
An Agent-Based Simulation API for
Speculative PDES Runtime Environments
Andrea Piccione

piccione.1422045@studenti.uniroma1.it
Sapienza, University of Rome

Rome, Italy

Matteo Principe
matteo.principe@students.uniroma2.eu

University of Rome “Tor Vergata”
Rome, Italy

Alessandro Pellegrini
pellegrini@diag.uniroma1.it
Sapienza, University of Rome

Rome, Italy

Francesco Quaglia
francesco.quaglia@uniroma2.it
University of Rome “Tor Vergata”

Rome, Italy

ABSTRACT
Agent-Based Modeling and Simulation (ABMS) is an effective para-
digm to model systems exhibiting complex interactions, also with
the goal of studying the emergent behavior of these systems. While
ABMS has been effectively used in many disciplines, many suc-
cessful models are still run only sequentially. Relying on simple
and easy-to-use languages such as NetLogo limits the possibility to
benefit from more effective runtime paradigms, such as speculative
Parallel Discrete Event Simulation (PDES). In this paper, we dis-
cuss a semantically-rich API allowing to implement Agent-Based
Models in a simple and effective way. We also describe the critical
points which should be taken into account to implement this API
in a speculative PDES environment, to scale up simulations on dis-
tributed massively-parallel clusters. We present an experimental
assessment showing how our proposal allows to implement com-
plicated interactions with a reduced complexity, while delivering a
non-negligible performance increase.

CCS CONCEPTS
• Computing methodologies → Discrete-event simulation;
Agent / discrete models; Simulation support systems; Mas-
sively parallel and high-performance simulations.

KEYWORDS
agent based modeling and simulation, parallel discrete event simu-
lation, runtime environments

ACM Reference Format:
Andrea Piccione, Matteo Principe, Alessandro Pellegrini, and Francesco
Quaglia. 2019. An Agent-Based Simulation API for Speculative PDES Run-
time Environments. In SIGSIM Principles of Advanced Discrete Simulation
(SIGSIM-PADS ’19), June 3–5, 2019, Chicago, IL, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3316480.3322890

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6723-3/19/06. . . $15.00
https://doi.org/10.1145/3316480.3322890

1 INTRODUCTION
Agent-Based Modeling and Simulation (ABMS) is a powerful par-
adigm in which the system is represented by a collection of au-
tonomous decision-making entities (the agents) which are set out
in an environment [3, 30]. Each agent individually assesses the
surrounding environment, also taking into account the presence
of other agents, and makes decisions on the basis of a certain set
of rules which implement their behavior. During its lifetime, an
agent can decide to change its behavior, also depending on the
environment state and interactions with other agents. The actions
that agents take might also have effects on other agents and/or on
the surrounding environment—for example, an agent can produce,
consume, or exchange items.

ABMS is considered incredibly powerful for multiple applica-
tions and real-world business problems for a number of reasons.
First of all, the model developer can concentrate on the design of
agents behavior independently of where the agents will act. This
significantly simplifies the development of complex models, allow-
ing to reach results which could be difficult when relying on more
traditional mathematical methods [11, 15]. Second, the interaction
of multiple agents in a system can exhibit complex behavioral pat-
terns [39], able also to show (or even anticipate) what is commonly
referred to as emergent behavior. Several approaches have also cou-
pled sophisticated models with neural networks [19], evolutionary
algorithms [29], or other learning techniques in order to provide
the agents with behavioral adaptation, making ABMS even more
powerful and realistic.

In general, ABMS requires three common aspects to be dealt with
to be effectively used to find a solution for real-world problems:

• Agent specification: agents are described in terms simulation
state, namely the set of explanatory variables which keep
track of their evolution and interaction with the environ-
ment/other agents; this state might drive the behavior of
agents during the simulation. Each agent must be identified
uniquely in the whole system.

• Interaction definition: agents interact with the environment
and with other agents. The decisions which agents make
might depend also on the state of portions of the environ-
ment which are nearby the current position of the agent,
or on the presence/absence of other specific agents in the
(surrounding) environment.

https://doi.org/10.1145/3316480.3322890
https://doi.org/10.1145/3316480.3322890

SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA Piccione, et al.

• Topology specification: ABMS is extremely versatile, there-
fore requiring to model complex topologies. While many
approaches rely on grid-based environments, more complex
(graph-based) topologies can enable more interesting inter-
actions to be described or to emerge. Modern ABMS requires
to overcome the traditional definition of a physical environ-
ment, because it might be defined by several layers of (also
virtual) information, and might therefore be also modified
by the agents themselves.

The size of problems tackled through ABMS is growing in size at
an unprecedented pace. The intrinsic dynamic nature of real-world
phenomena commonly modeled through the ABMS formalism can
easily lead to a significantly increased complexity due to the fol-
lowing reasons (also in combination):

(1) A very large number of agents are involved, or the environ-
ment is extremely large. Here, unfeasibility can material-
ize either in too long execution times, or in non-sufficient
memory capacity on single nodes (the so-called memory
wall [31]). This is a fundamental aspect especially when
large models are necessary to disclose an emergent behavior
which a small-scale variant is not able to show, e.g. when the
emergent property is linked to the amount of interactions
between the agents [32, 41].

(2) Increased amount of data which enable the implementation
of micro-level simulation models [34], based on the inclusion
of an always larger set of explanatory variables in the state
of single agents.

(3) Enriched decision-making policies in the agents, such as
rational behavior or cognitive and psychological processes.
These aspects (mostly related to micro-simulations) can re-
quire higher computing demands.

(4) Interest in systems which exhibit a non-linear, dynamic be-
havior, with high uncertainty and notable degree of stochas-
ticity. In this context, a single run of the simulation model
is not sufficient: to obtain statistically-significant results, a
calibration based on multiple repeated simulations is the
only solution to deal with parameter sweep. While a single
simulation could be feasible, a large number of simulations
might be not.

While the formalism allows to easily deal with this increased
complexity, traditional frameworks to run ABMS might experience
performance penalties which make finding solutions to these what-
if analysis problems unfeasible, preventing researches to find the
needed insights [2]. As an example, in contexts such as demog-
raphy [34], ABMS applications are developed mostly relying on
sequentially-executed languages such as NetLogo [44]. This is due
to the fact that developing sequential models is easy, especially
for experts coming from domains not related to computer science.
This is a problem so hot that researchers are investigating multiple
approaches to speedup the execution of agent-based models on
extremely parallel architectures [48].

From an architectural point of view, Discrete-Event Simulation
(DES) is the paradigm which best fits the runtime requirements
of ABMS, since the impulsive nature of the events proper of DES
perfectly embraces the way agent-based models should be executed.
To meet the current scale of these models, the literature on Parallel

DES (PDES) [17] has identified in the speculative Time Warp syn-
chronization protocol [23] a viable solution to cope with large-scale
parallelism.

Anyhow, when dealing with speculative PDES, the modeler
might be exposed to many details which should not be mastered by
domain experts. This is strictly related to the fact that Time Warp
enforces consistency by means of the rollback operation. Any time
that it is determined that the execution has reached an inconsistent
point in the simulation, e.g. due to the reception of an out-of-order
event, a previous consistent snapshot is identified and restored,
allowing the trajectory to deviate and resolve the causality viola-
tion. The rollback operation has been traditionally implemented
either by means of state saving and restore (since the seminal paper
in [23]), or by means of reverse computation [6]. In the former
case, the simulation model developer is often exposed to the state
saving operation, either in terms of the invocation of explicit ser-
vices exposed by the runtime environment to take a checkpoint, or
by the need to annotate or notify the runtime environment of the
organization in memory of the simulation state. In the latter case,
the modeler is often asked to implement by hand reverse events,
which might even double the time and cost of model development,
although some proposals in the literature have tried to automatize
this process (see, e.g., [8, 26, 46]).

When dealing with the large number of domains which benefit
from ABMS, it is simply not possible to demand from the devel-
opers to explicitly tackle all the aforementioned technical aspects.
Therefore, in this paper we describe an API explicitly targeting
the development of agent-based models, which has been devised
keeping in mind the three aforementioned needs of ABMS (namely,
agent specification, interaction definition, and topology specifi-
cation). This API is meant to be semantically-rich, thus allowing
domain experts to benefit from it in the process of defining an agent-
based model. At the same time, it has been designed also keeping in
mind the peculiarities of speculative PDES run on distributed clus-
ters of massively-parallel machines, hiding away from the modeler
its complexity. We have considered generic runtime environments
when devising the API1, focusing anyhow on multi-threaded sim-
ulation kernels. Indications to implement this API in speculative
runtime environments are described in this paper in an attempt at
bridging the gap between the users of ABMS runtime environments,
and the architectural capabilities of modern computing infrastruc-
tures. We evaluate both the effects on programmability, and the
performance of an implementation of the API. Moreover, this API
can be regarded also as the target of other approaches to simplify
the programming model, e.g. the use of domain-specific languages
(such as OpenABL [13]) which could be effectively transpiled to
our API.

The remainder of this paper is organized as follows. In Section 2
we discuss related work. Section 3 presents the API specification
for last-generation PDES runtime environments. An assessment of
our proposal, both in terms of effects on programmability and per-
formance of an implementation of the API is discussed in Section 4.

1All models and the implementation of the API are available online in the official
ROOT-Sim repository, at https://github.com/HPDCS/ROOT-Sim. The artifacts used for
the reproducibility assessment can be found at https://doi.org/10.5281/zenodo.2597110.

https://github.com/HPDCS/ROOT-Sim
https://doi.org/10.5281/zenodo.2597110

An Agent-Based Simulation API for Speculative PDES Runtime Environments SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

2 RELATEDWORK
ABMS and PDES are two topics which have been extensively stud-
ied in the literature, and there have already been attempts to bridge
the gap between the two worlds. We can find a large number
of frameworks to support agent-based simulation in the litera-
ture. Some of the most known ones are NetLogo [44], Mason [28],
RepastHPC [10], Swarm [22], JAMES II [20]. Many of these pro-
posals might not be well suited for future exascale computing in-
frastructures. Therefore, some proposals have been made to devise
frameworks which can significantly scale up—see, e.g., [27, 43], with
the latter proposal also addressing model interoperability, thanks
to the reliance on the High-Level Architecture. For a thorough com-
parison of these (and many more) ABMS frameworks, we refer the
reader to the comprehensive work in [1]. Here, we discuss only
proposals which have the closest relation to our contribution.

MASON [28] pays special attention to the performance of simula-
tion execution, addressing computing-intensive models (i.e., scenar-
ios with many agents), along with portability and reproducibility
of the results across different hardware architectures. A parallel/
distributed version (D-MASON) has been presented in [12], which
relies on time-stepped synchronization and on the master/slave
paradigm. We similarly address the performance of agent-based
simulation execution, yet we do this for the case of speculative asyn-
chronous (non-time-stepped) PDES. In particular, we benefit from
the performance improvement which can stem from the TimeWarp
synchronization protocol, while allowing a simple implementation
of agent-based models via an expressive API.

Pandora [47] is a C++-based simulation framework enabling
executions in parallel/distributed environments. It features several
AI algorithms for supporting agents’ decision making and provides
python bindings (which is a benefit for inexperienced programmers).
At the same time, Pandora does not hide its internal complexity by
design, allowing (and sometimes requiring) the model developer to
extend its fundamental classes, just to perform simple actions. Con-
versely, in our proposal we offer the simulation model developer
an API that is specifically tailored for implementing agent-based
models, and which hides away all the idiosyncrasies of synchro-
nization in a distributed simulation. This allows for a simplified
implementation of simulation models, giving transparent access
to highly optimized synchronization facilities to support efficient
computations on clusters of modern parallel machines.

AnyLogic [4] is a commercial multi-method general-purpose
simulation modeling and execution framework which can run sim-
ulations also in the cloud. AnyLogic allows users to spawn multiple
simulations in parallel thanks to cloud resource provisioning. Re-
cent versions of AnyLogic allow to deal with arbitrary topologies
as we do, making it more evident the importance of this aspect for
modern simulation platforms. Anyhow, the ultimate goal of the
AnyLogic framework is to scale out simulations, while our pro-
posal is intended particularly to increase the performance of single
simulation runs.

FLAME [21] is a simulation framework targeting large, complex
models with large agent populations to be run on HPC platforms
using MPI and OpenMP. The counterpart FLAME GPU [40] targets
3D simulations of complex systems with a multi-massive number
of agents on GPU devices. We keep the ability to deal with large

number of agents, yet we rely on traditional CPU-based execution
of the simulation model.

RepastHPC [10] and Swarm [22] are two ABMS runtime en-
vironments which have been successfully used to deliver high
performance of agent-based models. These runtime environments
support different programming languages, and allow agents to in-
teract through the exchange of discrete events. Differently from our
proposal, they require high programming skills to be effectively
used. Therefore, they are commonly regarded as complex-to-use
frameworks [1].

RAMSES [7] is an ABMS runtime environment, with a focus on
transparency. An ABMS API has been already proposed in [7], with
a goal similar in spirit to that of our proposal. The main differences
between the two works are that: i) in [7], the API is based on
the implementation of complex functions which are passed via
pointers to the API, making it difficult to create bindings in different
languages; ii) RAMSES supports only reversible computation, while
the API which we propose can be implemented in both reverse
computation-based and state saving-based runtime environments;
iii) if an agent has to make decisions based on the state of the
surrounding environment, this has to be implemented via explicit
message passing; iv) dynamic topologies are not supported.

With respect to programmability, OpenABL [13] is a recent pro-
posal of a domain-specific language which allows to formulate
agent-based models in a way which is independent of the actual
hardware on which the simulations should be run.While the benefit
of relying on domain-specific languages is undoubted to simplify
the development process of a simulation model, in this paper we
focus on runtime environments. In this sense, our proposal is com-
plementary to that of OpenABL.

3 THE ABMS API
As mentioned, we propose an API for ABMS which is semantically-
rich for the developers and which, at the same time, targets runtime
implementations to transparently bridge the gap towards efficient
speculative PDES runs. We organize the presentation of the API
functions depending on the specific aspects which they tackle.

3.1 Modeling Agents and their Interactions
We describe here all the functions exposed by the API, also de-
scribing what are the aspects that an implementation within any
(speculative) runtime environment should take into account to en-
sure performance and consistency of the simulation. The API is
presented as signatures of a possible C implementation, but by no
means it is limited to this programming language. As a preliminary
note, this is a stateful API: therefore, the runtime environment must
maintain a set of data structures to keep track of the evolution of the
simulation. For the sake of performance, we suggest that these data
structures are setup lazily, i.e. when a first call to the API requiring
them is issued.

Taking inspiration from [7, 36], and taking also into account
the way agent-based models are commonly implemented, in our
programming model we map environmental regions to LPs, while
agents are mapped to data structures (or objects, in runtime envi-
ronments supporting object-oriented programming). Agents are
therefore handled as variables, a simple concept which is mastered

SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA Piccione, et al.

also by non-experienced programmers from a multitude of domains.
This is a fundamental choice, because it can significantly simplify
the implementation of multiple agents’ interactions in a neighbor-
ing region. Moreover, although we talk of the environment, by no
means ABMS is limited to physical environments. Therefore, it is
possible that the “regions” of the environment represent logical
entities, and this aspect must be taken into account by the runtime
environment—this is exactly why we do not force developers to be
stuck, e.g., to grid-based environments, but we support also generic
(graph-based) environments—for the sake of simplicity of presen-
tation, we will talk of regions in the remainder of the paper, also
when referring to a node in an abstract graph topology.

The first aspect to take into account is how to identify an agent.
To this end, we introduce the agent_t type, which can be regarded
as a unique identifier (UID) describing a single agent system-wide.
The runtime environment should be able, also in a distributed set-
ting, to generate agent_ts uniquely. Each simulation kernel in-
stance is already commonly identified uniquely in the system (e.g.,
thanks to an MPI rank). Therefore, it is sufficient to rely on a per-
instance monotonic counter and generate UIDs by computing the
Cantor pairing function:

(K + c) · (K + c + 1)
2

+ c (1)

where K is the id of the simulation kernel instance (e.g., its MPI
rank) and c is the current value of the per-instance monotonic
counter. This approach is quite effective—the pairing function is
fast, as it relies only on integer arithmetic—and can work mostly
out of the box in a multithreaded environment thanks to hardware
synchronization facilities such as the fetch and add read-modify-
write instruction2, which allows all threads to consistently read
and increment c also in a concurrent execution3.

An efficient management of the agent_t type is fundamental,
because agents are dynamic entities. As we will show, agents can
have a lifetime shorter than that of the whole simulation, as we
explicitly allow new agents to be spawned or removed from the
simulation at any time. Therefore, any time that the model wants to
manage agents, this must be done via API functions which deal with
dynamically-handled agent_ts. Therefore, we suggest organizing
agent_ts hosted within a certain portion of the environment (an
LP) into a hashmap, so as to reduce the latency of retrieving the data
structures used to represent an agent. It is important to note that,
as mentioned, the state of an agent must keep all the explanatory
variables that allow the agent’s logic to take decisions or change
its own behavior. To this end, the simulation model developer can
rely on any arbitrarily-complex data structure, and associate that
at runtime with an agent_t. Since in an agent-based model there
could be different families of agents—in the limit case, each agent
might be described by a different simulation state—the simulation
model developer must be allowed to easily define a per-agent data
structure.

3.1.1 Basic Agent Management. After these considerations, we can
now start to describe the part of the API which allows to manage
the agents in the model. The following API functions are defined.
2This is a hardware facility which is available on all commodity CPU implementations.
3This approach can of course return two equal values when the counter overflows,
but relying on 64-bit integers will significantly reduce this probability.

AddAgent(unsigned user_data_size). This is the API call
which allows, at runtime, to create a new agent in the system. It
returns an agent_t uniquely identifying the new agent system-
wide. This function instructs the runtime environment to allo-
cate and associate with the returned agent_t a buffer of at least
user_data_size bytes, so as to allow the model developer to store
and carry around data. Given the speculative nature of the runtime
environment which we envisage, the creation of an agent should
be rollbackable. In particular, this creation should be rolled back if
the event during whose execution the invocation to AddAgent()
took place is undone. Therefore, the runtime environment must
associate the (dynamically-allocated) buffers to keep the agent rep-
resentation with the event which caused its allocation and the LP
at which this event has been executed.

The literature already offers multiple solutions which can be used
to solve this problem (see, e.g., [37, 45]). In particular, if the run-
time environment allows the simulation model to rely on dynamic
memory (e.g., by supporting calls to malloc()/free() which are
transparently rolled back), then it is sufficient to redirect the alloca-
tion of the agent data structure to per-LP memory. This means that,
for a limited time span, the agent belongs to the simulation state
of the LP modeling the region within which the agent is residing.
This is clearly desirable, since all the interactions between agents
which happen within one region of the environment (mapped to
an LP) will belong (for a period of simulated time) to the same
simulation state. In this way, all the agents will observe a consistent
simulation snapshot while simulation events access/modify their
data structures.

In this way, if the event which created a new agent is rolled
back, the policies taken to restore a previous consistent simulation
state will release the memory associated with that agent too. Given
that agents are identified by a UID, if the UID-generating module
applies a rule similar to Equation (1), there is no need to rollback the
state of that generator—simply, the UID associated with the rolled
back agent will not be associated with any agent in the corrected
simulation trajectory.

RemoveAgent(agent_t agent). Similarly to the creation of an
agent, the simulation model might determine at a certain point in
simulation that an agent no longer has to be part of the simulation.
The RemoveAgent() API serves this purpose. This API function
accepts an agent_t generated by a previous call to AddAgent().
The semantic associated with this API is such that, from that point
in simulation on, any attempt to interact by API calls with the agent
identified by the UID stored in agent should fail.

Regarding the release of thememory buffers used to keep track of
that agent, we note that the event issuing a call to RemoveAgent()
can be also rolled back. Therefore, the invocation to this API func-
tion is subject to rollbacks as well. With respect to the buffers used
to keep the agent data structure, the same considerations made for
the AddAgent() API function apply. On the other hand, the situa-
tion is different with respect to the UID kept in agent_t. Indeed,
any subsequent interaction with that agent (even in the same event)
should fail. Yet, if the call to RemoveAgent() is rolled back, that
UID must become valid again.

As mentioned, we suggest organizing all UIDs in a fast hash
table. The hash table can be augmented with a per-agent flag, telling

An Agent-Based Simulation API for Speculative PDES Runtime Environments SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

Figure 1: Agents management timeline.

whether some UID has been retracted from the simulation or not.
A call to RemoveAgent() will therefore simply flag an agent as
retracted. The UIDs which are retracted during the execution of
the event can be stored in an ad-hoc buffer (e.g., a resizable array)
kept in the data structure describing the event. Upon a rollback
operation, the message buffer of the undone event is inspected,
and all agents which were retracted can be “reintroduced” in the
system by simply clearing their retraction flag. An agent is definitely
(and consistently) removed from the simulation upon the GVT
computation. In particular, when a committed event is removed
from the LP queue (as in traditional Time Warp simulations), its
retracted agents’ buffer can be inspected so as to remove from the
hash map the associated UIDs, and free memory buffers. A parallel
execution of the fossil collection phase after the GVT reduction
is desirable, especially if it involves all the threads of the parallel
runtime environment. Such a solution has a twofold benefit: i) it
allows to reduce the overall time required to garbage-collect older
buffers—we will describe other actions which shall be done after
the GVT reduction—and ii) is introduces a “similar” delay on all
worker threads, thus likely not generating a skew in the LVT of the
various LPs which could possibly increase the rollback probability.

GetAgentData(agent_t agent). Since the state of an agent,
composed of its explanatory variables, can be freely organized by
the simulation model developer, we have devised a simple API to
manage agents’ states. This API function, given the UID of one
agent, returns a pointer to a memory buffer which can be used to
store the agent’s state. The size of this memory buffer should be
at least of user_data_size bytes, i.e. the amount specified when
creating an agent via AddAgent(). This memory buffer must be
handled by the runtime environment from its allocation, via a call
to AddAgent(), to its dismissal, after the computation of the GVT.

An overall timeline of the lifetime of an agent in one region (LP)
of the simulation is depicted in Figure 1.

3.1.2 Supporting Agent Interactions and Decisions. We now move
to describing the part of the API which allows multiple agents to
interact when they are in the same portion of the environment (i.e.,
the same LP), or in proximity.

CountAgents(void). As mentioned, ABMS can be particularly
useful to study emergent behaviors. One fundamental aspect is to
know the number of agents which are close to each other. Since in
our system model each LP manages a portion of the environment,
we can easily retrieve the number of agents which are currently in
the LP running a simulation event by calling this API function.

The implementation of this API function should be quite simple,
provided that there is a fast per-LP hash table, telling what are the
UIDs of the agents currently registered at one LP.

IterAgents(agent_t *agent_p). In order to support the sim-
ulation model developer at easily scanning through all the agents
which are registered at a certain LP, this API function allows to im-
plement an iterator. In particular, by repeatedly calling this function,
the model will find stored in agent_p the id of the “next” agent reg-
istered in the region. Once the UID of the “next” agent is retrieved,
the simulation model can interact with it in the desired way, by
relying on any other API function. There is no strict requirement
on the order according to which agents’ UIDs are returned to the
simulation model developer, therefore the most efficient implemen-
tation can be picked for the runtime environment—this strongly
depends on the way agents are registered within one region: if a
per-LP hash table is used, then the “most efficient order” could be
that of scanning through the table.

RegisterNeighborInfo(void *neighbor_data). More com-
plex decisions can be taken by the agents if they know about the
state of the environment in proximity, not only of the portion of
the environment in which they currently reside. While an agent-
based model runs in a sequential or time-stepped environment
can immediately access this information, speculative PDES poses
an additional challenge. Indeed, in our system model, different
regions are mapped to different LPs, which might have reached
different simulation time instants due to the speculative nature
of the simulation. Supporting this decision-making capability can
be burdensome for the system. Consider, as an example, an agent
registered in a region mapped to LPx which has to decide whether
to reach either LPy or LPz depending on the “crowdedness” of the
destination regions. To make an informed decision, the agent has
first to collect the number of agents currently residing at LPy and
LPz . To implement this logic in traditional PDES, the model de-
veloper has to split this logic into multiple events to acquire the
agent count in both LPs and then determine what is the correct
destination. Given the speculative nature of the simulation, LPy
and/or LPz might be forced to rollback. Additionally, since these
“support events” could likely be simultaneous events, this might
place an additional burden to the runtime environment, due to the
need for some sort of tie-breaking function.

RegisterNeighborInfo() tries to solve these problems. The
idea behind this API function is to implement a sort of publish/
subscribe protocol between connected LPs. The model developer,
at simulation startup, can define a portion of its simulation state
which should be broadcast to all neighbor LPs, according to the
current topology of the simulation—we will describe how the topol-
ogy is supposed to evolve in section 3.2. In this way, the runtime
environment is requested to make a local copy of the data of inter-
est across neighboring LPs. This copy, which can be broadcast via
traditional message passing, is superseded every time that a new
version of the data is installed. Therefore, any time that an event
needs to access data from a neighbor, a local copy can be inspected.

Two points deserve a discussion about an efficient implemen-
tation of this API function. First, not all events might update the
portion of the state watched by RegisterNeighborInfo(). To re-
duce the number of messages which are silently exchanged, the
runtime environment must detect whether the watched memory
area has been updated by an event or not. To this end, depending

SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA Piccione, et al.

on the actual organization of the runtime environment, we envis-
age two possible baseline implementations. One implementation,
which is the one used in the experimental assessment presented in
this paper, relies on a fast hash function to compute a hash of this
memory buffer4 to detect whether the last-executed event modified
the buffer. An additional option, which is more costly, is to rely on
memory protection mechanisms provided by, e.g., mprotect().

The second point is associated with consistency of the values
observed by the neighbors. Since updates must be transparently
sent to neighbor LPs upon a state update, if the original event which
caused the state transition is rolled back, also the updates towards
the neighbor LPs should be annihilated. This is especially important
because if an event executed at a neighbor LP read the retired value,
also its execution must be rolled back, according to the global
synchronization mechanism proper of Time Warp. To this end, we
suggest relying on control messages, namely messages which are
exchanged at the level of the runtime environment, destined to
a certain LP, that are included in the event queue but are never
delivered to simulation model handlers. These control messages
allow to record that at a certain point in the simulation trajectory
some relevant event happened, which must be subject to rollback
operations, or which can be subject to the delivery of antimessages.
The logic associated with these events is exactly that of updating
the local copy of remote portions of the simulation state, once
the timestamp associated with them is reached in the simulation.
Annihilating such control messages via anti events cancels updates
which have not yet been processed, while relying on the rollback
operation allows to restore previous consistent snapshots in case
that remote state updates are retracted. Of course, the buffers to
store these copies must be rollbackable, so the same considerations
for the buffers to keep agents explanatory variables apply.

GetRegionData(direction_t direction, unsigned int
*region_id, void **data_p). This API function is a simple
entry point to the transparent local copies made by the runtime en-
vironment thanks to the RegisterNeighborInfo() API function
described above. The goal of this API is to retrieve the data of a
neighboring LP, which is made accessible by the runtime environ-
ment via the data_p pointer. To select what is the region which the
user is interested in, the direction_t data type can be used. This
allows to “navigate” the selected current environment topology —
this concept will become clearer once we discuss how the topology
is supported. In region_id, the runtime environment stores the id
of the LP currently handling the portion of the environment which
we target with direction.

3.1.3 Moving Agents Around. We now discuss the portion of the
APIwhich supports agents’ mobility.We stress that the specification
is general, and by no means we are bound to a physical embedding
or a physical mobility model. To fully understand the functions
which we have devised in our API, we shall explain why usually
time-stepped simulation is considered easy-to-use in agent-based
simulations. In many classical agent-based models from the liter-
ature (e.g., flocks [39], or game of life [18]), updates in the agents
and/or the environment happen “globally”. This means that it is not
4We suggest using xxHash [9], an extremely-fast general-purpose hashing function
working closely to the speed of RAM, and faster than memcpy(). Implementations for
multiple programming languages are available.

possible to make a definitive decision observing a subregion of the
model. This approach, although simple, significantly clashes with
the speculative PDES data partition-oriented approach, which is one
of the reasons why the Time Warp synchronization protocol is so
effective. To bridge the gap between these two approaches, agents’
mobility decisions are made observing local information only and
can be changed/retracted at any time by the model. This means
that, once the simulation model logic decides that an agent should
move from one region to another, this is the “best educated guess”
that the model can make at that point of the simulation. This guess
can be proven wrong later on by the model itself, and therefore the
runtime engine should be informed of a modified decision—this
also means that the mobility decision can be retracted completely.

To support this programming model without placing a high
burden on the developer, we adopt a twofold strategy. On the one
hand, we introduce the concept of visits: an agent has a set of
regions to be visited, which can be modified at any time. These
create a visit list which allows to describe the “ordering of places” in
the topology which the agent will reach during the lifetime of the
simulation5—we emphasize again that the topology can be “virtual”,
meaning that the visit list can be also used to construct at runtime
a set of pending logical tasks for the agent or a combination of
physical and logical actions. Every time that the agent makes a
decision, it can modify this list arbitrarily. Two different agents
have always a different visit list, but of course two agents can reach
the same regions in the same order, depending on the logic that
the simulation model is implementing. This is a versatile way to
describe theway an agent explores and interacts in the environment,
which can be easily adapted to many real-world problems. If agents
do not have a large lookahead, the visit list simply boils down to
the next region to visit.

EnqueueVisit(agent_t agent, unsigned region, unsigned
event_type). This API function allows to store at the end of the
current visit list a new region to be reached. Once this visit is fired—
the triggering API is ScheduleNewLeaveEvent() described below—
the destination LP identified by region is hit by the event_type
event.

CountVisits(const agent_t agent). This API function al-
lows to return the number of regions which are stored in the visit
list which can be reached by the agent in its futuremoves. Past visits,
namely regions which have already been visited, are not accounted
for in this number. The CountPastVisits(const agent_t agent)
API function can be used to this end.

GetVisit(const agent_t agent, unsigned *region_p,
unsigned *event_type_p, unsigned i). During the lifetime of
the model, it might be of interest to inspect the future visit list. To
this end, with respect to the i-th future visit, a call to this API will
store into region_p the id of the LP to which the visit is associated,
and into event_type_p the type of the event which will be sched-
uled when this visit is fired. If a user is interested in getting informa-
tion about past visits, the GetPastVisit(const agent_t agent,
unsigned *region_p, unsigned *event_type_p, simtime_t
*time_p, unsigned i) API function can be used.

5An example use-case scenario for visit lists is a delivery model: each agent has a
set of items to be delivered to specific places in the environment which is defined at
simulation startup. This list can dynamically change, e.g. due to traffic conditions.

An Agent-Based Simulation API for Speculative PDES Runtime Environments SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

With respect to the runtime environment implementation, we
emphasize that the GetPastVisit() API function can produce a
non-negligible memory footprint. Indeed, if the agents have a high
mobility, especially in very long simulations, this past visit list
might become very long. Since the semantic of this API is to allow
to retrieve any past visit, also those associated with the committed
portion of the simulation trajectory, we are not allowed to prune
the past visit list even when a new GVT value is computed. Due to
this consideration, we leave to the implementation the choice to
always maintain the list of past visits, or start keeping them once
the first invocation to GetPastVisit() is issued—in this latter case,
of course, the model might not be able to observe the whole past
visit list.

The last API functions to manage visit lists should allow to
modify the current list. AddVisit(agent_t agent, unsigned
region, unsigned event_type, unsigned i) allows to in-
sert a new visit just before the i-th element in the future visit
list, while SetVisit(const agent_t agent, unsigned region,
unsigned event_type, unsigned i) allows to modify an al-
ready inserted visit (e.g., to modify the event associated with the
firing of that visit). If a visit is to be removed from the future list,
RemoveVisit(agent_t agent, unsigned i) can be used.

In Figure 2 we provide a graphical representation of the visit list
and the management operations supported by our API. From an
implementation point of view, the visit list can be realized either by
relying on resizable arrays, or by using actual linked lists. While the
latter implementation is easier, we encourage to pick the former,
because it can provide a significant performance improvement
thanks to memory locality. Moreover, such a compact data structure
might be easily migrated around, e.g. across different NUMA nodes,
thus being highly manageable by environments which enforce
memory-oriented optimizations at runtime.

ScheduleNewLeaveEvent(simtime_t time, unsigned int
event_type, agent_t agent). A visit list by itself does not iden-
tify at what simulation time the agent will reach the next region.
To this end, the ScheduleNewLeaveEvent() API function allows
to tell the runtime environment what is the current guess for the
simulation time at which the “next hop” in the visit list will be
taken. The simulation model is allowed to call this API function
multiple times, therefore allowing to override the previous guess,
provided that this call is issued by an event executed by the LP
which is currently hosting the agent and before the visit event is
fired—conversely, it will fail. If this call fails, it should not produce
any runtime error, as the model developer might want to rely on
this simple semantic (namely, “try” to make an agent leave) to keep
the implementation simpler. If an agent is removed from the simu-
lation by means of a call to RemoveAgent(), the firing of the leave
event will never take place.

The only constraint to enforce is that time is in the future of the
current simulation time at which the call takes place—this follows
the traditional Time Warp synchronization protocol. To support
this API function, we suggest the runtime environment to rely once
again on control messages. These should be placed in the event
queue of the LP which has called the ScheduleNewLeaveEvent()
so that when its clock reaches the point in the simulation execution
identified by time, then an event is sent to the LP associated with

agent_t

region: 1
event: A

region: 11
event: A

region: 21
event: A

region: 2
event: A

region: 12
event: A

region: 13
event: A

EnqueueVisit()

CountVisits()CountPastVisits()

AddVisit()

Figure 2: Visit management with respect to current region.

the next region to be visited. The payload of this event is the data
structure (also with the user-defined payload) associated with the
agent whose UID is agent.

This leave event can be rolled back as any other event. For the
sake of efficiency, we suggest not to remove the data structure
associated with agent from the sender LP, but rather to use the
retraction flagwhichwe have discussed before. These buffers will be
released upon the computation of the GVT.While this might overall
consume more memory, especially if an agent moves a lot, it can
significantly reduce the overhead to support rollback operations.
We envisage memory recollections policies, similar in spirit to the
cancelback protocol [24], such that if free available memory falls
below a certain threshold, buffers keeping older incarnations of
agents which have left an LP can be released.

As a last note, we have to reconcile the just discussed optimiza-
tionwith the possibility that an agent visits the same regionmultiple
times. In this case, it could be that in the speculative portion of the
simulation trajectory, the same UID entry in the hash table should
be associated with multiple incarnations of the same agent. In this
case, it is sufficient to extend the hash table with a stack. In this
stack, the agents are placed in descending timestamp order, thus
allowing simulation events to always find on the top the newest
incarnation of the agent. If a rollback operation occurs, then the no-
longer consistent nodes—these are the agents’ incarnations which
have been rolled back—can be popped and freed. In this way, again,
the top of the stack will point to the last consistent snapshot of the
agent representation. In Table 1 we summarize the API which we
have described so far.

3.2 Describing the Topology
As mentioned, the topology definition in an ABMS-oriented API
must guarantee two fundamental aspects, along with extreme sim-
plicity: i) high expressiveness, because the ABMS paradigm allows
to represent very different aspects of the world; ii) the possibility
to arbitrarily change the topology at runtime. As for the second
point, this is fundamental because physical environments can be
modified by the agents, or can be subject to changes related to the
evolution of the agents (e.g., in disaster or rescue scenarios). Sup-
porting a changing topology in a speculative runtime environment
is a challenging aspect.

An initial topology must be specified at simulation startup, pos-
sibly along with details about the topology’s custom configuration.
This means model developers can specify shape of cells, how many
sides and corners they share with other cells and how many cells
they can consider as neighborhoods (i.e. the radius of the neigh-
borhood). Despite this aspect is well studied in the literature, it
allows model developers to generate arbitrarily complex topologies
addressing their needs. To accomplish this, we comply with tradi-
tional file-based startup configurations—in our implementation, we

SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA Piccione, et al.

rely on a JSON file. For the lack of space, we cannot provide the
full JSON specification which we have envisaged. Several reference
configuration files are anyhow available in the online repository.

The following is the set of topologies which we consider funda-
mental for ABMS—we also provide a graphical representation in
Figure 3—which should be supported by the runtime environment,
by means of the proposed API:

• Square: Each LP models a square cell. The overall environ-
ment can be either a square or a rectangle (this poses a
limitation on the number of LPs that can be used in a sim-
ulation run). Four or eight neighbors can be reached from
each cell, except from the boundaries.

• Hexagon: Each LP models a hexagonal cell. This topology is
similar in spirit with the Square topology, but 6 neighboring
cells can be reached from every cell not lying on the border.

• Ring: LPs are organized in a mono-directional ring. Agents
can move from one LP to only one adjacent LP, in a single
direction.

• Bid-Ring: A bidirectional ring is similar in spirit to a Ring
topology, except for the fact that agents can move in two
directions.

• Torus: A torus is similar in spirit to a Bid-Ring topology,
except for the fact that this is a 3D topology in which from
each LP there are 4 or 8 possible neighbors to reach.

• Star : A single LP is connected to all LPs. If an agent wants to
move to any other LP, it has to pass through the central LP.

• Fully Connected Mesh: Every LP is connected to any other LP.
This topology can create the highest burden on the runtime
environment, due to the high level of communication that
can exist across the network.

• Graph: This is a generic weighted and directed graph. Each
LP is connected to a subset of all the LPs, and each connec-
tion (an edge) is associated either with a weight or with a
probability. The agents can stochastically move around, tak-
ing into accounts the weights or the probabilities on each
edge. In this case, for each node, the startup configuration file
should provide a list of reachable nodes, with the associated
weight/probability.

The latter topology allows to model changing environments at
runtime. In particular, the graph topology can be implemented as a
weighted fully-connected mesh, in which forbidden connections
have an infinite weight or a zero probability6. In this way, by rely-
ing on the topology API, it is possible to change at runtime these
weights/probabilities, in order to modify the connections across
the environmental regions. Changes in the topology must be again
rollbackable. Therefore, the runtime environment must associate
the event which altered the topology with the new incarnation of
the topology, and in case of a rollback, the change must be undone.
This is not a trivial aspect, given that other events scheduled at
other LPs might depend on a no-longer consistent topology. These
events must be also rolled back, thus possibly generating cascad-
ing rollbacks. Moreover, changes in the topology might target LPs
hosted at a remote kernel instance in a distributed environment,
which must be notified of these changes via message passing. Again,

6Of course, if the graph is sparse, more compact data structures can be used. We leave
the choice to the implementation of the runtime environment.

API function Description
AddAgent Create a new agent
RemoveAgent Delete an agent
GetAgentData Retrieve an agent’s information
CountAgents Retrieve the number of agents in the

neighborhood
IterAgents Return an iterator on the agents in the

current region
RegisterNeighborInfo Subscribe to a region information
GetRegionData Retrieve information of a specific region
EnqueueVisit Add a region to an agent’s visit list
CountVisits Return the number of entries in the

pending visit list of an agent
GetVisit Get an entry from an agent’s visit list
ScheduleNewLeaveEvent Initiate the movement of an agent to-

wards the next entry in its visit list
Table 1: A summary of the agents API

we suggest splitting the variables describing the overall topology at
each LP in a scattered way, relying on control messages to mark up-
dates in it. Provided that these control messages are incorporated in
the event queue of each LP, traditional rollback mechanisms allow
to keep the overall topology consistent.

To let the model developer alter the environment and fruit-
fully navigate it, we have devised the following API functions
which concern with topologies. NeighborsCount(unsigned int
region_id) and the RegionsCount(void) allow to retrieve from
the current organization of the topology, respectively, the number
of regions which can be reached from the one which is executing
the event performing the call, and the total number of active cells.
This is useful, e.g., to determine the reachability degree of a region,
or to implement actions to observe and sense the surrounding en-
vironment. NeighborsCount() is especially useful on boundary
regions, which might not be able to let agents navigate in all direc-
tions provided for the current topology (e.g., in a hexagon topology,
central regions can move in six directions, but edge cells have fewer
legal moves).

In case of a graph-based topology, the weights or the probabilities
can be modified by relying on the SetValueTopology(unsigned
int from, unsigned int to, double value)API function. This
function updates the value associated with the edge between the
from and to LPs. We emphasize again that both these LPs can be
different from the one running the event causing the invocation of
this function. Therefore, control messages should be used to enforce
a causally consistent update at the from LP. The counterpart API
function is GetValueTopology(unsigned int from, unsigned
int to), which allows to query the current value for the topology.

To allow the model developer to simply code the movements
of the agent, it is fundamental to offer API functions which al-
low to cleverly query the current topology. In case of traditional
grid-based topologies (i.e., different from graph-based), the concept
of direction is intrinsic: in a grid-like environment the agent has
a limited set of possible moves. For example, a square grid can
lead to up to 8 directions, as in the Moore neighborhood topology.
GetReceiver(unsigned int from, direction_t direction)
returns the id of the neighbor which would be reached by moving

An Agent-Based Simulation API for Speculative PDES Runtime Environments SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

API function Description
NeighborsCount Return the number of currently reachable

regions
RegionsCount Return the total number of regions
SetValueTopology Update the value associated with an edge
GetValueTopology Return the value associated with an edge
FindReceiver Pick a random neighbor region
FindReceiverToward Return the next region to visit in the path to

the destination
ComputeMinTour Return the shortest path from source to des-

tination as an array of LPs to visit
Table 2: A summary of the topology API

direction-bound. As an example, in the case of a hexagon grid,
valid values for direction are north, north-east, south-east, south,
south-west, and north-west.

At the same time, since ABMS is commonly stochastic, we also
envisage the FindReceiver(void) API function which, depending
on the current topology, picks a random neighbor. In grid-based
topologies, the probability distribution should be considered uni-
form. For graph-based topologies, the distribution should account
for the probabilities or weights associated with the edges.

The last two topology API functions deal with a more long-
termed planning. FindReceiverToward(unsigned int to) re-
turns the id of the next LP to visit in order to reach the LP iden-
tified by to. This API should consider the minimum-cost path,
either considering the number of moves, or the weights in case
of a graph-based topology. In our reference implementation we
have relied on Dijikstra’s pathfinding algorithm [14]. Any time
that we run the pathfinding algorithm, we cache the computed
Minimum Spanning Tree. This becomes beneficial also to speedup
pathfinding to other destination LPs. Results are cached in per-LP
data structures, and are flushed upon a change in the topology. To
extract the complete tour with all visits, the modeler can rely on
ComputeMinTour(unsigned int source, unsigned int dest,
unsigned int result[RegionsCount()]), which returns an ar-
ray keeping a list of LPs to visit. In this latter case, the model devel-
oper must take into account the fact that this list might change in
the future of the simulation, because other concurrent LPs might
alter the topology, as we have discussed. Nevertheless, this API
function (used in conjunction with the concept of visit lists which
we have described before) allows to prepare a tentative schedule for
the actions of an agent in the immediate future—it can be modified
at any time with the API which we have described before. In table
2 we summarize the API related to topology.

4 ASSESSMENT
4.1 Test-Bed Models and Environment
We have implemented the API and its associated runtime support
in the ROOT-Sim runtime environment [35]. ROOT-Sim, developed
in C11/Posix, supports a transparent deploy on distributed clusters
of massively-parallel compute nodes.

For our assessment, we consider 3 synthetic models, and 3 real-
world applications. The considered models are the following:

(1) Stupid Model [38]: in a toroidal region, several bugs (the
agents) move randomly. Each cell produces food, at a certain
production rate, which is eaten by the bugs which enter it—
while eating, a bug grows in size. Bugs can move to another
cell only if the destination cell is empty, and they select the
empty neighboring cell with the highest food amount. With
a certain probability, when a bug enters a cell, it either dies
or reproduces. When a bug reproduces, it spawns five new
bugs in surrounding cells if they are empty. If not enough
empty cells are available, the bug spawns a smaller number of
children. The simulation halts when the largest bug reaches
a certain size.

(2) Segregation [42]: this social model is used to show how seg-
regation among people happens, even though people (the
agents) do not mind being surrounded by other agents of
a different race. An agent is modeled by its race, ethnicity,
economic status, etc. Multiple populations occupy a certain
environment with random positions. An agent can be sat-
isfied or not with its current location, in the sense that an
agent is surrounded by a certain percentage of agents that
are like itself. In the negative case, the agent moves to a
different (emtpy) location.

(3) Sugarscape [15]: in a grid environment, every cell contains
different amounts of sugar. The agents move around by tar-
geting the cell filled with the largest amount of sugar. Once
they eat, theymetabolize and leave pollution. In away similar
to the stupid model, they can die and reproduce. Additionally,
the agents can trade or borrow sugar, generate immunity or
transmit diseases.

(4) Terrain-Covering Ant Robots (TCAR) [25]: This is an agent-
based model particularly interesting for the assessment of
rescue scenarios. If some kind of accident occurs in a region
which is either unknown by the rescuers or altered by the
accident itself, the first action in order to actually rescue the
victims is to explore the whole region. The terrain is modeled
as an undirected graph, accounting also for obstacles, in
which ant robots move in every direction. While moving,
they leave pheromones, i.e. they implement a node-couting
algorithm, where each cell is assigned a counter which gets
incremented whenever any robot visits it. Each ant picks
its next direction by selecting the neighboring cell with the
smallest visit counter value.

(5) Robot Explore [16]: A group of robots is set out into an un-
known space, with the goal of exploring it. They keep a
representation of the explored world, so as to determine
which is the closest unexplored area they can reach, and
they compute the shortest path to reach it. While moving
around, the robots gather measurements of the environment
and store them in their state. During the exploration, some
accidents can make a region non-traversable. The robots
explore independently, until one coincidentally detects an-
other robot in its proximity. Once two robots meet, they can
exchange the information sensed from the environment and
make collaborative exploration decisions.

(6) Tuberculosis [33]: This model allows to simulate the spread
of tuberculosis infections. It has been effectively used to
study this phenomenon in the city of Barcelona. Individuals

SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA Piccione, et al.

Square Grid
(4 neighbors)

Square Grid
(Moore neighborhood)

Hexagonal Grid Ring Bidirectional Ring Torus Star Fully-Connected
Mesh

Graph

West East

North

South

West East

North

South

North
East

North
West

South
East

South
West

North
East

South
East

North
West

South
West

North

South EastWest

Figure 3: Supported topologies, and possible movements.

Model Original Implementation Using our API
Stupid Model 189 138
Segregation 83 110
Sugarscape 1072 152

TCAR 228 7 103
Robot Explore 500 332
Tuberculosis 1,115 654
Table 3: LOCs for the different Model Implementations

(the agents) can move around. They can be healthy, infected,
sick, under treatment, or susceptible to relapse. Depending
on their interactions, healthy individuals might become in-
fected. Sick agents might be susceptible to death. This is an
overall epidemiological model which requires a very large
number of agents, with complex state transitions, to allow
the identification of emergent behavior related to the spread
of the disease.

4.2 Effects on Programmability
While assessing the effects on programmability is not easy, es-
pecially in contexts which involve models coming from multiple
domains, we are taking into account here classical agent-based
models from the literature, and we compare their classical imple-
mentations with ones made relying on the proposed API. For each
of the aforementioned models, we have considered the original
implementation (where available). We have compared the Lines of
Code (LOCs) of the original implementation with the LOCs of our
re-implementations using the discussed API.

Table 3 shows the comparison. As it can be seen, except for segre-
gation model, the line count is always smaller when implementing
the models by relying on the proposed API. It is interesting to note
that this is the case also when dealing with very simple (toy) models,
such as the Stupid Model. This is an indication of the fact that the
API is effective at capturing the needs of ABMS, thus reducing the
burden on the model developer which can benefit from the per-
formance speedup and the increased amount of working memory
traditionally offered by distributed PDES.

4.3 Performance Assessment
In the experimental assessment, we report performance data of
4 of the aforementioned models. We have used a cluster of three
medium size heterogeneous servers connected via a 1 GB dedicated
Ethernet connection. Two servers are 32-core (AMD Opteron 6168)

7The original paper in [25] does not provide a reference implementation. Therefore,
we report here the LOCs associated with a re-implementation of the model, according
to the specification, which does not rely on our API.

Model # LPs Involved Agents
Stupid Model 4,096 1 8

Segregation 10,000 5,000
TCAR 3600 48

Tuberculosis 1024 400,000
Table 4: Configurations of the models

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

S
p

ee
d

u
p

 o
v
er

 S
eq

u
en

ti
al

 S
im

u
la

ti
o

n

Number of Cores
Stupid Model Segregation

Figure 4: Results with Synthetic Models.

machines equipped with 64 GB of RAM. One is a 48-core (AMD
Opteron 6168) machine equippedwith 128 GB of RAM. All machines
run Linux 4.9.0. We have used gcc 8.2.0 to compile the software, and
OpenMPI 3.1.3 as the MPI runtime environment. In the experiments,
the total number of threads has been varied from 3 to 112. The
MPI assignment policy has been set so as to ensure that all three
machines are used, by distributing the threads on the cluster in
a round-robin fashion. This is a worst-case scenario, especially
when the number of threads is low, because we always incur in the
communication cost even though a single machine could support
message passing by relying on shared memory.

The models used and their configurations are reported in Table 4.
To show the viability of our proposal from a performance point of
view, we report the speedup of the distributed runs over a sequential
simulation. Sequential simulations are extremely optimized, as they
are based on a fast O(1) scheduler based on a calendar queue [5].
We remind that the experimental setup is a worst case, due to the
fact that we always incur in increased network activity when we
rely on a reduced number of threads, due to the distribution of the
threads in the cluster.

8This is the initial agent count. During the simulation, the number of agents increases.

An Agent-Based Simulation API for Speculative PDES Runtime Environments SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

S
p

ee
d

u
p

 o
v
er

 S
eq

u
en

ti
al

 S
im

u
la

ti
o

n

Number of Cores
TBC TCAR

Figure 5: Results with Real-World Applications.

In Figure 4 we report the performance data related to the Stupid
Model and Segregation synthetic benchmarks. It is interesting to
note that both models exhibit a linear speedup, despite the fact
that the event granularity is quite small (on the order of tens of
microseconds) and the amount of events exchanged across the
LPs is non-minimal—this latter point is related to the fact that in
both models we rely on the RegisterNeighborInfo() API which
transparently sends control messages to neighboring LPs upon any
update, and the number of agents in the model (especially in the
segregation case) is quite high. The reason behind this point is that
the scale of the model can be significantly increased (up to 5,000
LPs in the Segregation model case) due to the fact that simulations
states are very small, and so is the number of explanatory variables
used to describe an agent. Anyhow, this result suggests that if these
models are used (as they are intended to) as skeletons to build
more complicated logic, then they will benefit from the increased
computing power offered by distributed PDES.

In Figure 5 we report the performance results for two real-world
simulationmodels, namely tuberculosis (TBC in the plot) and TCAR.
With respect to TCAR, we can see that after a certain number of
concurrent threads, the performance observes a significant drop.
This is a foreseeable result, taking into account the configuration
reported in Table 4. Indeed, there is a high imbalance between the
number of active agents and the regions in the model. Given the
distributed nature of the simulation, the probability that LPs observe
a skew in the simulation time is high. This, in its turn, affects the
overall efficiency of the simulation—in our runs, it got as low as 15%
in some configurations. While this is a phenomenon which would
have appeared independently of the API used to implement the
model, we can note that the proposed API and its implementation is
resilient to this unfavorable scenario up to a non-negligible number
of distributed threads (42).

With respect to TBC, we note that this is the model with the high-
est degree of parallelism, due to the fact that one thread manages
a reduced number of LPs (9 LPs per thread is the minimum). This
is a scenario which is known to increase the rollback probability.
Moreover, this is also exacerbated by the fact that the number of
agents in the simulation, compared to the size of the environment,
is quite large. The proposed API, in this case, is able to provide
anyhow a speedup, although minimal. It is important to note that

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30 35 40 45

S
p

ee
d

u
p

 o
v
er

 S
eq

u
en

ti
al

 S
im

u
la

ti
o

n

Number of Cores
TBC TCAR

Figure 6: Results using a single node.

this is a clear case in which resorting to our proposal allows to make
unfeasible problems feasible, due to the possibility to overcome the
memory wall thanks to the increased number of nodes used for
the simulation. In this specific model, the sequential simulation has
shown a memory footprint of more than 16 GB, which could not
be manageable when using off-the-shelf commodity hardware.

For the sake of completeness, in Figure 6 we report performance
data taken when running on the largest single node of our cluster,
for the real-world applications. Here, we do not pay communication
costs, but the trends of the curves are perfectly similar to the ones
shown in Figure 5, thus showing that the proposed API and its
reference implementation is also resilient to network delays.

5 CONCLUSIONS AND FUTUREWORK
In this paper we have introduced an API specification for ABMS
in Time Warp runtime environments. This API has been shown
to be effective at implementing very different agent-based models
in a compact and expressive way. An implementation of our API
has also shown that it is possible to obtain non-minimal speedup
also in very simple (toy) models. We therefore consider this as an
important step ahead at disclosing the power of PDES to domain ex-
perts which should not be exposed to the complexity of speculative
synchronization.

ACKNOWLEDGMENTS
We gratefully thank Philipp J. Andelfinger for the amazing job
and the invaluable feedback provided to us while carrying out the
reproducibility of our artifacts.

REFERENCES
[1] Sameera Abar, Georgios K. Theodoropoulos, Pierre Lemarinier, and Gregory M.P.

O’Hare. 2017. Agent Based Modelling and Simulation tools: A review of the
state-of-art software. Computer Science Review 24 (may 2017), 13–33. https:
//doi.org/10.1016/j.cosrev.2017.03.001

[2] Theodore T. Allen. 2011. Introduction to Discrete Event Simulation and Agent-based
Modeling. Springer London, London. https://doi.org/10.1007/978-0-85729-139-4

[3] E. Bonabeau. 2002. Agent-basedmodeling:Methods and techniques for simulating
human systems. Proceedings of the National Academy of Sciences (2002). https:
//doi.org/10.1073/pnas.082080899 arXiv:1709.03423

[4] Andrei Borshchev and Nikolay Churkov. 2018. Anylogic cloud: cloud-based
simulation analytics. In Proceedings of the 2018 Winter Simulation Conference
(WSC). IEEE Press, 4245–4245.

https://doi.org/10.1016/j.cosrev.2017.03.001
https://doi.org/10.1016/j.cosrev.2017.03.001
https://doi.org/10.1007/978-0-85729-139-4
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1073/pnas.082080899
http://arxiv.org/abs/1709.03423

SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA Piccione, et al.

[5] Randy Brown. 1988. Calendar queues: a fast O(1) priority queue implementation
for the simulation event set problem. Commun. ACM 31, 10 (1988), 1220–1227.

[6] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto. 1999.
Efficient optimistic parallel simulations using reverse computation. ACM Trans-
actions on Modeling and Computer Simulation 9, 3 (1999), 224–253.

[7] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2015. RAMSES:
Reversibility-based agent modeling and simulation environment with specu-
lation support. In Proceedings of Euro-Par 2015: Parallel Processing Workshops,
Sasha Hunold, Alexandru Costan, Domingo Ginenéz, Alexandru Iosup, Laura
Ricci, María Engracia Gómez Requena, Vittorio Scarano, Ana Lucia Varbanescu,
Stephen L. Scott, Stefan Lankes, JosefWeidendorfer, andMichael Alexander (Eds.).
LNCS, Springer-Verlag, 466–478. https://doi.org/10.1007/978-3-319-27308-2_38

[8] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2017. Trans-
parently Mixing Undo Logs and Software Reversibility for State Recovery in
Optimistic PDES. ACM Transactions on Modeling and Computer Simulation 27, 2
(may 2017), 1–26. https://doi.org/10.1145/3077583

[9] Yann Collet. 2015. xxHash: Extremely Fast Hash Algorithm. http://www.xxhash.
com/

[10] Nicholson Collier and Michael North. 2013. Parallel agent-based simulation
with Repast for High Performance Computing. SIMULATION 89, 10 (oct 2013),
1215–1235. https://doi.org/10.1177/0037549712462620

[11] Andrew M. Colman. 1998. The complexity of cooperation: Agent-based models
of competition and collaboration. Complexity (1998).

[12] Gennaro Cordasco, Rosario De Chiara, Ada Mancuso, Dario Mazzeo, Vittorio
Scarano, and Carmine Spagnuolo. 2012. A framework for distributing agent-
based simulations. In Proceedings of Euro-Par 2011: Parallel Processing Workshops,
Michael Alexander, Pasqua D’Ambra, Adam Belloum, George Bosilca, Mario
Cannataro, Marco Danelutto, Beniamino Martino, Michael Gerndt, Emmanuel
Jeannot, Raymond Namyst, Jean Roman, Stephen L. Scott, Jesper Larsson Traff,
Geoffroy Vallée, and Josef Weidendorfer (Eds.). Springer Berlin Heidelberg, 460–
470. https://doi.org/10.1007/978-3-642-29737-3_51

[13] Biagio Cosenza, Nikita Popov, Ben Juurlink, Paul Richmond, Mozhgan Kabiri
Chimeh, Carmine Spagnuolo, Gennaro Cordasco, and Vittorio Scarano. 2018.
OpenABL: A Domain-Specific Language for Parallel and Distributed Agent-
Based Simulations. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https:
//doi.org/10.1007/978-3-319-96983-1_36

[14] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer.
Math. 1, 1 (dec 1959), 269–271. https://doi.org/10.1007/BF01386390

[15] Joshua Epstein and Robert L. Axtell. 1997. Growing Artificial Societies: Social Sci-
ence from the Bottom Up. MIT Press. https://doi.org/10.1007/s13398-014-0173-7.2

[16] Dieter Fox, Jonathan Ko, Kurt Konolige, Benson Limketkai, Dirk Schulz, and
Benjamin Stewart. 2006. Distributed Multirobot Exploration and Mapping. Proc.
IEEE 94, 7 (2006), 1325–1339. https://doi.org/10.1109/JPROC.2006.876927

[17] Richard M Fujimoto. 1990. Parallel Discrete Event Simulation. Commun. ACM
33, 10 (1990), 30–53.

[18] M Gardner. 1970. Mathematical games: The fantastic combinations of John
Conway’s new solitaire game ’Life’. Scientific American 223, 4 (1970), 120–123.

[19] Nigel Gilbert and Pietro Terna. 2000. How to build and use agent-based models
in social science. Mind & Society 1, 1 (mar 2000), 57–72. https://doi.org/10.1007/
BF02512229

[20] Jan Himmelspach and Adelinde Uhrmacher. 2009. The JAMES II framework
for modeling and simulation. In HiBi09 - 2009 International Workshop on High
Performance Computational Systems Biology. https://doi.org/10.1109/HiBi.2009.20

[21] Mike Holcombe, Simon Coakley, and Rod Smallwood. 2006. A general framework
for agent-basedmodelling of complex systems. In Proceedings of the 2006 European
conference on complex systems. European Complex Systems Society Paris, France.

[22] Hitoshi Iba. 2013. Agent-Based Modeling and Simulation with Swarm. Chapman
and Hall/CRC. https://doi.org/10.1201/b15024

[23] David R Jefferson. 1985. Virtual Time. ACM Transactions on Programming
Languages and System 7, 3 (1985), 404–425.

[24] David R Jefferson. 1990. Virtual time II: storage management in conservative
and optimistic systems. In Proceedings of the ninth annual ACM symposium on
Principles of distributed computing (PODC ’90). ACM, New York, NY, USA, 75–89.
https://doi.org/10.1145/93385.93403

[25] Sven Koenig and Yaxin Liu. 2001. Terrain Coverage with Ant Robots: a Simulation
Study. In Proceedings of the fifth international conference on Autonomous agents
(AGENTS). ACM, 600–607. https://doi.org/10.1145/375735.376463

[26] Justin M LaPre, Elsa J Gonsiorowski, and Christopher D Carothers. 2014. LORAIN:
a step closer to the PDES ’holy grail’. In Proceedings of the 2nd ACM SIGSIM/PADS
conference on Principles of Advanced Discrete Simulation (PADS). ACM Press, New
York, New York, USA, 3–14. https://doi.org/10.1145/2601381.2601397

[27] Michael Lees, Brian Logan, and Georgios Theodoropoulos. 2007. Distributed
simulation of agent-based systems with HLA. ACM Transactions on Modeling
and Computer Simulation (2007). https://doi.org/10.1145/1243991.1243992

[28] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan.
2005. MASON: A multiagent simulation environment. Simulation 81, 7 (2005),
517–527. https://doi.org/10.1177/0037549705058073

[29] Shingo Mabu, Kotaro Hirasawa, and Jinglu Hu. 2007. A Graph-based Evolution-
ary Algorithm: Genetic Network Programming (GNP) and its Extension sing
Reinforcement Learning. Evolutionary computation 15, 3 (sep 2007), 369–98.
https://doi.org/10.1162/evco.2007.15.3.369

[30] Charls M Macal and Micheal J North. 2005. Tutorial on Agent-Based Modeling
and Simulation. Proceedings of 2005 Winter Simulation Conference (2005).

[31] Sally a. McKee. 2004. Reflections on the memory wall. In Proceedings of the first
conference on Computing Frontiers. ACM Press, New York, New York, USA, 162.
https://doi.org/10.1145/977091.977115

[32] Steven Mithen. 2002. Stepping out: a computer simulation of hominid dispersal
from Africa. Journal of Human Evolution 43, 4 (oct 2002), 433–462. https:
//doi.org/10.1016/S0047-2484(02)90584-1

[33] Cristina Montañola-Sales, Joan-Francesco Gilabert-Navarro, Josep Casanovas-
Garcia, Clara Prats Soler, Daniel López Codina, Joaquim Ribas Valls, Pere Joan Car-
dona Iglesias, and Cristina Vilaplana. 2015. Modeling tuberculosis in Barcelona.
A solution to speed-up agent-based simulations. In Proceedings of the 2015 Winter
Simulation Conference. IEEE Computer Society, 1295—-1306.

[34] Cristina Montañola-Sales, Bhakti S.S. Onggo, Josep Casanovas-Garcia, Jose María
Cela-Espín, and Adriana Kaplan-Marcusán. 2016. Approaching parallel comput-
ing to simulating population dynamics in demography. Parallel Comput. (2016).
https://doi.org/10.1016/j.parco.2016.07.001

[35] Alessandro Pellegrini and Francesco Quaglia. 2014. The ROme OpTimistic
Simulator: A tutorial. In Proceedings of the Euro-Par 2013: Parallel Process-
ing Workshops, Dieter an Mey, Michael Alexander, Paolo Bientinesi, Mario
Cannataro, Carsten Clauss, Alexandru Constan, Gabor Kecskemeti, Christine
Morin, Laura Ricci, Julio Sahuquillo, Martin Schulz, Vittorio Scarano, Stephen L.
Scott, and Josef Weidendorfer (Eds.). LNCS, Springer-Verlag, 501–512. https:
//doi.org/10.1007/978-3-642-54420-0_49

[36] Alessandro Pellegrini, Francesco Quaglia, Cristina Montanola-Sales, and Josep
Casanovas-Garca. 2016. Programming agent-based demographic models with
cross-state and message-exchange dependencies: A study with speculative PDES
and automatic load-sharing. In Proceedings of the 2016 Winter Simulation Confer-
ence (WSC). IEEE, 955–966. https://doi.org/10.1109/WSC.2016.7822156

[37] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2009. Di-DyMeLoR:
Logging only dirty chunks for efficient management of dynamic memory based
optimistic simulation objects. In Proceedings - Workshop on Principles of Advanced
and Distributed Simulation, PADS. IEEE, 45–53. https://doi.org/10.1109/PADS.
2009.24

[38] Steve F Railsback, Steve Lytinen, and Volker Grimm. 2005. StupidModel and
Extensions: A Template and Teaching Tool for Agent-based Modeling. Technical
Report. Swarm Development Group. 7 pages.

[39] Craig W. Reynolds. 1987. Flocks, herds and schools: A distributed behavioral
model. ACM SIGGRAPH Computer Graphics 21, 4 (aug 1987), 25–34. https:
//doi.org/10.1145/37402.37406

[40] Paul Richmond and Daniela Romano. 2008. Agent based gpu, a real-time 3d simu-
lation and interactive visualisation framework for massive agent based modelling
on the gpu. In Proceedings International Workshop on Supervisualisation.

[41] Xavier Rubio Campillo, Jose María Cela, and Francesc Xavier Hernàndez Car-
dona. 2012. Simulating archaeologists? Using agent-based modelling to improve
battlefield excavations. Journal of Archaeological Science 39, 2 (feb 2012), 347–356.
https://doi.org/10.1016/j.jas.2011.09.020

[42] Thomas C Schelling. 1978. Sorting and Mixing. In Micromotives and Mmacrobe-
havior. W W Norton & Co, Chapter 4, 270.

[43] Vinoth Suryanarayanan, Georgios Theodoropoulos, and Michael Lees. 2013.
PDES-MAS: Distributed simulation of multi-agent systems. In Procedia Computer
Science. https://doi.org/10.1016/j.procs.2013.05.231

[44] Seth Tisue and Uri Wilensky. 2004. Netlogo: A simple environment for modeling
complexity. In Proceedings of the International Conference on Complex Systems
(ICCS). NECSI, 1–10.

[45] Roberto Toccaceli and Francesco Quaglia. 2008. DyMeLoR: Dynamic Memory
Logger and Restorer Library for Optimistic Simulation Objects with Generic
Memory Layout. In Proceedings of the 22nd Workshop on Principles of Advanced
and Distributed Simulation. IEEE Computer Society, 163–172. https://doi.org/10.
1109/PADS.2008.23

[46] George Vulov, Cong Hou, Richard Vuduc, Richard Fujimoto, Daniel Quinlan,
and David Jefferson. 2011. The Backstroke framework for source level reverse
computation applied to parallel discrete event simulation. In Proceedings of the
2011 Winter Simulation Conference (WSC). IEEE, 2960–2974. https://doi.org/10.
1109/WSC.2011.6147998

[47] P Wittek and X Rubio-Campillo. 2012. Scalable agent-based modelling with cloud
HPC resources for social simulations. In Proceedings of the 4th International Con-
ference on Cloud Computing Technology and Science (CloudCom). IEEE Computer
Society, 355–362. https://doi.org/10.1109/CloudCom.2012.6427498

[48] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll.
2018. Exploring Execution Schemes for Agent-Based Traffic Simulation on
Heterogeneous Hardware. In Proceedings of the 22nd International Symposium
on Distributed Simulation and Real Time Applications (DS-RT). IEEE Computer
Society, 1–10. https://doi.org/10.1109/DISTRA.2018.8601016

https://doi.org/10.1007/978-3-319-27308-2_38
https://doi.org/10.1145/3077583
http://www.xxhash.com/
http://www.xxhash.com/
https://doi.org/10.1177/0037549712462620
https://doi.org/10.1007/978-3-642-29737-3_51
https://doi.org/10.1007/978-3-319-96983-1_36
https://doi.org/10.1007/978-3-319-96983-1_36
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1109/JPROC.2006.876927
https://doi.org/10.1007/BF02512229
https://doi.org/10.1007/BF02512229
https://doi.org/10.1109/HiBi.2009.20
https://doi.org/10.1201/b15024
https://doi.org/10.1145/93385.93403
https://doi.org/10.1145/375735.376463
https://doi.org/10.1145/2601381.2601397
https://doi.org/10.1145/1243991.1243992
https://doi.org/10.1177/0037549705058073
https://doi.org/10.1162/evco.2007.15.3.369
https://doi.org/10.1145/977091.977115
https://doi.org/10.1016/S0047-2484(02)90584-1
https://doi.org/10.1016/S0047-2484(02)90584-1
https://doi.org/10.1016/j.parco.2016.07.001
https://doi.org/10.1007/978-3-642-54420-0_49
https://doi.org/10.1007/978-3-642-54420-0_49
https://doi.org/10.1109/WSC.2016.7822156
https://doi.org/10.1109/PADS.2009.24
https://doi.org/10.1109/PADS.2009.24
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406
https://doi.org/10.1016/j.jas.2011.09.020
https://doi.org/10.1016/j.procs.2013.05.231
https://doi.org/10.1109/PADS.2008.23
https://doi.org/10.1109/PADS.2008.23
https://doi.org/10.1109/WSC.2011.6147998
https://doi.org/10.1109/WSC.2011.6147998
https://doi.org/10.1109/CloudCom.2012.6427498
https://doi.org/10.1109/DISTRA.2018.8601016

	Abstract
	1 Introduction
	2 Related Work
	3 The ABMS API
	3.1 Modeling Agents and their Interactions
	3.2 Describing the Topology

	4 Assessment
	4.1 Test-Bed Models and Environment
	4.2 Effects on Programmability
	4.3 Performance Assessment

	5 Conclusions and Future Work
	References

