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Abstract. We study here the dynamics and stability of Probabilistic Population
Processes, via the differential equations approach. We provide a quite general
model following the work of Kurtz [15] for approximating discrete processes
with continuous differential equations. We show that it includes the model of
Angluin et. al. [1], in the case of very large populations. We require that the long-
term behavior of the family of increasingly large discrete processes is a good ap-
proximation to the long-term behavior of the continuous process, i.e., we exclude
population protocols that are extremely unstable such as parity-dependent deci-
sion processes. For the general model, we give a sufficient condition for stability
that can be checked in polynomial time. We also study two interesting sub cases:
(a) protocols whose specifications (in our terms) are configuration independent.
We show that they are always stable and that their eventual subpopulation per-
centages are actually a Markov Chain stationary distribution. (b) protocols that
have dynamics resembling virus spread. We show that their dynamics are actu-
ally similar to the well-known Replicator Dynamics of Evolutionary Games. We
also provide a sufficient condition for stability in this case.

1 Introduction

In the near future, it is reasonable to expect that new types of systems
will appear, designed or emerged, of massive scale, expansive and per-
meating their environment, of very heterogeneous nature, and operating
in a constantly changing networked environment. Such systems are ex-
pected to operate even beyond the complete understanding and control of
their designers, developers, and users. Although they will be perpetually
adapting to a constantly changing environment, they will have to meet
their clearly-defined objectives and provide guarantees about certain as-
pects of their own behavior [5].
? A previous version of some aspects of this work has appeared as a brief announcement in

DISC 2008 [6]



We expect that most such systems will have the form of a very large
society of networked artefacts. Each such artefact will be unimpressive:
small, with limited sensing, signal processing, and communication capa-
bilities. Yet by cooperation, they will be organized in large societies to ac-
complish tasks that are difficult or beyond the capabilities of today’s con-
ventional centralized systems. These systems or societies are expected to
operate continuously and for long durations of time by achieving an ap-
propriate level of organization and integration. This organization should
be achieved seamlessly and with appropriate levels of flexibility, in order
to be able to achieve their global goals and objectives.

Angluin et al. [1] introduced the notion of a computation by a pop-
ulation protocol to model such distributed systems in which individual
agents are extremely limited and can be represented as finite state ma-
chines. In their model, finite-state, and complex behavior of the system
as a whole emerges from the rules governing the pairwise interaction of
the agents. The computation is carried out by a collection of agents, each
of which receives a piece of the input. These agents move around and
information can be exchanged between two agents whenever they come
into contact with each other. The goal is to ensure that every agent can
eventually output the value that is to be computed (assuming a fairness
condition on the sequence of interactions that occur).

In [1] they also proposed a natural probabilistic variation of the stan-
dard population protocol model, in which finite-state agents interact in
pairs under the control of an adversary scheduler. In this variant, interac-
tions that occur between pairs of agents are chosen uniformly at random
(i.e., by employing a random scheduler). We call the protocols of [1]
by the term “Probabilistic Population Processes” (PPP). In [2] they pre-
sented fast algorithms for performing computations in this variation and
showed how to use the notion of a leader in order to efficiently compute
semilinear predicates and in order to simulate efficiently LOGSPACE
Turing Machines. [8] studied the acquisition and propagation of knowl-
edge in the probabilistic model of random interactions between all pairs
in a population (conjugating automata). A particular form of probabilis-
tic population dynamics that is based on “baptizing” the other member
of the interaction was recently studied in [7]. The topic of population
protocols has been studied recently towards establishing a broader un-
derstanding of the effects of local memory [16, 4], district identiers [10]
and existence of leader [3].



In this work, we look into the cases where the systems are comprised
of very large agents with a very long lifespan which interact continu-
ously. In such systems the state of individual agents at a given time do
not help provide a broader understanding of the condition of the system
and the expected future state. Our approach is to examine the system
from a high-level view. We characterize the dynamics of population pro-
tocols by examining the rate of growth of the states of the agents as the
protocol evolves. We imagine here a continuum of agents. By the law
of large numbers, one can model the underlaying aggregate stochastic
process as a deterministic flow system. Our main proposal here is to ex-
ploit the powerful tools of continuous nonlinear dynamics in order to
examine questions (such as stability) of such protocols. The use of dif-
ferential equations to model the dynamics of distributed interactions has
been briefly used in the past for task allocation in robot networks [9].

Such an approach was first suggested by the seminal work of Kurtz
[15]. That approach approximates the behavior of a system of discrete
dynamics with a system of differential equations in the limit. This also
relates to Wormald’s Lemma [20], taking into careful consideration the
timing of the conversion of the discrete to a continuous analog. Here is
a brief description of Wormald’s Lemma: Given a stochastic process in
which tokens of type 1, 2, 3, etc. interact with a probability that is a
continuous function of their concentrations x1

n
, x2

n
, etc. (where xi counts

the number of tokens of type i), resulting in an increase or decrease of
each xi by some constant determined by the particular interaction that
occurs, then in the limit as we increase n (where n is the size of the
population) while rescaling time as t

n
we obtain a continuous process

defined in terms of differential equations where the derivative of the x
vector with respect to time is given by the sum of the various increments
multiplied by their probabilities. Wormald’s Lemma says that for any
fixed time t

n
, the distance between the discrete concentrations xi

n
and the

corresponding component of the solution to the differential equation is
o(1) with high probability.

We first provide a very general model for population protocol contin-
uous dynamics. This model (Switching Population Processes – SPP) is
a first step towards studying very large populations where the agents that
constitute the population are infinitely lived and they interact forever. In
this first step we avoit monitoring the changes on the states of the agents
continuously, but rather do it with a specified time rate. In this way we



can approximate the number of agents that are on a given state for very
large, finite, populations. Remark that SPP include the probabilistic pop-
ulation protocols (PPP) of [1] as a special case when the population is
infinite and the time is continuous.

We show a sufficient condition for stability of SPP that can be checked
in polynomial time. We also examine two subclasses of SPP:

– The Markovian Population Processes (MAP). In these protocols, their
specifications are configuration independent. In this very practical
case, we show that MAP are always stable and their unique popula-
tion mix at stability is exacly the steady-state distribution of a Markov
Chain.

– The Linear Viral Processes (LVP). They are probabilistic protocols
motivated by the “random pairing” of [1]. However, agents review
their current state at a higher rate when they have weak “immunity”.
We view this as a general model for the dynamics of viruses spread
in the population. We show that LVP is equivalent to the well-known
“Replicator Dynamics” of Evolutionary Game Theory. We also give
a sufficient condition for stability of LVP, based on potentials.

2 The General Model (Switching Probabilistic
Processes – SPP)

The network is modeled as a complete graph G where vertices represent
nodes and edges represent communication links between nodes. We use
the letter n to denote |V |, the number of nodes in the network. Each
node is capable of executing an “agent” (or process) which consists of
the following components:

– K, a finite set of states. We use the letter k to denote |K|.
– X , a nonempty subset of K, known as the initial states or start states.

We consider a large population of n agents. Let q ∈ K be a state of
the agent and let nq the number of agents that are on the given state p.
Then the total population size is n =

∑k
i=1 ni. The proportion of agents

that are at state q is xq = nq

n
. We call xq the density of q. In the sequel

q = qi, where i ∈ {1, 2, . . . , k}.
A state assignment of a system is defined to be an assignment of

a state to each agent in the system. A configuration C is a map from



the population to states, giving the current state of every agent. The
population state density then, at time t, can be described via a vector
x(t) = (x1(t), . . . , xk(t)). Here xi(t) = ni

n
, i = 1 . . . k.

In the sequel we assume that n → ∞. We are interested, thus, in the
evolution of x(t) as time goes on. We use a different model (compared to
[1]) for describing a protocol P . We imagine that all agents in the popu-
lation are infinitely lived and that they interact forever. Each agent sticks
to some state in K for some time interval, and now and then reviews her
state. This depends on x(t) and may result to a change of state of the
agent. Based on this concept, a switching population protocol consists of
the following two basic elements (specifications):

1. A specification of the time rate at which agents in the population
review their state. This rate may depend on the current, “local”, per-
formance of the agent’s state and also on the configuration x(t).

2. A specification of the switching probabilities of a reviewing agent.
The probability that an agent, currently in state qi at a review time,
will switch to state qj is in general a function pij (x(t)), where pi (x) =
(pi1 (x) , . . . , pik (x)) is the resulting distribution over the set K of
states in the protocol.

In a large, finite, population n, we assume that the review times of an
agent are the “birth times” of a Poisson process of rate λi (x). At each
such time, the agent i selects a new state according to pi (x). We assume
that all such Poisson processes are independent. Then, the aggregate of
review times in the sub-population of agents in state qi is itself a Pois-
son process of birth rate xiλi (x). As in the probabilistic model of [1]
we assume that state switches are independent random variables accross
agents. Then, the rate of the (aggregate) Poisson process of switches from
state qi to state qj in the whole population is just xi(t)λi (x(t)) pij (x(t)).

When n → ∞, we can model the aggregate stochastic processes
as deterministic flows (see, e.g., [17, 18, 20]). The outflow from state qi
is
∑

j 6=i xjλj (x) pij (x). Then, the rate of change of xi(t) (i.e. dxi(t)
dt

or
ẋi(t)) is just

ẋi =
∑
j∈K

xjpji (x)λj (x) − λi (x)xi (1)

for i = 1, . . . , k.



We assume here that both λi (x) and pij (x) are Lipschitz continuous
functions in an open domain Σ containing the simplex ∆ where

∆ =

{
(xi, . . . , xk) :

K∑
i=1

xi = 1 , xi ≥ 0 , ∀i
}

By the theorem of Picard-Linderlöf (see, e.g., [12] for a proof), Eq. 1
has a unique solution for any initial state x(0) in ∆ and such a solution
trajectory x(t) is continuous and never leaves ∆.

2.1 SPP includes the probabilistic population protocols

We now show that our model of Switching Probabilistic Processes (SPP)
is more general than the model of [1] in the sense that it can be used
to define the Probabilistic Population Processes (PPP). We do this by
showing the following:

Theorem 1. The continuous time dynamics of PPP (when n→∞) are
a special case of the dynamics of SPP.

Proof. According to [1], the discrete-time dynamics of a Probabilistic
Population Protocol (PPP) are given by a finite set of rules, R of the
form

(p, q) 7→ (p′, q′)

where p, q, p′, q′ ∈ K (K = {q1, . . . , qk}) together with a set A of n
agents and an (irreflexive) relation E ⊆ A× A.

Intruitively, a (u, v) ∈ E means that u, v are able to interact. [1]
assumes further that E consists of all ordered pairs of distinct elements
from A.

A population configuration in [1] is a mapping C : A 7→ K (K is the
set of states). Let C and C ′ be population configurations, and u, v be two
distinct agents. [1] says that C can go to C ′ in one discrete step (denoted
C

e7→ C ′) via an encounter e = (u, v) if

(C(u), C(v)) 7→ (C ′(u), C ′(v))

is a rule in R. This means that the state C(u) of u switches to C ′(u) and
also C(v) switches to C ′(v).

The execution of the system is defined to be a sequenceC0, C1, C2, . . .
of configurations (where C0 is the initial configuration) such that for



each i, Ci 7→ Ci+1. An execution is fair if for any Ci and Cj , such that
Ci 7→ Cj and Ci occurs infinitely often in the execution, Cj also occurs
infinitely often in the execution.

In the probabilistic version of the above, [1] further states that e (the
ordered pair to interact) is chosen at random, independently and uni-
formly from all ordered pairs corresponding to edges e in A × A ([1]
calls it the model of Conjugating Automata, inspired also by [8]).

Let us now assume that n → ∞ and let xi = limn→∞
ni

n
be the

population fraction at state qi ∈ K at a particular configuration C, at
time t. Consider the rule ρ in R

(qr, qm) 7→ (qi, qj)

Without loss of generality, we assume in the sequel that r 6= m and i 6= j
in such rules ρ in R. By the uniformity and randomness, the probability
that such an e, that follows from rule ρ, is selected (as the encounter), is
just xr(t)xm(t). Let Ai be the set of all (r,m) that are the left part of a
rule ρ:

(qr, qm) 7→ (qi, qj)

or (qr, qm) 7→ (qj, qi)

Let Bi be the set of (r,m) that are the left part of a rule ρ′:

(qr, qm) 7→ (qr′ , qm′)

with r = i or m = i. Without loss of generality let r = i in ρ′. By
considering a small interval ∆t and taking limits as ∆t → 0, due to
fairness we get ∀i:

ẋi =
∑

(r,m)∈Ai

xr(t)xm(t) − xi(t)
∑

(i,m)∈Bi

xm(t) (2)

The above set of equations describe the continuous dynamics of PPP.
Now, consider our SPP dynamics and Eq. 1. Set λi (x) =

∑
xm(t),

with m ranging over all rules

(qr, qm) 7→ (qr′ , qm′)

with r = i, and all rules

(qm, qr) 7→ (qr′ , qm′)



with r = i (i.e., over all rules in Bi).
Also, set pmi = pri = 0, if r,m do not belong in any tuple of Ai.
Finally set

pri =
1

λr

∑
m∈C(r,i)

xm(t)

where C(r, i) is the set of indices m in the second argument of the left
part of rules in Ai (i.e. (qr, qm) 7→ (qr′ , qm′) with r′ = i or m′ = i).

Then our system of Eq. 1 (the SPP dynamics) becomes the system
of Eq. 3 (the PPP dynamics). Thus the PPP dynamics are a special case
of the SPP dynamics in the continuous time setting. ut

Here is an example of the reduction described above. Let the rules R
in PPP be

(q1, q2) 7→ (q3, q2)

(q3, q1) 7→ (q1, q2)

(q2, q3) 7→ (q2, q1)

This gives the continuous PPP dynamics:

ẋ1 = x1x3 + x2x3 − x1 (x2 + x3)

ẋ2 = x1x3 + x1x2 + x2x3 − x2 (x1 + x3)

ẋ3 = x1x2 − x3 (x1 + x2)

We then set

λ1 = x2 + x3

λ2 = x1 + x3

λ3 = x1 + x2

and

p21 =
x3

x1+x3
p11 =

x3

x2+x3
p31 = 0

p12 =
x3

x2+x3
p22 =

x1

x1+x3
p32 =

x2

x1+x2

p13 =
x2

x2+x3
p23 = p33 = 0

and this results in our SPP dynamics, namely:

ẋ1 = x1λ1p11 + x2λ2p21 + x3λ3p31 − x1λ1

ẋ2 = x1λ1p12 + x2λ2p22 + x3λ3p32 − x2λ2

ẋ3 = x1λ1p13 + x2λ2p23 + x3λ3p33 − x3λ3



3 Stability of nonlinear dynamic systems: a sufficient
condition for decidability.

Let us consider a dynamic system

ẋi = fi (x) , i = 1, . . . , k

that is, in fact, more general than Eq. 1.

Definition 1 (Fixed Points). Let x∗ be a solution of the system {fi (x∗) = 0, i = 1, . . . , k}
which we call a fixed point of the system.

By making a Taylor expansion around x∗ we obtain a linear approx-
imation to the dynamics:

ẋi =
∑(

xj − x∗j
) dfi
dxj

(x∗)

Setting ξi = xi − x∗i we get

ξ̇i =
∑

ξj
dfi
dxj

(x∗)

which is a Linear System with a fixed point at the origin, i.e., ξ̇ = Lξ
where the matrix L has constant components Lij =

dfi
dxj

(x∗). L is called
the Jacobian Matrix. Then, by the theorem of [11] we have
Corollary 1. If the fixed point x∗ is hyperbolic (i.e., all eigenvalues of
L∗ have a non-zero real part) then the topology of the dynamics of the
nonlinear system around x∗ is the same as the topology of a x∗ in the
Linear system.
In fact, let each eigenvalue of L be φ = a+ iω.
Corollary 2. Let a 6= 0, ∀φ eigenvalues of L. Then
(a) If a < 0, ∀φ then x(t) approaches the fixed point x∗ as t→∞.
(b) If there exists a φ with a > 0 then x(t) diverges from the fixed point

x∗ along the direction of the corresponding eigenvector. That is, the
fixed point x∗ is unstable.

Thus we get our main result of the system:
Theorem 2. If all fixed points x∗ of our population dynamics of Eq. 1
are hyperbolic, then we can decide stability of the population protocol,
around x∗, in polynomial time in the description of the protocol.

Corollary 3. If all fixed points of PPP are hyperbolic, then the stability
of PPP can be decided in polynomial time.



4 Switching Population Processes with specifications
independent of the configuration

We now consider the special case of Eq. 1 where λi (x) = λi∀i and where
pij (x) = pij (specifications independent of the configuration x(t)). Then
the basic system of Eq. 1 of the dynamics of the population becomes:

ẋi =
∑
j∈K

xjλjpji − λixi i = 1 . . . k (3)

We call such protocols by the term “Markovian Population Processes”
(MAP).

Let qij = λipij for all i, j, when i 6= j and when j = i let qii =
λi(pii − 1). Then Eq. 3 in fact becomes

dxi(t)

dt
= qiixi(t) +

∑
j 6=i

qkixk(t) (4)

Note that
∑

i∈K xi(t) = 1. But this is, in fact, the basic equation of the
limiting-state probabilities of a Markov Chain of k states with qij being
the (continuous time) rates of change (see, e.g., [14], pp. 53–55).

When all λij , i 6= j are non zero then the Markov Chain of Eq. 4 is
irreducible and homogeneous. Then the limits limt→∞ xi(t) always exist
and are independent of the initial state. The limiting distribution is given
uniquely as the solution of the following equations:

qjjxj +
∑
k 6=j

qkjxk = 0

So, we get our second major result:

Theorem 3 (Markovian Population Processes – MAP). Let the speci-
fications {λj, pij} independent of the configuration x(t). Let also λjpij 6=
0, ∀i, j where i 6= j. Then the Population Protocol is stable. It always has
a limiting unique configuration {xi i = 1 . . . k} independent of the ini-
tial configuration x(0), which is exactly the steady-state distribution of
an ergodic, homogeneous Markov Chain of k states.



5 A special case of Random pairing population
protocols (Linear Viral Processes – LVP)

Now, let us assume that all reviewing agents adopt the state of “the first
man they meet in the street”. This is clearly the case when the reviewing
agent draws a pairing agent at random from the population (according to
the uniform probability distribution across agents) and adopts the state
of the so sampled agent. This is similar to the case of the protocols of [1]
where the rules are (qi, qk) 7→ (qm, qr) with r,m ∈ {i, j}. Formally then

pij (x) = xj ∀i, j ∈ K, ∀x(t)

Now Eq. 4 becomes

ẋi =
∑
j∈K

xjxiλj(x) − λi(x)xi

i.e.

ẋi =

∑
j∈K

xjλj(x)− λi(x)

 · xi (5)

We now propose a “linear” model in order to capture the immunity
that an agent has against other agents in the population. We postulate that
agents immunity depend on their states. So all agents at state state expe-
rience the same immunity. One can imagine immunity to be a measure of
the degree of protection of agents when they interact. So, when an agent
in state qi interacts with an agent in state qj we measure the immunity of
the (qi, qj) pair by an integer aij and we require here that aij = aji (we
assume symmetric interactions). It is then natural to assume that agents
in state qi will wish to review their state more often when their immu-
nity is low. In particular we assume here that any agent in state qi has
a review rate λi (x) that is linearly decreasing in the average immunity
of the agent in state qi. This is the simplest possible model. The formal
definitions follow:

Definition 2 (Immunity of a state). Let A = {aij} be a symmetric
matrix of integers. The immunity of an agent in state qi is ti (x) =
ai1x1 + . . .+ aikxk.

Definition 3 (Average immunity of a population protocol, in a par-
ticular configuration). Let A be a symmetric matrix of integers. The



average immunity of the population, in configuration {xi}, is: t (x) =∑
i∈K xiti (x).

Definition 4 (Linear Viral Processes – LVP). The Linear Viral Pro-
cesses are switching population protocols with review rates of agents

λi (x) = γ − δti (x)

where γ, δ ∈ <, δ > 0 and also γ/δ ≥ ti (x), ∀x+∆, ∀i.

Now Eq. 5 becomes

ẋi = δ (ti (x)− t (x))xi (6)

Note, now, that this equation is a constant rescaling of the popular “repli-
cator dynamics” of Evolutionary Game Theory (see, e.g., [19]).

Definition 5. The general Lotka-Volterra equation for k types of a pop-
ulation is of the form

ẋi = xi

ri + k∑
j=1

aijxj

 i = 1 . . . k

where ri, aij are constant.

By the equivalence of the Replicator Dynamics with the Lotka-Volterra
systems we then get:

Theorem 4. The dynamics of the linear viral protocols are equivalent to
the Lotka-Volterra dynamics.

We can then give an alternative sufficient condition for the (asymptotic)
stability of the Linear Viral Processes.

Theorem 5. Let x∗ be a fixed point of Eq. 6, i.e., ti (x) = t (x) is sat-
isfied for x = x∗. If

∑k
i=1 x

∗
i ti (x) > t (x) for any x in a region around

x∗, then x∗ is asymptotically stable.

In order to prove our theorem, we first consider the relative entropy of x
and x∗ as

E(x) = −
k∑

i=1

x∗i ln

(
xi
x∗i

)
(7)

Clearly E(x∗) = 0. Then we need to prove the following claim:



Claim. E(x) ≥ E(x∗), ∀x

Proof. From Jensen’s inequality it folds:

exp (f(x)) ≥ f(expx)

where exp() is the expectation, x a random variable and f a convex func-
tion. Thus Eq. 7 becomes

E(x) ≥ − ln

(
k∑

i=1

x∗i
xi
x∗i

)
≥ − ln

(
k∑

i=1

xi

)
= − ln 1 = 0

ut

Proof. Based on Claim 5 we can prove Theorem 5 as follows:

dE (x(t))

dt
=

k∑
i=1

dE

dxi
ẋi

=−
k∑

i=1

x∗i
xi
ẋi

=−
k∑

i=1

δ (ti (x)− t (x))x∗i (due to Eq. 6)

=−δ
[

k∑
i=1

x∗ (ti(x)− t (x))
]

< 0 by assumption

Thus, in a region around x∗, dE
dt

< 0. Then E is a (strict) Lyapounov
function (see, e.g., [13], pp. 18–19) and thus x∗ is stable asymptotically.

ut

6 Conclusions

We imagine here a continuum of agents. By the law of large numbers, one
can model the underlying aggregate stochastic process as a deterministic
flow system. Our main proposal here is to exploit the powerful tools of
continuous nonlinear dynamics in order to examine questions (such as
stability) of such protocols. We have extended the class of [1] by defining



a general model of “Switching Population Processes” (SPP). We then
examined stability for this general model and two important subclasses.

Our main point is that one can study stability and population dynam-
ics of protocols, via nonlinear differential equations that describe quite
accurately the (discrete) population protocol dynamics when the popula-
tion is very large. The “differential equations” approach was indicated in
the past for the analysis of the evolution of algorithms with Random In-
puts, by [18, 17, 20]. Our approach provides a sufficient condition for sta-
bility of PPP of [1] that can be checked in polynomial time. It also gives
a more general way to specify population protocols, that reveals interest-
ing classes. A potential problem with this approach is that the long-term
behavior of the continuous process may not be a good approximation to
the long-term behavior of the family of increasingly large discrete pro-
cesses it is supposed to describe in some cases. For example, it is not hard
to construct a population process that converges with high probability to
a configuration in which all tokens say EVEN if the number of 1 bits in
the original population is even and ODD otherwise (a consequence of
the LOGSPACE computation results [1]). No continuous limit can dis-
tinguish between these odd and even initial configurations, since we can
approach any given limit concentration arbitrarily using only odd or even
initial configurations. This is not a problem for Wormald’s Lemma [20]
(the time needed to distinguish between odd and even grows faster than n,
so any for any fixed time t/n, the behavior of the discrete process doesn’t
depend much on parity yet), and it’s not a problem for the earlier work
of Kurtz [15] (which uses similar time scaling), but it should be a prob-
lem here since the goal of the paper seems to be to describe the behavior
of very large probabilistic population protocols. In the cases studied in
this paper, this is not a problem, because the paper implicitly makes the
same scaling assumption as this previous work, which makes everything
interesting happen at a time pushed off into the infinite future. This limits
the applicability of the results to finite processes. However such highly
unstable protocols have limited usage and can be analyzed with other
techniques.
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