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Highlights 

 Among ESKAPE bacteria, 3-bromopyruvate selectively inhibits Staphylococcus aureus 

 3-bromopyruvate kills both metabolically-active and -inactive cells 

 3-bromopyruvate has potent biofilm-disrupting activity 
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Abstract  

The rise in antibacterial resistance jeopardizes current therapeutic strategies to control infections, 

soliciting the development of novel antibacterial drugs with new mechanisms of action. In this work we 

report the discovery of a potent and selective anti-staphylococcal activity of 3-bromopyruvate (3BP), 

an antimetabolite in preclinical development phase as an anticancer drug. 3BP showed bactericidal 

activity against Staphylococcus aureus, with active concentrations comparable to those reported to be 

effective against cancer cells. In contrast, no relevant activity was observed against other ESKAPE 

bacteria (Enterococcus faecium, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa and Enterobacter spp.). The anti-staphylococcal activity of 3BP was confirmed using a 

panel of human and veterinary strains, including multidrug-resistant isolates. 3BP showed highest 

antibacterial activity under conditions which increase 3BP stability (acidic pH) or promote S. aureus 

fermentative metabolism (anaerobiosis), although 3BP was also able to kill metabolically-inactive cells. 

3BP showed synergism with gentamicin, and also disrupted preformed S. aureus biofilms, at 

concentrations only slightly higher than those inhibiting planktonic cells. This study unravels novel 

antibacterial and anti-biofilm activities for the anticancer drug 3BP, thus paving the way for further 

pre-clinical studies. 
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1 Introduction 

Antibiotic resistance is a serious public health problem at the global level. Available antibiotics have 

saved millions of lives, but are progressively losing their efficacy against many bacterial pathogens. 

While very few new antibiotics are being developed by the pharmaceutical industry, mainly due to the 

inherent low reward and high risk of antibiotic research, the rapid spread of antibiotic-resistant 

pathogens both in hospitals and in the community calls for new investments in antibacterial drug 

discovery. To be effective, these investments should however support experimental approaches able to 

make the process of antibacterial drug discovery more rapid and economically sustainable. 

Searching for side activities in drugs already approved for use in humans or in advanced phase of 

preclinical development represents a potential shortcut to obtain new antibacterials [1]. As compared to 

de novo drug discovery, the drug repurposing approach has a higher probability of yielding bioavailable 

and safe hit compounds, which can move straightforward into clinical trials or serve as leads for drug 

optimization programs. Moreover, drug repurposing is expected to reduce the time and costs of the 

conventional drug discovery process, since pharmacological/toxicological information is available for 

repurposing candidates. Notably, UK and US funders have recently launched programs to re-evaluate 

deprioritized drugs for new therapeutic uses [1]. 

In the last years, an increasing number of studies identified some antibacterial activity in several drugs 

approved for different purposes, including anticancer, antifungal, and cardiovascular therapies [2,3], 

strongly supporting the research on drug repurposing as a strategy to identify novel antibacterials that 

can be rapidly delivered to the clinical phase. 

3-Bromopyruvate (3BP) is a chemically synthesized halogenated derivative of pyruvate that has been 

used by biochemists for several decades. Indeed, alkylating properties have made 3BP suitable for use 

in enzymatic studies in vitro, with preferential targets focused on metabolic enzymes. About 15 years 

ago, 3BP was proven to also act as a powerful anticancer agent [4]. 3BP treatment abolishes ATP 
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production in cancer cells mainly by glycolysis inhibition [5], inducing rapid cancer cell death both in 

vitro and in several animal tumour models, including hepatocarcinomas, colon, breast and lung cancers 

[6]. Irrespective of the strong alkylating activity of 3BP in vitro, this compound showed an outstanding 

selectivity towards cancer cells in animal models, which appears to be related to i) the much higher 

expression of the main 3BP transporter (monocarboxylate transporter 1, MCT-1) in tumour cells as 

compared to normal cells, and ii) the metabolic differences between cancer cells and healthy ones. 

Indeed, while glycolytic metabolism is exacerbated in cancer cells, and indeed these cells display high 

rates of aerobic glycolysis even in the presence of oxygen (i.e. the “Warburg effect”), normal cells 

mainly rely on mitochondrial oxidative phosphorylation for energy production, thus resulting barely 

sensitive to the anti-glycolytic effect of 3BP [6,7]. The tumour-eradicating activity of 3BP has been 

documented in different animal models. While the majority of in vivo studies did not report relevant 

adverse effects of 3BP treatment on healthy cells or tissues at therapeutically-active doses, some liver 

toxicity was observed when very high dosing regimens and systemic delivery were used (reviewed in 

ref. [6]). Few studies have already described the use of 3BP in volunteer cancer patients [8,9], and 3BP 

appears to be currently exploited as a last-resort treatment in some cancer clinics worldwide [10, 

https://www.cancertreatmentsresearch.com/3-bromopyruvate/]. However, while the U.S. company 

PreScience Labs stated that the FDA approval for a Phase I clinical evaluation of 3BP in liver cancer 

patients was gained in 2013, 3BP has not yet undergone formal clinical trials, possibly because of lack 

of funding and/or the existence of competing patent applications [10]. A recent case of 3BP misuse by 

an unlicensed practitioner, who was accused of causing three deaths in a German alternative medicine 

clinic in 2016, may have somehow complicated the road of this candidate drug to the clinic [10]. 

Regarding the possible activity of 3BP on microorganisms, a couple of studies highlighted the 

capability of 3BP to inhibit the growth of eukaryotic pathogens, such as the fungus Cryptococcus 

neoformans and the microalgae Prototheca spp. [11,12]. Although a patent application for use of anti-
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glycolytic compounds, including 3BP, to prevent or treat bacterial infections was submitted in 2011 

[13], the antibacterial activity of 3BP was never investigated experimentally, with the only exception of 

a recent study showing mild growth inhibition of Mycobacterium tuberculosis exposed to millimolar 

concentrations of 3BP [14]. 

This work was intended to assess the possibility of 3BP repurposing as an antibacterial agent against 

pathogens of the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) for which new 

drugs are urgently needed. Our working hypothesis originated from the following: (i) bacterial 

pathogens possess analogues of eukaryotic glycolytic enzymes, (ii) pyruvate is an intermediate of the 

energy metabolism in many pathogenic bacteria, and (iii) 3BP inhibits some bacterial glycolytic 

enzymes in vitro [12]. Our results revealed that 3BP has bactericidal and anti-biofilm activity against S. 

aureus, including multidrug-resistant isolates, while it does not inhibit all the other ESKAPE bacteria, 

and suggest that the specificity of 3BP towards S. aureus is likely due to unique metabolic features of 

this species. 

 

 

 

2 Materials and methods 

2.1 Bacterial strains and growth conditions. Bacterial strains were routinely maintained in Luria-

Bertani (LB) medium supplemented with 1.5% agar at 37°C. Muller-Hinton (MH) broth was used for 

antibacterial assays. When indicated, MH was adjusted at different pH values by the addition of HCl 

and sterilized by filtration, or supplemented with glucose or pyruvate at 5 or 50 mM concentration. 

Anaerobic conditions were obtained by incubating plates in a GENBox Jar 2.5L in the presence of a 

GENbox anaerobic generator (BioMérieux). To support anaerobic growth of S. aureus, MH medium 
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was supplemented with 5 g/l glucose. Tryptic Soy Broth (TSB) supplemented with 2% glucose and 2% 

NaCl (TSB-GN) was used for biofilm assays [15]. 3BP was purchased from Sigma-Aldrich, and the 

stock solutions was prepared in water and stored at -20°C before use. 

 

2.2 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration 

(MBC) assays. The MIC of 3BP and antibiotics was determined using the broth microdilution method 

according to the Clinical Laboratory Standards Institute (CLSI) guidelines [16], after 24-h incubation at 

37° C under static conditions. The MBC of 3BP for S. aureus isolates was determined by plating 

dilutions from each well showing no bacterial growth on LB agar plates. Colonies were counted after 

24 h-incubation at 37°C. The MBC was defined as the lowest concentration of 3BP required to kill 

99.9% of the initial inoculum [17]. 

 

2.3 Time-kill assays. Time-kill assay were performed using the CLSI M26-A standard method [17] 

with some modifications. Briefly, S. aureus ATCC25923 was cultured in MH for 6-8 h and then diluted 

in MH at a final OD600=0.01 (corresponding to ca. 10
6
 CFU/ml) in the absence or in the presence of 

3BP and/or gentamicin. Bacterial cultures were incubated at 37°C under vigorous shaking (200 rpm). 

At different time points, serial dilutions were prepared in saline (0.9% NaCl) and aliquots of each 

dilution were plated on LB agar plates to determine the number of viable cells (CFU). 

 

2.4 Checkerboard assay. The checkerboard broth microdilution method [18] was performed to 

investigate the interaction of 3BP with ampicillin, gentamicin, tetracycline, rifampicin, 

chloramphenicol or ofloxacin. Two-fold serial dilutions of 3BP and each antibiotic in MH were 

perpendicularly dispensed in 96-well microtiter plates, and each well was inoculated with S. aureus 

ATCC25923 at ca. 5×10
5
 CFU/ml. Microtiter plates were incubated at 37° C under static conditions for 
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24 h, and bacterial growth was visually assessed. Results were expressed as Fractional Inhibitory 

Concentration index (FICI), which corresponds to the sum of the FICs of the two antibacterial 

compounds, where the FIC for each drug is defined as the MIC of the drug in combination divided by 

the MIC of the drug used alone. The FICI was interpreted as follows: ≤0.5, synergy; >0.5–4, 

indifference; >4, antagonism [18]. 

 

2.5 Biofilm assays. Biofilm formation was evaluated in TSB-GN as previously described, with few 

modifications [15]. S. aureus strains were cultured in TSB at 37°C for 6-8 h, refreshed in TSB-GN at 

OD600 = 0.01, and 100-µl aliquots were dispensed in the wells of tissue-culture treated 96-well 

microtiter plates. After 24 h at 37°C under static conditions, planktonic cells were removed and 

microtiter plates were washed three times with distilled water to remove non-adherent cells. Microtiter 

plates were air-dried, and adherent biofilms were fixed with 100 µl of 95% ethanol for 10 min. Ethanol 

was discarded, microtiter plates were air-dried and fixed biofilm were stained with 100 µl of 1% crystal 

violet for 10 minutes. Unbound crystal violet was removed and microtiter plates were washed three 

times with distilled water and air-dried. The biofilm-bound dye was solubilised with 100 µl of 33% 

glacial acetic acid and, after 10 minutes, quantified by measuring the OD600 in a Wallac 1420 Victor3V 

plate reader. To assess the anti-biofilm activity of 3BP, 24-h old biofilms were incubated under static 

conditions at 37°C for further 24 h in TSB-GN supplemented or not with 3BP at 1, 2, 4 or 8MIC. 

Then, biofilms were fixed, stained and quantified as described above. 

 

2.6 Construction of the deletion mutant P. aeruginosa PAO1 ΔgshA 

Deletion mutagenesis in P. aeruginosa was performed as previously described [19], using the suicide 

vector pDM4ΔgshA, which was generated by cloning ca. 450-bp long DNA fragments corresponding to 
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the upstream and downstream genomic regions of gshA (PA5203) into the plasmid pDM4. Plasmids 

and primers used for cloning are listed in Table S1. 

 

2.7 Statistical analysis. Statistical analysis was performed with the software GraphPad Instat, using 

one-way analysis of variance (ANOVA). 

 

 

 

3. Results 

3.1 Antibacterial activity of 3BP against ESKAPE pathogens 

Preliminarily, the MIC of 3BP was determined on a small selection of bacterial strains belonging to the 

ESKAPE group. 3BP showed antimicrobial activity against the two S. aureus strains, ATCC25923 and 

the methicillin-resistant ATCC43300, with MIC values of 20 and 40 µg/ml, respectively. In contrast, 

all the other ESKAPE species were insensitive to 3BP up to 320 µg/ml (Table 1). The anti-S. aureus 

activity of 3BP was further evaluated on 20 clinical and veterinary isolates, including some cystic 

fibrosis isolates and several antibiotic resistant strains (Table S2). 3BP was found to inhibit the growth 

of all S. aureus isolates tested, with MIC values ranging between 20 and 80 µg/ml (Table S2).  

To further investigate the anti-staphylococcal activity of 3BP, the MBC was also determined for each 

isolate. Notably, 3BP MBC was identical to the MIC for 77% of the strains (17 out of 22), and only 

2×MIC for the remaining strains (Tables 1 and S1), suggesting that 3BP is primarily endowed with 

bactericidal activity against S. aureus. To confirm this, a time kill assay was performed using S. aureus 

ATCC25923 as the reference strain and 3BP at concentrations corresponding to 1, 2 or 4MIC. 3BP 

was able to kill S. aureus cells in a dose-dependent manner, with a very fast bactericidal activity, as 

97.3, 98.7 and 99.7% of cells died within 1 h of 3BP treatment at 1, 2 and 4MIC, respectively. 
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(Figure 1). Under these experimental conditions, the 3 log10 reduction in the number of CFU, which is 

required to define an antibiotic as bactericidal [17], was obtained with 80 g/ml of 3BP after ≥ 2 h of 

treatment (Figure 1). 

 

3.2 Effect of culture conditions on the anti-staphylococcal activity of 3BP 

It has been reported that the stability of 3BP in aqueous solutions is significantly higher at acidic pH as 

compared with neutral (physiological) or basic pH [23]. To investigate any pH dependence of 

antibacterial activity, the 3BP MIC was determined for the reference strain S. aureus ATCC25923 in 

MH adjusted at different pH values (range 5-8; Table 2). While the different pHs did not relevantly 

affect the ability of S. aureus ATCC25923 to grow under the tested conditions, the growth rate was 

slightly reduced at pH 5 as compared to other pHs (Figure S1). Notably, a significant decrease in 3BP 

MIC was observed from basic to acidic pH. Indeed, 3BP MIC was 4-fold reduced at pH 5 and 8-fold 

increased at pH 8 with respect to the MIC at pH 7 (Table 2), indicating that the acidic pH significantly 

enhances the antibacterial activity of 3BP, probably as a result of increased stability of the compound. 

Notably, exogenous pyruvate protected S. aureus from the antibacterial activity of 3BP in a dose-

dependent manner, while equivalent concentrations of glucose did not (Table 2), suggesting that 

pyruvate and 3BP compete for transporter(s) and/or specific intracellular target(s). 

3BP activity against S. aureus was also assessed during anaerobic growth, which was reported to 

increase the rate of glycolysis in this bacterium [24,25]. The MIC of 3BP for ATCC25293 was four-

fold lower than that obtained under aerobiosis (Table 2), implying that S. aureus cells are more 

sensitive to 3BP under anaerobic conditions. 

To verify whether active metabolism is essential for the antibacterial activity of 3BP, we tested the 

bactericidal activity of 4×MIC 3BP (80 g/ml) in saline against S. aureus ATCC25923 pre-incubated 

or not at 4°C for 16 h in saline to reduce metabolic activities. No increase in the resistance to 3BP-
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mediated killing was observed in metabolically-inactive (or poorly active) cells (Figure 2), suggesting 

that 3BP treatment could also be effective against dormant S. aureus cells. 

 

3.3 Interaction between 3BP and antibiotics 

To assess 3BP interaction(s) with currently-available antibacterial drugs, checkerboard assays with 3BP 

and several antibiotics characterized by different modes of action were conducted using S. aureus 

ATCC25923 as test strain. 3BP had a synergistic effect only with gentamicin (Table 3). Although 

indifference was observed with all other antibiotics, ampicillin-3BP and tetracycline-3BP combinations 

showed a FICI close to 0.5 (Table 3), suggestive of some additive effect. Notably, no drugs pair 

showed antagonistic effect (FICI>4) (Table 3). 

The synergy between 3BP and gentamicin was confirmed by time-kill assays; S. aureus ATCC25923 

was treated with 0.5×MIC of 3BP (10 µg/ml), gentamicin (0.156 µg/ml) or both compounds, and the 

number of CFU/ml was counted over time (Figure 3). Notably, the number of CFU/ml decreased in the 

first 4 h of treatment with both compounds, either alone or in combination. However, while S. aureus 

ATCC25923 treated with sub-MIC concentrations of 3BP or gentamicin alone attained growth levels 

almost comparable to the untreated control (20-h incubation), the combination of 3BP with gentamicin 

at 0.5×MIC completely abrogated re-growth. Since synergism is defined as a ≥ 2 log10 decrease in 

CFU/ml for the drug combination as compared to each drug alone at 20 h [26], this experiment 

confirms that 3BP and gentamicin exert a synergistic effect on S. aureus. 

 

3.4 Anti-biofilm activity of 3BP 

Biofilm formation during infection is a primary cause of antibiotic treatment failure, as bacterial cells 

encased into biofilms are generally more resistant to antibiotics than their planktonic counterparts [27]. 

To assess whether 3BP retains its antibacterial activity on biofilm cells, pre-formed biofilms of S. 
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aureus ATCC25923 were treated for 24 h with increasing concentrations of 3BP, corresponding to 1×, 

2×, 4× and 8×MIC. Notably, a complete disruption of ATCC25923 biofilm was observed in the 

presence of 3BP concentrations ≥ 2×MIC (Figure 4). No significant differences in biomass were 

observed between 24 or 48-h old untreated biofilms and biofilms treated with 3BP at 1×MIC (Figure 

4). 

To verify whether the anti-biofilm properties of 3BP are shared by different S. aureus strains, the same 

assay was performed on the strains ATCC43300, BG2 and BG7, endowed with different levels of 

sensitivity to 3BP in the MIC and MBC assays (Table S1). Overall, 3BP showed biofilm-disrupting 

activity against all strains, although some differences were observed. For instance, ATCC43300 

biofilms were almost completely disrupted at ≥ 2×MIC (similarly to ATCC25923), while 3BP at 

1×MIC only inhibited biofilm growth without causing biofilm disruption (Figure 4). Biofilm disruption 

at ≥ 2×MIC was also observed for BG7, although the effect was weaker than that observed with 

ATCC25923 and ATCC43300 (Figure 4). Finally, BG2 was a bit more resistant to the anti-biofilm 

activity of 3BP, as significant biofilm disruption was only observed at ≥ 4×MIC (Figure 4). In the 

whole, this experiment demonstrates that 3BP disrupts S. aureus biofilms, though at concentrations 

slightly higher than those active against planktonic cells. 

 

 

 

4. Discussion 

The rise of resistance among bacterial pathogens leads to a growing need for novel antibacterials. Here, 

we assessed the antibacterial activity of a well-known antimetabolite, 3BP, which is in preclinical 

phase of development as an antitumor drug. We found that 3BP has bactericidal activity against S. 

aureus, with MIC and MBC values for different strains overall comparable to the concentrations active 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 13 

against cancer cell lines [6,28] or fungal cells [11] (Table 1 and S1). In contrast, 3BP does not inhibit 

the growth of any other ESKAPE species (Table 1), either Gram-negative or Gram-positive, suggesting 

that the antibacterial activity of 3BP is specific to S. aureus (and maybe closely-related species). The 

biological and molecular basis of such specificity is unknown. Considering that 3BP susceptibility in 

eukaryotic cells (i) positively correlates with 3BP uptake rates and (ii) negatively correlates with 

intracellular levels of glutathione [11], it is tempting to discuss whether these two factors could 

somehow justify the observed selectivity of 3BP towards S. aureus. Regarding 3BP uptake, at least two 

of the species found to be highly resistant to 3BP (i.e., A. baumannii and P. aeruginosa) are able to 

grow and/or obtain energy in minimal media containing lactate or pyruvate as the sole carbon source 

[29-32], indicating that these species possess transporter(s) for lactate/pyruvate uptake, which could 

also mediate internalization of the 3BP analogue. However, considering that in bacteria enzymes and 

transporters involved in catabolism are often tightly regulated [33], it cannot be excluded that the 

expression of these systems in these two species is somehow repressed during growth in the 

nutritionally rich MH medium. Unfortunately, the knowledge on lactate and pyruvate transport systems 

in bacteria is still scarce [34], and thus the presence and/or expression of these transporters cannot be 

simply predicted by genomics and/or transcriptomic analyses. 3BP uptake was measured in fungal cells 

by using [14C]-labeled 3BP [11]; however, this radioactive compound is not commercially available, 

hampering the direct assessment of 3BP internalization by bacteria in the present work. Thus, it cannot 

be ruled out that some specific feature(s) of the cell envelope can somehow influence the uptake of 3BP 

and, thus, its antibacterial activity in different bacteria. 

Interestingly, a putative correlation can instead be predicted between glutathione and 3BP antibacterial 

activity. Indeed, among ESKAPE bacteria, S. aureus is the only one which does not produce 

glutathione [35,36]. In both cancer and fungal cells glutathione has been proposed to protect from 3BP 

toxicity by preventing oxidative stress [11,37] and/or by directly interacting with and titrating 3BP, 
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ultimately reducing its toxic levels in the cytoplasm [38]. It can be hypothesized that the higher 

sensitivity of S. aureus to 3BP could, at least partially, be related to the lack of glutathione-based 

detoxification mechanism(s). To test whether endogenous glutathione production can per se account for 

3BP resistance, we deleted in P. aeruginosa PAO1 the gshA gene, which is essential for glutathione 

biosynthesis [39]. Notably, we found that the MIC of 3BP for the glutathione-deficient P. aeruginosa 

ΔgshA mutant was 320 µg/ml, i.e. just 2-fold lower than that of the wild type (640 µg/ml), and still 4-

16 fold higher than that for S. aureus strains (Table S1). This strongly suggests that the inability to 

produce glutathione does not represent the only reason for the specificity of 3BP towards S. aureus.  

Finally, the anti-S. aureus activity of 3BP could be related to specific metabolic features of this 

bacterium. The ESKAPE group contains a strictly aerobic bacterium (A. baumannii) and five 

facultative anaerobes, which can use either anaerobic respiration and fermentation (K. pneumoniae, 

Enterobacter spp., P. aeruginosa) or only fermentation (S. aureus, Enterococcus spp.) for energy 

production during anaerobic growth. Thus, the susceptibility of S. aureus to 3BP does not appear to be 

related to a distinctive catabolic potential of this bacterium. However, it cannot be excluded that the 

presence of unique metabolic pathway(s), and/or possible differences in the sequence or level of 

expression/activity of specific metabolic enzymes could account for the higher sensitivity of S. aureus 

to 3BP, as compared to other bacteria. Experiments are in progress to tentatively identify the transport 

mechanism(s) and intracellular target(s) of 3BP in S. aureus and to define its mechanism of action as 

antibacterial agent. 

In addition to its bactericidal activity on planktonic cells, 3BP has also shown potent biofilm-disrupting 

properties, causing almost complete detachment of S. aureus biofilms at relatively low concentrations 

(only 2-4 fold higher than the MIC) (Figure 4). This result indicates that, differently from the majority 

of antibiotics which are much less effective against biofilms relative to planktonic cells, 3BP retains its 

anti-S. aureus activity also against biofilm-forming cells. The high tolerance to antibiotics of biofilm-
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forming cells is generally ascribed to many factors, such as expression of specific resistance genes, low 

growth rates, poor diffusion of antibiotics across the biofilm matrix, and lower antibiotics activity 

under low-pH and/or low-oxygen conditions, which are often present in bacterial biofilms [40-42]. In 

this view, the high anti-biofilm activity of 3BP could be justified by (i) its low molecular weight and 

high water solubility, that likely promote diffusion across the exopolysaccharide matrix and/or water 

channels of the biofilm, (ii) its high stability at low pH [23], and (iii) its activity also against cells that 

adopt a fermentative metabolism and/or metabolically-inactive cells (Table 2 and Figure 2), such as 

those present in the deepest biofilm layers.  

In conclusion, this study describes the promising in vitro activity of the antimetabolite 3BP against both 

planktonic and biofilm S. aureus cells. This compound is currently in preclinical development for 

anticancer therapy. Although many studies have reported its efficacy and safety in several animal 

tumour models involving different administration routes, such as intravenous, intraperitoneal, 

inhalation or intratumoral delivery (reviewed in [6]), clinical trials on 3BP have not been conducted yet 

and detailed pharmacokinetics studies are not available, either in animals or in humans. The 

concentrations of 3BP active against S. aureus are quite high with respect to conventional antibiotics 

(Table 1 and S1), but are similar to those active against cancer cell lines [6,28], suggesting that 3BP 

administration could attain in vivo 3BP concentrations that are effective also against S. aureus cells, at 

least in animal models. Moreover, considering the high anti-biofilm activity of this compound and its 

increased activity under anaerobic and acidic conditions, which are common in bacterial biofilms [40-

42], 3BP could have potential for the topical treatment of surface-exposed biofilm-related infections, 

such as chronic wound and ocular S. aureus infections [43], which would allow to administer relatively 

high 3BP doses with a lower risk of systemic toxicity. In this view, our in vitro results could thus pave 

the way for the evaluation of 3BP as a narrow-spectrum antibacterial agent for the treatment of S. 

aureus in acute and/or chronic infections models. More relevantly, the characterization of the 
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mechanism(s) of action of this antimetabolite in S. aureus could highlight novel molecular target(s) 

and, therefore, drive the rational design of more active compounds against this important human 

pathogen. 
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Legends to figures 

 

Figure 1. Time-kill curves of S. aureus ATCC25923 exposed to 3BP. S. aureus ATCC25923 was 

cultured in MH, adjusted at ca. 10
6
 CFU/ml in MH containing 3BP at 20, 40 or 80 g/ml and incubated 

at 37°C with vigorous agitation. At the indicated time points (0, 1, 2 and 4 h), cell viability was 

assessed by CFU counting on agar plates. The results are the mean (±SD) of at least four independent 

assays. 

 

Figure 2. Killing activity of 3BP on metabolically-inactive cells. S. aureus ATCC25923 was cultured 

in MH, adjusted at ca. 10
6
 CFU/ml in saline and (A) immediately treated with 3BP at 4×MIC (80 

µg/ml) in saline for 2 h at 37°C or (B) incubated at 4°C for 16 h and then treated with 3BP (80 µg/ml) 

in saline for 2 h at 37°C. Results are reported as percentage of CFU with respect to the untreated 

controls (100%), and represent the mean (±SD) of three independent assays.  
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Figure 3. Time-kill curves of S. aureus ATCC25923 exposed to 3BP and gentamicin alone or in 

combination. S. aureus ATCC25923 was cultured in MH, adjusted at ca. 10
6
 CFU/ml in MH 

containing either 3BP or gentamicin or both at 0.5×MIC (10 µg/ml and 0.156 µg/ml, respectively), and 

incubated at 37°C with vigorous agitation. At the indicated time points (0, 1, 2, 4 and 20 h), cell 

viability was assessed by CFU counting on agar plates. The results are the mean (±SD) of three 

independent assays. 
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Figure 4. 3BP-mediated disruption of S. aureus biofilms. Biofilms of S. aureus strains ATCC25923, 

ATCC43300, BG2 and BG7 were developed in microtiter plates containing TSB-GN medium. After 24 

h, supernatants were discarded, and fresh TSB-GN containing increasing 3BP concentrations was 

added (1, 2, 4 or 8MIC). Then plates were incubated for further 24 h. Biofilm biomass was 

quantified as described in Materials and methods. The results are the mean (±SD) of four independent 

assays. Black histograms represent the biomass of 24-h old biofilms before treatment. Grey and black 

asterisks denote statistically significant differences with respect to 24-h old biofilms or untreated 48-h 

old biofilms, respectively. *, P<0.05; **, P<0.01; ***, P<0.001 (ANOVA). 
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Table 1. 3BP activity against ESKAPE bacteria.
1
 

Species Strain Reference/source MIC 

(µg/ml) 

MBC 

(µg/ml) 

E. faecium 3137 Rossolini’s Lab 

collection 

>320 NA 

E. faecalis ATCC29212 ATCC >320 NA 

S. aureus ATCC25923 ATCC 20 40 

 ATCC43300 

(MRSA) 

ATCC 40 80 

K. 

pneumoniae 

ATCC27736 ATCC >320 NA 

 17830 (MDR) [20] >320 NA 

A. baumannii
 
 ATCC19606  ATCC >320 NA 

 ACICU (MDR) [21] >320 NA 

P. aeruginosa ATCC15692 ATCC >320 NA 

 SP1 (MDR) [22] >320 NA 

E. cloacae ATCC13047 ATCC >320 NA 

E. aerogenes ATCC13048 ATCC >320 NA 
1
 Abbreviations: MDR, multidrug resistant; MRSA, methicillin-resistant S. aureus; 

ATCC, American Type Culture Collection; NA, not assessed.  

 
Table 2. Effect of pH and anaerobiosis on 3BP MIC for S. aureus ATCC25923 

Condition pH Supplement MIC 

(µg/ml) 

Aerobiosis 5  5 

 6  10 

 6.5  10 

 7  20 

 7.5  40-80 

 8  160 

 7 Glucose (50 

mM) 

20 

 7 Glucose (5 mM) 20 

 7 Pyruvate (50 

mM) 

320 

 7 Pyruvate (5 mM) 80 

Anaerobiosis 7  5 
1
 MIC fold change relative to the MIC at pH 7 under 

aerobic conditions (20 µg/ml, corresponding to 120 µM).  
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Table 3. Interaction between 3BP and selected antibiotics against S. aureus ATCC25923 

Antibiotic MIC 

(µg/ml) 

FIC index 

(FICI)
1
 

Interpretation 

Gentamicin 0.312 0.438 Synergy 

Ampicillin 0.156 0.625 Indifference 

Tetracycline 0.25 0.563 Indifference 

Rifampicin 0.004 2 Indifference 

Chloramphenicol 8 1 Indifference 

Ofloxacin 0.25 2 Indifference 
1
 FICI: < 0.5, synergy; 0.5–4, indifference; >4, antagonism. 

 

 


