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Abstract

Probabilistic Discrete Choice Models (PDCM) have been extensively used to interpret the
behavior of heterogeneous decision makers that face discrete alternatives. The classifica-
tion approach of Logical Analysis of Data (LAD) uses discrete optimization to generate
patterns, which are logic formulas characterizing the different classes. Patterns can be
seen as rules explaining the phenomenon under analysis. In this work we discuss how
LAD can be used as the first phase of the specification of PDCM. Since in this task
the number of patterns generated may be extremely large, and many of them may be
nearly equivalent, additional processing is necessary to obtain practically meaningful in-
formation. Hence, we propose computationally viable techniques to obtain small sets
of patterns that constitute meaningful representations of the phenomenon and allow to
discover significant associations between subsets of explanatory variables and the output.
We consider the complex socio-economic problem of the analysis of the utilization of the
Internet in Italy, using real data gathered by the Italian National Institute of Statistics.

Keywords: Classification algorithms, Rule learning, Socio-economic analyses, Data
analytics, Digital divide.

1. Introduction

Probabilistic Discrete Choice Models (PDCM) have been extensively used for decades as
a powerful method to interpret the behavior of heterogeneous decision makers that face
differentiated, discrete alternatives [32, 40]. Modern methods allow a rich and flexible
specification of both the deterministic and stochastic component of the model, and the
estimation, possibly recurring to simulation. However, given the high computational
burden of these procedures and the large number of available explanatory variables, an
initial extensive exploratory data analyses is necessary. In this work we discuss how a
data classification technique can be used in this first phase of the specification of PDCM.

Classification is a fundamental task in the field of data mining, and many approaches
to solve this problem have been proposed, based on different paradigms and data models.
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Established ones include: Neural Networks, Support Vector Machines, k-Nearest Neigh-
bors, Bayesian approaches, Decision Trees, Logistic regression, Boolean approaches (see
for references [29, 31]). One effective Boolean approach is the Logical Analysis of Data
(LAD) (see, e.g., [20, 6, 7, 8]), which is based on Boolean Logic and on Discrete Opti-
mization. LAD methodology is closely related to decision trees [37] and nearest neighbor
[19] methods, and constitutes an extension of those two approaches, as shown in [8].
There are also affinities with DNF learning in Computational Learning Theory, see, e.g.,
[10] which captures certain aspects of LAD. Other connections exist with the empirical
machine learning approaches based on production or implication rules, for instance those
based on Rough Set theory [35]. The joint use of many patterns has similarities with
the usage of an ensemble of classifiers, as it is done in boosting [27] and bagging [11]
techniques.

We consider data organized into records. Each record is a different observation of
the phenomenon, and it is composed of fields containing the observed values. Each field
has its domain, that is the set of its possible values. A record may also have a class
label. In this case, the class is also called the output, while the other fields are also called
explanatory variables. To apply LAD approach, all values must be converted into binary
form by means of a discretization process called binarization. The domain of each field
is partitioned in a finite number of subdomains that are encoded using binary attributes.
Since the number of obtained binary attributes is often very large, a selection step is
performed. After this, the selected binary attributes are used to build the patterns. A
pattern is a conjunction of binary attributes, also called conditions, characterizing one
class. Finally, each unlabeled record is classified on the basis of the patterns covering
that record. Patterns can be seen as an interpretation of the phenomenon under analysis
(see, e.g., [21]). Therefore, this procedure can perform rules extraction tasks, which, in
the study of PDCM, may be even more important than the classification itself. Indeed,
in socio-economic studies, the main goal is often the comprehension of people’s behavior
and its determinants. To this aim, different theories and hypotheses suggested by the
human analysts are tested against data. On the contrary, we propose here to start the
interpretation process extracting rules from the data by means of pattern generation
techniques based on LAD.

When dealing with the probabilistic behavior of economic agents, a large number of
explanatory variables is available. Consequently, the number of patterns generated can be
extremely large, and unfortunately most of them may have scarce practical meaning. For
example, they may cover only a few records, or they may differ only in the selection within
sets of highly associated explanatory variables, hence, the subsets of records covered by
different patterns largely overlap.

We present here criteria to identify a reduced set of practically meaningful rules
within the large set of all the patterns, along with ordering and filtering techniques for
their practical implementation. These techniques are computationally viable and can
also produce a set of rules which are internally orthogonal, i.e., the coverages of every
pair of rules have empty intersection. Patterns are generated by using a version of the
LAD methodology developed to deal with very large datasets. It is adapted from that
proposed in [12] and designed to keep the computational burden under control.

Therefore, the main contribution of this work is a computationally viable method-
ology to obtain an internally consistent, non-redundant and statistically accurate set of
practically meaningful explanatory rules from a set of available data in a probabilistic
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discrete choice setting. Several works in the literature have similarities either in the
methods or in the goals, though none of them considers PDCM. For example, the gen-
eration of propositional logic formulas to provide a classification is applied to biological
problems in [3]. An ELECTRE-based method to identify the best decision rules gen-
erated in the training process of a generic classification algorithm is proposed in [34].
Genetic algorithms are used to construct logic trees that best represent empirical data in
[33]. Techniques to obtain a certain degree of orthogonality in the sets of Boolean rules
are described in [25, 38]. The automatic individuation of the most important variables
and of their values or intervals that are critical for a classification using Support Vector
Machines is in [14, 15]. The problem of the selection of features has been addressed also
in [4, 13, 18, 30, 39, 41].

The paper is organized as follows. Section 2 describes the binarization and the genera-
tion of the patterns. Section 3 presents the criteria to identify the small set of practically
meaningful rules. In particular, we describe ordering techniques devised to bring out
patterns which are the best compromises between accuracy and coverage; one technique
aims at providing a sufficient disjunction of the coverages, the other at the complete
disjunction of the coverages. Section 4 reports the results of the described techniques in
the analysis of the individual use of the Internet, by considering data provided by the
Italian National Institute of Statistics (Istat) and describing socio-economic status and
daily habits of more than 46,000 individuals chosen to represent the whole Italian pop-
ulation. This analysis is important for the design of effective policies fostering Internet
usage in Italy, in order to meet the goals of the European Digital Agenda [23], a plan
established by the European Union which sets goals for 2020 regarding many aspects of
the digitalization in all Member States.

2. Binarization and Pattern Generation

The structure of the data records consists of a set of fields fi, with i = 1, . . . ,m. A
record instance r consists of a set of values vi, one for each field. A record r is labeled,
or classified, if it is assigned to an element of a set of possible classes C. In many cases,
C has only two elements, denoted by + and −, and we speak of binary classification.
We will hereinafter consider this case. A positive record instance is denoted by r+, a
negative one by r−. A training set S of labeled records is available, with S+ the set of
its positive records and S− the set of its negative ones. These sets constitute our source
of information in learning the classifier.

LAD methodology begins with binarization, which converts each (non-binary) field
fi into a set of binary attributes aji , with j = 1 . . . ni. The total number of binary
attributes is n =

∑m
i=1 ni. Note that the term “attribute” is not used here as a synonym

for “field”. The values of a qualitative field fi can simply be encoded by means of a
suitable number of binary attributes aji . For each numerical field fi, on the contrary, we
introduce ni thresholds called cut-points α1

i , . . . , α
ni
i ∈ IR, and the binarization of a value

vi is obtained by considering whether vi lies above or below each αji .

bji =

{
1 if vi ≥ αji
0 if vi < αji

The αji are computed as the semi-sums of each couple of values v′i and v′′i belonging
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to training records from opposite classes and adjacent on fi: αji = (v′i + v′′i )/2. This
identifies the borders between regions corresponding to opposite classes. When positive
and negative records excessively overlap, and purely positive or negative regions become
rare, this technique can still provide the borders between regions having opposite class
predominance (see also [12]).

Example 1. Consider a small training set of 5 records representing persons, with fields
age, in years, and education, containing the highest degree obtained. The latter is an
ordered categorical field, which can be seen as numerical.

We use the following 5 levels: 1=elementary school or no title; 2=middle school; 3=
high school; 4= bachelor’s degree; 5=master’s degree or Ph.D. The classification is “has
mobile Internet connection” or not.

record ID age education mobile Internet ?

s+1 17 3 yes

S+ s+2 33 5 yes

s+3 70 5 yes

s−1 31 2 no
S−

s−2 47 4 no

To visualize the cut-points, we plot the records’ values by using a framed + for the positive
ones and a framed − for the negative ones.

age 

31 33 47 70

24 58.5

17

-+ + +-

education

2 3 4 5

4.53.5

1

--
+

+
+

2.5

32 40

The cut-points obtainable from this set are: α1
age=24; α2

age=32; α3
age=40;

α4
age=58.5; α1

education=2.5; α2
education=3.5; α3

education=4.5.
The corresponding binary attributes are:
a1age meaning age ≥ 24; a2age meaning age ≥ 32; a3age meaning age ≥ 40; a4age meaning

age ≥ 58.5; a1education meaning has high school; a2education meaning has bachelor’s;
a3education meaning has master’s or Ph.D.

A set of binary attributes {aji} used to binarize a dataset S is called support set U . We are
interested in selecting a small (and meaningful) support set. This selection is necessary
for reducing the computational complexity of the remaining part of any LAD-based
procedure, which may otherwise become impracticable. This combinatorial optimization
problem is modeled by using a binary decision variable xji for each aji , such that

xji =

{
1 if aji is retained in the support set;

0 if aji is excluded from the support set.
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In classical LAD methodology, the problem is formulated as an unweighted set covering
problem (see, e.g., [6]). On the other hand, [12] proposes a technique to evaluate the
quality qji of each aji , based on its power of separation. The qji are computed so that
the total quality of a set of binary attributes should correspond to the sum of their
individual quality values. One can evaluate the computational burden added to the
pattern generation by retaining each single attribute aji , and call it its size σji . When no
specific evaluations can be done, all sizes could be set at 1. Thus, by setting a maximum
affordable computational burden d (for instance on the basis of the available hardware,
time, etc.) the support set selection problem can be modeled as binary knapsack:

max
∑m
i=1

∑ni

j=1 qji x
j
i

s.t.
∑m
i=1

∑ni

j=1 σji x
j
i ≤ d

xji ∈ {0, 1}.
(1)

In our case, all σji = 1, and this model can be solved by simply sorting the qji values and
taking the best d of them. The selection is actually performed twice, for positive and
negative attributes, to find the set U+ of the selected positive attributes and the set U−

of the selected negative ones.
The selected support set U = U+ ∪ U− is then used to create patterns. A pattern P

is a conjunction (∧) of literals, also called conditions, that characterizes one class. We
denote a positive pattern by P+ and a negative one by P−; when the class is not specified
we simply use P . Literals are binary attributes aji ∈ U or negated binary attributes ¬aji .
Given a binarized record rb, i.e., the set of binary values {bji} for each aji ∈ U , each literal

of P receives the value bji ∈ {0, 1} for literal aji and (1− bji ) ∈ {0, 1} for literal ¬aji . We
have that P = 1 if all literals of P are 1, P = 0 otherwise. We say that a pattern P
covers a record r, and that r activates P , if the set of values rb = {bji} makes P = 1. We
write P (r) to denote the value of pattern P applied to record r:

P (r) =

{
1 if P covers r;
0 if P does not cover r.

A positive pattern P+ is defined as a pattern covering at least c+ positive records but
no more than e+ negative ones. A negative pattern P− is defined as a pattern covering
at least c− negative records but no more than e− positive ones. We call the pair of
values (c+, e+) the requirements for being a positive pattern; conversely, (c−, e−) are the
requirements for being a negative pattern. Values are such that the minimum correct
coverage (c+ or c−) is always larger than the corresponding maximum erroneous coverage
(e+ or e−). Patterns with e+ = 0 or e− = 0, namely, patterns not covering any record
of the opposite class, are called pure, while patterns with e+ > 0 or e− > 0 are called
fuzzy. Several works in the stream of research devoted to LAD use only pure patterns.

Finally, to perform the classification, weights wh are assigned to all patterns, with
wh ≥ 0 for positive patterns and wh ≤ 0 for negative ones. Such weights represent a
measure of the positive or negative valence of each pattern. Several criteria to determine
the wh exist (e.g., [7, 12]). Now, an unlabeled record r is classified on the basis of
the activated patterns, by computing the following weighted sum, called discriminant
∆(r) =

∑
h whPh(r), and by selecting a threshold δ: r is predicted to be positive if

∆(r) > δ, and negative if ∆(r) ≤ δ.
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Example 2. By continuing Example 1, if we set c+ = c− = 1 and e+ = e− = 0, a
positive pattern is for instance: P+

1 = a3education , which means “one has mobile Internet
if education is master’s or Ph.D. Pattern P+

1 has 1 condition; it covers 2 positive records
(s+2 , s

+
3 ) and no negative ones. Another positive pattern is: P+

2 = ¬a3age ∧ a1education ,
which means “one has mobile Internet if age is ≤ 40 and education is at least high school.
Pattern P+

2 has 2 conditions; it covers 2 positive records (s+1 , s
+
2 ) and no negative ones.

A negative pattern is for instance: P−1 = a1age ∧ ¬a3education , which means “one has NO
mobile Internet if age is ≥ 24 and education is no more than bachelor’s. This pattern
has 2 conditions; it covers all the 2 negative records (s−1 , s

−
2 ) and no positive ones. All

these patterns are pure. Of course, even for this simple example there exist many other
patterns not listed here.

Patterns can be generated by using combinatorial enumeration techniques based on two
types of procedures: bottom-up or top-down. The bottom-up generation of a positive
pattern proceeds by conjoining one by one single conditions until obtaining a formula
that respects the requirements for being a positive pattern. We generate bottom-up
patterns by using literals in greedy order, i.e., by decreasing values of qji , and avoiding
specializations of conjunctions that already are patterns. Though in principle all such
combinations of literals could be generated, the enumeration can be guided by setting
requirements on the coverages of the patterns, their length, etc. The computational
burden is controlled by setting a not excessive value of d in (1).

3. Identifying the most interesting Patterns to Characterize Probabilistic
Discrete Choice Behavior

All the patterns generated by the procedure give their contribution for the classification,
and, roughly speaking, a large set of patterns allows better accuracy. However, if we aim
at finding explanations of socio-economic phenomena, the interpretation of a large set of
patterns may be problematic. In this case, the set of all the available labeled records is
used as training set S, and there is no need of a classification step after the generation of
the patterns. Instead, we want to set up an algorithmic procedure which should identify
the most practically meaningful patterns within the large set P of all the patterns.

Given a generic pattern Ph, we define the following sets and values to describe its
features. The set of its conditions is Lit(Ph). The number of such conditions is l(Ph) =
|Lit(Ph)|. In the space defined by the d binary attributes of U , the Boolean hypercube IBd

is the set of the 2d points having as coordinates all the possible binary strings of length
d, that is, all the possible binarized records. A (d − l)-dimensional subcube consists of
the 2d−l points of IBd for which l < d coordinates are fixed to 0 or 1. A positive pattern
P+
h is a particular (d − l(P+

h ))-dimensional subcube such that the cardinalities of its

intersections with S+ ⊂ IBd and S− ⊂ IBd satisfy the requirement (c+, e+) for being a
positive pattern. A specular situation holds for a negative pattern. The size s(P+

h ) of

P+
h is the number of points 2d−l(P

+
h ) of the corresponding subcube. The correct coverage

Cov(P+
h ) of P+

h is the set of the records of S+ covered by P+
h . The number of hits is

c(P+
h ) = |Cov(P+

h )|. Similarly, its erroneous coverage Err(P+
h ) is the set of the records

of S− covered by P+
h . The number of errors is e(P+

h ) = |Err(P+
h )|. Moreover, we

are considering data obtained from a sample survey. Hence, each record r does not
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correspond to only one individual, but to a number µr of individuals: the multiplicity
of r in the target population of the survey, also called universe of the survey. Such
multiplicities are not the same for the different records. If we bring the values back to the
universe, by counting each record for its multiplicity, the above defined values become:
the number of hits reported to the universe cu(P+

h ) =
∑
r∈Cov(P+

h ) µr, and the number

of errors reported to the universe eu(P+
h ) =

∑
r∈Err(P+

h ) µr. Specular definitions hold

for a negative pattern.
Pattern features have been studied in several works belonging to the stream of research

devoted to LAD (e.g., [28, 2, 5]). Some preference criteria have been described in [28].
For instance, simplicity preference is defined as follows: a pattern Ph is simplicity-wise
preferred to a pattern Pk if and only if Lit(Ph) ⊆ Lit(Pk). Selectivity preference is
defined as follows: a pattern Ph is selectivity-wise preferred to a pattern Pk if and only
if s(Ph) ⊆ s(Pk). Evidential preference is defined as follows: a pattern Ph is evidentially
preferred to a pattern Pk if and only if Cov(Pk) ⊆ Cov(Ph). However, the above criteria
are not suitable for evaluating the ability of a pattern in identifying an homogeneous set of
individuals and to estimate the associated probabilities of the output. In these cases, we
suppose that each labeled record in the sample S reports the outcome of a discrete choice
operated by an observed decision maker, and the set of factors that have affected that
choice. The first is called the output, while the seconds are called explanatory variables.
Discrete choice methods [32, 40] build models of the decision making process that result
in the estimation of the probability of each choice (the output) given the values of m
explanatory variables. The probabilistic nature of these models reflects the heterogeneity
of the decision makers and the limits of the explanatory variables in characterizing the
choice. Theoretically, with a sufficiently large sample, we could estimate the probabilities
Pr(+|r) and Pr(−|r) of the output by computing the frequencies of the output classes
for each combination r of all the explanatory variables. In practice, the size of the
available sample usually does not allow this granularity, and, even in more sophisticated
estimation procedures such as logistic regressions, the number of explanatory variables
has to be reduced in order to avoid over-fitting and multicollinearity.

To define a subset (i.e., a category of individuals), we fix a tuple of values for k < m
of the m explanatory variables, and we denote it by (vi1 , . . . , vik). In general, each ex-
planatory variable has a different importance in determining the behavior. If the chosen
k variables gather enough importance, the frequencies of the output classes in the subset
defined by (vi1 , . . . , vik) would approximate the respective probabilities. Since each pat-
tern corresponds to the binarization of a tuple (vi1 , . . . , vik), it defines a specific category
of individuals. Given, w.l.o.g., a positive pattern P+

h , the individuals in Cov(P+
h ) are

those which, in that category of individuals, behave so as to have positive output, while
those in Err(P+

h ) are those which, in the same category of individuals, behave oppositely.
Practically meaningful patterns should posses the following properties:

• generality, i.e., they have large correct coverage (large value of c);

• accuracy, i.e., they have small erroneous coverage (small value of e);

• simplicity, i.e., they require few conditions (small value of l).

Thus, in choosing the patterns, we have to deal with multiple criteria. Given the set of
the patterns of one class, we define the efficient patterns. We discuss the case of positive
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patterns; the discussion for negative ones is straightforward.

Definition 3. Given a dataset S, a generic record r ∈ S, and the set P+(r) of the
positive patterns having r in their correct coverages, a pattern Ph ∈ P+(r) is efficient if
it does not exist another pattern Pk ∈ P+(r) such that c(Pk) ≥ c(Ph), e(Pk) ≤ e(Ph),
l(Pk) ≤ l(Ph), and at least one inequality holds strictly.

In other words, an efficient pattern is non-dominated among those in P+(r). The set of
all efficient patterns is the efficient frontier P∗+(r) ⊆ P+(r) of the above set P+(r).

Remark 4. Given a dataset S, a generic record r ∈ S, and the corresponding set of
efficient patterns P∗+(r), then there is a trade off between the accuracy (small value of
e) of a generic pattern on one side, and its generality (large value of c) and simplicity
(small value of l) on the other side.

A simple motivation is obtained by using Boolean arguments. Consider a generic positive
pattern P+ ∈ P∗+(r) composed of the conjunction of l conditions written using a support
set U with cardinality d, thus defined on the Boolean hypercube IBd. Since P+ represents
a (d − l(P+))-dimensional subcube F ⊆ IBd with size s(P+) = 2d−l, its size s(P+)
increases when decreasing l, and vice versa. The records of S are distributed along the
vertices of IBd. In particular, S+ and S− tend to be scattered along the vertices of
IBd and to constitute sets that are hardly coincident with subcubes, even though the
d binary attributes are selected in (1) by pursuing the best separation of S+ and S−.
Denote by F+ the set of the positive records lying on the vertices of F , and by F− the set
of the negative records lying on the vertices of F . The cardinalities of both F+ and F−

cannot decrease when increasing s(P+), and actually they always increase, except in the
case when the removed condition was irrelevant among those in P+. Now, an increase
in the cardinality of F+ increases the generality, while an increase in the cardinality
of F− decreases the accuracy. With respect to the requirements (c+, e+), we observe
that, when the requirement c+ is increased (we pursue generality), patterns need larger
s, hence they tend to have smaller l and larger e, so the requirement e+ should also be
increased. On the contrary, if the requirement e+ is decreased (we pursue accuracy), the
value of l tends to increase and the requirement c+ should also be decreased, since it
must be small enough with respect to s, that also decreases.

As a consequence, without an explicit identification the above efficient frontiers, we
should consider both a measure of generality and a measure of accuracy to evaluate a
generic pattern Ph, and search for patterns providing good compromises between the two
values. We now introduce a slightly different measure of accuracy: the error percentage,
defined as follows:

ε(P+
h ) =

100 e(P+
h )

c(P+
h ) + e(P+

h )
%.

Note that ε(P+
h ) is actually the probability that an individual belonging to the category

defined by P+
h has negative output. Now, we can combine c(Ph) and ε(Ph), in several

ways. In what follows, we will simply present our procedures by using c(Ph)/ε(Ph).
However, it should be understood that different combinations of coverage and accuracy
can be considered, depending on the preferred area in the mentioned trade-off between
generality and accuracy, and that we can also use cu(P ) and eu(P ) to take into account
the underlying universe.
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We define a first preference criterion, called evidential-probability: a pattern Ph
is preferred to a pattern Pk with evidential-probability if and only if c(Ph)/ε(Ph) >
c(Pk)/ε(Pk). This practically means that Ph defines a large category of individuals that
behave quite uniformly w.r.t. the phenomenon under analysis; therefore Ph is mean-
ingful. To apply this criterion, we can sort, separately for each class, all patterns by
decreasing values of c(P )/ε(P ), and take those in the initial positions of the ordering of
each class.

However, to obtain meaningful patterns, we also have to deal with another aspect. In
complex phenomena, there are variables that are strongly associated (for example, level
of education and professional position). Hence, the same aspect of the phenomenon can
be explained by patterns alternatively using these strongly associated variables, since
such patterns would cover highly overlapping sets of records. In general, we would like
to avoid this kind of redundancy, even if the presence of such alternative explanations
may be interesting when they derive from the joint effect of different groups of variables
in two different patterns, rather than from the direct association of two single variables.

3.1. Ordering by using Incremental Coverage

A crucial weakness of the simple criterion described above is that the coverages of different
patterns may overlap. A pattern Ph may have a high value for c(Ph)/ε(Ph); however,
if Ph covers almost the same records of another pattern Pk preceding Ph in the above
defined ordering, it becomes far less interesting. To overcome this weakness, we define the
incremental coverage CovI(Ph). Given an orderingO of the patterns of one class, positive
w.l.o.g., and expressing that Pk precedes Ph in O by Pk ≺ Ph, the incremental coverage
CovI(Ph) is the set of the records of S+ covered by Ph and not in Cov(Pk) for all k such
that Pk ≺ Ph. For the first pattern in the ordering, the incremental coverage coincides
with the coverage. The incremental number of hits is cI(Ph) = |CovI(Ph)|. Given O, we
define similarly the incremental erroneous coverage ErrI(Ph), the incremental number
of errors eI(Ph) and the incremental error percentage εI(Ph) = 100 eI(Ph)/(cI(Ph) +
eI(Ph))%. One way to compute these values is to keep a matrix M of the incidences
between patterns and records: each elementmhk is: 1 if rk ∈ Cov(Ph); -1 if rk ∈ Err(Ph);
0 otherwise. We can now define a second preference criterion, called disjoint evidential-
probability: a pattern Ph is preferred to a pattern Pk with disjoint evidential-probability
if and only if cI(Ph)/εI(Ph) > cI(Pk)/εI(Pk). This means in practice that Ph defines a
large category of individuals that behave uniformly, and that are disjoint enough (even
if not completely) from the categories defined by the patterns preceding Ph in O. To
identify meaningful pattern according to this criterion, we use the following Procedure 1
for each class separately.

Procedure 1: find sufficiently disjoint meaningful patterns

Input The set of patterns P of one class;
the pattern-records incidence matrix M .

Output An ordering OI of P by disjoint evidential-probability.

1. Initialization: Order the patterns by decreasing values of c(P )/ε(P ), obtaining
the initial ordering O0. Let π := 1.

2. Iteration t:
9



(a) For the patterns in the positions from π+ 1 to the last one of Ot, compute cIt
and εIt corresponding to the current ordering Ot using matrix M .

(b) From position π + 1 to the last one of Ot, sort the patterns by decreasing
values of cIt /ε

I
t , obtaining a new ordering Ot+1.

(c) Compare Ot+1 to Ot and let π be the last position until which Ot and Ot+1

coincide.
(d) Check if the pattern in position π + 1 already assumed that position in a

previous iterations and subsequently left it. If YES, then fix it in position
π + 1 and let π := π + 1.

(e) If Ot+1 6= Ot, then let t := t+ 1 and repeat the Iteration.
Else, let OI := Ot+1 and exit.

The above Procedure 1 terminates, because the ordering will always converge. Indeed,
consider the sequences Ot and Ot+1 obtained at two generic consecutive iterations. Se-
quences Ot and Ot+1 coincide at least in the first position, because the first pattern in
the ordering O0 will always maintain its position when switching to incremental cover-
ages. Now, let π be the last position of the ordering in which Ot and Ot+1 coincide.
Each time that the incremental coverages are recomputed, they cannot change for all the
positions that go from the first till the π-th. Hence, π cannot decrease. There is a slight
chance that it could remain the same, when two (or more) patterns cyclically swap their
positions from one ordering to the next. To avoid this and similar situations, we perform
step (d): whenever the pattern in position (π + 1) cyclically assumes different positions
and then returns to position (π+1), we fix it to that position and we proceed. Therefore,
π is forced to increase, at least after a certain number of iterations in which it remains
constant. Consequently, the ordering will converge to a final one called OI . The proce-
dure is computationally viable, since it essentially recomputes incremental coverages and
sorts values.

Patterns in the first positions of OI represent good compromises between coverage,
accuracy and disjointness of the coverages. The number of patterns to bring out can
be chosen, for instance by taking them until they cover at least a certain portion of
the dataset, or until their value for cIt /ε

I
t is above a certain threshold (a pattern with

cI < eI would add more errors than correct cases, so there would be reasons to reject it).
Experimentally, we pass from a set of several thousands of patterns to a few hundreds
that are able to cover almost the whole dataset.

3.2. Generation of Orthogonal Patterns

The above described Procedure 1 heuristically aims at obtaining patterns that correspond
to disjoint categories of individuals. However, it cannot provide a bound on the amount of
disjunction between such sets. We say that two patterns are orthogonal if their coverages
are disjoint, i.e., they have empty intersection. The following Procedure 2 is a new
ordering procedure able to provide the pairwise orthogonality of the generated patterns.

Procedure 2: find orthogonal meaningful patterns

Input The set of patterns P of one class;
the pattern-records incidence matrix M .
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Output A set of internally orthogonal patterns P O build over P.

1. Initialization: Order P by decreasing values of c(P )/ε(P ), select the first pattern
and call it P1. That is also the first orthogonal pattern P O

1 .

2. Iteration t:

(a) Drop from M all columns (records) in Cov(POt ). If the remaining columns
are less than a threshold ν, exit.

(b) For each row of M , update the number of hits and of errors to determine a
new set of patterns Pt.

(c) In Pt select the pattern which maximizes c(P )/ε(P ) and call it Pt+1.
(d) Compute the logic negation of the previous orthogonal pattern P O

t and gener-
ate the next orthogonal pattern P O

t+1 = Pt+1 ∧¬P O
t ; let t := t+ 1 and repeat

the Iteration.

The above Procedure 2 will generate patterns until they cover at least a certain portion
of the dataset (for example, almost all). Clearly, the length of the orthogonal patterns
l(P O

t ) rapidly increases. However, experimentally, we only need a very small number
of patterns to cover almost the entire dataset. Moreover, even the sequence of patterns
Pt (those without the negation of the previous ones) will have an interesting practical
significance, with the advantage of being more easily readable. Furthermore, the condi-
tions defined by each Pt, for t = 1, . . . , τ , when τ is not greater than 4 or 5, can be used
to produce a partition of the whole dataset by considering all the 2τ combinations of
their assertions/negations. This constitutes a partition of the individuals in categories
that are relevant for the phenomenon under analysis. The procedure is computationally
viable, since it essentially updates number of hits and errors, finds the maximum of a
vector and writes logical negations. The above Procedures 1 and 2 were selected as the
most representative of the many others developed and tested.

4. The Analysis of the Diffusion of the Internet

We apply the methodology presented above to analyze the diffusion of the Internet among
Italian population. The Italian lag in the household Internet demand, and in particular
in broadband services demand, has been widely analyzed by international sources [24],
proposing several explanations. On the demand side, a major barrier is the Italian pop-
ulation structure, characterized by high elderly-to-youth ratios (similar only to those of
Germany, in the whole European Union). Moreover, education levels (and consequent
skills and interests) are sometimes lower than in other European comparable countries
(i.e., Germany, France, Spain, United Kingdom), especially for the elderly people. Fi-
nally, Italy has also a low level of labor market participation, due to the number of retired
people, housewives and NEET (Not in Education, Employment, or Training), high level
of unemployment, and a high percentage of unskilled or blue collar workers. In [22],
contingency matrices show that the four variables Education, Age, Working status, and
Professional level strongly influence the individual use of the Internet. However, since
digital divide is a complex and multifaceted issue, we expect that, in different homo-
geneous segments of the population, different factors are relevant, or that their effects
have different intensity. The building of causal statistical models of Internet usage is
a prerequisite for the design of effective policies aimed at fostering Internet connection
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demand in Italy, in order to meet the goals of the European Digital Agenda [23], which
sets objectives for the growth of the European Union digitalization by 2020.

In the literature, causal analyses of these phenomena usually adopt Logit and Probit
models [1] of individual discrete choice. Examples can be found in [17, 16, 26, 42]. A
first step in developing a casual model for Italy is performed in [22] using a logistic
regression. While the model appears satisfactory in terms of fitting and interpretation
of the phenomenon, further exploration of data is needed to understand whether:

(i) Different and simpler explanations are possible for different segments of the pop-
ulation. A clusterization of the cases may improve the explanation of the endogenous
variables in each cluster; for example, in some segments of the population, the Internet
is not used because of lack of interest or skills, while in others budget constraints prevent
the adoption by interested people.

(ii) Alternative classification rules produce equivalent aggregated characterization of
the data; for example the joint effect of working status and professional level may be
used instead of a qualitative variable on the economic satisfaction of the individual.

(iii) Any additional variable not included in the original logistic model is discovered
to play a role in the causal explanation of the output.

(iv) Any additional variable without strict causal effect can nevertheless improve
classification and explanation. This may occur when an observed behavioral variable is
associated to the endogenous variable through the effect of latent factors affecting both, as
in seemingly unrelated regression models. Examples are the association between Internet
use and the use of credit cards or the propensity to tourism or cultural consumption.

4.1. The Dataset

A survey provided by the Italian National Institute of Statistics (Istat) collects every year
a large variety of data about socio-economic status and daily habits of more than 46,000
individuals belonging to about 20,000 households, chosen to represent the whole Italian
population. The survey can be used to estimate a number of statistical tables, significant
at regional level. However, the use of microdata (i.e., the set of all the answers provided
by each respondent) allows a far greater flexibility in exploring individual behavior. The
aspects investigated in the survey include: Socio-demographic and professional charac-
terization of the individual; Education; Household structure and composition; Dwelling
features, issues and surrounding area; Nutrition and lifestyle; Drugs consumption and
medical conditions; ICT related behavior of individuals and households (as required by
the harmonized Eurostat surveys that support the European Digital Agenda goal assess-
ment and policy development); Daily commuting; Cultural consumption, spare time and
social participation; Household goods ownership; Environment and recycling; Security;
Satisfaction for different aspects of life.

We extracted a dataset composed of 39 explanatory variables and 34,455 records
from the 2012 edition of survey, by considering all the variables that may represent
socio-economic and cultural determinants related to Internet use, and the output class,
which is 1 if the individual is an Internet user (at least once a week) and 0 otherwise.
Note that the selected subset of possible explanatory variables is much larger than the
set of variables typically used in a discrete choice model. In particular, in [22] the model
of the phenomenon takes into account 9 variables. Indeed, we are also interested in
verifying if our approach can help in identifying the best subset of those variables based
on accuracy, generality and parsimony criteria.
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4.2. Empirical Results

We perform experiments using the described version of LAD, called SLAD (Statistical
and Logical Analysis of Data) [12], with and without Procedures 1 and 2, to evaluate their
advantages. The binary attributes obtained from the original variables are 70. We also
apply to the same dataset a C4.5 decision tree algorithm [37]. Results are summarized
in Table 1. For each test, we report input parameters (see Section 3) and the following
output performance indicator for the patterns in each class:

• the total number of patterns selected, the most relevant indicator of problems of
redundancy and fragmentation;

• the number of patterns that provide a positive incremental coverage;

• the maximum cardinality of the coverage of a single pattern, that indicates whether
we obtain at least one pattern with large generality;

• the average cardinality of the incremental coverage, computed on the whole set
of selected patterns, that indicates the capacity of the algorithm in limiting the
redundancy of the generated patterns;

• the maximum number of conditions appearing in a single pattern, useful to assess
the generality and the readability of the selected patterns;

• the percentage of records in the sample covered by the whole set of selected patterns,
in order to provide evidence of the suitability of the algorithm;

• the average number of patterns that correctly cover a single record, a useful indi-
cator of the redundancy of the selected patterns.

In Test 1 we generate patterns as described in Section 2, and we allow only pure patterns.
This means that we are actually ignoring the probabilistic nature of the phenomenon,
looking for subsets of the sample characterized by the same value of the output class.
We obtain a huge number of patterns, with a small maximum and average incremental
coverage, as a consequence of Remark 4. Most importantly, only 7,641 out of the 18,077
(about 42%) positive records in the data set are identified by at least one pattern, while
14,762 out of 16,378 (about 90%) negative records are identified. This suggests that it is
much easier to find categories of people that do not use the Internet at all. The selected
patterns, especially the negative ones, have large overlaps: each positive [negative] iden-
tified record is covered by 21 [respect. 341] patterns, on average. This may mostly be
due to correlation between different explanatory variables. The results of this first test
are clearly not satisfactory: the large number of patterns, even restricting to those that
provide an incremental coverage, makes it difficult to gain insights on the phenomenon.
Note that, when using the techniques described in Section 2 (tests 1 and 2), the in-
cremental coverage of each pattern is computed ex-post, after ordering the patterns by
decreasing total coverage. When using Procedure 1 and 2 of Section 3 (tests 3 and 4),
patterns with no incremental coverage are directly excluded by the algorithm.

To improve the above results, in Test 2 we change some parameters, still using only
the pattern generation of Section 2. First, we allow patterns selecting a given maximum
percentage of records of the opposite class. Secondly, we use asymmetric parameters,
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since negative records are more homogeneous. For example, by setting c+ = 5, ε+ ≤ 20%,
c− = 10, ε− ≤ 10%, we obtain 6,761 positive and 10,856 negative patterns. Both
the maximum and the average incremental coverages are higher than in Test 1, for
positive and negative patterns. Moreover, there is a significant improvement in the
percentage of positive records covered. However, the resulting set of patterns is still too
large to provide useful insights of the phenomenon. These results highlight the need for
procedures tailored on the specificities of the probabilistic discrete choice settings, and
allow us to explore the trade-offs among our different goals:

• discrimination power between the two output classes (Internet users and non-users),
however considering that probabilistic behavior implies that we deal with non-
homogeneous subsets, and that the distributions of the output classes in each region
of the space are not known in advance;

• relevance, i.e. the patterns should cover a large number of observations;

• simplicity, i.e. the patterns should consist in a small number of conditions;

• non-redundancy, i.e., the pattern should have limited (Procedure 1) or no overlap
(Procedure 2) with each other.

Procedure 1. We perform Test 3 using the incremental coverage as ordering criteria (see
Section 3.2). The algorithm selects 198 positive patterns and 243 negative patterns. This
is an important improvement with respect to the thousands of patterns obtained in the
first two tests. Moreover, in order to increase the readability of the results and therefore
the understanding of the phenomenon, we can set some ex-post criteria and drastically
reduce the number of patterns. If we select patterns with an incremental coverage of at
least 200 records, and with a maximum incremental error of less than 45%, we obtain
only 8 positive patterns, which alone correctly identify 84% of the Internet users in the
dataset, and 5 negative patterns, which alone correctly identify 75% of the non-users.
Their analysis is in Tables 2 and 3. However, these patterns still partially overlap. Every
selected record is covered by about 3 different patterns.

Procedure 2. In Test 4, a pattern added in the step i of the procedure selects records that
were not selected in the previous i−1 steps. Hence, each pattern is generated only if it is
strictly needed to cover a predefined minimum number of additional records. Moreover,
we can logically define the region of the space added at the step i as the conjunction of
the conditions in pattern i with the logical negation of all the previous i − 1 patterns.
In principle, this allows us to identify the logical expressions of a partition of the set of
all the selected records. In practice, the resulting expressions may become cumbersome.
However, the logical disjunction of the selected patterns provides a readable expression
for the set of all the selected records in the output class.

The results for positive pattens are in Tables 4. The total number of users covered
by this set of positive patterns is 14,399 out of 18,077, that is 80% of the sample. In
particular, the first pattern shows how 8.096 users are described by the conjunction
of just two conditions: education level at least high school and high level of cultural
consumption. The latter represents an index that summarizes the cultural habits of
an individual in the last 12 months, such as attending concerts, sports events, visiting
museums, going to cinema, reading books etc. Moreover, the percentage of non-users
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selected by this pattern is just 14.45 %. Interestingly, the second pattern covers under-
35 users that are not covered by the previous pattern, i.e. that do not have a high level
of education or cultural consumption. This pattern is nevertheless quite large, covering
3,759 users with a non-users incidence of 26.25 %.

By applying De Morgans Laws, it is possible to simplify the disjunction of the selected
positive patterns, obtaining the following expression:

(Age ≤ 34) ∨ (Income source = Salaried job) ∨ (AC ownership = yes) ∨
(Credit card = yes) ∨ (Education = High School or University)

This is an important finding, showing that Internet use is influenced by the young age,
the income source and the level of education. The algorithm has selected the last two
variables as the most parsimonious proxies of the economic habits of the Italian house-
holds. Air conditioning is still considered a luxury good, and holding a credit card may
be a proxy of both income and a positive attitude towards innovation.

The results for negative pattens are in Tables 5. In this case, 13,102 out of 16,378 non-
users are covered by the selected patterns, again 80% of the sample. The largest (7,236
records) and most homogeneous (18% of users) pattern is made up of non-users that do
not possess a credit card, have a lower degree of education and are currently married.
Another 3,520 non-users have a low level of education and of cultural consumption, but
do have a credit card or are currently married. Negative patterns involve a larger number
of conditions overall (11 vs 7) and do not allow the level of simplification of the previous
class. Anyway, considering just the first four patterns, which cover most of the cases in
the partition (13,032 out of 13,102), we obtain this important description:

(Age ≥ 55) ∨ (Edu. = Middle or lower ∧ Cultural cons. = low) ∨
(Credit card = No ∧ Holidays = No) ∨

(Edu. = Middle or lower ∧ Credit card = No ∧ Marital Status = Married)

We finally compare the above results to the output of a C4.5 decision tree. We note that
the comparison is not straightforward, because the tree algorithm gives directly by con-
struction a partition of the dataset, so 100% of the records are covered, and each record
is covered by only one set of conditions: those obtained visiting the tree from the root to
the leaf containing that record. On the other hand, the sets of conditions characterizing
each leaf, that we will here call leaf patterns, do not have predetermined length and may
be considerably more complicated than the patterns generated by Procedures 1 and 2.
The decision tree finds 27 positive and 32 negative leaf patterns, using at most 11 binary
splitting conditions based on 18 explanatory variables. By comparison, Procedure 2 uses
12 explanatory variables and the maximum number of conditions in the patterns is 3.

The following 8 explanatory variables are in common between the decision tree and
the patterns: Age; Credit card holder; Cultural consumption; Education; Geographic
area; Income source; Kinship with head of the HH; Labour status. One more variable is
almost in common, since it appears in two specular versions: Number of income receivers
and Number of persons without income. The 9 variables used in the decision tree and
not in the patterns are: At least a 4-day holiday in the past year; Education of head
of the HH; Professional condition; Sector of activity; Takes courses in informatics; Sex;
Title for the house (ownership, rent, etc.); Type of house; Presence of fixed telephone.
On the other hand, the 3 variables used in the patterns and not in the decision tree are:
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Average number of cars per person; Marital status; Presence of A.C. We observe that
some of the variables selected only in the decision tree are actually highly correlated
(Professional condition; Sector of activity, Takes courses in informatics), while some of
the variables selected only in the patterns constitute a very good and compact description
of the lifestyle of the household (Average number of cars per person; Presence of A.C.).

The coverage of the largest leaves and patterns (i.e., those covering more records) have
comparable values, and in general the homogeneous categories of individuals obtained
by the two approaches have similar sizes. The patterns generated by Procedure 2 differ
from the leaves of the C4.5 tree, because of course there exist differences both in the
algorithms and in the type of settings that the user can chose. However, patterns and
leaves often represent similar concepts expressed using different variables, due to the
high degree of correlation existing among the variables. For example, by comparing the
composition of the largest leaves and patterns, we find that 73.2% of the records that
are in the largest positive leaf are also contained in the largest positive pattern, while,
on the other hand, 65% of the records in the largest negative leaf are also contained in
the largest negative pattern. Thus, Procedure 2 was able to produce a description that
can be considered functionally equivalent to that of the decision tree but whose format
can be somehow more controlled.

Though it was not the main purpose of our study, because the behavior we analyze is
inherently probabilistic, we also evaluate the accuracy obtainable by the sets of selected
patterns (Tests 3 and 4) in classifying unseen data of the same nature using the LAD
classification techniques described in Section 2, with pattern weights wh based on cover-
age. The overall classification accuracy is defined as the percentage of cases in which the
predicted class coincides with the observed class. We perform a cross validation using
the dataset of the same Istat survey about socio-economic status and daily habits in the
year 2013, which is composed of entirely different individuals, and we obtain an accuracy
of 77.0% for the patterns of Test 3 and 75.5% for those of Test 4. Since the same sets
of patterns, if used to classify the 2012 dataset, give an accuracy of 78.5% and 75.8%
respectively, we conclude that our procedures are able to identify rather stable proba-
bilistic phenomena whose incidence is similar in the training and test sets. When using
the smaller set of patterns (Test 4), the number of records which are not covered by any
of the selected patterns slightly increases. However, the considerable improvement in the
intelligibility of the patterns compensates such a small decrease in the coverage.

Furthermore, to evaluate the intrinsic difficulty of the classification task over the same
datasets, we repeat the same classification using different classifiers. This was done by
means of scikit learn [36], that is a very good machine learning package currently included
into scientific Python distributions. In our case, the best results have been obtained with
Random Forest classifier, producing an accuracy of 77.3%. This means that, for these
datasets, the two classes are inherently overlapping, and that the patterns selected by
our procedures also possess an appreciable ability of generalization.

5. Conclusions

We have presented here a new and computationally viable approach to obtain patterns
that can be practically meaningful for the analyses of Probabilistic Discrete Choice Be-
havior. In particular, we have developed procedures carefully designed to satisfy the
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requirements specific to this class of problems. These procedures are aimed at the iden-
tification of patterns representing the best compromises between accuracy and coverage
and at providing disjoint coverages. We report results for the important case of the
analysis of the individual use of the Internet in Italy. Our procedures could identify
surprisingly small sets of patterns that are able to describe this complex phenomenon.
Although these automatic procedures do not provide a proper interpretative model, the
selected patterns greatly support the identification of different categories of people that
may need different actions to be encouraged to use the Internet. The described approach
works only at the formal level and automatically; thus, it can be applied to problems
arising also in very different contexts.
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