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Abstract We propose new time-dependent sensitivity, specificity, ROC curves and net
reclassification indices that can take into account biomarkers or scores that are repeat-
edly measured at different time-points. Inference proceeds through inverse probability
weighting and resampling. The newly proposed measures exploit the information
contained in biomarkers measured at different visits, rather than using only the mea-
surements at the first visits. The contribution is illustrated via simulations and an
original application on patients affected by dilated cardiomiopathy. The aim is to eval-
uate if repeated binary measurements of right ventricular dysfunction bring additive
prognostic information on mortality/urgent heart transplant. It is shown that taking
into account the trajectory of the new biomarker improves risk classification, while
the first measurement alone might not be sufficiently informative. The methods are
implemented in an R package (1ongROC), freely available on CRAN.
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1 Introduction

The evaluation of prognostic and diagnostic biomarkers is a primary issue in medical
statistics. Medical diagnoses, indication of treatments, and risk assessment is grow-
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ingly based on the evaluation of scores, like CHA>DS>-VASc and HAS-BLED in
atrial fibrillation, MELD and Child-Pugh in epathology, SOFA in intensive care unit
stay, etc. The performance of these scores is continuously evaluated and possibly
improved by the addition of new markers and/or modification of the scoring system.
Also single biomarkers are continuously evaluated as independent diagnostic or prog-
nostic factors, which is something that can help the doctor in making cost-effective
and simple assessments. Notable examples in cardiology are homocysteine, troponin
and myoglobin serum levels.

There is a huge literature on the evaluation of prognostic and diagnostic markers.
For a general overview we point the reader to the excellent book by Pepe (2003).
Our work targets the issue of assessing how a prognostic time-dependent biomarker is
related to a time-dependent and possibly censored event. Our purpose is to evaluate the
prognostic accuracy of a pre-specified function of a trajectory of the time dependent
marker, or score, up to a pre-specified visit time #;. Time-dependent ROC curves with
markers measured at baseline were introduced in Heagerty et al. (2000). In Zheng and
Heagerty (2004) the evaluation of a time-dependent marker is considered, see also
Zheng and Heagerty (2005), Uno et al. (2007), Gerds et al. (2013) and Li et al. (2017).
The last approaches are in the spirit of our work, but are based on evaluating the
marker at a single given time point. The entire trajectory of the longitudinal biomarker
is considered in other works [e.g., Schoop et al. (2008) and Rizopoulos (2011)], but
mostly through the prediction of the biomarker at a given time point. It is therefore
difficult to interpret directly the prognostic significance of a given trajectory. We will
propose a procedure which directly evaluates how an observed trajectory (i.e., repeated
measurements) can predict, in a specific sense, the occurrence (or non-occurrence) of
the time-to-event outcome. For example, we will evaluate the probability that a marker
is below a threshold at times 71, f, and 73, if the patient will survive at least > 3. In
our opinion our approach has a direct interpretability and could be useful in using all
of the information obtained with repeatedly measured biomarkers.

Our motivation comes from an original study on a cohort of patients affected
by Dilated Cardiomyopathy (DCM), a primary myocardial disease characterized by
left ventricular systolic dysfunction and dilation, measured mainly by the contin-
uous parameter LVEF (Left Ventricular Ejection Fraction). In the last decades the
long-term prognosis of DCM has impressively improved mainly through the effec-
tiveness of pharmacological and non-pharmacological treatments on left ventricular
reverse remodeling (basically the improvement of LVEF). See Merlo et al. (2011)
for a discussion from a medical perspective. LVEF improvement indeed has emerged
as an important prognostic predictor in DCM, highlighting the importance of the
systematic re-evaluation of patients during the follow-up. Nevertheless, in clinical
practice the prognostic stratification of DCM still remains particularly difficult, and
substantially based on basal LVEF. Recent data suggested that right ventricular sys-
tolic function (RV-d) is also relevant in the prognostic assessment of DCM patients.
RV-d dysfunction, assessed by cardiac magnetic resonance, was found in a sizeable
number of DCM patients and showed an incremental prognostic value in addition
to LV remodeling evaluation (Gulati et al. 2013). However, these data are limited to
few and highly selected populations. To date, there are no data on the prognostic sig-
nificance of RV-d re-evaluation during follow-up. Therefore, the clinical aim of the
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study was to assess the impact on DCM prognosis of the regular RV-d evaluation over
time.

It shall be underlined that even though we are evaluating a longitudinal biomarker
possibly censored by an associated process, our work has very limited relationship with
e.g. the literature on joint models for longitudinal and survival data. We recommend
researchers to use the most appropriate model to compute a longitudinal score based on
longitudinal biomarkers, matching the model with the research aims. In this regards,
a thorough and detailed discussion can be found in Kurland et al. (2009). In this paper
we discuss how to evaluate scores once these have been computed.

The rest of the paper is as follows: in the next section we give a more detailed
description of our data set. In Sect. 3 we give a very brief overview of methods
for evaluation of prognostic biomarkers, and provide our innovative definitions of
sensitivity, specificity, and reclassification. In Sect. 4 we show how to estimate our
proposed measures. A synthetic evaluation based on simulated data is provided in
Sect. 5, and we apply our approach on the motivating example in Sect. 6. Concluding
remarks are given in Sect. 7.

The methods are implemented in an R package (LongROC), freely available on
CRAN for download.

2 Data

We retrospectively analyzed a group of patients enrolled in the Trieste Heart Muscle
Disease Registry from 1993 to 2008 (Merlo et al. 2014). Patients who underwent
extensive clinical and laboratory evaluation at baseline and with at least one available
short-time evaluation (i.e., at 6 months) were considered for the present analysis. Other
visits were scheduled at 24, 48, and 72 months. Follow-up ended on 31 December 2014
or at the time of death/urgent (status I) heart transplantation (D/HT), thus each patient
had a potential minimal follow-up of at least 72 months (last patient was included
at the end of 2008). Data come from a referral center for cardiomyopathies where
enrolled patients are regularly followed-up; the censoring mechanism could therefore
be defined as ’administrative’ censoring.

The institutional ethical board approved the study and the informed consent was
obtained under the institutional review board policies of hospital administration. The
data we observe consist of multiple parameters measured at the different follow up
times, plus time-to-event data. For the present analysis, we selected the most relevant
clinical and instrumental measures:

— Two parameters fixed at baseline: Age at enrollment and Heart Failure (HF) dura-
tion;

— One continuous longitudinal marker: LVEF;

— One discrete longitudinal marker: RV-d as a binary parameter indicating presence
or absence of the dysfunction.

We did not include gender as it is not significant at univariate or multivariate Cox
modeling for the data at hand, and it would bring no improvement to the prognostic
indices considered below. Note that the role of gender in this disease needs clarifica-
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tion, and is often not predictive of time-to-events after adjustment for other relevant
predictors [e.g., Merlo et al. (2016)].

3 Prognostic accuracy of functions of trajectories of longitudinal
biomarkers

Given a marker X and time-to-event data (7', A), where A is an indicator of event,
time-dependent sensitivity and specificity are commonly defined as

Spt,c) =Pr(X <c|T >1t)
and
Se(t,c) =Pr(X > c|T <t).

Here ¢ is a time-horizon of interest, which is specified by the user, and so is threshold c.
Examples in different areas of clinical research are reported in Pignatelli et al. (2015),
Tacovelli et al. (2015), Riggio et al. (2015), Basili et al. (2017) and Cardellini et al.
(2017).

Suppose now that we are actually measuring a time-dependent marker X (%),
which has been repeatedly assessed for n subjects at pre-specified visit times #; =
0,12, ..., 1;.LetS = max; s;. This framework encompasses several scenarios, includ-
ing our motivating example. In prospective studies (but also in certain retrospective
ones, as in our case) follow-up occasions are pre-specified and, hence, patients will
be visited at approximately the same time intervals between one visit and another.

We now define time-dependent sensitivity and specificity for time-dependent
biomarkers or scores as

Sp(t,c,s,u) =Pr(X(t1) <c, X () <c,..., X(t;;) <c|T > 1) (1)

Se(t, c.s,u) = Pr (ujf'zlxaj) Sclu<T < r) , @)

where t, ¢, s and u are parameters that are pre-specified by the user. The parameter
t, much like the usual definition of time-dependent measures, is a time-horizon for

events (i.e., no events are of interest beyond ¢). The parameter s = (s, ..., s,) is a
vector of number of visits to be evaluated for each patient. An implicit requirement is
that z;, < u < t. While in general one might want to sets = s1 =2 = --- = §,,, and

discard patients who have not reached s visits for evaluation of the quantities above, in
more general scenarios one could consider a different number of visits for each patient.
An underlying assumption when s; is not constant is that sensitivity and specificity
with s; number of visits are equal to sensitivity and specificity with s; number of
visits for patients 7 and j, with s; # s;. For this reason we could define sensitivity
and specificity above as a function of only one patient, even if we will use all data to
estimate them.

The parameter # < ¢ is a minimal time horizon for defining events. Often one might
want to set ¥ = max; f,, that is, record events immediately after the last active visit.
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On the other hand in some cases it might be interesting to fix u > max; ty,, for instance
when visits occur in the hospital and u is set as the time of discharge (as in-hospital
events might occur to fragile or terminal patients). Note that # does not explicitely
appear in the definition for Sp, we clarify in the next section why it does implicitely.

The definition of sensitivity and specificity above involve a definition of positive
diagnosis as soon as the biomarker exceeds the threshold at least once during the
follow-up. A more general definition can be given by

Se(ta C,S, I/l) = Pr(‘fC(X(t1)7 X(IZ)’ LIRS X(LS‘[))'” S T S t)a
Sp(t,c,s,u) =1—=Pr(fe(X(t1), X(2), ..., XU DIT > 1)

for some fixed f., where c is a threshold. Here f. is a general function for defin-
ing positive diagnoses. For instance, f,. can be defined as the event that the mean or
median of the biomarker exceeds the threshold (e.g., f.(X(#1), X(f2), ..., X(t5;)) =
{Zj'i:1 X (t;)/si > c}), as the event that the threshold is exceeded at least twice, as the
event that the biomarker has increased atleast c units (e.g., fo (X (t1), X (2), ..., X (Zy;))
= {X(t;) — X(t1) > c}) or that it has done so at least once between visits
(e.g., fe(X(1), X(12), ..., X(15)) = {X(©2) — X(t1) > cU X(13) — X(12) >
cU---UX, —X; , > c}).Several definitions of f. are possible, and in general we
suggest to choose the appropriate f. according to the underlying clinical mechanism
under study. Of course, several possibilities can be compared in terms of prognostic
performance.

The corresponding ROC curves are given by a plot of {Se(t,c,s,u),l —
Sp(t, c,s,u)} for all possible values of ¢, and there will be one for each admissi-
ble value of (u, ¢, s). The area-under-the-curve (AUC) is defined as usual as the area
under the ROC curve as a function of c. We note here thatif s; =sp =--- =35, =1
and u = 0, our definitions reduce to the usual definitions for time-dependent sensi-
tivity, specificity and ROC curves as introduced by Heagerty et al. (2000), hence our
proposal can be seen as a direct generalization of commonly used time-dependent
ROC curves with baseline markers. Note furthermore that summaries, depending on
the data configuration and f, definition might be insensitive to changes in u, s; and/or ¢.

We are also interested in the added value of an additional marker to an already
available score. Many methods were recently proposed, see Pencina et al. (2008,
2011) and Uno et al. (2013). Here we focus on the Net Reclassification Index (NRI),
where two events Ug and Dy denote the fact that use of the additional marker lead to
an increase (Uy) or decrease (Dy) of the predicted risk when considering the trajectory
up to time s. Also call E,; = {u < T < t}. Using formula (4) in Pencina et al. (2011)
in our context, we obtain

(Pr(Ey|Us) — Pr(Ey;)) Pr(Us) + (Pr(Ey;) — Pr(Ey | Dy)) Pr(Dy)
Pru <T <t)Pr(T > 1) ’

NRI(t,s) =

This formula does not explicitely show what the NRI is, as it is a reformulation apt
at expressing the NRI in a form which can be evaluated for time-to-event data. The
basic idea behind the NRI is that when two markers are compared, their difference
can be summarized by considering subjects that are reclassified (e.g., risk increased
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or risk decreased). When comparing the new marker with respect to the baseline one,
we would like the risk of events (here, patients experiencing the event between times
u and 1) to be increased and the risk of non-events (here, patients experiencing the
event after time ¢) to be decreased. Hence, in general NRI can be thought as the sum
of two components, first one being the relative increase in the risk for subjects who
experience the event, and second one being the relative decrease for subjects who
do not. The two addends are often also evaluated separately and referred to as “NRI
for events” and “NRI for non-events”. As it is expressed, —2 < NRI < 2, where
NRI < 0 indicates that the new biomarker or score is worse than its competitor. An
interpretation of 1/2 NRI has been outlined in Pencina et al. (2012), where thresholds
of 10, 20 and 30% have been indicated as weak, moderate and strong evidence of
improvement.

4 Inference

Evaluation of sensitivity, specificity, and NRI as defined in the previous section is
complicated by the presence of censored subjects, that is, subjects lost at follow-up
(possibly because of administrative censoring) before time ¢, and hence for which we
do not know the true status between time u and 7. We note that we always condition
(explicitely or implicitely) on having survived up to u. This has some relations with
the literature on residual life [e.g., Jeong et al. (2008) and Jung et al. (2009)]. Subjects
with an event before time #;, do not contribute to the estimates.

In order to make inference on the quantities of interest we use Bayes theorem to
write:

Pru <T <t|T =z u, fe(X(11), ..., X(15)) > O)Pr(fe(X (1), ..., X(z;)) > 0)

Se(t,c,5,u) = Pru <T <1|T > u)
and
Pe(T > t|T > u, fo(X(t1), ..., X)) <0)Pr(fe(X(11),..., X(t;)) <0)
Sp(t,c,s,u) = .

Pr(T > t|T > u)
Once we express sensitivity and specificity as above, estimates are readily available. In
order to estimate Pr( /(X (t1), . .., X (#;;)) < 0) we might use the empirical proportion
among subjects being observed at least up to time f;;. The probabilities of events linked

with T are readily available via the Kaplan-Meier (KM) product limit estimator. An
underlying assumption is that of independent censoring. In order to estimate

Pr(T > t|fe(X(t1),..., X)) <0, T > u)
and

Pr(T < 1|fo(X(11)..... X (1)) > 0, T > u)
=1—Pr(T > t|f(X(t1),.... X(15)) > 0, T > u)
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we can use KM estimates stratified by the conditioning events. Note that NRI (¢, s)
can be estimated with a similar strategy.

A ROC curve, as outlined above, is simply the curve plotting one minus sensitivities
and specificities. Obviously, it must be non-decreasing. On the other hand, given that
sensitivities and specificities are separately estimated for each threshold, this is not
guaranteed when drawing a ROC curve based on raw estimates. In order to guarantee
monotonicity of the estimated ROC curve we perform isotonic regression, which is
a non-parametric method to estimate a monotone function in order to describe the
non-linear relationship between two variables. We regress sensitivity as a function
of one minus specificity. The isotonic regression algorithm involves (i) computing
cumulative sums of sensitivities along the order given by one minus specificities, (ii)
determining the greatest convex minorant (gcm) of the cumulative sum, that is, a con-
vex function which is at every point at most equal to the cumulative sum, but larger
than any other convex function with this property, (iii) taking the first differences of
the gcm found at step (ii). By definition of convex functions, the first differences of
the gcm are monotonically non-decreasing. Since we have used the greatest convext
minorant, the estimated non-decreasing function will be as close as possible to the
estimated (non necessarily monotone) ROC curve. Furthermore, in case the raw esti-
mated ROC curve is monotone, isotonic regression estimates will coincide with the
raw estimates. For more details on non-parametric isotonic regression see Robertson
et al. (1988) and references therein.

Finally, to obtain standard errors and (parametric or non-parametric) confidence
intervals we rely on resampling. For standard errors and confidence intervals we
perform the bootstrap, that is, we repeatedly sample the data with replacement and
compute the statistic of interest (e.g., the AUC) on the resampled data. The stan-
dard error can be estimated as the standard deviation of the resampled AUCs. A 95%
non-parametric confidence interval corresponds to the 2.5 and 97.5% quantiles of the
resampled statistics, while parametric confidence intervals (which are more appro-
priate when the number of replicates is small) assume that the resampled statistics
are approximately Gaussian distributed. In order to preserve the dependency structure
we resample units, rather than single measurements. Hypothesis testing on the AUC
and NRI are based on Wald statistics after a Gaussian approximation of the boot-
strap resamples. For comparison of two AUCs we use instead permutation testing as
in Venkatraman (2000). To this end, we relabel at random each biomarker value as
marker 1 or marker 2, independently of its true label. It is straightforward to check
that this corresponds to a random permutation of the two markers. We then compute
the two AUC values. A non-parametric p value for the test that two AUC values are
the same is obtained as the proportion of resamples (obtained with random relabeling)
with a difference in absolute value that is larger than the observed one.

5 Simulations
In order to illustrate the newly proposed indeces, and assess the performance of the

proposed inferential procedure, we generate three scores, S1, S2, S3. The first score is
generated independently of survival times, therefore being completely irrelevant. The
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second one is a time-fixed score repeatedly measured at each visit occasion. The third
is a time-varying version of the previous one. The idea is that monitoring time-varying
biomarkers provides additional prognostic information. For simplicity, in this and the
next sectionwe lets; =--- =5, = s and u = t,.

We generate survival through an accelerated failure time model with time-dependent
covariates, where

t

Pr(T; > t) =exp |:—/ h(x) dx:| ,
0

and

h(x) = exp {B1X1x + B2Xox),

where 81 = 0, B2 = 1. We fix four visit times (0, 1, 2, 5). The markers are generated
as follows: X, is sampled from a standard white noise Gaussian process. The second
marker X», is a step function with initial value uniformly sampled from the set {0, 1, 2},
a change point uniformly sampled in the time-interval (0, 1.5), and second value
corresponding to X2, +2(—1)Y, where U = {0, 1} is a binary random variable with
Pr(U = 1) = 0.5. In this way some subjects have a constant value for the first two
visits. This happens if the uniformly sampled change point from the interval (0, 1.5)
yields a value in (1, 1.5), hence for approximately 33% of the subjects. It shall be
noted that these subjects represent a worst-case scenario for our purposes when s = 2
is evaluated.

We assume that these processes are measured without error at visit times 1, . . ., t;,
but of course all of their trajectory influences the survival time as outlined above. Our
scores are, for j > 0, §1; = Xl,/., S = Xoyy, S35 = th_/.. Censoring is generated
independently as a uniform random variable, so to obtain a proportion of censoring of
about 80% to match the low event rate of the motivating application.

We generate data for n = {200, 800}, and evaluate AUC and NRI for s = 2, 3 and
t = 3, 8. We repeat the operation B = 1000 times and report the average AUC and
NRI in Table 1. Boxplots (for the 1000 replicates) of selected scenarios can be found
in Fig. 1.

It can be seen that regardless of s, n and ¢, S| has an AUC of approximately 50%.
The time-constant S has an AUC of approximately 70% when t = 3 and slightly
lower when ¢ = 8. This reflects the fact that baseline values might be less informative
as the time horizon is increased. The improvement of S3 over S and S is also testified
by the 1/2 NRI, which is positive and above the threshold of 20% in most cases. When
assessing S3 we see that AUC is on average the largest in all cases, indicating that we
can in general expect a slight improvement in terms of AUC when taking into account
time-dependent markers. It can also be noted that the AUC for S3 increases slightly
when considering s = 3 over s = 2, because then the time-dependent marker has
definitely changed and is providing more (and more recent) information towards the
chance of observing the event.
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Table1 Simulation results for different sample size r, number of visits s and time-horizon  for an irrelevant
(S1), a time-constant (S2) and a time-dependent (S3) marker

AUC 1/2 NRI
n s t S3 S Mt S3 versus S S3 versus S S versus S
200 2 3.0 0.791 0.699 0.503 0.274 0.029 0.224
800 2 3.0 0.787 0.697 0.499 0.274 0.027 0.222
200 3 3.0 0.860 0.700 0.501 0.277 0.080 0.225
800 3 3.0 0.858 0.699 0.499 0.277 0.076 0.224
200 2 8.0 0.791 0.659 0.499 0.283 0.127 0.179
800 2 8.0 0.789 0.655 0.500 0.280 0.126 0.176
200 3 8.0 0.906 0.658 0.500 0.300 0.220 0.177
800 3 8.0 0.907 0.657 0.501 0.297 0.221 0.176

Results are overaged over B = 1000 replicates

AUC

0.5

AUC

0.5

0.9

0.7

0.3

0.9

0.7

0.3

n=200, s=2,1=3

- -
_—
8 :
=
-
<3 SIQ Si

-
i om—
-
.
——
9
—_—
—f
i 1
S3 S2 S1

AUC

0.5

AUC

0.9

0.7

0.3

05 07 09

0.3

n=200, s=2,1=8

s
_—
[ ——
R =
8
1 1
<3 S2 S1
n=800, s=3, =3
—
—
——
|
—o—
e
——
5 -
1 1
S3 S2 S1

Fig.1 Simulation results for different sample size n, number of visits s and time-horizon 7 for an irrelevant
(S7), a time-constant (S>) and a time-dependent (S3) marker. We report boxplots over B = 1000 replicates
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6 Data analysis

The study population in our motivating data example included 452 patients, with at
least one short-time evaluation during the follow-up period (on average at 6 months)
and with a median follow-up of 147 months (IQR 91-217). The median age at enroll-
ment was 46 years (IQR 36-55) and 68% were males. The median baseline LVEF was
31% (IQR 25-39%). RV-d dysfunction (RV) was observed in 96 patients at enrollment.

In our context, the clinical focus is on the RV-d parameter and its prognostic signifi-
cance at a relatively long-term. We also focus on the information gained by monitoring
this parameter over repeated visits, hence evaluating the effect of this variation. If
a change in RV dysfunction is observed between two visits, a significant effect is
expected on the survival status even taking into account other covariates.

The analysis of pre-specified follow-up evaluations were performed in 452, 327,
304, and 243 patients, respectively, on average at 6, 24, 48, and 72 months. Globally
we observed 78 events of D/HT during the follow up, and nearly 50% of them within
72 months. RV-d promptly improved after the initiation of optimal treatment. While
about 20% of patients have RV dysfunction at baseline, only 10% have the dysfunction
at the first follow-up visit, and about 5% in the subsequent visits. Transitions between
states, nevertheless, are frequent and patients generally tend to improve (the transition
probability from RV-d to absence of RV-d is 72%). Noteworthy, RV normalization
occurred earlier compared to LVEF improvement, as outlined in Merlo et al. (2016).

To evaluate the new marker RV we compute the following scores: RV alone (S (¢)),
S2(t) = 0.1 x age + 0.02 x HFd — 0.06 « LV EF(t), where age denotes age at
enrollment and H Fd the time between diagnosis of HF and baseline time (HF dura-
tion). Finally, we evaluate the complete score S3(f) = RV (t) —0.06 « LVEF(t) +
0.1 % age + 0.02 « HFd. All scores are time-varying, and time-dependent markers
RV (t) and LV E F (t) have been evaluated at each of a maximum of four visits. We fix
a time-horizon of 7 = 72 months for evaluation of prognostic accuracy, and compare
the use of a single visit (usual time-dependent ROC) and multiple (up to four) visits.
Weights in the scores above are far from being optimal and simply based on the Cox
regression coefficients for the covariates fixed at their baseline measurements (i.e., as
if everything was computed only once).

AUCs and 95% Cls are reported in Table 2, where bold indicates significance at
the 5% level for the hypothesis Hy : AUC = 50%.

Table2 AUC and 95% CIs in parentheses for three scores predicting occurrence of D/HT at¢# = 72 months
for the DCM data

N

$

$3

s=1

s =2
s=3
s=4

0.55 (0.48-0.63)
0.61 (0.52-0.70)
0.64 (0.49-0.79)
0.71 (0.44-0.97)

0.73 (0.64-0.82)
0.75 (0.65-0.83)
0.71 (0.51-0.90)
0.72 (0.40-1.00)

0.75 (0.66-0.83)
0.77 (0.69-0.86)
0.76 (0.56-0.95)
0.81 (0.54-1.00)

AUCsS in bold are significant at the 5% level
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Table 3 1/2 NRI, NRI for events and for non-events when comparing S3(¢) with S»(7) using a different
number of visits; with 95% confidence intervals in parentheses and p values

1/2 NRI NRI events NRI non-events

s=1 0.126 (—0.047; —0.336 (—0.632; 0.590 (0.446; 0.733) p <
0.284) p = 0.153 0.442) p =0.186 0.001

s=2 0.200 (0.014; 0.385) —0.161 (—0.562; 0.561 (0.469; 0.653) p <
p =0.0348 0.239) p = 0.429 0.001

s=3 0.200 (—0.108; —0.198 (— 1.141; 0.598 (0.375; 0.821) p <
0.509) p = 0.203 0.746) p = 0.681 0.001

s=4 0.529 (0.164; 0.893) 0.316 (—0.402; 0.742 (0.561; 0.922) p <
p = 0.004 1.035) p = 0.388 0.001

It could be noted that all AUCs are globally increasing with the number of visits,
and that there is also at each visit an improvement in accuracy by adding RV-d to the
LVEF score adjusted by age and HF duration. It seems like the best performing score
is §3, at each visit, and interestingly RV-d-alone AUC is significant at the second visit,
which as noted above corresponds to the time when most RV improvements happened.

As often happens, there is no significance when comparing AUC values. As noted
by Pencina et al. (2011), “area under the curve (AUC) or C statistic hardly moves
after a few good risk factors are already included in the model”. For this reason, in
order assess the importance of RV (¢) we additionally evaluate 1/2 NRI to measure
the reclassification improvement. We do so by evaluating how much information is
added by RV (r) when included in the best score without it, that is, S>(¢). Results are
reported in Table 3.

Here we could note that globally the reclassification improvement is significant at
the second visit (i.e. when the maximal variation in the RV function is observed with
respect to the baseline), and at the fourth visit, when more events are cumulatively
observed. The improvement in reclassification seems to be driven by the non-events
group, i.e., RV-d seems to allow to better classify patients who will not experience the
event before + = 72. This is explained as at baseline RV dysfunction prevalence is
high, and while some patients improve others do not. Here RV evolution is considered
conditionally on the well-known LVEF marker path. These findings in our opinion
are of remarkable importance in the long-term risk stratification and management of
patients with DCM, especially in light that specific subgroups of patients often switch
to more aggressive therapies, during follow up, when they are classified as high risk.

7 Conclusions

We have proposed a time-dependent ROC curve and time-dependent NRI that can
take into account time-dependent biomarkers (or scores) repeatedly measured up to
a certain time, t; < f, where ¢ is the time-horizon for observing the occurrence of
events. Inference proceeds rather naturally through inverse probability weighting by
the Kaplan—Meier estimator, and standard errors are obtained via resampling.
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Our proposed measures require the specification of a desired time-horizon ¢ and
lower bound u, a number of visits touse s;, i = 1, ..., n, and in general of a function
fe(+) of the trajectory (based on a threshold c). In our examples we always have used
the union function, that is, we had a positive diagnosis if the marker was observed to
be above a threshold in one or more of the first s; visits. Other functions are possible
and might be based for instance on persistent crossing (that is, a positive diagnosis if
and only if two or more consecutive visits give a value above the threshold ¢) or simple
increment (that is, a positive diagnosis if and only if in the second or later visits there
is an increment above the threshold), etc.

It is important to underline that interpretation of Se(z, c, s, u) and Sp(¢, c, s, u) is
strongly dependent on s;, as all survival probabilities up to time ¢ are conditional on
having survived up to time #y, . This makes it difficult to compare performance measures
for different number of visits, as the additional marker measurements are not the only
information used. Overcoming this issue is not at all straightforward, though.

Our approach can be used to assess the prognostic significance of scores and/or of
new biomarkers. In our real data example we have obtained simple scores based on the
Cox regression coefficients for the baseline covariates. We have done so for simplicity,
overlooking that optimal weights might be better approximated when considering
time-dependent covariates in Cox modeling. We additionally note that optimal weights
can be directly obtained by maximization of AUC, rather than of Cox partial likelihood.
A function to do sois available in the accompanying R package 1 ongROC. Our purpose
was to show that RV dysfunction might bring about independent information for risk
prediction even after considering LVEF and possible confounders, rather than to obtain
an optimal score for risk prediction. In further work our time-dependent measures will
be made resistant to the presence of outliers [see Farcomeni and Ventura (2012) for a
detailed discussion on robust ROC curves]. To do so, we will exploit robust survival
analysis methodologies [e.g., Farcomeni and Viviani (2011) and references therein].
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