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Abstract

A recently proposed Iterated Alternating Sequential (IAS) MEG inverse solver algorithm,
based on the coupling of a hierarchical Bayesian model with computationally efficient Krylov
subspace linear solver, has been shown to perform well for both superficial and deep brain
sources. However, a systematic study of its ability to correctly identify active brain regions
is still missing. We propose novel statistical protocols to quantify the performance of MEG
inverse solvers, focusing in particular on how their accuracy and precision at identifying active
brain regions. We use these protocols for a systematic study of the performance of the IAS
MEG inverse solver, comparing it with three standard inversion methods, wMNE, dSPM, and
sLORETA. To avoid the bias of anecdotal tests towards a particular algorithm, the proposed
protocols are Monte Carlo sampling based, generating an ensemble of activity patches in each
brain region identified in a given atlas. The performance in correctly identifying the active
areas is measured by how much, on average, the reconstructed activity is concentrated in the
brain region of the simulated active patch. The analysis is based on Bayes factors, interpreting
the estimated current activity as data for testing the hypothesis that the active brain region is
correctly identified, vs. the hypothesis of any erroneous attribution. The methodology allows
the presence of a single or several simultaneous activity regions, without assuming that the
number of active regions is known. The testing protocols suggest that the IAS solver performs
well with both with cortical and subcortical activity estimation.
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1 Introduction

In the ongoing quest for understanding brain functions and connectivity, during specific tasks
and in resting states, with the hope of finding a functional fingerprint of autism, pathological
depression or schizophrenia, the potential of MEG as a non-invasive and non-disturbing brain
activity mapping modality cannot be emphasized enough. The high temporal resolution of MEG
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offers enormous possibilities for understanding the fine details of brain dynamics, however the
reliable reconstruction of activity patterns in cortical and deep brain regions relies on the capability
of the underlying inverse solver to correctly identify active brain areas. In this work we propose
a comprehensive, statistically sound methodology to assess the performance of different inverse
solvers, and demonstrate the viability of the approach by applying it to four different algorithms.

A fundamental difficulty in the solution of the MEG inverse problem (Hamiéléinen el al., 1993,
Baillet et al., 2001, Brette el al., 2012) comes from the non-uniqueness of the solution and the
high sensitivity of the problem to noise in the data. To address the non-uniqueness, it is necessary
to augment the data with additional information about the solution, which entails either the
introduction of regularization techniques in a deterministic setting, or the introduction of prior
models in the Bayesian framework. The sensitivity of the computed solution to noise, with low
signal-to-noise ratio of data, in turn, requires a good understanding of the noise sources, which
in the Bayesian framework is related to a design of a reliable likelihood. These considerations
highlight the importance of being able to assess the reliability of a given inversion algorithm in the
multitude of tasks it may be applied to, and to quantify the uncertainty in computed solutions.

In this article, we present a systematic study of the accuracy and precision of the Iterative
Alternating Sequential (IAS) MEG inversion algorithm (Calvetti et al., 2009, 2015), which pairs
hierarchical Bayesian modeling with a computationally very efficient prior-based preconditioned
iterative linear solver. Numerous algorithms based on hierarchical Bayesian modeling have been
suggested in the literature, see, e.g., (Auranen et al., 2005, Calvetti et al., 2009, Henson el al., 2009,
2010, Kiebel el al., 2008, Lucka et al., 2012, Lopez et al., 2014, Mattout et al., 2006, Nummenmaa
et al., 2007,b, Owen et al., 2012, Sato et al., 2004, Stephan et al., 2009, Trujillo-Barreto et al.,
2004, Wipf and Nagarajan, 2009, Wipf et al., 2010). A common feature of these methods is the
use of parameter-dependent prior models, the model parameters representing the second layer of
unknowns. A standard approach in hierarchical Bayesian modeling is to introduce a hyperprior
model for the parameters, and to either marginalize, or model average, the parameters, or to esti-
mate them by maximizing the evidence, see, e.g., Bernardo and Smith (2004) for general reference.
A more time-consuming approach to the hierarchical modeling avoiding optimization techniques is
to use Markov chain Monte Carlo (MCMC) methods.

The TAS MEG algorithm, too, is based on the use of hierarchical, conditionally Gaussian model
for the prior. The hyperparameters are the variances of the elementary sources in the current
density model, and are adjusted by learning focality from data. To reduce the computational com-
plexity of the problem, especially in case of high dimensionality of the MEG data, the algorithm
approximates the maximum of the posterior distribution instead of computing the posterior distri-
bution itself. The iterative alternating sequential minimization procedure was shown to converge in
Calvetti et al. (2015), where an easily implementable procedure for the estimation of the maximizer
of the posterior with respect to both the unknown of primary interest and the hyperparameters
was proposed. The maximization algorithm uses a dynamically preconditioned Krylov subspace
iterative solver equipped with a stopping rule that monitors the fidelity of the solution to data
and stops the iteration before amplified noise components begin to degrade the computed solution.
The solution of the regularized subproblem does not rely on a Tikhonov-regularized linear solver,
but on a very fast converging preconditioned Conjugate Gradient Least Squares (CGLS) algo-
rithm, which makes the solution depend non-linearly on the data (Calvetti et al., 2018). Moreover,
the TAS MEG inverse method employs an anatomically justified prior: Based on the segmented
subject-specific MRI image containing the information of the cortical surface orientation, for each
dipole there is a direction which is favored, but not forced, by the prior model. Similar ideas with
different implementation have been suggested in the literature, see. e.g. (Lin el al., 2006Db).

Some of the appeal of standard MEG solvers such as MNE (Haméldinen MS and Ilmoniemi
RJ, 1984, Lin el al., 2006a) or LORETA (Pasqual-Marqui, 1999) is their simplicity of use, with
minimal user intervention required, e.g., for setting parameters or controlling the optimization



process, which is not always the case with hierarchical models. One of the goals in developing the
TAS algorithm was to have a robust and convergent method that depends on very few user-supplied
parameters with an intuitive meaning. In Calvetti et al. (2009), the connection between the
conditionally Gaussian hierarchical models and several sparsity-promoting methods ( Gorodnitsky
and Rao, 1997, Nagarajan et al., 2006, Uutela et al., 1999) was pointed out.

A novel contribution of this paper is to provide a physical interpretation of the hyperparam-
eters and to establish a connection with sensitivity weighting. The IAS algorithm, as it was
rigorously shown in Calvetti et al. (2015), contains only one user-supplied parameter that controls
the sparsity of the solution and, as pointed out in Section 2.2, the other hyperparameters can be
semi-automatically set based on the information about the signal-to-noise ratio. This formulation
provides a proper Bayesian interpretation for the sensitivity weighting that is commonly used with,
e.g., the Minimum Norm Estimate (MNE) and the Minimum Current Estimate (MCE) (Uutela et
al., 1999) algorithms to overcome the propensity of the methods to favor superficial sources over
deep ones, thereby filling the gap between Bayesian modeling and traditional regularization.

The quest for MEG inverse solvers capable of identifying activities both on superficial cortex and
in deeper brain regions continues to be of interest. In Attal et al. (2012), Attal and Schwartz (2013)
the localization accuracy of subcortical generators was studied for three different algorithms: the
weighted Minimum Norm Estimate (wMNE), dynamic Statistical Parametric Mapping (dSPM),
and standardized Low Resolution Brain Electromagnetic Tomography (SLORETA). The procedure
relies on a realistic electrophysiological model of deep brain activity and compares the performance
of the three methods in recovering activity in the neocortex, hippocampus, amygdala and thalamus.
In the present study the comparison is extended to include the IAS method using a model of the
subcortical regions that considers their surface envelopes, adding basal ganglia, brainstem and
cerebellum to the list of brain regions, and introducing a statistically justified metric to evaluate
the performances of the different algorithms.

More specifically, our investigation addresses the following question: Given an atlas of anatomo-
functional brain regions (BR), how well does the IAS method for the MEG inversion identify active
regions, and to what extent non-active regions will be correctly deemed as inactive ones? With a
slight abuse of terminology, we may refer to the former question as sensitivity of the MEG inverse
solver, and to the latter as specificity, elaborating on the reasons for this choice further below.
In line with the Bayesian paradigm that TAS is based on, we investigate these questions using
statistical tools. For this purpose we introduce an Activity Level Indicator (ALI), measuring the
mean activity level of each BR given a simulated patch activity in a selected BR, and compute
the first and second order statistics of this indicator over a sample of random activation patches
in the selected BR. To assess the relative performance of IAS, we compare these statistics with
those of three other standard inversion methods, wMNE (Lin el al., 2006a), dSPM (Dale et al.,
2000), and sLORETA (Pasqual-Marqui, 1999, Wagner et al., 2004), using the implementations
provided in Brainstorm (Tadel et al., 2011). Furthermore, to test the relative performance of the
four methods, we observe that a common approach in the Bayesian methodology to test hypotheses
or models is to use Bayes factors of probabilities of the data, given the competing hypotheses or
models (Bernardo and Smith, 2004, Kass RE and Raftery AE, 1995). In the current setting, we
interpret the estimated activity as data, and test the probabilities of them under the competing
hypotheses of having activity in the correct BR versus having it in another randomly chosen BR.
We compare the specificity of the IAS algorithm to that of the other three standard solvers using
simulated data under two different scenarios: when there is only one active patch in a cortical or
subcortical region, and when there are multiple (from two to six) active patches in cortical and
subcortical regions. In this way we can test not only the sensitivity and specificity of each inverse
solver with respect to a single BR, but also their ability of recovering an activation pattern when
other regions disturb the identification. We conclude the computed experiments by comparing the
reconstructions obtained by the four inverse solvers in an example starting from real data, where



the underlying activation pattern is not known exactly but is inferred from the protocol used for
the data collection.

2 Materials and Methods

We start by presenting a brief review of the [terative Alternating Sequential (IAS) MEG inverse
solver, described in detail in Calvetti et al. (2015). Subsequently, we introduce the computational
tools that will be used for testing the algorithm’s performance, focusing in particular on its capacity
to identify active areas of interest from the MEG data and comparing it to three other mainstream
MEG inverse solvers.

To discretize the problem, we approximate the cortical surface, as well as the surface of the
subcortical structures, by a triangular mesh with n vertices, whose coordinates are denoted by v;.
We associate to each vertex a unit length vector 7; pointing in the direction normal to the local
cortical /subcortical surface.

The forward model is of the form

n

b= M;q; +e, (1)
j=1

where b € R™ is the observation vector representing the measured magnetic field components,
M; € R™*3 is the lead field matrix associated with the jth dipole located at v;, g; is the jth dipole
moment and € € R™ is additive observation noise. The lead field matrices take into account the
conductivity structure of the head model. While changing the forward model does not affect the
inversion algorithm, the results are to some extent sensitive to the model used (cf. Vorwerk el al.
(2014)).

We model the noise term as a zero mean Gaussian random variable, € ~ A(0,X), where
¥ € R™*™ is the covariance matrix. To model biological noise, the covariance needs to reflect
the cross correlations between the channels, as will be discussed below. Therefore, the likelihood
density of b conditioned on ¢, ..., ¢, can be written as

R B 1 ~
70| G, .., @) x exp —§||b—Z|v|jqj||§ ,
j=1

where [[2]|2 = 2TE 712 is the square of the Mahalanobis norm and “o” stands for “proportional
up to a normalizing constant”. In our computer simulation a small exogenous noise component is
added to the biological noise.

2.1 The inverse solver: an overview

The TAS algorithm is based on a Bayesian hierarchical prior model of the activity of a single dipole
of the form

B 1 7Cq 131, 3
7Tprior(Qj | 9]) NN(anjCj) X Wexp <_J2éj =exp| — 203 - = 5 IOg 9] ;

J

here C; € R3**3 is the local anatomical prior matrix,

C; = 07 +6(E] + G,



where 0 < § < 1 and (f_;, @-, ;) is a local orthonormal frame at the j-th vertex and 7; is orthogonal
to the cortical/subcortical surface. The parameter 6; > 0, scaling the local prior covariance of the
dipole @, is modeled further as a random variable following the gamma distribution,

0; ~ (05, 5;) o 0~ exp( Zﬂ>

The scaling parameter 67 of the gamma density can be chosen to express our a priori belief
about the order of magnitude of the expected value of the variance ¢;, while the value of the shape
parameter (; controls the sparsity of the solution. In all computed experiments the latter is held
constant for all dipoles, that is, 3; = 3, while 6} is chosen by an empirical Bayes argument to
correspond to a sensitivity scaling. The details and justification for the choice of the hyperparam-
eters can be found in the Appendix (see also the original article Calvetti et al. (2015)). By Bayes’

theorem the posterior model can be written as
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The TAS algorithm for computing an estimate of the maximum a posteriori (MAP) solution of
(2), is based on the following alternating iterative minimization scheme:

1. Initialize 0; = 0;, 1<j <n,and set k =0;
2. Until the convergence criterion is met:
(i) Update g, ..., Gn, setting
(@) = argmax{m(qi,. ... Gn, 07, ..., 05 | D)}
(ii) Update 04, ..., 0,, setting
(051 0k = argmax{x(FT, . @8 01,0, | D))
(iii) Increase k — k+ 1.

It was proved in Calvetti et al. (2015) that the above optimization algorithm converges to a
unique local maximizer. Moreover, the iterations can be performed effectively by noticing that
when minimizing the energy function defined as

(a)

L S ||QJHC 6,
6<q1,...,qn;01,...,0n):||bf;quj||% ' Z:j ) log#; - el ®

Jj=1

(b)

the optimization with respect to ¢, affecting only part (a) of the above expression, reduces to a
quadratic minimization problem, while the minimization with respect to the hyperparameters ¢;,
depending only on part (b) of the energy function, can be done independently of other components,
and admits a solution in closed form. Finally, we point out that an approximate solution of
the quadratic minimization problem can be found very efficiently using a priorconditioned CGLS
algorithm (see: Figure 1). For the omitted details about the algorithm and a discussion about the
meaning of w in Figure 1, we refer to (Calvetti et al., 2015).



Box 1: IAS algorithm

Variables:
e q=1[q,..., T eR"
o w=[wy, ..., ws,]" € R (auxiliary variable)

o 0=1[01,...,0,]T €R®
Given:

o 0*=107,...,00]T €R"

e 3>5/2

eM=[M o M, | ERT (ead field matix)

e C=diag { c, - C, } € R3nx3n (covariance of the anatomical prior)
Algorithm:

e Initialize 6 — 0*, w — 0

, T = given tolerance

e Until ||§ — Oo1q| < 7|0
I Co=diag{ 6,c, .- 6,C, }, DIDy=Co, Ay=MD;"
2. Initialize: d — b — Agw, 1 — Ag—d, p—oT
3. Until ||d|| < y/m repeat:
y — Agp
a—1rTr/yTq
w—w+ap
d—d—ay
7 — Ald

p—r+(@Tr)/FTF

=T

4. q—DgTw, V=[Gl /0i, . 13l /05T

5. Oga =10

6. =10 (ﬁ—g+ (ﬁ—g)2+2v>

Figure 1: An outline of the TAS algorithm.



2.2 Initializing the IAS algorithm

To initialize the IAS algorithm we have to choose the scaling parameters 67, 1 < j < n. This
can be done observing that 67 can be viewed as a sensitivity weight that takes into account the
distribution of the active sources and the signal-to-noise ratio SNR. If we assume

e~ N(0, %),

where the covariance matrix X is symmetric positive definite, not necessarily diagonal, the SNR is
defined as

ECoz)  E{oll?)
SNR = — +1, SNRgp = 10 log,o(SNR), 4
e~ E(T) i 10(SNR) )

and
E{|lel|*} = trace(X).

Furthermore, assuming that the a priori expectation of the number of active dipoles is k, we get

pr, ~ Poisson(k),

1<j<n

— —_ )

o = Z % (SNR - 1) i/tgra;e(i)
k=1 B”Mjcj HF

where the subscript F denotes the Frobenius norm (see the Appendix for details).
We point out that the expectation of the variance of a single dipole cannot exceed a physiolog-
ically meaningful upper bound 6y,.x, which in practice means that we need to choose 93‘-‘ as

C
9>"< = min 9 P —_—
_7 maxys 1 2 b
{ M,/ ||%}

where the constant C' comprises the summation over k above. Thus, the analysis leaves only
three parameters to be selected by the user: (8, k,max), €ach of which has a clear physiological
interpretation.

2.3 Test protocols

The protocols for the validation of the IAS algorithm focus on the sensitivity of the method, by
which we intend how well the method is able to identify an active area, and on its specificity,
intended as how often the algorithm misidentifies a non-active area as active. The validation
methodology discussed here is general and can be used for any MEG inversion algorithm, therefore
providing a flexible platform for comparing the performance of different methods.

In the sequel, we assume that the source space representing the brain is divided into anatomo-
functional BRs following a given atlas. We denote by L the number of BRs in the atlas, and assume
that every vertex v; can be uniquely attributed to a single BR.

2.3.1 Patch activity generation

We investigate the activity attribution with synthetic data produced by the activity of a patch P
in a given anatomo-functional BR. The patch activity is generated with a Monte Carlo algorithm
to account for the effect of random source-dependent variations in the data on the reconstructions.
The activity patch P consists of a preselected number Np of vertices and corresponding dipole
moments. (see the Appendix for details on the construction of P).



Let P = {(v1,41),---, (vUNp,dnp )} denote the coordinates of the vertices and the corresponding
dipole moments on the patch P. For later reference, we define the barycenter of the activity patch
by the formula

1 .
mp = === > uillgll, (5)

S er ]

where the summation is over all vertices in the patch. Observe that the barycenter of an activity
patch need not coincide with any of the nodes; in fact, there is no guarantee that the barycenter
is inside the BR of interest due to the lack of convexity of the brain regions.

When testing the performance of the algorithms, we consider two simulation protocols: A single
active BR, or several active BRs. For both protocols, we generate a sample B = {b*, b2, ... b5} of
data vectors as follows. In the single active BR case, we select one of the regions from the atlas,
and generate K independent random activity patches in the selected BR. For each activity patch,
we compute the magnetic field components at the sensor locations with the model (1), then add
simulated brain noise. In the second protocol, we consider activity occurring simultaneously in
N different BRs. For each of the N active regions, we generate independently an activity patch,
repeating the process independently K times, and compute the magnetic field data at the sensors,
corrupting the data with the additive simulated brain noise as in the single region case. The
simulation of biologically justified brain noise is described in the following section.

2.3.2 Simulated biological noise

To acknowledge the fact that a significant portion of noise in MEG is not of exogenous ambient
origin but due to the subject itself, we generate additive noise that has a correlation structure
characteristic to biological noise. We follow here the random dipole brain noise model in de Munck
et al. (1992), Huizenga et al. (2002). Since the simulations in this work are single time slice
simulations, we do not include the temporal correlation component developed in the cited articles.

We generate a small number ng of dipole sources, drawing the positions independently with
uniform distribution over the source space, the dipole moments independently from normal dis-
tribution, and compute the magnetic responses at the magnetometers using the lead field matrix.
The resulting data vector constitutes a single realization of unscaled brain noise. To compute the
covariance, we generate a large number Ny of brain noise realizations, denoted m? . ., 1 < j < Ny,
and compute the empirical unscaled covariance ¥ 4. To guarantee the positive definiteness of the
matrix, and to address the ambient noise, we add a small diagonal contribution to the covariance,
leading to the model

T = a (T4 + 63diag (Za)) -

In our simulations, we used parameter values ng = 20, Ng = 5000, § = 0.01 and o = 0.1. Hence,
we assume that the variance of the biological noise is around one tenth of the average power of the
random dipoles generating the realizations of the noise. Finally, given the Cholesky decomposition
of the covariance matrix, ¥ = BTB, we may generate random realizations € of the noise with the
prescribed covariance through

e=BTw, w~N(0,I),

that is, w is a realization of a random standard normal vector. By fixing the noise level, the SNR
for the simulated data depends on the location of the simulated activity, SNR being significantly
lower for deep sources than for superficial cortical sources. Since both the patch activity and the
noise are random, the SNRgp, estimated as the ratio of the squared norms of the signal and the
noise, varies from a simulation to another, being around 13 dB for cortical sources, and 7 dB for
subcortical deep sources, with a significant variation due, e.g., to the orientation of the activity
patch.



2.3.3 Activity level indicator vectors

An important criterion for assessing the performance of an MEG inverse solver for analyzing the
brain activity is how reliably it maps the observed data to the correct region of interest. Because it
is unreasonable to expect a perfect performance due to the severe ill-posedness of the problem, we
propose an evaluation tool to quantify how well the BR where the simulated activity takes place can
be identified, and what the most likely confounding regions are. The correct identification of regions
further away from the sensors, e.g., deep brain structures, is expected to be most challenging. In
general, however, for a reliable solver, it is reasonable to expect that the confounding regions
should be anatomically close to the one where the activity occurs. The procedure for quantifying
the sensitivity of a MEG inverse solver to the BR of the activity is outlined below.
Let R
@
F:R™ SR b | @ |,

IEgN

an

denote the map defined by the MEG inversion algorithm, where Ej’j, 7 =1,...,n are the estimated
dipole moments at the n vertices. We introduce the estimated brain activity vector a € R”,
whose jth component is the norm of the jth current dipole found by the MEG inverse solver,
that is, a; = [|¢;||. Since each entry of the vector a can be associated to one of the BRs in which
the corresponding vertex is located, we may define the estimated BR Activity Level Indicator
(BR-ALI) vector a € RL| corresponding to the brain activity estimate a as

aq
a= , oy =mean {a;,j € R},
ar,
where Ry, £ =1,..., L, is the set of the vertex indices corresponding to the ¢-th brain region.

Assuming that the data b are generated by an active patch in the /th BR alone, if F were a
perfect MEG inversion algorithm for identifying active regions, the estimated ALI vector would
have only the fth component different from zero, while ay = 0 for all ¢ # £. Based on this
observation, we propose to measure the sensitivity of an MEG inversion algorithm to activity in a
given BR by how many components of « corresponding to other BRs are different from zero and
how large they are.

In our study of the IAS MEG inverse solver and of the other three algorithms considered, we
assess the performance using the Monte Carlo simulations of K independent activity patches as
described in Section 2.3.1. More specifically, for each BR, to evaluate the MEG inverse solver, we

i) apply the MEG inverse solver with the synthetic data sample B = {b!,..., b5}, to estimate
the corresponding activity vectors, {a',...,a"}, a¥ € R,

ii) compute the corresponding BR-ALI vectors {a!,...,a%}, of € RE,
iii) compute the sample mean and the sample covariance of the K BR-ALI vectors,
a:iiak r :LZ(aha)(aha)T
K= LT K- k=1 .

The display of the mean BR-ALI vector @ in the form of a histogram provides a visual clue of
the method’s performance; the more tightly the histogram is concentrated on the active patch, the
more reliable the estimate is. The diagonal entries of I',, which are the variances of the estimated



activity levels in various BRs and measure the consistency of the mean BR-ALI vector retrieval,
are indicated in the histograms displayed in Figures 3-5 as standard deviation whiskers. We point
out a formal similarity of the analysis in pattern recognition: The computed sample of BR-ALI
vectors can be seen as a library of patterns, and the histograms represent frequencies at which
different individual patterns appear.

The analysis has a close similarity with the resolution matrix analysis (Molins et al., 2008,
Hedrich et al., 2017), the vector @ being the average response to activity in a single brain region,
and can therefore be thought as a column of the resolution matrix; however, here we consider noisy
signals, random sources and nonlinear maps.

The proposed methodology generalizes naturally to several active regions of interest. In the
case where there are N simultaneously active BRs, the statistics of the estimated BR-ALI vectors
can be investigated as in the case of a single patch.

2.3.4 Bayes factors, sensitivity and specificity

To set up a protocol to assess an MEG inverse solver, consider the following simple elementary
test that constitutes one of the basic building blocks of Bayes factor analysis, see e.g. Kass RE
and Raftery AE (1995). In turn, there are aspects of Bayes factor analysis that share similarities
with concepts of sensitivity and specificity used in the context of binary classifiers.

Given activity in a patch P with barycenter mp defined by (5), consider two spheres with the
same fixed radius R, By = B(mp, R) centered at the barycenter of the activity, and By = B(vj, R),
centered at a randomly selected vertex v; in the brain, respectively. Let a € R™ be the activity
vector estimated from the data b generated by the activity in the patch P, and formulate the
following pair of hypotheses:

(Hp) The activity is in the sphere By,
(Hy) The activity is in the sphere Bj.

We consider the estimated activity vector a as data, and associate to the hypotheses Hy and H;
the probabilities

1 1
P(a| Hp) = — Z a; and P(a|H)=— Z aj,

|CL‘ v;€EB ‘a| v;EB
J 0 J 1

where |a| = Z?:l a; is a normalizing factor. We quantify the strength of the hypothesis (Hy)
against the hypothesis (H;) in terms of the Bayes factor,

Pla| Ho)

BF(Ho, H,) = Pla|Hy)’

in the following manner. If BF(Hy, H1) < 1 we argue that the data support the hypothesis Hi,
while if BF(Hy, H;) > 1, the evidence is in favor of the hypothesis Hy, and the support for Hy is
stronger the larger the value of the ratio. Following Kass RE and Raftery AE (1995), we classify
the relative strength of the two hypotheses according to the following scale:

BF(Hy, H;) €(0,1) The evidence is against (Hyp),

BF(Ho, H;) €]1,3) The evidence is weakly in favor of (Hp), (6)
BF(Hy,H;1) € [3,10) The evidence is strongly in favor of (Hy),

BF(Hy, Hy) > 10 The evidence is overwhelmingly in favor of (Hp).

Clearly, the hypothesis (Hi) depends on the choice of the point v; defining the sphere B.
Because we are, in fact, interested in assessing whether the MEG inversion method is favoring the

10



correct activation area over any other area, we enrich the Bayes factor test by generating not one,
but a family of M competing hypotheses,

(Hy,) The activity is in the sphere B,,, = B(v;,,,R), 1<m <M,

where the center points v;, are drawn from the set of vertices with uniform probability. This leads
to a set of M Bayes factors, BF(Hy, H,,), 1 < m < M, and we can compute the frequencies of
occurrences in the scale defined above. A good solver should have most of the Bayes factors in
the intervals [3,10) or above 10. Numerous occurrences of Bayes factors below 1 indicate that the
solver tends to attribute the activity to an incorrect location.

It may be argued that the Bayes factor analysis as described above implicitly uses the infor-
mation that the MEG data was generated by a single active patch, while in reality the number of
active brain regions is unknown. To address this issue, we test the algorithm also with several si-
multaneous patch activities. More specifically, in the case where the activity occurs simultaneously
in N different BRs, we select one of these active regions at a time and set the activity spheres
By centered at the barycenter of the selected patch, while the center of the competing activity
spheres B, are drawn randomly from any other BR. Subsequently we compute the Bayes factors
supporting the hypothesis

(Hp) :  The activity is in the sphere By = B(mp, R).
versus the family of competing hypotheses,
(H,,) The activity is in the sphere B,,, = B(v;,,,R), 1<m <M,

where the centers v, are again drawn from the uniform distribution. Observe that if B,,, overlaps
with one of the active BRs other than the one defining the hypothesis (Hy), the Bayes factor may
be low; thus, the other active regions can be seen as confounding factors in this case. However,
this simulation is closer to the situation with the real data in which the number of active regions
of interest is unknown.

While it is not one of the aims of this paper to propose a classifier based on the Bayes factors,
to illustrate how elements of our analysis can be remindful of the classical concepts of sensitivity
and specificity, consider a binary query to find whether a given algorithm correctly identifies an
active area. Suppose that with normalized activity vector a, a sharp threshold f is introduced to
distinguish whether an area is deemed to be active according to the rule

p(a | Hp) > B means that By is active,
p(a | Hp) < B means that By is not active.

Given a set of N simulated data with activity in By, an algorithm with high sensitivity correctly
identifies the domain By as active, and therefore the number of reconstructions for which p(a |
Hy) > 8 should be close to N. On the other hand, an algorithm with high specificity queried
whether B,, is active when in reality the activity is in By, should frequently report a negative
event, and therefore the number of cases in which p(a | H,,) < § should again be close to N. In
summary, for a method with high sensitivity and high specificity, the Bayes factor should frequently
satisfy BF (Hy, Hy,) > 8/ = 1. Tt is in this spirit that histogram of Bayes factors heavily slanted
towards high values can be seen as an indicator of high sensitivity and high specificity. Observe,
however, that there is no established one-to-one correspondence between these indicators, although
probabilistic bounds could be developed.
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2.4 Model settings
2.4.1 Source space, brain regions, and simulated data

We generate the synthetic data using the anatomical and geometric information provided by the
MEG-SIM web portal Aine et al. (2012). The MRI data provided in the portal were segmented
with Freesurfer (Dale et al., 1999) and imported in Brainstorm (Tadel et al., 2011) to generate a
source space including both the cortical surface and the substructure regions. The source space
obtained in this manner consists of 27000 nodes identifying possible dipole locations in the gray
matter. A randomly generated patch of activity in the left lateral occipital cortex is shown in the
top row of Figure 2 and a randomly generated patch of activity in the right cerebellum is shown in
the middle row of Figure 2. To avoid the overly optimistic results that typically result from testing
inversion algorithms using the same model for data generation and inverse solver, we solved the
inverse problem with a sparser mesh with n = 20 000 nodes obtained through independent sampling
of the cortical and subcortical structure.

The labeling of the brain regions in the cortical surface follows the Desikan-Killiany Cortical
Atlas (Desikan et al., 2006) consisting of 34 cortical anatomical regions in each hemisphere, to
which we added 8 bilateral structures (accumbens, amygdala, caudate, hippocampus, pallidum,
putamen, thalamus, cerebellum) and 1 central structure (brainstem). Thus the atlas we used in
the simulations consists of a total of 85 brain regions.

The data acquisition geometry corresponds to the 306-channel Elekta Neuromag device and the
lead field matrix is computed using the single layer model implemented in the OpenMEEG (Kybic
el al., 2005, Gramfort el al., 2010) software provided in the Brainstorm package.

FIGURE 2 HERE

2.4.2 Real and realistic data

The real data set used for our computed examples is the MEG sample data acquired with the Neu-
romag Vectorview system at MGH/HMS/MIT Athinoula A. Martinos Center Biomedical Imaging
and made available, together with the MRI reconstructions created with FreeSurfer, in the MNE
software package (Gramfort el al., 2014). As part of the protocol for the data collection, checker-
board patterns were presented into the left and right visual field, interspersed by tones to the
left or right ear. The interval between the stimuli was 750 ms. Occasionally a smiley face was
presented at the center of the visual field. The subject was asked to press a key with the right
index finger as soon as possible after the appearance of the face (Gramfort el al., 2014). In our
computed experiments we only consider the trials corresponding to the left-ear auditory stimulus
and perform the averaging on these trials. To test how the inverse methods accurately recover
activity in the deep regions, we added to the real data set described above the magnetic field
evoked by a patch of 20 active dipoles in the brainstem, shown in the bottom row of Figure 2 at
time T' = 5ms, whose time series follow a Gaussian distribution peaked at T' = 5ms with standard
deviation o = 2; see Parkkonen et al. (2009) for details. The source space containing both cortical
regions and subcortical structures after discretization comprises 22019 vertices.

The peak amplitude of the simulated activity is about one fourth of the peak amplitude of the
auditory response of the real data, the estimated SNR being about 5.3 dB. For comparison, the
SNR of the auditory response in the real data is approximately 15 dB.
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2.5 Setting of IAS parameters

As shown in Sections 2.1-2.2, in the TAS algorithm the user has to assign the values of the three
parameters 3, Omax, k and of § in the local anatomical prior matrix C;. The choice of all the four
parameters values can be driven by their physiological interpretation.

The hyperparameter g > g control the focality of the reconstructed sources: when 3 approaches
the limit value g, the reconstructed brain activity becomes more and more focal. Let us define
n=p8- g Several numerical simulations suggest that a reasonable values of 1 should range
between 0.1 and 0.001 (cf. Calvetti et al. (2015)), depending on whether we aspect less or more
focal sources: in the following tests, where we assume focal sources, we set n = 0.001.

The parameter 6,,x is used to avoid unrealistic high values of the dipole variances. Reliable
estimates for the maximum dipole variance have been reported in the literature, see, e.g., (Mosher
el al., 1993); alternatively, a heuristic criterion is to truncate the values of the variance retaining
just those values below the threshold ,.x = 0.9max;(6,). The goodness of this choice has been
confirmed with extensive simulations (cf. Calvetti et al. (2015)).

The parameter k is related to the number of sources we expect to be active. A direct compu-
tation shows that £ = Z?Zl pr/k assumes values between 0.5 and 0.2 when k varies from 1 to 10,
therefore a value of £ in this interval is a good choice if we do not have any prior information on
the number of active sources. If we assume that only one source is active, we can set £ = 1 (see
the Appendix). Although when testing with synthetic data we know exactly the number of active
sources, we set £ = 1 in all the tests we performed to show that this choice is a good initial guess
for both single and multiple source distributions.

The last parameter to be set in IAS is § that accounts for possible inaccuracy in the segmentation
of the cortical/subcortical surface normals. If the directions of the normals would be exact, § could
be set equal to zero; in the realistic case the anatomical data extracted from the MRI are not fully
accurate so that the normal should be considered a preferred direction. To allow the dipoles to
follow quasi-normal orientation, we choose a small value of §. Several numerical tests show that a
good choice is § = 0.05 (cf. (Calvetti et al., 2015)).

The tests in the following section show the effectiveness of our settings.

3 Results

3.1 Synthetic data tests

In this section, we systematically test the sensitivity and specificity, in the sense explained earlier,
of the TAS MEG inverse solver algorithm using the validation tools described in the previous
section with synthetic data sets. For the sake of comparison, we run the same tests with other
three standard MEG solvers, the weighted Minimum Norm Estimate (WMNE) (Lin el al., 2006a,
Gramfort el al., 2014), the dynamic Statistical Parametric Mapping (dSPM) (Dale et al., 2000)
and sLORETA (Pasqual-Marqui, 1999).

3.2 Performance via BR-ALI maps: synthetic data, single activity patch

The first suite of computed experiments is designed to assess whether and how the location of the
BR where the activity occurs affects the quality of the IAS reconstruction. In order to provide a
measure that is robust over patches with different anatomical characteristics, for each one of the
85 BRs specified by the selected atlas, we generate a sample of K = 100 patch activities by the
random process described in Section 2.3.1, calculate the magnetic field measured by the sensors,
and add to the latter synthetic brain noise generated as described in Section 2.3.2. For each sample
problem, we reconstruct the activity a with the TAS algorithm described in Section 2.1, as well as
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with the wMNE, DSPM and sLORETA algorithms as implemented in Brainstorm. For the last
three algorithms we used default parameters, i.e. SNRg, = 3 and loose orientation. The results
of the reconstructions are summarized in the average BR-ALI vectors and visualized in the form
of histograms with whiskers indicating the marginal standard deviation around the mean. An
example of activity reconstructions provided by the different methods for the patch activities in
the lateral occipital region and in the cerebellum shown in Figure 2 can be found in Figures 4 and
6, respectively.

Figure 3 shows the average BR-ALI vectors when the active patch is in the left lateral occipital
cortex and the MEG inverse problem is solved with the TAS algorithm (top left), wMNE (top
right), dSPM (bottom left) and SLORETA (bottom right), respectively. The results for the BRs in
the left hemisphere are shown in red, those for the BRs in the right hemisphere in black. Figure S1
displays the histograms relative to the case where the active patch is in the frontal pole cortical
region in the right hemisphere.

FIGURE 3 HERE
FIGURE 4 HERE
FIGURE 5 HERE
FIGURE 6 HERE

The deeper into the brain the active patch is, the more difficult we expect the mapping from the
MEG data to the current dipoles to be. Figure 5 displays the histograms relative to 100 simulations
with the active patch located in the right portion of the cerebellum. Compared to the previous
tests, the real challenge here arises from the distance of the activity region from the receivers.

The amygdala, a subcortical structure which is part of the limbic system, is believed to be
involved in attentional and emotional processes and in the formation of memories. Its remote
location and small dimensions add to the challenge of localizing activity confined into this region
from MEG data. Figure S2 displays the histograms for the four inverse methods relative to the
case where the active patch is confined to the left amygdala.

The four reported results are a representative subset of the performance of the four different
inverse solvers in cortical and subcortical brain regions.

3.3 Bayes factor analysis: synthetic data, single activity patch

To assess the TAS algorithm and to compare it to that of the other three MEG inverse solvers
considered in this study, we begin by performing a Bayes factor analysis with MEG data generated
according to the procedure described in Section 2.3.1 with a single activity patch. After generating
an ensemble of K' = 20 randomly generated patches of activity restricted to a given BR, we compute
the corresponding low noise synthetic data set, estimate the activity pattern with each inversion
algorithm and compute the corresponding Bayes factors, thus testing the evidence supporting the
correct identification of the active area in the reconstruction. For each of the 20 active patches
in the sample, we draw 100 random spheres as competing alternative to the hypothesis that the
activity is in the BR where it actually occurs, for a total of 2000 Bayes factors per BR.

The summary of the Bayes factor analysis for each active BR can be represented graphically
in the form of a histogram with four bins, recording the number of occurrence of the four levels
of evidence (6) supporting the correct identification of the activity. The more occurrences there
are in the two top categories, the more reliable the algorithm is at correctly identifying the area of
activity. For a easier visual assessment, we color coded the bars indicating the numbers of times
a Bayes factor falls into one of the four categories, using green for Bayes factors greater than 10
(overwhelming support of the hypothesis that the active patch is indeed in that BR), blue for
Bayes factors between 3 and 10 (strong support), red for Bayes factors between 1 and 3 (weak
support) and black for Bayes factor smaller than 1, in which case the support is for the hypothesis
that the active patch is not in that BR. A prevalence of green and blue indicates a strong support
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of the hypothesis that the activity has been detected in the correct region, while a dominance of
black and red suggests poor identification of active areas. Figure 7, 8 show the results for all
cortical and subcortical BRs included in the atlas when performing the inverse mapping with the
four inverse solvers.

FIGURE 7 HERE

FIGURE 8 HERE

3.4 Bayes factor analysis: Multiple activity patches

We extend the Bayes factor analysis to the case where several patches are active simultaneously
in different BRs by performing a suite of four different tests. In the first two tests, we generate
two randomly determined activity patches: In the first one, the activity patches are in the left
cerebellum and the left prefrontal cortex, and in the second one, in the left amygdala and the left
prefrontal cortex. In both cases one of the patches is cortical and the other one deep in the brain.
In the third set of tests, the simulated data arises from three activated patches, located in the
left precuneous, right precuneous and left inferior parietal cortex. In the last protocol we generate
activity patches in the six different regions comprising the default mode network (DMN), namely
in the left precuneus, right precuneus, left inferior parietal cortex, right inferior parietal cortex,
left caudal anterior cingulate and right caudal anterior cingulate regions.

As in the case of a single active BR, we generate K = 20 independent activity patterns in the
selected BRs, compute the corresponding low noise data, solve the inverse problem with the four
different algorithms and test the support of the hypothesis Hy for each of the activated regions
individually with M = 100 independently drawn competing spheres B,,. Observe that when we
test the hypothesis Hy for a single selected brain region while the data are generated by several
active sources, the magnetic field due to the additional sources represent high amplitude brain
noise masking the signal from the source of interest.

The top row of Figure 9 shows the histograms of the Bayes factors, binned and color coded
according to the strength of evidence (6), corresponding to the four different inverse solvers in the
case when the active patches are in the left amygdala and in the left frontal pole. The second row
of Figure 9 shows the histograms of the Bayes factors for the four different inverse solvers in the
case when the active patches are in the left cerebellum and in the left precentral cortex.

The histograms of the Bayes factors for the four inverse solvers when there are three active
patches located in the left hippocampus, precentral gyrus and right thalamus are displayed in the
third row of Figure 9. Finally, the histograms for the Bayes factors corresponding to the different
solvers in the case where there are active patches in the six different BRs in the DMN are displayed
in the two bottom rows of Figure 9.

FIGURE 9 HERE

3.5 Reconstruction of the brain activity from real data

Finally, we apply the different inverse solvers to the real data, augmented with realistic activity
in the brainstem as explained in Section 2.4.2. Figures 10 and 11 show respectively the average
BR~ALI vectors at times 7' = 5 ms and 7" = 100 ms for the four inverse solvers. In Figures 12 and
15 we show ten axial slices of the two reconstructions of the brain activity at times 7' =5 ms and
T = 100 ms obtained using the IAS (left) and the wMNE (right) inverse solvers. In Figure 13 and
16 we show the corresponding reconstructions obtained by dSPM (left) and sLORETA (right). In
Figures 14, 17 we show the 3D reconstructions obtained at 7' =5 ms and T = 100 ms by the four
inverse solvers.

FIGURE 10 HERE

FIGURE 11 HERE
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FIGURE 12 HERE
FIGURE 13 HERE
FIGURE 14 HERE
FIGURE 16 HERE
FIGURE 16 HERE
FIGURE 17 HERE

4 Discussion

4.1 BR-ALI maps

The sparsity of the BR-ALI map is a good indicator for the sensitivity and specificity of an inverse
solver: The more concentrated the histograms are on the active areas, the more likely it is that
the activity is correctly identified without too much of confounding. In general, we expect a higher
sensitivity and specificity for BRs closer to the sensors than in BRs deep in the brain, as confirmed
by the computed experiments.

4.1.1 Single patch in cortical BRs

It emerges clearly from the panels in the top row of Figure 3 that the IAS and wMNE inverse
solvers have high sensitivity to activation restricted to the left lateral occipital cortex, indicated
by the outstanding histogram bar, and that the confounding is confined mostly to anatomically
proximal regions, most notably the nearby pericalcarine fissure in the same hemisphere. Neither
algorithm suggest any significant activity in the right hemisphere, or in the deep brain structures.
In the BR-ALI vector computed by the dSPM or sLORETA algorithms, on the other hand, the
left lateral occipital BR is not as clearly identifiable, and the likely locus of activity is attributed
to several nearby BRs in the same hemisphere, e.g., the nearby pericalcarine fissure, lingual, and
cuneous BRs. Some of the brain activity is suggested also in the right hemisphere and in the deep
brain structures. Overall, the performance of the TAS algorithm appears to be significantly more
similar to that of wMNE than to dSPM or SLORETA, the latter ones producing more confounding
activity.

The suite of simulations with the activity confined to the right frontal pole region confirms
the conclusions of the relative sensitivity of the four different approaches. The corresponding
BR~ALI vectors, visualized in the form of histograms in Figure S1, show that both the IAS and
wMNE algorithms reconstruct a substantial portion of the dipole activity in the right frontal pole,
while finding some activity also in the nearby left frontal pole and, to a lesser extend, to the
medial orbitofrontal cortex, also anatomically close. In neither case, any significant leakage of
the reconstructed activity to BRs in the deep brain occurs. The localization of the active BR is
much weaker for the dSPM and sLORETA methods, whose BR-ALI vectors indicate a smearing
of the reconstructed activity over several BRs, including subcortical ones. In this test SLORETA
appeared to recognize the BR where the signal generating the data came from better than dSPM
which attributes the highest average activity to the rostral anterior cingulate cortex.

The first two tests are representative for the four methods when the data correspond to activity
in a restricted patch located in a cortical BR, with TAS and wMNE performing quite satisfactorily
when it comes to identifying the active BR, while dSPM and sLORETA have the tendency to favor
activity in deeper regions of the brain.
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4.1.2 Single patch in subcortical BRs

The sensitivities of the four solvers when the active patch is confined to the right cerebellum are
summarized in Figure 5. As in the case of active patches in cortical regions, the attribution of the
brain activity to the correct BR is less confounded when the inverse problem is solved using the
TAS or wMNE algorithms. The BR-ALI vectors corresponding to these two algorithms point more
clearly to the right cerebellum, with a little activity smeared to the left cerebellum and brainstem.
The BR-ALI vectors for the dSPM and sLORETA inversion methods, on the other hand, tend
to distribute the activity in the deeper regions of the brain, without the cerebellum standing out
clearly among them. Moreover, a substantial fraction of the activity is mapped to cortical regions,
e.g., lingual, parahippocampal and pericalcarine gyrus, suggesting potential problems when it
comes to specificity.

The same patterns are observed when the active patch is in the left amygdala. As shown in
Figure S2, the IAS inverse solver is quite effective at identifying the presence of activity in the left
amygdala, with some leakage to the anatomically adjacent left temporal pole and left entorhynal
cortex. The wMNE BR-ALI histogram does not show a localization to the left amygdala of the
activity; instead, the activity is distributed over the left hemisphere, with a slight preference for
the BRs closer to the left amygdala. The BR-ALI vectors relative to dSPM and sLORETA, on the
other hand, map the reconstructed activity without much distinction onto all BRs corresponding
to internal structures, and a few cortical BRs in the proximity of the left amygdala, suggesting a
bias towards regions of the brain away from the surface.

4.2 Bayes factor analysis

The Bayes factor analysis is based on the counts of how often, and at which level, out of the 2000
tests per brain region, the reconstruction of the brain activity by a given algorithm supports the
hypothesis that the activity is indeed in the correct region. Due to our choice of color coding, we
can be confident that the activity within a BR when the corresponding histogram has taller green
or blue bars can be identified by the inverse solver rather unequivocally, while taller black or red
bars are an indication that activity in that BR is likely to be erroneously attributed to activity in
another part of the brain.

4.2.1 Single active patch

The overwhelming predominance of green in the left panels of Figure 7, displaying the histograms
of the Bayes factors for the cortical BRs, is a strong indicator that the solution of the MEG inverse
problem produced by the TAS algorithm is much more likely to find active current dipoles in the
correct BR than in other regions. A slightly lesser dominance of the green and blue bars for the
insula and isthmus cingulate BR suggests that activity concentrated in either of these two regions
may have a slightly larger tendency to be incorrectly attributed elsewhere. In most of the Bayes
factors histograms for the subcortical BRs the green and blue bars dominate over the red and black
ones, with the exception of the thalamus and, to a lesser extent, the caudate gyrus, where the red
and black take over, suggesting that the TAS has difficulties to identify unequivocally activity
localized in this BR.

In the histograms of the classification of the Bayes factors for the wMNE algorithm, shown in
the right panels of Figure 7, the green and blue bars tend to be more prominent than the red and
black ones in the top row, although not as markedly as for IAS. This is an indication that when
the measured signal comes from a patch in a cortical BR, the solution computed by wMNE is
likely to be concentrated in the correct cortical region, with the exceptions for the caudal anterior
cingulate, insula, isthmus cingulate, parahippocampal, posterior cingulate and rostral anterior
cingulate regions.
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The situation is quite different when it comes to correctly attributing activity generated in a
subcortical region, as shown in the two panels in the bottom row of the same figure. Here the taller
bars are red or black, with the exception of the cerebellum and, to some extent, the brainstem,
pointing to a low specificity of wMNE in subcortical regions.

The Bayes factor analysis for dSPM is summarized by the histograms in the left panels of
Figure 8. In the histograms pertaining the cortical BRs the blue and green bars dominate the red
and black ones, although the green presence is not as massive as for the IAS or wMNE inverse
solvers, indicating that the dSPM inversion is still capable of identifying active cortical BR, but
with lower specificity than TAS and wMNE. In many of the cortical BRs the height of the blue
bars varies between 800 and 1000, but there is a strong presence of red bars, with height between
200 and 700, pointing to the fact that in some cases, dSPM has difficulties with recovering the
activity in the correct region and attributing it instead, to a different region. The dominance of
blue and red in the histograms for the subcortical BRs, together with a green presence, suggests
that the localization of the activity in a patch deeper in the brain by dSPM is more accurate than
with wMNE, but not as precise as with TAS.

The conclusions of our study with Bayes factors for SLORETA, whose histograms are displayed
in the right panels of Figure 8 are very similar to those for dSPM, with a better performance than
wMNE, but not as good as TAS, in subcortical BRs and not as specific when it comes to recovering
activity in cortical BRs.

4.2.2 Multiple activity patches

The histograms of the Bayes factor for the IAS and the three other reference methods, in case
where there are two patches of activity, one in the left amygdala and the other in the frontal pole,
displayed in Figure 9, show that the reconstructions computed with the TAS suggest very strongly
the presence of activity in the left amygdala, as shown by the tall green bar in the corresponding
histogram as well as that in the cortical frontal pole. In this experiment, SLORETA outperforms
both wMNE and dSPM, the latter showing the least precision in mapping the activity in the frontal
pole area.

The second test with two patches of activity, in the left cerebellum and in the left precentral
region, respectively, confirm that the IAS is the most precise of the four inverse solvers when it
comes to finding the location of both active patches, as shown in the histograms in the second
row of Figure 9. The performance of wMNE in this case is very good for both the cortical and
subcortical BRs, while in this case the specificity of SLORETA is not as good as that of dSPM.

The Bayes factors for the case where there are three active patches, located in right precentral
gyrus, left hippocampus and right thalamus, are summarized in the third row of Figure 9. The IAS
algorithm identifies with least confounding the activity in the precentral region and hippocampus,
but is not as accurate when it comes to the thalamic patch. Both interior patches turn out to be
very challenging for wMNE, which has no problems with accurately recovering the patch in the
precental region. In this case, dSPM is best at localizing the activity in the thalamus and in the
hippocampus.

In the last protocol with Bayes factors, the MEG signal came from six active patches located
in the six BRs involved in the DMN. The histograms for the six different BRs with the four inverse
solvers, displayed in the two bottom rows of Figure 9, indicate that the localization of the activity
in the caudal anterior cingulate region in either hemisphere is challenging for all methods, and
particularly so for wMNE whose histograms show the black bars to be tallest. The localization of
the activity in the inferior parietal BRs is resolved very well by IAS and wMNE, and satisfactorily
by dSPM and sLORETA.
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4.3 Real data: TAS favors sparse solution

Figures 10 and 11 show the BR-ALI vectors for the four inverse methods at times T=5 ms and
T=100 ms, respectively. At T=5 ms all inverse methods find activity also but not only in the
brainstem region: the estimated activities using SLORETA and dSPM are mutually very similar,
suggesting activation also in the amygdala and in the parahippocampal cortex; the deep activity
is dominating over cortical activity in the reconstructions. The reconstructed activity by wMNE,
compared to TAS, is more smooth, while IAS finds activity also in cerebellum. At T=100 ms, TAS
suggests activity in the temporal region, mainly in the upper bank of the superior temporal cortex
and in the transverse temporal region, that are part of the primary auditory cortex. The TAS MEG
solution shows activity in the superior temporal regions of both hemispheres, while when using
other methods such bilaterality is not evident. In general, the dSPM and sLORETA algorithms
seem to be in favor of activity deeper in brain, and the spatial smoothing characteristics of the
algorithms is clearly visible.

4.4 Methodological issues and future work

As shown in Section 2.5, the choice of the parameters in the IAS algorithm can be driven by their
physiological meaning. Several tests we performed show that the reconstructed activity map is not
very sensitive to the values of the parameters 0, 0.« and £&. The values we used in the tests are
reasonable for most applications in neuroscience. Thus, the parameter that the user has really to
select is p =3 — % Since n controls the sparsity of the reconstruction, its choice is related to the
a priori knowledge we have on the protocol of the neuroscience experiment under study. Values
of 1 in the order of 0.1 favor more spread reconstruction and for these values the IAS algorithm
produces activity maps very similar to the maps obtained by the wMNE algorithm. On the other
hand, values in the order of 0.001 favor focal reconstructions, which is the more interesting case in
neuroscience studies, especially when deep brain sources are involved.

Further studies of the performance of the IAS algorithm on the localization of deep brain
activity will be done in the future, including the use of a more accurate model for describing deep
brain sources, e.g., the model proposed in Attal et al. (2012), Attal and Schwartz (2013) or the
mixed source space model available in the MNE software'. In this case, different values of the
parameter n for cortical and subcortical regions can be used in order to increase the sensitivity
of the algorithm to deep sources. Finally, to take into account the imprecision due the use of an
averaged physiological atlas that cannot reproduce exactly the individual anatomy, one can use
some mathematical methods related to fuzzy logic (see, e.g., (Algorri and Flores-Mangas, 2004,
Ciofolo and Barillot, 2009)).

The IAS algorithm described in this paper is designed for a single-time slice analysis: the
algorithm is re-initialized each time and does not retain any previous information. Actually, one of
the main advantage of the MEG devices is in that they can measure the neuromagnetic field with
a high temporal resolution. In order to deal with MEG time series some preliminary results show
that when the IAS algorithm starts from a 6* that is related to the values of 6; at the previous
time step, the rate of convergence of the algorithm is increased. Then, for a further analysis we
can model 6 as a Markov process, so the estimation of 6 at time ¢ depends just on the value of
at time ¢t — dt.

Thttp://martinos.org/mne

19



5 Conclusions

Finding a robust metric for assessing the performance of an inverse solver in MEG is not a simple
task. Algorithms that are based on the goal of localizing single dipoles may be judged according
to the precision of the localization, but such metric may not be a judicious one for methods that
estimate distributed sources. Vice versa, single dipole methods may have a limited success when
distributed activities are to be estimated. In this paper we propose a metric for the algorithm
assessment based on the reliability of an algorithm to identify active brain regions, superficial and
deep, regardless of whether a single or several active regions occur. As pointed out, the BR-ALI
analysis has a formal similarity with the resolution matrix analysis which is widely used as a basis of
performance analysis, and allows the computation of simple measures for performance: Resolution
index (RI), dipole resolution error (DLE), and spatial dispersion (SD), see Molins et al. (2008) and
Attal and Schwartz (2013), Hedrich et al. (2017). The precision of finding a single dipole is not of
concern here, although the focality of the reconstructions helps discerning between brain regions
that are anatomically close. One of the messages of the analysis is that an algorithm such as IAS
favoring focal solutions produces less confounding reconstructed activity in the anatomically close
regions, reducing the ambiguity in the interpretation of the reconstruction. To avoid the pitfall
of anecdotal successes, the methodology is based on extensive independent Monte Carlo sampling,
and the results are processed into a form of first and second order statistics, and Bayes factor
analysis. The long-term goal of this work is to build reliable uncertainty quantification tools to
analyze extensive data sets with non-event based brain data, e.g., various resting states or states
of consciousness, brain connectivity, or fingerprinting of diseased or abnormal states. Assessment
of success rates of algorithms as presented here, as opposed to precision case studies with activity
localization, is in line with the current algorithm testing paradigm in data mining and big data
analysis. The proposed methodology was tested with four inverse solvers, one of which is the
recently developed TAS algorithm, and three standard methods. Our conclusion is that the TAS
method seems to perform relatively consistently in the tasks that it is originally designed for, that
is to identify both active cortical and deep brain regions without a significant confounding beyond
the inevitable leakage of the estimated activity to anatomically close regions, which is due to the
inherent ill-posedness of the problem. The comparison of the algorithm was done against three
standard MEG algorithms without detailed tuning of the default settings. A more comprehensive
meta-analysis should include the optimization of the model parameters as well as the inclusion of
other algorithms favoring focal solutions, but is beyond the scope of this work.

Appendix: Interpretation of hyperparameters

In Calvetti et al. (2015), the interpretation of the hyperparameters 4 € R and #* € RV was
discussed: It was shown that 3 allows the user to control the sparsity of the IAS solution, while the
empirical Bayesian approach provided a way to relate 8* to the sensitivity scaling. We summarize
here the analysis on hyperparameters, developing the discussion of #* further, so that the parameter
tuning can be done easily and semi-automatically.

Parameter 5 and control of sparsity

In Calvetti et al. (2015), it was proved (Theorem 2.1) that the sequential minimization that consti-
tutes the core of the IAS algorithm can be interpreted as a fixed point iteration to find a minimizer

Q=101 Ty -+ 7,]7 € R3™ of the energy functional (3),

Q = argmin{£(Q,5(Q))}, ©6=5(Q),
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where © = [f1;0y;...,0,] € R™, and S : R3" — R" is defined componentwise as

PR
o « | My n; qu”(‘,- 5
0;=8i(q) =05 | 5 +1/ : =

1<i<n.
2 VI J=n

75; = =

Furthermore, it was shown that if we write 8; = 5/2+41n, 1 < j < n, then, as n — 0T, we have the
asymptotic expression

£(0,5(@) = 3b- YoM+ 2 15 1 0t )

In particular, the penalty term in the above expression is a weighted ¢!-norm for the dipole ampli-
tudes that are measured in the metric defined by the anatomical prior matrices C;. This argument
demonstrates that at the limit, the TAS algorithm provides an effective algorithm for finding a
weighted Minimum Current Estimate (MCE), with the modification given by the anatomical prior
(Uutela et al., 1999). In conclusion, we see that the role of the hyperparameter S is to control the
sparsity of the IAS estimate. In Calvetti et al. (2015), this effect was demonstrated using numerical
simulations.

Parameter 0* and sensitivity

The asymptotic expression (7) is indicative also from the point of view of the interpretation of 0.
It is well-known that MEG algorithms based on penalized minimization of the fidelity to data tend
to favor superficial sources, and to compensate this effect, a sensitivity weight is often introduced,
see, e.g. Lin el al. (2006a). From the Bayesian point of view, sensitivity weighting is a problematic
practice, since traditionally the prior should be independent of the observation model, a condition
that the sensitivity weight does not satisfy. However, it is possible to find a satisfactory Bayesian
interpretation for 07 so that it effectively works as a sensitivity weight. The connection between
sensitivity and hypermodels is built through the analysis of the signal-to-noise ratio as follows.
Consider the linear forward model

b:MQ+€:Zqu"’j+€:bo+s, e ~N(0,%).
J=1

To estimate the expected power of the noiseless signal appearing in the signal-to-noise ratio defined
in (4), observe that from the prior model, conditional on © € R™, we have

E{llboll* | ©} = Y 0trace(M;C;MT) =3~ 0;IM;C/2 12,

j=1 j=1

where the subscript refers to the Frobenius norm of the matrix. Furthermore, by using the gamma
hyperprior model 0; ~ I'(8, 07) for the vector ©, we arrive at

E{IIboll*} = D E{03IM, G212 = 805(IM,C% 2.
Jj=1 j=1

The choice of the hyperparameters 7 must therefore be compatible of what we a priori assume
about the distribution of the activity and the resulting SNR. To begin with, assume that we have
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a reason to believe that only one source is active, but we do not know which one. Then, by the
definition (4) of SNR, the active source j; must satisfy

. /212 _ . _ (SNR —1) x trace(X)
,80]‘1||M]'1Cj1 Iz = (SNR — 1) x trace(X), or 0r = S C1./2||%

J1 =51

This must be true, whichever the active source is, and if each source has equal probability to be
active, the exchangeability argument yields the scaling law
SNR — 1) x trace(X
9;:( )1/;2()’ I<j<n
BIM; Gl

This argument can be generalized to several, and unknown, number of active sources. Assume
that we believe that k£ of the sources are non-zero, but we do not know which ones. Denoting the

indices to the active sources by 71, jo, ..., jr, we must have
k
* 1/2
> 563, [IM;,C/% |2 = (SNR — 1) x trace(). (8)
=1

For the exchangeability argument, let us denote by v € R" the vector with entries v; = 507 [|M; le-/ 2 %,
and by Py € R™*" the matrix such that the pth row contains exactly k entries equal to one, other
entries being zero, and each permutation appears only once in the matrix. Therefore, the number
of rows in Py, is ng = n!/(k!(n — k)!). Since we assume that (8) holds regardless of the selection of
the active sources, the vector v must satisfy the linear system

Pry = (SNR — 1) x trace(X)1,,,
where 1,, € R™ denotes a vector with unit entries. The only possible solution of this system is
(SNR — 1) x trace(X)
Vi = L )
and therefore, we arrive at the scaling law
o: = %(SNR -1 >i/t2race(2)
BIM;C 1R

1<j<n.

Finally, assume that we only have a prior idea of how many non-zero sources may be active,
and we express this belief in a form of a probability density

P{# of active sources = k} = pg,1 < k < n,

where >, pr = 1. If we expect that out of the n dipoles, it is reasonable to expect that k= sn
are active, a binomial distribution can be used for py, kx ~ Binom(n, s), 0 < s < 1; in practice the
binomial can be approximated by a Poisson distribution, pp ~ Poisson(k) with mean k provided
by the user. Using the previous result, conditioned on k, we arrive at the scaling law

. C

0 = ——— <j<n
J 1/2 ’ — )
IM; €212

with .
Pk
C = (SNR — 1) x trace(x —.
(SNR — 1) trace(Z) 3 &

This argument confirms that, in order to match the model with the SNR, the parameters 67 should
indeed be chosen to be inversely proportional to the sensitivity.
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Appendix: Construction of the activity patch

To select the vertices in the activity patch P, we first pick randomly a seed vertex from the BR of
interest, then grow the patch by adding iteratively the neighboring vertices, pruning off at each step
those that fall outsize the pertinent BR, and stopping the process as soon as the desired number
Np of vertices have been included. The selected nodes along with the edges of the triangular mesh
form a local graph. To generate the activity in the patch, we start by computing a positive graph
Laplacian of the patch, which is the matrix L € RV?*N? with entries

Lij=<1 if i # j and v; is adjacent to vj,
0 otherwise,

where deg(v;) is the number of the edges that terminate at the vertex v;.
After defining a correlation length A, given in units of the number of steps, we draw a random

amplitude vector by setting
Q= (L+Nln,)"'W,

where Iy, € RN?*N7 is the unit matrix and W € R™? is a standard normal Gaussian random
vector, that is, W ~ N(0,Iy,). The amplitudes are scaled so that the amplitude of the dipole at
the seed vertex is one. Finally, we draw the dipole moment directions from the anatomical prior,
making sure that adjacent dipoles are not pointing in the opposite sides of the cortex patch.
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Figure 2: Top row: A randomly generated patch of activity in the left lateral occipital cortex region
of the brain. Middle row: A randomly generated patch of activity in right cerebellum. Bottom
row: A randomly generated patch of activity in the brainstem.
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Figure 3: Mapping of the brain activity to 85 different BRs over 100 simulations using synthetic
data corresponding to randomly generated activity patches in the left lateral occipital cortex, in-
dicated in red in the list of the BRs reconstructed with, respectively, IAS (a), wMNE (b), dSPM
(c) and sSLORETA (d). The histograms bin the average activity in each BR: in red the BRs of the
left hemisphere and in black the ones of the right hemisphere.
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Figure 4: Reconstructions obtained with, clockwise from the top left, IAS, wMNE, dSPM and
sLORETA, respectively, from the signal generated by the activated patch in the left lateral occipital
region shown in the top row of Figure 2.
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Figure 5: Mapping of the brain activity to 85 different BRs over 100 simulations using synthetic
data corresponding to randomly generated activity patches in the right cerebellum, indicated in
red in the list of the BRs reconstructed with, respectively, IAS (a), wMNE (b), dSPM (c) and
sLORETA (d). The histograms bin the average activity in each BR: in red the BRs of the left
hemisphere and in black the ones of the right hemisphere.
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Figure 6: Reconstructions obtained with, clockwise from the top left, IAS, wMNE, dSPM and
sLORETA, respectively, from the signal generated by the activated patch in the right cerebellum
shown in the middle row of Figure 2.
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(b) wMNE (Left Hemisphere

(a) IAS (Left Hemisphere)
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Figure 7: Histograms of the Bayes factors for the cortical (top) and subcortical (bottom) BRs when
using the TAS algorithm (left panel) and the wMNE algorithm (right panel) to map the MEG data
to brain activity in the left hemisphere. Each histogram for each BR is the summary of 2000 Bayes
factor computations color coded to indicate the different level of support of the hypothesis: green

for overwhelming support, blue for strong support, red for weak support, black no support.
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(b) sSLORETA (Left Hemisphere)

(a) dSPM (Left Hemisphere)
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Figure 8: Histograms of the Bayes factors for the cortical (top) and subcortical (bottom) BRs
when using the dSPM algorithm (left panel) and the sSLORETA algorithm (right panel)to map the

MEG data to brain activity in the left hemisphere. Each histogram for each BR is the summary

of 2000 Bayes factor computations and the color coding is as explained in Figure 7.
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Figure 9: Row-wise from top to bottom: Row 1: Bayes factors in the case of two active patches.
Left panel: Bayes factors in support of the hypothesis that the activity is in the left amygdala
when the data comes from two active patches, one in the left amygdala and the other in the left
frontal pole, and the MEG inverse problem is solved with the IAS, wMNE, dSPM and sLORETA
algorithms, respectively. The histograms where computed from 2000 realizations and the color
coding is as explained in Figure 7. Right panel: Bayes factors in support of activity in the left
frontal pole computed from the same 2000 realizations. Row 2: Bayes factors in the case of two
active patches. Left panel: Bayes factors in support of the hypothesis that the activity is in the left
cerebellum when the data comes from two active patches, one in the left cerebellum and the other
in the left precentral cortex, and the MEG inverse problem is solved with the IAS, wMNE, dSPM
and sLORETA algorithms, respectively. The histograms were computed from 2000 realizations
Right panel: Bayes factors in support of activity in the left precentral cortex computed from the
same 2000 realizations. Row 3: Bayes factors in the case of active patches in three different BRs,
the right precentral gyrus (left), and the left hippocampus (center) and the right thalamus (right),
and the MEG inverse problem is solved with the IAS, wMNE, dSPM and sLORETA algorithms,
respectively. The histograms were computed from 2000 realizations. Rows 5-6: Bayes factors
for the case where there are active patches in ajssix BRs comprising the Default Mode Network:
inferior parietal gyrus, precuneus and caudal anterior cingulate gyrus in the left (top) and right
(bottom) hemispheres to test the specificity of the TAS inverse solver and the three reference inverse
solvers.
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Figure 10: Mapping of the brain activity to 85 different BRs for the time 7" = 5 ms with
real/realistic data example reconstructed with, respectively, IAS (a), wMNE (b), dSPM (c) and
sLORETA (d). The histograms bin the average activity in each BR: in red the BRs of the left
hemisphere and in black the ones of the right hemisphere.
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Figure 11: Mapping of the brain activity to 85 different BRs for the time 7" = 100 ms with
real/realistic data example reconstructed with, respectively, IAS (a), wMNE (b), dSPM (c) and
sLORETA (d). The histograms bin the average activity in each BR: in red the BRs of the left
hemisphere and in black the ones of the right hemisphere.
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Figure 12: Visualization of the axial view of the brain activity at 7' = 5 ms as reconstructed by
TAS (left) and wMNE (right).
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Figure 13: Visualization of the axial view of the brain activity at 7' = 5 ms as reconstructed by
dSPM (left) and SLORETA (right).
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Figure 14: Reconstructions obtained from real data at time 7" = 5 ms with, top to bottom, IAS,
wMNE, dSPM and sLORETA, respectively. At this time instant, most of the signal is generated
by the patch activity in the brainstem shown in the bottom row of Figure 2.
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Figure 15: Visualization of the axial view of the brain activity at 7' = 100 ms as reconstructed by
TAS (left) and wMNE (right).
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Figure 16: Visualization of the axial view of the brain activity at 7' = 100 ms as reconstructed by
dSPM (left) and SLORETA (right).
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Figure 17: Reconstructions obtained from real data at time 7' = 100 ms with, top to bottom, IAS,
wMNE, dSPM and sLORETA, respectively.
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Supplementary material
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Figure S1: Mapping of the brain activity to 85 different BRs over 100 simulations using synthetic
data corresponding to randomly generated activity patches in the right frontal pole, indicated in
red in the list of the BRs reconstructed with, respectively, IAS (a), wMNE (b), dSPM (c) and
sLORETA (d). The histograms bin the average activity in each BR: in red the BRs of the left
hemisphere and in black the ones of the right hemisphere.

45



BANKSSTS
CAUDALANTERIORCINGULATE
CAUDALMIDDLEFRONTAL

ISULA

ISTHMUSCINGULATE

LATERALOCCIPITAL

LATERALORBITOFRONTAL
INGUAL

LINGUAL
MEDIALORBITOFRONTAL

BANKSSTS

CAUDALANTERIORCINGULATE

CAUDALMIDDLEFRONTAL

CUNEUS

ENTORHINAL

FRONTALPOLE

FUSIFORM

INFERIORPARIETAL

INFERIORTEMPORAL

INSULA

ISTHMUSCINGULATE

LATERALOCCIPITAL

LATERALORBITOFRONTAL
INGUAL

L
MEDIALORBITOFRONTAL.

(a) IAS (b) WMNE
o oo

U —— A a———
s s

(c) dSPM (d) SLORETA

Figure S2: Mapping of the brain activity to 85 different BRs over 100 simulations using synthetic
data corresponding to randomly generated activity patches in the left amygdala, indicated in red in
the list of the BRs reconstructed with, respectively, IAS (a), wMNE (b), dSPM (c¢) and sSLORETA
(d). The histograms bin the average activity in each BR: in red the BRs of the left hemisphere
and in black the ones of the right hemisphere.
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