
Optimal portfolio allocation with volatility and co-jump risk that

Markowitz would like∗

I. Oliva †1 and R. Renò ‡2
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1 Introduction

Long-term investors in financial markets fear sudden drops in asset prices, especially since empirical

research showed that market crashes are accompanied by large spikes in volatilities and covariances.

This is what happened, for example, during the well-known Black Monday of October 1987, or the

market crash of October 2008. In the continuous-time literature, contemporaneous spikes in the level

of asset prices (typically, negative) and in their volatility (typically, positive) are modeled using co-

jumps, see e.g. Duffie, Pan, and Singleton (2000), Eraker, Johannes, and Polson (2003), Eraker (2004),

Chernov, Gallant, Ghysels, and Tauchen (2003), Todorov and Tauchen (2011) and Bandi and Renò

(2016), among others. Credible dynamic asset allocation models in continuous time should account for

this kind of tail risks, and, at the same time, preserve standard precepts of portfolio theory, the main

one being that, all other things being equal, risk-averse investors should invest less in more volatile

assets. Unfortunately, this does not happen to be the case in the majority of the models considered

in the literature.

This paper presents a mathematical model of dynamic asset allocation in continuous time with volatil-

ity and co-jump risks which is mathematically tractable, and such that the optimal allocation is pro-

portional to the expected excess returns and to the inverse covariance matrix, as in the standard

Markowitz theory. More precisely, we consider a risk-averse investor who allocates wealth in an econ-

omy in which the riskless asset (e.g., a bond) has constant rate of return and the risky assets (e.g., the

stocks) are characterized by an expected constant return, a time-varying diffusion term, allowing for

stochastic volatility and correlations, and a jump component. The state of this economy is summarized

by the value of the covariance matrix among the risky assets. Generalizing the dynamics in Chacko

and Viceira (2005) to a multivariate setting, we specify the dynamics of the covariance matrix of the

risky assets in terms of its inverse, named co-precision, which is a key ingredient toward our proposed

solution. The co-precision is assumed to evolve according to a mean-reverting Wishart process, that

is a flexible multivariate affine process, with a jump component which can affect both the diagonal

and the off-diagonal terms, meant to account for spikes in variances and covariances. We assume

that jumps in price and in co-precision occur simultaneously, although they have different random

amplitudes and could be correlated. From a mathematical point of view, such an assumption implies

that there exists a unique counting process driving all the jumps, as in Das and Uppal (2004).

Our contribution to the existing literature is twofold. The first contribution is to provide an exact

solution to the optimal allocation problem in the case without co-jumps when the inverse covariance

matrix follows a Wishart process. As in Chacko and Viceira (2005) in the univariate case, the optimal

allocation in our non-affine multivariate model is proportional to the inverse covariance matrix, and

inversely proportional to the risk-aversion coefficient, with proportionality coefficients which, roughly

speaking, depend on expected excess returns (myopic component) and the covariance between returns

and volatility (hedging component). The second contribution is to show how to obtain an approximate

solution for the optimal allocation strategy in the more realistic case in which co-jumps are present.

Also in this case, the optimal allocation is proportional to the inverse covariance matrix and inversely

proportional to the risk-aversion coefficient. A third term appears, representing the jump hedging

component, which depends on the correlation between the jump amplitudes in prices and in the

covariance matrix.

Dynamic portfolio allocation in continuous time has already extensively analyzed these issues starting

from the seminal contribution of Merton’s model (Merton, 1971). In this literature, the trade-off is
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usually between obtaining tractable (hopefully, closed-form) solutions and, at the same time, include all

the sources of risk which are thought to determine the investors’s choice. However, as we argue, there

is typically a tension between these two requisites. The traditional approach to deal with volatility and

jump risk for portfolio allocation is to use affine stochastic volatility models, see Liu (2007); Buraschi,

Porchia, and Trojani (2010); Bäuerle and Li (2013) for models without jumps, and Liu, Longstaff,

and Pan (2003); Hong and Jin (2016); Branger, Muck, Seifried, and Weisheit (2017) for models with

jumps. The assumed price/volatility dynamics in these models, in the spirit of Duffie, Pan, and

Singleton (2000), delivers attractive closed-form solutions for the optimal portfolio strategy. However,

imposing the affine structure restricts their optimal allocation to be static and, more worryingly,

independent on the covariance matrix of the risky assets (in the sense explained in detail in Appendix

B of this paper, and discussed, e.g., in Liu, 2007, page 30-31), while what matters is the size of

the risk premium, that is the coefficient linking instantaneous expected returns to the instantaneous

covariance matrix. Thus, while mathematically neat, these results are impractical since they imply,

for example, that the optimal allocation in risky assets does not depend on their variance.1 Such

volatility-independent allocation is unpalatable since it is just against the simple intuition of portfolio

theory à la Markowitz.

Outside the affine world, Chacko and Viceira (2005) find an approximate solution to the optimal

consumption problem of the investor with stochastic volatility, which has a closed form under some

non-trivial parameter restrictions, and an approximate solution in the general case. However, they

neither account for jump risk, nor for stochastic correlations. In a similar framework, Kraft, Seiferling,

and Seifred (2016) write the solution of a consumption problem with stochastic volatility, without

jumps, in terms of the solution of a partial differential equation, to be obtained numerically. Das and

Uppal (2004), extended by Sbuelz (2017) for default risk, consider a multivariate system affected by a

systemic jump component, and provide a nearly-closed form solution, but the volatilities of the stocks

are constant so that there is no volatility risk. Ascheberg, Branger, Kraft, and Seifried (2016) solve

the allocation problem with jumps in price only, by approximating them by diffusing components.

Our paper tries to reconcile dynamic asset allocation under both volatility and co-jump risk with

Markowitz theory, by proposing a multivariate non-affine dynamics which extends the univariate

model of Chacko and Viceira (2005). In the realistic case in which co-jumps are present, we solve

for the allocation strategy under a suitable approximation which is similar to that in Ascheberg et

al. (2016). Our approximation relies on assuming that the size of the price jump multiplied by the

allocation in risksy assets is “small”. The approximation appears sensible, since the largest daily

drowdown experienced by S&P500 is −23% (the Black Monday) and typical allocation in stocks is at

20 − 80% in most investment styles. Numerical experiments with realistic parameter values indicate

indeed that the approximate solution is not far from the actual one in a simple case in which the

latter can be found explicitly, as specified in details in Appendix C. The most important feature of

our proposed solution is that the optimal strategy in our case is state-dependent and proportional to

the co-precision, that is inverse to the covariance matrix. This result implies both a temporary and

1As Liu (2007) points out, in affine models high variance is associated with high risk premium and thus the myopic

component is independent on stochastic volatility. The fact that the optimal allocation does not depend on the average

volatility level of the risky assets can be seen by inspection of formulas (17)-(18) at page 240 of Liu, Longstaff, and Pan

(2003), reporting the optimal allocation in stocks, which does not depend neither on α, which determines the variance

mean-reversion level, nor Vt, the dynamic variance level. The same consideration applies to Formula (15), page 403 of

Buraschi, Porchia, and Trojani (2010); Formula (5.2), page 1034 of Bäuerle and Li (2013) in the multivariate case with

stochastic volatility; and Formula (22), page 69 of Branger et al. (2017) in the multivariate case with co-jumps. See

Appendix B for a technical explanation.
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a permanent impact on optimal asset allocation. After a spike in variances and covariances, optimal

allocation in risky assets changes (typically, reduces with respect to the risk-free asset) by a fraction

that depends on jump size and model parameters. This effect is transient since, after a jump, both

volatility and optimal allocation revert back to their mean-reversion level. Our result also implies a

permanent effect, in the sense that, all other things being equal, average optimal allocation in risky

assets will depend on the average co-precision level. Thus, contrary to the results in the affine models,

our specification implies that a risk-averse investor will invest less in more volatile assets, and will act

genuinely dynamically by changing her allocation in risky assets after a market crash.

We apply the proposed technology to the problem of optimal allocation in hedge fund indexes, for

which event risk is substantial. After calibrating the model, we show that the optimal allocation

changes crucially when adding co-jumps, and in particular that neglecting volatility jumps results in

non-trivial utility losses, especially for moderate values of the risk-aversion parameter.

The paper is organized as follows. Section 2 describes the model for the risky assets’ dynamics. Section

3 states the optimization problem and provides the optimal allocation strategy. Section 4 is devoted

to the application to the hedge fund industry. Section 5 concludes. Three appendices contain the

mathematical proofs, a discussion of the limitation of affine models, and numerical experiments about

the proposed approximation respectively.

2 The model

We assume there exist N risky assets, whose prices are given by St = (St,1, . . . , St,N )′ ∈ RN×1, traded

in a frictionless market. We further assume there exists a riskless asset Mt. The dynamics of the

riskless asset follows

dMt = rMtdt,

where r ∈ R is the instantaneous rate of return of the riskless asset (the risk-free rate), while the

dynamics of the risky assets follows
dSt = diag(St)

[
αdt+

√
Y −1t dZ

(1)
t + JdN(λ)t

]
dYt = (ΩΩ′ +KYt + YtK

′)dt+
√
YtdZ

(2)
t Q+Q′

(
dZ

(2)
t

)′√
Yt + ξ(Yt)dN(λ)t

, (2.1)

where diag(St) is the square matrix with St in the diagonal and 0 on the off-diagonal elements,

α, J ∈ RN×1, Z(1)
t ∈ RN×1 and Z

(2)
t ∈ RN×N are matrix Wiener processes, N(λ)t is a (non-

compensated) Poisson process with intensity λ ∈ R, and K, Q ∈ RN×N . Denoting by GLN (R) the

set of invertible matrices in RN×N , by SN the set of symmetric matrices in RN×N , and by S+N the set

of symmetric and positive definite matrices in RN×N , we further have Ω ∈ GLN (R) with

ΩΩ′ = ψQQ′, (2.2)

with ψ ∈ R and ψ > N − 1; Yt ∈ S+N (R); ξ(Yt) ∈ SN (R) such that

Y + ξ(Y ) ∈ S+N (R) (2.3)

for all Y ∈ S+N (R). The Wiener processes determining shocks in the prices St and in the variance-

covariance matrix Σt = Y −1t are correlated according to

Z
(1)
t = Z

(2)
t ρ+

√
1− ρ′ρZ(3)

t , (2.4)
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where ρ ∈ RN×1, Z(3)
t is a Wiener process in RN×1 and the elements of Z

(3)
t and Z

(2)
t are all inde-

pendent among them.

The model (2.1) is a multivariate stochastic volatility model in which the inverse of the instantaneous

variance-covariance matrix, dubbed co-precision, follows a Wishart process. Both prices and co-

precision are subject to event risk governed by the unique Poisson process dN(λ)t. When this shock

is activated, we have a jump in the prices, with random size J , and a contemporaneous jump in

the co-precision, given by the random matrix ξ. Jump sizes J and ξ can be correlated. The model

generalizes the existing literature in several respects. With respect to Das and Uppal (2004), who also

specify a single Poisson process governing jumps in all stocks, we add stochastic covariance and jumps

in the covariance matrix. With respect to Chacko and Viceira (2005), who also specify the dynamics

of instantaneous variance in terms of its inverse (the precision), we generalize to a multivariate setting

and add jumps in prices and in the covariance matrix. Most typically, the Wishart process is used

to model directly Σt in stochastic volatility models, see Da Fonseca, Grasselli, and Tebaldi (2008);

Buraschi, Porchia, and Trojani (2010); Bäuerle and Li (2013) in the case without jumps, and Branger

et al. (2017) in the case with jumps. With respect to these papers the main difference of our model

is in the fact that our model is not affine, as for Chacko and Viceira (2005) in the case N = 1.

From an economic perspective, modeling a mean-reverting co-precision instead of mean reverting

covariance is harmless. However, there are several good reasons for specifying a mean-reverting co-

precision instead of a mean-reverting covariance matrix. First, using co-precision can still lead to a

tractable dynamic programming problem, as also highlighted by Chacko and Viceira (2005). Second,

by modeling co-precision we can write the stochastic optimal control problem in such a way that the

optimal weights are (approximately, when co-jumps are present) linear in the co-precision itself, that

is inversely related to the spot covariance matrix.

The interpretation of the model parameters is pretty straightforward, it just has to be applied to

co-precision instead that to covariance (its matrix inverse). The matrix K represents the speed of

mean reversion of the co-precision to its mean-reversion level Y , which satisfies:

ψQQ′ +KY + Y K ′ = 0,

and thus depends on K,Q and the parameter ψ. We thus expect the matrix K to be negative semi-

definite in practice. The matrix Q is proportional to the volatility of the co-precision matrix (vol-of-

inverse-vol). The relation (2.2) with ψ > N − 1 is sufficient to ensure the positive definiteness and

the mean-reversion of Yt at all times (Bru, 1991). The relation (2.3) ensures the positive definiteness

of the co-precision after a jump. The correlation structure (2.4) allows for correlated shocks to price

returns and their variance-covariance matrix. These correlations will be typically negative in practice,

as documented, among others, in Branger et al. (2017), that is variances and covariances typically

increase while prices decline. This implies that, in financial markets, the shocks to prices and co-

precision are expected to be positively correlated.

The model could be potentially extended to allow for idiosyncratic jump in prices and co-precision, as

in Bandi and Renò (2016). However, we stick to a single source of jump risk for ease of exposition.
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3 Optimal allocation

We assume that the investor has to allocate wealth in the single riskless and N risky assets, and she

does so by maximizing the expected utility from terminal wealth with respect to a power utility

U(x) =
x1−γ

1− γ
, γ > 0, γ 6= 1 , (3.1)

without considering intermediate consumption, as in Liu, Longstaff, and Pan (2003), Das and Uppal

(2004) and Branger et al. (2017), among others. When γ = 1, the above utility is U(x) = log x. We

denote by wt the RN×1 vector of proportional wealth invested in the risky assets at time t. By the

budget constraint, the proportion of wealth invested in the riskless asset is given, after denoting by

1 the N × 1 vector of ones, by 1 − w′t1. Starting from initial wealth W0 at time 0, the dynamics of

wealth is given by

dWt = [w′t(α− r1) + r]Wtdt+ w′tWt

√
Y −1t dZ

(1)
t + w′tJWtdN(λ)t . (3.2)

The investor’s optimization problem can be written as follows

V (t, Yt,Wt) := max
(wt)0≤t≤T

Et

[
W 1−γ
T

1− γ

]
, (3.3)

where the expectation represents a shorthand for the conditional expectation, namely, Et = E[· |Wt =

W,Yt = Y ].

In the case without co-jumps, we can find an exact (genuinely dynamic) solution for this problem.

Proposition 3.1. Consider the Hamilton-Jacobi-Bellman (HJB) equation associated with the invest-

ment problem (3.3) when λ = 0 (no co-jumps). The optimal strategy is given by:

w∗t = Yt

[
(α− r1) + 2FtQ

′ρ

γ

]
. (3.4)

The value function of the HJB equation is given by:

V (t, Yt,Wt) = exp{Tr(FtYt) +Gt}
W 1−γ
t

1− γ
, (3.5)

where the matrix function Ft ∈ SN and the function Gt ∈ R solve
Ḟt + (1− γ)(α− r1)D′t + FtK +K ′Ft − γ(1−γ)

2 DtD
′
t

+2(1− γ)FQ′ρD′t + 2FtQ
′QFt = 0, FT = 0

Ġt + (1− γ)r + Tr(ΩΩ′Ft) = 0, GT = 0

, (3.6)

where

Dt :=
(α− r1) + 2FtQ

′ρ

γ
.

Proof. See Appendix A.
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The above result can be considered a generalization of the Chacko and Viceira (2005) case to the

multivariate case with power utility, with precision (in the univariate problem) replaced by co-precision

(in the multivariate problem) and allowed to follow a more flexible Wishart process. The optimal

portfolio weight w∗t is now genuinely dynamic, and it changes proportionally to the matrix Yt, with

dynamic coefficient Dt. However, our main interest is in the more challenging case in which λ > 0,

that is when assets are subject to event risk.

To recover a viable HJB equation in this more realistic case to solve for optimal investment, we follow

an approximated approach. Similar approaches have been used, for example, in Chacko and Viceira

(2005), regarding an optimal consumption and portfolio-choice problem in incomplete markets with

recursive preferences, and in Ascheberg, Branger, Kraft, and Seifried (2016) for a continuous-time

portfolio optimization problem with constant relative risk aversion.

The approximation consists of two steps. We first assume that the jump matrix in the co-precision

ξ is constant, not depending on Yt. In this case, co-precision can become negative definite since the

condition (2.3) cannot be fulfilled for all levels of Yt. A negative co-precision would imply a negative

definite covariance matrix. The approximation makes practical sense if the intensity of jumps is small,

and if the ξ is such that Yt + ξ does not become negative definite after the jump.

The second approximation consists in the linearization of the jump term appearing in the HJB equa-

tion. Using second-order Taylor expansion, we write

(1 + w′tJ)1−γ = 1 + (1− γ)w′tJ + o((w′tJ)2) , (3.7)

and the approximation consists in ignoring the o((w′tJ)2) term in the HJB equation. Our approxi-

mation is thus accurate if the product w′tJ is “small”, that is if the jump amplitude is small and/or

if the optimal investment in the risky assets is small. We test the reliability of the approximation

in a realistic economy in Section C. As noted in Ascheberg et al. (2016), the approximation can be

interpreted as a “small jumps” approximation in which the approximated HJB equation would be the

same of a model in which “the jump-diffusion process for the stock price is replaced by a diffusion

process with drift and volatility adjusted in such a way that the expected return and the local variance

match those of the original process” (Ascheberg et al., 2016, page 3). For clarity, we use the symbol

≈ instead of the equality sign when indicating solutions to the approximated problem, instead of the

actual one. We can prove the following.

Proposition 3.2. Consider the HJB equation associated with the investment problem (3.3) in which

ξ is replaced by a constant matrix and (1 +w′tJ)1−γ is replaced by 1 + (1− γ)w′tJ . This approximated

HJB equation is solved by:

w∗t ≈ Yt

[
(α− r1) + 2FtQ

′ρ+ λE
[
eTr(Ftξ)J

]
γ

]
=: YtBt , (3.8)

where Bt ∈ RN×1. The value function of the approximated HJB equation is given by:

V (t, Yt,Wt) ≈ exp{Tr(FtY ) +Gt}
W 1−γ
t

1− γ
, (3.9)

where the matrix function Ft ∈ SN and the function Gt ∈ R solve
Ḟt + (1− γ)(α− r1)B′t + FtK +K ′Ft − γ(1−γ)

2 BtB
′
t

+2(1− γ)FtQ
′ρB′t + 2FtQ

′QFt + λ(1− γ)E[eTr(Ftξ)J ]B′t, FT = 0

Ġt + (1− γ)r + Tr(ΩΩ′Ft) + λE[eTr(Ftξ) − 1] = 0, GT = 0

. (3.10)
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Proof. See Appendix A.

Eq. (3.8) is the main result of this paper. The structure of the (approximate) optimal allocation is

unchanged with respect to the (exact) case without co-jumps, that is proportional to Yt (now with

coefficient Bt) and truly dynamic. The set of ordinary differential equations in Eq. (3.10) can be

solved by exploiting numerical techniques. The optimal portfolio weights obtained in Eq. (3.8) consist

of three terms. The first one represents the generalization of the myopic demand component, which

is now proportional to inverse volatility (recall that Yt = Σ−1t ), and so it takes the typical form of

standard mean-variance allocation. The second one is the intertemporal hedging demand term, which

depends on the correlation coefficients between Wiener processes driving the diffusive components of

asset price and co-precision. Its sign depends on the sign of function Ft and the sign of the components

of ρ, which are expected to be positive. An extra hedging term appears due to the interaction between

jumps in prices and jumps in volatility, which has the same features of an “illiquidity” term, as

discussed in Liu, Longstaff, and Pan (2003). Since in practice J < 0, we expect this extra term to be

negative, that is to reduce the allocation in risky assets with respect to the risk-free asset.

Remark 3.3. If we assume N = 1 (only one risky asset) and ξ = 0, Eq. (3.10) corresponds to the

result obtained in Das and Uppal (2004, Prop. 2), where the optimal weights are retrieved by solving

a nonlinear equation.

Remark 3.4. The coefficient Bt in Eq. (3.8) does not depend on the parameter ψ defined in Eq.

(2.2), which is crucial in determining the long-run volatility levels of the risky asset. This is due

to the fact that ψ is not involved in determining neither the constant part of Bt, nor the function

Ft in (3.10), which in turn determines the optimal weights through the hedging components. In the

affine case, where the drift is restricted to be linear in the variance to find an analytical solution, this

implies that the optimal allocation does not depend on the long-run variance levels, but only on the

risk premium coefficient which relates the instantaneous drift to the instantaneous variance. Since the

allocation is static, it does not even depend on the instantaneous variance. Thus, variance levels do not

determine optimal allocation at all in affine models, which is against standard Markowitz theory, see

the discussion in Appendix B. In our case, optimal allocation depends on instantaneous co-precision,

that is to the inverse of the instantaneous covariance matrix, reconciling dynamic asset allocation with

static Markowitz theory, and correcting optimal allocation for volatility and co-jump risk.

Remark 3.5. Our optimal allocation strategy (3.8) implies that, after a jump in precision of size

ξ, the investor will change its investment in risky assets from YtBt to (Yt + ξ)Bt. For example, in

the case N = 1, since ξ is negative to reproduce spikes in volatility, this implies less investment on

stocks, on average, with respect to bonds. Thus, differently from affine models which imply static

optimal allocation, the investor will rebalance her portfolio after a jump. This result is consistent with

the large volumes traded in financial markets immediately during and after a market crash, see e.g.

Caporin, Kolokolov, and Renò (2017).

4 Application: investing in a fund of hedge funds

We apply the proposed methodology to a challenging financial problem: allocation of wealth in a

portfolio composed of hedge fund indexes (the typical problem of a fund of funds). Hedge funds

are indeed well known to be subject to substantial event risk (see e.g. Getmansky, Lee, and Lo,
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Table 1: Descriptive statistics for the returns (expressed in percentages and in annualized units) of the twelve

investment funds composing the portfolio.

CA EM EMN ED EDD EDMS EDRA FI GM L/S MF MS

Mean (%) 6.89 8.24 4.99 8.07 9.15 7.59 5.79 5.40 10.45 9.29 5.35 7.56

Std (%) 6.25 13.01 9.30 5.97 6.04 6.51 3.90 5.08 8.63 8.96 11.50 4.86

Skewness −2.73 −0.89 −12.47 −2.09 −2.14 −1.63 −0.92 −4.88 0.20 −0.00 0.05 −1.73

Kurtosis 21.58 10.29 189.92 13.07 14.90 9.95 7.68 41.67 8.24 7.20 2.83 10.05

2015), so that ignoring the presence of co-jumps in the model is particularly harmful in their case,

as we show below. We consider N = 12 constituents of the Credit Suisse Hedge Fund Index. These

constituents are hedge fund indexes, that is portfolios of hedge funds categorized by trading style:

Convertible Arbitrage (CA), Emerging Markets (EM), Equity Market Neutral (EMN), Event Driven

(ED), Event Driven Distressed (EDD), Event Driven Multi-Strategy (EDMS), Event Driven Risk

Arbitrage (EDRA), Fixed Income (FI), Global Macro (GM), Long/Short (L/S), Managed Futures

(MF), and Multi-Strategy (MS) (we exclude from our analysis the dedicated short-bias index). We

use monthly returns from May, 1994 to January, 2018 for a total of T = 285 months. The descriptive

statistics of monthly returns are reported in Table 1. All the hedge fund indexes display substantial

positive mean and low standard deviation, so that they have attractive Sharpe ratios for an investor.

However, hedge funds are still extremely risky investment vehicles, as witnessed by their negative

skewness and high kurtosis of their realized returns, which are typical signatures of event risk. In

particular, Equity Market Neutral (EMN) appears to be particularly subject to event risk given the

LTCM episode in its record.

We calibrate the model (2.1) where, for simplicity, we assume that the matrices K, Q, and ξ are

diagonal. We also calibrate restricted models with ξ = 0 (no jumps in variance) and ξ = J = 0

(no jumps at all). Calibration is based on a two-step procedure. In the first step, we determine the

monthly dynamics of co-precision and jumps using a kernel estimator and a data-driven threshold

respectively, as in Corsi, Pirino, and Renò (2010). We then use a simulated method of moments to

estimate the parameters of the model.

In the first step, we proceed as follows. Denote by r
(i)
t the return at month t, with t = 1, . . . , T ,

of the i-th hedge fund index, with i = 1, . . . , N . We first compute a threshold θ
(i)
t which represents

the separation between “continuous” price movements and jumps (see Mancini, 2009 for a theoretical

motivation for this technique). The threshold at month t for the i-th index is defined as

θ
(i)
t = 3 ·

√√√√√√√√√√
π

2

T−1∑
t′=1,t′ 6=t

K

(
t− t′

L

)
|r(i)t′ ||r

(i)
t′+1|

M−1∑
t′=1,t′ 6=t

K

(
t− t′

L

) t = 1, . . . , T, (4.1)

with L = 12, K(x) =
√

1
2πe
−x2/21{|x|≤L}, where 1{A} is the indicator function of the event A. Equation
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Figure 1: Monthly returns for the Convertible Arbitrage (CA) index, together with the calibrated threshold used

to separate continuous movements from jumps and the corresponding estimated standard deviation.

(4.1) represents a weighted average of local volatility, estimated with the bipower term π
2 |r

(i)
t′ ||r

(i)
t′+1|

to reduce the impact of jumps, multiplied by 3. The estimated jump time series for the i-th index is

then simply defined as

Ĵt = r
(i)
t · 1{|r(i)t |>θ(i)t },

that is a return is considered a jump if its absolute value exceeds the local standard deviation by a

factor 3. We then estimate the dynamics of the covariance between the i-th and the j-th hedge fund

index to be:

V̂
(i,j)
t =

T−1∑
t′=1

K

(
t− t′

L

)
r
(i)
t′ · r

(j)
t′ 1{|r(i)

t′ |≤θ
(i)

t′ }
1{|r(j)

t′ |≤θ
(i)

t′ }

T−1∑
t′=1

K

(
t− t′

L

)
1{|r(i)

t′ |≤θ
(i)
t }

1{|r(j)
t′ |≤θ

(i)

t′ }

t = 1, . . . , T, (4.2)

with the same L and K(·) used before, that is we compute the spot covariance matrix using only

returns which are smaller than the threshold. Figure 1 illustrates the procedure in one case, the

CA index. Table 2 reports average covariances and correlations between returns on the hedge fund

indeces, revealing a complex linear structure in hedge funds returns. The co-precision at month t is

then defined as the spot inverse of the covariance matrix at month t.

In the second step, we fit model parameters to the first and second moments of the co-precision

matrix. In total, we calibrate 2 ·N(N + 1)/2 moments, corresponding to the first and second moment

of the diagonal and upper diagonal of the co-precision matrix. The moments implied by the model are

obtained via simulation. We minimize the sum of the squared differences between estimated moments
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Table 2: The table reports average covariances (for returns expressed in percentages and in monthly units)

and correlations (in bold) among the hedge funds indexes. We use monthly returns from May, 1994 to January,

2018 for a total of T = 285 months. The hedge funds are: Convertible Arbitrage (CA), Emerging Markets

(EM), Equity Market Neutral (EMN), Event Driven (ED), Event Driven Distressed (EDD), Event Driven Multi-

Strategy (EDMS), Event Driven Risk Arbitrage (EDRA), Fixed Income (FI), Global Macro (GM), Long/Short

(L/S), Managed Futures (MF), and Multi-Strategy (MS).

Covariances/Correlations

CA EM EMN ED EDD EDMS EDRA FI GM L/S MF MS

CA 2.41 2.82 1.32 2.41 2.12 2.26 1.24 1.70 1.71 2.22 −0.25 1.53

0.56 0.71 0.93 0.80 0.81 0.68 0.90 0.45 0.55 −0.05 0.71

EM – 10.37 2.07 3.72 3.31 4.06 1.92 1.88 4.30 6.08 0.99 1.88

0.54 0.69 0.60 0.71 0.51 0.48 0.54 0.73 0.09 0.42

EMN – – 1.43 1.73 1.98 1.61 0.80 1.45 0.91 1.98 0.22 1.65

0.87 0.96 0.75 0.57 1.00 0.31 0.64 0.06 1.00

ED – – – 2.78 2.74 2.99 1.39 1.60 2.30 3.35 0.58 1.82

0.96 1.00 0.71 0.79 0.56 0.78 0.11 0.79

EDD – – – – 2.94 2.64 1.28 1.36 2.17 3.10 0.53 1.62

0.86 0.64 0.65 0.51 0.70 0.10 0.68

EDMS – – – – – 3.20 1.45 1.65 2.42 3.44 0.59 1.77

0.69 0.76 0.55 0.74 0.10 0.72

EDRA – – – – – – 1.37 0.72 1.07 1.87 0.22 0.88

0.51 0.37 0.62 0.06 0.55

FI – – – – – – – 1.47 1.49 1.74 0.03 1.12

0.50 0.56 0.01 0.67

GM – – – – – – – – 6.12 3.32 3.12 1.17

0.52 0.39 0.34

L/S – – – – – – – – – 6.68 1.51 2.10

0.18 0.59

MF – – – – – – – – – – 10.58 0.65

0.15

MS – – – – – – – – – – – 1.91

and simulated moments. We perform three different calibrations, corresponding to the absence of

jumps, the absence of volatility jumps, and the full model respectively. The parameter estimates

obtained by using this method are reported in Table 3, and they correspond to monthly returns

expressed in percentages. The point estimate of the jump intensity parameter λ is 0.012, which

corresponds to one co-jump every 6.94 years, on average. Thus, event risk in hedge funds is rare but

not negligible.

To get optimal portfolio weights implied by our calibration, we use the Runge-Kutta method to solve

the system of ODEs (3.10), by using parameters values obtained through the calibration exercise

previously proposed and shown in Table 3. We use a risk-aversion parameter γ = 3, an investment

horizon of 1 year, and Yt equal to the average co-precision in our sample. Optimal weights are reported

in Table 4. The column “No Jumps” displays the optimal weights when the investor uses a model

without jumps. The column “Jumps in Price Only” describes the optimal allocation for an investor
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Table 3: Parameter estimates for the co-jumps model (Panel A, ψ = 146.9339), the jumps-in-price model (Panel

B, ψ = 48.3789), and the no-jumps model (Panel C, ψ = 62.0173). The jump intensity λ is equal to 0.0120

when jumps occur, or is equal to 0 otherwise, diag(Q), diag(K), diag(ξ) represent the main diagonal of matrices

Q, K, ξ, respectively. Estimates are for returns expressed in percentages and in monthly units.

Panel A: full model (with price/volatility co-jumps)

CA EM EMN ED EDD EDMS EDRA FI GM L/S MF MS

α 0.68 0.72 0.51 0.76 0.85 0.69 0.56 0.55 0.89 0.89 0.41 0.68

diag(Q) 0.05 0.06 0.10 0.02 0.03 0.02 0.05 0.05 0.15 0.07 0.00 0.07

diag(K) -0.10 -0.33 -0.43 -0.02 -0.03 -0.02 -0.11 -0.10 -1.47 -0.26 -0.28 -0.22

J -8.48 -2.47 -7.48 -7.40 -7.51 -4.99 -6.15 -8.25 -1.45 -9.62 3.18 -4.04

diag(ξ) -0.33 -0.73 -0.46 -0.46 -0.44 -0.37 -0.10 -0.13 -1.18 -0.77 -0.01 -0.42

Panel B: only jumps in price

CA EM EMN ED EDD EDMS EDRA FI GM L/S MF MS

α 0.68 0.72 0.51 0.76 0.85 0.69 0.56 0.55 0.89 0.89 0.41 0.68

diag(Q) 0.05 0.09 0.08 0.08 0.06 0.05 0.09 0.07 0.06 0.08 0.08 0.07

diag(K) -0.04 -0.26 -0.09 -0.09 -0.07 -0.05 -0.11 -0.07 -0.08 -0.14 -0.48 -0.08

J -8.48 -2.47 -7.48 -7.40 -7.51 -4.99 -6.15 -8.25 -1.45 -9.62 3.18 -4.04

diag(ξ) – – – – – – – – – – – –

Panel C: No jumps

CA EM EMN ED EDD EDMS EDRA FI GM L/S MF MS

α 0.57 0.69 0.42 0.67 0.76 0.63 0.48 0.45 0.87 0.77 0.45 0.63

diag(Q) 0.13 0.20 0.13 0.11 0.10 0.14 0.08 0.10 0.14 0.18 0.19 0.13

diag(K) -0.40 -1.01 -0.40 -0.27 -0.22 -0.43 -0.20 -0.24 -0.47 -0.70 -1.17 -0.34

J – – – – – – – – – – – –

diag(ξ) – – – – – – – – – – – –

which adds jumps in price, but not jumps in volatility. The column “Price/Volatility Co-Jumps”

reports the optimal weights for an investor which uses a model with contemporaneous jumps in prices

and volatility. The three modeling choices induce a substantial difference in the optimal allocation. As

more risks are introduced, the total optimal allocation in risky funds decreases. As it can be observed

from the last row of Table 4, the total optimal allocation decreases if the presence of jumps (in price,

in volatility or in both of them) is involved in the model. This is not necessarily the case for individual

funds. For example, when introducing jumps in volatility, the allocation in the Global Macro index

spikes at 17.5%, at the expense of allocation in the remaining funds, which is not surprising since

Global Macro is the only hedge fund with positive skewness (see Table 1). Also notice how the

optimal allocation in the Equity Market Neutral index is annihilated by the introduction of jumps in

the model. This shows that, in the case of hedge funds, modeling risk in an accurate way has a crucial

impact on the investor’s optimal selection.

The optimal allocation can be separated in three components: a myopic component, defined as
(α−r1)+λE[J ]

γ (we compensate for jumps in the definition of the myopic component so that it does

not change across the three different models), a hedging component defined as 2FtQ′ρ
γ , and a jumps

component defined as
λE[(eTr(Ftξ)−1)J)]

γ . Figure 2 shows the decomposition of the total optimal alloca-

tion in risky funds into the three components for the three considered models. As expected, the myopic
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Table 4: Optimal portfolio allocation w∗ for the model with no jumps (second column), the model with only

jumps in price (third column), and the model with co-jumps (fourth column). The maturity of the investment is

1 year, the risk aversion parameter is γ = 3, the jump intensity is equal to λ = 0.0120 for models with jumps,

and 0 otherwise. Yt is the average co-precision in our sample. The remaining parameter estimates are provided

in Table 3.

No Jumps Jumps in Price Only Price/Volatility Co-Jumps

Hedge Fund w∗(%) w∗(%) w∗(%)

CA 3.4448 1.1447 -0.1919

EM -3.0224 -1.6955 -0.7815

EMN 2.4403 1.9312 -0.1230

ED -1.3438 0.1826 -3.1292

EDD 3.3878 3.7078 2.9552

EDMS -2.0740 -3.7390 -2.4163

EDRA 4.5276 5.5862 3.5086

FI 3.2185 3.3614 -1.6721

GM 11.6001 8.6216 18.0327

L/S 3.0813 2.1369 -0.0903

MF -0.3379 0.1323 -1.0131

MS 6.0363 5.1134 9.2400

Total allocation (%) 30.9587 26.4837 24.3191

component dominates the hedging component. When introducing jumps in price only, the hedging

components becomes larger to compensate the extra-risk, and the total allocation is reduced. When

introducing jumps in volatility as well, the hedging component shrinks, and the jumps component is

the main correction factor. Total allocation is further reduced. This result suggests that jumps in

volatility are an important driver of event risk for hedge funds.

We finally evaluate the importance of jumps in volatility using an economic metric, the Wealth Equiv-

alent Loss (WEL), which is defined as the relative loss in wealth due to following the suboptimal

strategy implied by not introducing co-jumps in the model when they are actually there (see Das and

Uppal, 2004 and Liu, Longstaff, and Pan, 2003). More precisely, the WEL is computed as follows.

First we assume that no jumps occur in volatility, and we calibrate the model as described above,

obtaining a parameter set that implies the weights ŵ∗. The value function in this case is

V̂ (t, Yt,Wt) = exp{Tr(F̂tYt) + Ĝt}
W 1−γ
t

1− γ
,

where F̂t, Ĝt are solutions of the ODEs (3.10) when ξ = 0, with Yt being, as before, the average

co-precision estimated in our sample, and Wt is the initial wealth. Then, we consider the true case in

which co-jumps take place, and we evaluate the value function

V (t, Yt, W̃t) = exp{Tr(FtYt) +Gt}
W̃ 1−γ
t

1− γ
,

where W̃t represents the (unknown) initial wealth the investor would need in t to get the same utility

if she followed the optimal strategy. To quantify the loss in adopting the sub-optimal allocation, we

equate the value function associated with the optimal strategy with initial wealth unknown to the
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Figure 2: Optimal allocation for each component and for each model (no jumps, only jumps in price, co-jumps).

The maturity of the investment is 1 year, the risk aversion parameter is γ = 3, the jump intensity λ is equal to

0.0120 when jumps occur, or is equal to 0 otherwise. Yt is the average co-precision in our sample. The remaining

parameter estimates are provided in Table 3.

value function associated with the non-optimal strategy with initial unit wealth

V (t, Yt, W̃t) = V̂ (t, Yt, 1) .

This yields

W̃t =

[
exp{Tr(F̂tYt) + Ĝt}
exp{Tr(FtYt) +Gt}

] 1
1−γ

,

and the Wealth Equivalent Loss (WEL) is calculated as

WEL := 1− W̃t.

Figure 3 displays the WEL as a function of the risk-aversion parameter. The loss is minor for higher

volatility because the allocation in risky funds decreases. Most importantly, the Figure shows that

not including volatility jumps in the model would result in non-trivial losses in terms of wealth.

For example, with a risk-aversion parameter γ = 3, the investor would suffer a loss of roughly 12%

in monetary terms. This result reinforces the point that jumps in volatility play a crucial role in

determining the optimal behavior of an investor in a fund of hedge funds.

5 Conclusions

We consider a dynamic portfolio problem on a set of risky assets and a riskless bond when prices are

subject to volatility and co-jump risk, with the purpose of providing an optimal allocation strategy
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Figure 3: Percentage of relative loss in wealth as a function of the risk aversion parameter. The maturity

investment is 1 year, the jump intensity is equal to λ = 0.0120. Yt is the average co-precision in our sample. The

remaining parameter estimates are provided in Table 3.

which depends on the jump characteristics and, at the same time, on the (inverse) covariance matrix.

We argue that this result cannot be obtained in affine models, so that we propose a Wishart model for

the inverse of the covariance matrix, dubbed co-precision. We provide an exact solution to this problem

in the absence of jumps, and an approximated solution in the presence of co-jumps. The solution can be

dissected in the myopic and hedging components, as in the existing literature. The hedging component

has two terms: the first corresponding to Brownian shocks, and the second corresponding to co-jumps.

The approximation in the co-jump case is proved to be sensible, and providing accurate solutions in

special cases. Our optimal strategy has several implications. One is that investors will rebalance their

portfolio after a market crash, decreasing their investment in risky assets. Moreover, the inclusion of

jumps in volatility implies a decrease of the optimal allocation in the risky asset, as well as a sizable

negative impact in the wealth of the investor who does not include volatility co-jumps in her model.

We apply the methodology to the problem of optimal selection of a portfolio of hedge fund indexes.

Using a realistic calibration of the market, we show that the co-jumps component is crucial, and in

particular that the addition of jumps in volatility is an indispensable statistical channel to model event

risk for hedge funds.

This paper represents a first step. Further contributions along our line consist in providing a mathe-

matical justification for the approximation, evaluating the impact of jumps in the covariance matrix

which are uncorrelated to jumps in price, and considering the case of non-separable preferences. In

particular, it appears interesting to use our approximation to evaluate utility gains in trading deriva-

tives, especially in the empirically important problem of optimal hedging of co-jump risk, along the

lines of Liu and Pan (2003). These additions are left for future work.
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Corsi, F., D. Pirino, and R. Renò, 2010, “Threshold Bipower Variation and the Impact of Jumps on

Volatility Forecasting,” Journal of Econometrics, 159, 276–288.

Da Fonseca, J., M. Grasselli, and C. Tebaldi, 2008, “A multifactor volatility Heston model,” Quanti-

tative Finance, 8(6), 591–604.

Das, S., and R. Uppal, 2004, “Systemic Risk and International Portfolio Choice,” The Journal of

Finance, 59(6), 2809–2834.

Duffie, D., J. Pan, and K. Singleton, 2000, “Transform analysis and asset pricing for affine jump-

diffusions,” Econometrica, 68, 1343–1376.

Eraker, B., 2004, “Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option

Prices,” The Journal of Finance, 59(3), 1367–1404.

Eraker, B., M. Johannes, and N. Polson, 2003, “The impact of jumps in volatility and returns,”

Journal of Finance, 58, 1269–1300.

Getmansky, M., P. A. Lee, and A. W. Lo, 2015, “Hedge funds: A dynamic industry in transition,”

Annual Review of Financial Economics, 7, 483–577.

Heston, S., 1993, “A closed-form solution for options with stochastic volatility with applications to

bond and currency options,” Review of Financial Studies, 6, 327–343.

Hong, Y., and X. Jin, 2016, “Explicit solutions for dynamic portfolio choice in jump-diffusion models

with multiple risky assets and state variables and their applications,” Working paper.

16



Kraft, H., T. Seiferling, and F. Seifred, 2016, “Optimal consumption and investment with Epstein-Zin

recursive utility,” Finance and Stochastics, 41.

Liu, J., 2007, “Portfolio Selection in Stochastic Environments,” The Review of Financial Studies,

20(1), 1–39.

Liu, J., F. Longstaff, and J. Pan, 2003, “Dynamic Asset Allocation with Event Risk,” The Journal of

Finance, 58(1), 231–259.

Liu, J., and J. Pan, 2003, “Dynamic derivative strategies,” Journal of Financial Economics, 69(3),

401–430.

Mancini, C., 2009, “Non-parametric threshold estimation for models with stochastic diffusion coeffi-

cient and jumps,” Scandinavian Journal of Statistics, 36(2), 270–296.

Merton, R., 1971, “Optimum consumption and portfolio rules in a continuous-time model,” Journal

of economic theory, 12(3), 373–413.

Sbuelz, A., 2017, “Dynamic asset allocation with default and systemic risks,” in Handbook of Recent

Advances in Commodity and Financial Modeling. Springer, pp. 241–250.

Todorov, V., and G. Tauchen, 2011, “Volatility jumps,” Journal of Business and Economic Statistics,

3(29), 356–371.

17



A Proofs

Proof of Proposition 3.1

It follows from the same arguments of the proof of Proposition 3.2 below with λ = 0.

Proof of Proposition 3.2.

The proof follows standard arguments of dynamic programming. The HJB equation for the investment

problem is:

0 = max
wt

{
∂V

∂t
+ [w′t(α− r1) + r]Wt

∂V

∂W
+ Tr

(
[ΩΩ′ +KYt + YtK

′]∇V
)

+
1

2
W 2
t w
′
tY
−1
t wt

∂2V

∂W 2

+

(
2w′t∇Q′ρ

∂V

∂W

)
W +

1

2
Tr
(
4Yt∇Q′Q∇

)
V + λE[V (Wt + w′JWt, Yt + ξ)− V (Wt, Yt)]

}
, (A.1)

where we write

∇ :=

(
∂

∂Yij

)
1≤i,j≤N

.

For the approximated HJB equation, we use the solution (3.9). Simple algebra yields

∂V

∂t
= (Tr(ḞtYt) + Ġt)V ,

∇V = FtV ,

∂V

∂W
= exp{Tr(FtYt) +Gt}W−γt = V (1− γ)W−1t ,

∂2V

∂W 2
= −γ exp{Tr(FtYt) +Gt}W−γ−1t = −V γ(1− γ)W−2t ,

T r
(
Yt∇Q′Q∇

)
V = Tr

(
YtFtQ

′QFt
)
V ,

∇Q′ρ ∂V
∂W

= ∇ ∂V

∂W
Q′ρ = FtQ

′ρV (1− γ)W−1t ,

V (Wt + w′JWt, Yt + ξ)− V (Wt, Yt) = V
(
eTr(Ftξ)(1 + w′tJ)1−γ − 1

)
where Ḟt = ∂F

∂t , and Ġt = ∂G
∂t . Substituting the value function in the approximated HJB equation we

get

0 ≈ max
wt

{
Tr(ḞtYt) + Ġt + (1− γ)[w′t(α− r1) + r] + Tr

(
[ΩΩ′ +KYt + YtK

′]Ft
)
− γ(1− γ)

2
w′tY

−1
t wt

+2(1− γ)w′tFtQ
′ρ+ 2Tr(YtFtQ

′QFt) + λE
[
eTr(Ftξ)(1 + (1− γ)w′tJ)− 1

]}
.

The first-order condition reads:

0 ≈ (α− r1)− γY −1t w∗t + 2FtQ
′ρ+ λE[eTr(Ftξ)J ] ,

which implies Eq. (3.8). Plugging w∗t in the approximated HJB equation we get

0 ≈ Tr(ḞtYt) + Ġt + (1− γ)r + (1− γ)B′tYt(α− r1) + Tr
(
[ΩΩ′ +KYt + YtK

′]Ft
)
− γ(1− γ)

2
B′tYtBt

+ 2(1− γ)B′tYtFtQ
′ρ+ 2Tr(YtFtQ

′QFt) + λE[eTr(Ftξ) − 1] + λ(1− γ)B′tYtE[eTr(Ftξ)J ] .

which implies (3.10) and ends the proof.
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B A critique to affine stochastic volatility models for optimal port-

folio allocation

Why optimal allocation for a power utility investor does not depend on volatility (loosely speaking)

when the stochastic volatility model for the risky assets is affine?

To answer this question, we analyze the case with a single risky asset following the Heston (1993)

model, that is assuming that the price dynamics is given by:

dSt = Stµ(vt)dt+
√
vtdZ

(1)
t

dvt = k(θ − vt)dt+ η
√
vtdZ

(2)
t

with corr(dZ
(1)
t , dZ

(2)
t ) = ρ and k, θ, η, ρ are real constants. We leave the conditional expected return

µ(vt) unspecified for the moment being.

In this model, volatility vt has mean-reversion level θ, which also coincides with the long-run mean

since there are no jumps. The investors solves the problem (3.3), and the associated HJB equation for

the value function V (t, vt,Wt), where Wt is wealth at time t, and the optimal allocation in the risky

assets wt in this case reads:

0 = max
w

{
∂V

∂t
+ [wt(µ(vt)− r) + r]Wt

∂V

∂W
+ k(θ − vt)

∂V

∂v
+

1

2
W 2
t w

2
t vt

∂2V

∂W 2

+ηρWtwtvt
∂2V

∂W∂v
+

1

2
η2vt

∂2V

∂W 2

}
. (B.1)

As usual, the solution for this problem has to take the exponential-affine form

V (t, vt,Wt) = eFtvt+Gt
W 1−γ
t

1− γ
, (B.2)

which leads to the equation:

0 = max
w

{
Ḟtvt + Ġt + (1− γ) [wt(µ(vt)− r) + r] + k(θ − vt)Ft −

1

2
γ(1− γ)w2

t vt

+(1− γ)ηρwtvtFt +
1

2
η2vtF

2
t

}
, (B.3)

and the first-order condition yields

µ(vt)− r − γwtvt + ηρvtFt = 0 ,

which gives our (traditional) optimal strategy

w∗t =
µ(vt)− r
γvt

+
ηρFt
γ

, (B.4)

which is composed by the usual myopic (mean-variance) term plus the hedging component. The

myopic component thus depends on γ (the risk-aversion parameter), on µ(vt) − r, the excess return

of the risky asset, and on vt, that is the variance level. The hedging component further depends on

ηρFt, which is proportional to the price-volatility covariance. Notice that here the long-run variance

mean θ, which determines the average volatility level, does not appear in the myopic component of
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the optimal allocation equation (B.4). It could appear in the hedging component, but as we will show

in what follows, it does not, see Eq. (B.7) below. However, this is not a problem at this stage since

these parameters determine the dynamic of vt, which, in turn, determines the optimal strategy (B.4).

The problem of affine models we want to highlight here originates from the need of an analytical

solution for the value function (B.2). Indeed, when we substitute back the optimal strategy (B.4) in

Eq. (B.3), in order to determine Ft, we find:

0 = Ḟtvt + Ġt + (1− γ)

[(
µ(vt)− r
γvt

+
ηρFt
γ

)
(µ(vt)− r) + r

]
+ k(θ − vt)Ft

− 1

2
γ(1− γ)

(
µ(vt)− r
γvt

+
ηρFt
γ

)2

vt

+ (1− γ)ηρ

(
µ(vt)− r
γvt

+
ηρFt
γ

)
vtFt +

1

2
η2vtF

2
t , (B.5)

which has to be affine in vt to identify Ft and Gt as solutions of suitable ODEs. However, inspection

of Eq. (B.5) reveals that the only way to get an affine equation is to set

µ(vt)− r = ψvt (B.6)

with a constant ψ, that is in assuming that expected excess returns are linear in the variance. After

assuming Eq. (B.6), the equation for Ft (which enters the optimal allocation through the hedging

component) is

0 = Ḟt+(1−γ)

(
ψ

γ
+
ηρFt
γ

)
ψ−kFt−

1

2
γ(1−γ)

(
ψ

γ
+
ηρFt
γ

)2

+(1−γ)ηρ

(
ψ

γ
+
ηρFt
γ

)
Ft+

1

2
η2F 2

t ,

(B.7)

with terminal condition FT = 0.

The assumption (B.6) is not terribly restrictive from an economic point of view, since standard models

(like CAPM or APT) postulate that expected stock return should be monotone in the stock’s variance.

As discussed in Liu (2007), page 30, it makes perfect economic sense that the Sharpe ratio depends

on variance. The problem of this restriction is in the implication in the optimal strategy, which after

assumption (B.6) becomes:

w∗t =
ψ

γ
+
ηρFt
γ

. (B.8)

Now, optimal allocation in Eq. (B.8) does not depend on the volatility level at all, that is neither

on the instantaneous level vt, nor on the long-run level θ. Indeed, θ is absent even in the hedging

component, determined by Eq. (B.7). For the myopic component, only the ratio of the two risk-premia

ψ/γ counts. Of course, ψ can be interpreted as a mean/variance ratio, so that optimal allocation is

still numerically very similar to the one obtained in our case. However, even assuming Eq. (B.6) is the

correct specification for expected returns, the value of ψ depends, in equilibrium, on the risk aversion

of the aggregate investor, and not on the stock dynamics. This implies, for example, that if we double

θ, the average value of vt would change, as well as the average value of µ(vt), but not the value of ψ,

so that the allocation in the risky assets would not change. Further, the parameter ψ is notoriously

nasty to be estimated, given the inherent noise of stock returns (while average returns can be easily

estimated by equilibrium models like CAPM and/or adjusted using the Black-Litterman technique).

In the multivariate case the story is the very same, as discussed in Liu (2007). For example, Bäuerle

and Li (2013) show that only with a linear drift, that is the multivariate extension of Eq. (B.6), they
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can find a closed-form solution for a matrix affine stochastic volatility model. This solution is still

static and volatility independent (in the sense described above). This implies that if an investor has

to allocate wealth in two stocks which are uncorrelated, the optimal allocation does not depend on

the relative variance of the stocks, but only on the risk premium parameters. If we add jumps, as in

Liu, Longstaff, and Pan (2003), the same reasoning leads to the same conclusion, and for the same

reasons we need to assume that the intensity of jumps is linear in vt. The same applies to multivariate

models with jump, as in Branger et al. (2017).

Thus, we conclude that affine stochastic volatility models, which are popular since they provide closed-

form solutions for the continuos-time dynamic programming model, imply economically improbable

allocations since the optimal strategy they recommend does not depend on the average level of the

covariance matrix.
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C Reliability of the approximation

Here we assume the co-precision matrix Yt to be constant over time. In this case, we can compute the

closed-form solution for the optimal strategy, and we can compare it with our approximated solution

to evaluate the goodness of the approximation itself. We further assume, for simplicity, the jump size

J be deterministic. The model dynamics simplifies to

dSt = diag(St)

[
αdt+

√
Y −1t dZ

(1)
t + JdN(λ)t

]
dYt = 0

, (C.1)

where 0 represents the N ×N matrix of zeros. Given previous assumptions, the optimal weights when

linearizing the jump component of the HJB equation become

w∗t ≈ Yt
[

(α− r1) + λJ

γ

]
. (C.2)

However, the dynamics described by Eq. (C.1) is equivalent to a Merton’s Jump-Diffusion model,

whose corresponding HJB equation results to be simplified. The associated first order condition

equation reads as follows:

0 = (α− r1)− γY −1t w + λ(1 + w′J)−γJ . (C.3)

Thus, Eq. (C.3) can be easily solved numerically, providing the exact optimal allocation. Such a

particular situation allows us to execute a sanity check, by comparing the exact solution with the

approximate one. We use γ = 3 and we assume that Yt is the average co-precision in our sample. The

estimates of the remaining parameters are given in Table 3. The results are illustrated in Figure 4.

The top plot of the figure gives the comparison between the true solution (given in Eq. (C.3)) and

the approximate solution (as in Eq. (C.2)), when we consider the total allocation of our fund of hedge

funds, when the jump intensity parameter is either equal to the estimated value λ = 0.0120 (left plot)

and to λ = 0.04 (right plot), implying that one co-jump occurs every 2.08 years, on average, thus

higher frequency of crashes. The lower plot of the figure represents an analogue comparison in one

case, the CA index. Hence, Figure 4 shows that the approximated optimal allocation is a reasonable

approximation of the true optimal allocation. Importantly, the monotonicity of the allocation with

respect to these parameters is preserved.
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Optimal investment in one asset (CA)
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Figure 4: Comparison between true and approximate optimal portfolio weights, as functions of the price-jump

size for different jump frequencies, when the instantaneous precision is constant over time. The risk-aversion

parameter is γ = 3, the maturity of the investment is 1 year, the remaining parameter estimates are provided in

Table 3. The top charts give the comparison between the true solution and the approximate for total allocation,

the lower charts represent the comparison between the true solution and the approximate one in the CA index

case. The left plots are related to λ = 0.04, the right ones are evaluated with λ = 0.0120. Yt is the average

co-precision in our sample.
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