditions. They each have distinct
kinetics according to their functional roles.

Glucose consumption by the muscle cells
The GLUT4 is responsible for glucose storage regulated by insulin which will allow

assimilation of glucose by the muscle and fat cells Bryant et al. (2002).
The consumption of glucose by the muscles partly results from osmosis, but is

mainly governed by the GLUT4 transporter as described above. The term fm(G, Ip) de-
composes into the insulin independent term εG due to osmosis and the term fmI(G, Ip)
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due to the GLUT4 transporter. The insulin sensitivity factor is defined as ∂ fmI
∂ Ip

. It is
supposed to depend of G only Tolic et al. (2000) and obviously has to vanish when G
becomes zero:

fm(G, Ip) = εG+θ2(1− exp(− G
G−c

))Ip (7)

and, considering fasting, i.e. Xd = 0

Ġ =−εG−θ2(1− exp(− G
G−c

))Ip− fb(G)+Fl(G, Ip) (8)

where ε , θ2 and G−c are some constant parameters. G−c is a lower critical value for
plasma glucose concentration below which the insulin sensitivity factor decreases to
zero. Above this critical value, the insulin sensitivity factor increases asymptotically
towards θ2 as G increases.

Glucose consumption by the brain
The GLUT3 transporters are mostly expressed in neurons, this glucose transporters

are not mediated by insulin. They have a very high affinity for glucose even in case of
hypoglycemia. The glucose consumption by the brain assumed to be almost constant,
except for some very low values of plasma glucose concentration as it has to be zero
when plasma glucose concentration is zero. The glucose consumption fb(G) by the
brain is then taken as Tolic et al. (2000), eq. (8).

fb(G) = θb(1− exp(− G
G−c

)). (9)

For simplicity, the same critical value G−c is taken as in (8), so that (8) can be rewritten
as:

Ġ =−εG−θ2(1− exp(− G
G−c

))Ip−θb(1− exp(− G
G−c

))+Fl(G, Ip). (10)

Obviously, this glucose consumption by the brain vanishes when plasma glucose
concentration approaches zero and will not hinder the positivity of the system Farina
et al. (2000).

Glucose storage and glucose delivery by the liver
The liver has a fundamental role in the regulation of plasma glucose because it is

able to store and release glucose, so its transporter must be active all the time. After a
meal, dietary carbohydrates are digested in monosaccharides, and they are transported
into various tissues as a primary fuel for ATP generation (adenosine triphosphate). The
postprandial hyperglycemia increases insulin secretion from pancreas (beta cells). In
the liver excess glucose is stored mainly in the form of glycogen via glycogenogenesis.
If glucose is too abundant, it can be stored into fatty acids via lipogenesis.

This action induces a decrease in plasma glucose concentration and contributes as
− f s

l (G) in Fl(G, Ip), with

f s
l (G) =C0

[
exp(G/G+

c )−1
exp(G/G+

c )+1

]
.
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G+
c denotes a higher critical value of plasma glucose concentration whose level decides

about the storage function of the liver; f s
l (G) is approximately zero for low plasma

glucose concentration values, and approximately constant (equal to C0) for high plasma
glucose concentration values (in a post prandial phase).

Between two meals, the liver is the only organ capable of releasing glucose into
the blood by glycogenolysis or gluconeogenesis. Under fasting periods, the liver has
a major role in releasing glucose for the brain, red blood cells, muscles and others
tissues. In that case, the alpha cells from the pancreas secrete glucagon in response to
hypoglycemia which initiates the cascade of molecular reaction that releases glucose
from the stored glycogen via glycogenolysis.

This action induces an increase in plasma glucose concentration represented by
+ f d

l (I) which contributes to Fl so that

Fl = f d
l (Ip)− f s

l (G).

f d
l (I) is similar to the function f5 in Tolic et al. (2000), equation (11):

f d
l (Ip) =

2θl

1+ exp Ip/Ic
,

where Ic is a critical value above which f d
l almost vanishes (after some meal).

At this stage, we did not take into account the glucose increase due to the digestion
of carbohydrates and the glucose dynamics in equation (10) becomes

Ġ = −εG−θ2(1− exp(− G
G−c

))Ip−θb(1− exp(− G
G−c

))

+ 2θl
1+exp Ip/Ic

−C0

[
exp(G/G+

c )−1
exp(G/G+

c )+1

]
.

(11)

Now, taking into account a post prandial phase, and denoting Xd the amount of
glucose due to the digestion of carbohydrates, the overall glucose dynamics now takes
the form

Ġ = −εG−θ2(1− exp(− G
G−c

))Ip−θb(1− exp(− G
G−c

))

+ 2θl
1+exp Ip/Ic

−C0

[
exp(G/G+

c )−1
exp(G/G+

c )+1

]
+θ4Xd(t).

(12)

Positivity of the glucose dynamics
The dynamics (12) is subject to the two positive inputs Ip and Xd and has the form

Ġ = F(G, Ip,Xd). First order linear dynamics are always positive because the origin is
always an equilibrium, whereas nonlinear dynamics are not always positive.

The dynamics Ġ = F(G, Ip,Xd) is positive if and only if F(0, Ip,Xd) ≥ 0, for any
Ip ≥ 0 and any Xd ≥ 0.

The right hand side of (12) is evaluated at G= 0 and reduces to 2θl
1+exp Ip/Ic

+θ4Xd(t).
The latter is positive for any positive input.
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Insulin dynamics
The subcutaneous insulin dynamics is described by the differential equation

İsc =−
1
θ3

Isc +
θu

VIθ3
u, (13)

where θ3 > 0 is the response time of the insulin subsystem. The dynamics of the plasma
insulin Ip instead reads

İp =
1
θ3

Isc−
1
θ3

Ip. (14)

Digestion dynamics
At this point, considering the input Xd to be zero, one gets the minimal model dur-

ing a fasting period. When carbohydrates (CHO) are ingested during a meal, then a two
compartment digestion subsystem is modeled as follows. The stomach compartment is
fed by the input r(t), that is the amount of CHO contained in the meal:

Ẋs(t) =−
1
θ5

Xs(t)+
1
θ5

r(t). (15)

The duodenum compartment dynamics is instead described by the differential equation

Ẋd(t) =−
1
θ5

Xd(t)+
1
θ5

Xs(t− τ), (16)

where the gastric emptying time τ characterizing gastroparesis is displayed.
For the majority of patients with diabetes, i.e. without gastroparesis, the response
time θ5 of the digestion subsystem is smaller than the response time θ3 of the insulin
subsystem. Besides the delay τ , the patients with diabetes affected by gastroparesis are
also characterized by the relationship θ5 > θ3 which will be assumed in the rest of this
paper.

Consistency with flexible insulin therapy
On one hand, for a minority of patients, one has G−c < G+

c but these two levels of
plasma glucose concentration remain in the same range. Consequently, fb and fmI do
not simultaneously stabilize at θb and θ2 respectively as in equations (7) and (9). The
dynamics (12) remains nonlinear for any value of G. Those patients have a plasma
glucose concentration which is difficult to stabilize. Standard FIT should be likely
revised for these patients.

On the other hand, for a majority of patients with diabetes, the critical values of
plasma glucose concentration are away from each other so that G−c <<G+

c . This means
that there is a significantly large window from moderate hypoglycemia to moderate
hyperglycemia in which the following approximations hold:

θ2(1− exp(− G
G−c

)) = θ2, θb(1− exp(− G
G−c

)) = θb

and 2θl
1+exp Ip/Ic

−C0

[
exp(G/G+

c )−1
exp(G/G+

c )+1

]
= θl .
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Within this window, the model simplifies dramatically and the principles of Flexible
Insulin Therapy fully apply.

Setting θ1 = θl −θb, equation (12) is approximated by the linear dynamics which
is consistent with standard FIT:

Ġ(t) =−εG(t)−θ2Ip +θ1 +θ4Xd(t). (17)

As in Magdelaine et al. (2015), the parameters of FIT can be computed from the
mathematical model. For instance, the insulin basal rate Ib is computed for Xd ≡ 0 and
equals θ1/θ2 whenever ε << 0. Ib = θ1−εG

θ2
whenever ε 6≡ 0 in which case the basal

insulin rate slightly depends on the value of the plasma glucose concentration.
Considering a fasting phase, Xd ≡ 0, considering that ε can be neglected, and setting

G= x1, Isc = x2, Ip = x3, Xs = x4 and Xd = x5 the complete simplified model (consistent
with standard FIT) is as follows.

ẋ1(t) = −θ2x3(t)+θ1 +θ4x5(t)

ẋ2(t) = − 1
θ3

x2(t)+ θu
VIθ3

u(t)

ẋ3(t) = 1
θ3

x2(t)− 1
θ3

x3(t)

ẋ4(t) = − 1
θ5

x4(t)+ 1
θ5

r(t)

ẋ5(t) = − 1
θ5

x5(t)+ 1
θ5

x4(t− τ)

y(t) = x1(t).

(18)

The latter is now linear within the range from moderate hypoglycemia to moderate
hyperglycemia, and consistent with the basics of flexible insulin therapy.

4. Parameter identification

4.1. Methodology

Figure 1 displays identification results with and without delay.
The data set was divided into a training set used to estimate the parameters, and a

test set in order to test the model’s ability to predict new data. The training set is 12.5
hours long and the test set is 6.5 hours long. The ratio between the number of sample
of the training set (fit) and the number of samples of the data set if 66% which is quite
common in the holdout cross-validation (cv) method:

• The model-fit was made from 17:30 to 06:00 using least square error on the out-
put i.e. plasma glucose concentration. The identification of constant parameters
is thus achieved using clinical data over a range of about 12 hours.

• This full model with specific constant parameters is further simulated over 6
additional hours, to evaluate the prediction ability of the model: cross-validation
was made from 06:00 to 12:30.

The Root Mean Square Error (RMSE) criterion J = sqrt( 1
n ∑

i=n
i=1(ε

2
i )), where εi repre-

sents the error for sample i, is computed for the training fit and the cross-validation

12
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Figure 1: Model behaviour with and without delay (from 6 pm to 12 noon next day)

with and without delay :
without delay : J f it = 18mg/dl ; Jcv = 10mg/dl
with delay : J f it = 8mg/dl ; Jcv = 24mg/dl

Although the cross-validation criterion of the estimated model with delay is worse
than without delay, its value is still very good for a 6 hours and 30 min long prediction.
This has to be compared with:
- 35 mg/dl RMSE for 1 hour prediction in Zhao et al. (2014)
- no cross-validation for the UVA/Padova simulator in Vinsentin et al. (2014).

4.2. Identification result

The identification results with and without a non zero delay τ are as follows and
are recalled from Califano et al. (2018).

parameters without delay with delay
θ1 (mg/U/min) 0.14 0.32
θ2 (mg/dl/min ) 0.03 0.05

θ3 (min) 33 70
θ4 (dl−1) 2.7 2.7
θ5 (min) 49 22
τ (min) 0 95

θu/VI (min/dl) 750 750
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It illustrates that taking into account the delay, and setting τ 6= 0, allows to emulate
better the behaviour of the plasma glucose concentration. It becomes obvious in Figure
1 around time 22:30, as the simulated trajectory tracks much better the data.

The cross-validation simulates the model with the parameters obtained from the
fit. Cross-validation shows that the Carbo-to-Insulin Ratio could be re-estimated for
breakfast which is a typical meal with fast carbs, as at 12:30 simulated plasma glucose
concentration drifts from continuous glucose monitor (CGM) data.

Further improvements go through a LPV identification of the insulin sensitivity
factor (ISF = θ2∗θu/Vi) and carbo-to-insulin ratio (ISF/θ4). This appears to be suitable
as breakfast, lunch and dinner are quite different type of meals, and ISF is known to
have a circadian variability. Training data could be two days long and cross-validation
would then be performed on the third day.

For alternative models, the reader is referred for instance to Cobelli et al. (2014)
in which delays refer to a second phase insulin secretion and to the CGM and insulin
pump technologies, to Palumbo et al. (2013) in which the tissue glucose uptake is
delayed with respect to the insulin action and the insulin pancreatic secretion is delayed
with respect to the plasma glucose action (whenever the pancreas insulin secretion is
non zero), or to Reiterer et al. (2015) where no delay is considered but the essential
features of the glucose-insulin dynamics are modeled by linear terms as in (18).

5. Conclusion

The realization problem is challenging for nonlinear systems and some of the main
open problems have been sketched herein as well as hints for their solutions. As delays
occur in many areas, amongst in biology, we considered the motivating example of
diabetes. Independently from the theoretic open questions related to realizations and
minimal realizations, modelling of diabetes deserves inspection of basic physiology.

The contributions is this research announcement are as follows:

1. A new time delay model is introduced for the subpopulation of patients with
diabetes affected by gastroparesis. From the current literature Borri et al. (2017),
time-delay models have shown to be suitable to take into account external delays
due to measurement devices or information processing. In the present paper, the
internal delay is inherent to the organism and may be measured through clinical
tests or estimated by means of identification of a glycemic holter.

2. The realization problem was discussed with reference to the class of nonlinear
time delay systems and a result concerning minimality was presented

3. Starting from the realization of time delay system through neutral type input –
output equation, a new definition of observability is given which may play an
important role with respect to minimal realizations

Future work will focus on necessary and sufficient conditions for the existence of a
realization of minimal order.
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APPENDIX: Observability of time-delay systems

Weak observability
In plain words, weak observability requires that at some time t, the (eventually de-

layed) value of the full state can be computed from the knowledge the external signals,
i.e. from the output y(t), the input u(t) and their past values. This is the case for the
following linear example ẋ(t) =

(
0 1
0 0

)
x(t−1)+

(
0
1

)
u(t−2)

y(t) = x1(t−1)

since x1(t−1) = y(t) and x2(t−2) = ẏ(t).
More generally, using the shift operator δ , weak observability of a linear time delay
system {

ẋ(t) = A(δ )x(t)+B(δ )u(t)
y(t) = C(δ )x(t)

is easily characterized the full rank condition of the observability matrix
C(δ )
C(δ )A(δ )
...
C(δ )A(n−1)(δ )


where n = dimx(t).
For a nonlinear time-delay system{

ẋ(t) = f (x(t),x(t−1), ...,u(t),u(t−1), ...)
y(t) = h(x(t),x(t−1), ...),
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where f and h are meromorphic functions, the δ notation still makes sense in the
linearization

dy(t) =
[

∂h
∂x(t)

+
∂h

∂x(t−1)
δ + ...

]
dx(t).

Abusing the notation, the latter will simply be denoted
[

∂y
∂x (δ )

]
and is a polynomial in

δ whose coefficients are meromorphic functions in their arguments. The characteriza-
tion of weak observability for delayed nonlinear systems is essentially unchanged, but
the results are in general only locally valid. This feature follows from nonlinearity and
not from delays. Consider for instance{

ẋ(t) = 0
y(t) = x2(t−1).

The associated ”observability matrix” is then
[

∂y
∂x (δ )

]
= [2x(t−1)δ ] which has full

rank equal to 1 everywhere except at the singularity x(·) = 0. Thus, away from the
singularity, the following ”local” observation equations hold: x(t− 1) =

√
ẏ/2 when

x(·)> 0 and x(t−1) =−
√

ẏ/2 when x(·)< 0.
”Global” strong observability is a matter of case study as illustrated by the system{

ẋ(t) = 1
y(t) = x2(t−1).

It is still true that ∂y(t)
∂x(t−1) = 2x(t−1), but the further information is available: ∂ ẏ(t)

∂x(t−1) =

2. The ”extended” observability matrix

[
∂y(t)

∂x(t−1)
∂ ẏ(t)

∂x(t−1)

]
=

[
2x(t−1)

2

]
has full rank

everywhere and no singularity anymore. The new observability equation x(t − 1) =
ẏ(t)/2 holds globally everywhere.
The conclusion is that (local) weak observability of a nonlinear time-delay system is
characterized by

rank


(∂y/∂x)(δ )
(∂ ẏ/∂x)(δ )

...
(∂y(N)/∂x)(δ )

= n

for some integer N ≥ n− 1. The above polynomial matrix will display the minimal
number singularities.

Strong observability
Strong observability states the stronger requirement that at some time t, the full

state x(t) can be computed from the knowledge the external signals, i.e. from the
output y(t), the input u(t) and their past values.
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A linear time delay systems is strongly observable if and only if its observability matrix
C(δ )
C(δ )A(δ )
...
C(δ )A(n−1)(δ )


is unimodular,i.e. it admits a polynomial inverse.
In the nonlinear case, two notions of observability are derived.

Definition 1. Garcia-Ramirez et al. (2016) A nonlinear time delay system is strongly
observable in a strict sense if 

(∂y/∂x)(δ )
(∂ ẏ/∂x)(δ )

...
(∂y(n−1)/∂x)(δ )


is unimodular.

This condition is weakened as follows.

Definition 2. A nonlinear time delay system is strongly observable in a general sense
if there exist N ≥ n−1 and κ ≥ 0 such that

(∂y(t)/∂x)(δ )
...

(∂y(t−κ)/∂x)(δ )
...

(∂y(N)(t)/∂x)(δ )


admits a polynomial left inverse.

Consider for instance, the nonlinear retarded dynamics{
ẋ(t) = x(t−1)u(t)
y(t) = x(t)+ x(t−1).

This system does not fulfil the condition in Definition 1 as [1+ δ ] has no polynomial
inverse. However, when computing in addition y(t−1) and ẏ(t), the jacobian matrix in

Definition 2 becomes

 1+δ

δ +δ 2

u(t)δ +u(t−1)δ 2

 whose left inverse[
1 u(t−1)

u(t)−u(t−1) − 1
u(t)−u(t−1)

]
is polynomial.
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