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Abstract

The present work focuses on performing sensitivity and uncertainty analy-
sis, data assimilation, model calibration, model validation and best-estimate pre-
dictions with reduced uncertainties on a counter-flow, wet cooling tower model
developed by SRNL. The methodologies are part of two distinct mathematical
frameworks: the Adjoint Sensitivity Analysis Methodology (ASAM) is used to
compute the adjoint sensitivities of the model quantities of interest (called “model
responses” ) with respect to the model parameters; the Predictive Modeling of
Coupled Multi-Physics Systems (PM_CMPS) simultaneously combines all of the
available computed information and experimentally measured data to yield opti-
mal values of the system parameters and responses, while simultaneously reducing
the corresponding uncertainties in parameters and responses. A cooling tower dis-
charges waste heat produced by an industrial plant to the external environment.
The amount of thermal energy discharged into the environment can be determined
by measurements of quantities representing the external conditions, such as out-
let air temperature, outlet water temperature, and outlet air relative humidity,
in conjunction with computational models that simulate numerically the cooling
tower behavior. Variations in the model parameters (e.g., material properties,
model correlations, boundary conditions) cause variations in the model response.
The functional derivatives of the model response with respect to the model pa-

rameters (called “sensitivities”) are needed to quantify such response variations
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changes. In this work, the comprehensive adjoint sensitivity analysis methodol-
ogy for nonlinear systems is applied to compute the sensitivities of the cooling
tower responses to all of the model parameters. These sensitivities are used in
this work for (i) ranking the model parameters according to the magnitude of
their contribution to response uncertainties; (ii) propagating the uncertainties in
the model parameters to quantify the uncertainties in the model responses; (iii)
performing model validation and predictive modeling, combining computational
and experimental information, including the respective uncertainties, to obtain
optimally predicted best-estimate nominal values for the model parameters and

responses, with reduced predicted uncertainties.



Chapter 1

Introduction

1.1 State-of-the-art of sensitivity and uncertainty
analysis, data assimilation, model calibra-
tion, model validation, best-estimate pre-

dictions with reduced uncertainties

It is common practice, in the modern era, to base the process of understanding
and eventually predicting the behavior of complex physical systems on simulating
operational situations through system codes. In order to provide a more thorough
and accurate comprehension of the system dynamics, these numerical simulations
are often and preferably flanked by experimental measurements. In practice, re-
peated measurements of the same physical quantity produce values differing from
each other and from the measured quantity’s true value, which remains unknown;
the errors leading to this variation in results can be of methodological, instru-
mental or personal nature.

It is not feasible to obtain experimental results devoid of uncertainty, and this
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means that a range of values possibly representative of the true value always exists
around any value stemming from experimental measurements. A quantification
of this range is critical to any practical application of the measured data, whose
nominal measured values are insufficient for applications unless the quantitative
uncertainties associated to the experimental data are also provided. Not even
numerical models can reveal the true value of the investigated quantity, for two
reasons: first, any numerical model is imperfect, meaning that it constitutes an
inevitable simplification of the real world system it aims to represent; in second
place, a hypothetically perfect model would still have uncertain values for its
model parameters - such as initial conditions, boundary conditions and material
properties - and the stemming results would therefore still be differing from the
true value and from the experimental measurements of the quantity.

With both computational and experimental results at hand, the final aim is to
obtain a probabilistic description of possible future outcomes based on all recog-
nized errors and uncertainties. This operation falls within the scope of predictive
modeling procedures, which rely on three key elements: model calibration, model
extrapolation and estimation of the validation domain. The first step of the pro-
cedure involves the adjustment of the numerical model parameters accordingly
to the experimental results; this aim is achieved by integrating computed and
measured data, and the associated procedure is known as model calibration. In
order for this operation to be properly executed, all errors and uncertainties at
any level of the modeling path leading to numerical results have to be identified
and characterized, including errors and uncertainties on the model parameters,
numerical discretization errors and possible incomplete knowledge of the physical
process being modeled. Calibration of models is performed through the mathe-
matical framework provided by data assimilation procedures; these procedures

strongly rely on sensitivity analysis, and for this reason are often cumbersome in
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terms of computational load.

Generally speaking, sensitivity analyses can be conducted with two different
techniques, respectively known as direct or forward methods and adjoint meth-
ods. The forward methods calculate the finite difference of a small perturbation
in a parameter by means of differences between the responses of two independent
calculations, and are advantageous only for systems in which the number of re-
sponses exceeds the number of model parameters; unfortunately this is seldom
the case in real large-scale systems. In this work, this problem has been overcome
by using the adjoint sensitivity analysis methodology (ASAM) by Cacuci [1-4]: as
opposed to forward methods, the ASAM is most efficient for systems in which
the number of parameters is greater than the number of responses, such as the
model investigated in this thesis and many others currently used for numerical
simulations of industrial systems. This methodology has been recently extended
to second-order sensitivities (2"*-ASAM) by Cacuci for linear [5-6] and nonlinear
systems [7-8], for computing exactly and efficiently the second-order functional
derivatives of system responses to the system model parameters. Model extrapo-
lation addresses the prediction of uncertainty in new environments or conditions
of interest, including both untested parts of the parameter space and higher lev-
els of system complexity in the validation hierarchy. Estimation of the validation
domain addresses the estimation of contours of constant uncertainty in the high-
dimensional space that characterizes the application of interest.

The first systematic studies focused on obtaining best-estimate values for
model parameters were produced almost simultaneously in the mid 1960s by
independent groups of scientists all around the world [9-11], with the aim of pos-
sibly improving the cross section values by means of experiments conducted in
order to measure reaction rates and multiplication factors. In the 1970s, Rowlands

[12] and Gandini [13] used a weighted least-square procedure - response sensitiv-
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ities being used as weights - to combine uncertainties in the model parameters
with uncertainties in the experimental data, typifying a trend which had been
developing under the name of “cross-section adjustment”. Best-estimate system
responses such as reaction rates, multiplication factors and Doppler coefficients
were predicted by making use of the “adjusted” parameters and uncertainties in
the investigated reactor physics models. By the late-1970s the weighting functions
values, obtained as the first-order response sensitivities, started being computed
by means of adjoint neutron fluxes, as in Kuroi [14], Dragt [15] and Weisbin
[16]. Tt is worth noting that all of the abovementioned works addressed merely
the time-independent linear neutron transport or diffusion problem, a mathe-
matically well-known case for which the corresponding adjoint equations were
already known and readily available. The general adjoint method for computing
efficiently sensitivities for nonlinear, time-dependent or stationary problems was
formulated in 1981 by Cacuci [1]; just one year later, Barhen presented the first
general formulation of a “data adjustment” for time-dependent nonlinear prob-
lems [17]. This methodology regrettably failed to spread to other scientific fields,
and after a stagnation period was rediscovered in its basic ideas to be adapted to
the geophysical sciences, under the name of “data assimilation”. Since then, well
over a thousand works on data assimilation have been published in the geophysi-
cal sciences alone, under the name of “3D-VAR” (for time-independent problems,
and “4D-VAR” for time-dependent problems). Although too numerous to cite ex-
tensively here, representative works can be found cited in the books by Lewis [18],
Lahoz [19] and Cacuci [20]. A comprehensive mathematical methodology aimed
at yielding best-estimate predictions for large-scale nonlinear time-dependent sys-
tems has been recently published by Cacuci and Ionescu-Bujor [21]. Besides ex-
tending the results yielded from the standard data assimilation procedures, this

methodology provides quantitative indicators, stemming from sensitivities and
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covariances, for the evaluation of the consistency among the computational and
experimental values of parameters and responses. This comprehensive predictive
modeling methodology, which has already yielded successful results when applied
to large-scale experimental cases and to the validation of nuclear reactor system
codes related to reactor physics [22]-[23], light water reactors [24] and sodium-
cooled fast reactors [25], has been used in this work to perform the assimilation
of experimental measurements and the calibration of model parameters for the

cooling tower model under investigation.

1.2 Aim and outline of the work

This work concentrates on a counter-flow cooling tower operated as a natu-
ral draft/wind-aided cooling tower, under saturated and unsaturated conditions.
A model for the steady-state simulation of both cross-flow and counter-flow wet
cooling towers has been developed by Savannah River National Laboratory, im-
plemented in the “CTTool” system code and presented in [26]. In this thesis, a
relevantly more efficient numerical method has been developed and applied to
the cooling tower model presented in [26], leading to the accurate computation
of the steady-state distributions for the following quantities: (i) the water mass
flow rates at the exit of each control volume along the height of the fill section of
the cooling tower; (ii) the water temperatures at the exit of each control volume
along the height of the fill section of the cooling tower; (iii) the air temperatures
at the exit of each control volume along the height of the fill section of the cooling
tower; (iv) the humidity ratios at the exit of each control volume along the height
of the fill section of the cooling tower; and (v) the air mass flow rates at the exit of
the cooling tower. As shown in the foregoing of the thesis, the application of the
numerical method selected eliminates the convergence issues experienced when

applying the solution method implemented in [26], yielding accurate results for

7
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all the control volumes of the cooling tower and for all the data set of interest.
The development of the adjoint sensitivity model for the cooling tower has
been realized by applying the general adjoint sensitivity analysis methodology
(ASAM) for nonlinear systems [1-4]. The first critical topic of this work is repre-
sented by the development of the adjoint sensitivity model for the cooling tower
system, with the aim of allowing the computation of the sensitivities (functional
derivatives) of the model responses to all the model parameters in an efficient and
exact way, eliminating repeated calculations and approximations introduced by
using finite difference methods. The forward cooling tower model presents nonlin-
earity in their state functions; the adjoint sensitivity model possesses the relevant
feature of being instead linear in the adjoint state functions, whose one-to-one
correspondence to the forward state functions is essential for the calculation of
the adjoint sensitivities. Moreover, the utilization of the adjoint state functions
allows the simultaneous computation of the sensitivities of each model response
to all of the 47 independent model parameters just by means of a single adjoint
model run; obtaining the same results making use of finite-difference forward
methods would require 47 separate computations, with the relevant disadvantage
of leading to approximate results of the sensitivities, as opposed to the exact
ones yielded by applying the adjoint procedure. For all the cases the following
five model responses have been selected: (i) the water mass flow rate at the outlet
of the bottom control volume of the fill section of the cooling tower, m&"; (ii) the
water temperature at the outlet of of the bottom control volume of the fill section
of the cooling tower, Tfo); (iii) the air temperature at the outlet of the top control
volume of the fill section of the cooling tower, Ta(l); (iv) the humidity ratio at the
outlet of the top control volume of the fill section of the cooling tower, RH®;
and (v) the air mass flow rate at the outlet of the cooling tower, m,. Hence,

the nonlinear model analyzed in this work has 47 independent parameters and
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5 responses, and this would cause a sensitivity analysis conducted with forward
methods not only to yield approximate results, but to be extremely cumbersome
in terms of computational time. For this reason, the application of the ASAM to
this specific cooling tower model is extremely convenient.

The adjoint sensitivities are necessary to realize many operations, such as:
(i) ranking the model parameters according to the magnitude of their contribu-
tion to response uncertainties; (ii) determine the propagation of uncertainties,
in form of variances and covariances, of the parameters in the model in order
to quantify the uncertainties of the model responses; (iii) allow predictive mod-
eling operations, such as experimental data assimilation and model parameters
calibration, with the aim to yield best-estimate predicted nominal values both
for model parameters and responses, with correspondently reduced values for the
predicted uncertainties associated. After being calculated, sensitivities are subse-
quently used for the application of the PM_CMPS methodology, aimed at yielding
best-estimate predicted nominal values and uncertainties for model parameters
and responses. This methodology simultaneously combines all of the available
computed information and experimentally measured data for the counter-flow
cooling tower operating under saturated and unsaturated conditions. The best-
estimate results predicted by the “predictive modeling for coupled multi-physics
systems” (PM_CMPS) methodology reveal that the predicted values of the stan-
dard deviations of the model responses, even those for which no experimental
data have been recorded, are smaller than the smallest value between either the
computed or the measured standard deviations for the respective responses. As a
result of the data assessment, model calibration and model validation procedures
applied, the CTTool code will be validated in this thesis. The CTTool is foreseen
to be part of a facility modeling program suite, which is envisaged to encompass

modules simulating chemical processes and atmospheric transport of pollutants.
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This work is organized as follows: Chapter 2 provides a description of the phys-
ical system simulated, along with presenting the governing equations underlying
the model used in this work for simulating a counter-flow cooling tower operat-
ing under saturated and unsaturated conditions. The three cases and subcases
analyzed in this work and their corresponding mathematical models are hereby
detailed, as well as the new solution scheme implemented and applied to the model
and the accurate steady-state distributions for the model responses. Chapter 3
presents the development of the adjoint sensitivity model for the counter-flow
cooling tower operating under saturated and unsaturated conditions using the
general adjoint sensitivity analysis methodology (ASAM) for nonlinear systems
[1-4]. The mathematical framework of the PM_CMPS [27] is also detailed. Chap-
ter 4 presents the results of applying the ASAM and PM_CMPS methodologies
to all the cases listed in Chapter 2. This thesis concludes with Chapter 5 by
discussing the significance of these predicted results and by indicating possible
further generalizations of the adjoint sensitivity analysis and PM_CMPS method-

ologies.

10



Chapter 2

Description of the system

2.1 Context on cooling towers

An unavoidable necessity of any energy-producing plant housing an industrial
process is to release waste heat into the external environment. The most popular
solution to accomplish this task is through the use of a cooling tower, which can
provide a temperature decrease of the operational fluid of the plant by evapora-
tion and sensible heat transfer. Cooling tower can be generally classified by heat
transfer method in dry cooling towers and wet cooling towers. Dry cooling towers
foresee a physical separation between the working fluid (e.g. water) and the ex-
ternal ambient air; due to the lack of direct contact between the two streams, in
these towers convective heat transfer is the dominating heat exchange mechanic.
Wet cooling towers present no physical barrier between the working fluid and
the ambient air; this allows wet cooling towers to be operated on the principle of
evaporative cooling. According to the different flow regimes in the fill, the cooling
tower can be further divided into cross-flow type (in which the air flow is directed
perpendicular to the water flow, with the induced air moving horizontally while

the water falls vertically) or counter-flow type (in which the air flow is directly

11
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opposite of the water flow).

The amount of thermal energy discharged into the atmosphere can be deter-
mined by making coupled use of a model simulating the cooling tower behavior
and experimental measurements of the quantities representing the external con-
ditions, such as outlet air temperature, outlet water temperature and outlet air
relative humidity. In the case of a thermal imagery-based cooling tower model,
an inner model and an outer model are necessary in order to fulfil the need to
relate a remotely measured cooling tower throat or area-weighted temperature
to a cooling water inlet temperature. The inner model has the aim of quanti-
fying the water temperature decrease in relation to the inlet water temperature
and air temperature and humidity, while the outer model addresses iteratively
the inlet water temperature using the remotely measured throat or area-weighted
temperature in order to match the desired temperature value.

The cooling tower model analyzed and studied in this work has been developed
by Savannah River National Laboratory (SRNL), implemented in the “CTTool”
system code and presented in [26]. The “CTTool” code simulates steady-state
thermal performance for both cross-flow and counter-flow wet cooling towers. The
needed inputs are the water temperature and mass flow rate at the inlet of the
cooling tower and the temperature and humidity ratio of the external air at the
inlet of the cooling tower; the computed responses are the exhaust air temperature
and relative humidity, the outlet water temperature and the outlet water mass
flow rate. If the cooling tower fans are on, the mass flow rate of water and air is
known, and the system is referred to as a mechanical draft cooling tower. If the
fans are off - and the air mass flow rate becomes therefore an additional unknown
- an additional mechanical energy equation is instead used to solve for the mass
flow rate of air through the cooling tower, with the system being operated as a

natural draft/wind aided cooling tower.

12



CHAPTER 2. DESCRIPTION OF THE SYSTEM
2.2 Description of the cooling tower model

The counter-flow cooling tower considered in this work has been originally
developed in [26] and has been thoroughly described in [28], from which Figures
2.1 - 2.3 have been taken. Natural draft air enters the tower through the “rain
section” above the water basin, passes through the fill section and the drift elim-
inator, and exits the tower at the top through an exhaust comprising a fan. Hot
water flows downward, entering the tower above the fill section and being sprayed

over the fill section, with the result of creating a uniform film flow through the

fill.

) «— Water in (m Tw,in)

w,in’

Spray Zone

Fill Section

;- Tn(=Ty)
< Air in a)i",mu,

: P | €— 2
|1 Rain:Seetion: i atm

w w

| .
| Water Basin — 10— Water out (m(”l),T(I +l))
|

Figure 2.1: Flow through a counter-flow cooling tower
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At the interface between water and air phenomena of both heat and mass
transfer occur; these processes are mostly occurring in the fill section. The drift
eliminator is aimed to retain water droplets from the air flow; just below the fill
section, water droplets fall into a collection basin, located at the bottom of the
cooling tower.

The mathematical quantification of the heat and mass transfer processes oc-
curring in the counter-flow cooling tower of interest is accomplished by solving
the following balance equations: (A) liquid continuity; (B) liquid energy balance;
(C) water vapor continuity; (D) air/water vapor energy balance; (E) mechanical
energy balance. In deriving these equations, several assumptions have been made,

namely:

1. air and water stream temperatures are uniform at any cross section;
2. the cross-sectional area of the cooling tower is assumed to be uniform;
3. the heat and mass transfer only occur in the direction normal to flows;

4. the heat and mass transfer through tower walls to the environment is ne-

glected;

5. the heat transfer from the cooling tower fan and motor assembly to the air

is neglected;
6. the air and water vapor is considered a mixture of ideal gasses;

7. the flow between flat plates is saturated through the fill section.

The assumptions listed above have been made by the CTTool code developers
at SRNL, and do not affect the general accuracy of the model. This work addresses
cooling towers of moderate size, for which the contribution of the heat and mass

transfer phenomena occurring in the rain section is negligible. Figure 2.2 shows

14
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how the fill section is nodalized in vertically stacked control volumes. A closer

picture of the heat and mass transfer processes occurring at the free surface

between the water film and the air flow within a control volume is shown in

Figure 2.3.

O, oM m,

T Ml), 00)}

w,in

m

w,in’

) Q) i T Interface #
m T — Yo ——— 1

w
1 1
[,uz([,),rm X CV.#1
[ | 5
CV.#2
I 3
CV.#3
TD D | __ -1
a 7 -
(N,
7,’,0 —— CV. #I1
|: g :| L _ _.h._ —_— 1
CV.#1
—L l_ -~ T _____ I+1
1+1 I+1 —
my™, T T (=T,
I I
[:uz(u)lrz(u)} a)in’ m,
Figure 2.2: Vertically stacked control vol-
umes (¢=1,.,I) constituting the fill sec-
tion of the cooling tower, together with
the symbols denoting forward state func-

tions (mg>,T$)7Ty),w(i),m(l; i= 1,..,1)
and adjoint state functions

(62,79, 78, 00, oy i =1,..1).

15
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Figure 2.3: Heat and mass transfer phenomena oc-
curring between falling water film and rising air in
a typical control volume of the cooling tower fill

section.
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As for the counter-flow cooling tower under saturated condition, the analysis
has been further divided into two subcases, based on the air inlet boundary
conditions at the fill section entrance. The first subcase describes a situation
in which air enters the fill section in unsaturated condition, but it gets saturated
before reaching the outlet of the fill section; in the second subcase air enters the fill
section already saturated, exiting the fill section also saturated. For both subcases,
the outlet air flow from the fill section is saturated; the difference lies in the
inlet air conditions. The measured benchmark data sets for F-area cooling towers
(counter-flow cooling tower, fan-on and fan-off mode) at SRNL [33] also support
such a separation. Those two subcases are treated separately for the mathematical
model and the adjoint sensitivity model, since the governing equations for the two

subcases are different, as described in the following.

2.3 Governing equations of the mathematical

models and cases selected

This work aims to investigate the behavior of the cooling tower in the regime
of the normally occurring operating conditions. The cases of interest have been

divided depending on:
1. the air condition (saturated or unsaturated) at the inlet of the cooling tower;

2. the air condition (saturated or unsaturated) at the outlet of the cooling

tower;
These criteria led to the following cases:

e Case 1: the cooling tower is operated in fan-off mode (natural draft) and

the outlet air is in saturated conditions; this case is split into two subcases
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according to the inlet air conditions:

— Subcase I: the inlet air is in unsaturated conditions; this means that

unsaturated inlet air becomes saturated at a certain control volume of
the fill section along the height of the cooling tower. This subcase will

be referred to as case 1a;

— Subcase II: the inlet air is in saturated conditions: in this subcase,

air is in saturated condition from the inlet through the outlet of the fill
section, i.e., air is saturated in all the 49 control volumes. This subcase

will be referred to as case 1b.

e Case 2: the cooling tower is operated in fan-off mode (natural draft) and
the outlet air is in unsaturated conditions; in this case, it is only possible
for inlet air to be in unsaturated conditions as well, hence there is no need

for subcases.

The most general case in terms of the governing equations underlying the
model is case la, in which the air saturation point is located somewhere inside
the cooling tower; mathematically speaking case 1b and case 2 are particular
cases of case la, in which the air saturation point is located, on the air path,
outside of the cooling tower, respectively before the inlet and after the outlet of

the cooling tower itself.

2.3.1 Mathematical Model for Case 1a: Natural Draft Cool-
ing Tower operated in Saturated Outlet Air Condi-

tion, with Inlet Air Unsaturated

In this subcase, unsaturated inlet air becomes saturated at a certain control

volume of the fill section. Assuming air gets saturated at the exit of the K™
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control volume, where 1 < K < [, then in control volumes between #1 to #K
air is in saturated condition; in control volumes between #K + 1 to #[ air is in
unsaturated condition. Note that the flow direction of air is upward from the #1
control volume to the #1 control volume, as illustrated in Figure 2.2.

In the natural draft /wind-aided mode, the mass flowrate of dry air is unknown.
With the fan off and hot water flowing through the cooling tower, air will continue
to flow through the tower due to buoyancy. Wind pressure at the air inlet to the
cooling tower will also enhance air flow through the tower. The air flowrate is
determined from the overall mechanical energy equation for the dry air flow. The
state functions underlying the cooling tower model (cf. Figures 2.1 - 2.3) are as

follows:

1. the water mass flow rates, denoted as mq(,f) (1 =2,...,50), at the exit of each

control volume, 7, along the height of the fill section of the cooling tower;

2. the water temperatures, denoted as T (1 = 2,...,50), at the exit of each

control volume, 7,along the height of the fill section of the cooling tower;

3. the air temperatures, denoted as Ta(i) (1 = 1,...,49), at the exit of each

control volume, 7, along the height of the fill section of the cooling tower;

4. the humidity ratios, denoted as w (i = 1,...,49), at the exit of each control

volume, 7, along the height of the fill section of the cooling tower;

5. the air mass flow rate, denoted as m,, constant along the height of the fill

section of the cooling tower.

It is convenient to consider the above state functions to be components of the

following (column) vectors:

w w

m, = [m 2), ...,m(”l)r, T, = [T(2), ...,T(Hl)]T,
‘ " (2.1)
T, = [T(l),...,T(I)]T, w= [w(l),...,w(l)r, Mg
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In this work, the dagger () will be used to denote “transposition”, and all
vectors will be considered to be column vectors. The governing conservation equa-
tions within the total of I = 49 control volumes represented in Figure 2.2 are as

follows [26]:

A. Liquid continuity equations:

(i) Control Volume i =1:

N (my, Ty, Tay w, mg; 00) £ m® —my i

M (e, o) [P2 (T ,a) P (T),a) (2.2)
A @ - O =0
R TS T
(i) Control Volumes i =2, ... K :
N (my, Ty, Ty w, mg; @) 2 mlD — mf)
M (my,a) [PEV (T80, 0) PR (T, a) (2:3)
+—=" — : =0

R quH_l) Téz)
where K is the control volume at which its outlet air is saturated.

(iii) Control Volumesi =K +1, ..., [ —1:

N (M, Ty, T, w, mg; a) 2 miD —

(i+1) ((i+1) ' 9.4
LM (me, ) s (Tw ’O‘> W Patm —0 >

R TQE]’L'+1) TCEZ) (0622 + w(l))

(iv) Control Volume i =1 :
Nl(I) (rnw7 Ty, Ty, w, myg; a) 42 mg+1) _ mg)
(I+1) ((I+1) 95
Vi [P (100) g, ]9
T (I+1) =0 =0
R T 7" (0.622 + wD)
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B. Liquid energy balance equations:

(i) Control Volume i =1 :

NQ(I) (mw7 Ty, Ty, w,myg; a) £ mw,inhf (Tw,ina OC)

— (TP = TO) H (mg, @) — mPhP (TP, ) (2.6)

(i) Control Volumesi=2, ..., [ —1:
Nz(i) (my,, Ty, Ty, w, mg; ) 2 mg)h?) (TS), a)
_ (TS+1) _ T(i)) H (mg, o) — m(i+1)h§}'+1) (TSJrl)’ a) (2.7)

a w

— (M) = mGV) BRI (TG @) = 0

w

(111) Control Volume i = I :
NQ(I) (mun Tw> Taa W, Mg, a) L m(I)hSCI) (7115)1)7 a)
_ (Té}lﬂ) — Tél)) H (ma, cx) — m(”l)hgf“) (Tg*l), a) 2.8)

— (m® — m{+V) R (T ) =

w g,w w

C. Water vapor continuity equations:

(1) Control Volume i =1 :

N?El) (mwa Twa Taa W, Mg; a) = (JJ(2) — w(l) + w =0 (29)
Mg
(1) Control Volumesi =2, ..., [ —1:
, , , (@ _ . @+1)
N (M, Toy, Tay w, mg; 00) 2 W) — 0 4 % —0
ma
(2.10)
(11i) Control Volume i =1 :
(n _ . I+1)
Nél) (M, Ty, Ty, w, My @) = wipy, — w4 Mw | Wrw =0 (2.11)
Mg
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D. Air/water vapor energy balance equations:

(1) Control Volume i =1 :

T 4+ 973.15
N{Y (m,, Ty, Ty w, my; ) 2 (T2 — TO) 0 <+— o

2 Y

(i) Control Volumes i =2, ..., I —1:

p

Z. . o [T 427315
Nzi ) (mwa Twa Tm W, Mg; a) = (Ta(lJrl) - Ta(Z)) C(Z) (+—7 a)

+ W DRI (T o) = 0
(2.13)

(111) Control Volume i =1 :

2 Y

T 4927315
Nf) (M, Ty, T, w0, ma; @) = (Ta,m — T(I)) Cp(l) <+— «

(TSJ*” - Té”) H (mq, a)

4|

—w DD (T, &) +

a

(mg) _ mgﬂ)) hg:urn <T15)1+1), a)

_l’_
4]

+ winhg,a (Ta,ina a) =0
(2.14)
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E. Mechanical energy equation:

1 1 1 k
N, mw,TwaTauw7ma;a S |: ( _ + sum>
’ ( ) 2p <T;fdb7 a) Aout(a)2 Am(a)2 Afill2

X f 96 Lfill (a)
20 (Tiap, @) Re (myg, &) Apyy® Dy,

} el 10 — 92 () p (T, )

V?p (T, @)

5 + Azraingp (Tiap, ) + gp (Tél); a) Azy s (@)

Patm

=0
Rair

+9Az ()

I
1 1 1
+ + E —
. 1 7
275 in 2Tc§ ) — Té)
(2.15)

The components of the vector e, which appears in Eqs. (2.2)-(2.15), are the

model parameters which are referred to as «y, i.e.,

a = (ag,..,ay,) (2.16)

where N, = 47 represents the total number of model parameters. These model
parameters are quantities which have been derived experimentally, and their dis-
tributions are only partially known; the first four moments (mean, variance/co-
variance, skewness, and kurtosis) of these parameter distributions have neverthe-
less been determined, as detailed in Appendix B.

In the original work [26], the solution of Eqgs. (2.2)-(2.15) was achieved by
making use of a two-stage iterative method including an “inner-iteration” which
utilized Newton’s method inside each control volume, coupled with an outer iter-
ation supposed to guarantee the convergence of the whole model. Unfortunately,
this procedure could not achieve convergence for all the data points taken into
consideration; several alternatives from [34] and [35] were therefore analyzed and
tested, and the original solution method in [26] was in the end substituted with
a more accurate and efficient one, based on the joint use of Newton’s method

and the GMRES linear iterative solver for sparse matrices [36] comprised in the
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NSPCG package [35]. The GMRES method selected [36] computes an approxi-

mated solution of the linear system of interest making use of the Arnoldi iteration,

minimizing the norm of the vector of the residuals over a Krylov subspace. More

in detail, the single computational steps are hereby listed:

(a)

(b)

(d)

Egs. (2.2)-(2.15) are written in vector form as

where the following definitions were used:

T
1 I 1 I
N £ (Nf )L NSNS N ),...,N5> ,
(2.18)

u é (mw’ T’LU) Ta7 w) ma)T

Initial solution guess, uy, is set to be the inlet boundary conditions;

Outer iteration loop comprises steps (d) through (g); iterate over these steps

until convergence for n =0,1,2,...,;

Inner iteration loop: for m = 1,2, ..., use the iterative GMRES linear solver
coupled with the Modified Incomplete Cholesky (MIC) preconditioner, to

solve, until convergence, the following system to compute the vector du:

J(u,)éu=—-N(u,), (2.19)

where with n the current outer loop iteration number is denoted, and J (u,,)
indicates the Jacobian matrix of derivatives of Eqs. (2.2)-(2.15) with respect
to the state functions:

A, B, C, D, E
A, B, C;, D; E,
J(uw,) = [A; By C3 Dy Es s (2.20)
A, B, C, D, E,4

A; B; C; Ds Es
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components of this block matrix are detailed in Subsection C.1 of Appendix
C. More in detail, J (u,) is a non-symmetric sparse matrix of order 197 by
197, with 166 nonzero diagonals because of the presence of the column vec-
tors (Eq, ..., E4) and of the row vectors (As, ..., Ds), which are responsible
for 142 diagonals of the Jacobian matrix to contain just one non-zero ele-
ment; this would have led to a massive efficiency loss of the diagonal storage
format, which is the one selected for the GMRES linear solver, with the
“condensed” Jacobian Matrix having dimensions 197 by 166. By producing
the approximation of setting vectors (Eq, ..., Ey) and (As;, ..., D5) to zero the
Jacobian matrix becomes a non-symmetric sparse matrix of order 197 by 197,
with just 14 nonzero diagonals. The non-symmetric diagonal storage format
is used to store the respective 14 nonzero diagonals, so that the “condensed”
Jacobian matrix has dimensions 197 by 14. Since the Jacobian is highly non-
symmetric, the computational cost of the GMRES solver iterations grows as
O(m?), where m is the number of iterations performed within the GMRES
solver. The restart feature allows to configure the GMRES solver in order
to reduce this computational cost: for the specific application, an optimized
value of 10 is chosen for the restart frequency. The convergence of the GM-
RES solver can be sped up by tuning the values of the parameters OMEGA
and LVFILL [35] in the modified incomplete factorization methods for the
MIC preconditioner; for the application of interest, the chosen optimal values
were: OMEGA = 0.000000001 and LVFILL = 1. The sparse GMRES solver
does not perform an internal update of the Jacobian matrix. The following

criterion is used to test the default convergence of GMRES [35],

(3m, 5m) 2
[<5u<m‘>,5u<m_>> << (221)

where z(™ is used to indicate the pseudo-residual at m'-iteration of the
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GMRES solver, du'™ is the solution of Eq. (2.19) at m"-iteration, and ¢

denotes the stopping test value for the GMRES solver;

(e) Set

u,;1 =u, +du (2.22)

where n is the number of the current outer loop iteration, and update the

Jacobian;

(f) The outer loop convergence has to be tested until the solution error is less
than a specified maximum value. For the solution of Egs. (2.2)-(2.15), the

following maximum error criterion has been used:

smy) ’(mff) ‘6T£i) 5@
error = max ‘ RO | w(.) |, [9rma| < 1079 (2.23)
May T T wl My

(g) Set n =n+ 1 and return to step (d).

For all the 377 saturated benchmark data sets taken into consideration for
case la, the above strategy for the solution of Eqs. (2.2)-(2.15) has reached con-
vergence.

As mentioned above and vastly reported in Appendix A, each of these data
sets comprises measurements of the following quantities: (i) outlet air temperature
measured with the “Tidbit” sensor; (ii) outlet air temperature measured with the
“Hobo” sensor; (iii) outlet water temperature; (iv) outlet air relative humidity.
For each of the 377 benchmark data sets, the outer loop iterations detailed above
(i.e., steps (c) through (g)) reaches convergence in 4 iterations; for each outer
loop iteration, the GMRES solver needs 12 iterations for solving Eq. (2.19). The

4

solution accuracy is tested through a “zero-to-zero” verification, which yields an

error of the order of 107°.
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Based on the above-mentioned measured quantities comprised in the bench-

mark data sets, the quantities computed by solving the governing system are:

T
(a) the vector m,, = [m,(f), ...,mgﬂ)} of water mass flow rates at the exit of

each control volume i, (i =1, ...,49);

T
(b) the vector T, = [Tg) -~ Té,”l)} of water temperatures at the exit of each

control volume i, (i = 1,...,49);

T
(c) the vector T, = [Tél), T } of air temperatures at the exit of each control

volume i, (i = 1,...,49);

(d) the vector RH £ [RH(U, e RH(I)}T, having as components the air relative

humidity at the exit of each control volume i, (i =1, ...,49);

(e) the scalar m,, representing the air mass flow rate along the height of the

cooling tower.

It is worth specifying that the water mass flow rates mg), the water temper-
atures quf), the air temperatures Téi) and the air mass flow rate m, are obtained
directly as the solutions of Egs. (2.2)-(2.15); the air relative humidity value, RH®,
is calculated instead, for each control volume, by means of the following expres-
sion:

W(“Patm

P, (09, (s )
¥X100:+—26f2><100 (2.24)
va (TCSZ)7 a) (€a0+Tz§i)) '

The nominal values of the model parameters (), used in solving Egs. (2.2)-

RHY =

(2.15), are listed in Table B.1 of Subsection B.1.1, Appendix B. It is important
to note that the nominal values for the first five parameters «; through as (i.e.,
the dry bulb air temperature, dew point temperature, inlet water temperature,
atmospheric pressure and wind speed) are obtained through a statistic mean of

the values of the respective quantities in the 377 saturated data sets which fall in
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case la. This solution strategy with Eqs. (2.17) through (2.23) has been applied
to cases la, 1b and 2, i.e. all the cases in which the cooling tower is operated in

natural draft mode.

QB = 0w N

LWL W N R
® RV o WS

&~

Fill section control volume interface #
2
£

Fill section control volume interface #

3
=)

7 438 43.9 44 44.1 2

13 . 96 2965 297 2975 298 2985 299
m® [ kg/s] T [K]
(a) (b)
1 1
4 4
7 7

Fill section control volume interface #
N

Fill section control volume interface #
N
(=]
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Figure 2.4: Bar plots of the state functions for (a) mg), (i = 2,..,50); (b) Tlg,i), (i = 2,...,50); (c) Téi),
(i=1,...,49); (d) RH®, (i =1,...,49) at the exit of each control volume along the height of the fill section of

the cooling tower (for case la: fan off, saturated outlet air condition, with inlet air unsaturated).

The bar plots presented above in Figure 2.4 display the respective values of

the water mass flow rates mg), the water temperatures Tg), the air temperatures
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Téi), and the air relative humidity, RH®, at the exit of each of the 49 control
volumes.

As shown in Figure 2.4, water mass flow rate mY decreases around 0.10 kg/s
along the height of the fill section, from 44.021 kg/s at the inlet to 43.914 kg/s
at the outlet; water temperature T, ) decreases around 1.9 K, from 298.77 K at
the inlet to 296.86 K at the outlet; air temperature 7T; a(i)increases around 4.38 K,
from 294.03 K at the inlet to 298.41 K at the outlet; and the air relative humidity
RH%increases around 3.32%, from 96.78% at the inlet to 100.11% at the outlet.
It is worth noting that the increase and decrease of the responses of interest are
nonlinear along the height of the fill section. Air becomes saturated at the exit
of the 23" control volume, as shown in Figure 2.4(d). Thus air is in unsaturated
condition from the inlet of the fill section (i.e., the 49" control volume) to the
24" control volume; it is in saturated condition from the 23"¢ control volume to

the outlet of the fill section (i.e., the 15 control volume).

2.3.2 Mathematical Model for Case 1b: Natural Draft Cool-
ing Tower operated in Saturated Outlet Air Condi-

tion, with Inlet Air Saturated

In this subcase, air is in saturated condition from the inlet through the outlet
of the fill section, i.e., air is saturated in all the 49 control volumes. The state
functions for the water mass flow rates m\ (1 =2,...,50), the water temperatures
T (1 = 2,...,50), the air temperatures T (1 = 1,...,49), the humidity ratios
w® (i =1,...,49), and the air mass flow rate are defined the same way as in case
la, as described in Subsection 2.3.1.

The governing conservation equations within the total of =49 control volumes

represented in Figure 2.2 are the following [26]:
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A. Liquid continuilty equations:

(i) Control Volume i =1 :

Nl(l) (mwv va Tm W, Myq; a) £ m(2) — Muy,in

o [P (0) PE()] OB
5 @ @ =0
R TS T

(i1) Control Volumes i =2, ... , 1 —1:

N (my, Ty, Tq, w, mg; a) 2 mD —

(i+1) (i+1) (4) (4) 2.26
M) [P (Ba) PO (T00)] (220
7 75 |

(111) Control Volume i =1 :

NI(I) (mw’ Twa Ta7w7ma; a) A mg-ﬁ-l) _ m(l)

M (ma, o) Pyt (T&’“),a) P (Té”,a) (2.27)
= 70 - g =0

B. Liquid energy balance equations:

(i) Control Volume i =1 :

N2(1) (mUH TUM Tm W, Myq; Ol) = mw,inhf (Tw,in7 a)

— (19 = T) H (ma, ) = mPn (T, ) (2.28)

w w

(i) Control Volumesi=2, ..., I —1:

N (1, T, Ty w0 @) 2 m@1 (T, @)

_ (TSH) — TO) H (m,, o) — mfjﬂ)hgfﬂ) (TG, ) (2.29)

a
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(111) Control Volume i =1 :

N§" (1, Ty, Ty 0, g3 ) £ m&Pth) (TP, )

w

a

— (T — TDY H (g, @) — m{IOR (10D 0 (2.30)

_ (m(l) _ m(1+1)> pU+D) (qulntl)’ a) -0

g7w

C. Water vapor continuity equations:

(1) Control Volume i =1:

Nél) (m’uM Twa Ta7(—0, me; a) = w(2) - w(l) + ‘ _’ =0 (231)
Mg
(i) Control Volumesi=2, ..., [ —1:
. , oml) D)
NS(Z) (m’wa T’w7 Ta)w, Mg a) = CL)(Z+1) — w(l) + v | |’w =0
(2.32)
(111) Control Volume i =1 :
() (I+1)
Nigl) (mUM Twa Ta7wa ma; a) é W@'n - W(I) + mw ’ Tr‘Lw = O (233)
Mg

D. Air/water vapor energy balance equations:

(1) Control Volume i =1:

M 197315
D e e T (12 130) (220
(Té?’ _ TCE”) H (mg, @)

M|

—WRD (7O, @) +

||

+ +wPEP (TP a) =0

(2.34)
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(1) Control Volumesi =2, ..., [ —1:

a a p

. . i (T +273.15
N (my, Ty, Ty w, mg; @) 2 (TEHY — T0) 09 <+— a)

(111) Control Volume i =1 :

T 197315
NAEI) (mun Ty, To,w,mg; a) £ (Ta,m — T(I)) Op(l) (‘1'— o

(TJJ*” - Té”) H (mg, @)

I I I
O (110, ) 4 A

(mg) — mgﬂ)) hé{:ﬁl) (TZS,IH), a)
+

+ winhg,a (Ta,im a) =0

|14]
(2.36)
E. Mechanical energy equation:
1 1 1 k
N, mw7Tw7Taaw7ma;a = |: ( - + sum>
> ( ) 2P (T;fdbv a) Aout(a)2 Am<a)2 AfillZ

f 96 Lfill (a)

+ a a Z T ,
20 (Tyap, @) Re (myg, @) AmeDJ [Mma| ma — 97 (@) p (Tian, @)

V?p (T, )

: + Azraingp (Tians @) + gp (T, ) Azss ()
P 1 1 1
atm _
Tghz (@) Rur | 2Toin o7 Y " z; TV !
(2.37)
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The differences between the governing equations for case 1a and case 1b are in
the “liquid continuity equations”. Specifically, for case la, the “liquid continuity
equations” are defined in Egs. (2.2)-(2.5); whereas for case 1b, they are defined
in Egs. (2.25)-(2.27). Other governing equations (i.e., liquid energy balance equa-
tions; water vapor continuity equations; and the air/water vapor energy balance
equations) are the same for both cases la and 1b.

The components of the model parameter vector a, which appears in Egs.
(2.25)-(2.37), are the same as that of case la. The nominal values of the model
parameters (q;) are listed in Table B.9 of Subsection B.1.2, Appendix B. Again,
the nominal values for the first five parameters a; through aj are the statistic
mean values of the respective quantities in the 290 saturated data sets which
are considered in case 1b. These model parameters (i.e., a; through «s) are ex-
perimentally derived quantities, and their complete distributions are not known;
however, the first four moments (means, variance/covariance, skewness, and kur-
tosis) of each of these parameter distributions have been calculated, as detailed
in Appendix B, Subsection B.1.2.

Similarly, the above-mentioned solution strategy, i.e. Newton’s method to-
gether with the GMRES linear iterative solver for sparse matrices, already used
in solving Eqs. (2.2)-(2.15) for case 1la, is also used to solve Eqs. (2.25)-(2.37) for
case 1b. The procedure converged successfully for all the 290 saturated bench-
mark data sets which are considered in case 1b. For each of these benchmark data
sets, the outer loop iterations converge in 4 iterations; for each outer loop iter-
ation, the GMRES solver used for solving Eq. (2.19) converges in 12 iterations.
The “zero-to-zero” verification of the solution accuracy using Eqgs. (2.25) through
(2.37) gives an error of the order of 107°.

The responses of interest such as the water mass flow rates mg), the water

temperatures Tg), the air temperatures Téi), and the air mass flow rate m, are
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obtained directly as the solutions of Eqs. (2.25)-(2.37), while the air relative
humidity, RH®, is computed for each control volume using Eq. (2.24). The bar
plots presented in Figure 2.5 display the respective values of the water mass flow
rates mg), the water temperatures T, ) , the air temperatures T , and the air

relative humidity, RH®, at the exit of each of the 49 control volumes.
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Figure 2.5: Bar plots of the state functions for (a) mgj), (i = 2,..,50); (b) Tls,i), (z = 2,..,50); (c) Téi),
(i=1,...,49); (d) RH®, (i =1,...,49) at the exit of each control volume along the height of the fill section of

the cooling tower (for case 1b: fan off, saturated outlet air condition, with inlet air saturated).
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As shown in the Figure 2.5, water mass flow rate m decreases around 0.11
kg/s along the height of the fill section, from 44.01 kg/s at the inlet to 43.89
kg/s at the outlet; water temperature T; S) decreases around 2.1 K, from 299.54
K at the inlet to 297.46 K at the outlet; air temperature T, éi) increases around
4.7 K, from 294.40 K at the inlet to 299.1 K at the outlet; and the air relative
humidity RH® increases around 0.80%, from 101.58% at the inlet to 102.38% at
the outlet. As shown in Figure 2.5(d), air is in saturated condition from the inlet

through the outlet of the fill section.

2.3.3 Mathematical Model for Case 2: Natural Draft Cool-
ing Tower operated in Unsaturated Outlet Air Con-

dition, with Inlet Air Unsaturated

In this case, air is in unsaturated condition from the inlet through the outlet
of the fill section, i.e., air is unsaturated in all the 49 control volumes.

The state functions for the the water mass flow rates m.” (1 =2,...,50), the
water temperatures T (1 = 2,...,50), the air temperatures T (1 =1,...,49),
the humidity ratios w® (i = 1,...,49), and the mass flow rates are defined the
same way as in cases la and 1b, Sections 2.3.1 and 2.3.2.

The governing conservation equations within the total of [=49 control volumes

represented in Figure 2.2 are the following [26]:

A. Liquid continuity equations:

(1) Control Volume i =1 :

Nl(l) (mwaTwmiwama; a) = mq(f) — Muy,in

@) (7@ 2.38
4 M (m(u a) Fos <Tw ' a) . w(l)Patm 0 ( )
R T T (0.622 + w®)
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(1) Control Volumesi =2, ..., [ —1:
Ny (1, T, T w0, ma; @) £ mG™D — m)
(i+1) (n(it+1) . 2.39
M) [P (1) op,, ] @®
R Tt 7 (0.622 + w)
(111) Control Volume i =1 :
Ny (1, T, Ty w0, m; @) £ mi ) — ml)
(I+1) (p(I+1) 2.40
M (ma’ a) P’US (T’UJ ) a) w(I)Patm ( )
- o I+1 - =0
R TS+ T (0.622 + wD)
B. Liquid energy balance equations:
(i) Control Volume i =1 :
Nz(l) (mwa Twa Ta7 W, Mg, O() é mw,inhf (Tw,in7 a)
— (T = TV) H (ma, @) = mPBP (TP, o) (2.41)
(i) Control Volumesi=2, ..., [ —1:
N (my, Ty, Tayw,ma; @) 2 m@rY (T, @)
— (T —TO) H (mg, @) — m{FORT (T o) (2.42)

— (m® — mDY B (TE) @) = 0

w w g,w w

(111) Control Volume i =1 :
N§D (g, Ty, T 0,5 00) 2 mPY (T, )
— (T — TDY H (mg, o) — mg+1)h;1+1) (T, ) (2.43)

a

_ (mg) _ m([+1)) pU+D) (Tlg)l—i-l), a) -0

g,w
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C. Water vapor continuity equations:

(1) Control Volume i =1 :

NV (1, Ty, Ty w0, mg; @) 2 0@ — 0 4 | _’ —0 (2.44)
Mg
(i1) Control Volumes i =2, ..., I —1:
- o, )
Nél) (mw’ 'I‘w7 Ta,(.d, Mg; a) 4 w(1+1) _ w(l) + | | =0
ma
(2.45)
(111) Control Volume i =1 :
, D — i)
m[l

D. Air/water vapor energy balance equations:

(i) Control Volume i =1 :

a p

7M 197315
wanm;Lmewnn@a>é(Z?”—TM)C“)(——jj———wa

—wWR® (T o) +

g7a

(1) Control Volumesi =2, ..., [ —1:

Z. | o [T 427315
Ni ) (mw7 Twa Ta7 W, Myg; a) < (T(ZJrl) - TOEZ)) C(Z) (+—7 a)

+ WHFDREHD (T ) = 0
(2.48)
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(111) Control Volume i =1 :

9 127315
Nf) (my, Ty, Ty, w, my; @) £ (Ta7m _ Ta(I)) C’p(I) (%7 o

(T&IH) - Ta(l)> H (mg,, )

|4

(mg) _ mgﬂ)) hg{;}rl) (TIS]IH), a)

mh o (1g s =0
+ N + Winhg.a (Toin, )
(2.49)
E. Mechanical energy equation:
1 1 1 k
N, mu}7Tw7Taaw7ma;a é |: ( - + Sum)
3 ) 20 (Tian, 00) \Agus(@)®  Ajp(@)®  Ag®
f 96 Lfill (Oé)

+

a a ~ Z T ,
20 (Tyap, @) Re (m,, cx) AﬁlﬁDJ [mal ma = 97 (@) p(Tiar, €0)

_Vw2P (Ttdba Oé)

9 + Azraingp (T;fdbv ) +gp ( ) AZ:4 2 ( )
P 1 !
atm
+9AZ (a) Rair 2Ta7in T(l 22

(2.50)

The differences with the governing equations of cases la and 1b listed above
are, again, in the “liquid continuity equations”. All the other governing equations
(i.e., liquid energy balance equations; water vapor continuity equations; and the
air/water vapor energy balance equations) remain unaltered.

The components of the model parameter vector o, which appears in Egs.
(2.38)-(2.50), are the same as that of cases la and 1b. The nominal values of the
model parameters (q;) are listed in Table B.15 of Subsection B.1.3, Appendix
B. Again, the nominal values for the first five parameters o1 through as are the
statistic mean values of the respective quantities in the 6717 unsaturated data

sets considered. These model parameters (i.e., a; through «;) are experimentally
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derived quantities, and their complete distributions are not known; however, the
first four moments (means, variance/covariance, skewness, and kurtosis) of each

of these parameter distributions have been calculated, as detailed in Appendix

B, Subsection B.1.3.
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Figure 2.6: Bar plots of the state functions for (a) mg), (i = 2,..,50); (b) TL(UI'), (i = 2,..,50); (c) Téi),

(i=1,...,49); (d) RH®, (i =1,...,49) at the exit of each control volume along the height of the fill section of

the cooling tower (for case 2: fan off, unsaturated air conditions).
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The solution strategy mentioned in Subsection 2.1.1, i.e. Newton’s method
together with the GMRES linear iterative solver for sparse matrices, already
used for cases la and 1b, is also used to solve Eqs. (2.38)-(2.50) for case 2. The
procedure converged successfully for all the 6717 unsaturated benchmark data
sets. The outer loop converge in 4 iterations; for each outer loop iteration, the
GMRES solver used for solving Eq. (2.19) converges in 8 iterations. The “zero-to-
zero” verification of the solution accuracy using Egs. (2.38) through (2.50) gives
an error of the order of 1075, The bar plots presented in Figure 2.6 display the
respective values of the water mass flow rates mgj), the water temperatures qu,i),

the air temperatures Téi), and the air relative humidity, RH®, at the exit of each

of the 49 control volumes.

39



Chapter 3

Description of the mathematical

framework

3.1 Development of the Adjoint Sensitivity Model
with the Adjoint Sensitivity Analysis Method-

ology (ASAM)

This section presents the development of the cooling tower adjoint sensitivity

model, along with the solution method for computing the adjoint state functions.

3.1.1 Development of the Cooling Tower Adjoint Sensi-
tivity Model for Case 1la: Fan Off, Saturated Outlet

Air Conditions, with Inlet Air Unsaturated

The experimentally measured and/or computed responses of case la listed in
Section 2.3.1 can be represented in the functional form R (m,,, Ty, Ty, w, m,; ),

where R denotes a known functional of the model state functions and parame-
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ters. As generally proved in [1], it is possible to compute the sensitivity of this
functional to arbitrary variations in the model parameters o = (day, ..., day,)
and state functions dm,,, 0T, dT,, dw,dm, by means of the response Gateaux
(G-)differential DR (m®, T? TY w° m?: a’; ém,, 0T, dT,,dw, dm,; da), which

is defined as:

DR (mj,, T), T, w°’ mY; a’; dm,, 6T, 0T, dw, dmg; dor) =

d
— [R (m), + edm,,, T}, + €8Ty, T + £6T,, w” + cdw, m) + edmy; &’ + dar) |

d€ e=0

= DRyirect + DRingirect
(3.1)

where the so-called “direct effect” term, DRgj.ect, and the so-called “indirect

effect” term, D R;,q4irect, are respectively defined as follows:

N,
R E S 2
_DRdzrect < <80(Z (5042 (3 )

I
DRindirect = Z <8 aRH) omi + p 8(].’11)5Tg+l> + %Hf) + a—R)éw(i))
= \omi, Tw Ta' ’

N OR
omy

5ma:R1-5mw +R2-5TM+R3-5TG+R4-5w+R5-5ma

(3.3)

where the components of the vectors R, = <r§1), e r§1)> , £ =1,2,3,4 are defined

as follows:
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and where Rj5 is defined as follows:

Rs A OR

& (3.5)

Since Egs. (2.2) - (2.15) relate the model parameters to the model state func-
tions, changes in the model parameters will cause changes in the state variables.
More in detail, it has been found in [1-4] that to first-order in the parameter
variations, the respective change in the state variables values can be obtained by

solving the G-differentiated model equations, namely:

% [N (0’ +edu;a’ + 5501)}&:0 =0. (3.6)

Differentiating as above Eqs. (2.2) through (2.15) yields the following forward

sensitivity system:

A, B, C; Dy E\ (6m, Q
A, By, C;, Dy E, 0T, Q>
A; Bs C3 D3 Ej 0T, [ =1Qs | (3.7)
A, B, C, D, E4 dw Q4
As; B; G5 D5 E; omyg Qs

where the components of the vectors Q, = (qél), - qé”) , £ =1,2,3,4 are defined

as follows:

@) a o 8]\@(“ ,
q, = Z (9% 50éj ; Z:l,...,]; 6217273’4_ (38)
and where (5 is defined as follows:

Nq
Qs = Z (g—f;éaj). (3.9)

j=1
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The system in Eq. (3.7) is referred to as the forward sensitivity system, which
can be generally solved to calculate the variations induced in the state functions
values by any change in the model parameters values. The “indirect effect” term
in Eq. (3.3), DRipgirect, can in turn be obtained by using the solution of Eq. (3.7).
Practically though, since the parameter variations to be considered are usually a
large number, computing D R;,gireet by repeatedly solving Eq. (3.7) happens to
become computationally very expensive.

The application of the Adjoint Sensitivity Analysis Procedure (ASAM) for-
mulated in [1-4] allows to avoid the need for repeatedly solving Eq. (3.7): the
ASAM proceeds by forming the inner-product of Eq. (3.7) with a yet unspec-
ified vector of the form [p,, Tw, Ta, O, ua]T, presenting the same structure as
the vector u £ (my, Ty, Ty, w, ma)T, transposing the resulting scalar equa-
tion and using Eq. (3.3). Furthermore, the procedure requires that the vector
}T

[y, Tw, Ta, O, l1g)' satisfies the following adjoint sensitivity system:

Al AL Al AL ALY (n, R,
B! B! B! Bl B! ||, R,
ci cf ¢l ¢l ct||r.|=|Rs|; (3.10)
D! DI D! D! DI o R,
El E} E} E| El/ \ 1 R

it therefore ultimately follows that the “indirect effect” term can be expressed as:
DRindi'rect = Ky Ql + Ty Q2 +Ta - Q?) +o- Q4 + Ha - Q5 (311)

The system in Eq. (3.10) is called the adjoint sensitivity system, which - no-
tably - is independent of parameter variations. This means, as already mentioned

before, that the adjoint sensitivity system needs to be solved just once to allow
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computing the selected adjoint functions [p,,, Tw, Ta, O, ua]T. The adjoint func-
tions are then used to compute D R;,girect, in an efficient and exact way, by using
Eq. (3.11).

In order to provide an illustrative example of computing the response sensitiv-
ities through the adjoint sensitivity system, let’s assume that the model response
of interest is the air relative humidity, RH®, in a generic control volume i, as
in Eq. (2.24). For this model response, the “direct effect” term, indicated as

D[RH®Y] oo 18 directly obtained in the form:

, 0 (RHW) 0 (RH®™) 0 (RH®)
D[RH®] =" 2 (§P.)+——2L(5 S S A )
[ }dzrect apatm ( t ) T aaO ( aO) + aal ( a1)7
1=1,..., 1,
(3.12)
where:
o (RH® o P, (w®, 0.622
(RHY) _ (“Aa)xmo - —a— % 100;
apatm aPatm va <TCEZ)’ a) (0622 + w(z)) eao Tc(ﬁ)
1=1,...,1;
(3.13)
O (RH® o P, (w®, 0.622P,
( ) _ ( . *) x 100| = — e < 100;
Oag Oao | p,, (Té”,a) (0.622 + wd) e 70
1=1,...,1;
(3.14)
d(RH®Y P, (w®, 622P, —1
( ):i (w'a) x 100 = — 0.6 atm+a1 (i)><100;
dar dar | p, (T, ) (0.622 + w) e 77 Ta
1=1,..,1
(3.15)
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On the other side, the “indirect effect” term, indicated as D [RH (i)] is

indirect’

promptly obtained in the form:

. 0 (RH®) 0 (RH®) .
(i _ G sy SN sy
D[RH ]indirect Y0 (0w') + EYh0 (07;"); i=1,..1; (3.16)
where:
O(RHY) 9 | P, (w9, «) ol - 100 0P, (v, )
0 T30 | o (T;” a) x ey (Téi) a) B
’ ’ (3.17)
_ 0'622]3“”; o x 1005 =1,
(0.622 + w®)?e 77
O(RHY) o | P, (W, ) 100
ort o1 | p, (Té“, a)
. 0 1
_ (i) 3.18
R ren

0.622P,;, ,
— i D100, i=1,..,1.

. -‘r% i 2
(0.622 + w@)e " 7 [Ta( )}

Dimensional analysis allows to determine the units of the adjoint functions
from Eq. (3.11). More in detail, the units for the adjoint functions must satisfy

the following relations:

o1 Bl ey Bl ey Bl ey Bl R
[Iuw} [N1]7 [ w } [N2]7 [ a } [N3]7 [ } [de, [Ma] [NS]
(3.19)

where [R] indicates the unit of the response R, while the units for the respective

governing equations are the following:

M= =L = NI- s V= (20)
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Table 3.1 below lists the units of the adjoint functions for five responses of
interest: R & Tél), R2 TIEFO), R2RHW R = mq(,}r’o) and R £ m,, respectively,
in which, TV denotes exit air temperature; T&BO) denotes exit water temperature;
RH® denotes exit air relative humidity; m$E” denotes exit water mass flow rate;

and m, denotes air mass flow rate.

|:7-15)i):| [Téi)} [0] (4]

Responses {,uw ]

RETO | K/(kg/s) | K/(J)s) | K | K/(J/kg) K/(7/m?)
RETE) | K/(kg/s) | K/(J[s) | K | K/(J/kg) K/(7/m?)
RERH® | (kg/s)™" | (J/9)' | = | (J/ke)™' (7/m*)"
R = m{" - (J/kg)™" | kg/s | (kg/s)/(J/kg) | (kg/s)/(J/m?)

R£m, - (J/kg)™" | kg/s | (kg/s)/(T/kg) | (kg/s)/(]/m?)

Table 3.1: Units of the adjoint functions

for different responses in natural draft cases.

Remembering that the adjoint sensitivity system in Eq. (3.10) is linear in the
adjoint state functions, it follows that numerical methods appropriate for large-
scale sparse linear systems can be used to solve it. Namely, the selected numerical
method was NSPCG, a “Package for Solving Large Sparse Linear Systems by
Various Iterative Methods” [35]; 12 to 18 iterations were sufficient for the solution
of the adjoint system within convergence criterion of ¢ = 10712,

Figures 3.1 through 3.5 below display the bar plots of the adjoint functions
corresponding to the five measured responses of interest, namely: (i) the exit air
temperature R 2 T."; (ii) the outlet (exit) water temperature R = TS (iii)
the exit air humidity ratio R = RHW:; (iv) the outlet (exit) water mass flow rate

R2m$”; and (v) the air mass flow rate R £ m,.
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Figure 3.1: Bar plots of adjoint functions for the response R £ Té” as functions of the height of the cooling

tower fill section: (a) u,, = (M(Ul),

ORI

(

(1)

T ,m,ngflg)), (c) 7o & (Tél),-n,ﬁgw)), (@) o

A

(0(1), . 0(49)), for case la: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R = Tél), the value of p, is —0.24204.
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Figure 3.2: Bar plots of adjoint functions for the response R £ TSO) as functions of the height of the cooling
tower fill section: (a) u,, = (MS),..A,M&?‘”), (b) Tw = (7-1(1)1),.4.,7'5,49)), (c) 7o & (7_[51)’“"7_(549))’ (d) o &

(0(1), . 0(49)), for case la: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R = TS’O), the value of p, is —0.31664.
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Figure 3.3: Bar plots of adjoint functions for the response R £ RH(1) as functions of the height of the cooling
tower fill section: (a) u,, = (MS),..A,M,(;”)), (b) T = (7-1(1)1),.‘.,7—&49)), (c) 7a 2 (7—,51),...,7-549)), (d) o &

(0(1), . 0(49)), for case la: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R £ RHW | the value of 1, is —0.00603.
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Figure 3.4: Bar plots of adjoint functions for the response R £ mS,f’O) as functions of the height of the cooling

tower fill section: (a) u,, = (MS),..A,MS,?‘”), (b) T = (7-1(1)1),.‘.,7—5,49)), (c) 7a 2 (Tél),...,ﬁgw)), (d) o &

(0(1), ey 0(49)), for case la: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R £ m£§°), the value of p, is —0.01765.
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Figure 3.5: Bar plots of adjoint functions for the response R £ m, as functions of the height of the cooling
tower fill section: (a) u,, = (ug,l),...,,ugfg)), (b) Ty = (7-1(1)1),.‘.,7—5,49)), (c) 7a 2 (Tél),...,ﬁgw)), (d) o &

(0(1), . 0(49)), for case la: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R £ my,, the value of p, is 4.4364.

An independent verification of the numerical accuracy of the computed adjoint

functions can be performed by first noting that from Egs. (3.1), (3.2) and (3.11)
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follows that

Na
DR (m), T}, T, ", m); a’; 6my, 0Ty, 6Ty, 6w, 5ma; o) = Y S, 50y,
j=1

(3.21)

where NNV, indicates the total number of model parameters, and where S; repre-
sents the “absolute sensitivity” of the response R with respect to the parameter

o, defined as:

A OR

_87%»

S;

! (4) (4) () (43)
L ON L ON. L ON. L ON, ON;
E : (M(Z) 1 + 7_(z) 2 + T(z) 3 + O(z) 4 ) + [l 5]

v 8aj w aozj a 80@- 80&j (%zj
(3.22)
All the derivatives with respect to the model parameter a; on the right side of

Eq. (3.22) are known quantities. The absolute response sensitivity S; can be also

computed independently, as follows:
1. consider an arbitrarily small perturbation dc; to the model parameter oy;

2. re-compute the perturbed response R (oz? + 5ozj), where oz? denotes the un-

perturbed parameter value;

3. use the finite difference formula

0 - v
GFD o R (a9 + é0;) — R () 4+ O(5ay)? (3.23)

J

(50[3'

4. use the approximate equality between Eqgs. (3.23) and (3.22) to obtain in-

dependently the respective values of the adjoint function(s) being verified.

The independent verification methodology discussed in steps (1)-(4) above will
be vastly illustrated in Section D.1 of Appendix D, where the adjoint functions
depicted in Figures 3.1 - 3.5 will be verified.
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3.1.2 Development of the Cooling Tower Adjoint Sensi-
tivity Model for Case 1b: Fan Off, Saturated Outlet

Air Conditions, with Inlet Air Saturated

The procedure for deriving the cooling tower adjoint sensitivity model for
case 1b is the same as that for case la, described in Section 3.1.1. The responses
of interest can be represented in the functional form R (m,,, Ty, Ty, w,m,; ).
The sensitivity of this response to arbitrary variations in the model parameters
da & (0o, ...,6ay,) and state functions dm,,, 6Ty, 0T,, dw, dm, is defined as

follows:
DR (mj,, T9, T w’ m,; a’; dm,, 6T, 0T,, dw, dmg; dor) =

d
—[R (m}, + edm,,, Ty, + e6Ty, Ty + 6T, w° + cdw, m 4 edmg; @’ + edear) ] _

de =0

= DRdz‘rect + DRindirecb
(3.24)

Na
DRdirect é Z (8_R§az>7 (325>
i=1

where the “direct effect” term, D Ry ect, and the “indirect effect” term, D R;,qirect,

are as follows:

1
Z OR : OR , OR . OR _ ..
DRindirec = < - 5m£ﬁ+1) + - (5T$+1) + —5T(£Z) + _5w(z)>
LS ol ory ™ or D)

w

R
—{—%(Sma:Rl-émw +R2'5Tw—|—R3'5TQ+R4'5W+R5'5TH@,
’ (3.26)

where the components of the vectors R, £ <r§1), e r§1)> , £ =1,2,3,4 are defined

as follows:
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Ma OB wa OR — wa OR  @oa OR .
r = am1(5+1)7 TyW = aqu}i+1)u T's _aTCSZ)u T4 _aw(i)’ ¢ 17-'-7I
(3.27)
and where Rj is defined as follows:
OR
Rs = o (3.28)

Since Egs. (2.25) - (2.37) relate the model parameters to the model state func-
tions, changes in the model parameters will cause changes in the state variables.
More in detail, it has been found in [1-4] that to first-order in the parameter
variations, the respective change in the state variables values can be obtained by
solving the G-differentiated model equations, namely:

4 N (v’ + edu;a’ + )| =0, (3.29)
de e=0

Performing the above differentiation on Egs. (2.25) through (2.37) yields the

following forward sensitivity system:

Al B! ¢! D! E!\ [ém, Q!
A, B, C, Dy, E,| | 6T, Q.
A; B; C; Dy Es||oT. | =1Qs ], (3.30)
A, B, C, Dy E4 dw Q4
A; B; C; D; E;/) \dm, @5

where the components of the vectors Q! £ <q§1), - qy)) and Q, £ (qél), e qél)) ,

¢ =2,3,4 are defined as:

‘ No [ 5\ ()
gL > aof- doy |3 i=1,..,I; £=1,23,4. (3.31)
j=1 /

and where (5 is defined as follows:
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Na
Qs 2 Z (%5aj>. (3.32)
j=1

The vector Q! on the right hand side of Eq. (3.30) is denoted separately
from others to highlight the difference of this source term from the one in case
la. As mentioned earlier in Section 2.3.2; the differences between the governing
equations for cases la and 1b are in the “liquid continuity equations”. Other
governing equations (i.e., liquid energy balance equations; water vapor continuity
equations; the air/water vapor energy balance equations; and the mechanical
energy equation) are the same for both subcases. As a result, the Jacobian matrix
presented in Eq. (3.30), which represents the derivatives of Eqgs. (2.25) - (2.37)
with respect to the state functions, is different from the Jacobian matrix presented
in Eq. (3.7), which represents the derivatives of Egs. (2.2) - (2.15) with respect
to the state functions. More specifically, the Jacobian matrix-components in the
first row, namely Al, B .C! D! and E!, are changed as defined in Section C.2 of
Appendix C. Other matrix-components are kept the same as that in the Jacobian
matrix in Eq. (3.7).

Apply then the ASAM proceeding by forming the inner-product of Eq. (3.30)
with a yet unspecified vector of the form [p,,, Tw, Ta, O, ,ua]T, presenting the same
structure as the vector u = (m,, Ty, Ta,w,ma)T, transposing the resulting
scalar equation and using Eq. (3.26). Furthermore, the procedure requires that

the vector [p,,, Tw, Ta, O, ua}T satisfies the following adjoint sensitivity system:

AT AL AL AL AL (n, R,
B/" B} Bl Bl BI||r. R,
c' ¢l cf cf ci||+r.]=[Rs]|: (3.33)
D" D} Df D] DI || o R,
El' Bl B} E| Ef) \pu Rs
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it ultimately results that the “indirect effect” term can be expressed in the form

DRindirect é My e Q{ + Tw* QQ + Tq - QB +o- Q4 + Ha * QE) (334)

The adjoint sensitivity system, as defined in Eq. (3.33), is independent of
parameter variations. Therefore, the adjoint sensitivity system needs to be solved
only once to compute the adjoint functions [, Tw, Ta, O, ,ua]T. In turn, the
adjoint functions are used to compute D R;,4irect, efficiently and exactly, using
Eq. (3.34). For case 1b, the units of the adjoint functions are listed in Table 3.1.

Since the adjoint sensitivity system represented by Eq. (3.33) is linear in the
adjoint state functions, it can be solved by using numerical methods appropri-
ate for large-scale sparse linear systems. As in case la, it was solved by using
NSPCG, a “Package for Solving Large Sparse Linear Systems by Various Iter-
ative Methods” [35]; 12 to 18 iterations sufficed for solving the adjoint system
within convergence criterion of ¢ = 1072

The bar plots presented in Figures 3.6 - 3.10 display the trend of the adjoint
functions corresponding to the five measured responses of interest, namely: (i) the
exit air temperature R £ T."); (ii) the outlet (exit) water temperature R = TS
(iii) the exit air humidity ratio R £ RHW; (iv) the outlet (exit) water mass flow
rate R 2 mG"); and (v) the air mass flow rate R = m,.

For case 1b, the verification of the adjoint functions depicted in Figures 3.6
- 3.10 has been performed with the same methodology as for case la, and it is

included in Section D.2 of Appendix D.
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Figure 3.6: Bar plots of adjoint functions for the response R £ Tél) as functions of the height of the cooling
tower fill section: (a) u,, = (NS),..A,ufj‘g)), (b) Ty = (7’1(1,1),.4.,7'&49)), (c) 7a 2 (Tél),...,ni“g)), (d) o &

(0(1), . 0(49)), for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R £ Tél), the value of pu, is —0.2627.
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Figure 3.7: Bar plots of adjoint functions for the response R £ TSO) as functions of the height of the cooling

tower fill section: (a) u,, = (MS),..A,;LS?Q)), (b) T4 = (7’15,1),.4.,7'&49)), (c) T7a 2 (Tél),...,ryg)), (d) o &

(0(1), . 0(49)), for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R £ Tfo), the value of p, is —0.30696.
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Figure 3.8: Bar plots of adjoint functions for the response R 2 RH(1) as functions of the height of the cooling
tower fill section: (a) u,, = (MS),..A,;LS?Q)), (b) Ty = (7’15,1),.4.,7'&49)), (c) 7a 2 (Tél),...,fé“g)), (d) o &

(0(1), . 0(49)), for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R £ RHW | the value of 1, is —0.03451.
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Figure 3.9: Bar plots of adjoint functions for the response R = meO) as functions of the height of the cooling

tower fill section: (a) u,, = (MS),..A,;LS?Q)), (b) Ty = (7’15,1),.4.,7'&49)), (c) 7a 2 (Tél),...,fé“g)), (d) o &

(0(1), ey 0(49)), for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R = meUBO), the value of p, is —0.01664.
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Figure 3.10: Bar plots of adjoint functions for the response R £ m, as functions of the height of the cooling
tower fill section: (a) u,, = (NS),..A,ufj‘g)), (b) T4 = (7’1(1,1),.4.,7'&49)), (c) 7a 2 (Tél),...,ni“g)), (d) o &

(0(1), . 0(49)), for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R £ m,, the value of i, is 4.29938.
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3.1.3 Development of the Cooling Tower Adjoint Sensi-
tivity Model for Case 2: Fan Off, Unsaturated Air

Conditions

The development of the cooling tower adjoint sensitivity model follows the
same path as detailed in Section 3.1.1 for case 1a. The total sensitivity of a model
response R (m,, T, T,,w, m,; ), with respect to arbitrary variations in the
model parameters o = (dav, ..., 0y, ) and state functions ém.,,, 0T, 0T,, dw,
dm,, around the nominal values (m®% T% TY w® m?: ) of the parameters and
state functions, is obtained by means of the G-differential of the model response
to these changes. This G-differential is referred to as DR(m?, T® T? w® m?; a;
dm,,, 0T, 0T,, dw, dm,; dar), and introducing the adjoint sensitivity functions it
becomes:

DR (m?u, T?U, Tg, W, mg; a’:ém,,, 0T, 0T, dw, dmy: 5(1)

3.35
N om (3.35)
= Z 50% + DRindirect
i=1 day
where the “indirect effect” term, D R;,girect, 1S again obtained as:
DRindirect é My e Ql + Tw* QQ + Tq - QS +o- Q4 + Ma * Q5 (336)

Performing the differentiation in Eq. (3.29) on Egs. (2.39) - (2.51), and reminding
the differences between the governing equation systems of case la and case 2 (see

Section 2.3.3), the forward sensitivity system for case 2 is as follows:

Al BY' ¢! D{' E') (dm, Qi
A, By, C, Dy E, 0T, Q-
A; B; C3 D3 Es 0T, | =1 Qs |> (3.37)
Ay, By C, Dy E, dw Q.
As Bs; C; D5 E; omyg Qs
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where the components of the vectors QI £ (qgl), . q51)> and Q, & (qél), . q§1)> ,

(= 2,3,4 are defined as:

4 Na aN(z’)
gL > T.jaaj ci=1,...,1; (=1,23,4. (3.38)
j=1 J

and where Q5 is defined as follows:

Na
%2y (g_jofaaj). (3.39)

j=1
The vector Q! on the right hand side of Eq. (3.37) is denoted separately from
others to highlight the difference of this source term from the one in case la. As
mentioned earlier in Section 2.3.3, the differences between the governing equations
for cases 1la and 2 are only in the “liquid continuity equations”. As a result, the
Jacobian matrix presented in Eq. (3.37), which represents the derivatives of Egs.
(2.39) - (2.51) with respect to the state functions, is different from the Jacobian
matrix presented in Eq. (3.7), which represents the derivatives of Egs. (2.2) -
(2.15) with respect to the state functions. More specifically, the Jacobian matrix-
components in the first row, namely Al B/ CI/ DI/ and E!’  are changed
as defined in Section C.3 of Appendix C. Other matrix-components are kept
the same as that in the Jacobian matrix in the RHS of Eq. (3.7). Hence, the
]T

vector [, Tw, Ta, O, lig]' 18 required to be the solution of the following adjoint

sensitivity system:

AT AT AL AL ALY [ R,
B!" Bl B Bl BI|[|~. R,
cim ¢l cf cf ci||+r.]=|Rs]: (3.40)
D" DI Df D DI | o R,
/" E}l El El El) \ 4 Rs
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it ultimately results that the “indirect effect” term can be expressed in the form
DRindirect é lJ'w : {I + Tw* QZ + Tq - Q3 +o- Q4 + Ha - QB (341)

The vectors R, £ <r§1), ...,ré”) , £ =1,2,3,4in Eq. (3.40) comprise the func-

tional derivatives of the model responses with respect to the state functions, i.e.,:

Mma OB wa OR — ha OR @Ha OR .
o= am$+1)7 rym = aTgJ’_l)a T3 _aTa(l)’ Ty _&u(i)’ 17' a['
(3.42)
and where Rj5 is defined as follows:
OR
Rs = - (3.43)

It is worth reminding that the adjoint sensitivity system in Eq. (3.40) is inde-
pendent of parameter variations. This feature allows the selected adjoint functions
[ Tw, Ta, O, ua]T to be computed by solving the adjoint sensitivity system just
once. For case 2, the units of the adjoint functions are the same as that listed
in Table 1. Since the adjoint sensitivity system represented by Eq. (3.40) is lin-
ear in the adjoint state functions, it can be solved by using numerical methods
appropriate for large-scale sparse linear systems. As in case 1, it was solved by
using NSPCG, a “Package for Solving Large Sparse Linear Systems by Various
Iterative Methods” [35]; 12 to 18 iterations sufficed for solving the adjoint system
within convergence criterion of ¢ = 107'2. The bar plots presented in Figures
3.11 - 3.15 display the trend of the adjoint functions corresponding to the five
measured responses of interest, namely: (i) the exit air temperature R £ T, él); (ii)
the outlet (exit) water temperature R £ TS%; (iif) the exit air humidity ratio
R £ RHW; (iv) the outlet (exit) water mass flow rate R = mB”; and (v) the
air mass flow rate R = m,. For case 2, the verification of the adjoint functions
depicted in Figures 3.11 - 3.15 has been performed with the same methodology

as for case la, Section 3.1.1, and it is included in Section D.3 of Appendix D.
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Figure 3.11: Bar plots of adjoint functions for the response R = Tél) as functions of the height of the cooling
tower fill section: (a) u,, = (ug),.“,ugg)), (b) Ty = (7’&1),.4.,7—&49)), (c) 7a 2 (Tél),...,ryg)), (d) o &

(0(1), s 0(49)), for case 2: fan off, unsaturated air conditions.

For the response R = Tél), the value of p, is —0.12651.
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Figure 3.12: Bar plots of adjoint functions for the response R £ T,SJSO) as functions of the height of the cooling
tower fill section: (a) u,, = (ug),.“,ugg)), (b) Ty = (7’15}1),.4.,7—5,49)), (c) 7a 2 (Tél),...,#g)), (d) o &

(0(1), s 0(49)), for case 2: fan off, unsaturated air conditions.

For the response R = Tfo), the value of p, is —0.3771.
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Figure 3.13: Bar plots of adjoint functions for the response R £ RH(1) as functions of the height of the

cooling tower fill section: (a) w,, = (HS),...,pS,?Q)), (b) Ty = (7—1(01),...,71(1,49)), (c) Ta & (7,51), ...,7549)), (d)

o4 (0(1), ey 0(49))7 for case 2: fan off, unsaturated air conditions.

For the response R £ RHW | the value of 1, is —0.00743.
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Figure 3.14: Bar plots of adjoint functions for the response R = mEEO) as functions of the height of the cooling

tower fill section: (a) u,, = (ug),.“,ugg)), (b) Ty = (7’&1),.4.,7—&49)), (c) 7a 2 (Tél),...,ni“g)), (d) o &

(0(1), s 0(49)), for case 2: fan off, unsaturated air conditions.

For the response R = meUBO), the value of p, is —0.0306.
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Figure 3.15: Bar plots of adjoint functions for the response R £ m, as functions of the height of the cooling
tower fill section: (a) u,, = (MS),..A,;LS?Q)), (b) T4 = (7’15,1),.4.,7'&49)), (c) 7a 2 (Tél),...,nﬁ“g)), (d) o &

(0(1), s 0(49)), for case 2: fan off, unsaturated air conditions.

For the response R £ m,, the value of 1, is 5.805.
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3.2 Data assimilation, model calibration and best-
estimate predictions with reduced uncertain-
ties: Predictive Modeling for Coupled Multi-

Physics Systems (PM_CMPS)

In this subsection the mathematical framework of the Predictive Modeling
of Coupled Multi-Physics Systems (PM_CMPS) methodology [21] is described.
The PM_CMPS methodology [21] comprises both the ideas of “forward” and “in-
verse” modeling within a mathematically and conceptually consolidated frame-
work, which includes data assimilation, model calibration and prediction of best-
estimate values for model parameters and responses, with optimized reduced un-
certainties.

In general, a physical system subject in which experimental measurements

can be made can be modeled with the following elements:

A system of linear/nonlinear governing equations relating the system inde-

pendent variables and parameters to the state functions of the system;

(In)equality constraints that bound the range of the system parameters;

e One or more quantities of interest, referred to as system responses, obtained

by solving the mathematical model;

e Experimental values of the system responses, accompanied by their respec-

tive nominal values and uncertainties.

The mathematical framework for the PM_CMPS methodology has been pre-

sented by Cacuci and lonescu-Bujor in [21] for time-dependent systems; in this
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chapter the notation has been simplified to consider only time-independent sys-

tems, since the one system analyzed in this work falls within this category.
Generally, a time-independent physical system will comprise N, not exactly

known model parameters, a,,, referred to as the components of a (column) vector,

a, denoted as:

a={a,n=1,...,N,} (3.44)

The mean values of the model parameters a, are defined as a® = (a,,), while the

covariances between two generic parameters «; and o are denoted as cov (v, a;).

0

The mean values o,

are treated as being known a priori; from that follows that
the vector o, referred to as a® = {a®|n =1,..., N,} is considered to be known
a priori as well. The covariances cov (a;, ;) are also treated as being known a

priori; these covariances are regarded to be the elements of the a priori known

. . Na XN,
parameter covariance matrix, denoted as C&a‘" *) and defined as:

Lo & feov (ai, )]y, = (06 = ) (05 = af)) y e

i,j=1,...,N,

(3.45)

Generally, the model will also comprise N, experimentally measured responses,

r;, regarded as the components of the column vector:

r={ri=1,...,N;} (3.46)

The mean values of the experimentally measured responses, r;, denoted as 7",
as well as the covariances between two measured responses r; and r;, denoted
as <(7‘Z — ) (Tj — 7“;.")>, are regarded to be a priori known. The mean measured

values r]" are organized as the components of the vector r" defined as:

" ={"i=1,...,N}, &), i=1,...,N, (3.47)

(]
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while the covariances ((r; — ") (r; — 7)) of the experimentally measured re-
sponses are treated as being the components of the a priori known measured

. . Ny xN,
covariance matrix, denoted as c ’"), and defined as:

C%YTXNT) £ <(7"z — ) (rj —

ij=1,...,N. (3.48)

Parameters and responses may be also generically correlated to each other; such
correlations are computed through a priori known parameter-response matrices,

denoted as CQJXQXNT), and defined as follows:

CNaxNy) & <(a —a") (r - rm)T> _ [C(NTwa}T (3.49)

ar T

For notation clarity reasons, the size of the vectors and matrices in the follow-
ing will not be shown in the subsequent formulas. In general, a response computed
using the model can depend nonlinearly and implicitly on the model parameters.
Uncertainties due to parameters induce uncertainties in the responses which,
in this case, can be computed deterministically using propagation of moments
method. The computed response is linearized via a functional Taylor-series ex-

pansion around the nominal parameter values o as:

r(a) =R (a’) + S (o — a’) + higher order terms (3.50)

where R (a) represents the vector of computed responses at the nominal param-
eter values a” and S denotes the N, x N, dimensional matrix containing the first

Gateaux derivatives of the computed responses with respect to the parameters:

Ory ., _Or
day dan,
. A . . .
SNrxNa & | o] (3.51)
orny .. Oy
Bal 8aNa
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The expectation value (r) is computed by integrating the expansion of the

responses over the unknown joint probability distribution p (e, r) :

(r) :/D r(a)p(a,r) da (3.52)

where D, is the domain of all a values. Substituting the first-order Taylor ex-

pansion of Eq. (3.76) into Eq. (3.78) yields

Na

(r) :/DQR(aO)p(a,r) da+/

doy;
Da 11:1 “ ao

day,p (a, 1) de (3.53)

The terms independent of ¢ can be pulled out of the integral, to have:

(r) :R(QO)/ p(a,r) da+z

/ da;,p (e, 1) de (3.54)
Dq

The result of the integral in the first term is 1, since p (a,r) is a probability
distribution integrated over the whole domain. The integrand in the second term

is the first central moment, which is zero. The expectation value is therefore:

The computed responses covariance matrix can be calculated as follows:

cem 2 ([r(@) - R (a’)] [r (@) - R (a’)]")
=8 ()] ([a—a"] [a-a"]") [s ()] (3:56)

The application of the maximum entropy algorithm described in [21] to the com-
putational and experimental information listed above yields that the most objec-

tive probability distribution for this information is a multivariate Gaussian of the
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form:
—1Q)
p(z|C)dz = -dz, (3.57)
|27 C|2
where:
Q(z) 2 z'C 'z, —00 < 2 < 00 (3.58)
0
o— o
z 2 , (3.59)
r—r,,
Ca Car
C = ) (3.60)
Cgr CTT

If no specific loss function is provided, the recommended best-estimate mean
vector zBE and its respective best-estimate posterior covariance matrix are usually
computed assuming quadratic loss. The bulk of the contribution in Eq. (3.84) is
extracted by computing it at the point where () attains a minimum subject to
Eq. (3.76). When higher-order terms as well as numerical errors are neglected this

relation can be conveniently written in the form:

Z(a’)z+d =0, (3.61)
where:

d=R(a") —rpy (3.62)

and Z denotes the partitioned matrix:

Z2(ST), (3.63)

where Lis a N, x N, identity matrix. Finding the minimum of @) (z) subject to Eq.

(3.87) is a constrained minimization problem that may be solved by introducing
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Lagrange multipliers A\ to construct an augmented functional:

P(z,\) £ Q(z)+ 2\ [Z (ao) zZ -+ d} = min (3.64)
at
aBE _ o
z=12""2 : (3.65)
B —r,,

The point where the functional P (z,\) reaches its minimum may be found

through the conditions:

V.P(z,)\) =0, V,P(z,)\) =0, atz=z"" (3.66)

The solution to this constrained minimization problem is presented in detail in the
Appendix of [21]. The resulting best-estimate parameters, responses and reduced

uncertainties covariance matrix are listed in the following.

A. Optimally predicted “best-estimate” nominal values, a™¢, for the model

parameters:
= a’ - (Caasia - Coﬂ“) [Drf]il [rc (a07 50) - rm} ) <3'67)
where the matrix D,, is defined as

D, = S:0CoaS!, — S,aCar — Cl ST+ C,,, (3.68)

ar-ro

Nao

and the elements of the matrix SN**Ne are the first-order sensitivities of all

model responses with respect to all model parameters, defined as follows:

87‘1 L. 8T1
da dan,
. A . . .
SNrxNa & | o] (3.69)
oy . Oy
8a1 8aNa
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It is worth noticing that, in case just the first-order sensitivities are being
considered, the first term on the right side of Eq. (3.94) corresponds to the

covariance matrix of the computed responses, C™ . i.e.,
ComP = §,,CuaS!, (3.70)

B. Reduced predicted uncertainties, C?"*?, for the predicted nominal parameter

ax )

values, given by the expression below:
CH = o (Cunly — Car) Do) (CunSly — Co)s (37

C. Optimally predicted “best-estimate” nominal values, r’"*?, for the model re-

sponses, given by the expression below:

red — ¢ (Cl St~ C,,) D] [1¢ (a0, 8°) — ] ; (3.72)

ar-ro

D. Reduced predicted uncertainties, CP ¢, for the predicted nominal parameter

values, given by the expression below:

cret = C,, — (CI,SI, - C,,) D] (CLSI, — C,.)"; (3.73)

ar - ro ar-ro

E. Predicted correlations, CP ¢, between the predicted model parameters and

ar )

responses, given by the expression below:

Cored = Cyp — (CaaSly — Car) D) (CLS1, — C,,) . (3.74)

ar-ro

It is important to notice that in the case of a perfect model (which means

that C,, = 0 and C,, = 0), Egs. (3.70) through (3.100) would yield
apred — a() (375)

and

e =1¢ (a’, 8%) (3.76)
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with all accompanying uncertainties being null (i.e., CFrd = 0, CP'*d = 0,

crred — 0).

ar

Practically, a perfect model would get from the PM_CMPS methodology
predicted values for the parameters and responses that would exactly match
the model original parameters and computed responses values (considered
as perfect); on the other side the experimental data would not influence the
predictions whatsoever (as it is logical, since imperfect measurements could

in no way improve “perfect” model predictions).

On the other hand, if the measurements were perfect, (i.e., C,. = 0 and
C.r = 0), but the model were imperfect, then Egs. (3.70) through (3.100)

would yield

o"* = 0" — C,0ST, [S,0CuaSl] 14 (o) | (3.77)

e —— (3.78)
Cf:ed = 0, Cg,:ed = 07 an;d = Caa - Caasia [Sracaasla} _lsracaa-
(3.79)

In case the measurement were perfect, the PM_CMPS predicted values for the
responses would therefore match the measured values (considered as perfect),
while the model uncertain parameters would be optimized by considering the
respective measurements in order to lead to improved nominal values and

reduced parameters uncertainties.
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Chapter 4

Results

This chapter presents the results stemming from the application of the ASAM
and of the PM_CMPS methodologies described in Chapter 3 to the cooling tower
model of interest. Every case listed in Chapter 2 has been treated separately, to
provide to the reader the numeric results for all the operating conditions analyzed;
a cross-comparison of the most relevant results has been performed and is detailed

in Section 4.2.

4.1 Adjoint Sensitivity Analysis of the cooling

tower cases of interest

As it can be found detailed in Appendix A, there are a total of 8079 measured
benchmark data sets for the cooling tower model with the “fan-off”. Out of the
8079 total data sets, 667 benchmark data sets present outlet air in “saturated
conditions”, falling therefore within case 1. In Appendix A it is shown that these
667 data sets are further separated based on their air inlet boundary conditions

at the fill section entrance. Case la describes a situation in which air enters the
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fill section in unsaturated condition, but it gets saturated before reaching the
outlet of the fill section; in case 1b air enters the fill section already saturated,
exiting the fill section also saturated. For both cases, air exits the fill section
in saturated conditions, and only the inlet air conditions are different. Among
the 667 saturated data sets, 377 of them have unsaturated air inlet boundary
conditions, and therefore are grouped into case la; the other 290 data sets have
saturated air inlet boundary conditions, and therefore are grouped into case 1b.
Out of the 8079 total data sets, 6717 benchmark data sets present outlet air in
unsaturated conditions, and are therefore relevant to case 2.

The nominal values for boundary and atmospheric conditions used for the
sensitivity analysis were obtained, as described in Appendix A, from the statistics
of the aforementioned groups of 377 data sets for case la, 290 data sets for
case 1b and 6717 data sets for case 2. In turn, these “saturated” boundary and
atmospheric conditions were used to obtain the sensitivity results reported, below,
in Subsections 4.1.1 - 4.1.3. Subsections 4.1.1 - 4.1.3 provide the numerical values
and rankings, in descending order, of the relative sensitivities computed using the
adjoint sensitivity analysis methodology for the five model responses Tél), T 5,50),
mq(f O), RH® and m, of case la, case 1b and case 2, respectively.

Note that the relative sensitivity, RS («a;), of a response R («;) to a parameter
a; is defined as RS (o;) £ [dR (o;)/da; | [/ R (o) ]. Thus, the relative sensitivi-
ties are unit-less and are very useful in ranking the sensitivities to highlight their
relative importance for the respective response. A relative sensitivity of 1.00 indi-
cates that a change of 1% in the respective parameter will induce a 1% change in
a response that is linear in the respective sensitivity. The higher the relative sen-

sitivity, the more important the respective parameter to the respective response.
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4.1.1 Adjoint Sensitivity Analysis of Case la: Fan Off,
Saturated Outlet Air Conditions, with Inlet Air Un-

saturated
4.1.1.1 Relative sensitivities of the outlet air temperature, Tél)

The sensitivities of the air outlet temperature with respect to all of the model
parameters for case la have been computed using Eq. (3.22). The numerical
results and ranking of the relative sensitivities, in descending order of their mag-
nitudes, are provided in Table 4.1, below, along with their respective relative

standard deviations.

Table 4.1: Ranked relative sensitivities of the outlet air temperature, Tél), for case la.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (o)

1 Inlet water temperature, Ty in 298.77 K 0.8346 0.47
2 Air temperature (dry bulb), Ty 294.03 K 0.1436 0.61
3 Inlet air temperature, Tq in 294.03 K 0.1429 0.61
4 Pys(T) parameters, ag 25.5943 -0.0231 0.04
5 Pys(T) parameters, a; -5229.89 0.0151 0.08
6 Dew point temperature, Ty, 293.49 K 0.0127 0.55
7 Fill section equivalent diameter, Dy, 0.0381 m -0.0045 1

8 Atmospheric pressure, Pytm 100853 Pa -0.0041 0.28
9 Fan shroud inner diameter, D4y, 4.1 m -0.0031 1
10 Cpa(T) parameters, ag,cpa 1030.5 -0.003 0.03
11 Thermal conductivity of air at T=300 K, kgir 0.02624 W/(m-K) 0.0027 6.04
12 Heat transfer coefficient multiplier, fp¢ 1 0.0027 50
13 Nusselt parameters, ag, Nu 8.235 0.0022 25
14 Wetted fraction of fill surface area, wsq 1 0.0022 0
15 Fill section surface area, Agy s 14221 m? 0.0022 25
16 Wind speed, Vi 1.352 m/s -0.0018 46.15
17 Fill section flow area, Ag;y; 67.29 m? -0.0018 10
18 Water enthalpy h¢(T) parameters, a; ¢ 4186.51 0.0015 0.04
19 Cooling tower deck height above ground, Azgg 10.0 m -0.0014 1
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Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (o)

20 Fill section height, Az g,y 2.013 m 0.0012 1
21 Dynamic viscosity of air at T=300 K, p 1.983-107° kg/(m-s) 0.0012 4.88
22 Fill section frictional loss multiplier, f 4 0.0012 50
23 Inlet water mass flow rate, M in 44.0213 kg/s 0.0011 5
24 Inlet air humidity ratio, win 0.01552 0.00069 8.15
25 Day(T) parameters, a1, gqv 2.65322 0.00067 0.11
26 hg(T) parameters, aog 2005743 -0.00065 0.05
27 Mass transfer coefficient multiplier, fi,: 1 -0.00053 50
28 Day(T) parameters, as gqv -6.1681-10—3 -0.00045 0.37
29 Fan shroud height, Az, 3.0 m -0.00042 1
30 h¢(T) parameters, ags -1143423 -0.00037 0.05
31 Day(T) parameters, ag, dqv 7.06085-10—9 -0.00035 0
32 Sum of loss coefficients above fill, ksym 10 0.0003 50
33 hg (T) parameters, aig4 1815.437 -0.00027 0.19
34 Rain section height, Az,qin 1.633 m 0.00023 1
35 Kinematic viscosity of air at T=300 K, v 1.568-10~° mz/s -0.00018 12.09
36 Prandlt number of air at T=80 °C, P, 0.708 0.00018 0.71
37 Schmidt number, Sc 0.6188 -0.00018 1.19
38 Cpa(T) parameters, a1,cpa -0.19975 0.00017 1
39 Basin section height, Az 1.168 m 0.00016 1
40 Day(T) parameters, a3 qqv 6.55265-10~6 0.00014 0.58
41 Cpa(T) parameters, a2, cpa 3.9734-10—4 -0.00009 0.84
42 Drift eliminator thickness, Azg, 0.1524 m 0.00008 1
43 Cooling tower deck width in x-dir, Wy, 8.5 m 0.00005 1
44 Cooling tower deck width in y-dir, Wy, 8.5 m 0.00005 1
45 Nusselt parameters, a1, Nu 0.0031498 0.0011 31.75
46 Nusselt parameters, a2 N 0.9902987 0.00008 33.02
47 Nusselt parameters, a3 N 0.023 0 38.26

As the results in Table 4.1 indicate, the first 3 parameters (i.e., T3 in, Ty and
T,.in) have relative sensitivities between ca. 15% and 83%, and are therefore the
most important for the air outlet temperature response, Ta(l). The largest sensi-

tivity has a value ca. 83%, which means that a 1% change in T,, ;, would induce a
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0.83% change in TV, The next three parameters (i.e., ag, a; and Ty,) have rela-

tive sensitivities between 1% and 3%, and are therefore somewhat important. The
remaining 41 parameters are relatively unimportant for this response, having rel-
ative sensitivities smaller than 1% of the largest relative sensitivity (with respect
to T,,n) for this response. Positive sensitivities imply that a positive change in
the respective parameter would cause an increase in the response, while negative
sensitivities imply that a positive change in the respective parameter would cause

a decrease in the response.

4.1.1.2 Relative sensitivities of the outlet water temperature, Téf(”

The results and ranking of the relative sensitivities of the outlet water tem-
perature with respect to the most important 9 parameters for this response are
listed in Table 4.2. The largest sensitivity of T, 50 s to the parameter T, ;,, and
has the value of 0.4856; this means that a 1% increase in T}, ;, would induce a
0.4856% increase in T, The sensitivities to the remaining 38 model parameters
have not been listed since they are smaller than 1% of the largest sensitivity (with

respect to T}, ;,) for this response.

Table 4.2: Ranked relative sensitivities of the outlet water temperature, TSO), for case la.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
" dev. (%)
RS (o)
1 Inlet water temperature, Ty, in 298.77 K 0.4856 0.47
2 Inlet air temperature, Ty ;n 294.03 K 0.246 0.61
3 Air temperature (dry bulb), Ty, 294.03 K 0.2434 0.61
4 Dew point temperature, Ty, 293.49 K 0.2074 0.55
5 PVS(T) parameters, ag 25.5943 -0.114 0.04
6 Pvs(T) parameters, a1 -5229.89 0.0742 0.08
7 Inlet air humidity ratio, win 0.01552 0.0114 8.15
8 Water enthalpy h¢(T) parameters, a;s 4186.51 0.0079 0.04
9 Inlet water mass flow rate, M in 44.01 kg/s 0.0058 5

82



CHAPTER 4. RESULTS

4.1.1.3 Relative sensitivities of the outlet water mass flow rate, mEEO)

The results and ranking of the relative sensitivities of the outlet water mass
flow rate with respect to the most important 7 parameters for this response are
listed in Table 4.3. This response is most sensitive to my, ;, (a 1% increase in this
parameter would cause a 1.00% increase in the response) and the second largest
sensitivity is to the parameter T, ;, (a 1% increase in this parameter would cause
a 0.198% decrease in the response). The sensitivities to the remaining 40 model
parameters have not been listed since they are smaller than 1% of the largest

sensitivity (with respect to my,,) for this response.

Table 4.3: Ranked relative sensitivities of the outlet water temperature, Téfo), for case la.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
" dev. (%)
RS (o)
1 Inlet water mass flow rate, M in 44.0213 kg/s 1.0021 5
2 Inlet water temperature, Toy, in 298.77 K -0.1983 0.47
3 Dew point temperature, Ty, 293.49 K 0.1069 0.55
4 Pys(T) parameters, ag 25.5943 -0.0593 0.04
5 Inlet air temperature, Tq in 294.03 K 0.0557 0.61
6 Air temperature (dry bulb), Ty 294.03 K 0.0543 0.61
7 Pys(T) parameters, a; -5229.89 0.0386 0.08

4.1.1.4 Relative sensitivities of the outlet air relative humidity, RH "

The results and ranking of the relative sensitivities of the outlet air relative
humidity with respect to the most important 19 parameters for this response are
listed in Table 4.4. The first three sensitivities of this response are quite large.
In particular, an increase of 1% in T, ,, or Ty would cause a decrease in the
response of 2.11% or 1.95%, respectively. On the other hand, an increase of 1%

in Ty, would cause an increase of 1.58% in the response. The sensitivities to the
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remaining 28 model parameters have not been listed since they are smaller than

1% of the largest sensitivity (with respect to Ty, ;,) for this response.

Table 4.4: Ranked relative sensitivities of the outlet air relative humidity, RH () for case 1a.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (o)

1 Inlet air temperature, Ty ;n 294.03 K -2.1108 0.61
2 Air temperature (dry bulb), Ty 294.03 K -1.9468 0.61
3 Dew point temperature, Ty, 293.49 K 1.5759 0.55
4 Inlet water temperature, Toy, in 298.77 K 0.3398 0.47
5 Dav(T) parameters, a1 dqu 2.653 -0.1559 0.11
6 Atmospheric pressure, Pytm 100853 Pa 0.1276 0.28
7 Mass transfer coefficient multiplier, fi,: 1 0.1239 50
8 Thermal conductivity of air at T=300 K, kg 0.02624 W/(m-K) -0.1238 6.04
9 Heat transfer coefficient multiplier, f 1 -0.1238 50
10 Cpa(T) parameters, ag,cpa 1030.5 0.1231 0.03
11 Dayv(T) parameters, as qqo -6.1681-10~3 0.1066 0.37
12 Inlet air humidity ratio, win 0.01552 0.0863 8.15
13 Pvs(T) parameters, ag 25.5943 -0.0847 0.04
14 Day(T) parameters, ag dqv 7.06085-10—9 0.0826 0
15 Pys(T) parameters, a1 -5229.89 0.071 0.08
16 Prandlt number of air at T=80 °C, P, 0.708 -0.0413 0.71
17 Kinematic viscosity of air at T=300 K, v 1.568:107% m? /s 0.0413 12.09
18 Schmidt number, Sc 0.6188 0.0413 1.19
19 Day(T) parameters, a3 qqv 6.55265-10~6 -0.0333 0.58

4.1.1.5 Relative sensitivities of the air mass flow rate, m,

The results and ranking of the relative sensitivities of the outlet air relative
humidity with respect to the most important 15 parameters for this response are
listed in Table 4.5. The first three sensitivities of this response are very large
(relative sensitivities much larger than unity are customarily considered to be

very significant). In particular, an increase of 1% in Ty, or T, ;, would cause a
) )
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decrease in the response of 24.48% or 24.45%, respectively. On the other hand,

an increase of 1% in T, ;, would cause an increase of 22.21% in the response.

The sensitivities to the remaining 32 model parameters have not been listed since

they are smaller than 1% of the largest sensitivity (with respect to Ty,) for this

response.
Table 4.5: Ranked relative sensitivities of the air mass flow rate, m,, for case la.
Rel.
Rank Rel. std.
Parameter (o) Nominal Value Sens.
# dev. (%)
RS (a;)

1 Air temperature (dry bulb), Ty, 294.03 K -24.478 0.61
2 Inlet air temperature, Ty ;n 294.03 K -24.456 0.61
3 Inlet water temperature, Toy in 298.77 K 22.209 0.47
4 Atmospheric pressure, Pytm 100853 Pa 1.2204 0.28
5 Fan shroud inner diameter, Dyqp, 4.1 m 0.8567 1

6 Pys(T) parameters, ag 25.5943 -0.8069 0.04
7 Dew point temperature, Ty, 293.49 K 0.5673 0.55
8 Fill section equivalent diameter, Dy, 0.0381 m 0.5568 1

9 Pvs(T) parameters, a1 -5229.89 0.5259 0.08
10 Wind speed, Vi, 1.352 m/s 0.4825 46.15
11 Fill section flow area, Ag;y; 67.29 m? 0.4783 10
12 Cooling tower deck height above ground, Azgj 10.0 m 0.3797 1
13 Fill section height, Azy;y, 2.013 m -0.317 1
14 Dynamic viscosity of air at T=300 K, 1.983-107° kg/(m-s) -0.3134 4.88
15 Fill section frictional loss multiplier, f 4 -0.3134 50

Overall, the air mass flow rate, m,, displays the largest sensitivities, so this re-

sponse is the most sensitive to parameter variations. The other responses, namely

the outlet air temperature, the outlet water temperature, the outlet water mass

flow rate and the outlet air relative humidity display sensitivities of comparable

magnitude.
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4.1.2 Adjoint Sensitivity Analysis of Case 1b: Fan Off,
Saturated Outlet Air Conditions, with Inlet Air Sat-

urated
4.1.2.1 Relative sensitivities of the outlet air temperature, Tél)

The sensitivities of the air outlet temperature with respect to all of the model
parameters for case 1b have been computed using Eq. (3.22). The numerical
results and ranking of the relative sensitivities, in descending order of their mag-
nitudes, are provided in Table 4.6, below, along with their respective relative

standard deviations.

Table 4.6: Ranked relative sensitivities of the outlet air temperature, Tél), for case 1b.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (a;)

1 Inlet water temperature, Ty in 299.54 K 0.8161 0.36
2 Inlet air temperature, Tq in 294.40 K 0.1753 0.34
3 Air temperature (dry bulb), Ty 294.40 K 0.1741 0.34
4 Pys(T) parameters, ag 25.5943 -0.0272 0.04
5 Pys(T) parameters a1 -5229.89 0.0176 0.08
6 Fill section equivalent diameter, Dy, 0.0381 m -0.0051 1
7 Atmospheric pressure, Pyim 100606 Pa -0.0049 0.31
8 Cpa(T) parameters, ao,cpa 1030.5 -0.0037 0.03
9 Fan shroud inner diameter, Dyqp, 4.1 m -0.0036 1
10 Thermal conductivity of air at T=300 K, kg 0.02624 W/(m-K) 0.0035 6.04
11 Heat transfer coefficient multiplier, fr; 1 0.0035 50
12 Fill section surface area, Agyrf 14221 m? 0.0025 25
13 Wetted fraction of fill surface area, wtsq 1 0.0025 0
14 Nusselt parameters, ag, Nu 8.235 0.0025 25
15 Fill section flow area, Ag;y; 67.29 m? -0.002 10
16 Wind speed, Vi 1.80 m/s -0.002 10
17 Dew point temperature, Tg), 294.66 K -0.0019 0.37
18 Water enthalpy h¢(T) parameters, a; ¢ 4186.51 0.0017 0.04
19 Cooling tower deck height above ground, Azgg 10.0 m -0.0016 1
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Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (o)

20 Fill section height, Az g,y 2.013 m 0.0013 1
21 Fill section frictional loss multiplier, f 4 0.0013 50
22 Dynamic viscosity of air at T=300 K, p 1.983-107° kg/(m-s) 0.0013 4.88
23 Inlet water mass flow rate, M in 44.01 kg/s 0.0013 5
24 Day(T) parameters, a1, qqv 2.65322 0.0012 0.11
25 Mass transfer coefficient multiplier, fi,t 1 -0.00095 50
26 Day(T) parameters, as qqv -6.1681-10~3 -0.00082 0.37
27 hg(T) parameters, agg 2005743 -0.00077 0.05
28 Day(T) parameters, ag, dqv 7.06085-10—9 -0.00064 0
29 Fan shroud height, Az, 3.0 m -0.00048 1
30 Water enthalpy h¢(T) parameters, ags -1143423 -0.00044 0.05
31 Sum of loss coefficients above fill, ksym 10 0.00035 50
32 hg(T) parameters, aig 1815.437 -0.00033 0.19
33 Prandlt number of air at T=80 °C, P, 0.708 0.00032 0.71
34 Schmidt number, Sc 0.619 -0.00032 12.12
35 Kinematic viscosity of air at T=300 K, v 1.568-10~° mz/s -0.00032 12.09
36 Rain section height, Az,qin 1.633 m 0.00026 1
37 Day(T) parameters, a3 gqv 6.55265-106 0.00026 0.58
38 Cpa(T) parameters, a1,cpa -0.19975 0.00021 1
39 Basin section height, Az 1.168 m 0.00019 1
40 Cpa(T) parameters, a2, cpa 3.9734-10—4 -0.00012 0.84
41 Inlet air humidity ratio, win 0.01588 -0.00011 8.08
42 Drift eliminator thickness, Azg, 0.1524 m 0.00009 1
43 Cooling tower deck width in x-dir, Wy, 8.5 m 0.00006 1
44 Cooling tower deck width in y-dir, Wy, 8.5 m 0.00006 1
45 Nusselt parameters, a1, Ny 0.0031498 0 31.75
46 Nusselt parameters, a2 Ny 0.9902987 0 33.02
47 Nusselt parameters, a3 nv 0.023 0 38.26

As the results in Table 4.6 indicate, the first 3 parameters (i.e., Ty in, Tu.in
and Ty,) have relative sensitivities between ca. 17% and 81%, and are therefore
the most important for the air outlet temperature response, Ta(l). The largest

sensitivity has a value of 0.8161, which means that a 1% change in T, ;, would
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induce a 0.81% change in 74". The next two parameters (i.e., agp and a;) have

relative sensitivities between 1% and 3%, and are therefore somewhat important.
The remaining 42 parameters are relatively unimportant for this response, hav-
ing relative sensitivities smaller than 1% of the largest relative sensitivity (with

respect to T}, ;,) for this response.

4.1.2.2 Relative sensitivities of the outlet water temperature, T

The results and ranking of the relative sensitivities of the outlet water tem-
perature with respect to the most important 9 parameters for this response are
listed in Table 4.7. The largest two sensitivities of T; £ are to the parameters
Tyin and Tg. An increase of 1% in T, ;, or Ty, would cause an increase in the
response of 0.486% or 0.480%, respectively. The sensitivities to the remaining 38
model parameters have not been listed since they are smaller than 1% of the

largest sensitivity (with respect to 7, ;,) for this response.

Table 4.7: Ranked relative sensitivities of the outlet water temperature, quj50>7 for case 1b.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (o)
1 Inlet air temperature, Tq in 294.40 K 0.4858 0.34
2 Air temperature (dry bulb), Ty 294.40 K 0.48 0.34
3 Inlet water temperature, Toy, in 299.54 K 0.4567 0.36
4 Pys(T) parameters, ag 25.5943 -0.117 0.04
5 Pvs(T) parameters, a1 -5229.89 0.0756 0.08
6 Water enthalpy h¢(T) parameters, a; s 4186.51 0.0083 0.04
7 Inlet water mass flow rate, M in 44.01 kg/s 0.006 5
8 Atmospheric pressure, Pyim 100606 Pa -0.0058 0.31
9 Day(T) parameters, a1, gqov 2.65322 0.0056 0.11

88



CHAPTER 4. RESULTS

4.1.2.3 Relative sensitivities of the outlet water mass flow rate, mEEO)

The results and ranking of the relative sensitivities of the outlet water mass
flow rate with respect to the most important 6 parameters for this response are
listed in Table 4.8. This response is most sensitive to my, ;, (a 1% increase in this
parameter would cause a 1.00% increase in the response) and the second largest
sensitivity is to the parameter T, ;, (a 1% increase in this parameter would cause
a 0.213% decrease in the response). The sensitivities to the remaining 41 model
parameters have not been listed since they are smaller than 1% of the largest

sensitivity (with respect to my,,) for this response.

Table 4.8: Ranked relative sensitivities of the outlet water temperature, T1§,50), for case 1b.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
" dev. (%)
RS (o)
1 Inlet water mass flow rate, M in 44.01 kg/s 1.0022 5
2 Inlet water temperature, Toy, in 299.54 K -0.2129 0.36
3 Inlet air temperature, Ty in 294.40 K 0.1783 0.34
4 Air temperature (dry bulb), Tygp 294.40 K 0.1752 0.34
5 Pys(T) parameters, ag 25.5943 -0.0613 0.04
6 Pys(T) parameters, a1 -5229.89 0.0396 0.08

4.1.2.4 Relative sensitivities of the outlet air relative humidity, RH"

The results and ranking of the relative sensitivities of the outlet air relative
humidity with respect to the most important 15 parameters for this response are
listed in Table 4.9. The first three sensitivities of this response are quite large.
In particular, an increase of 1% in T, ,, or Ty, would cause a decrease in the
response of 14.35% or 14.02%, respectively. On the other hand, an increase of 1%

in Ty, would cause an increase of 13.22% in the response. The sensitivities to the
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remaining 32 model parameters have not been listed since they are smaller than

1% of the largest sensitivity (with respect to Ty, ;,) for this response.

Table 4.9: Ranked relative sensitivities of the outlet air relative humidity, RH(l), for case 1b.

Rel.
Rank Rel. std.
Parameter (o) Nominal Value Sens.
# dev. (%)
RS (a;)

1 Inlet air temperature, Tq in 294.40 K -14.347 0.34

2 Air temperature (dry bulb), Ty 294.40 K -14.024 0.34

3 Dew point temperature, Ty, 294.66 K 13.216 0.37

4 Inlet air humidity ratio, wjy, 0.0162 0.7257 8.07

5 Inlet water temperature, Toy, in 299.54 K 0.6619 0.36

6 Dav(T) parameters, a1 dquv 2.653 -0.3078 0.11

7 Pvs(T) parameters, ag 25.5943 -0.2779 0.04

8 Atmosphere pressure, Pyim 100606 Pa 0.2535 0.31

9 Thermal conductivity of air at T=300 K, kg 0.02624 W/(m-K) -0.2475 6.04
10 Heat transfer coefficient multiplier, f; 1 -0.2475 50

11 Cpa(T) parameters, ag,cpa 1030.5 0.2449 0.03
12 Mass transfer coefficient multiplier, fpt 1 0.2446 50

13 Pys(T) parameters, a1 -5229.89 0.2324 0.08
14 Day(T) parameters, as qqv -6.1681-10~3 0.2107 0.37
15 Day(T) parameters, ag dqv 7.06085-10—9 0.163 0

4.1.2.5 Relative sensitivities of the air mass flow rate, m,

The results and ranking of the relative sensitivities of the outlet air relative
humidity with respect to the most important 14 parameters for this response are
listed in Table 4.10. The first three sensitivities of this response are very large
(relative sensitivities much larger than unity are customarily considered to be
very significant). In particular, an increase of 1% in Ty, or T, ;, would cause a
decrease in the response of 22.04% or 22.00%, respectively. On the other hand,

an increase of 1% in T, would cause an increase of 20.37% in the response.
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The sensitivities to the remaining 33 model parameters have not been listed since
they are smaller than 1% of the largest sensitivity (with respect to Ty,) for this

response.

Table 4.10: Ranked relative sensitivities of the air mass flow rate, m,, for case 1b.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (a;)
1 Air temperature (dry bulb), Ty 294.40 K -22.043 0.34
2 Inlet air temperature, Tq in 294.40 K -22.002 0.34
3 Inlet water temperature, To in 299.54 K 20.375 0.36
4 Atmospheric pressure, Pyim 100606 Pa 1.1942 0.31
5 Pys(T) parameters, ag 25.5943 -0.8716 0.04
6 Fan shroud inner diameter, Dyqp, 4.1 m 0.86 1
7 Pys(T) parameters, a; -5229.89 0.5649 0.08
8 Fill section equivalent diameter, Dy, 0.0381 m 0.5365 1
9 Fill section flow area, Ay 67.29 m? 0.4704 10
10 Wind speed, Vi 1.80 m/s 0.4676 10
11 Cooling tower deck height above ground, Azgj 10.0 m 0.3804 1
12 Fill section height, Azy;y, 2.013 m -0.3097 1
13 Fill section frictional loss multiplier, f 4 -0.3048 50
14 Dynamic viscosity of air at T=300 K, 1.983-10~° kg/(m-s) -0.3048 4.88

The air mass flow rate, m,, together with the outlet air relative humidity,
RH® | displays the largest sensitivities, so these two responses are the most sen-
sitive to parameter variations. The other responses, namely the outlet air temper-
ature, the outlet water temperature, and the outlet water mass flow rate display

sensitivities of comparable magnitudes.
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4.1.3 Adjoint Sensitivity Analysis of Case 2: Fan Off, Un-

saturated Air Conditions

4.1.3.1 Relative sensitivities of the outlet air temperature, T

Table 4.11 lists the sensitivities, computed using Eq. (3.22), of the air outlet
temperature with respect to all of the model parameters. The parameters have

been ranked according to the descending order of their relative sensitivities.

Table 4.11: Ranked relative sensitivities of the outlet air temperature, Ta(l)7 for case 2.

Rel.
Rank Rel. std.
Parameter (o) Nominal Value Sens.
# dev. (%)
RS (o)

1 Inlet water temperature, Ty in 298.893 K 0.91878 0.56
2 Air temperature (dry bulb), Ty 298.882 K 0.06522 1.35
3 Inlet air temperature, Ty in 298.882 K 0.06478 1.35
4 Pvs(T) parameters, ag 25.5943 -0.01266 0.04
5 Dew point temperature, Ty, 292.077 K 0.01005 0.78
6 Pys(T) parameters, a1 -5229.89 0.00828 0.08
7 Wind speed, Vi 1.859 m/s -0.00172 50.7
8 Fill section equivalent diameter, Dy, 0.0381 m -0.00168 1
9 Fan shroud inner diameter, Dyqp 4.1 m -0.00104 1
10 Atmospheric pressure, Pyim 100588 Pa -0.00084 0.41
11 Water enthalpy h¢(T) parameters, ajf 4186.51 0.0007 0.04
12 Nusselt parameter, ag, Nu 8.235 0.0007 25
13 Fill section surface area, Ay, s 14221 m? 0.0007 25
14 Wetted fraction of fill surface area, wtsq 1 0.0007 0
15 Fill section flow area, Ay 67.29 m? -0.00068 10
16 Inlet air humidity ratio, w;n 0.0139 0.00055 13.8
17 Inlet water mass flow rate, M in 44.0193 kg/s 0.00048 5
18 Dynamic viscosity of air at T=300 K, 1.983-107° kg/(m-s) 0.00048 4.88
19 Fill section frictional loss multiplier, f 4 0.00048 50
20 Fill section height, Az g,y 2.013 m 0.00046 1
21 Day(T) parameters, ai, qqo 2.65322 -0.00043 0.11
22 Cpa(T) parameters, ao,cpa 1030.5 -0.00041 0.03
23 Thermal conductivity of air at T=300 K, kgr 0.02624 W/(m-K) 0.00037 6.04
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Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (o)

24 Heat transfer coefficient multiplier, f; 1 0.00037 50
25 hg (T) parameters, aog 2005744 -0.00036 0.05
26 Mass transfer coefficient multiplier, fi: 1 0.00034 50
27 Day(T) parameters, as qqv -6.17-103 0.0003 0.37
28 Day(T) parameters, ag dqv 7.06-10~9 0.00022 0
29 h¢(T) parameters, ags -1143423 -0.0002 0.05
30 Kinematic viscosity of air at T=300 K, v 1.568-10% m?2 /s 0.00011 12.09
31 Prandlt number of air at T=80 °C, Pr 0.708 -0.00011 0.71
32 Schmidt number, Sc 0.5998 0.00011 2.66
33 hg(T) parameters, a1g 1815.437 -0.00011 0.19
34 Sum of loss coefficients above fill, ksym 10 0.0001 50
35 Day(T) parameters, a3 qqv 6.55-10~6 -0.000094 0.58
36 Drift eliminator thickness, Azge 0.1524 m 0.000034 1
37 Cpa(T) parameter, a1,cpa -0.19975 0.000023 1
38 Cooling tower deck width in x-dir, Wyk, 8.5 m 0.000017 1
39 Cooling tower deck width in y-dir, W, 8.5 m 0.000017 1
40 Cooling tower deck height above ground, Azgj 10.0 m 0.000014 1
41 Cpa(T) parameter, a2 cpa 3.97-.104 -0.000013 0.84
42 Fan shroud height, Az, 3.0 m 0.000004 1
43 Rain section height, Az,qin 1.633 m -0.000002 1
44 Basin section height, Az, 1.168 m -0.000001 1
45 Nusselt parameters, a1, Ny 0.0031498 0 31.75
46 Nusselt parameters, aa Ny 0.9902987 0 33.02
47 Nusselt parameters, a3, N 0.023 0 38.26

As the results in Table 4.11 indicate, the first parameter (i.e., T3, ;) has a

relative sensitivity around 90%, and is therefore the most important for the air

(1)

outlet temperature response, Ty ', since that means that a 1% change in T,

would induce a 0.91% change in Tél). The next four parameters (i.e., Tup, T4 in,

ag, Ty,) have relative sensitivities between 1% and 6%, and are therefore some-

what important. Parameters #6 through #9 (i.e.,. a1, Vi, Dy, Dyqap) have relative

sensitivities between 0.1% and 0.8%. The remaining 38 parameters are relatively
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unimportant for this response, having relative sensitivities smaller than 1% of the
largest relative sensitivity (with respect toT, ;,) for this response. Positive sensi-
tivities imply that a positive change in the respective parameter would cause an
increase in the response, while negative sensitivities imply that a positive change

in the respective parameter would cause a decrease in the response.

4.1.3.2 Relative sensitivities of the outlet water temperature, T

The results and ranking of the relative sensitivities of the outlet water tem-
perature with respect to the most important 9 parameters for this response are
listed in Table 4.12. The largest sensitivity of Tfo) is to the parameter T, ;,,, and
has the value of 0.5055; this means that a 1% increase in T}, ;, would induce a
0.5055% increase in T, The sensitivities to the remaining 38 model parameters
have not been listed since they are smaller than 1% of the largest sensitivity (with

respect to Ty, ;) for this response.

Table 4.12: Ranked relative sensitivities of the outlet water temperature, Té,so), for case 2.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
” dev. (%)
RS (o)
1 Inlet water temperature, T, in 298.893 K 0.50556 0.56
2 Inlet air temperature, Ty ;n 298.882 K 0.25323 1.35
3 Air temperature (dry bulb), Ty, 298.882 K 0.25263 1.35
4 Dew point temperature, Ty, 292.077 K 0.171 0.78
5 Pys(T) parameters, ag 25.5943 -0.12617 0.04
6 Pys(T) parameters, a1 -5229.89 0.08251 0.08
7 Inlet air humidity ratio, win 0.0139 0.00934 13.8
8 Water enthalpy h¢(T) parameter, a ¢ 4186.50768 0.00704 0.04
9 ‘Wind speed, Vi, 1.859 m/s -0.00595 50.7
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4.1.3.3 Relative sensitivities of the outlet water mass flow rate, mEEO)

The results and ranking of the relative sensitivities of the outlet water mass
flow rate with respect to the most important 12 parameters for this response are
listed in Table 4.13. This response is most sensitive to m,, ;, (a 1% increase in this
parameter would cause a 1.01% increase in the response) and the second largest
sensitivity is to the parameter T, ;, (a 1% increase in this parameter would cause
a 0.214% decrease in the response). The sensitivities to the remaining 35 model
parameters have not been listed since they are smaller than 1% of the largest

sensitivity (with respect to my,,) for this response.

Table 4.13: Ranked relative sensitivities of the outlet water temperature, TISPO), for case 2.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (a;)
1 Inlet water mass flow rate, M in 44.0193 kg/s 1.0024 5
2 Inlet water temperature, To, in 298.893 K -0.21368 0.56
3 Dew point temperature, Ty, 292.077 K 0.08748 0.78
4 Inlet air temperature, Tq in 298.882 K 0.08692 1.35
5 Air temperature (dry bulb), Ty 298.882 K 0.08663 1.35
6 Pys(T) parameters, ag 25.5943 -0.06479 0.04
7 Pvs(T) parameters, a1 -5229.89 0.04238 0.08
8 Inlet air humidity ratio, win 0.0139 0.00478 13.8
9 Wind speed, Vi 1.859 m/s -0.00313 50.7
10 Fan shroud inner diameter, Dyqp 41 m -0.00189 1
11 Fill section equivalent diameter, Dy, 0.0381 m -0.00152 1
12 Fill section flow area, Ay 67.29 m? 0.00124 10

4.1.3.4 Relative sensitivities of the outlet air relative humidity, RH®

The results and ranking of the relative sensitivities of the outlet air relative
humidity with respect to the most important 29 parameters for this response are

listed in Table 4.14. The first three sensitivities of this response are the most
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relevant ; in particular, an increase of 1% in Ty, or T, ;, would cause an increase
in the response of 0.27% or 0.25%, respectively. On the other hand, an increase
of 1% in T, ;, would cause a decrease of 0.32% in the response. The sensitivities

to the remaining 18 model parameters have not been listed since they are smaller

than 1% of the largest sensitivity (with respect to T, ;) for this response.

Table 4.14: Ranked relative sensitivities of the outlet air relative humidity, RH (D), for case 2.

Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
" dev. (%)
RS (o)

1 Inlet water temperature, Ty, in 298.893 K -0.31903 0.56
2 Air temperature (dry bulb), Ty 298.882 K 0.27111 1.35
3 Inlet air temperature, Tq in 298.882 K 0.24914 1.35
4 Dew point temperature, Ty, 292.077 K 0.062 0.78
5 Dav(T) parameters, a1, dqu 2.65322 -0.21076 0.11
6 Fill section equivalent diameter, Dy, 0.0381 m -0.01753 1
7 Mass transfer coefficient multiplier, fn,: 1 0.01662 50
8 Day(T) parameters, as gqv -0.006168 0.01464 0.37
9 Wind speed, Vi 1.859 m/s -0.01353 50.7
10 Dav(T) parameters, ag,dqv 7.06-1079 0.01108 0
11 Fill section surface area, Agy, s 14221 m? 0.00991 25
12 Wetted fraction of fill surface area, wsq 1 0.00991 0
13 Nusselt parameters, ag, N 8.235 0.00991 25
14 Fan shroud inner diameter, Dyqp, 4.1 m -0.0082 1
15 Thermal conductivity of air at T=300 K, kg 0.02624 W/(m-K) -0.00671 6.04
16 Heat transfer coefficient multiplier, fr; 1 -0.00671 50
17 Cpa(T) parameters, ao,cpa 1030.5 0.0067 0.03
18 Pys(T) parameters, ag 25.5943 -0.00656 0.04
19 Kinematic viscosity of air at T=300 K, v 1.568-107% m? /s 0.00554 12.09
20 Prandlt number of air at T=80 °C, Pr 0.708 -0.00554 0.71
21 Schmidt number, Sc 0.5998 0.00554 2.66
22 Fill section flow area, Ay 67.29 m? -0.00539 10
23 Day(T) parameters, a3 qqv 6.55-10~6 -0.00465 0.58
24 Dynamic viscosity of air at T=300 K, p 1.983-10~° kg/(m-s) 0.00381 4.88
25 Fill section frictional loss multiplier, f 4 0.00381 50
26 Pys(T) parameters, a; -5229.89 0.00379 0.08
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Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (Ocl)
27 Atmosphere pressure, Pytm 100588 Pa 0.00372 0.41
28 Fill section height, Az 2.013 m 0.00362 1
29 Inlet air humidity ratio, win 0.0139 0.00339 13.8

4.1.3.5 Relative sensitivities of the air mass flow rate, m,

The results and ranking of the relative sensitivities of the air mass flow rate
with respect to the most important 14 parameters for this response are listed in
Table 4.15. The first three sensitivities of this response are very large (relative
sensitivities larger than unity are customarily considered to be very significant).
In particular, an increase of 1% in T, ,, or Ty would cause a decrease in the
response of 38.51% or 38.49%, respectively. On the other hand, an increase of 1%
in T, would cause an increase of 36% in the response. The sensitivities to the
remaining 33 model parameters have not been listed since they are smaller than

1% of the largest sensitivity (with respect to T}, ;,) for this response.

Table 4.15: Ranked relative sensitivities of the air mass flow rate, m,, for case 2.

Rel.
Rank Rel. std.
Parameter (o;) Nominal Value Sens.
# dev. (%)
RS (az)
1 Inlet air temperature, Tq in 298.882 K -38.51406 1.35
2 Air temperature (dry bulb), Ty 298.882 K -38.49249 1.35
3 Inlet water temperature, Toy,in 298.893 K 36.0013 0.56
4 Atmosphere pressure, Pytm 100588 Pa 1.37474 0.41
5 ‘Wind speed, Vi, 1.859 m/s 1.36609 50.7
6 Fan shroud inner diameter, D,y 4.1 m 0.8279 1
7 Pvs(T) parameters, ag 25.5943 -0.767 0.04
8 Fill section equivalent diameter, Dy, 0.0381 m 0.74221 1
9 Dew point temperature, Ty, 292.077 K 0.70105 0.78
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Rel.
Rank Rel. std.
Parameter (a;) Nominal Value Sens.
# dev. (%)
RS (Ocl)
10 Fill section flow area, Ag;y; 67.29 m? 0.54384 10
11 Pys(T) parameters, a1 -5229.89 0.50156 0.08
12 Dynamic viscosity of air at T=300 K, p 1.983-107° kg/(m-s) -0.38448 4.88
13 Fill section frictional loss multiplier, f 4 -0.38448 50
14 Fill section height, Azy;;; 2.013 m -0.36512 1

Overall, the air mass flow rate, m,, displays the largest sensitivities, so this re-
sponse is the most sensitive to parameter variations. The other responses, namely
the outlet air temperature, the outlet water temperature, the outlet water mass
flow rate and the outlet air relative humidity display sensitivities of comparable

magnitude for case 2.

4.2 Cross-comparison of the most relevant sen-
sitivities

In Tables 4.16 through 4.20, the ranked relative sensitivities for each response
are compared side-by-side between the three natural draft operating conditions,
i.e., case la, case 1b and case 2. Among the three operating conditions, case 2
is defined as a working condition in which air is unsaturated from the inlet to
outlet of the cooling tower; while in the saturated case 1b, on the contrary, air is
saturated from inlet to outlet of the cooling tower; the saturated case la is the
combination of the these two cases, i.e., air in the lower portion of the fill section
of the cooling tower is in unsaturated conditions, reaching saturation at some
point along the height of the tower and remaining saturated in the upper part of
the cooling tower. Cross-comparison of sensitivity results reveals the sensitivity

variations between the three operating conditions.
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4.2.1 Relative sensitivities of the outlet air temperature,

7.

The relative sensitivities and corresponding parameters listed in Table 4.16
are extracted from Table 4.1 in Paragraph 4.1.1.1, from Table 4.6 in Paragraph
4.1.2.1, and from Table 4.11 in Paragraph 4.1.3.1.

Table 4.16: Cross-comparison of the top 5 relative sensitivities for the response of outlet air temperature, Tél),

between the natural draft cases la, 1b and 2.

Rel. Sens. in Unsaturated Rel. Sens. in Saturated Conditions
Conditions - Case 2 Case la Case 1b
Rank #
(based on 6717 (based on 377 data sets (based on 290 data sets
unsaturated data sets) with inlet air unsaturated) with inlet air unsaturated)
0.9179 0.8346 0.8161
1
Tw,z‘n Tw,in Tw,in
0.0652 0.1436 0.1754
2
Tdb Ta,in Ta,in
0.0648 0.1429 0.1741
3
Ta,in Tap Tap
-0.0127 -0.0231 -0.0272
4
aop ag ao
0.0101 0.0151 0.0176
5
po al al

As shown in Table 4.16, for all three operating conditions, the first most
sensitive parameters of the response of air outlet temperature, Tél), is the same
(i.e., Ty,in). The 2nd and 3rd most sensitive parameter are inverted in the case
2 with respect to cases la and 1b, but with values very close between the two
parameters. The parameters that ranks in 4th place for this response is the same
for all cases (i.e., ap). The 5th parameter is ao for cases la and 1b and Ty,

for the case 2. For the first parameter (i.e., Ty.n), case 2 displays the largest
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sensitivity for this response; case 1b has the smallest sensitivity; while case la
has an intermediate value of sensitivity between the two. This is expected since
case la is a mixed case between case 2 and the saturated case 1b. For all the
remaining parameters in the table the situation is reversed, with case 1b showing
the largest sensitivity values and the unsaturated case presenting the smallest
ones, with case la still in the middle. Generally, the sensitivity magnitude of case
la is slightly closer to that of case 1b. This can be explained by the fact that
air remains unsaturated less than half of the height of the fill section, and flows
in saturated conditions for more than half of the height of the fill section, as

analyzed in Section 2.3.1.

4.2.2 Relative sensitivities of the outlet water tempera-

ture, T@E}SO)

The relative sensitivities and corresponding parameters listed in Table 4.17
are extracted from Table 4.2 in Paragraph 4.1.1.2, from Table 4.7 in Paragraph
4.1.2.2, and from Table 4.12 in Paragraph 4.1.3.2.

Table 4.17: Cross-comparison of the top 5 relative sensitivities for the response of outlet water temperature,

Tff)o), between the natural draft cases la, 1b and 2.

Rel. Sens. in Unsaturated Rel. Sens. in Saturated Conditions
Conditions - Case 2 Case la Case 1b
Rank #
(based on 6717 (based on 377 data sets (based on 290 data sets
unsaturated data sets) with inlet air unsaturated) with inlet air unsaturated)
0.9179 0.8346 0.8161
1
Tw,in Tw,in Tw,in
0.0652 0.1436 0.1754
2
Tdb Ta,in Ta,in
0.0648 0.1429 0.1741
3
Ta,in Tap Tap
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Rel. Sens. in Unsaturated Rel. Sens. in Saturated Conditions
Conditions - Case 2 Case la Case 1b
Rank #
(based on 6717 (based on 377 data sets (based on 290 data sets
unsaturated data sets) with inlet air unsaturated) with inlet air unsaturated)
-0.0127 -0.0231 -0.0272
4
ao ao ao
0.0101 0.0151 0.0176
5
Tap al al

As shown in Table 4.17, for the response of water outlet temperature, T15,50),
both case 2 and case la are most sensitive to the parameter 7}, ;,,, whereas case 1b
is most sensitive to the parameter 7 ;,. As a comparison, the response of water
outlet temperature to the parameter 7, ;, ranks in 3rd place, with a value com-
parable to the other two cases. The next two most sensitive parameters that rank
from 2nd to 3rd places of this response are also different between the operating
conditions: for both case 2 and case la, parameters 7, ;, and Ty, rank in 2nd and
3rd places, respectively; however, for case 1b, parameters that take the 2nd and
3rd places are Ty, and Ty, ;,, respectively. The parameters that take the 4th and
5th places are also different between the operating conditions, as shown in the

)

table. Overall, for the response of water outlet temperature, 70 , the sensitivity

behavior of case la is more similar to that of the case 2.

4.2.3 Relative sensitivities of the outlet water mass flow

rate, mg) 0)

The relative sensitivities and corresponding parameters listed in Table 4.18
are extracted from Table 4.3 in Paragraph 4.1.1.3, from Table 4.8 in Paragraph
4.1.2.3, and from Table 4.13 in Paragraph 4.1.3.3.
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Table 4.18: Cross-comparison of the top 5 relative sensitivities for the response of outlet water mass flow rate,

mS;?O), between the natural draft cases la, 1b and 2.

Rel. Sens. in Unsaturated Rel. Sens. in Saturated Conditions
Conditions - Case 2 Case la Case 1b
Rank #
(based on 6717 (based on 377 data sets (based on 290 data sets
unsaturated data sets) with inlet air unsaturated) with inlet air unsaturated)
1.002 1.002 1.002
1
M, in Moy, in M, in
-0.2137 -0.1983 -0.2129
2
va'i” Tw,in Tw,in
0.0875 0.1069 0.1783
3
po po Ta,in
0.0869 -0.0593 0.1751
4
Ta,in ag Tdb
0.0867 0.0557 -0.0613
5
Tap Ta,in agp

As shown in Table 4.18, for all three operating conditions, the first two most
sensitive parameters of the response of water outlet mass flow rate, ms 0), are the
same (i.e., My, in, and T, i, respectively). In addition, for each of the first two pa-
rameters, all three operating conditions have comparable sensitivity magnitudes.
This indicates that the sensitivities of the first two parameters are insensitive
to the operating condition change. The third most sensitive parameter of this
response is different between the operating conditions: for both case 2 and case
la, this parameter is T},; whereas, for case 1b, this parameter is 7T} ;,. Similarly,

the parameters that take the 4th and 5th places are also different between the

operating conditions, as shown in the table.
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4.2.4 Relative sensitivities of the outlet air relative hu-
midity, RHW

The relative sensitivities and corresponding parameters listed in Table 4.19
are extracted from Table 4.4 in Paragraph 4.1.1.4, from Table 4.9 in Paragraph
4.1.2.4, and from Table 4.14 in Paragraph 4.1.3.4.

Table 4.19: Cross-comparison of the top 5 relative sensitivities for the response of outlet air relative humidity,

RH | between the natural draft cases la, 1b and 2.

Rel. Sens. in Unsaturated Rel. Sens. in Saturated Conditions
Conditions - Case 2 Case 1la Case 1b
Rank #
(based on 6717 (based on 377 data sets (based on 290 data sets
unsaturated data sets) with inlet air unsaturated) with inlet air unsaturated)
-0.3190 -2.1108 -14.347
1
Tw,in Ta,in Ta,in
0.2711 -1.9469 -14.024
2
Tdb Tdb Tdb
0.2491 1.5759 13.216
3
Ta,in po po
0.0620 0.3398 0.7257
4
po Tw,in Win
-0.2108 -0.1559 0.6619
5
a1 dav a1,dav Tw,in

As shown in Table 4.19, for cases la and 1b, the first three most sensitive
parameters of the response of air outlet relative humidity, RH"), are the same
(i.e., Thin, T and Ty, respectively); the order is different for case 2. The next
two most sensitive parameters that rank the 4th and 5th places of this response
are different between the operating conditions.

For each of the first three parameters, all three operating conditions are sen-

sitive to the parameter changes. In which, case 1b is the most sensitive case; and
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case 2 is the least sensitive case comparatively. For instance, 1% change in T, ;,,
Tap or Ty, will cause around 0.2% change in RH @ for case 2, around 2% change
in RHM for case la; and nearly 15% change in RH™" for case 1b, respectively.
Overall, for the response of air outlet relative humidity, RH", the sensitivity
behavior of case la is also more similar to that of case 1b, as also the signs of
most of the sensitivity values, inverted in case 2 with respect to case la and 1b,

show in Table 4.19.

4.2.5 Relative sensitivities of the air mass flow rate, m

a

The relative sensitivities and corresponding parameters listed in Table 4.20
are extracted from Table 4.5 in Paragraph 4.1.1.5, from Table 4.10 in Paragraph
4.1.2.5, and from Table 4.15 in Paragraph 4.1.3.5.

Table 4.20: Cross-comparison of the top 5 relative sensitivities for the response of water outlet temperature,

T”S?O)’ between the natural draft cases la, 1b and 2.

Rel. Sens. in Unsaturated Rel. Sens. in Saturated Conditions
Conditions - Case 2 Case la Case 1b
Rank #
(based on 6717 (based on 377 data sets (based on 290 data sets
unsaturated data sets) with inlet air unsaturated) with inlet air unsaturated)
-38.514 -24.478 -22.043
1
Ta,in Tdb Tdb
-38.492 -24.456 -22.002
2
Tdb Ta,in Ta,in
36.001 22.209 20.375
3
Tw,in Tw,in Tw,in
1.3747 1.2204 1.1942
4
Patm Patm Patm
1.3661 0.8567 -0.8716
5
Vw Dfan ag
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As shown in Table 4.20, for all the operating conditions, the first three most
sensitive parameters of the response of air mass flow rate, m,, are the same (i.e.,
Tapy Toin and Ty, 4, respectively) with the order of the first two being swapped for
the unsaturated case. P, is the 4th more sensitive parameter in all operating
conditions, and with values comparable between the three cases; the parameters
ranking in 5th place are different for the three operating conditions.

For each of the first three parameters, all three operating conditions are sensi-
tive to the parameter changes. Differently from the response RH(, case 1b is this
time the least sensitive case, while case 2 is the most sensitive case comparatively.
For instance, 1% change in T}, ;,, Tap or T, s, Will cause around 38% change in m,
for case 2, around 24% change in m, for case la; and nearly 22% change in m,
for case 1b, respectively. Overall, for the response of air mass flow rate, m,, the

sensitivity behavior of case la is also more similar to that of case 1b.

4.3 Uncertainty Analysis and Predictive Mod-

eling of the cooling tower cases of interest

The results of the application of the “predictive modeling for coupled multi-
physics systems” (PM_CMPS) methodology, simultaneously combining all of
the available computed information and experimentally measured data for the
counter-flow cooling tower, are reported in this section for all the selected cases
of interest. Previously computed adjoint sensitivities are hereby used for yielding
best-estimate predicted nominal values and uncertainties for model parameters

and responses.
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4.3.1 Uncertainty Analysis and Predictive Modeling of
Case la: Fan Off, Saturated Outlet Air Conditions,

with Inlet Air Unsaturated

The a priori response-parameter covariance matrix, C,,, for case la, is com-

puted in Appendix A, Eq. (A.5), and is reproduced in Eq. (4.1):

J— meas meas meas
C,,=Cov (T T RH™ ay, ..., a47)

a,out » = w,out’

1.53 1.01 0.76 —104.46 011 O .. O (4.1)
=1110 1.08 128 —111.01 0.12 O .. O
0.06 034 —-0.75 7660 —-025 0 .. O

A A A
where the measured correlated parameters are: oy = Ty, g = Typ, a3 = Ty i,
A A
ay = Py, and as = V.
The a priori parameter covariance matrix, C,,, for case 1a, is partly computed

in Appendix B, Eq. (B.1), and is reproduced in Eq. (4.2).

Var(ag)  Cov(ag,an) e Cov(ag,ayr)
c Cov(az,a1)  Var(ag) e Cov(ag,ayr)
3 3 o o
Cov(ayr, aq) . o Var(oayr)
3.18 2.17 1.19 —187.06 0.26 0 e 0
2.17 2.58 1.26 —178.24 028 0 e 0 (4.2)
1.19 1.26 2.00 —184.39 0.26 0 e 0
_ —187.06 —178.24 —184.39 82133 042 0 e 0
N 0.26 0.28 0.26 0.42 0.39 0 e 0
0 0 0 0 0 0 e 0
o 3 . o o o o 3
0 0 0 0 0 0 e 533x107°
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The a priori covariance matrix of the computed responses, C.™”, for case 1la,
is obtained by using Eqs. (3.96) and (4.2) together with the sensitivity results

presented in Tables 4.1 - 4.5 ; the end result is:

cemr = Cov (T, TPV, RHY) = 8,,CaaSI,

arH arH Var(a;)  Cov(ai,az) e Cov(ar,asr) ariH arsH
dag 77" Dang day 77" Dang
o750 o750 Cov(ag,ay) Var(as) o Cov(aeg,ayr) o750 o750
801 1T 8aNa ° ° ° ° 8&1 7T 8&]\/&
ARHM ORHM ORHM ORHM
dar 7 Bana Cov(asa, 1) o o Var(aur) dar 777 dana

1.98 1.60 —3.42
(4.3)
= 1.60 1.88 —2.82

—3.42 -2.82 R80.71

3 ] 1 3 meas meas meas A
The a priori covariance matrix, Cov (Tymees, Tieas RHI*) = C,,, of the

measured
measured responses (namely: the outlet air temperature, Ty oui = [T 651)] ;

)] measured

the outlet water temperature, 1% = [T&SO , and the outlet air relative

w,out —

humidity, RHZ* = [RH (1)]measured) for case la is computed in Appendix A,

out

Eq. (A.4), and is as follows:

1.10  0.61 —0.04
C,, = Cov (T7e, Tiees RHJ™) = | 061 125 —064|.  (44)

a,out » = w,out? out

—-0.04 —-0.64 3.68

4.3.1.1 Model Calibration: Predicted Best-Estimated Parameter Val-

ues with Reduced Predicted Standard Deviations

The best-estimate nominal parameter values have been calculated using Eq.
(3.93) coupled with the a priori matrices given in Eqs. (4.1) - (4.4) and the sensi-
tivities listed in Tables 4.1 - 4.5. The resulting best-estimate nominal values are
listed in Table 4.21. The best-estimate absolute standard deviations of the param-

eters are also listed in this table. These values are obtained as the square-roots
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pred

of the diagonal elements of the matrix C?'s

, which is computed using Eq. (3.97)
together with the a priori matrices presented in Eqs. (4.1) - (4.4) and the sensitiv-
ities listed in Tables 4.1 - 4.5. For a more direct comparison, the original nominal
parameter values and original absolute standard deviations are also listed. As
shown in Table 4.21, all the best-estimate standard deviations are smaller or at
most equal to the original standard deviations. The variations in the parameters
values are proportional to the magnitudes of their corresponding sensitivities:

the parameters undergoing the largest reductions in their best-estimate standard

deviations are those characterized by the largest sensitivities.

Table 4.21: Best-estimated nominal parameter values and their standard deviations for case la.

Best- Best-
Original Original
Model Independent Math. estimate estimate
i Nominal Absolute
Scalar Parameters (o) Notation Nominal Absolute

Value Std. Dev.
Value Std. Dev.

Air temperature (dry bulb),

1 Tap 294.03 1.79 294.954 1.7
(K)

2 Dew point temperature (K) Tap 293.49 1.61 293.68 1.51

3 Inlet water temperature (K) Tw,in 298.78 1.42 298.533 1.09

4 Atmospheric pressure (Pa) Patm 100853 287 100883 269

5 Wind speed (In/s) Vw 1.42 0.62 1.274 0.62
Sum of loss coefficients

6 Ksum 10 5 10.061 5
above fill

Dynamic viscosity of air at
7 1 1.98-10—° 9.68-10~7 1.98-10—2 9.66-10~7
T=300 K (kg/m-s)

Kinematic viscosity of air at
8 v 1.57-10—° 1.89-10—6 1.57-102 1.89-10—6
T=300 K (m?2/s)

Thermal conductivity of air
9 kair 0.02624 1.58-10—3 0.02611 1.58-10—3
at T=300 K (W/m-K)

Heat transfer coefficient
10 fhe 1 0.5 0.6603 0.346
multiplier

Mass transfer coefficient
11 fmt 1 0.5 0.9671 0.364
multiplier
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Best- Best-
Original Original
Model Independent Math. estimate estimate
i Nominal Absolute
Scalar Parameters (o;) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
Fill section frictional loss
12 f 4 2 4.093 1.92
multiplier
13 o) 25.5943 0.01 25.5942 0.01
Pys(T) parameters
14 al -5229.89 4.4 -5229.97 4.4
15 a0, cpa 1030.5 0.294 1030.5 0.294
16 Cpa(T) parameters ai1,cpa -0.19975 0.002 -0.19975 0.002
17 a2,cpa 3.97.107*  3.40-107%  3.97.10*  3.35.107¢
18 a0, daw 7.06:10~9 0 7.06-10~9 0
19 a1,dav 2.65322 0.003 2.65322 0.003
Dav(T) parameters
20 a2, daw -6.17-1073%  2.30-107°  -6.17-107%  2.30-107°
21 a3, daw 6.55-10~6 3.80-108 6.55-10~6 3.80-10°8
22 aof -1143423 543 -1143423 543
h¢(T) parameters
23 ayy 4186.50768 1.8 4186.50955 1.8
24 aog 2005743.99 1046 2005743.4 1046
hg(T) parameters
25 alg 1815.437 3.5 1815.43526 3.5
26 ag,Nu 8.235 2.059 7.46776 2.024
27 Nusselt parameters a1,Nu 0.00314987 0.00105 0.00314987 0.001
28 a2, Nu 0.9902987 0.329 0.9902987 0.327
29 a3, Nu 0.023 0.0088 0.023 0.0088
Cooling tower deck width in
30 Wk 8.5 0.085 8.5 0.085
x-dir (m)
Cooling tower deck width in
31 Waky 8.5 0.085 8.5 0.085
y-dir (m)
Cooling tower deck height
32 Azgp 10 0.1 10 0.1
above ground (m)
33 Fan shroud height (m) Azfan 3 0.03 3 0.03
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Best- Best-
Original Original
Model Independent Math. estimate estimate
) Nominal Absolute
Scalar Parameters (o;) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
Fan shroud inner diameter
34 Dyan 4.1 0.041 4.1 0.041
(m)
35 Fill section height (m) Azpin 2.013 0.02013 2.013 0.02013
36 Rain section height (m) Azrgin 1.633 0.01633 1.633 0.01633
37 Basin section height (m) Azps 1.168 0.01168 1.168 0.01168
Drift eliminator thickness
38 Azge 0.1524 0.00152 0.1524 0.00152
(m)
Fill section equivalent diam-
39 Dy, 0.0381 0.00038 0.0381 0.00038
eter (m)
40 Fill section flow area (m?) Agin 67.29 6.729 67.1945 6.705
Fill section surface area
41 Asurf 14221 3555.3 12896 3495
(m?)
Prandtl number of air at
42 P, 0.708 0.005 0.708 0.005
T=80 °C
Wetted fraction of fill sur-
43 Wisa 1 0 1 0
face area
Best- Best-
Original Original
Boundary Parameters Math. estimate estimate
) Nominal Absolute
(o) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
Inlet water mass flow rate
44 Maw,in 44.02 2.20 44.2145 2.192
(kg/s)
45 Inlet air temperature (K) Ta,in 294.03 1.79 294.3174 1.57
46 Inlet air humidity ratio Win 0.01552 0.00149 0.01567 0.00136
Best- Best-
Original Original
Special Dependent Math. estimate estimate
) Nominal Absolute
Parameters (o) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
47 Schmidt number Sc 0.619 0.0073 0.6193 0.0073
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4.3.1.2 Predicted Best-Estimated Response Values with Reduced Pre-

dicted Standard Deviations

Using the a priori matrices in Eqs. (4.1) - (4.4) together with the sensitivities
listed in Tables 4.1 - 4.5 in Eq. (3.99), the following predicted response covariance

matrix, CP'*?, is obtained:

0.953  0.795 —0.291

be be be
Cg?:edzcov<[T§”} , (T8O, [REW] )z 0.795 0.939 —0.283
~0.291 —0.283  3.130

(4.5)

pred

pred. is obtained

The best-estimate response-parameter correlation matrix, C
by means of Eq. (3.100) in conjunction with the a priori matrices presented in
Egs. (4.1) - (4.4) and the sensitivities listed in Tables 4.1 - 4.5.

The best-estimate nominal values of the outlet air temperature, Tél); outlet
water temperature Tfo); and outlet air relative humidity, RH", have been com-
puted using Eq. (3.98) coupled with the a priori matrices given in Egs. (4.1) -
(4.4) and the sensitivities listed in Tables 4.1 - 4.5. The resulting best-estimate
nominal values are displayed in Table 4.22. To facilitate comparison, the corre-
sponding measured and computed nominal values are also presented in this table.
Note that there are no direct measurements for the outlet water flow rate, mEY
and the air mass flow rate m,. For these two responses, therefore, the predicted
best-estimate nominal values have been obtained by a forward re-computation
using the best-estimate nominal parameter values listed in Table 4.21, while the

predicted best estimate standard deviation for this response has been obtained

by using “best-estimate” values in Eq. (3.96), i.e.,

(€™ = [8,0]"[Can) S]] (4.6)
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Table 4.22: Computed, measured, and optimal best-estimate nominal values and standard deviations for the
outlet air temperature, outlet water temperature, outlet air relative humidity, outlet water mass flow rate and

air mass flow rate responses for case la.

Nominal Values and Tél) TI(U50) RH® mO mg
Standard Deviations K] K] (%] [keg/s] kg/s]
Measured
nominal value 296.45 297.91 102.28 — —
standard deviation +1.05 +1.12 +1.92 — —
Computed
nominal value 298.41 296.86 100.11 43.91 20.11
standard deviation +1.41 +1.37 +8.98 +2.20 +6.97

Best-estimate
nominal value 297.86 296.94 103.48 44.12 16.15
standard deviation +0.97 +0.96 +1.77 +2.19 +5.73

The results presented in Table 4.22 indicate that, as anticipated, the predicted
standard deviations are smaller than either the computed or the experimentally
measured ones. This is consequential to utilizing the PM_CMPS methodology
together with consistent computational and experimental information. Unspot-
ted errors can often make the used information inconsistent; methods to confront
these situations are discussed in [37]. It is also worth noting that the PM_CMPS
methodology has reduced the predicted standard deviation for the water mass
flow rate and for the air mass flow rate responses, despite the lack of experimen-
tally measure data. This is due to the global characteristics of the PM_CMPS
methodology to foresee a simultaneous combination of all the available data in
the phase-space, yielding this way the aforementioned best-estimate predicted re-
sults; currently used data assimilation methodologies, on the other hand, proceed

by combine the available information in a sequential way [38, 39].
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4.3.2 Uncertainty Analysis and Predictive Modeling of
Case 1b: Fan Off, Saturated Outlet Air Conditions,

with Inlet Air Saturated

The a priori response-parameter covariance matrix, C,,, for case 1b, is com-

puted in Appendix A, Eq. (A.9), and is reproduced in Eq. (4.7).

C,,=Cov (Tmeas e RH™ ay, ..., a47)

a,out » = w,out’

0.45 0.52 052 1.12  0.007 0 .. O (4.7)
=1050 055 060 —-51.14 —-0.13 0 ... O
0.02 0.08 0.06 12351 —-023 0 .. O

A A A A
where the measured correlated parameters are: oy = Ty, g = Typ, a3 = Ty i, 00 =

Pom, and az £ V.
The a priori parameter covariance matrix, C,,, for case 1b, is partly computed

in Appendix B, Eq. (B.4), and is reproduced in Eq. (4.8).

Var(ag)  Cov(ag,an) e Cov(ag,ayr)

Cov(ag, 1)  Var(ag) e Cov(ag,ayr)

Coa =
o o . o
Cov(ayr, aq) ° o Var(ayr)
0.97 1.04 0.60 —128.15 0.07 0 e 0
104 116 066 —13834 006 0 e 0 (4.8)
0.60 0.66 1.14 —51.83 002 0 e 0
_ —128.15 —138.34 —51.83 97463 30.66 0 e 0
N 0.07 0.06 0.02 30.66 052 0 e 0
0 0 0 0 0 0 e 0
o o o o e o o o
0 0 0 0 0 0 e 1.68x107°




CHAPTER 4. RESULTS

The a priori covariance matrix of the computed responses, C:™”, for case 1la,
is obtained by using Eqs. (3.96) and (4.8) together with the sensitivity results

presented in Tables 4.6 - 4.10 ; the end result is:

cemr = Cov (T, TP, RHY) = 8,,CaaS!,

arH arH Var(on)  Cov(ai,az) e Cov(an,aur) TV ariH
OJa1 77" dana OJai 7" dana
8T1§,50) aTéjso) COU(Oé% al) Var(ag) L COU(042; 0447) 8T1(U50) 8T£,50)
Oar 77 dana ° . ° ° dayg 7" Oana
ARHM ORHM) AORHM ORHM
dar 77 dana Cov(ase, aq) . o Var(asr) dar ' dana

146 1.27  —9.01
(4.9)
=] 127 176 —1575

—9.01 —15.75 370.72

PR ; ; meas Jimeas meas) 24
The a priori covariance matrix, Cov (Tymees Tmees RHIS ) = C,,, of the

] measured
)

measured responses (namely: the outlet air temperature, Tt = [T a(l)

the outlet water temperature, 77 = [T&E’O)

measured
w,out —

, and the outlet air relative

humidity, RH]'{* = [RH 1)

measured
out ] )

for case 1b is computed in Appendix A,
Eq. (A.8), and is as follows:

0.75 0.18 0.14
C,, = Couv (T, Toees, RH) = | 0.18 0.79 0.21 | - (4.10)
0.14 0.21 1.65

4.3.2.1 Model Calibration: Predicted Best-Estimated Parameter Val-

ues with Reduced Predicted Standard Deviations

The best-estimate nominal parameter values have been calculated using Eq.
(3.93) coupled with the a priori matrices given in Eqs. (4.7) - (4.10) and the
sensitivities listed in Tables 4.6 - 4.10. The resulting best-estimate nominal values
are listed in Table 4.23. The best-estimate absolute standard deviations of the

parameters are also listed in this table. These values are obtained as the square-
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pred

pred. which is computed using Eq.

roots of the diagonal elements of the matrix C
(3.97) coupled with the a priori matrices presented in Egs. (4.7) - (4.10) and
the sensitivities listed in Tables 4.6 - 4.10. For a more direct comparison, the
original nominal parameter values and original absolute standard deviations are
also listed. As shown in Table 4.23, all the best-estimate standard deviations are
smaller or at most equal to the original standard deviations. The variations in the
parameters values are proportional to the magnitudes of their corresponding sen-

sitivities: the parameters undergoing the largest reductions in their best-estimate

standard deviations are those characterized by the largest sensitivities.

Table 4.23: Best-estimated nominal parameter values and their standard deviations for case 1b.

Best- Best-
Original Original
Model Independent Math. estimate estimate
i Nominal Absolute
Scalar Parameters (o) Notation Nominal Absolute

Value Std. Dev.
Value Std. Dev.

Air temperature (dry bulb),

1 Tup 294.4 0.98 294.115 0.93
(K)

2 Dew point temperature (K) Tap 294.661 1.08 294.41 1.02

3 Inlet water temperature (K) Tw,in 299.543 1.07 298.411 0.9

4 Atmospheric pressure (Pa) Patm 100605 312 100767 292

5 Wind speed (m/s) Vw 1.377 0.72 1.803 0.69
Sum of loss coefficients

6 Ksum 10 5 9.613 4.98
above fill

Dynamic viscosity of air at
7 1 1.98-10—° 9.68-10~7 1.98-10—2 9.67-10~7
T=300 K (kg/m-s)

Kinematic viscosity of air at
8 v 1.57-10—° 1.89-10—6 1.56-10—2 1.89-10—6
T=300 K (m?2/s)

Thermal conductivity of air
9 kair 0.02624 1.58-10—3 0.02611 1.58-10—3
at T=300 K (W/m-K)

Heat transfer coefficient
10 fhe 1 0.5 0.6711 0.36
multiplier

Mass transfer coefficient
11 fmt 1 0.5 0.7223 0.36
multiplier
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Best- Best-
Original Original
Model Independent Math. estimate estimate
i Nominal Absolute
Scalar Parameters (o;) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
Fill section frictional loss
12 f 4 2 3.4307 1.88
multiplier
13 o) 25.5943 0.01 25.5943 0.01
Pys(T) parameters
14 al -5229.89 4.4 -5229.92 4.4
15 a0, cpa 1030.5 0.294 1030.5 0.294
16 Cpa(T) parameters ai1,cpa -0.19975 0.002 -0.19975 0.002
17 a2,cpa 3.97.107*  3.40-107%  3.97.10*  3.35.107¢
18 a0, daw 7.06:10~9 0 7.06-10~9 0
19 a1,dav 2.65322 0.003 2.65322 0.003
Dav(T) parameters
20 a2, daw -6.17-1073%  2.30-107°  -6.17-107%  2.30-107°
21 a3, daw 6.55-10~6 3.80-108 6.55-10~6 3.80-10°8
22 aof -1143423 543 -1143423 543
h¢(T) parameters
23 ayy 4186.50768 1.8 4186.5085 1.8
24 aog 2005743.99 1046 2005743.74 1046
hg(T) parameters
25 alg 1815.437 3.5 1815.43646 3.5
26 ag,Nu 8.235 2.059 6.98576 2
27 Nusselt parameters a1,Nu 0.00314987 0.00105 0.00314987 0.001
28 a2, Nu 0.9902987 0.329 0.9902987 0.327
29 a3, Nu 0.023 0.0088 0.023 0.0088
Cooling tower deck width in
30 Wk 8.5 0.085 8.5 0.085
x-dir (m)
Cooling tower deck width in
31 Waky 8.5 0.085 8.5 0.085
y-dir (m)
Cooling tower deck height
32 Azgp 10 0.1 10 0.1
above ground (m)
33 Fan shroud height (m) Azfan 3 0.03 3 0.03
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Best- Best-
Original Original
Model Independent Math. estimate estimate
) Nominal Absolute
Scalar Parameters (o;) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
Fan shroud inner diameter
34 Dyan 4.1 0.041 4.1 0.041
(m)
35 Fill section height (m) Azpin 2.013 0.02013 2.013 0.02013
36 Rain section height (m) Azrgin 1.633 0.01633 1.633 0.01633
37 Basin section height (m) Azps 1.168 0.01168 1.168 0.01168
Drift eliminator thickness
38 Azge 0.1524 0.00152 0.1524 0.00152
(m)
Fill section equivalent diam-
39 Dy, 0.0381 0.00038 0.0381 0.00038
eter (m)
40 Fill section flow area (m?) Agin 67.29 6.729 67.881 6.692
Fill section surface area
41 Asurf 14221 3555.3 12064 3455
(m?)
Prandtl number of air at
42 P, 0.708 0.005 0.708 0.005
T=80 °C
Wetted fraction of fill sur-
43 Wisa 1 0 1 0
face area
Best- Best-
Original Original
Boundary Parameters Math. estimate estimate
) Nominal Absolute
(o) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
Inlet water mass flow rate
44 Maw,in 44.0089 2.20 44.0939 2.188
(ke/s)
45 Inlet air temperature (K) Ta,in 294.40 0.98 294.524 0.89
46 Inlet air humidity ratio Win 0.0162008 0.00131 0.016083 0.001
Best- Best-
Original Original
Special Dependent Math. estimate estimate
) Nominal Absolute
Parameters (o) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
47 Schmidt number Sc 0.6178 0.0041 0.6178 0.004
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4.3.2.2 Predicted Best-Estimated Response Values with Reduced Pre-

dicted Standard Deviations

Using the a priori matrices in Eqs. (4.7) - (4.10) together with the sensitivities
listed in Tables 4.6 - 4.10 in Eq. (3.99), the following predicted response covariance

matrix, CP'*?, is obtained:

0.59 0.37 0.17
crred = Cov ([T, [T69]% [RED]™) = .
i ov ([TWV], [T97] ] ] 0.37 0.53 0.18 (4.11)
0.17 0.18 1.62

The best-estimate response-parameter correlation matrix, CP**¢  is obtained
by means of Eq. (3.100) in conjunction with the a priori matrices presented in
Egs. (4.7) - (4.10) and the sensitivities listed in Tables 4.6 - 4.10.

The best-estimate nominal values of the outlet air temperature, Tél); outlet
water temperature 7, 15,50); and outlet air relative humidity, RH™, have been com-
puted using Eq. (3.98) coupled with the a priori matrices given in Egs. (4.7) -
(4.10) and the sensitivities listed in Tables 4.6 - 4.10. The resulting best-estimate
nominal values are displayed in Table 4.24. To facilitate comparison, the corre-
sponding measured and computed nominal values are also presented in this table.
Note that there are no direct measurements for the outlet water flow rate, mg’ 0
and the air mass flow rate m,. For these two responses, therefore, the predicted
best-estimate nominal values have been obtained by a forward re-computation
using the best-estimate nominal parameter values listed in Table 4.23, while the

predicted best estimate standard deviation for this response has been obtained

by using “best-estimate” values in Eq. (3.96), i.e.,

[ComP)" = [S,0]"[Caa)™[ST] ™ (4.12)
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Table 4.24: Computed, measured, and optimal best-estimate nominal values and standard deviations for the
outlet air temperature, outlet water temperature, outlet air relative humidity, outlet water mass flow rate and

air mass flow rate responses for case 1b.

Nominal Values and TV 759 RH® m? mg
Standard Deviations K] K] (%] [keg/s] kg/s]
Measured
nominal value 299.10 297.46 102.37 — —
standard deviation +0.86 +0.89 +1.28 — —
Computed
nominal value 296.50 298.21 102.83 43.89 20.75
standard deviation +1.21 +1.33 +19.25 +2.20 +6.54

Best-estimate
nominal value 297.41 296.82 102.76 44.02 23.18
standard deviation +0.77 +0.73 +1.27 +2.19 +7.20

The results presented in Table 4.24 indicate that the predicted standard de-
viations are smaller than either the computed or the experimentally measured
ones, except for the air mass flow rate. This exception is due to the simultaneous
use of all the available data, which causes the responses nominal values (and their
respective standard deviations) to be mutually correlated because of the covari-
ances between model parameters and responses (C,, # 0). In order to verify the
correctness of the calculation performed, a separate case without considering the
covariances between model parameters and responses (C,, = 0) has been devel-
oped and analyzed, and the results confirmed the theory expectations, yielding
all predicted standard deviations smaller than either the computed or the ex-
perimentally measured ones, even for the air mass flow rate. In the PM_CMPS
framework, the standard deviation values of the responses for which no exper-
imental data are available are only influenced by the correlations to the other
responses’ values, both experimental and computed. For this reason, the results
of the fully-correlated model (with C,, # 0) have been chosen: in fact, despite

the slightly bigger standard deviation for the air mass flow rate, which is the con-
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sequence of all the information simultaneously used in the PM_CMPS methodol-
ogy, those results are to be considered the most accurate, since they were obtained

by means of the simultaneous using of all the available data.

4.3.3 Uncertainty Analysis and Predictive Modeling of
Case 2: Fan Off, Unsaturated Air Conditions

The a priori response-parameter covariance matrix, C,,, for case 2, is com-

puted in Appendix A, Eq. (A.13), and is reproduced in Eq. (4.7).

J— meas meas meas
C,,=Cov (T T RH y Oy ey a47)

a,out » ~ w,out’

1036 2.81 222 -23264 130 0O --- (4.13)
= 1.58 196 201 —-23.76 -0.10 0O
—35.89 243 —-0.79 720.11 —-548 O

A A A A
where the measured correlated parameters are: oy = Ty, g = Tigp, a3 = Ty i ,0u =

A . . . . .
Pim, and a5 = V,,. The a priori parameter covariance matrix, C,,, for case 2, is

partly computed in Appendix B, Eq. (B.5), and is reproduced in Eq. (4.14).

Var(ag)  Cov(ag,an) e Cov(ag,ayr)
c Cov(az,a1)  Var(ag) e Cov(ag,ayr)
. 3 3 3
Cov(ayr, ay) . o Var(oayr)
16.27 3.56 2.13 —494.48 245 0 e 0
3.56 5.23 2.22 —138.46 028 0 e 0 (4.14)
2.13 2.22 2.85 —58.63 012 0 e 0
B —494.48 —138.46 —58.63 166678.40 —49.62 0 e 0
N 2.45 0.28 0.12 —49.62 089 0 e 0
0 0 0 0 0 0 e 0
o 3 . o 3 o o o
0 0 0 0 0 0 e 0.00025
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The a priori covariance matrix of the computed responses, C:9™?, for case 2,
is obtained by using Egs. (3.96) and (4.14) together with the sensitivity results

presented in Tables 4.11 - 4.15; the end result is:

cemr = Cov (T, TP, RHWY) = 8,,CaaS!,

oV otV Var(ay)  Cov(ag,az) e Cov(ay,ayr) otV or{M
a1 7" OaNg Oa1 7 dana
RCORCY Cov(az,n)  Var(az) e Cov(az,our) PURCONPCY
da1 7 dang . o ° ° Oar 777" dane
ARHW ARHM) ARHW) ARHW
dar 7 dana Cov(asz, ;) d A Var(auar) dar 777 dana
2.78 2.64 0.11
(4.15)
= 1264 3.85 0.56

0.11 0.56 1.37

] ] 1 ] meas meas meas A
The a priori covariance matrix, Cov (Tymees, Tiees RHI*) = C,,, of the

)] measured
;

measured responses (namely: the outlet air temperature, 17 = [Tél

T(50)

the outlet water temperature, 77 = [ w , and the outlet air relative

measured
w,out — ]

out

humidity, RH]'¢* = [RH (1)] measured) for case 2 is computed in Appendix A, Eq.

(A.12), and is as follows:
8.09 1.91 —-27.74
C,, = Cov (T} Toteus , RHe™) = | 191 1.94  —197 |.  (4.16)

a,out » =~ w,out’ out

2774 —1.97 195.81

4.3.3.1 Model Calibration: Predicted Best-Estimated Parameter Val-

ues with Reduced Predicted Standard Deviations

The best-estimate nominal parameter values have been calculated using Eq.
(3.93) coupled with the a priori matrices given in Egs. (4.13) - (4.16) and the
sensitivities listed in Tables 4.11 - 4.15. The resulting best-estimate nominal values
are listed in Table 4.25, below. The best-estimate absolute standard deviations of
these parameters are also listed in this table. These values have been obtained as

the square-roots of the diagonal elements of the matrix CP’*?, which is computed

ax )
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using Eq. (3.97) together with the a priori matrices presented in Eqs. (4.13) -
(4.16) and the sensitivities listed in Tables 4.11 - 4.15. For a more direct com-
parison, the original nominal parameter values and original absolute standard
deviations are also listed. As it is clear from Table 4.25, all the predicted best-
estimate standard deviations are smaller or at most equal to the original standard
deviations. The variations in the parameters values are proportional to the mag-
nitudes of their corresponding sensitivities: the parameters undergoing the largest
reductions in their best-estimate standard deviations are those characterized by

the largest sensitivities.

Table 4.25: Best-estimated nominal parameter values and their standard deviations for case 2.

Best- Best-
Original Original
Model Independent Math. estimate estimate
i Nominal Absolute
Scalar Parameters (o;) Notation Nominal Absolute

Value Std. Dev.
Value Std. Dev.

Air temperature (dry bulb),

1 Tap 298.882 4.034 298.799 2.23
(K)

2 Dew point temperature (K) Tap 292.077 2.287 292.803 2.16

3 Inlet water temperature (K) Tw,in 298.893 1.687 298.712 1.63

4 Atmospheric pressure (Pa) Patm 100588 408.26 100566 397.57

5 Wind speed (m/s) Vw 1.859 0.941 1.794 0.783
Sum of loss coefficients

6 Ksum 10 5 10.045 4.996
above fill

Dynamic viscosity of air at
7 m 1.98.107° 9.68-10~7 1.98.10—° 9.67-10~7
T=300 K (kg/m-s)

Kinematic viscosity of air at
8 v 1.57-1075 1.90-10~6 1.57-107° 1.90-1076
T=300 K (m?2/s)

Thermal conductivity of air
9 kair 0.02624 1.58-1073 0.02624 1.58-10~3
at T=300 K (W/m-K)

Heat transfer coefficient
10 Int 1 0.5 1.00532 0.5
multiplier

Mass transfer coefficient
11 fmt 1 0.5 0.9342 0.496
multiplier
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Best- Best-
Original Original
Model Independent Math. estimate estimate
i Nominal Absolute
Scalar Parameters (o;) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
Fill section frictional loss
12 f 4 2 4.088 1.96
multiplier
13 o) 25.5943 0.01 25.5943 0.01
Pys(T) parameters
14 al -5229.89 4.4 -5229.92 4.4
15 a0, cpa 1030.5 0.294 1030.5 0.294
16 Cpa(T) parameters ai1,cpa -0.19975 0.002 -0.19975 0.002
17 a2,cpa 3.97.107*  3.35107%  3.97.10*  3.35.107¢
18 a0, daw 7.06:10~9 0 7.06-10~9 0
19 a1,dav 2.65322 0.003 2.65322 0.003
Dav(T) parameters
20 a2, daw -6.17-1073%  2.30-107°  -6.17-107%  2.30-107°
21 a3, daw 6.55-10~6 3.80-108 6.55-10~6 3.80-10°8
22 aof -1143423 543 -1143423 543
h¢(T) parameters
23 ayy 4186.50768 1.8 4186.50822 1.8
24 aog 2005743.99 1046 2005743.78 1046
hg(T) parameters
25 alg 1815.437 3.5 1815.4363 3.5
26 ag,Nu 8.235 2.059 8.11039 2.055
27 Nusselt parameters a1,Nu 0.00314987 0.00105 0.00314987 0.001
28 a2, Nu 0.9902987 0.329 0.9902987 0.327
29 a3, Nu 0.023 0.0088 0.023 0.0088
Cooling tower deck width in
30 Wk 8.5 0.085 8.5 0.085
x-dir (m)
Cooling tower deck width in
31 Waky 8.5 0.085 8.5 0.085
y-dir (m)
Cooling tower deck height
32 Azgp 10 0.1 10 0.1
above ground (m)
33 Fan shroud height (m) Azfan 3 0.03 3 0.03
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Best- Best-
Original Original
Model Independent Math. estimate estimate
) Nominal Absolute
Scalar Parameters (o;) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
Fan shroud inner diameter
34 Dyan 4.1 0.041 4.1 0.041
(m)
35 Fill section height (m) Azpin 2.013 0.02013 2.013 0.02013
36 Rain section height (m) Azrgin 1.633 0.01633 1.633 0.01633
37 Basin section height (m) Azps 1.168 0.01168 1.168 0.01168
Drift eliminator thickness
38 Azge 0.1524 0.00152 0.1524 0.00152
(m)
Fill section equivalent diam-
39 Dy, 0.0381 0.00038 0.0381 0.00038
eter (m)
40 Fill section flow area (m?) Agin 67.29 6.729 67.207 6.72
Fill section surface area
41 Asurf 14221 3555.3 14005 3548.6
(m?)
Prandtl number of air at
42 P, 0.708 0.005 0.708 0.005
T=80 °C
Wetted fraction of fill sur-
43 Wisa 1 0 1 0
face area
Best- Best-
Original Original
Boundary Parameters Math. estimate estimate
) Nominal Absolute
(o) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
Inlet water mass flow rate
44 Maw,in 44.0193 2.201 44.0696 2.199
(kg/s)
45 Inlet air temperature (K) Ta,in 294.40 4.034 299.841 2.73
46 Inlet air humidity ratio Win 0.01379 0.00192 0.01406 0.00191
Best- Best-
Original Original
Special Dependent Math. estimate estimate
) Nominal Absolute
Parameters (o) Notation Nominal Absolute
Value Std. Dev.
Value Std. Dev.
47 Schmidt number Sc 0.5999 0.0159 0.5999 0.0159
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4.3.3.2 Predicted Best-Estimated Response Values with Reduced Pre-

dicted Standard Deviations

Using the a priori matrices in Eqs. (4.13) - (4.16) together with the sensitiv-
ities listed in Tables 4.11 - 4.15 in Eq. (3.99), the following predicted response

covariance matrix, CP'*? is obtained:

671 273 —22.80

be be be
cret= Cou ([T, [T00]", [REDV])) = | 273 237 —179
9280 —1.79 145.19

(4.17)

The best-estimate response-parameter correlation matrix, CP'? is obtained
by means of Eq. (3.100) in conjunction with the a priori matrices presented in
Egs. (4.13) - (4.16) and the sensitivities listed in Tables 4.11 - 4.15.

The best-estimate nominal values of the outlet air temperature, Tél); outlet
water temperature 7, I(USO); and outlet air relative humidity, RH™, have been com-
puted using Eq. (3.98) coupled with the a priori matrices given in Eqgs. (4.13) -
(4.16) and the sensitivities listed in Tables 4.11 - 4.15. The resulting best-estimate
nominal values are displayed in Table 4.26. To facilitate comparison, the corre-
sponding measured and computed nominal values are also presented in this table.
Note that there are no direct measurements for the outlet water flow rate, mY
and the air mass flow rate m,. For these two responses, therefore, the predicted
best-estimate nominal values have been obtained by a forward re-computation
using the best-estimate nominal parameter values listed in Table 4.25, while the

predicted best estimate standard deviation for this response has been obtained

by using “best-estimate” values in Eq. (3.96), i.e.,

[ComP) = [S,0]"[Caa)™[ST] ™ (4.18)
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Table 4.26: Computed, measured, and optimal best-estimate nominal values and standard deviations for the
outlet air temperature, outlet water temperature, outlet air relative humidity, outlet water mass flow rate and

air mass flow rate responses for case 2.

Nominal Values and TV 759 RH® m? mg
Standard Deviations K] K] (%] [keg/s] kg/s]
Measured
nominal value 299.11 298.10 89.61 — —
standard deviation +2.84 +1.39 +13.62 — —
Computed
nominal value 298.79 297.42 99.80 43.91 15.84
standard deviation +1.67 +1.96 +1.17 +2.20 +12.20

Best-estimate
nominal value 298.65 297.52 99.69 43.97 14.86
standard deviation +1.57 +1.38 +1.09 +2.19 +8.34

The results presented in Table 4.26 indicate that, as anticipated, the predicted
standard deviations are smaller than either the computed or the experimentally
measured ones. This is consequential to utilizing the PM_CMPS methodology
together with consistent computational and experimental information. Unspot-
ted errors can often make the used information inconsistent; methods to confront
these situations are discussed in [37]. It is also worth noting that the PM_CMPS
methodology has reduced the predicted standard deviation for the water mass
flow rate and for the air mass flow rate responses, despite the lack of experimen-
tally measure data. This is due to the global characteristics of the PM_CMPS
methodology to foresee a simultaneous combination of all the available data in
the phase-space, yielding this way the aforementioned best-estimate predicted re-
sults; currently used data assimilation methodologies, on the other hand, proceed

by combine the available information in a sequential way [38, 39].
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4.4 Uncertainty Analysis and Predictive Mod-
eling of Mechanical Draft Cases

The results of particular cases of case 1 and case 2 are shown, for verification
purposes, in this section: the air conditions are in fact the same as in case 1 and
2, but the difference consists in the cooling tower being operated in mechanical
draft mode, determining a prior: the air mass flow rate through the cooling tower
and therefore simplifying the governing equations system. The results shown are
from [31, 32].

Following the same naming criteria used for case 1 and 2 in Chapter 2, we

can list them as:

e Case 3: the cooling tower is operated in fan-on mode (mechanical draft)

and the outlet air is in saturated conditions; just as case 1, this case is split

into two subcases according to the inlet air conditions:

— Subcase I: the inlet air is in unsaturated conditions; this means that

unsaturated inlet air becomes saturated at a certain control volume of
the fill section along the height of the cooling tower. This particular

case of case la will be referred to as case 3a;

— Subcase II: the inlet air is in saturated conditions: in this subcase,

air is in saturated condition from the inlet through the outlet of the
fill section, i.e., air is saturated in all the 49 control volumes. This

particular case of case 1b will be referred to as case 3b.

e Case 4: the cooling tower is operated in fan-on mode (mechanical draft)

and the outlet air is in unsaturated conditions; this is a particular case of
case 2. Just as for case 2, in this case it is only possible for inlet air to be

in unsaturated conditions as well, hence there is no need for subcases.
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For brevity reasons, only the predicted best-estimated response values with

the relative reduced predicted standard deviations are hereby reported.

4.4.1 Predicted Best-Estimated Response Values with Re-

duced Predicted Standard Deviations for Case 3a

The a priori matrices for Case 3a are detailed in [32]. The four system re-
sponses are Ta(l), TS’O), RH® and m$”. The air mass flow rate m, is no longer a
response, since its value is known being the cooling tower operated in mechanical
draft mode.

The resulting best-estimate nominal values are displayed in Table 4.27. To
facilitate comparison, the corresponding measured and computed nominal values
are also presented in this table. Note that there are no direct measurements for
the outlet water flow rate, mS? . For this response, therefore, the predicted best-
estimate nominal value has been obtained by a forward re-computation using
the best-estimate nominal parameter values listed in [32], while the predicted

best estimate standard deviation for this response has been obtained by using

“best-estimate” values in Eq. (3.96), i.e.,

[CmP) = [S,0]"[Caa)™[ST.] ™ (4.19)

The results presented in Table 4.27 indicate that, as anticipated, the predicted
standard deviations are smaller than either the computed or the experimentally
measured ones. More specifically, comparing to the best-estimated standard devi-
ations, the experimentally measured standard deviations associated with the mea-
sured quantities for 7", TS? and RH® are reduced by 2.3%, 1.8% and 5.9%,
respectively; whereas, the computed standard deviations associated with the com-

puted quantities for 7., TS and RH® are reduced by 22%, 38%, and 68%,
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respectively. As it can be seen, the improvements to the computed standard devi-
ations are quite large, especially to the standard deviation of the computed outlet
air relative humidity response. This is consequential to utilizing the PM_CMPS
methodology together with consistent computational and experimental informa-
tion. Unspotted errors can often make the used information inconsistent; methods
to confront these situations are discussed in [37]. It is also worth noting that the
PM_CMPS methodology has reduced the predicted standard deviation for the
water mass flow rate response, despite the lack of experimentally measure data.
This is due to the peculiar characteristic of the PM_CMPS methodology to foresee
a simultaneous combination of all the available data in the phase-space, yielding
this way the aforementioned best-estimate predicted results; currently used data
assimilation methodologies, on the other hand, proceed by combine the available

information in a sequential way [38, 39].

Table 4.27: Computed, measured, and optimal best-estimate nominal values and standard deviations for the
outlet air temperature, outlet water temperature, outlet air relative humidity, and outlet water mass flow rate

responses for case 3a.

Nominal Values and él) 15,50) RHW mSO)
Standard Deviations K] K] (%] [kg/s]
Measured
nominal value 294.24 294.71 101.14 —
standard deviation +1.28 +1.10 +2.70 —
Computed
nominal value 295.22 294.24 100.29 43.75
standard deviation +1.60 +1.75 +7.94 +2.20

Best-estimate
nominal value 294.53 294.73 101.54 43.66

standard deviation +1.25 +1.08 +2.54 +2.19
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4.4.2 Predicted Best-Estimated Response Values with Re-

duced Predicted Standard Deviations for Case 3b

The a priori matrices for Case 3b are detailed in [32]. The four system re-
sponses are Tél), TU(JE’O), RH®W and mg 9 The air mass flow rate m, is no longer a
response, since its value is known being the cooling tower operated in mechanical
draft mode.

The resulting best-estimate nominal values are displayed in Table 4.28. To
facilitate comparison, the corresponding measured and computed nominal values
are also presented in this table. Note that there are no direct measurements for
the outlet water flow rate, mg’ 9 TFor this response, therefore, the predicted best-
estimate nominal value has been obtained by a forward re-computation using
the best-estimate nominal parameter values listed in [32], while the predicted

best estimate standard deviation for this response has been obtained by using

“best-estimate” values in Eq. (3.96), i.e.,
[Cfn?mp]be _ [STa]be[Caa]be [Sia} be (42())

Table 4.28: Computed, measured, and optimal best-estimate nominal values and standard deviations for the
outlet air temperature, outlet water temperature, outlet air relative humidity, and outlet water mass flow rate

responses for case 3b.

Nominal Values and Ttgl) T,S,m) RH® mso)
Standard Deviations K] K] (%] [kg/s]
Measured
nominal value 294.77 295.17 101.73 —
standard deviation +0.90 +0.86 +2.48 —
Computed
nominal value 295.84 294.97 101.99 43.76
standard deviation +1.33 +1.49 +11.57 +2.19

Best-estimate
nominal value 294.99 295.18 102.03 43.62
standard deviation +0.88 +0.85 +2.41 +2.18
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The results presented in Table 4.28 indicate that the predicted standard de-
viations are smaller than either the computed or the experimentally measured
ones. More specifically, comparing to the best-estimated standard deviations,
the experimentally measured standard deviations associated with the measured
quantities for Ta(l), T&,SO) and RH® are reduced by 2.2%, 1.2% and 2.8%, respec-
tively; whereas, the computed standard deviations associated with the computed
quantities for T, a(l), T8 and RH® are reduced by 34%, 43%, and 79%, respec-
tively. Again, the computed standard deviations are substantially improved by the
PM_CMPS methodology. Moreover, the standard deviation associated with the
computed outlet water mass flow rate, m$ 0), is also reduced by 0.5%, even though
the measurements are not available for this response. Unspotted errors can often
make the used information inconsistent; methods to confront these situations are
discussed in [37]. It is also worth noting that the PM_CMPS methodology has
reduced the predicted standard deviation for the water mass flow rate response,
despite the lack of experimentally measure data. This is due to the peculiar char-
acteristic of the PM_CMPS methodology to foresee a simultaneous combination
of all the available data in the phase-space, yielding this way the aforementioned
best-estimate predicted results; currently used data assimilation methodologies,
on the other hand, proceed by combine the available information in a sequential

way [38, 39].

4.4.3 Predicted Best-Estimated Response Values with Re-

duced Predicted Standard Deviations for Case 3b

The a priori matrices for Case 4 are detailed in [31]. The four system responses
are Tél), Tfo), RH® and mz(f 9 The air mass flow rate m, is no longer a response,
since its value is known being the cooling tower operated in mechanical draft

mode.
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The resulting best-estimate nominal values are displayed in Table 4.29. To
facilitate comparison, the corresponding measured and computed nominal values
are also presented in this table. Note that there are no direct measurements for

the outlet water flow rate, mEY

. For this response, therefore, the predicted best-
estimate nominal value has been obtained by a forward re-computation using
the best-estimate nominal parameter values listed in [31], while the predicted

best estimate standard deviation for this response has been obtained by using

“best-estimate” values in Eq. (3.96), i.e.,
[Cem)" = [80]" [Caa] " [S1]” (4.21)

Table 4.29: Computed, measured, and optimal best-estimate nominal values and standard deviations for the
outlet air temperature, outlet water temperature, outlet air relative humidity, and outlet water mass flow rate

responses for case 4.

Nominal Values and Tél) T,S,m) RH® mso)
Standard Deviations K] K] (%] [kg/s]
Measured
nominal value 298.34 295.68 81.98 —
standard deviation +3.36 +1.59 +15.89 —
Computed
nominal value 297.46 294.58 86.12 43.60
standard deviation +3.30 +2.78 +14.90 +2.21

Best-estimate
nominal value 298.45 295.67 82.12 43.67
standard deviation +2.59 +1.54 +12.05 +2.20

The results presented in Table 4.29 indicate that the predicted standard de-
viations are smaller than either the computed or the experimentally measured
ones; again, the computed standard deviations are substantially improved by the
PM_CMPS methodology. Moreover, the standard deviation associated with the

computed outlet water mass flow rate, mg 0), is also reduced by 0.5%, even though
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the measurements are not available for this response. Unspotted errors can often
make the used information inconsistent; methods to confront these situations are
discussed in [37]. It is also worth noting that the PM_CMPS methodology has
reduced the predicted standard deviation for the water mass flow rate response,
despite the lack of experimentally measure data. This is due to the peculiar char-
acteristic of the PM_CMPS methodology to foresee a simultaneous combination
of all the available data in the phase-space, yielding this way the aforementioned
best-estimate predicted results; currently used data assimilation methodologies,
on the other hand, proceed by combine the available information in a sequential

way [38, 39].
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Discussion and Conclusions

The CTTool model, which has been validated in this thesis, is foreseen to
be part of a facility modeling program suite, within which it is envisaged to be
coupled to modules simulating the chemical processes which would provide the
input for the cooling tower model, as well as to atmospheric transport models,
which would couple the output of the cooling tower model to the external environ-
ment. Within this framework, the present work focused on performing sensitivity
and uncertainty analysis, data assimilation, model calibration, model validation
and best-estimate predictions with reduced uncertainties on a counter-flow, wet
cooling tower model developed by Savannah River National Laboratory.

A relevantly more refined and efficient numerical method was developed and
applied to the cooling tower model originally presented in [26]; this allowed to
reach convergence for all the data sets, and increased the accuracy in computing
the steady state distributions of the model’s quantities of interest. The behav-
ior of the cooling tower has been investigated under several different operating
conditions; more specifically, three cases have been selected depending on the air
conditions at the inlet of the cooling tower and the air conditions at the outlet of

the cooling tower. For all the cases the following five model responses have been
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selected: (i) the water mass flow rate at the outlet of the bottom control volume
of the fill section of the cooling tower, mq(fo); (ii) the water temperature at the
outlet of of the bottom control volume of the fill section of the cooling tower,
TS’O); (iii) the air temperature at the outlet of the top control volume of the fill
section of the cooling tower, Tél); (iv) the humidity ratio at the outlet of the top
control volume of the fill section of the cooling tower, RH"; and (v) the air mass
flow rate at the outlet of the cooling tower, m,,.

Applying the general adjoint sensitivity analysis methodology, the sensitivities
of the model responses to all the model parameters were calculated in an efficient
and exact way by implementing the adjoint cooling tower sensitivity model. While
the cooling tower governing system presents nonlinearity in the forward state
function, the adjoint sensitivity model possesses the relevant feature of being
linear in the adjoint functions, whose one-to-one correspondence to the forward
state functions has been pointed out. As discussed, the utilization of the adjoint
functions allows the simultaneous computation of the sensitivities of each model
response to all of the 47 model parameters just running a single adjoint model
computation; obtaining the same results making use of the forward model together
with finite-differences methods would require 47 separate computations, with the
relevant disadvantage of leading to approximate results of the sensitivities, as
opposed to the exact ones yielded by applying the adjoint procedure.

The aforementioned adjoint functions have been obtained, by solving the ad-
joint sensitivity system, and thoroughly verified, in order to pave the way to the
specific calculations necessary to yield the response sensitivities. These sensitivi-
ties have then been numerically computed for the subsequent realization of several
operations, such as: (i) ranking the model parameters according to the magnitude

of their contribution to response uncertainties; (ii) determining the propagation of

uncertainties, in form of variances and covariances, of the parameters in the model
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in order to quantify the uncertainties of the model responses; (iii) allowing pre-
dictive modeling operations, such as experimental data assimilation and model
parameters calibration, with the aim to yield best-estimate predicted nominal
values both for model parameters and responses, with correspondently reduced
values for the predicted uncertainties associated.

More specifically, the ASAM was used to efficiently obtain the sensitivities
of all the model responses to the model parameters, and therefore list, for each
case, the magnitude of all the model parameters’ contributions to the model
responses’ uncertainties. These sensitivities, whose exact values would have been
impossible to obtain by using forward methods, and whose approximate values
would have still been very computationally expensive to compute without the
application of the ASAM, showed that the three cases analyzed yield sensitivity
values very different from each other, despite the three cooling tower governing
systems appearing very similar to each other. This phenomenon is particularly
evident when analyzing and ranking the sensitivity values of the air humidity ratio
and of the air mass flow rate responses with respect to the model parameters;
the values of these sensitivities are shown in fact to change up to one order of
magnitude from one case to the other. It was also shown that the air humidity
ratio and of the air mass flow rate are not only the responses presenting the
highest sensitivity values with respect to a few key-parameters, but also those
showing non-negligible sensitivity values to the highest number of parameters.

By making use of the computed sensitivities within the framework of the “pre-
dictive modeling for coupled multi-physics systems” (PM_CMPS) methodology,
explicit mathematical formulations have been derived for the best-estimate nomi-
nal values of the model parameters and responses, together with the best-estimate
reduced standard deviations of the predicted model parameters and responses.

The results stemming from this work show that the PM_CMPS procedure allows
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to improve the predicted standard deviation reducing them to values smaller than
the smallest between the standard deviation values relative to computed and mea-
sured results, even in the case of responses for which experimentally measured
values are not available. The only exception to what just stated occurred in the
framework of the mixed, partially saturated case: the best-estimate standard devi-
ation value for the air mass flow rate response is slightly bigger than the standard
deviation value relative to the computed response. This exception is due to the
simultaneous use of all the available data, which causes the responses nominal val-
ues (and their respective standard deviations) to be mutually correlated because
of the covariances between model parameters and responses (C,,, # 0). In order
to verify the correctness of the calculation performed, a separate case without
considering the covariances between model parameters and responses (C,, = 0)
has been developed and analyzed, and the results confirmed the theory expecta-
tions, yielding all predicted standard deviations smaller than either the computed
or the experimentally measured ones, even for the air mass flow rate.

In the PM_CMPS framework, the standard deviation values of the responses
for which no experimental data are available are only influenced by the correla-
tions to the other responses’ values, both experimental and computed. For this
reason, therefore, the results of the fully-correlated model (with C,, # 0) have
been chosen: in fact, despite the slightly bigger standard deviation for the air
mass flow rate, which can be interpreted as a consequence of all the information
simultaneously used in the PM_CMPS methodology, those results are to be con-
sidered the most accurate, since they were obtained by means of the simultaneous
using of all the available data. All the responses for which both experimental and
computational results are available have their standard deviations reduced by
the application of the predictive modeling methodology. This is due to the pe-

culiar characteristic of the PM_CMPS methodology to foresee a simultaneous
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combination of all the available data in the phase-space, yielding this way the
aforementioned best-estimate predicted results; currently used data assimilation
methodologies, on the other hand, proceed by combining the available informa-
tion in a sequential way [40, 41]. The reduced standard deviation values have to
be attributed to the coupled application of the PM_CMPS methodology together
with consistent (as opposed to discrepant) computational and experimental in-
formation. Unspotted errors can often make the used information inconsistent;
methods to confront these situations are discussed in [39)].

The adjoint sensitivity analysis methodology utilized for the exact and effi-
cient computation of the 1%!-order response sensitivities to model parameters has

2"_order response sensitivities with re-

been recently extended to calculate the
spect to parameters for linear [5, 6] and nonlinear [7, 8| large-scale systems. As
discussed in [5-8], the major effects of the 2"%-order response sensitivities on the
computed moments of the response distribution are: (a) causing the “response
expected value” to differ from the “response nominal value”; and (b) a decisive
contribution in causing asymmetries in the distribution of the model response. It
is worth noting that ignoring second-order sensitivities would void the third-order
response correlations, causing the skewness of the response to be overlooked. As a
natural consequence, any occurrence falling in a response’s long/short tails, as it
happens for uncommon but relevant events (e.g., major accidents, catastrophes),
would most probably be ignored. Current efforts are aimed at extending the ad-
joint sensitivity analysis and the PM_CMPS methodologies to further generalized
applications, in order to make possible the computation of 37%- and higher-order
sensitivities and response distributions. The possibility to exactly and efficiently
compute high-order response sensitivities for large-scale systems is expected to
provide a relevant contribution to the areas of uncertainty quantification, model

validation, reduced-order modeling, and predictive modeling/data assimilation.
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Appendix A

Statistical Analysis of
Experimentally Measured

Responses

Starting from April, 2004 to August, 2004, a total of 8079 benchmark data sets
for F-area cooling towers (fan-off mode) were measured and recorded at SRNL
(Savannah River National Laboratory) for F-Area Cooling Towers, one every
fifteen minutes [33]. In each one of these data sets the following (four) measured
quantities are contained: (i) outlet air temperature measured with the “Tidbit”
sensor, which will be referred to in the following as T, ou(riabit); (ii) outlet air
temperature measured with the “Hobo” sensor, which will be referred to in the
following as T}, out(Hobo); (iil) outlet water temperature, which will be referred to
as Ty'ens; (iv) outlet air relative humidity, which will be referred to as RH™*.
SRNL compared these measurements to the numerical results obtained by using
their CTTool code [26] as far the air exit relative humidity (RH) is regarded; a

data set is intended as saturated if the computed value of RH falls in the super

saturation range (equal to or greater than 100%). With this procedure, 667 data
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sets out of the 8079 complexively measured have been identified as “saturated”.

These 667 saturated points are further separated into two subcases based on
the air inlet boundary conditions at the fill section entrance. As already men-
tioned, case la describes a situation in which air enters the fill section in unsatu-
rated condition, but it gets saturated before reaching the outlet of the fill section;
in case 1b air enters the fill section already saturated, exiting the fill section also
saturated. Among the 667 saturated data sets, 377 of them have unsaturated air
inlet boundary conditions, thus they are grouped into case 1a; whereas the other
290 data sets have saturated air inlet boundary conditions at the fill section en-
trance, thus they are grouped into case 1b. In other 6717 benchmark data sets
the air conditions are always unsaturated; hence these data sets are considered
to belong to case 2.

Histogram plots of these measurement sets (each set containing measurements
of Ty out(ridvit)> La,out(Hobo), Toout> and RH™*), together with statistical analy-
ses thereof are presented in Section A.1 for case la, in Section A.2 for case 1b
and in Section A.3 for case 2. The measured outlet (exit) air relative humidity,
RH™ was obtained using Hobo humidity sensors. The accuracy of these sen-
sors is depicted in Figure A.1, which indicates the following tolerances (standard
deviations): £2.5% for relative humidity from 10 to 90%; between +2.5% and
+3.5% for relative humidity from 90% to 95%; and +£3.5% ~ +4.0% from 95
to 100%. However, when exposed to relative humidity above 95%, the maximum
sensor error may temporally increase by an additional 1%, so that the error can

reach values between +4.5% to +5.0% for relative humidity from 95 to 100%.
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Figure A.1: Humidity sensor accuracy plot (adopted from the specification of HOBO Pro v2).

A.1 Statistical Analysis of experimentally mea-
sured responses for Case 1la: Fan Off, Satu-
rated Outlet Air Conditions, with Inlet Air

Unsaturated

A total of 377 measured data sets are grouped into case la, as they are con-
sidered according to the results produced by CTTool code to be “saturated” at
the outlet of the fill section, and for each data set, air enters the fill section in
unsaturated condition. Although the computed relative humidity for each of the
377 data sets is greater than 100%, the measured relative humidity RH™¢** ac-
tually spans the range from 95.5% to 104.1%. However, if the humidity sensor’s
tolerance (standard deviation, as shown in Figure A.1) is taken into account, it
would make it possible for a measurement with RH™¢** in the range of 95% ~

105% to be nevertheless “saturated”. Figure A.2 shows the histogram plot of the

141



APPENDIX A. STATISTICAL ANALYSIS OF MEASURED RESPONSES

measured outlet air relative humidity for the 377 benchmark data sets which were
considered as “saturated”. This plot, as well as all of the other histogram plots
in this work, has its total respective area normalized to unity. As shown in this
figure, the measured relative humidity RH™* values fall in a range spanning

from 95.5% to 104.1% (which are both within the 95% ~ 105% range limit).

Measured Air Outlet Relative Humidity Histogram Plot
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9 7 98 99 100 101 102 103 104
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Figure A.2: Histogram plot of the measured air outlet relative humidity, within the 377 data sets collected by

SRNL from F-Area cooling towers for case la.

The statistical properties of the (measured air outlet relative humidity) dis-
tribution shown in Figure A.2 have been computed using standard packages, and
are presented in Table A.1. These statistical properties will be needed for the un-
certainty quantification and predictive modeling computations presented in the

main body of this work.

Table A.1: Statistics of the air outlet relative humidity distribution [%] for case la.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

95.5 104.1 8.6 102.28 1.92 3.68 -0.83 3.03

The histogram plots and their corresponding statistical characteristics of the
377 data sets for the other measurements, namely for: the outlet air temperature

[Tawtmdbit)} measured using the “Tidbit” sensors; the outlet air temperature
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[T a,0ut( Hobo)] measured using the “Hobo” sensors; and the outlet water temper-

ature [ me“S] are reported below in Figures A.3 through A.6, and Tables A.2

w,out

through A.5, respectively.
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Figure A.3: Histogram plot of the air outlet temperature measured using “Tidbit” sensors, within the 377 data

sets collected by SRNL from F-Area cooling towers for case la.

Table A.2: Statistics of the air outlet temperature distribution [K], measured using “Tidbit” sensors for case 1la.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

293.91 304.31 10.4 296.79 1.06 1.12 1.71 12.18

Air Outlet Temperature (Hobo) Histogram Plot
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Figure A.4: Histogram plot of the air outlet temperature measured using “Hobo” sensors, within the 377 data

sets collected by SRNL from F-Area cooling towers for case la.

143



APPENDIX A. STATISTICAL ANALYSIS OF MEASURED RESPONSES

Table A.3: Air outlet temperature distribution statistics [K], measured using “Hobo” sensors for case la.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

294.00 302.63 8.63 296.41 1.01 1.02 1.08 7.68
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Figure A.5: Histogram plot of water outlet temperature measurements, within the 377 data sets collected by

SRNL from F-Area cooling towers for case la.

Table A.4: Water outlet temperature [K] distribution statistics for case la.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

295.81 300.32 4.51 297.91 1.10 1.21 0.46 2.25

Putting the above-mentioned four measured responses in the following order:

(i) outlet air temperature T, oue(rigbir); (i) outlet air temperature 15, ous(robo); (iii)

meas

outlet water temperature T'cei; and (iv) outlet air relative humidity RH**,

yields the following “measured response covariance matrix”, denoted as:
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Cov (Ta,out(Tidbit)a Ta,out(Hobo)7 Tout RH;Z(ZQS)

w,out’

1.12 1.05 0.62 —0.07
1.05 1.02 0.59 —0.003
0.62 0.59 1.21 —-0.64

—-0.07 —0.003 —-0.64 3.68

(A1)

For the future purposes of uncertainty quantification, data assimilation, model

calibration and predictive modeling, the data measurements provided by the

“Tidbit” and “Hobo” temperature sensors can be combined into an “averaged”

data set of measured air outlet temperatures, which will be indicated as

Tmeas

a,out *

The histogram plot and corresponding statistical characteristics of this averaged

quantity are shown in Figure A.6 and Table A.5, respectively.
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Figure A.6: Histogram plot of air outlet temperatures averaged from Figures A.3 and A.4.

303

Table A.5: Statistics of the averaged air outlet temperature distribution [K] for case la.

Minimum Maximum Range Mean Std.Dev. Variance Skewness

Kurtosis

294.3 303.47 9.17 296.45 1.03 1.06 1.40

9.76
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Calculating the covariance matrix, denoted as [Cov (T;jﬁfﬁ, Toout> RH, meas) ] data?
for all of the considered experimental data points for the averaged outlet air tem-
perature [Tmeas] , the outlet water temperature [Tmeas] , and the outlet air relative

a,out w,out

humidity [RH]S*®], yields the following covariance matrix:

106  0.61 —0.04
[Cov (T, Totont, RHput®) | =] 0.61 1.21 —0.65 (A.2)
—0.04 —0.65 3.68

A comparison between the results in Egs. (A.1) and (A.2) makes clear that
the elimination of the second column and row in Eq. (A.1) yields a 3-by-3 matrix
which has entries basically equivalent to the covariance matrix shown in Eq.
(A.2). Therefore, this means that the temperature distributions measured by the
“Tidbit” and “Hobo” sensors do not need to be dealt with as separate data sets
for the purposes of uncertainty quantification and predictive modeling.

The standard deviation of the humidity sensor utilized for the measurements
(G sensor = 5.0%for the response RH ) have been already considered for the data
at the 100%-saturation point by including in the category of the “saturated” data
sets those that have their respective measured relative humidity, RH"™**, between
95.5% and 104.1%. In addition to that, the respective uncertainties of the tem-
perature sensors (standard deviations, ogensor = 0.2K for both responses Tél) and
Tfo)) must also be taken into consideration for the 377 data sets. The measuring
methods and devices are not dependent with respect to each other, therefore the
data standard deviation ogqsiic, Stemming from the statistical analysis of the 377
benchmark data sets, and the sensor standard deviation, gs,sor, Stemming from

the instrument’s uncertainty, must stack according to the well-known formula of

“addition of the variances of uncorrelated variates”, i.e.:

7= \/O-SQtatistic + 0?2 (AS)

sensor
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Coupling the above relation with the result presented in Eq. (A.2) will lead to
incremented values of the variances on the diagonal of the respective “measured

covariance matrix”; this new form of the covariance matrix which will be denoted
as Cov (Timeas, Taouts RH?%*) . The obtained result is:
1.10  0.61 —0.04
Cov (Tyiit Totes RH™) = | 061 125 —0.64 (A1)
—0.04 —-0.64 3.68

In the predictive modeling formalism (which includes uncertainty quantifica-
tion, data assimilation, and model calibration) the covariance matrix between
the measured parameters and responses is required as an input. In the case of
interest, all the parameters and responses can be considered as uncorrelated, ex-
cepting the measured responses considered in this Appendix and the measured
parameters listed in Appendix B. The “parameter-response” covariance matrix
in Eq. (A.5), indicated as Cov (ngﬁﬂngg;‘, RH™ oy, ..., 0447), refers to the
above mentioned parameters (namely: dry-bulb air temperature, Tz; dew-point
air temperature, Ty, inlet water temperature, T ins atmospheric pressure, P,
and wind speed V,,) and responses (i.e., average outlet air temperature, outlet
water temperature, and outlet air relative humidity):

Cov (Tmeas pmeas RHmeas7 ari, ..., 0447)

a,out » ~ w,out’

1.53 1.01 0.76 —-10446 011 O .. O (A.5)
=110 1.08 1.28 -—111.01 0.12 O .. O
0.06 034 —-0.75 76.60 —-025 0 .. O
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A.2 Statistical Analysis of experimentally mea-
sured responses for Case 1b: Fan Off, Satu-
rated Outlet Air Conditions, with Inlet Air

Saturated

A total of 290 measured data sets are grouped into case 1b, as they are
considered according to the results produced by CTTool code to be “saturated”
at the outlet of the fill section, and for each data set, air enters the fill section in
saturated condition. Although the computed relative humidity for each of the 290
data sets is greater than 100%, the measured relative humidity RH™** actually
spans the range from 98.8% to 104.1%. However, if the humidity sensor’s tolerance
(standard deviation, as shown in Figure A.1) is taken into account, it would
make it possible for a measurement with RH™¢**in the range of 95% ~ 105% to
be nevertheless “saturated”. Consequently, all the 290 benchmark data sets have
their RH™** falling into the 95% ~ 15% range, therefore they were all considered

as valid “saturated” data sets.

Measured Air Outlet Relative Humidity Histogram Plot
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Figure A.7: Histogram plot of the measured air outlet relative humidity, within the 290 data sets collected by

SRNL from F-Area cooling towers for case 1b.

Figure A.7 shows the histogram plot of the measured air outlet relative hu-
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midity for the 290 benchmark data sets, which were considered as “saturated”.
As shown in this figure, the measured relative humidity RH™** spans the range
from 98.8% to 104.1%.

The statistical properties of the (measured air outlet relative humidity) dis-
tribution shown in Figure A.7 have been computed using standard packages, and
are presented in Table A.6. These statistical properties will be needed for the un-
certainty quantification and predictive modeling computations presented in the

main body of this work.

Table A.6: Statistics of the air outlet relative humidity distribution [%] for case 1b.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

98.8 104.1 5.3 102.83 1.28 1.65 -0.72 2.07

The histogram plots and their corresponding statistical characteristics of the
290 data sets for the other measurements, namely for: the outlet air temperature
[T wutmdbit)} measured using the “Tidbit” sensors; the outlet air temperature
[Ta,out( Hobo)] measured using the “Hobo” sensors; and the outlet water temper-
ature [Tﬁ;‘jﬂ are reported below in Figures A.8 through A.10, and Tables A.7

through A.9, respectively.
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Figure A.8: Histogram plot of the air outlet temperature measured using “Tidbit” sensors, within the 290 data

sets collected by SRNL from F-Area cooling towers for case 1b.
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Table A.T: Statistics of the air outlet temperature distribution [K], measured using “Tidbit” sensors for case 1b.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

294.74 298.66 3.92 296.53 0.84 0.70 0.66 2.51
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Figure A.9: Histogram plot of the air outlet temperature measured using “Hobo” sensors, within the 290 data

sets collected by SRNL from F-Area cooling towers for case 1b.

Table A.8: Air outlet temperature distribution statistics [K], measured using “Hobo” sensors for case la.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

294.22 298.66 4.44 296.47 0.85 0.72 0.62 2.63
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Figure A.10: Histogram plot of water outlet temperature measurements, within the 290 data sets collected by

SRNL from F-Area cooling towers for case 1b.
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Table A.9: Water outlet temperature [K] distribution statistics for case la.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

295.54 299.98 4.44 298.21 0.87 0.75 -0.60 3.34

Putting the above-mentioned four measured responses in the following order:
(i) outlet air temperature T}, oui(riaviry; (i) outlet air temperature T oui(robo); (iil)
outlet water temperature 77°%; and (iv) outlet air relative humidity RH]'*,

w,out out

yields the following “measured response covariance matrix”, denoted as:

Cov (Ta,out(Tidbit)a Ta,out(Hobo)7 Teut RHmeas)

w,out ? out

0.70 0.71 0.19 0.13
0.71 0.72 0.18 0.14 (A.6)
0.19 0.18 0.75 0.21

0.13 0.14 0.21 1.65

For the future purposes of uncertainty quantification, data assimilation, model
calibration and predictive modeling, the data measurements provided by the
“Tidbit” and “Hobo” temperature sensors can be combined into an “averaged”

data set of measured air outlet temperatures, which will be indicated as T}
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Figure A.11: Histogram plot of air outlet temperatures averaged from Figures A.8 and A.9.
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Table A.10: Statistics of the averaged air outlet temperature distribution [K] for case 1b.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

294.48 298.66 4.18 296.50 0.84 0.71 0.65 2.56

The histogram plot and corresponding statistical characteristics of the averaged
temperature 7<% are shown in Figure A.11 and Table A.10, respectively.

a,out

Calculating the covariance matrix, denoted as [Cov (T;jﬁfﬁ, Toout> RH, meas) ] data?
for all of the considered experimental data points for the averaged outlet air tem-
perature [Tmeas] , the outlet water temperature [Tmms] , and the outlet air relative

a,out w,out

humidity [RH]'$*®], yields the following covariance matrix:

0.71 0.18 0.14
[Cov (T, Torons, RHpwe®)] =1 0.18 0.75 0.21 (A7)
0.14 0.21 1.65

A comparison between the results in Eqs. (A.6) and (A.7) makes clear that
the elimination of the second column and row in Eq. (A.6) yields a 3-by-3 matrix
which has entries basically equivalent to the covariance matrix shown in Eq.
(A.7). Therefore, this means that the temperature distributions measured by the
“Tidbit” and “Hobo” sensors do not need to be dealt with as separate data sets
for the purposes of uncertainty quantification and predictive modeling.

The standard deviation of the humidity sensor utilized for the measurements
(Csensor = 5.0% for the response RH™) have been already considered for the
data at the 100%-saturation point by including in the category of the “saturated”
data sets those that have their respective measured relative humidity, RH™®**,
between 95.5% and 104.1%. In addition to that, the respective uncertainties of
the temperature sensors (standard deviations, osensor = 0.2K for both responses

TV and T, 1550)) must also be taken into consideration for the 290 data sets. Using
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the relation in the above Eq. (A.3) in conjunction with the result presented in Eq.
(A.7) will lead to an increase of the variances on the diagonal of the respective

“measured covariance matrix”. The final result obtained is:

0.75 0.18 0.14
Couv (Towt, Totons, RHy™) = | 018 0.79 0.21 (A.8)
0.14 0.21 1.65

In the predictive modeling formalism (which includes uncertainty quantifica-
tion, data assimilation, and model calibration) the covariance matrix between
the measured parameters and responses is required as an input. In the case of
interest, all the parameters and responses can be considered as uncorrelated, ex-
cepting the measured responses considered in this Appendix and the measured
parameters listed in Appendix B. The “parameter-response” covariance matrix
in Eq. (A.9), indicated as Cov (T%%S,Tﬂsgf, RH™®* ap, ..., a47), refers to the
above mentioned parameters (namely: dry-bulb air temperature, Ty; dew-point
air temperature, Ty, inlet water temperature, 7,, ;», atmospheric pressure, Py,

and wind speed V,,) and responses (i.e., average outlet air temperature, outlet

water temperature, and outlet air relative humidity):

Cov (Tmeas, Tieas RH™ o, .., aug)

a,out » ~ w,out’

045 052 052 1.12 0.007 0 .. O (A.9)
=10.50 055 0.60 —-51.14 —-0.13 0 .. O
0.02 0.08 0.06 12351 —-0.23 0 .. O

153



APPENDIX A. STATISTICAL ANALYSIS OF MEASURED RESPONSES

A.3 Statistical Analysis of experimentally mea-
sured responses for Case 2: Fan Off, Unsat-
urated Air Conditions

Histogram plots of the 6717 measurement sets considered for case 2 (each

set containing measurements of Ta,out(Ti dbit)>

T Tmeas and REH™), to-

a,out(Hobo)? + w,out s

gether with statistical analyses thereof are presented in this section of the Ap-
pendix A. As shown in Figure A.12, although the computed relative humidity
for each of the 6717 data sets is less than 100%, the measured relative humidity
RH™e* actually spans the range from 33.0% to 104.1%; in this range, 4925 data
sets have their respective RH™¢* less than 100% while the other 1792 data sets
have their respective RH™* over 100%. This situation is nevertheless consis-
tent with the range of the sensors when their tolerances (standard deviations)
are taken into account, which would make it possible for a measurement with
RH™**= 105% to be nevertheless “unsaturated”. Consequently, all the 6717
benchmark data sets plotted in Figure A.12, were considered as “unsaturated”,

since their respective RH™* was below the 105% threshold.
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Figure A.12: Histogram plot of the measured air outlet relative humidity, within the 6717 data sets collected

by SRNL from F-Area cooling towers for case 2.
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The statistical properties of the (measured air outlet relative humidity) dis-
tribution shown in Figure A.12 have been computed using standard packages,
and are presented in Table A.11. These statistical properties will be needed for
the uncertainty quantification and predictive modeling computations presented

in the main body of this work.

Table A.11: Statistics of the air outlet relative humidity distribution [%] for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

38.2 104.1 65.9 89.61 13.63 185.72 -1.01 3.22

The histogram plots and their corresponding statistical characteristics of the
290 data sets for the other measurements, namely for: the outlet air temperature
[T a,out(Tidbit)} measured using the “Tidbit” sensors; the outlet air temperature
[Ta,out( Hobo)] measured using the “Hobo” sensors; and the outlet water tempera-
ture [T {,}fﬁgﬂ are reported below in Figures A.13 through A.15, and Tables A.12

through A.14, respectively.
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Figure A.13: Histogram plot of the air outlet temperature measured using “Tidbit” sensors, within the 6717

data sets collected by SRNL from F-Area cooling towers for case 2.
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Table A.12: Statistics of the air outlet temperature distribution [K], measured using “Tidbit” sensors for case 2.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

292.94 309.52 16.58 299.21 2.92 8.55 0.59 2.71
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Figure A.14: Histogram plot of the air outlet temperature measured using “Hobo” sensors, within the 6717

data sets collected by SRNL from F-Area cooling towers for case 2.

Table A.13: Air outlet temperature distribution statistics [K], measured using “Hobo” sensors for case 2.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

292.93 308.90 15.97 299.00 2.77 7.68 0.58 2.75
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Figure A.15: Histogram plot of water outlet temperature measurements, within the 6717 data sets collected by

SRNL from F-Area cooling towers for case 2.
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Table A.14: Water outlet temperature [K]| distribution statistics for case 2.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

293.08 301.70 8.62 298.10 1.39 1.94 -0.51 3.31

Ordering the above-mentioned four measured responses as follows: (i) outlet
air temperature T, ou(rideit); (i) outlet air temperature 77 ous(moboy; (iii) outlet
water temperature 7% and (iv) outlet air relative humidity RH'$** yields

w,out ) out

the following “measured response covariance matrix”, denoted as:

Cov (Ta,out(Tidb'it)a Ta,out(Hobo)7 T out RHmeas)

w,out out

8.5 8.06 1.92  —-28.43

806  7.68 191 —27.04 (A.10)

1.92 1.91 1.94 —-1.97

—28.43 —-27.04 —1.97 185.72

For the future purposes of uncertainty quantification, data assimilation, model
calibration and predictive modeling, the data measurements provided by the
“Tidbit” and “Hobo” temperature sensors can be combined into an “averaged”

data set of measured air outlet temperatures, which will be indicated as T775%.
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Figure A.16: Histogram plot of air outlet temperatures averaged from Figures A.13 and A.14.
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Table A.15: Statistics of the averaged air outlet temperature distribution [K] for case 2.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

292.93 309.10 16.17 299.11 2.84 8.09 0.58 2.71

The histogram plot and corresponding statistical characteristics of the averaged
temperature 7<% are shown in Figure A.16 and Table A.15, respectively.

a,out

Calculating the covariance matrix, denoted as [C’ov (T;};;;, Toout» BH, g';;aS)] duta’
for all of the considered experimental data points for the averaged outlet air tem-
perature [Tme“s] , the outlet water temperature [Tme“s} , and the outlet air relative

a,out w,out

humidity [RH!S*®], yields the following covariance matrix:

809 191 —27.74
[Cov (Tywer, Titens, RHpwe™) | = | 1.91 194 —1.97 (A.11)

a,out » ~ w,out? out

2774 —197 185.72

A comparison between the results in Eqgs. (A.10) and (A.11) makes clear
that the elimination of the second column and row in Eq. (A.10) yields a 3-by-3
matrix which has entries basically equivalent to the covariance matrix shown in
Eq. (A.11). Therefore, this means that the temperature distributions measured
by the “Tidbit” and “Hobo” sensors do not need to be dealt with as separate
data sets for the purposes of uncertainty quantification and predictive modeling.

The standard deviation of the humidity sensor utilized for the measurements
(0sensor = 5.0% for the response RH (1)) have been already considered by in-
cluding in the category of the “unsaturated” data sets those that have their
respective measured relative humidity, RH™**, up to 105.0%. In addition to
that, the respective uncertainties of the temperature sensors (standard devia-
tions, Ogensor = 0.2K for both responses Tél)and TS’O)) must also be taken into

consideration for the 6717 data sets.
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Coupling Eq. (A.3) with the result presented in Eq. (A.11) will lead to in-
cremented values of the variances on the diagonal of the respective “measured

covariance matrix”’. The obtained result is:

809 1.91 —27.74
Cov (Tywi, Totees, RH) = | 191 1.94 —1.97 (A.12)
—27.74 —1.97 195.81

In the predictive modeling formalism (which includes uncertainty quantifica-
tion, data assimilation, and model calibration) the covariance matrix between
the measured parameters and responses is required as an input. In the case of
interest, all the parameters and responses can be considered as uncorrelated, ex-
cepting the measured responses considered in this Appendix and the measured
parameters listed in Appendix B. The “parameter-response” covariance matrix
in Eq. (A.13), indicated as C'ov (T&Z‘Q‘*?Tﬁﬁﬁf, RH™®* ay, ..., a47), refers to the
above mentioned parameters (namely: dry-bulb air temperature, Ty; dew-point
air temperature, Ty, inlet water temperature, 7,, ;», atmospheric pressure, Py,

and wind speed V,,) and responses (i.e., average outlet air temperature, outlet

water temperature, and outlet air relative humidity):

OO/U (Tm@as Tmeas RHm€a57 a]_, ceey 0447)

a,out » ~ w,out’

10.36  2.81 2.22 —-23264 130 O .. O (A.13)
= 1.58 196 201 —-23.76 -0.10 0 .. O
—35.89 243 —-0.79 720.11 —-548 0 .. O
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Appendix B

Model Parameters for the SRNL

F-Area Cooling Towers

B.1 Model Parameters for Case la: Fan Off,

Saturated Outlet Air Conditions, with Inlet

Air Unsaturated

The mean values and standard deviations for the independent model param-

eters a;, (i =1,..., N, = 47), presented in Table B.1 have been derived in col-

laboration with Dr. Sebastian Aleman of SRNL (private communications, 2016).

Table B.1: Model Parameters for SRNL F-area Cooling Towers for case la.

] Model Independent Math. Nominal Absolute Relative
' Scalar Parameters (a;) Notation Value Std. Dev. Std. Dev.
1 Air temperature (dry bulb), (K) Tap 294.03 1.79 0.61
2 Dew point temperature (K) Tap 293.49 1.61 0.55
3 Inlet water temperature (K) Tw,in 298.78 1.42 0.47
4 Atmospheric pressure (Pa) Patm 100853 287 0.28
5 Wind speed (m/s) Vaw 1.42 0.62 42.52
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] Model Independent Math. Nominal Absolute Relative
i
Scalar Parameters (a;) Notation Value Std. Dev. Std. Dev.
6 Sum of loss coefficients above fill ksum 10 5 50
Dynamic viscosity of air at T=300 K B
7 I 1.98-107° 9.68-10~7 4.88
(kg/m-s)
Kinematic viscosity of air at T=300 K
8 v 1.57-1075 1.89-10~6 12.09
(m?/s)
Thermal conductivity of air at T=300
9 Kair 0.02624 1.58-103 6.04
10 Heat transfer coefficient multiplier fnt 1 0.5 50
11 Mass transfer coefficient multiplier fmt 1 0.5 50
12 Fill section frictional loss multiplier f 4 2 50
13 aop 25.5943 0.01 0.04
Pys(T) parameters
14 a1 -5229.89 4.4 0.08
15 @0,cpa 1030.5 0.294 0.03
16 Cpa(T) parameters a1,cpa -0.19975 0.002 1.00
17 a2,cpa 3.97.1074 3.40-106 0.84
18 ao,daw 7.06-107° 0 0
19 a1,dav 2.65322 0.003 0.11
Dav(T) parameters
20 a2 daw -6.17-1073 2.30-107° 0.37
21 as,daw 6.55-10~6 3.80-108 0.58
22 aof -1143423 543 0.05
h¢(T) parameters
23 aiy 4186.50768 1.8 0.04
24 aog 2005743.99 1046 0.05
hg (T) parameters
25 aig 1815.437 3.5 0.19
26 a0, Nu 8.235 2.059 25
27 Nusselt parameters a1,Nu 0.00314987 0.00105 33.25
28 a2 Nu 0.9902987 0.329 33.25
29 a3, Nu 0.023 0.0088 38.26
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] Model Independent Math. Nominal Absolute Relative
i
Scalar Parameters (a;) Notation Value Std. Dev. Std. Dev.
30 Cooling tower deck width in x-dir (m) Wake 8.5 0.085 1
31 Cooling tower deck width in y-dir (m) Waky 8.5 0.085 1

Cooling tower deck height above
32 Azgy 10 0.1 1
ground (m)

33 Fan shroud height (m) Azpan 3 0.03 1
34 Fan shroud inner diameter (m) Dyan 4.1 0.041 1
35 Fill section height (m) Az 2.013 0.02013 1
36 Rain section height (m) AZrain 1.633 0.01633 1
37 Basin section height (m) Azps 1.168 0.01168 1
38 Drift eliminator thickness (m) Azge 0.1524 0.00152 1
39 Fill section equivalent diameter (m) Dy, 0.0381 0.00038 1
40 Fill section flow area (m?) Afin 67.29 6.729 10
41 Fill section surface area (m?) Asurf 14221 3555.3 25
42 Prandtl number of air at T=80 °C P 0.708 0.005 0.71
43 Wetted fraction of fill surface area Wtsq 1 0 0
Math. Nominal Absolute Relative
i Boundary Parameters (o)
Notation Value Std. Dev. Std. Dev.
44 Inlet water mass flow rate (kg/s) M in 44.02 2.20 5
45 Inlet air temperature (K) Tain 294.03 1.79 0.61
46 Inlet air humidity ratio Win 0.01552 0.00149 8.15
] Special Dependent Math. Nominal Absolute Relative
’ Parameters (o) Notation Value Std. Dev. Std. Dev.
47 Schmidt number Sc 0.619 0.0073 1.19

The above independent model parameters are used for computing various
dependent model parameters and thermal material properties, as shown in Tables

B.2 and B.3.
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Table B.2: Dependent Scalar Model Parameters.

Dependent Scalar Parameters

Defining Equation or
Math. Notation
Correlation

s
ag,dav T "°

Mass diffusivity of water vapor in air (m?2/s) Doy (Ta, o) a1 aa (a3 davTa3.200T)T
Heat transfer coefficient (W/m?2-K) h(ox) %

Mass transfer coefficient (m/s) km (o) %}W
Heat transfer term (W/K) H(mg, ) h(a) wisaAfy
Mass transfer term (m3/s) M(mg, o) Mp,0km (o) wisaAf g
Density of dry air (kg/m3) p(a) %

Air velocity in the fill section (m/s) Vg (Ma, ) #X}m

Fill falling-film surface area per vertical section (m?2) Agy Asurs

Rain section inlet flow area (m?) Ain WakaWaky
Height for natural convection (m) Z Azap + Dzfan — Azps
Height above fill section (m) Azg_o Z — Azpi — Dzrgin
Fill section control volume height (m) Az w

Fill section length, including drift eliminator (m) Lyin Azpi + Azge
Fan shroud inner radius (m) Tfan 0.5Dtan

Fan shroud flow area (m?) Aout s rfan2

Table B.3: Thermal Properties (Dependent Scalar Model Parameters).

Thermal Properties Defining Equation or

Math. Notation

(functions of state variables) Correlation

h¢(Tw) = saturated liquid enthalpy (J/kg) h¢(Tw, ) aof +a1fTw

Hg(Tw) = saturated vapor enthalpy (J/kg) hg,w(Tw, o) aog + a19Tw

Hg(Ta) = saturated vapor enthalpy (J/kg) hg,a(Ta, ) aog +a147,

Cpa(T) = specific heat of dry air (J/kg-K) Cp(T, o) ao,cpa + (a1,cpa + a2,cpaT)T
Pys(Tw) = saturation pressure (Pa) Pys(Tw, o) P, ea0+%, in which P, = 1.0 Pa
Pys(Ta) = saturation pressure (Pa) Pys(Ta, ) Pc'ea‘ﬁ%, in which P. = 1.0 Pa.

Note 1: The measurements of parameters a; through «s (i.e., the dry bulb
air temperature, dew point temperature, inlet water temperature, atmospheric
pressure and wind speed) were taken at the SRNL site, where the F-area cooling
towers are located. Out of the 8079 total benchmark data sets [33], 377 data sets

have been considered in case 1a; through these data sets the statistical properties
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(means, variance and covariance, skewness and kurtosis) for these model param-
eters have been derived, as shown in Figures B.1 through B.5 and Tables B.4
through B.S.
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Figure B.1: Histogram plot of dry-bulb air temperature data collected by SRNL from F-Area cooling towers

for case la.

Table B.4: Statistics of the dry-bulb air temperature distribution [K] for case la.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

290.61 303.92 13.31 294.03 1.78 3.18 1.38 8.67
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Figure B.2: Histogram plot of dew-point air temperature data collected by SRNL from F-Area cooling towers

for case la.
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Table B.5: Statistics of the dew-point air temperature distribution [K] for case 1a.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

288.94 296.95 8.01 293.49 1.61 2.58 -0.49 2.97
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Figure B.3: Histogram plot of inlet water temperature data collected by SRNL from F-Area cooling towers for

case la.

Table B.6: Statistics of the inlet water temperature distribution [K] for case la.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

296.11 301.72 5.61 298.77 1.41 2.00 0.49 2.21
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Figure B.4: Histogram plot of atmospheric pressure data collected by SRNL from F-Area cooling towers for

case la.
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Table B.7: Statistics of the atmospheric pressure distribution [Pa] for case la.

Minimum Maximum  Range

Mean

Std.Dev.

Variance

Skewness

Kurtosis

100104 101452 1348

100853

286.59

82133

-0.49

1.99

Relative
Frequency

Wind Speed Histogram Plot

Figure B.5: Histogram plot of wind speed data collected by SRNL from F-Area cooling towers for case la.

Table B.8: Statistics of the wind speed distribution [m/s] for case 1la.

Minimum Maximum Range

Mean

Std.Dev.

Variance

Skewness

Kurtosis

0.22 3.93 3.71

1.35

0.62

0.39

0.90

4.00

The 5-by-5 covariance matrix for the above experimental data has also been

computed and is provided below, with the five model parameters ordered as fol-

lows: dry-bulb air temperature Ty, dew-point air temperature Ty, inlet water

temperature 7T, ;,, atmospheric air pressure P,,, and wind speed V,,.

Cov (Tdb; po; Tw,in; Patm; Vw) =

3.18
2.17
1.19

—187.06

0.26
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2.17
2.58
1.26

—178.24

0.28

1.19
1.26
2.00
—184.39
0.26

—187.06
—178.24
—184.39
82133
0.42

0.26
0.28
0.26
0.42
0.39

(B.1)
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The covariance matrix in Eq. (B.1) neglects the uncertainty associated with
sensor readings throughout the data collection period. When combining uncer-
tainties by adding variances, the contribution from the sensors is 0.04 K for each
of the first three parameters, which accounts for a maximum of ca. 2% of the
total variance (for the dry-bulb air temperature, specifically). The uncertainty in
the atmospheric pressure sensor is at this time unknown. For these reasons, their

contribution to overall uncertainty is considered insignificant at this time.

Note 2: Temperature and pressure values are initially input in units of [°C]
and [mb], respectively, but are internally converted to [K] and [Pa] for computa-

tional purposes.

Note 3: Inlet air humidity ratio is defined as follows:

0.622P,(Typ0)  0.622¢" Tar

Win = - a (B2)
Patm - va(po7 Oé) Patm _ ea0+fdlp
Note 4: The Nusselt number is defined as follows:
Ao, N, Red < 2300
Nu=1{ ainu-Req+asny, 2300 < Rey < 10000 (B.3)

ol

az.nu - Req”® - Pr3 Regq > 10000

\
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B.2 Model Parameters for Case 1b: Fan Off,

Saturated Outlet Air Conditions, with Inlet

Air Saturated

The mean values and standard deviations for the independent model param-

eters o;, (i =1,..., N, = 47), presented in Table B.1 have been derived in col-

laboration with Dr. Sebastian Aleman of SRNL (private communications, 2016).

Table B.9: Model Parameters for SRNL F-area Cooling Towers for case la.

] Model Independent Math. Nominal Absolute Relative
i
Scalar Parameters (o;) Notation Value Std. Dev. Std. Dev.
1 Air temperature (dry bulb), (K) Tap 294.4 0.98 0.34
2 Dew point temperature (K) Tap 294.661 1.08 0.37
3 Inlet water temperature (K) Tw,in 299.543 1.07 0.36
4 Atmospheric pressure (Pa) Patm 100605 312 0.31
5 Wind speed (m/s) Vw 1.377 0.72 52.40
6 Sum of loss coefficients above fill ksum 10 5 50
Dynamic viscosity of air at T=300 K
7 I 1.98-10° 9.68-10~7 4.88
(kg/m-s)
Kinematic viscosity of air at T=300 K
8 v 1.57-10~5 1.89-1076 12.09
(m?/s)
Thermal conductivity of air at T=300
9 kair 0.02624 1.58-10—3 6.04
10 Heat transfer coefficient multiplier fnt 1 0.5 50
11 Mass transfer coefficient multiplier fmt 1 0.5 50
12 Fill section frictional loss multiplier f 4 2 50
13 ag 25.5943 0.01 0.04
Pys(T) parameters
14 al -5229.89 4.4 0.08
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] Model Independent Math. Nominal Absolute Relative
i
Scalar Parameters (a;) Notation Value Std. Dev. Std. Dev.
15 ao,cpa 1030.5 0.294 0.03
16 Cpa(T) parameters a1,cpa -0.19975 0.002 1
17 a2.cpa 3.97.10~4 3.40-10~6 0.84
18 ao,daw 7.06.10—9 0 0
19 a1.dav 2.65322 0.003 0.11
Dav(T) parameters
20 a2 daw -6.17-1073 2.30-107° 0.37
21 as,daw 6.55-10~6 3.80-108 0.58
22 aof -1143423 543 0.05
h¢(T) parameters
23 aif 4186.50768 1.8 0.04
24 aog 2005743.99 1046 0.05
hg (T) parameters
25 aig 1815.437 3.5 0.19
26 ao,Nu 8.235 2.059 25
27 Nusselt parameters a1,Nu 0.00314987 0.00105 31.75
28 a2 Nu 0.9902987 0.329 34.09
29 a3, Nu 0.023 0.0088 38.26
30 Cooling tower deck width in x-dir (m) Wake 8.5 0.085 1
31 Cooling tower deck width in y-dir (m) Waky 8.5 0.085 1
Cooling tower deck height above
32 Azgr 10 0.1 1
ground (m)
33 Fan shroud height (m) Azpan 3 0.03 1
34 Fan shroud inner diameter (m) Dyan 4.1 0.041 1
35 Fill section height (m) Azp 2.013 0.02013 1
36 Rain section height (m) AzZrgin 1.633 0.01633 1
37 Basin section height (m) Azps 1.168 0.01168 1
38 Drift eliminator thickness (m) Azge 0.1524 0.00152 1
39 Fill section equivalent diameter (m) Dy, 0.0381 0.00038 1
40 Fill section flow area (m?) Agin 67.29 6.729 10
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] Model Independent Math. Nominal Absolute Relative
i
Scalar Parameters (a;) Notation Value Std. Dev. Std. Dev.
41 Fill section surface area (m?) Agurf 14221 3555.3 25
42 Prandt]l number of air at T=80 °C P, 0.708 0.005 071
43 Wetted fraction of fill surface area Wtsq 1 0 0
Math. Nominal Absolute Relative
i Boundary Parameters (o)
Notation Value Std. Dev. Std. Dev.
44 Inlet water mass flow rate (kg/s) M in 44.0089 2.20 5
45 Inlet air temperature (K) Tain 294.40 0.98 0.34
46 Inlet air humidity ratio Win 0.0162008 0.00131 6.75
) Special Dependent Math. Nominal Absolute Relative
i
Parameters (o) Notation Value Std. Dev. Std. Dev.
47 Schmidt number Sc 0.6178 0.0041 0.66

The above independent model parameters are used for computing various

dependent model parameters and thermal material properties, as shown in Tables

B.2 and B.3.

Note 1: The measurements of parameters «; through as (i.e., the dry bulb
air temperature, dew point temperature, inlet water temperature, atmospheric
pressure and wind speed) were taken at the SRNL site, where the F-area cooling
towers are located. Out of the 8079 total benchmark data sets [33], 290 data sets

have been considered in case 1b; through these data sets the statistical properties

(means, variance and covariance, skewness and kurtosis) for these model param-

eters have been derived, as shown in Figures B.6 through B.10 and Tables B.10

through B.14.
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Dry-Bulb Air Temperature Histogram Plot
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Figure B.6: Histogram plot of dry-bulb air temperature data collected by SRNL from F-Area cooling towers

for case 1b.

Table B.10: Statistics of the dry-bulb air temperature distribution [K] for case 1b.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

291.50 297.22 5.72 294.40 0.98 0.97 -0.43 3.37

Dew-Point Air Temperature Histogram Plot

03
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02
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Figure B.7: Histogram plot of dew-point air temperature data collected by SRNL from F-Area cooling towers

for case 1b.

Table B.11: Statistics of the dew-point air temperature distribution [K] for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

291.59 297.35 5.76 294.66 1.08 1.16 -0.22 3.24
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Inlet Water Temperature Histogram Plot
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Figure B.8: Histogram plot of inlet water temperature data collected by SRNL from F-Area cooling towers for

case 1b.

Table B.12: Statistics of the inlet water temperature distribution [K] for case 1b.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

296.93 301.79 4.86 299.54 1.07 1.14 -0.15 3.01

Atmospheric Pressure Histogram Plot
0.0020

0.0015

Relative
Frequency 0010

0.0005

100200 100400 100600 100800 101000 101200
Pressure (Pa)

Figure B.9: Histogram plot of atmospheric pressure data collected by SRNL from F-Area cooling towers for

case 1b.

Table B.13: Statistics of the atmospheric pressure distribution [Pa] for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

100124 101383 1259 100605 312 97463 0.66 2.29
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PARAMETERS FOR THE F-AREA COOLING TOWERS

Figure B.10: Histogram plot of wind speed data collected by SRNL from F-Area cooling towers for case 1b.

Table B.14: Statistics of the wind speed distribution [m/s] for case 1b.

Minimum Maximum Range

Mean

Std.Dev.

Variance

Skewness

Kurtosis

0.02 4.32 4.30

1.38

0.72

0.52

1.15

4.72

The 5-by-5 covariance matrix for the above experimental data has also been

computed and is provided below, with the five model parameters ordered as fol-

lows: dry-bulb air temperature Ty, dew-point air temperature 7g,, inlet water

temperature 7T, ;,, atmospheric air pressure P,,, and wind speed V,,.

Cov (Tdb; po; Tw,in; Patm; Vw) =

0.97
1.04
0.60
—128.15
0.07

1.04
1.16
0.66
—138.34
0.06

0.60
0.66
1.14
—51.83
0.02

—128.15 0.07
—138.34 0.06
—51.83 0.02
97463  30.66
30.66  0.52

(B.4)

The covariance matrix in Eq. (B.4) neglects the uncertainty associated with

sensor readings throughout the data collection period. When combining uncer-

tainties by adding variances, the contribution from the sensors is 0.04 K for each

of the first three parameters, which accounts for a maximum of ca. 4% of the
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total variance (for the dry-bulb air temperature, specifically). The uncertainty in
the atmospheric pressure sensor is at this time unknown. For these reasons, their

contribution to overall uncertainty is considered insignificant at this time.

B.3 Model Parameters for Case 2: Fan Off, Un-

saturated Air Conditions

The mean values and standard deviations for the independent model param-
eters o;, (i =1,..., N, = 47), presented in Table B.1 have been derived in col-

laboration with Dr. Sebastian Aleman of SRNL (private communications, 2016).

Table B.15: Model Parameters for SRNL F-area Cooling Towers for case la.

) Model Independent Math. Nominal Absolute Relative
i
Scalar Parameters (o;) Notation Value Std. Dev. Std. Dev.
1 Air temperature (dry bulb), (K) Tap 298.882 4.034 1.35
2 Dew point temperature (K) Tap 292.077 2.287 0.78
3 Inlet water temperature (K) Tw,in 298.893 1.687 0.56
4 Atmospheric pressure (Pa) Patm 100588 408.26 0.41
5 Wind speed (m/s) Vaw 1.859 0.941 50.7
6 Sum of loss coefficients above fill ksum 10 5 50
Dynamic viscosity of air at T=300 K B
7 I 1.98-107° 9.68-10~7 4.88
(kg/m-s)
Kinematic viscosity of air at T=300 K
8 v 1.57-1075 1.90-10~6 12.09
(m?/s)
Thermal conductivity of air at T=300
9 Kair 0.02624 1.58-10—3 6.04
10 Heat transfer coefficient multiplier fnt 1 0.5 50
11 Mass transfer coefficient multiplier fmt 1 0.5 50
12 Fill section frictional loss multiplier f 4 2 50
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] Model Independent Math. Nominal Absolute Relative

i
Scalar Parameters (a;) Notation Value Std. Dev. Std. Dev.

13 ao 25.5943 0.01 0.04
Pys(T) parameters

14 a1 -5229.89 4.4 0.08

15 @0,cpa 1030.5 0.294 0.03

16 Cpa(T) parameters a1,cpa -0.19975 0.002 1

17 a2,¢cpa 3.97-107% 3.35-1076 0.84

18 ao,daw 7.06-10~° 0 0

19 a1,dav 2.65322 0.003 0.11
Dav(T) parameters

20 a2, dav -6.17-1073 2.30-107° 0.37

21 as,daw 6.55-10~6 3.80-108 0.58

22 aof -1143423 543 0.05
h¢(T) parameters

23 aiy 4186.50768 1.8 0.04

24 aog 2005743.99 1046 0.05
hg (T) parameters

25 alg 1815.437 3.5 0.19

26 a0, Nu 8.235 2.059 25

27 a1,Nu 0.00314987 0.00105 31.75
Nusselt parameters

28 a2 Nu 0.9902987 0.329 33.02

29 a3, Nu 0.023 0.0088 38.26

30 Cooling tower deck width in x-dir (m) Wakae 8.5 0.085 1

31 Cooling tower deck width in y-dir (m) Waky 8.5 0.085 1

Cooling tower deck height above
32 Az 10 0.1 1
ground (m)

33 Fan shroud height (m) Azfan 3 0.03 1
34 Fan shroud inner diameter (m) Dyan 4.1 0.041 1
35 Fill section height (m) Azypi 2.013 0.02013 1
36 Rain section height (m) AzZrain 1.633 0.01633 1
37 Basin section height (m) Azps 1.168 0.01168 1
38 Drift eliminator thickness (m) Azge 0.1524 0.00152 1
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] Model Independent Math. Nominal Absolute Relative
i
Scalar Parameters (a;) Notation Value Std. Dev. Std. Dev.
39 Fill section equivalent diameter (m) Dy, 0.0381 0.00038 1
40 Fill section flow area (m?) Agin 67.29 6.729 10
41 Fill section surface area (m?) Asurf 14221 3555.3 25
42 Prandtl number of air at T=80 °C P 0.708 0.005 0.71
43 Wetted fraction of fill surface area Wtsa 1 0 0
Math. Nominal Absolute Relative
i Boundary Parameters (o)
Notation Value Std. Dev. Std. Dev.
44 Inlet water mass flow rate (kg/s) M, in 44.0193 2.201 5
45 Inlet air temperature (K) Tain 294.40 4.034 1.35
46 Inlet air humidity ratio Win 0.01379 0.00192 13.80
] Special Dependent Math. Nominal Absolute Relative
i
Parameters (o;) Notation Value Std. Dev. Std. Dev.
47 Schmidt number Sc 0.5999 0.0159 2.66

The above independent model parameters are used for computing various

dependent model parameters and thermal material properties, as shown in Tables

B.2 and B.3.

Note 1: The measurements of parameters «; through as (i.e., the dry bulb
air temperature, dew point temperature, inlet water temperature, atmospheric
pressure and wind speed) were taken at the SRNL site, where the F-area cooling
towers are located. Out of the 8079 total benchmark data sets [33], 6717 data sets

have been considered in case 2; through these data sets the statistical properties

(means, variance and covariance, skewness and kurtosis) for these model param-

eters have been derived, as shown in Figures B.11 through B.15 and Tables B.16

through B.20.
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Dry-Bulb Air Temperature Histogram Plot
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Figure B.11: Histogram plot of dry-bulb air temperature data collected by SRNL from F-Area cooling towers

for case 2.
Table B.16: Statistics of the dry-bulb air temperature distribution [K] for case 2.
Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis
289.50 309.91 20.41 298.88 4.03 16.27 0.36 2.38
Dew-Point Air Temperature Histogram Plot
020
0.15
Relative
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0

284 286 288 290 292 294 296 298
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Figure B.12: Histogram plot of dew-point air temperature data collected by SRNL from F-Area cooling towers

for case 2.
Table B.17: Statistics of the dew-point air temperature distribution [K] for case 2.
Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis
282.58 298.06 15.48 292.08 2.29 5.23 -0.66 3.11
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Inlet Water Temperature Histogram Plot
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Figure B.13: Histogram plot of inlet water temperature data collected by SRNL from F-Area cooling towers for

case 2.
Table B.18: Statistics of the inlet water temperature distribution [K] for case 2.
Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis
293.93 303.39 9.46 298.89 1.69 2.85 -0.16 2.91

Atmospheric Pressure Histogram Plot
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Figure B.14: Histogram plot of atmospheric pressure data collected by SRNL from F-Area cooling towers for

case 2.
Table B.19: Statistics of the atmospheric pressure distribution [Pa] for case 2.
Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis
99617 101677 2060 100588 408.6 166678 0.079 2.57
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Wind Speed Histogram Plot
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Figure B.15: Histogram plot of wind speed data collected by SRNL from F-Area cooling towers for case 2.

Table B.20: Statistics of the wind speed distribution [m/s] for case 2.

Minimum Maximum  Range Mean Std.Dev. Variance Skewness Kurtosis

0.00 6.60 6.60 1.859 0.94 0.89 0.71 3.42

The 5-by-5 covariance matrix for the above experimental data has also been
computed and is provided below, with the five model parameters ordered as fol-
lows: dry-bulb air temperature Ty, dew-point air temperature 7y, inlet water

temperature 7T, ;,, atmospheric air pressure F,,, and wind speed V,,.

1627 356 213  —49448 245
3.56 523 222 —13846  0.28
Cov (Taw; Tap: Twin Parm; V) = | 2.13 2.22 285  —5863 012 | (B.5)
—494.48 —138.46 —58.63 166678.40 —49.62

2.45 0.28 0.12 —49.62 0.89

The covariance matrix in Eq. (B.5) neglects the uncertainty associated with
sensor readings throughout the data collection period. When combining uncer-
tainties by adding variances, the contribution from the sensors is 0.04 K for each
of the first three parameters, which accounts for a maximum of ca. 4% of the

total variance (for the dry-bulb air temperature, specifically). The uncertainty in
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the atmospheric pressure sensor is at this time unknown. For these reasons, their

contribution to overall uncertainty is considered insignificant at this time.
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Derivative Matrix (Jacobian) of
the Model Equations with

Respect to the State Functions

This section presents the functional derivatives of the model governing equa-

tions with respect to the vector-values state function u £ (my,, Ty, Tq,w, ma)T.

The notation for the derivatives of (i) the liquid continuity equations, (ii) the

liquid energy balance equations, (iii) the water vapor continuity equations, and

(iv) the air/water vapor energy balance equations with respect to the state (i.e.,
dependent) variables will be as follows:

ai’j:aLf(i)~£:1234-z’:1 I j=1,..1I: (C.1)

£= o ,2,3,4; O A R &

w

9N
b= —* . 1=1,23,4,i=1,...1, j=1,..1; (C.2)
CarytY

_ony.
= ord)

0,3

¢ (=1,2,34i=1,.,1; j=1,..,1; (C.3)
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APPENDIX C. DERIVATIVE MATRIX (JACOBIAN) OF THE MODEL
EQUATIONS WITH RESPECT TO THE STATE FUNCTIONS

N
) — —Z- — Ci— . _ ) C.4
df - aw(]); E 17273545 7 1,-.-,], j 1,...7_[’ ( )
N
€= £ 0=1,2,34;i=1,..,1I; (C.5)
ma

The notation for the derivatives of the mechanical energy equations with re-

spect to the state (i.e., dependent) variables will be as follows:

al = azgil); j=1,..1; (C.6)
b} ai?jw =1,....T; (C.7)
CQE;;:([?); j=1,..1; (C.8)
dl = gj{;’.’); j=1,...1; (C.9)

€5 = gﬁi; (C.10)

Used in the following of the document, the partial derivatives of H(m,, @) with

respect to m, are listed as follows:

1) For Rey < 2300 :

a fhtaO,NuKai'rwtsaAsurf

8H1 _ Dpl _ O; (Cll)

om, om,
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2) For 2,300 < Rey < 10,000 :

Dp-Ima
|l a +a Kgi Wts A
Iht ( I’Nuf‘airAfill 2,Nu) airWtsaAsurf

Dnl

0H,

3ma 6ma (C]_Q)

_ fhtal,NuKairwtsaAsurf
Hair A fillI

- sgn(ma);

3) For Rey > 10,000 :

0.8
Dy, -Ima 1
a . Pr3 Kqirwisa A
fht 3,Nu (P‘ai'rAfill airWtsaAsurf

Dnl

0H;

8ma aTna (C13>

_ 4 fhta?),NuPr%KairwtsaAsurf
i) (H/airAfill)O.S . (l)h”/La)O.2 I

- sgn(mq);

Used in the following of the document, the partial derivatives of M (m,, «) with

respect to m, are listed as follows:

1) For Rey < 2300 :

1 2

8 Mh20fmtaO,NuVa§irDz§thsaAsuT‘f
oM, Pr3 D, I 0 (C.14)
p— e ;
omy, om,
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2) For 2,300 < Rey < 10,000 :

Dy, -|mgql|-a 1 2
MhQOfHLt'(W""aZNu) VL?ingthsuAsurf
1
Pr3 Dyl
OM,
3ma (9ma (015)
2
3
o MhQOfmt ’ al,NuDathsaAsurf .
= - sgn(myg);

2 1
Afm V;’Z»TPI' 3]

3) For Rey > 10,000 :

0.8 1 2
Dy-|mal 3 3
MhQOfmt'al,Nu< b Vm;TDathsaAsu'rf

AfillYair
Dil
OMs
om, om, (C.16)

1 2
3 3
o 4 MhQOfmt * a3 Nul, D(wwtsaAsurf

air

i) (maDh)O’Q(AfiuVm)o’Sf

- sgn(ma);

C.1 Jacobian Matrix of Case 1la: Fan Off, Satu-
rated Outlet Air Conditions, with Inlet Air

Unsaturated

C.1.1 Derivatives of the liquid continuity equations with

respect to the state variables

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to mg ) are as follows:
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N

oG = =0, i=1,..,I; j=1,....1; j#i—1, i (C.17)
ON®
= =1 =2, j=i—1; (C.18)
om !
ONY y
Til“) =a'=1; i=1,...1; j=i. (C.19)
Maw

For subsequent use, the above quantities are considered to be the components

of the I x I matrix A, defined as follows:

1 0. 0 0
~11. 0 0

A= (a7, = (C.20)
0 0. 10
0 0. -11

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to Tzf,j Jare as follows:

(%)
IN; = pid = Q-
aT(j+1) - ’
u (C.21)

i=1,..,1; j=1,...1;, j# i

N _ i Mnna) VTV e oy )
o T TR ey |

(C.22)

i=1,...1, j=i.
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For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix By defined as follows:

byt 0 0 0
0 b 0 0
B, = (b)), , = (C.23)
0 0 |
0 0 0o o

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to Ta(j Jare as follows:

ONY . . o

i i i . . 24
T c 0; i=1,....1;, j=1,....1; 7# 1 (C.24)
OND . M(mg, a) P2(TY, a a ,

ﬁzcl’ = (_ ) ( —5 )|:1 (li):|,21, K =1 (025)
o7 R 7] T '
ONY L M(ma, o) w® Py, . .
— == — ci=K+1,....I; j=1.

PYed 1 (C.26)

72
B r] 0622+ w)

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix C; defined as follows:

(C.27)
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to w@are as follows:

oN{" . . o .98
0w(j):d1 =0; i=1,...,1; j=1,...1; 7 # 1 (C.28)
ON, =dy'=0; i=1,..,.K; j=i (C.29)
aw(z) — Y1 ) PRRED] )
8N1(Z) — di,i _ M(maaa) Patm { w(l) } .
ow® T R [0.622 + w®] TS 1[0.622 + W] ’

(C.30)

i=K+1,...1; j=i.

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix D defined as follows:

a0 . 0 0
0 d* . 0 0
D, = (&), ,=| . . . . , (C.31)

0o o . d 1t oo

0o 0 . o

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to m, are:

1) For Reg < 2300

=\ =0; i=1,..,1; (C.32)
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2) For 2,300 < Rey < 10,000

(C.33)

I

oNy _ . [PuT ) PO a)] 0My(maa),
om,  + R T+ o) g ;
1=1,... K;
aNl(l) 1 va(Tlgi+1)a C!) w(i)Patm 8M2 (ma, a)
=€, = — - E— - . .
8ma 1 i. TS—H) R TéZ) (0622 + w(z‘)) 6ma

i=K+1,..,1;

3) For Rey > 10,000

(C.34)

(C.35)

9

a*]VI(Z) — i va (TS—H)a a) P&)(Tél)7 a) 8M3(ma, a) .
om, ~ T RaAG 1| oma
1=1,..., K;

8]\71(") i va(Tlng)’ o) whp, OM;(ma, @)

=e = e - ) :
om, R-TS™  R-T(0.622 4 w®) dm

1=K+1,... 1

(C.36)

For subsequent use, the above quantities are considered to be the components

of the I column vector E; defined as follows:
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C.1.2 Derivatives of the liquid energy balance equations

with respect to the state variables

Derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)] with
respect to m$ are as follows:
ONy)

P i =0, i=1,..,I; j=1,...1; j#i—1, i (C.38)

w

=2 = oy = BT, ) - BT @)y i =2, 0 j=i—1; (C.39)

ONSY T | Z, |
—8 (i2+1) =ay = héz—i-l)(Tl(Uz—i-l)7 a) — h§”+1)(T1(uZ+1)’ a); i=1,..,1I; j=1. (C.40)
Maw

For subsequent use, the above quantities are considered to be the components

of the I x I matrix A, defined as follows:

ayt 0. 0 0
ag’l a§’2 0 0
A= (ay"), = . . . - - (C.41)
0 0 . a0
0 0 . aé’lil aé’l

Derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)] with

respect to ngj ) are as follows:

N _
ory T

i (@)
aNz() — phi-1 (4) ahf .
aTIE,Z) 2 w
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(i) (i+1) (i+1)
IN, — pit — _(it]) ahf o (i) _ . (+1) Ohg,w
7D T 2 My o7 D (my) —my™) 7D
w w w (C.44)

—H(mg,o); i=1,....1; j=i.

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix By defined as follows:

by' 0 . 0 0
byt by .0 0
B, = (by) (C.45)

IxI

0o 0 . oMt

0o o . Ittt

Derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)] with

respect to T, 9 are as follows:

aN(i) B
J ﬁj) =’ =0;i=1,...1; i=1,...,1; j # 1 (C.46)
Ts
ONL .
p ?A) =cy'=H(mg,a); i=1,....1; j=1. (C.47)
Ta'

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix Cy defined as follows:

(C.48)
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The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

with respect to wt) are as follows:

Ny
80.)(23') =d =0, i=1,...I; j=1,..1I (C.49)

For subsequent use, the above quantities are considered to be the components

of the I x I matrix:

D, = [dy’] 0. (C.50)

IxI

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

with respect to m, are:

1) For Rey < 2300 :

%]Zf:) =eb=0; i=1,..1; (C.51)
2) For 2,300 < Rey < 10,000 :
3) For Rey > 10,000 :
%JX;) = — —(T*) — 7). 3H38<ZZ’“>; e (C.53)
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For subsequent use, the above quantities are considered to be the components

of the I column vector Es defined as follows:

E, = (eé)l = : (C.54)

C.1.3 Derivatives of the water vapor continuity equations

with respect to the state variables

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to m{) are as follows:

ONS i o | L
E)m(—jil) =ay =0, i=1,...,1;, j=1,...,I; j#i—1, i (C.55)
oN® i 1
My a
NS . 1
i mg

For subsequent use, the above quantities are considered to be the components

of the I x I matrix A3 defined as follows:
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(C.58)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to qu,j ) are as follows:

s (C.59)

For subsequent use, the above quantities are considered to be the components
of the I x I matrix

B; = [b7] 0. (C.60)

IxI

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to TY9) are as follows:

ONS _ .
b= 0 =1L =1,

oz = % I (C.61)

°)

For subsequent use, the above quantities are considered to be the components
of the I x I matrix

C; =[] 0. (C.62)

IxI

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to wt) are:

ON,’

=d7 =0 §= - C i C.63
) =dy =0; i=1,...,1;, j=1,..,1; j#i1+1; ( )
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ONW -
5 S=di =l i=1,., = (C.64)
wl
ONW -
WZ,?H)Edg”l:l; i=1,.,1—1;j=i+1. (C.65)

For subsequent use, the above quantities are considered to be the components

of the I x I matrix D3 defined as follows:

D; = (d’) (C.66)

IxI —

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to m,are:

i i i+1
8]\735) i @) ) sgn(mq) _(mgu) —mit ))‘
om =63 = (mw My ) m2 — m. - ’m | )
“ @ “ “ (C.67)
i=1,..,1;

For subsequent use, the above quantities are considered to be the components

of the I column vector Es defined as follows:

E; = (c), = | : (C.68)
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C.1.4 Derivatives of the air/water vapor energy balance
equations with respect to the state variables

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)| with respect to mSj) are:
(2.14)] p

oG = ay =0, i=1,...I; j=1,...1, j#i—1, i (C.69)
OND U i)
=g =2 ( ’O‘); i=2,...,1; j=1i—1; (C.70)
8777,8) mg
8N(i) - h(i:;l) TlgiJrl)
G =a = ( ’O‘); i=1,...,1; j=1i. (C.71)
3muz, myg

For subsequent use, the above quantities are considered to be the components

of the I x I matrix A, defined as follows:

1,1

a0 . 0 0
21 22

ay  ay” . 0 0

S . (C.72)

Derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12) -

(2.14)] with respect T

ONY g
8T(—ﬁH)EbZ] =0; i=1,...1; j# i (C.73)
oN® 1 . oy ORSED
— A== — [(ml) - m{T)) —2 H(mg, o) ;
8T(7’+1) a aT(lJrl)
v w (C.74)
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For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix B, defined as follows:

by' 0. 0 0
0 v . 0 0
B, = (b)) (C.75)

IxI

0 0 .ot

o 0 . 0 bt

Derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12) -

(2.14)] with respect to T

o 8N(i)
¢y’ = aT?j) =0; i=1,..,1; j# i,i+1 (C.76)
ON;’ ‘ ocy o T8 + 27315
—4 — it (T(H—l) . T(z)) p‘ . (z)(a— a)
8Ta(z) 4 a @ 8Ta(’b) p 2 )
(C.77)
orS.  H(m,
(4) (i) (i+1)
ON~ = it — C(i)(w @) + Wi+ Ohga
aT(i-i—l) 4 p 9 ) 8T_(H_1) 3
’ ° (C.78)

i=1,.,1—1, j=i+1.

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix defined as follows:
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1,1
Cy

0

1,2
Cy

2.2
Cy

I-1,1-1
Cy

0

I-1,1
c

4

1.1
Cy

(C.79)

Derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12) -

(2.14)] with respect to w():

ON®
ﬁzdgﬂzo; i=1,..,0; j# i, i+1; (C.80)
W
&ué) =d, = —héyL(Té ),a) ce=1,...1;, =1 (C.81)
N - . .
5 A=A = (T @) i =1 T =1 =i (C.82)
W K3 )

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix D, defined as follows:

dyt dy? . 0 0
0 d7° 0 0
D, = (d}),, , = (C.83)
0 0 dl—l,[—l d[—l,[
4 4

0

1,1
dy

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)] with respect to myare:
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1) For Rey < 2300 :

8Nf) ‘ (T(i—H) Tél))
=e = H a
T B (.50
(ms) —ma™) by (T @)
) 1= 17 . a-[a
Ma * [Mal
2) For 2,300 < Rey < 10,000 :
ONY (TS =T 0Hy(mg, ) (TS — T
=ey = : - - H(mg, o)
om, M| om, Mg+ My (C.55)
(mg) . mgﬂ)) ) héi;l)(qui+1)’ a) .
— : ce=1,...,1;
Mg - |ma|
3) For Rey > 10,000 :
Ny (15T 1) 9Hy(me, @) (TYTY — 1)
=e) = : - - H(mg, )
omy |4 omy, Mg - || (C.56)
(i) —mu™) - V(O )

Mq * | M|

For subsequent use, the above quantities are considered to be the components

of the I column vector E4 defined as follows:

E, = (c), = | : (C.87)
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C.1.5 Derivatives of the mechanical energy equation with

respect to the state variables

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect
to mq(g) are:

ONj

8mg )

al =0; j=1,..., 1. (C.88)
For subsequent use, the above quantities are considered to be the components

of the I row vector Ay defined as follows:

A5 = (aé)l = (aé a/g e aéil aé) (089>

Derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect to

ijj):
S ONy
b= g —0; j=1,...1. (C.90)

For subsequent use, the above quantities are considered to be the components

of the I row vector Bs defined as follows:

B;= (i), =@ b2 ... bt b)) (C.91)

Derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect to
Téj ).
ONj5 PimgAz

= — = — g =2,...,1.
5 aTa(J) Rm-r |:T05j)i|2’ J [ (092)

ONs  Famg (52 4 Azis)
1 2
aTa( ) Rair [T(gl)}

1
Cs

;=1 (C.93)

199



APPENDIX C. DERIVATIVE MATRIX (JACOBIAN) OF THE MODEL
EQUATIONS WITH RESPECT TO THE STATE FUNCTIONS

For subsequent use, the above quantities are considered to be the components

of the I row vector Cs defined as follows:

Cs=(c),=(ct & - ™ ) (C.94)

Derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect to

W),

dl=—""=0; j=1,..,1I (C.95)

For subsequent use, the above quantities are considered to be the components

of the I row vector D5 defined as follows:

Ds = (d), = (&} @& --- d' dl) (C.96)

Derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect to
My

er = ON5 _ 48 f (Azpi + Azge)
om, (%) (5:2> Apin

Raithdb
2. al)s
(P ) (2 )

For subsequent use, the above quantities are considered to be the components

(C.97)

2| (mrpan?)” WaaWary)®  Agad®

of the 1-component row vector E5 defined as follows:

E; = (e5) (C.98)
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C.2 Jacobian Matrix of Case 1b: Fan Off, Satu-
rated Outlet Air Conditions, with Inlet Air

Saturated

As mentioned in Subsection 3.1.2, the Jacobian matrix of case 1b presents sim-
ilarities with the Jacobian matrix of case la detailed above in Section C.1. More
precisely, the sub-matrices (A;, B;, C;, D;, E;; i = 2,3,4,5) whose elements rep-
resents the derivatives of Eqs. (2.28) - (2.37) with respect to the vector valued

" remain the same as in Section C.1,

state function u £ (my, Ty, Ts,w,m,)
where those sub-matrices represents the same derivatives for Eqs. (2.6) - (2.15);
for reasons of brevity, they have not been repeated for case 1b. On the other
side, the sub-matrices (A],B!,C/, D! ,E/; i=1) whose elements represents
the derivatives of Eqs. (2.25) - (2.27) with respect to the vector valued state
function u = (m,, T, Ta,w,ma)f, are different from their respective formu-

lations (A;,B;,C;,D;,E;; i=1) in Section C.1.1, and therefore they will be

hereby detailed.

C.2.1 Derivatives of the liquid continuity equations with

respect to the state variables

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to mPare as follows:

N . T

8m(j1+1) =a’ =0;i=1,..,I; j=1,..,1; j#i—1, i (C.99)
ON©D .
L= =1 =2, j=i—1; (C.100)
omy) !
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ON,"

— L = =1; =11, j=i. (C.101)
am$+1)

For subsequent use, the above quantities are considered to be the components

of the I x I matrix A defined as follows:

1 0 0 0
-1 1 0 0

Al = ("), , = (C.102)
0 0. 1 0
0 0 . —11

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.25) - (2.27)]

with respect to T; Ware as follows:

N

PRy =0 =0; i=1,...I; j=1,...1; j# i (C.103)

O M ) ()
= b = ) ’

(i+1) R (i+1)2 (i+1
0T 7w T (C.104)

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix B! defined as follows:

bt 0 .0 0
0o u¥* . 0 0
B{ = (b)) (C.105)

IxI
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to T, Ware as follows:

oN©D
—(chgﬂzo; i=1,..,1; j=1,..,1, j# i (C.106)
aTaJ)
OND . M(mg,a) PYTY @) [ a . o
—b) =c = (_ ) ( L ){ (1i)_|_1}; i=1,...,1; j=1. (C.107)
0Ty R [TCSZ)] 7!

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix C! defined as follows:

a0 .0 0
0 &2 . 0 0
= . . . . (C.108)

0 0 . dt1top

o o0 . 0

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to wWare as follows:

oN»

o = =0 =L =1L (C.109)
OND . - (C.110)
RO =dy =0; i=1,..,1; j=1. :

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix D! defined as follows:

D! = [d)] 0. (C.111)

I><I:
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to m, are:

1) For Rey < 2300 :

N
omyg

=\ =0; i=1,..,1;

2) For 2,300 < Rey < 10,000 :

(C.112)

)

(C.113)

)

(C.114)

aNl(Z) i va (ngii+1)7 a) P1S;) (Ta(z)7 a) aMQ <ma’ Ol)
=e = - - ; ' )
ama 1 R ) TS—H) R i Ta(l) 6ma
1=1,...,1;
3) For Rey > 10,000 :
oN _ [P ) PRI, )| 0My(ma, )
1=1,..1;

For subsequent use, the above quantities are considered to be the components

of the I column vector E! defined as follows:
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C.2.2 Derivatives of the liquid energy balance equations

with respect to the state variables

Derivatives of the liquid energy balance equations [cf. Eqs. (2.28) - (2.30)]
with respect to the vector-values state function u = (m,,, T,, T, w, ma)T for
case 1b are identical to the respective derivatives of Eqs. (2.6) - (2.8) detailed for
case la.

See Egs. (C.38) through (C.54) in Section C.1.2.

C.2.3 Derivatives of the water vapor continuity equations

with respect to the state variables

Derivatives of the water vapor continuity equations [cf. Egs. (2.31) - (2.33)]
with respect to the vector-values state function u = (m,,, T,, T, w, ma)T for
case 1b are identical to the respective derivatives of Eqs. (2.9) - (2.11) detailed
for case la. See Egs. (C.55) through (C.68) in Section C.1.3.

C.2.4 Derivatives of the air/water vapor energy balance

equations with respect to the state variables

Derivatives of the air/water vapor balance equations [cf. Eqgs. (2.34) - (2.36)]
with respect to the vector-values state function u = (m,,, T, Ta,t.a,ma)T for
case 1b are identical to the respective derivatives of Eqgs. (2.12) - (2.14) detailed
for case la. See Eqs. (C.69) through (C.87) in Section C.1.4.
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C.2.5 Derivatives of the mechanical energy equation with

respect to the state variables

Derivatives of mechanical energy equation [cf. Eq. (2.37)] with respect to the
vector-values state function u £ (m,,, Ty, T, w, ma)T for case 1b are identical
to the respective derivatives of Eq. (2.15) detailed for case la. See Eqs. (C.88)
through (C.98) in Section C.1.5.

C.3 Jacobian Matrix of Case 2: Fan Off, Unsat-
urated Air Conditions

As mentioned in Subsection 3.1.3, the Jacobian matrix of case 2 presents sim-
ilarities with the Jacobian matrix of case la detailed above in Section C.1. More
precisely, the sub-matrices (A;, B;, C;, D;, E;; i = 2,3,4,5) whose elements rep-
resents the derivatives of Egs. (2.41) - (2.50) with respect to the vector valued

" remain the same as in Section C.1,

state function u £ (m,, T, T,,w,m,)
where those sub-matrices represents the same derivatives for Egs. (2.6) - (2.15);
for reasons of brevity, they have not been repeated for case 2. On the other side,
the sub-matrices (A7, B/Y, C//, D/ | E!'; i = 1) whose elements represents the
derivatives of Egs. (2.38) - (2.40) with respect to the vector valued state func-
tion u £ (m,, Ty, Ty, w, ma)T, are different from their respective formulations

(A;,B;,C;,D;,E;; i¢=1) in Section C.1.1, and therefore they will be hereby

detailed.
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C.3.1 Derivatives of the liquid continuity equations with
respect to the state variables

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to mPare as follows:

oN© . . oy .
8m(j1+1) Eafj :O’ Z:]-a"-a]; J :17"'aI; J 7&2_17 L3 (0116)
oND
=gl =1, =2, j=i—1; (C.117)
3m1(j) !
N . .
W;H)Eal’ =1;i=1,...I;, j=1. (C.118)

For subsequent use, the above quantities are considered to be the components

of the I x I matrix Al defined as follows:

1 0. 0 0
11. 0 0
A=), = . .. . . (C.119)
0 0. 1 0
0 0. -1 1

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to TV are as follows:

N
oTy Y

=0 =0, i=1,..,1, j=1,...1; j # i; (C.120)
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aNl(i) _ i _ M(me, o) qui“’(T&””, ) a1
orih R T Ty ’

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix B! defined as follows:

b'to0 . 0 0
0 »¥* . 0 0
B’ = (b}) (C.122)

IxI

0 0 . tMtoo

o 0o . 0 b

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to Ta(j Jare as follows:

oND
—(¥ =c/=0; i=1,...1; j=1,..,1, j # i (C.123)
aTaJ)

aNl(Z) i M(maaa) w(i)Patm . . .

an :Cl = R ) ;L= ]_,...,]7 j = 1. (Cl24)

2
7] (0622 + w0

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix C! defined as follows:

a0 . 0 0
0 &% . 0 0
(C.125)
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The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

with respect to w@Ware as follows:

ON®D
aw(lj) =d? =0, i=1,...1; j=1,...1; j# i (C.126)
8N1(i) _ g M(myg, «) Piim w® g
O = R [0.622 + w®] T 1[0.622 + w®] (e
' ’ (C.127)

i=1,..,1; j=i.

For subsequent use, the above quantities are considered to be the components

of the I x I diagonal matrix DI! defined as follows:

a0 . 0 0
0 d* . 0 0
DI’ = (d’) (C.128)

IxI —

0o o0 . da Mt oo

0o 0 . 0o df

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

with respect to m, are:

1) For Reyq < 2300 :

N(i) '
Ny =el=0; i=1,..,1; (C.129)
omyg
2) For 2,300 < Rey < 10,000 :
aN» Pou(TD, o) wip, DMy (ma, )
e e .. =0 el ;
Ma R-Ty R-T,"(0.622 + w®) Mg (C.130)
1=1,..,1;
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3) For Rey > 10,000 :

N
omy,

P (TS, ) wOp, OM;(m,, o)
R-TSYY  R-T(0.622 + w) om,

—~

(C.131)

For subsequent use, the above quantities are considered to be the components

of the I column vector E!! defined as follows:

E'=(),=| ¢ |- (C.132)

C.3.2 Derivatives of the liquid energy balance equations

with respect to the state variables

Derivatives of the liquid energy balance equations [cf. Eqgs. (2.41) - (2.43)]
with respect to the vector-values state function u £ (m,,, T,, T, w, ma)T for
case 2 are identical to the respective derivatives of Eqs. (2.6) - (2.8) detailed for
case la. See Egs. (C.38) through (C.54) in Section C.1.2.

C.3.3 Derivatives of the water vapor continuity equations

with respect to the state variables

Derivatives of the water vapor continuity equations [cf. Egs. (2.44) - (2.46)]

with respect to the vector-values state function u £ (m,,, Ty, Ta,w,ma)T for
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case 2 are identical to the respective derivatives of Egs. (2.9) - (2.11) detailed for
case la. See Egs. (C.55) through (C.68) in Section C.1.3.

C.3.4 Derivatives of the air/water vapor energy balance

equations with respect to the state variables

Derivatives of the air/water vapor balance equations [cf. Eqgs. (2.47) - (2.49)]
with respect to the vector-values state function u £ (m,,, T, Ta,w,ma)T for
case 2 are identical to the respective derivatives of Eqs. (2.12) - (2.14) detailed
for case la. See Egs. (C.69) through (C.87) in Section C.1.4.

C.3.5 Derivatives of the mechanical energy equation with

respect to the state variables

Derivatives of mechanical energy equation [cf. Eq. (2.50)] with respect to the
vector-values state function u £ (m,,, Ty, Ta,w,ma)T for case 2 are identical
to the respective derivatives of Eq. (2.15) detailed for case la. See Eqs. (C.88)
through (C.98) in Section C.1.5.
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Appendix D

Verification of the Model Adjoint

Functions

This appendix provides a complete display of the procedure followed to ver-
ify the numerical accuracy of the adjoint functions computed for all cases. Five
specific adjoint functions (ua; o49); 7'549); 715,1); /M(UI )> have been selected for each
of the five responses of the model (Tél); Téfo); RHW; mSO); ma> for the nat-
ural draft cases (case la, case 1b and case 2); four specific adjoint functions
(0(49); 7(549); 7'15,1); ug )> have been selected for each of the four responses of the
model (T él); T15,50); RHW;, m$0)> for the mechanical draft cases (case 3a, case
3b and case 4). The adjoint functions have been selected in such a way that, once

those have been verified, all the other adjoint functions would be consequently

verified as well.
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D.1 Verification of the Model Adjoint Functions
for Case la: Fan Off, Saturated Outlet Air

Conditions, with Inlet Air Unsaturated

The verification procedure of the adjoint functions for case la is reported in
this section. For clarity reasons, the adjoint functions have been grouped based

on the response they refer to.

D.1.1 Verification of the Adjoint Functions for the Outlet
Air Temperature Response Tél)

When R = T, the quantities réi) defined in Egs. (3.4) - (3.5) all vanish except
for a single component, namely: Tél) £ OR/ T = 1.Thus, the adjoint functions
corresponding to the outlet air temperature response Ta(l) are computed by solving
the adjoint sensitivity system given in Eq. (3.10) using r:(,)l) 2 OR/ T =1 as
the only non-zero source term; for this case, the solution of Eq. (3.10) has been

depicted in Figure 3.1.
D.1.1.1 Verification of the adjoint function g,

Note that the value of the adjoint function p, obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is u, = —0.24204 [K/(J/m?)], as indicated
in Figure 3.1. Now select a variation §V,, in the wind speed V,,, and note that Eq.
(3.22) yields the following expression for the sensitivity of the response R = T

to V.
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1 NG (i) (i) (i)
Z 40N @ONs @ONa ) ONG
2 2 av T gy, e v, v, “av,

ON,
= O :ua av5 - (lua) [_Vw : p(TtdlD a)] N
(D.1)
Re-writing Eq. (D.1) in the form
S5
Ma = _8N5/8Vw (D2>

indicates that the value of the adjoint function g, could be computed inde-
pendently if the sensitivity Ss were available, since the quantity ON;/0V,, =
—2.1795[J/(m*/s)] is known. To first-order in the parameter perturbation, the
finite-difference formula given in Eq. (3.23) can be used to compute the approx-
imate sensitivity S'; subsequently, this value can be used in conjunction with
Eq. (D.2) to compute a “finite-difference sensitivity” value, denoted as [ua]*"”,

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

FD
Ss

T ON,/OV,

[

(1)
a,pert — Ta,nom

oV,

]SFD _

e BJVV] (D.3)

Numerically, the wind speed V,, has the nominal (“base-case”) value of V) =

1.353 [m/s]. The corresponding nominal value T )om of the response 7. i

T ) om = 298.4131 [K]. Consider next a perturbation 6V, = (0.017) V., for which
the perturbed value of the wind speed becomes V2t = V¥ — §V,, = 1.33 [m/s].
Re-computing the perturbed response by solving Eqgs. (2.2) - (2.15) with the value
of VPt yields the “perturbed response” value TCE p)m = 298.4220 [K]. Using now

the nominal and perturbed response values together with the parameter perturba-

tion in the finite-difference expression given in Eq. (3.23) yields the corresponding
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1 1
9 SgD é Tti,;zze'r't_Tﬂ(J)wm

“finite-difference-computed sensitivity 5

= 038757 | 2],
Using this value together with the nominal values of the other quantities appear-
ing in the expression on the right side of Eq. (D.3) yields [11,)°"" = —0.23973
[K/(J/m?)]. This result compares well with the value p, = —0.24204 [K/(J/m?)]
obtained by solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure

3.1.

D.1.1.2 Verification of the adjoint function o(*)

Note that the value of the adjoint function 0*? obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is o = —4.299 x 107° [K/(J/kg)], as
indicated in Figure 3.1. Now select a variation 075 ;, in the inlet air temperature
Ty.in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = Ta(l) to Ty in:

OR = yoND o SONS o SaNS N ON;
S, 2 _ ()21 ("2 (213 ("4 a_5
© aTa,in ; <:uw a,-ra,,in * T aTya,in * Ta 8Ta,in o aTa,in * . a,-ra,,'in
oN{ ON; | T 4K
=0- [0(49) 0T4 ‘ + Ua oT 5 = —(0(49)) Cp T + WinQi1g

_( ) Rair |m | m | 1 B L_’_ ksum + 96f Lfill
Ha) 'Y 9 Py el e\ A2 T A2 A Re ~AZ,D,

out fall fill

g- Patm 2 Az

Z ——A rain a5
(D.4)

Re-writing Eq. (D.4) in the form
ONs
019 _ S5 ¥ Hagr, 0 D5
N (D.5)
8T‘a,in

indicates that the value of the adjoint function 0*? could be computed indepen-

dently if the sensitivity Sy; were available, since the quantity 6Ni49) JOTyin =
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1.03310 x 10®[J/(kg - K)] is known. To first-order in the parameter perturba-
tion, the finite-difference formula given in Eq. (3.23) can be used to compute the
approximate sensitivity SHP; subsequently, this value can be used in conjunc-
tion with Eq. (D.5) to compute a “finite-difference sensitivity” value, denoted as
[0(49)} SFD, for the respective adjoint, which would be accurate up to second-order

in the respective parameter perturbation:

¢ B 6Nz§49) B 5Ta,in fla aTa,in aTa,in
aTa,in
(D.6)

Numerically, the inlet air temperature T, ;,(= Ty) has the nominal (“base-case”)

value of T2, = 294.03 [K]. The corresponding nominal value T, Cslyzom of the re-

(I'L’fl

sponse TV s Ta(,lgom = 298.4131 [K]. Consider next a perturbation 07, ,, =
(0.00102) T2,

a,in’

for which the perturbed value of the inlet air temperature be-
comes TP = —0T.in = 294.00 [K]. Re-computing the perturbed response by

azn (l’L'f’L

solving Eqs. (2.2) - (2.15) with the value of TP yields the “perturbed response”

CL’L’I’L

value T (1)

a,pert —

= 298.4087 [K]. Using now the nominal and perturbed response val-
ues together with the parameter perturbation in the finite-difference expression
given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-
T3 eri—Tirom

ityﬂ SFD rAY a,pert s

T = 0.14582. Using this value together with the nominal

values of the other quantities appearing in the expression on the right side of
Eq. (D.6) yields [0 ]SFD = —4.307 x 107° [K/(J/kg)]. This result compares
well with the value 0*?) = —4.299 x 10~°  [K/(J/kg)] obtained by solving the
adjoint sensitivity system given in Eq. (3.10), cf., Figure 3.1. When solving this
adjoint sensitivity system, the computation of 0*? depends on the previously
computed adjoint functions o®, i =1,...,] — 1; hence, the forgoing verification
of the computational accuracy of 09 also provides an indirect verification that

the functions o, i=1,...,1 — 1, were also computed accurately.
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D.1.1.3 Verification of the adjoint function 71549)

Note that the value of the adjoint function 7(549) obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is 719 = 95.392 [K], as indicated in Figure
3.1. Now select a variation dw;, in the inlet air humidity ratio w;,, and note
that Eq. (3.22) yields the following expression for the sensitivity of the response
R = Tél) to Win:

OR Do aN® o oN® o an  gND ON,
S 2 _ (H2-"1 ("2 (HZ-'3 (4) 4 a_5
46 &um ; (Mw &um + Tw &Um + Ta &um to &um + K &um

(49) (49)

@ Gwm awzn g,a
(D.7)
Re-writing Eq. (D.7) in the form
7—549) = _846 — 0(49) . hé?g) (Ta,i'm a) (D8)

indicates that the value of the adjoint function 76549) could be computed indepen-

dently if the sensitivity Sss were available, since the 0*?) has been verified in (the
previous) Section D.1.1.2 and the quantity hé,i?) (Thin, o) is known. To first-order
in the parameter perturbation, the finite-difference formula given in Eq. (3.23)
can be used to compute the approximate sensitivity Si;”; subsequently, this value
can be used in conjunction with Eq. (D.8) to compute a “finite-difference sensi-
tivity” value, denoted as [7(549)] SFD, for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[19]° = —SEP — 09 hE (T, 10, ) (D-9)

a

Numerically, the inlet air humidity ratio w;, has the nominal (“base-case”)
value of w) = 0.015029407. The corresponding nominal value Té}rzom of the re-

sponse Ta(l) is Ta(}gom = 9298.4131 [K]. Consider next a perturbation dw;, =
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(0.001243) w? , for which the perturbed value of the inlet air humidity ratio be-

pert
n

comes w WY —dwi, = 0.015010726. Re-computing the perturbed response by

solving Egs. (2.2) - (2.15) with the value of w?"* yields the “perturbed response”

in

1
value Tévp)ert

= 298.4128 [K]. Using now the nominal and perturbed response val-
ues together with the parameter perturbation in the finite-difference expression
given in Eq. (3.23) yields the corresponding “finite-difference-computed sensi-
tivity” SkP = W = 14.309 [K]. Using this value together with the

nominal values of the other quantities appearing in the expression on the right
SFD

side of Eq. (D.9) yields [71549)] = 94.837 [K]. This result compares well with
the value 7. = 95.392 [K] obtained by solving the adjoint sensitivity system

given in Eq. (3.10), cf. Figure 3.1. When solving this adjoint sensitivity system,
the computation of 7549) depends on the previously computed adjoint functions
Téi), 1 =1, ..., I—1; hence, the forgoing verification of the computational accuracy

of 7' also provides an indirect verification that the functions Téi), i1=1,...,1-1

were also computed accurately.

D.1.1.4 Verification of the adjoint function 7'19)

Note that the value of the adjoint function 7P obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is as follows: ) = —452x107° [K/(J/s) ],
indicated in Figure 3.1. Now select a variation 67, ;, in the inlet water tem-
perature 1), ;,, and note that Eq. (3.22) yields the following expression for the
sensitivity of the response R = Ta(l) to Toy.in:

OR

o _
’ 8Tw,in

19 () () ) (0
) ON ) ON. ) ON. ) ON ON,
S {02 00N 00N e 0N 5
(“ C 0T " 0Ty 1 0T 8Tw,m> T

ON,Y
ERNORCAP N

=0
v aTw,in

=0— 71 (Mupin - arf) -

(D.10)
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Re-writing Eq. (D.10) in the form
m____ 5
(mw,in : alf)

indicates that the value of the adjoint function 715,1) could be computed indepen-

T

(D.11)

dently if the sensitivity Ss were available, since the quantity 1, ;, - a1 5 is known.
To first-order in the parameter perturbation, the finite-difference formula given
in Eq. (3.23) can be used to compute the approximate sensitivity SZP; subse-

quently, this value can be used in conjunction with Eq. (D.11) to compute a

(1)i| SFD

“finite-difference sensitivity” value, denoted as |:Tw , for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:
SFD
o) I —— S— (D.12)

(mw,m : a1f)

Numerically, the inlet water temperature, T}, ;,, has the nominal (“base-case”)

= 298.774 [K]. As before, the corresponding nominal value T, o

of the response T is Té,l,zom = 208.4131 [K]. Consider now a perturbation

value of TV

w,in

5T im = (0.0000669) T°

w,in’?

for which the perturbed value of the inlet water

t
temperature becomes TP = T

w,in w,in

— 0Tin = 298.754[K]. Re-computing the

ert
,in

the “perturbed response” value T\ , = 298.3964 [K]. Using now the nominal

a,pert —

perturbed response by solving Egs. (2.2) - (2.15) with the value of T2 yields

and perturbed response values together with the parameter perturbation in the

finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

& (1)
. e ) T, . .
difference-computed sensitivity” SI'P = —mpe—2n = (0.83401. Using this value
w,in

together with the nominal values of the other quantities appearing in the expres-
SFD

sion on the right side of Eq. (D.12) yields [75})} = —4.53x107% [K/(J/s) ].

This result compares well with the value 74 = —4.52x 107 [K/(J/s) ] obtained

by solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.1.
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D.1.1.5 Verification of the adjoint function ,uq(ﬂl)

Note that the value of the adjoint function MS ) obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is as follows: ply) = 11.0208 (K/(kg/s) |,
respectively, as indicated in Figure 3.1. Now select a variation dm, ;, in the
inlet water mass flow rate m, ;,, and note that Eq. (3.22) yields the following

)

expression for the sensitivity of the response R = Tél t0 Mgy, in:

OR S L ONW N N
Sy = — (1) 221 (4) 2 (i) 3 (i) 4
" amw’in [Z (Iuw 8mw’in + Tw 8mw,in + Ta amw,in + ¢ amw,in

(1) (1) (1) (1)
aNE) ] o <Iu(1) 8N1 +T(1) 8N2 + 7-(1) aNg + 0(1) 8N4 )

w w a
8mw,in 8mw,in a"’nw,in 8an,in

o LS) (=1 + 70 (Twinary — argT + aop — aog)

(2)
_|_7—(1) . L + 0(1) . M .
@ myg me

Since the adjoint functions 749 and 0“9 have been already verified as de-

(D.13)

scribed in Sections D.1.1.2 and D.1.1.3, it follows that the computed values of
adjoint functions 78" = 2156.57 [K] and o) = —8.4654 x 104 [K/(J/kg)] can
also be considered as being accurate, since they constitute the starting point for
solving the adjoint sensitivity system in Eq. (3.10); 7'15,1) was proved being accurate

in Section D.1.1.4. Re-writing Eq. (D.13) in the form:

pl) = S+ 7 (Twinary — a1y TS + agp — agg)

) (D.14)
o (1Y 4w (el +ay
@ Mg Mg

indicates that the value of the adjoint function MS) could be computed inde-

pendently if the sensitivity Sy4 were available, since all the other quantities are
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known. To first-order in the parameter perturbation, the finite-difference formula

given in Eq. (3.23) can be used to compute the approximate sensitivity SIP;

subsequently, this value can be used in conjunction with Eq. (D.14) to compute a

(1):| SFD

“finite-difference sensitivity” value, denoted as [uw , for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:
SFD
W] =) = S5+ 1) - (Twmary — arg TP + aos — agg)

o (D.15)
JSCO Y S SN CO N (A 2t L
a mg e

Numerically, the inlet water mass flow rate, my, ;,, has the nominal (“base-

case”) value of mj, ; = 44.0213 [kg/s]. As before, the corresponding nominal
( 1)

value Ta,ln)om of the response 7V is Témom = 298.4131 [K]. Next, consider a per-
turbation 7, = (0.0004839) my), ;,,, for which the perturbed value of the inlet

pert 0
w,in mw,in

air temperature becomes m — 0My in, = 44.00 [kg/s]. Re-computing

the perturbed response by solving Egs. (2.2) - (2.15) with the value of m?*?! yields

w,in
the “perturbed response” value T, a(}p)m = 298.4129 [K]. Using now the nominal

and perturbed response values together with the parameter perturbation in the
finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

. e FD A T<1) —Tﬁwm K . .
difference-computed sensitivity” S;,” = —=2<—="= = (0.00725 [m] . Using this

6mw,in

value together with the nominal values of the other quantities appearing in the ex-
SFD

pression on the right side of Eq. (D.15) yields [ug)} =11.0208 [K/(kg/s) ]

This result compares well with the value u&’ = 11.0208 [K/(kg/s) | obtained

by solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.1.
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D.1.2 Verification of the Adjoint Functions for the Outlet
Water Temperature Response TS’O)
When R = T5Y, the quantities réi) defined in Eqgs. (3.4) - (3.5) all vanish
except for a single component, namely: 7"§49) = 8R/8T1(U50) = 1.Thus, the ad-
joint functions corresponding to the outlet air temperature response TJFO) are
computed by solving the adjoint sensitivity system given in Eq. (3.10) using
(49

Ts )2 OR/ OTSY =1 as the only non-zero source term; for this case, the solu-

tion of Eq. (3.10) has been depicted in Figure 3.2.

D.1.2.1 Verification of the adjoint function g,

Note that the value of the adjoint function u, obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is y, = —0.31664 [K/(J/m?)], as indicated
in Figure 3.2. Now select a variation 6V,, in the wind speed V,,, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = T, 50)

to V.

OR  |n( soND  LoND  JONS L ONE ON.

S &2 = (271 (22 ()23 ()24 a_5

T v, ; (“w av, T av, TTe v, T v, | Ty,

ON:
=0- ,uaa_vs = — (ta) [~V - p(Tiap, )] -
(D.16)
Re-writing Eq. (D.16) in the form
Ss

Ha = —m (Dl?)

indicates that the value of the adjoint function p, could be computed inde-
pendently if the sensitivity S; were available, since the quantity ON;/0V,, =
—2.1795[J/(m*/s)] is known. To first-order in the parameter perturbation, the

finite-difference formula given in Eq. (3.23) can be used to compute the approx-
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imate sensitivity SZ'P; subsequently, this value can be used in conjunction with

Eq. (D.17) to compute a “finite-difference sensitivity” value, denoted as [ua]SFD

Y

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

7

(1)
a,pert Ta,nom

oV

[ a]SFD_ S?D

=GN Jov, = laNf’}l (D.18)

oV,

Numerically, the wind speed V,, has the nominal (“base-case”) value of V) =
1.353 [m/s]. The corresponding nominal value Ty of the response T is
T80, = 296.8570 [K]. Consider next a perturbation 6V,, = (0.017) V2, for which
the perturbed value of the wind speed becomes VF* = V9 — §V,, = 1.33 [m/s].
Re-computing the perturbed response by solving Eqs. (2.2) - (2.15) with the

value of VP! yields the “perturbed response” value T, (50) = 296.8687 [K].

w,pert

Using now the nominal and perturbed response values together with the pa-

rameter perturbation in the finite-difference expression given in Eq. (3.23) yields

50 50
b)) SEI;—'D é Ti,p)ert_TTEH’ﬂ)Om

6V

the corresponding “finite-difference-computed sensitivity

—0.5109 [mi/s] Using this value together with the nominal values of the other
quantities appearing in the expression on the right side of Eq. (D.18) yields
[1a)*F P = —0.31602 [K/(J/m?)]. This result compares well with the value p, =
—0.31664  [K/(J/m?)] obtained by solving the adjoint sensitivity system given

in Eq. (3.10), cf., Figure 3.2.

D.1.2.2 Verification of the adjoint function 0"

Note that the value of the adjoint function 0*?) obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is o9 = —1.1217 x 107*  [K/(J/kg)], as
indicated in Figure 3.2. Now select a variation 07} ;, in the inlet air temperature
Tu.in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = qu50) to 1o in:
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OR O soND o CoN® o CoN® o CaND ON.
S 2 _ (Ol U (212 (@223 (O S a_5
© aTa,in z—zl <luw 8Ta,m * Tw ajﬁa,in * Ta aTa,in o ajﬁa,in * . 8Ta,m
N1 ONs | T 41K ]
Rair [ 1 1 ksum 96f Lfill ]
— a) . ma . ma . - + _|_ .
(1) {2 * Potm mal _(A?mt A A?‘ill) Re A?‘ilth_
g Pym V2 Az
I — Z _w - A rain — .~ .
+Rair : Taz,m ( i 29 : 2
(D.19)
Re-writing Eq. (D.19) in the form
ON;
9 Sas + Hagr, o
% - 8Ni49) (DZO)
8Ta,in

indicates that the value of the adjoint function 0*? could be computed indepen-
dently if the sensitivity Sy5 were available, since the quantity 6Ni49) JOT,in =
1.03310 x 10®[J/(kg - K)] is known. To first-order in the parameter perturba-
tion, the finite-difference formula given in Eq. (3.23) can be used to compute the
approximate sensitivity SIP; subsequently, this value can be used in conjunc-
tion with Eq. (D.20) to compute a “finite-difference sensitivity” value, denoted
as [0(49)]SFD, for the respective adjoint, which would be accurate up to second-

order in the respective parameter perturbation:

FD ON: (1) (1) 49)7 1
[0(49)] SFD _ 545 + lLLa 8Ta,?n _ Ta,pert - Ta,nom + M aN5 8Ni )
?9?4149) 5Ta,m ¢ 8,Ta,i'n, aira,in
(D.21)

Numerically, the inlet air temperature 7y ;,(= Ty) has the nominal (“base-

case”) value of T?, = 294.03 [K]. The corresponding nominal value T, 20 of

the response TP s Tﬁgém = 296.8570 [K]. Consider next a perturbation
0T win = (0.00102) T?

a,in’

for which the perturbed value of the inlet air temper-

ature becomes 175" = T2, — 6T, = 294.00 [K]. Re-computing the perturbed

a,in
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response by solving Eqs. (2.2) - (2.15) with the value of 7" yields the “perturbed

response” value Tﬁj}lm = 296.8496 [K]. Using now the nominal and perturbed re-
sponse values together with the parameter perturbation in the finite-difference ex-
pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

7(50) _(50)

sensitivity” SiP £ —wrel—wrem — (024117, Using this value together with the

nominal values of the other quantities appearing in the expression on the right
side of Eq. (D.21) yields [0(49)}5“7 = —1.1088 x 10~* [K/(J/kg)]. This result
compares well with the value o*? = —1.1217 x 10™*  [K/(J/kg)] obtained by
solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure 3.2. When
solving this adjoint sensitivity system, the computation of 0**) depends on the
previously computed adjoint functions o®, i = 1,...,I — 1; hence, the forgoing

(49)

verification of the computational accuracy of 0'*?) also provides an indirect veri-

fication that the functions o, i =1,...,] — 1, were also computed accurately.

D.1.2.3 Verification of the adjoint function 749

Note that the value of the adjoint function 79 obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is 7o = 60.389 [K], as indicated in Figure
3.2. Now select a variation dw;, in the inlet air humidity ratio w;,, and note

that Eq. (3.22) yields the following expression for the sensitivity of the response

R = Tfo) to
OR Do oND o aN® N 9N ON;
S 2 _ (H2-"1 ("2 (H-"'3 (@) 4 a_5
1 awin g <:uw awin * T awin * Ta awin o awin * 8win

(49) (49)
=0- <7(49) ONy + 0(49)6N—4> == [1 (1) + o hE(Toin, )] -

Y Owin, Owip “ o
(D.22)
Re-writing Eq. (D.22) in the form
W) = — G5 — o1 hé?g) (Toim, €¥) (D.23)
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indicates that the value of the adjoint function 71549) could be computed indepen-

dently if the sensitivity Sss were available, since the 0*?) has been verified in (the
previous) Section D.1.2.2 and the quantity hé?,?) (Th,in, @) is known. To first-order
in the parameter perturbation, the finite-difference formula given in Eq. (3.23)
can be used to compute the approximate sensitivity SiP; subsequently, this value

can be used in conjunction with Eq. (D.23) to compute a “finite-difference sen-

(49)] SFD

sitivity” value, denoted as |:Ta , for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[7_(49)]5”) = —SED _ o9 60 (T, . ) (D.24)

a g,a

Numerically, the inlet air humidity ratio w;, has the nominal (“base-case”)
value of w) = 0.015029407. The corresponding nominal value Tf%m of the re-
sponse T is Tiobm = 296.8570 [K]. Consider next a perturbation dw;, =

(0.001243) w? , for which the perturbed value of the inlet air humidity ratio be-

mn’

pert
n

comes w W) —dwi, = 0.015010726. Re-computing the perturbed response by

solving Eqs. (2.2) - (2.15) with the value of w?*"" yields the “perturbed response”

in

50
value T, éjpgﬁ

= 296.8528 [K. Using now the nominal and perturbed response val-
ues together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

. A T T : : .
ity” SIP & —weet —vrom — 996.203 [K]. Using this value together with the

SWin

nominal values of the other quantities appearing in the expression on the right

SFD
side of Eq. (D.24) yields [7'549)} = 58.656 [K]. This result compares well

with the value 7.'” = 60.389 [K] obtained by solving the adjoint sensitivity

system given in Eq. (3.10), cf. Figure 3.2. When solving this adjoint sensitivity

system, the computation of 71549) depends on the previously computed adjoint

functions Téi), 1 = 1,...,1 — 1; hence, the forgoing verification of the computa-

9)

tional accuracy of 7',54 also provides an indirect verification that the functions

Téi), 1 =1,...,1 — 1 were also computed accurately.
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D.1.2.4 Verification of the adjoint function o

Note that the value of the adjoint function 7" obtained by solving the
adjoint sensitivity system given in Eq. (3.10) is as follows: ) = —2.618 x
107% [K/(J/s) ], indicated in Figure 3.2. Now select a variation 7, , in the
inlet water temperature 1), ;,, and note that Eq. (3.22) yields the following ex-

pression for the sensitivity of the response R = TS’O) t0 Ty in:

OR 2 oNY L ONY JON® o AND ON,

S. 2 _ (7) 1 (2) 2 (273 () 274 a_5
’ 8Tw,in ; (uw aTw,in M Tw aTw,in * Ta aTw,in o aTw,in * . aTw,in

aN(l)

=0- t(ul)aj—v—2 =0- Twl) (mw in alf)
’ (D.25)
Re-writing Eq. (D.25) in the form
S

i = — e (D.26)

(Maw,in - ary)
indicates that the value of the adjoint function 715,1) could be computed indepen-
dently if the sensitivity Ss were available, since the quantity m, i, - a1 5 is known.
To first-order in the parameter perturbation, the finite-difference formula given
in Eq. (3.23) can be used to compute the approximate sensitivity SIP; subse-
quently, this value can be used in conjunction with Eq. (D.26) to compute a
“finite-difference sensitivity” value, denoted as [T&l)}SFD, for the respective ad-
joint, which would be accurate up to second-order in the respective parameter
perturbation:

[T(l)} SFD Sip

= —— D.27
v (mw,in . alf) ( )

Numerically, the inlet water temperature, T, ;», has the nominal (“base-case”)

value of T° = 298.774 [K|. The corresponding nominal value T. ahm of the re-

w,in

sponse T, (50) g ng)om = 296.8570 [K]. Consider now a perturbation 67, ;, =
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(0.0000669) T°

w,in?

for which the perturbed value of the inlet water temperature

pert __ 0
becomes T, = Ty,

— 0T in = 298.754 [K]. Re-computing the perturbed re-

sponse by solving Eqgs. (2.2) - (2.15) with the value of T yields the “perturbed

response” value 70 . = 296.8473 [K]. Using now the nominal and perturbed re-

w,pert

sponse values together with the parameter perturbation in the finite-difference ex-
pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

e A TOO TP : . .
sensitivity”? SIP & —weet —wrem — () 48288, Using this value together with the

6Tw,in
nominal values of the other quantities appearing in the expression on the right
SFD
side of Eq. (D.27) yields [7’15,1)} = —2.620x 107% [K/(J/s) ]. This result com-
pares well with the value 75 = —2.618 x 10™¢ [K/(.J/s) ] obtained by solving

the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.2.

D.1.2.5 Verification of the adjoint function ,uq(j)

Note that the value of the adjoint function u&} ) obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is as follows: u&) = 6.4310 [K/(kg/s) |,
respectively, as indicated in Figure 3.2. Now select a variation dm,;, in the
inlet water mass flow rate m, ;,, and note that Eq. (3.22) yields the following

)

expression for the sensitivity of the response R = Tq(fo £0 Mgy in:

w w a
8an,in 8an,in amw,in amw,in

49 7 7 % i
5,8 90 [Z (MmaLl()JrT(i)aLé)Jﬁm ONY o ONY )

m 0 m m
ONs ] _0- <M<1>8L I ONsT ) 0N )

w w a
aan,in 8an,in a"’nw,in amw,in

(D.28)
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Since the adjoint functions 7.'” and 09 have been already verified as de-

scribed in Sections D.1.2.2 and D.1.2.3, it follows that the computed values of

adjoint functions 74" = —189.56 [K] and o) = 7.44 x 107° [K/(J/kg)] can also

be considered as being accurate, since they constitute the starting point for solv-
(1)

ing the adjoint sensitivity system in Eq. (3.10); 7, was proved being accurate in

Section D.1.2.4. Re-writing Eq. (D.28) in the form:

1) = Suu+ 70 (Twinary — arg TS + agp — agy)

2
o (L) 4w (@l +ag
“ ma ma

indicates that the value of the adjoint function u&j) could be computed inde-

(D.29)

pendently if the sensitivity Sy, were available, since all the other quantities are

known. To first-order in the parameter perturbation, the finite-difference formula

given in Eq. (3.23) can be used to compute the approximate sensitivity SIP;

subsequently, this value can be used in conjunction with Eq. (D.29) to compute a

L e 1)]5FP
“finite-difference sensitivity” value, denoted as [,uw }

, for the respective ad-
joint, which would be accurate up to second-order in the respective parameter

perturbation:

SFD
[Mq(ul)] = ply) =S + 1) (Tw,inalf - alngEJQ) +aof — aOg)
9 (D.30)
oL (Y L m ay T + ag,
“ ma ma

Numerically, the inlet water mass flow rate, 1y, ;,, has the nominal (“base-

)

case”) value of m? . = 44.0213 [kg/s]. The corresponding nominal value 7o

of the response T8O s T15,522)m = 296.8570 [K]. Next, consider a perturba-
tion dmyin = (0.0004839)my, ;,, for which the perturbed value of the inlet
water mass flow rate becomes mly;, = mb , — 6mu, = 44.00 [kg/s]. Re-

computing the perturbed response by solving Eqs. (2.2) - (2.15) with the value
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pert
w,in

yields the “perturbed response” value T\°0) = 296.8562 [K]. Using

Of m w,pert

now the nominal and perturbed response values together with the parameter

perturbation in the finite-difference expression given in Eq. (3.23) yields the
(50) _p(50)

. . . e . A T —Tw,
corresponding  “finite-difference-computed sensitivity” SfP £ —weat_mrom
w,in

kg/s

quantities appearing in the expression on the right side of Eq. (D.30) yields

0.03885 [L} Using this value together with the nominal values of the other

SFD
[MS)] = 11.0208 [K/(kg/s)]. This result compares well with the value
,uq(j) = 11.0208 [K/(kg/s) | obtained by solving the adjoint sensitivity system
given in Eq. (3.10), cf. Figure 3.2.

D.1.3 Verification of the Adjoint Functions for the Outlet
Air Relative Humidity RH"

When R = RH® | the quantities réi) defined in Egs. (3.4) - (3.5) all vanish

except for two components, namely:

o _ ORHY 8 | B (v, 0) P, (wh,0)  a

sy’ = = x 100| = 100 x

b an? | b, (T8,a) P (180,0) [19)
(D.31)

o) P, (w®, ) 0.622P,
1 _ ORH B 0 ) (w , (Y . . it
= = oy ¥ 100] = o X 100
Pus (Ta ,oz> (0.622 + wM)e " 7"

(D.32)

Thus, the adjoint functions corresponding to the outlet air temperature response
RH®W are computed by solving the adjoint sensitivity system given in Eq. (3.10)
using rél) and ril) as the only non-zero source terms; for this case, the solution

of Eq. (3.10) has been depicted in Figure 3.3.
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D.1.3.1 Verification of the adjoint function g,

Note that the value of the adjoint function u, obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is u, = 0.00603 [(J/m?’)_l], as indicated
in Figure 3.3. Now select a variation 0V, in the wind speed V,,, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = RH)

to V.

OR |~ oN? G ON{  JaNy L ON ON

S &2 = ("1 (Z-"2 ()23 ()24 a_5

S| (“w av, T av, T ey, T oy, ) TGy,

ON:.
=0- ,uaa_vs = — (tta) [=Vao - p(Thar, )] -
(D.33)
Re-writing Eq. (D.33) in the form
Ss

Ha = —m (D34)

indicates that the value of the adjoint function pu, could be computed inde-
pendently if the sensitivity S; were available, since the quantity ON;/0V,, =
—2.1795[J/(m*/s)] is known. To first-order in the parameter perturbation, the
finite-difference formula given in Eq. (3.23) can be used to compute the approx-
imate sensitivity SI'7; subsequently, this value can be used in conjunction with

Eq. (D.34) to compute a “finite-difference sensitivity” value, denoted as [,ua]SFD

Y

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

7

(1)
a,pert Ta,nom

0V

[ Q]SFD_ S?D

- - [Mﬂ_l (D.35)

oV,

Numerically, the wind speed V,, has the nominal (“base-case”) value of V) =

1.353 [m/s]|. The corresponding nominal value RH.Y, of the response RH™ is
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RHSY, = 100.1052%. Consider next a perturbation §V,, = (0.017) V.9, for which
the perturbed value of the wind speed becomes VF* = V9 — ¢V, = 1.33 [m/s].
Re-computing the perturbed response by solving Eqs. (2.2) - (2.15) with the
value of V7' yields the “perturbed response” value RH\Y, = 100.1049%. Us-

ing now the nominal and perturbed response values together with the parameter

perturbation in the finite-difference expression given in Eq. (D.35) yields the

1 1
) S5FD é RHée)rt_RHT(wln

corresponding “finite-difference-computed sensitivity 77

0.01078 [(m/s)_l}. Using this value together with the nominal values of the
other quantities appearing in the expression on the right side of Eq. (D.35)
yields [110)%*" = 0.00667 [(J /m3)_1]. This result compares well with the value
te = 0.00603 [(J /m3)_1] obtained by solving the adjoint sensitivity system

given in Eq. (3.10), cf., Figure 3.3.

D.1.3.2 Verification of the adjoint function o(*)

Note that the value of the adjoint function 0*?) obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is o = 6.692 x 107*  [(J/kg)™'], as
indicated in Figure 3.3. Now select a variation 075 ;, in the inlet air temperature
Ty.in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = RHW to T, ;n:

OR Do oND o aND  aN® 9N AN,
S, 2 _ @OM @2 @ONsT | @ ONa ) ONs
© aTa,m 12:: <Iuw aTa,in * Tw aTa,in * Ta 8jja,fin o aTa,m a a,Ta,in
ON) ON; | T 4K
—0— |49 4 5 | (49 e - )
0 lo T + fig o (0" |1 Cy 5 + winouy

out

g Pum V2 Az
+W-(Z+——A2Tain—— .

a,in

fa 2. Patm ¢ ¢ L A2 Az2n A?”ill Re A?”ilth

(D.36)
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Re-writing Eq. (D.36) in the form

AN,
Sas + lagy, =

8N§49)
87’0,,7,’77,

o9 — _

(D.37)

indicates that the value of the adjoint function 0%

could be computed indepen-
dently if the sensitivity S;; were available, since the quantity 0]\@549) JOT i =
1.03310 x 10*[J/(kg - K)] is known. To first-order in the parameter perturba-
tion, the finite-difference formula given in Eq. (3.23) can be used to compute the
approximate sensitivity SI:P; subsequently, this value can be used in conjunc-
tion with Eq. (D.37) to compute a “finite-difference sensitivity” value, denoted

as [0(49)]SFD, for the respective adjoint, which would be accurate up to second-

order in the respective parameter perturbation:

ON5 _
[0(49)] SFD o ng;D + Ha aTZin o Ta(,lp)ert — Ta(}yzom " aNS aNi49)
B 8N‘§49) B 5Ta mn fa 8Ta in aT‘a mn
8Ta,in ’ ’ ’
(D.38)

Numerically, the inlet air temperature 7y ;,(= Ty) has the nominal (“base-

case”) value of T, = 294.03 [K]. The corresponding nominal value RH{on

of the response RHW is RHTSIO)m = 100.1052%. Consider next a perturbation
0T 0in = (0.00102) T2

a,in’

for which the perturbed value of the inlet air temper-

ature becomes 125" = T2, — 6T, = 294.00 [K]. Re-computing the perturbed

a,imn
response by solving Egs. (2.2) - (2.15) with the value of T}, “r! vields the “perturbed

response” value RH (1)t = 100.1260%. Using now the nominal and perturbed re-

per
sponse values together with the parameter perturbation in the finite-difference ex-

pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

1 1
) SFD A RH;(;eit*RHf(w)m
45

6Ta,in

sensitivity = —0.69388 [K~!]. Using this value together

with the nominal values of the other quantities appearing in the expression on

the right side of Eq. (D.38) yields [049]*"™” = 6.932 x 10 [(.J/kg)™']. This
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result compares well with the value 0% = 6.692x 107 [(.J/kg) "] obtained by
solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure 3.3. When
solving this adjoint sensitivity system, the computation of 0*®) depends on the
previously computed adjoint functions o, i = 1,...,I — 1; hence, the forgoing

(49)

verification of the computational accuracy of 0'*? also provides an indirect veri-

fication that the functions o®, i =1,...,] — 1, were also computed accurately.

D.1.3.3 Verification of the adjoint function 71549)

Note that the value of the adjoint function 7% obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is 749 = 29355 [—], as indicated in
Figure 3.3. Now select a variation dw;, in the inlet air humidity ratio w;,, and
note that Eq. (3.22) yields the following expression for the sensitivity of the

response R = RHW to wy,:

A
Sae =

49 (0 (i (i (i)
L ON  ON. ON. ON, ON
3 (Mm_l L0 @O e 9V ) " ua—5]

w 8&)1‘” w &um @ 8wm &um &um

&um

(49) (49)

8&)1',1 8wm @ g.a
(D.39)
Re-writing Eq. (D.39) in the form
P09 2 50— o9 B (T, .. a) (D.40)

indicates that the value of the adjoint function 79 could be computed indepen-

dently if the sensitivity Sss were available, since the 0*?) has been verified in (the

previous) Section D.1.3.2 and the quantity hio) (Tin, @) is known. To first-order

in the parameter perturbation, the finite-difference formula given in Eq. (3.23)
GFD.

can be used to compute the approximate sensitivity Sy~ ; subsequently, this value

can be used in conjunction with Eq. (D.40) to compute a “finite-difference sen-
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(49)

SFD
sitivity” value, denoted as [Ta ]

, for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

a

[7_(49)]SFD — _SED _ ,19). hgg) (Toin, ) (D.41)

Numerically, the inlet air humidity ratio w;, has the nominal (“base-case”)
value of w), = 0.015029407. The corresponding nominal value RHS9, of the
response RH® is RHLY, = 100.1052%. Consider next a perturbation dw;, =

(0.001243) wy,, for which the perturbed value of the inlet air humidity ratio be-

mn

pert
mno

comes w W) — 0w, = 0.015010726. Re-computing the perturbed response by

solving Eqs. (2.2) - (2.15) with the value of w?" yields the “perturbed response”
value Rngizt = 100.0951%. Using now the nominal and perturbed response val-
ues together with the parameter perturbation in the finite-difference expression
given in Eq. (3.23) yields the corresponding “finite-difference-computed sensi-

RH'), —RH{),,

L WM FD A pert
tivity” Syg” = S

= 537.96 [—]. Using this value together with the
nominal values of the other quantities appearing in the expression on the right
side of Eq. (D.41) yields [7549)}3}?1) = —2298.3 [—]. This result compares well
with the value 7.'? = —2235.5 [—] obtained by solving the adjoint sensitivity
system given in Eq. (3.10), cf. Figure 3.3. When solving this adjoint sensitivity
system, the computation of 749 depends on the previously computed adjoint

functions Téi), 1 =1,...,1 — 1; hence, the forgoing verification of the computa-

9)

tional accuracy of 79 also provides an indirect verification that the functions

Téi), 1=1,...,1 — 1 were also computed accurately.

D.1.3.4 Verification of the adjoint function 7'15)1)

Note that the value of the adjoint function 7V obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is as follows: ) =-6.18x1077 [(J/s)_l] ,

indicated in Figure 3.3. Now select a variation 67, ;, in the inlet water tem-
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perature T, ;,, and note that Eq. (3.22) yields the following expression for the

sensitivity of the response R = RH to Twin:

OR O s oND o aN® o CaND L aNDY ON,

g s _ WM @ ONs @ ONs 0Ny ) ONs
’ aT1w,in Z: (/‘Lw aTw,in * Tw aTw,in * Ta 8Tv'uu,in o 8Tw,in * H aTw,in

aNS

= 0= = 0= - (- 1)
’ (D.42)
Re-writing Eq. (D.42) in the form
S

71(01) - ____ ¥ (D.43)

(mw,in : alf)

indicates that the value of the adjoint function 7D could be computed indepen-

dently if the sensitivity S5 were available, since the quantity 1, - a1 is known.
To first-order in the parameter perturbation, the finite-difference formula given
in Eq. (3.23) can be used to compute the approximate sensitivity SIP; subse-
quently, this value can be used in conjunction with Eq. (D.43) to compute a
“finite-difference sensitivity” value, denoted as [qu,l)rFD, for the respective ad-
joint, which would be accurate up to second-order in the respective parameter
perturbation:

(7] SFD SED

-~ (D.44)

Numerically, the inlet water temperature, T}, ;», has the nominal (“base-case”)

value of TP

w,in

sponse RHW is RH,%)m = 100.1052%. Consider now a perturbation 07, ;, =

= 298.774 [K]. The corresponding nominal value RHS5,, of the re-

(0.0000669) T°

w,in’

for which the perturbed value of the inlet water temperature

t
becomes TP" = TO

w,in w,in

sponse by solving Eqs. (2.2) - (2.15) with the value of 7" vields the “perturbed

— 0Ty in = 298.754 [K]. Re-computing the perturbed re-

response” value RH. ) 100.1029%. Using now the nominal and perturbed re-

pert =
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sponse values together with the parameter perturbation in the finite-difference ex-
pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

a» RHY —RH),

- = 0.48288 [K~'|. Using this value together with

sensitivity” SI'P
the nominal values of the other quantities appearing in the expression on the right
side of Eq. (D.44) yields [ﬂg})] Y ~6.16 x 1077 [(J/s)™']. This result com-
pares well with the value 74 = —6.18 x 1077 [(J/s)_l} obtained by solving the

adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.3.

D.1.3.5 Verification of the adjoint function MS)

Note that the value of the adjoint function ,ug ) obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is as follows: ply) = —235.106 [(kg/s)™'],
respectively, as indicated in Figure 3.3. Now select a variation dm,;, in the
inlet water mass flow rate m, ;,, and note that Eq. (3.22) yields the following

expression for the sensitivity of the response R = RH M to Moy i’

w w a
amw,in aan,in amw,in amw,in

49 % % 7 %
g, 8 9f [Z <u<i>aL1()+T<i>aL2()+T<n ONS” o ONY )

1) 1) 1) W)
ﬂ] _o0- (Mu)ﬂ LN ONgY L 0N )

w w a
amw,’in 8mw,in a77Lw,in aan,in

2)
(Y g [ Gele” e ) |
@ myg Mg

Since the adjoint functions 749 and 0™ have been already verified as de-

(D.45)

scribed in Sections D.1.3.2 and D.1.3.3, it follows that the computed values of

—1
adjoint functions 7. = —19110.5 [~] and o) = 0.005632 {(%) } can also be

considered as being accurate, since they constitute the starting point for solving
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the adjoint sensitivity system in Eq. (3.10); 7 was proved being accurate in

Section D.1.3.4. Re-writing Eq. (D.45) in the form:

MS) = 544 + 7'5)1) . (Twmalf — alng) + Qof — aog)

. (D.46)
o (R L [ g+ ao
@ myg Mg

indicates that the value of the adjoint function ,ug) could be computed inde-

pendently if the sensitivity Sy were available, since all the other quantities are
known. To first-order in the parameter perturbation, the finite-difference formula
given in Eq. (3.23) can be used to compute the approximate sensitivity SI}P;
subsequently, this value can be used in conjunction with Eq. (D.46) to compute a

(1):| SFD

“finite-difference sensitivity” value, denoted as [uw , for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:
SFD
W] = ply) = SEP + 1 - (Twmary — arg TP + aos — aog)

) (D.47)
70 (L) 4o (M)
myg mg

Numerically, the inlet water mass flow rate, my, ;,, has the nominal (“base-

case”) value of m? , = 44.0213 [kg/s]. The corresponding nominal value RHS

of the response RHW is RH{5, = 100.1052%. Next, consider a perturbation

OMuin = (0.0004839) my, ;,,, for which the perturbed value of the inlet water

pert 0 .
w,in T mw,in

mass flow rate becomes m My in = 44.00 [kg/s]. Re-computing

pert
w,in

the perturbed response by solving Egs. (2.2) - (2.15) with the value of m

yields the “perturbed response” value RH. (1)t = 100.1052%. Using now the nom-

per

inal and perturbed response values together with the parameter perturbation in
the finite-difference expression given in Eq. (3.23) yields the corresponding “finite-
——8.075x 107 [ (%)™,

s

(1) (1)
. e e . A RH er *RHnom
difference-computed sensitivity” SIP & —pert —rom

5mw,in
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Using this value together with the nominal values of the other quantities appear-
ing in the expression on the right side of Eq. (D.47) yields |:,LL8):| o = —235.106
[(k:g/s)_l]. This result compares well with the value ) = —235.106 [(k’g/s)_l}
obtained by solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure
3.3.

D.1.4 Verification of the Adjoint Functions for the Outlet
Water Mass Flow Rate mE,?O)

When R = m{”, the quantities réi) defined in Eqgs. (3.4) - (3.5) all vanish
except for a single component, namely: 7’549) £ OR/ om0 = 1. Thus, the ad-
joint functions corresponding to the outlet air temperature response mSEO) are
computed by solving the adjoint sensitivity system given in Eq. (3.10) using
7°§49) £ OR/ omS?Y =1 as the only non-zero source term; for this case, the solu-

tion of Eq. (3.10) has been depicted in Figure 3.4.

D.1.4.1 Verification of the adjoint function p,

Note that the value of the adjoint function p, obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is p, = —0.017646  [(kg/s) / (J/m?)], as
indicated in Figure 3.4. Now select a variation §V,, in the wind speed V,,,, and note
that Eq. (3.22) yields the following expression for the sensitivity of the response

R = m$,§’°) to V,:

OR D JoND o anN o aN® N ON,
S 2 2" (@721 (72 (6223 (1) 2214 a_5
ON.
=0- ,uaa_v5 = - (Ua) [_Vw : p(Ttdba a)] .

(D.48)
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Re-writing Eq. (D.48) in the form

Ss
Ma = _8N5/8Vw (D49)

indicates that the value of the adjoint function g, could be computed inde-
pendently if the sensitivity S; were available, since the quantity ON;/0V,, =
—2.1795[J/(m*/s)] is known. To first-order in the parameter perturbation, the
finite-difference formula given in Eq. (3.23) can be used to compute the approx-
imate sensitivity SI'”; subsequently, this value can be used in conjunction with

Eq. (D.49) to compute a “finite-difference sensitivity” value, denoted as [u,]*""

9

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

70

(1)
a,pert Ta,nom

oV,

[ a]SFD_ S?D

— T [Mﬂ B (D.50)

oV,

Numerically, the wind speed V,, has the nominal (“base-case”) value of V. =
1.353 [m/s]. The corresponding nominal value mg,?,%)om of the response mbi is
m o = 43.91418 [kg/s]. Consider next a perturbation §V,, = (0.017) V.V, for
which the perturbed value of the wind speed becomes VFert = VO — 6V, =
1.33 [m/s]. Re-computing the perturbed response by solving Egs. (2.2) - (2.15)
with the value of VF¢* yields the “perturbed response” value mff;)ert = 43.91484
[kg/s]. Using now the nominal and perturbed response values together with the
parameter perturbation in the finite-difference expression given in Eq. (3.23)
yields the corresponding value for the “finite-difference-computed sensitivity”

(50) (50)

SFP £ Twpecwnon — _0.02847 [(kg/s)/ (m/s)]. Using this value together

with the nominal values of the other quantities appearing in the expression on
the right side of Eq. (D.50) yields [ua]**" = —0.017612  [(kg/s) / (J/m?)]. This
result compares well with the value p, = —0.017646  [(kg/s) / (J/m?)] obtained

by solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure 3.4.
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D.1.4.2 Verification of the adjoint function 0"

Note that the value of the adjoint function 0*?) obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is 0“9 = —9.08 x10™" [(kg/s) / (J/kg)], as
indicated in Figure 3.4. Now select a variation 07} ;, in the inlet air temperature
Tu.in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = mq(i'o) to Th in:

OR O aN®  aN®  aN® 9N ON.
£ — (72" () 2772 (1)) Z-"3 (6) Y4V 5
545 8Ta,m Z <Mw aT'a,in * Tw aTa;m * Ta aTa,in o 8Ta7in * fla aT'a,m
ON™ ON; | T 41K

( ) Rair | | [ 1 1 + ksum + 96f Lfill
—_— a . —_— . ma . ma . —_— .
Ha) Y 9 Pom Az, T A2 T Az Re  A%,D,

out fall
g Pum V2 Az
— | L+ = A rain — "o .

+Rai7‘ ’ Ta2,in ( " 29 : 2

(D.51)
Re-writing Eq. (D.51) in the form
(49) S45 + Ha a(;{:ffn
(] = _Tfm) (D52)
C()717,,7577,

indicates that the value of the adjoint function 0*? could be computed indepen-
dently if the sensitivity S5 were available, since the quantity 8]\7&49) JOT i =
1.03310 x 10*[J/(kg - K)] is known. To first-order in the parameter perturba-
tion, the finite-difference formula given in Eq. (3.23) can be used to compute the
approximate sensitivity SEP; subsequently, this value can be used in conjunc-

tion with Eq. (D.52) to compute a “finite-difference sensitivity” value, denoted

as [0(49)}SFD, for the respective adjoint, which would be accurate up to second-
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order in the respective parameter perturbation:

o -1
B 8N4§49) B 5Ta,in fla 8T'a,,in ajﬁa in
8Ta,in '
(D.53)

Numerically, the inlet air temperature 7y ;,(= Ty) has the nominal (“base-

case”) value of T7;, = 294.03 [K]. The corresponding nominal value S o
of the response mb? is mq(f,%m = 43.91418 [kg/s]. Consider next a pertur-

bation 67, = (0.00102) 79

a,imn)?

for which the perturbed value of the inlet air

temperature becomes T = T, — 6T, ;, = 294.00 [K]. Re-computing the per-

a,in a,in

turbed response by solving Egs. (2.2) - (2.15) with the value of 775 yields the
“perturbed response” value m%) . = 43.91394 [kg/s]. Using now the nomi-

w,pert

nal and perturbed response values together with the parameter perturbation
in the finite-difference expression given in Eq. (3.23) yields the corresponding

(50) (50)

. . e . A ™ rt —Mw,nom
“finite-difference-computed sensitivity” Sf;? = —wrel—=mm — (00821 [f—;’(]

Using this value together with the nominal values of the other quantities ap-
pearing in the expression on the right side of Eq. (D.53) yields [0(49)}SFD =
~7.96x 1077 [(kg/s) /(J/kg)]. This result compares well with the value 09 =
—9.08 x 1077 [(kg/s) / (J/kg)] obtained by solving the adjoint sensitivity sys-
tem given in Eq. (3.10), cf., Figure 3.4. When solving this adjoint sensitivity
system, the computation of 0*? depends on the previously computed adjoint
functions o, ¢ = 1,...,I — 1; hence, the forgoing verification of the computa-

tional accuracy of 0* also provides an indirect verification that the functions

o, i=1,..,1—1, were also computed accurately.

D.1.4.3 Verification of the adjoint function 77549)

Note that the value of the adjoint function 749 obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is 749 = _14.812 [kg/s|, as indicated in
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Figure 3.4. Now select a variation dw;, in the inlet air humidity ratio w;,, and note
that Eq. (3.22) yields the following expression for the sensitivity of the response

R = mEUO) to Wip:

Sie =
8wm

49 (4) (1) (%) (4)
0N, ~ ON. 5 ON. ~ON, ON,
E (4) 2 () 3 (7) 4 5
i1 < Huw 8 Tw &,um Ta 8wm 0 &,um ) Ha 8wm]

’LTL

8N (49) N1
—0— < (49)~°'3 + 0(49)—4 = — |:T(49) . (1) + 0(49) . héi(l)) (Ta,in7 a):| .

Ta 8wm &um @
(D.54)
Re-writing Eq. (D.54) in the form
9 = 56— o 30 (T, . ) (D.55)

indicates that the value of the adjoint function 71549) could be computed indepen-

dently if the sensitivity Sss were available, since the 0*?) has been verified in (the
previous) Section 3.1.4.2 and the quantity hg?g) (Ta,in, ) is known. To first-order

in the parameter perturbation, the finite-difference formula given in Eq. (3.23)

can be used to compute the approximate sensitivity S¥P; subsequently, this value
can be used in conjunction with Eq. (D.55) to compute a “finite-difference sen-

(49)] SFD

sitivity” value, denoted as |:Ta , for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:
SED
[76549)] — —SEP _ o9 hg’g) (Tim, ) (D.56)

Numerically, the inlet air humidity ratio w;, has the nominal (“base-case”)

value of w? = 0.015029407. The corresponding nominal value mq(f%)om of the re-

sponse mb” is mboom = 43.91418 [kg/s]. Consider next a perturbation dw;, =

(0.001243) w? , for which the perturbed value of the inlet air humidity ratio be-

’LTL’

pert

comes w;,, w) —dwi, = 0.015010726. Re-computing the perturbed response by
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solving Eqs. (2.2) - (2.15) with the value of w?" yields the “perturbed response”
(50)

value my, pere =

=43.91386 [kg/s]. Using now the nominal and perturbed response
values together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-
(50) (50)

ity” SED & MupertTwrom _ 17 954 [kg/s]. Using this value together with the

5wzn

nominal values of the other quantities appearing in the expression on the right

SFD
side of Eq. (D.56) yields [7'6549)} = —14.948 [kg/s]. This result compares well

with the value 7. = —14.812 [kg/s] obtained by solving the adjoint sensitivity

system given in Eq. (3.10), cf. Figure 3.4. When solving this adjoint sensitivity
system, the computation of 749 depends on the previously computed adjoint

functions Téi), 1 = 1,...,1 — 1; hence, the forgoing verification of the computa-

(49)

tional accuracy of 7, / also provides an indirect verification that the functions

Ta'y, t=1,....,1 —1 were also computed accurately.

D.1.4.4 Verification of the adjoint function M

Note that the value of the adjoint function 7D obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is as follows: M = 1.581x1077 [(J/k:g)_l] :
indicated in Figure 3.4. Now select a variation 67, ;, in the inlet water tem-
perature T, ;,, and note that Eq. (3.22) yields the following expression for the

(50)

sensitivity of the response R = mqy, = t0 Ty in:

OR = N aNSY AN N ON;
a _ (i) (i @Oz | @ ONa” 5
53 aTw,in z_: ( al 8Tw ,in i T aTw ,in MK To aTw ,in o 8Tw ,in - fa aTw,in
8N(1)
=0— S)@TQ» =0—71 - (Mg - ary)
’ (D.57)
Re-writing Eq. (D.57) in the form
S.
= (D.58)
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indicates that the value of the adjoint function 71(01) could be computed indepen-

dently if the sensitivity S5 were available, since the quantity 1, ;, - a1 5 is known.
To first-order in the parameter perturbation, the finite-difference formula given
in Eq. (3.23) can be used to compute the approximate sensitivity SI?; subse-

quently, this value can be used in conjunction with Eq. (D.58) to compute a

(1):| SFD

“finite-difference sensitivity” value, denoted as |:Tw , for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:
SFD Sip
R e (D.59)
Moy, in * alf)

Numerically, the inlet water temperature, T, ;», has the nominal (“base-case”)

value of T0 = 298.774 [K]. The corresponding nominal value m£§,920m of the re-

sponse mb" is m o, = 43.91418 [kg/s]. Consider now a perturbation 07, ;, =

(0.0000669) T

’ll)Z'I’L7

for which the perturbed value of the inlet water temperature

becomes T2 = TO . — 6T, im = 298.754 [K]. Re-computing the perturbed re-

’LUZTL ’LU’L’I’L

sponse by solving Eqs. (2.2) - (2.15) with the value of T?" yields the “perturbed

’LUZTL

(50)
wpert -

response” value m = 43.91477 [kg/s|. Using now the nominal and perturbed
response values together with the parameter perturbation in the finite-difference
expression given in Eq. (3.23) yields the corresponding “finite-difference-computed

(50) (50)

sensitivity” SI'P £ W& = —0.031364 [fg |. Using this value together

with the nominal values of the other quantities appearing in the expression on
SFD

the right side of Eq. (D.59) yields [Tw } = 1.580 x 107 [(.J/kg)~"]. This

result compares well with the value 757 = 1.581 x 1077 [(J/ kg)_l] obtained by

solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.4.

D.1.4.5 Verification of the adjoint function MS)

Note that the value of the adjoint function ug ) obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is as follows: pl) = 0.61393 [—], respec-
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tively, as indicated in Figure 3.4. Now select a variation dm,, ;, in the inlet water

mass flow rate my, ;,, and note that Eq. (3.22) yields the following expression for

the sensitivity of the response R = mq(f 9 to Moy i’

49 % % 7 %
Sus 08 [Z (umaLl() o 0N OND L ONY )

w w a
amw,m 8mw,in amw,in amw,m amw,in

+lq

1 1 1 1
O =0- M(l)—aNl( ) T 6]\72( | + 7 8Nf§ ) + o) aNi )
amw,in v 8mw,in v Gmw,in ¢ aan,in amw,m

=— [ W)+ 7. (Towinary — a1, T + agy — aog)

(2)
_|_7—(1) . L + 0(1) . M .
@ myg me

Since the adjoint functions 79 and 0“9 have been already verified as de-

(D.60)

scribed in Sections D.1.4.2 and D.1.4.3, it follows that the computed values of
adjoint functions 78" = —10.569 [kg/s] and o) = 4.16 x 10~ [(k?g) / (é)] can
also be considered as being accurate, since they constitute the starting point for

solving the adjoint sensitivity system in Eq. (3.10); 7 was proved being accurate

in Section D.1.4.4. Re-writing Eq. (D.60) in the form:

) = Sy 4+ 1V (T imary — a1, TP + agp — aog)

(LY o [ gl Fao
@ myg Mg

indicates that the value of the adjoint function ,ug,l) could be computed inde-

pendently if the sensitivity Sy were available, since all the other quantities are
known. To first-order in the parameter perturbation, the finite-difference formula
given in Eq. (3.23) can be used to compute the approximate sensitivity SIP;
subsequently, this value can be used in conjunction with Eq. (D.61) to compute a

SFD
“finite-difference sensitivity” value, denoted as [MS )} , for the respective ad-
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joint, which would be accurate up to second-order in the respective parameter
perturbation:

SFD
[,Uq(j)] = /Lq(ul) = SﬂD + 7'1511) . (Tw,malf — algTS) + CL()f - aog)

JSRCO I (R SNV I (A V2 )
@ mg Mg

Numerically, the inlet water mass flow rate, my, ;,, has the nominal (“base-

(50)

case”) value of m? . = 44.0213 [kg/s|. The corresponding nominal value 1y mom

w,in

of the response my” is m'oom = 43.91418 [kg/s]. Next, consider a perturbation

OMuwin = (0.0004839) mY, ., for which the perturbed value of the inlet water

mass flow rate becomes m>"! = m? . —dmy, i, = 44.00 [kg/s]. Re-computing the

perturbed response by solving Eqs. (2.2) - (2.15) with the value of ml, 7, yields the
“perturbed response” value m\>0), , = 43.89289 [kg/s]. Using now the nominal

w,per

and perturbed response values together with the parameter perturbation in the
finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SIP = W = 0.99973 [—]. Using this
value together with the nominal values of the other quantities appearing in the
expression on the right side of Eq. (D.62) yields [ug)} - 0.61393 [—]. This
result compares well with the value ,uq(ul ) = 0.61393 [—] obtained by solving the

adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.4.

D.1.5 Verification of the Adjoint Functions for the Outlet

Air Mass Flow Rate m,

When R = m{", the quantities réi) defined in Egs. (3.4) - (3.5) all vanish ex-
cept for a single component, namely: R; = OR/dm, = 1.Thus, the adjoint func-
tions corresponding to the outlet air temperature response mg’ 0 are computed by

solving the adjoint sensitivity system given in Eq. (3.10) using Ry = OR/0m, = 1
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as the only non-zero source term; for this case, the solution of Eq. (3.10) has been

depicted in Figure 3.5.

D.1.5.1 Verification of the adjoint function p,

Note that the value of the adjoint function p, obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is u, = 4.4364  [(kg/s)/(J/m?)], as
indicated in Figure 3.5. Now select a variation 0V, in the wind speed V,,, and
note that Eq. (3.22) yields the following expression for the sensitivity of the

response & = m, to V,,:

OR |~ oN? G ON{ - JoNy L ON ON

S 2 = ()21 ("2 ()23 ()24 a_5

* T v, z:: (“w av, Ty, T ey, T oy, ) TGy,

ON.
=0- ,uaa_vs = — (ta) [V - p(Tyan, )] -
(D.63)
Re-writing Eq. (D.63) in the form
Ss

Ha = —m (D64)

indicates that the value of the adjoint function p, could be computed inde-
pendently if the sensitivity S; were available, since the quantity ON;/0V,, =
—2.1795[J/(m*/s)] is known. To first-order in the parameter perturbation, the
finite-difference formula given in Eq. (3.23) can be used to compute the approx-
imate sensitivity SI'7; subsequently, this value can be used in conjunction with
Eq. (D.64) to compute a “finite-difference sensitivity” value, denoted as [ua]SFD,

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

7

(1)
a,pert Ta,nom

[ a]SFD _ S’?D
0V

~ 0N, OV,

B]‘\/ﬂ B (D.65)
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Numerically, the wind speed V,, has the nominal (“base-case”) value of V) =

1.353 [m/s]. The corresponding nominal value m of the response m,, is m

20.11022 [kg/s]. Consider next a perturbation 6V, = (0.017) V.V, for which the
perturbed value of the wind speed becomes VPt = VU — ¢V, = 1.33 [m/s].
Re-computing the perturbed response by solving Eqs. (2.2) - (2.15) with the
value of V2" yields the “perturbed response” value m,, .., = 19.94624 [kg/s].

Using now the nominal and perturbed response values together with the param-

eter perturbation in the finite-difference expression given in Eq. (3.23) yields the

” SFD Ay ma,pertfma,nom
5 = — -

corresponding “finite-difference-computed sensitivity T

7.1295 [(kg/s) / (m/s)]. Using this value together with the nominal values of the
other quantities appearing in the expression on the right side of Eq. (D.65) yields
[11a) 7P = 4.4099  [(kg/s)/(J/m3)]. This result compares well with the value
po = 4.4364 [(kg/s) / (J/m?)] obtained by solving the adjoint sensitivity system

given in Eq. (3.10), cf., Figure 3.5.
D.1.5.2 Verification of the adjoint function 0%

Note that the value of the adjoint function 0*? obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is o9 = —1.7873x10™* [(kg/s) / (J/kg)],
as indicated in Figure 3.5. Now select a variation 67}, ;,, in the inlet air temperature
Ty.in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = m, to Ty n:
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OR D JoND o CoaNS o aN® aND ON,
2 — () 2711 () Z-'2 @) Y1Vs () 94V 5
545 8Ta,m ZZ <Mw aT'a,z'n * Tw 8Ta,in * Ta aTa,in o 8Ta,7jn * fla aT'a,in
N ONs | T8 1K ]

( ) Rair | | [ 1 1 + ksum + 96f Lfill ]
—_— a . . ma . ma . —_— — .
Ha) Y 9 P Az A TR Re AZ,D,

out fill fill

g- Patm ; Az

g4 lw A i
(D.66)

Re-writing Eq. (D.66) in the form
ON5
049 _ _ S5+ Hapr, - D67
N (D.67)
8Ta,in

indicates that the value of the adjoint function 0*? could be computed indepen-
dently if the sensitivity Sy5 were available, since the quantity 6Ni49) JOT,in =
1.03310 x 10*[J/(kg - K)] is known. To first-order in the parameter perturba-
tion, the finite-difference formula given in Eq. (3.23) can be used to compute the
approximate sensitivity SIP; subsequently, this value can be used in conjunc-
tion with Eq. (D.67) to compute a “finite-difference sensitivity” value, denoted
as [0(49)]SFD, for the respective adjoint, which would be accurate up to second-

order in the respective parameter perturbation:

0 _
[0(49)] SFD _ Sf"{)D + Ha 8TZ§R _ Ta(,lp)ert - (g,lnom + (9]\75 8Ni49)
B 8N‘§49) B 5Ta mn fla aT’a n aT‘a mn
8Ta,in ’ ’ ’
(D.68)

Numerically, the inlet air temperature 7} ;,(= Ty) has the nominal (“base-

case”) value of T

a,in

= 294.03 [K]. The corresponding nominal value m of the

a,nom

response m, is m = 20.11022 [kg/s|. Consider next a perturbation §7, ;, =

a,nom
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(0.00102) T2,

wins for which the perturbed value of the inlet air temperature becomes

TP =10, — 6T, i = 294.00 [K]. Re-computing the perturbed response by solv-

azn azn

ing Eqgs. (2.2) - (2.15) with the value of TP" yields the “perturbed response”

(I’L’I’L

value m = 20.16037 [kg/s]. Using now the nominal and perturbed response

a,pert
values together with the parameter perturbation in the finite-difference expression
given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-
ity” SEP £ W = —1.6714 [jg] Using this value together with the
nominal values of the other quantities appearing in the expression on the right
side of Eq. (D.68) yields [0@)]°"” = —1.7992 x 10™*  [(kg/s) / (J/kg)]. This
result compares well with the value o*” = —1.7873 x 10°*  [(kg/s) / (J/kg)]
obtained by solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure
3.5. When solving this adjoint sensitivity system, the computation of 0o*?) de-
pends on the previously computed adjoint functions o, i =1,...,I — 1; hence,
the forgoing verification of the computational accuracy of 0% also provides an

indirect verification that the functions o”, i =1,...,I — 1, were also computed

accurately.

D.1.5.3 Verification of the adjoint function 749

Note that the value of the adjoint function 79 obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is 79 = 412.302 [kg/s], as indicated in
Figure 3.5. Now select a variation dw;, in the inlet air humidity ratio w;,, and note

that Eq. (3.22) yields the following expression for the sensitivity of the response

R =m, to wj,:

546 -

9 (4) (4) () (4)
N8N ) ON. JON N
Z( pON @O @ONs 0N >+MGQ]

w a Win v awin awin awin awin

8N(49) aN (49)
- (Tyg) T O | = [ () o D T, ).

(D.69)
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Re-writing Eq. (D.69) in the form
19 = 545 — 049 1D (T, 0,0 (0.70

indicates that the value of the adjoint function 749 could be computed indepen-

dently if the sensitivity Sy were available, since the 0(*®) has been verified in (the
previous) Section D.1.5.2 and the quantity hio) (Tain, @) is known. To first-order

in the parameter perturbation, the finite-difference formula given in Eq. (3.23)

can be used to compute the approximate sensitivity SkP; subsequently, this value

can be used in conjunction with Eq. (D.70) to compute a “finite-difference sen-

(49)] SFD

sitivity” value, denoted as |:Ta , for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[709]572 = _SED o9 1607, .. e (D.71)

a

Numerically, the inlet air humidity ratio w;, has the nominal (“base-case”)

value of wf) = 0.015029407. The corresponding nominal value m of the re-

a,nom

sponse m, is m = 20.11022 [kg/s]. Consider next a perturbation dw;, =

a,nom

(0.001243) w? , for which the perturbed value of the inlet air humidity ratio be-

comes W’ = w9 — 0w, = 0.015010726. Re-computing the perturbed response by
solving Egs. (2.2) - (2.15) with the value of w2 yields the “perturbed response”
value m,, .., = 20.10942 [kg/s]. Using now the nominal and perturbed response
values together with the parameter perturbation in the finite-difference expression
given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-
ity” SEP £ W = 42.865 [kg/s]. Using this value together with the
nominal values of the other quantities appearing in the expression on the right
side of Eq. (D.71) yields [T(§49)] T 411.031 [kg/s]. This result compares well
with the value 7.'” = 412.302 [kg/s] obtained by solving the adjoint sensitivity

system given in Eq. (3.10), cf. Figure 3.5. When solving this adjoint sensitivity
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system, the computation of 71549) depends on the previously computed adjoint

functions Téi), 1 = 1,...,1 — 1; hence, the forgoing verification of the computa-

tional accuracy of 7',549)

Téi), 1 =1,...,1 — 1 were also computed accurately.

also provides an indirect verification that the functions

D.1.5.4 Verification of the adjoint function M

Note that the value of the adjoint function 7" obtained by solving the
adjoint sensitivity system given in Eq. (3.10) is as follows: ) = —8.111 x
1076 [(J//{:g)_l} , indicated in Figure 3.5. Now select a variation 67, ;, in the inlet
water temperature T, ;,, and note that Eq. (3.22) yields the following expression

for the sensitivity of the response R = m, to Ty, in:

OR N N L ONY JOND o AND ON,

S. 2 _ (%) 1 (1) 2 (273 () 774 a_5
’ aTw,in g (Mw aTw,in M Tw aTw,in * Ta 8Tw,in o 8Tw,in * a aTw,in

aN(l)

=07t = 0= ) - (i aay)
’ (D.72)
Re-writing Eq. (D.72) in the form
S

) =— - (D.73)

(Muwin + a1y)
indicates that the value of the adjoint function TS) could be computed indepen-
dently if the sensitivity S5 were available, since the quantity 1, , - a1 ¢ is known.
To first-order in the parameter perturbation, the finite-difference formula given
in Eq. (3.23) can be used to compute the approximate sensitivity SIP; subse-
quently, this value can be used in conjunction with Eq. (D.73) to compute a

. . 1)]5FP
“finite-difference sensitivity” value, denoted as |:Tw }

, for the respective ad-
joint, which would be accurate up to second-order in the respective parameter
perturbation:

— 2 (D.74)

(1)1 SFD _ SgD
[T } (mw,in : alf)
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Numerically, the inlet water temperature, T}, ;,,, has the nominal (“base-case”)

value of T

w,in

= 298.774 [K]. The corresponding nominal value m of the re-

a,nom

sponse m, is m = 20.11022 [kg/s]. Consider now a perturbation 07, =

a,nom

(0.0000669) T°

w,in?

pert 0
comes T, = 1oy i,

by solving Eqgs. (2.2) - (2.15) with the value of T?* yields the “perturbed re-

w,in

for which the perturbed value of the inlet water temperature be-
— 0Ty in = 298.754 [K]. Re-computing the perturbed response

sponse” value m = 20.08029 [kg/s|. Using now the nominal and perturbed re-

a,pert
sponse values together with the parameter perturbation in the finite-difference ex-
pression given in Eq. (3.23) yields the corresponding “finite-difference-computed
sensitivity” SI'P £ W = 1.49647 [f—lg{] Using this value together with
the nominal values of the other quantities appearing in the expression on the
right side of Eq. (D.74) yields [TS)}SFD — 8120 x 10~° [(J/kg)"]. This re-
sult compares well with the value 75 = —8.111 x 10~ [(J/k;g)_l] obtained by

solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.5.

D.1.5.5 Verification of the adjoint function ,uq(j)

Note that the value of the adjoint function ug ) obtained by solving the adjoint
sensitivity system given in Eq. (3.10) is as follows: ,ug ) = 19.774 [—], respectively,
as indicated in Figure 3.5. Now select a variation dm, ;, in the inlet water mass
flow rate my, i, and note that Eq. (3.22) yields the following expression for the

sensitivity of the response R = m, to my, n:
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49 7 % % 7
Su2 2B _ [Z (MmaLl() L 0N NS ONy )

amw mn i=1 v amw,in v amw,in amw,in amw,in
1) (1) (1) (1)

g 2N | g (N 0Ny ONs ) ONG
amw in v amw,in v amw,in “ amw,in amw,in

- LS) (=1 + 7 - (Twinary — argT + aop — agg)

2)
o (L) . ay, o’ +aos ) |
“ Mg Mg

Since the adjoint functions 79 and 0“9 have been already verified as de-

(D.75)

scribed in Sections D.1.5.2 and D.1.5.3, it follows that the computed values of
adjoint functions 7" = 3308.26 [kg/s] and o) = —0.001299 [(%) / <k—‘]g>] can
also be considered as being accurate, since they constitute the starting point for
solving the adjoint sensitivity system in Eq. (3.10); V) was proved being accurate

in Section D.1.5.4. Re-writing Eq. (D.75) in the form:

) = Sy 4+ 1V (T imars — a1, T + agp — aog )

) (D.76)
Lo (L) Lo ay, Ty + ag,
a myg Mg

indicates that the value of the adjoint function MS) could be computed inde-

pendently if the sensitivity Syy were available, since all the other quantities are
known. To first-order in the parameter perturbation, the finite-difference formula
given in Eq. (3.23) can be used to compute the approximate sensitivity SI;
subsequently, this value can be used in conjunction with Eq. (D.76) to compute a

L . 1)]5FP
“finite-difference sensitivity” value, denoted as [uw }

, for the respective ad-
joint, which would be accurate up to second-order in the respective parameter

perturbation:
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(1)] SFD

IZ% = py) = SE° + 7 (Twanary — g TP + aop — aoy)

w

) (D.77)
o () o (06T +ay
¢ Mq Mg

Numerically, the inlet water mass flow rate, my, ;,, has the nominal (“base-

case”) value of my, ; = 44.0213 [kg/s]. The corresponding nominal value m

a,nom

of the response m, is m = 20.11022 [kg/s]. Next, consider a perturbation

a,nom

OMuyin = (0.0004839) my, ;,,, for which the perturbed value of the inlet water

pert 0

mass flow rate becomes my 7, = My, — 0Myn = 44.00 [kg/s]. Re-computing

the perturbed response by solving Egs. (2.2) - (2.15) with the value of mZ7;, yields
the “perturbed response” value m, ., = 20.10986 [kg/s]. Using now the nominal
and perturbed response values together with the parameter perturbation in the
finite-difference expression given in Eq. (3.23) yields the corresponding “finite-
difference-computed sensitivity” SEP & W = 0.01723 [—]. Using this
value together with the nominal values of the other quantities appearing in the
expression on the right side of Eq. (D.77) yields [ug)] L 19.774 [—]. This
result compares well with the value uq(ul ) = 19.774 [—] obtained by solving the

adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.5.
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D.2 Verification of the Model Adjoint Functions
for Case 1b: Fan Off, Saturated Outlet Air

Conditions, with Inlet Air Saturated

The verification procedure of the adjoint functions for case 1b is reported in

this section.

D.2.1 Verification of the adjoint function u, for all re-

sponses

When R = T.", the quantities réi) defined in Egs. (3.27) - (3.28) all van-
ish except for a single component, namely: Tél) 2 OR/ T = 1.Thus, the ad-
joint functions corresponding to the outlet air temperature response Ta(l) are
computed by solving the adjoint sensitivity system given in Eq. (3.33) using
rél) 2 OR/ 8T¢$1) = 1 as the only non-zero source term; for this case, the solution
of Eq. (3.33) has been depicted in Figure 3.6. Note that the value of the adjoint
function p, obtained by solving the adjoint sensitivity system given in Eq. (3.33)
is pg, = —0.26270 [K/(J/m?)], as indicated in Figure 3.6. Now select a variation
0V, in the wind speed V,,, and note that Eq. (3.22) yields the following expression

for the sensitivity of the response R = 7V to Vip:

OR O 2oND o CaN o NS N ON;

S 2 2= (-1 ("2 (HZ"'3 (@) 4 a_5

5T, ; (“w ov, Ty e gy O gy | Ty

ON.
=0- ,uaa_‘/s - - (,ua) [_Vw ' p(T;fdbv a)] .
(D.78)
Re-writing Eq. (D.78) in the form
S

Ha = —m (D.79)
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indicates that the value of the adjoint function g, could be computed inde-
pendently if the sensitivity S; were available, since the quantity ON;/0V,, =
—1.6392[J/(m*/s)] is known. To first-order in the parameter perturbation, the
finite-difference formula given in Eq. (3.23) can be used to compute the approx-
imate sensitivity SI'P; subsequently, this value can be used in conjunction with
Eq. (D.79) to compute a “finite-difference sensitivity” value, denoted as [uq]*"",
for the respective adjoint, which would be accurate up to second-order in the
respective parameter perturbation:

T(l)

(1)
a,pert Ta,nom

oV

]SFD . S5FD

el ™ = 5N v,

lgeﬁ] B (D.80)

Numerically, the wind speed V,, has the nominal (“base-case”) value of V) =
1.377 [m/s]. The corresponding nominal value T Y )om of the response T\ is
T )om = 299.1041 [K]. Consider next a perturbation 0T0in = (0.0196) V2,
for which the perturbed value of the wind speed becomes VPt = V0. §V,, =
1.35[m/s]|. Re-computing the perturbed response by solving Egs. (2.25) - (2.37)

with the value of V¢! yields the “perturbed response” value T, =299.1156 [K].

a,pert —

Using now the nominal and perturbed response values together with the param-

eter perturbation in the finite-difference expression given in Eq. (3.23) yields

1 1
9 S§7‘D é Ttg,gert_Tlgv’%O’m —

the corresponding “finite-difference-computed sensitivity 5

—0.42620 [mi/s} . Using this value together with the nominal values of the other
quantities appearing in the expression on the right side of Eq. (D.80) yields
[11a) 7P = —0.26000 [K/(J/m?)]. This result compares well with the value p, =
—0.26270 [K/(J/m?)] obtained by solving the adjoint sensitivity system given in
Eq. (3.33), cf., Figure 3.6. The same parameter perturbation was utilized to per-
form the same verification procedure for the adjoint function u, with respect to

the other four responses; Table D.1 displays the obtained results, which compare

well with the values in the bar plots in Figures 3.6 - 3.10.
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Table D.1: Verification Table for adjoint function p, with respect to the responses Té”, T15,50), RHM), mq(f())
and m,,.
1
Response Vw Tx(a ) SgD [Na}(SFD) Ha
of interest
[m/s] (K] [K/ (m/s)] [K/ (J/m?)]
Base case 1.377 299.1041
T£,1> -0.42620 -0.26000 -0.26270
Perturbed case 1.35 299.1156
50
Response Vw T\(N ) SgD [Na](SFD) Ha
of interest
[m/s] (K] [K/ (m/s)] [K/ (J/m?)]
Base case 1.377 297.4568
T -0.49813 -0.30388 -0.30451
Perturbed case 1.35 297.4703
Response Vw RH®) SgD [Ma](SFD) Ha
of interest _ -1
[m/s] 1% [(m/s)7] [(7/m?) ]
Base case 1.377 102.3758
RHM -0.05731 -0.03496 -0.03451
Perturbed case 1.35 102.3774
50
Response Vw m‘(,v ) SgD [Ha}(SFD) Ha
of interest (kg/s) (kg/s)
fm/ [kg/s] [esd] o)
Base case 1.377 43.89312
m{® -0.02723 -0.016609 -0.016642
Perturbed case 1.35 43.89386
Response Vw ma SED N (SFD) Ha
of interest (kg/s) (kg/s)
/s [kg/s [/ )
Base case 1.377 20.75415
ma 6.9984 4.2692 4.2994
Perturbed case 1.35 20.56520

D.2.2 Verification of the adjoint function o*” for all re-

sponses

When R = Tél), the quantities réi) defined

ish except for a single component, namely: r
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joint functions corresponding to the outlet air temperature response Tél) are
computed by solving the adjoint sensitivity system given in Eq. (3.33) using
rél) £ OR/ TV =1 as the only non-zero source term; for this case, the solution
of Eq. (3.33) has been depicted in Figure 3.6. Note that the value of the adjoint

function 049

obtained by solving the adjoint sensitivity system given in Eq. (3.33)
is 0¥ = —6.622 x 107®  [K/(J/kg)], as indicated in Figure 3.6. Now select a
variation 677, ;, in the inlet air temperature 7y, ;,,, and note that Eq. (3.22) yields

the following expression for the sensitivity of the response R = Tél) to 1o in:

OR 2 yoND SONS o SaNS N ON:
4 _ ()71 (7" "'2 (73 (7 '4 Il
845 aTa,in ; <Mw 8Ta,in * Tw aTa,in N Ta a71(1,1'71, o aTa,in * fla aTa,in
oN{ ON; | T 41K
=0- [0(49) 8Tj7m + Uq aTam = —(0(49)) Cp T + WinQig

out

- P 2 A
+g—GW. (Z_l_ﬁ_Azmm__Z) }

fla 2. Patm ¢ ‘ L A2 A7,2'n, A?”ill Re A?”ilth

Rair . TaQ,in 2g 2
(D.81)
Re-writing Eq. (D.81) in the form
(49) S45 + Ha (9?{:7?”
0 = _wa) (D.82)
8T‘a,in

indicates that the value of the adjoint function 0*? could be computed indepen-
dently if the sensitivity S5 were available, since the quantities 8N£49) JOTin =
1.03523 x 10%[J/(kg - K)] is known. To first-order in the parameter perturba-
tion, the finite-difference formula given in Eq. (3.23) can be used to compute the
approximate sensitivity SEP; subsequently, this value can be used in conjunc-

tion with Eq. (D.82) to compute a “finite-difference sensitivity” value, denoted

as [0(49)}SFD, for the respective adjoint, which would be accurate up to second-
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order in the respective parameter perturbation:

-1

0
[0(49)] SFD _ Sff;D + Ha BT{:E” _ Tcg,lp)ert - Té,l'rzom + 8N5 (9N4(49)
B 8N4§49) B 5Ta,'m fa aTa,in 8Ta,in
aTa.,in
(D.83)

Numerically, the inlet air temperature 7y ;,(= Ty) has the nominal (“base-

1)

case”) value of T°, = 294.4 [K]|. The corresponding nominal value T )om of the

response ™V is T, élgom = 299.1041 [K]. Consider next a perturbation 67, =
(0.000068) T?

a,in?

for which the perturbed value of the inlet air temperature be-
comes TP =T, - 6T, ;, = 294.38 [K]. Re-computing the perturbed response by
solving Egs. (2.25) - (2.37) with the value of T yields the “perturbed response”
value T(i,lp)ert =299.1005 [K]. Using now the nominal and perturbed response val-
ues together with the parameter perturbation in the finite-difference expression
given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

1 1
) SFD Ay Tcs,p)ert_Tév’f)wm
45

S = 0.17720. Using this value together with the nominal

ity
values of the other quantities appearing in the expression on the right side of
Eq. (D.83) yields [0(49)]SFD = —6.529 x 107° [K/(J/kg)]. This result compares
well with the value 0*? = —6.622 x 1075  [K/(J/kg)] obtained by solving the
adjoint sensitivity system given in Eq. (3.33), cf., Figure 3.6. When solving this

(49) depends on the previously

adjoint sensitivity system, the computation of o
computed adjoint functions o”, i =1,...,] — 1; hence, the forgoing verification
of the computational accuracy of 0*? also provides an indirect verification that
the functions o™, i = 1,...,] — 1, were also computed accurately. The same
parameter perturbation was utilized to perform the same verification procedure
for the adjoint function 0o*? with respect to the other four responses; Table D.2

displays the obtained results, which compare well with the values in the bar plots

in Figures 3.6 - 3.10.
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Table D.2: Verification Table for adjoint function 0(49) with respect to the responses Tél), TS’O), RHM), mEE’O)

and m,,.
1 (SFD)
Response Tain " sED [0(49)] o(49)
£i
of interest (K] K] -] K/ (J/kg)]
Base case 294.40 299.1041
T 0.17720 -6.53-107° -6.62-10°
Perturbed case 294.38 299.1005
50 (SFD)
Response Ta,in T st [0(49)] 0(49)
of interest (K] (K] -] [K/ (J/kg)]
Base case 294.40 297.4568
T 0.48509 3461074 -3.52.1074
Perturbed case 294.38 297.4471
SFD
Response Tain RH® Sisy [0{49] (8FD) o(49)
of interest (K] (%) (K] [(J/k:g)fl]
Base case 294.40 102.3758
RH® -4.8756 4.72-1073 4.83.1073
Perturbed case 294.38 102.4734
50 (SFD)
Response Tain m\()v ) Siz? [0(49)] 0(49)
of interest k (kg/s)
K] [kg/s] [GaL2)] [ G5t ]
Base case 294.40 43.89312
m{? 0.026119 -1.85107%  -1.90-10~°
Perturbed case 294.38 43.89260
(SFD)
Response Ta,in ma SED [0(49)] 0(49)
of interest k (kg/s)
K] (ho/s [tha/e)] (G923
Base case 294.40 20.75415
ma -1.5528 -2.33-107% -2.34-107%
Perturbed case 294.38 20.78521
(49)

D.2.3 Verification of the adjoint function 7, ’ for all re-

sponses

When R = T.", the quantities réi) defined in Egs. (3.27) - (3.28) all van-
ish except for a single component, namely: rél) = 0R/0Ta(1) = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response Tél) are
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computed by solving the adjoint sensitivity system given in Eq. (3.33) using
rél) 2 OR/ T = 1 as the only non-zero source term; for this case, the solu-
tion of Eq. (3.33) has been depicted in Figure 3.6. Note that the value of the
adjoint function 749 obtained by solving the adjoint sensitivity system given in
Eq. (3.33) is 7.*” = 170.187 [K], as indicated in Figure 3.6. Now select a varia-
tion 0wy, in the inlet air humidity ratio w;,, and note that Eq. (3.22) yields the

following expression for the sensitivity of the response R = T to Win:

OR Do aN®  oN®  an gD ON,
S 2 _ @ 0% %N 9N O
46 &um ; (;U/w &um + Tw 8wm + Ta awm to c%;m + a &um

(49) (49)
_o0— <7(49) ON, i 0(49)8N_4> = — [799 (1) + o) - KONT, 1, )]

¢ 6win 80),'” ¢
(D.84)
Re-writing Eq. (D.84) in the form
W) — _ G — o119 hé?g) (Toin, ) (D.85)

indicates that the value of the adjoint function 749 could be computed inde-

pendently if the sensitivity S,s were available, since the 09 has been verified
in Section D.1.1.2 and the quantity hg?g) (Tin, @) is known. To first-order in the
parameter perturbation, the finite-difference formula given in Eq. (3.23) can be
used to compute the approximate sensitivity SiP; subsequently, this value can be
used in conjunction with Eq. (D.85) to compute a “finite-difference sensitivity”

(49):| SFD

value, denoted as |:Ta , for the respective adjoint, which would be accurate

up to second-order in the respective parameter perturbation:

(705 — _gED _ 549 p0/(T, . «) (D.86)

a
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Numerically, the inlet air humidity ratio w;, has the nominal (“base-case”)
value of wf) = 0.0162008658. The corresponding nominal value Ta(}gom of the re-
sponse T4 is T Mom = 299.10408 [K]. Consider next a perturbation dw;, =

(0.001236) w? , for which the perturbed value of the inlet air humidity ratio be-

in’

pert

comes w;,, W) — 0w, = 0.016180844. Re-computing the perturbed response by

solving Eqgs. (2.25) - (2.37) with the value of w?*"* yields the “perturbed response”

value T\ . = 299.10412 [K]. Using now the nominal and perturbed response

a,per
values together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

1 1
1t 9 SFD A T(E,p)ertiTé»’f)lom
Y ©Pi6 = Sorim

= —1.9686 [K]. Using this value together with the
nominal values of the quantities appearing in the expression on the right side
of Eq. (D.86) yields [7549)}&?[) = 170.185 [K]. This result compares well with
the value 7.'” = 170.187 [K] obtained by solving the adjoint sensitivity system
given in Eq. (3.33), cf. Figure 3.6. When solving this adjoint sensitivity system,
the computation of 77549) depends on the previously computed adjoint functions
Tc(f), 1 =1, ..., I—1; hence, the forgoing verification of the computational accuracy
of 7' also provides an indirect verification that the functions Téi), 1=1,..,1—1
were also computed accurately. The same parameter perturbation was utilized to
perform the same verification procedure for the adjoint function 799 With re-

spect to the other four responses; Table D.3 displays the obtained results, which

compare well with the values in the bar plots in Figures 3.6 - 3.10.

Table D.3: Verification Table for adjoint function 71549) with respect to the responses Tél), TI(USO), RH®, mg,?o)

and m,.
1 49 (SFD) 49
Response Win Ty Sie [TE’ )] i
of interest
(%] (K] (K] (K]
Base case 0.01620087 299.1041
T -1.9686 170.185 170.187

Perturbed case 0.01618084 298.10412
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50 49)](SFD) 19
Response Win T‘("’ ) Sg‘? [T; >] Tg )
of interest
(%] (K] (K] (K]
Base case 0.01620087 297.4568
{50 -2.2834 895.14 895.14
Perturbed case 0.01618084 297.4569
(SFD)
Response Win RH™) SEE [7'2149)] 7'249)
of interest
(%] (%] (-] (-]
Base case 0.01620087 102.3758
RH® 4585.87 -16863 -16863
Perturbed case 0.01618084 102.2841
50 49)](SFD) 49
Response Win my; ) Sie [Tg >] Tg )
of interest
(7] [kg/s] [kg/s] [kg/s]
Base case 0.01620087 43.89312
m{e® -0.1249 48.309 48.309
Perturbed case 0.01618084 43.89314
49)](SFD) 19
Response Win Ma Sic [Tg >] o
of interest
(%] [kg/s] [kg/s] [kg/s]
Base case 0.01620087 20.75415
ma -4.1485 599.72 599.72
Perturbed case 0.01618084 20.75424
(1)

D.2.4 Verification of the adjoint function 7,,’ for all re-

sponses

When R = T.", the quantities réi) defined in Egs. (3.27) - (3.28) all van-
ish except for a single component, namely: 7’:(31) = 8R/8T£1) = 1.Thus, the ad-
joint functions corresponding to the outlet air temperature response T: CEI) are
computed by solving the adjoint sensitivity system given in Eq. (3.33) using
rél) 2 OR/ T =1 as the only non-zero source term; for this case, the solution
of Eq. (3.33) has been depicted in Figure 3.6. Note that the values of the adjoint

function 7 obtained by solving the adjoint sensitivity system given in Eq. (3.33)
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is as follows: 7\ = —4.42 x 107 [K/(J/s) ], as indicated in Figure 3.6. Now

select a variation 07}, ;, in the inlet water temperature 7, ;,, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = Tél)

to Twﬂ'nl
OR 2 . oND L ONY JOND o AND ON;
A _ (@) 1 (@) 2 (@) 3 (@) 4 5
53 aTw,m Z (/j’w 3Tw,m - T aJjwﬂ‘n * Ta aTw,in o aTw,in * fa aTwﬂ‘n
ON,Y
=0- él)ﬁT—wz,m =0 =7 (M n - ary)
(D.87)
Re-writing Eq. (D.87) in the form
S
i = — > (D.88)

(mw,in : alf)

indicates that the value of the adjoint function 7'15;1) could be computed indepen-

dently if the sensitivity S5 were available, since the quantity m., a1 ¢ is known.
To first-order in the parameter perturbation, the finite-difference formula given
in Eq. (3.23) can be used to compute the approximate sensitivity SZ: subse-

quently, this value can be used in conjunction with Eq. (D.88) to compute a

SFD
“finite-difference sensitivity” value, denoted as [ﬂs})} , for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:

FD
ErD R S (D.89)

v (mw,in : alf)

Numerically, the inlet water temperature, T}, ;,,, has the nominal (“base-case”)

1)

value of T? , = 299.543 [K|. As before, the corresponding nominal value Ta(,nom

of the response TV s Té}rzom = 299.1041 [K]. Consider now a perturbation

0T in = (0.0000668) T2

w,in)

for which the perturbed value of the inlet water tem-

pert __ 0
perature becomes T, 5, = T, ;,

— 0Ty in = 299.523 [K]. Re-computing the per-
turbed response by solving Eqs. (2.25) - (2.37) with the value of T2 yields

w,in

the “perturbed response” value T\") . = 299.0878 [K]. Using now the nominal

a,pert
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and perturbed response values together with the parameter perturbation in the

finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

T )

? SFD & “apert__tnom — () 81533. Using this value

difference-computed sensitivity ST

together with the nominal values of the other quantities appearing in the expres-
sion on the right side of Eq. (D.89) yields [7{!' T 142 % 1078 [K)(J)s) ].
This result compares well with the value 7\ = —4.42 x 107 [K/(J/s) ] ob-
tained by solving the adjoint sensitivity system given in Eq. (3.33), cf. Figure 3.6.
The same parameter perturbation was utilized to perform the same verification
procedure for the adjoint function 7V with respect to the other four responses;

Table D.4 displays the obtained results, which compare well with the values in
the bar plots in Figures 3.6 - 3.10.

Table D.4: Verification Table for adjoint function 7'15]1) with respect to the responses Tél), TIE,SU), RH(I), mso)

and m,.
1)1 (SFD)
Response Tw,in T<al) SED ['rf,v )] T\(;s})
of interest
(K] (K] (-] [K/ (J/s)]
Base case 299.543 299.1041
TV 0.81533 4421076 -4.42.1076
Perturbed case 299.523 299.0878
(SFD)
Response Tw,in TSO) SED [Ts\})] Tsvl)
of interest
(K] (K] (-] [K/ (J/s)]
Base case 299.543 297.4568
T 0.45398 -2.464-1076  -2.462:10~°
Perturbed case 299.523 297.4478
(SFD)
Response Tw,in RH® SED [7'8)] ‘r&vl)
of interest _
K] (%] (1] [(779)7]
Base case 299.543 102.3758
RH® 0.22604 -1.227.1076  -1.228.10~
Perturbed case 299.523 102.3713
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50 1)1(SFD) 1
Response Tw,in m‘(v ) SEP [TSN)] T\(N)
of interest k 1
K] [kg/s] (922 [(1/kg) 7]
Base case 299.543 43.89312
m{® -0.03117 1.692:1077  1.693.10~7
Perturbed case 299.523 43.8937
(SFD)
Response Tw,in ma SED ["'8)] TE&})
of interest k -1
K] [kg/s] [Ea/e)] [(7/kp) ]
Base case 299.543 20.75415
ma 1.41412 -7.669-107%  -7.662-1076
Perturbed case 299.523 20.72589

D.2.5 Verification of the adjoint function ,u,(ﬂl) for all re-

sponses

When R = T.", the quantities T’éi) defined in Egs. (3.27) - (3.28) all van-
ish except for a single component, namely: rél) = 8R/0T£1) = 1.Thus, the ad-
joint functions corresponding to the outlet air temperature response Tél) are
computed by solving the adjoint sensitivity system given in Eq. (3.33) using
rél) 2 OR/ TV = 1 as the only non-zero source term; for this case, the solu-
tion of Eq. (3.33) has been depicted in Figure 3.6. Note that the values of the
adjoint function ,ug ) obtained by solving the adjoint sensitivity system given in
Eq. (3.33) is as follows: pd = 10.765 [K/(kg/s) ], as indicated in Figure 3.6.
Now select a variation dm,, ;, in the inlet water mass flow rate m, ;,, and note
that Eq. (3.22) yields the following expression for the sensitivity of the response

R=TY to Moy i,
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49 ) 7 i %
Sut R [Z (uu)aLl() Lo 0N ON L ONY )

v 8mw,in v 6mw,in

1) (1) (1) (1)
o ] -0 <'u(1) aNl +T(1) 8N2 +T(1) aNg + o) 8N4 )

w w a
amw,in amw,in amw,in amw,in

= — [u&” (=1 + 7 - (Twmary — arg TP + aos — agg)

2)
o (LY 4w (@l e |
¢ ma ma

Since the adjoint functions 7.'” and 09 have been already verified as de-

(D.90)

scribed in Sections D.1.1.3 and D.1.1.2, it follows that the computed values of
adjoint functions 74" = 2144.188 [K] o™ = —8.4127 x 10™* [K/(J/kg)] can also
be considered as being accurate, since they constitute the starting point for solv-
ing the adjoint sensitivity system in Eq. (3.33); 7 was proved being accurate in

Section D.1.1.4.
Re-writing Eq. (D.90) in the form

po) = Sua+ 7+ (Twnary — arg TS + agp — agg)

) (D.91)
o (L) (@l +ag
. Mg Mg

indicates that the value of the adjoint function ,ug) could be computed inde-

pendently if the sensitivity S44 were available, since all the other quantities are
known. To first-order in the parameter perturbation, the finite-difference formula
given in Eq. (3.23) can be used to compute the approximate sensitivity SI}P;
subsequently, this value can be used in conjunction with Eq. (D.91) to compute a

(1):| SFD

“finite-difference sensitivity” value, denoted as [uw , for the respective ad-

joint, which would be accurate up to second-order in the respective parameter
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perturbation:
SFD
)] = 1) = Si° + 7 (Twnars — arg TP + aog — aog)

JSRCO I (S SNV I (A V20 )
“ Ma Mg

Numerically, the inlet water mass flow rate, my, ;,, has the nominal (“base-

case”) value of m? .
(1)

value 75 nom of the response T is Té}gom = 299.1041 [K]. Consider now a pertur-

= 44.0089 [kg/s]. As before, the corresponding nominal

bation 014, in = (0.002475) m, ;,,, for which the perturbed value of the inlet water

mass flow rate becomesm2" =m0, — 6my, i = 43.90 [kg/s]. Re-computing the

w,in w,in

pert
w,in

perturbed response by solving Egs. (2.25) - (2.37) with the value of m”." yields

the “perturbed response” value Ta(,lp)ert = 299.1031 [K]. Using now the nominal
and perturbed response values together with the parameter perturbation in the
finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

1 1
7 SFD A Té,;ertiT(’(w’f)mm
44

6mw,in

difference-computed sensitivity = 0.00858 [%/S] . Using this
value together with the nominal values of the other quantities appearing in the
expression on the right side of Eq. (D.92) yields [MS)] - 10.765 [K/(kg/s) |.
This result compares well with the value p&) = 10.765 [K/(kg/s) ] obtained by
solving the adjoint sensitivity system given in Eq. (3.33), cf. Figure 3.6. The same
parameter perturbation was utilized to perform the same verification procedure
for the adjoint function ,ug ) with respect to the other four responses; Table D.5

displays the obtained results, which compare well with the values in the bar plots

in Figures 3.6 - 3.10.
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Table D.5: Verification Table for adjoint function ;LE,}) with respect to the responses Tél), qu,so), RHM), mg’o)
and m,,.
1 1)1 (SFD) 1
Response My in T;(a ) SED [u&,)] H\(;v)
of interest K K
1K/ IK] [7a5] B
Base case 44.0089 299.1041
T 0.00858 10.765 10.765
Perturbed case 43.90 299.1031
50 1)1(8FD) 1
Response My in T\(N ) Six [l"‘(ﬂ)] “‘(N>
of interest K K
lkg/s] K] [ 2] [#5]
Base case 44.0089 297.4568
T 0.04092 6.04792 6.04784
Perturbed case 43.90 297.4524
1)71(SFD) 1
Response My in RH®) SELP [u&)] I“EIV)
of interest _ -1
[kg/s) (%] [(kg/)7] [(kg/5)7]
Base case 44.0089 102.3758
RHM 0.01034 -215.61 -215.61
Perturbed case 43.90 102.3747
1)1 (SFD) 1
Response My in m&?o) sk [u‘(,v )] ,u‘(,v )
of interest
[kg/s] [kg/s] (-] (-]
Base case 44.0089 43.89312
m{? 0.99961 0.58679 0.58679
Perturbed case 43.90 43.8937
1)1 (SFD) 1
Response My in ma SEfD [u‘(,v )] u‘(,v )
of interest
[kg/s] [kg/s] (-] (-]
Base case 44.0089 20.75415
mgy 0.01931 18.6601 18.6600
Perturbed case 43.90 20.75205
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D.3 Verification of the Model Adjoint Functions
for Case 2: Fan Off, Unsaturated Air Con-
ditions

The verification procedure of the adjoint functions for case 2 is reported in

this section.

D.3.1 Verification of the adjoint function u, for all re-

sponses

When R = T.", the quantities réi) defined in Egs. (3.42) - (3.43) all van-
ish except for a single component, namely: rél) 2 OR/ T = 1.Thus, the ad-
joint functions corresponding to the outlet air temperature response Ta(l) are
computed by solving the adjoint sensitivity system given in Eq. (3.40) using
rél) 2 OR/ T =1 as the only non-zero source term; for this case, the solution
of Eq. (3.40) has been depicted in Figure 3.11. Note that the value of the ad-
joint function p, obtained by solving the adjoint sensitivity system given in Eq.
(3.40) is po = —0.12651  [K/(J/m?)], as indicated in Figure 3.11. Now select a
variation 0V, in the wind speed V,,,, and note that Eq. (3.22) yields the following

expression for the sensitivity of the response R = Ta(l) to V-

OR |~ { ooN? G ON{  oNy L ON ON

S & 2= ("1 ("2 ()23 ()24 a_5

S| (“w av, T av, T ey, T oy, ) Ty,

ON.
=0- ,uaa_vs = - (:ua) [_Vw : p(Ttdb, a)] .
(D.93)
Re-writing Eq. (D.93) in the form
Ss

Ha = —m (D94)
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indicates that the value of the adjoint function g, could be computed inde-
pendently if the sensitivity S; were available, since the quantity ON;/0V,, =
—2.1795[J/(m*/s)] is known. To first-order in the parameter perturbation, the
finite-difference formula given in Eq. (3.23) can be used to compute the approx-
imate sensitivity SI'P; subsequently, this value can be used in conjunction with
Eq. (D.94) to compute a “finite-difference sensitivity” value, denoted as [uq]*"",

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

7

(1)
a,pert Taa"wm

[ a]SFD _ S?D
oV

TNV,

B]‘ﬂ B (D.95)

Numerically, the wind speed V,, has the nominal (“base-case”) value of V0 =

1.859 [m/s]. The corresponding nominal value T om of the response T." is

T om = 298.7979 [K]. Consider next a perturbation 67, ;, = (0.01) V.2, for which
the perturbed value of the wind speed becomes VFert = VI- §V,, = 1.84041 [m/s].
Re-computing the perturbed response by solving Egs. (2.38) - (2.50) with the

yields the “perturbed response” value 7Y

pert
value of V. a,pert

w

= 298.8029 [K].
Using now the nominal and perturbed response values together with the pa-

rameter perturbation in the finite-difference expression given in Eq. (3.23) yields

1 1
9 S?D é Ts,,;zertingﬂ)Lom

6V

the corresponding “finite-difference-computed sensitivity
—0.27219 [mi/s} . Using this value together with the nominal values of the other
quantities appearing in the expression on the right side of Eq. (D.95) yields
[11a]7P = —0.12489 [/ (J/m?)]. This result compares well with the value p, =
—0.12651  [K/(J/m?)] obtained by solving the adjoint sensitivity system given
in Eq. (3.40), cf., Figure 3.11. The same parameter perturbation was utilized
to perform the same verification procedure for the adjoint function u, with re-

spect to the other four responses; Table D.6 displays the obtained results, which

compare well with the values in the bar plots in Figures 3.11 - 3.15.

273



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

Table D.6: Verification Table for adjoint function ps with respect to the responses Té”, T15,50), RHM), mq(f())
and m,,.
1
Response Vw Tx(a ) SgD [Na}(SFD) Ha
of interest
[m/s] (K] [K/ (m/s)] [K/ (J/m?)]
Base case 1.859 298.7979
Tz(,1> -0.27219 -0.12489 -0.12651
Perturbed case 1.84041 298.8029
50
Response Vw T\(N ) SgD [Na](SFD) Ha
f int t
oF mreres [m/s] (K] [K/ (m/s)] [K/ (7/m?)]
Base case 1.859 297.4225
T3 -0.95514 -0.43824 -0.43692
Perturbed case 1.84041 297.4402
Response Vw RH®) SgD [Ma](SFD) Ha
of interest _ -1
inter [m/s] 1% [(m/s)7] [(7/m?) ]
Base case 1.859 99.79724
RHM -0.71122 -0.32632 -0.33332
Perturbed case 1.84041 99.81046
50
Response Vw m‘(,v ) SgD [Ha}(SFD) Ha
of interest (kg/s) (kg/s)
fm/ [kg/s] [esd] o)
Base case 1.859 43.90797
m{® -0.073996 -0.033951 -0.033873
Perturbed case 1.84041 43.90934
Response Vw ma SED N (SFD) Ha
of interest (kg/s) (kg/s)
/s [kg/s [/ )
Base case 1.859 15.83980
ma 11.63149 5.33677 5.34064
Perturbed case 1.84041 15.62357
D.3.2 Verification of the adjoint function o*” for all re-

sponses

When R = T.", the quantities réi) defined in Egs. (3.42) - (3.43) all van-

ish except for a single component, namely: rél) £ OR/OT, D = 1.Thus, the ad-
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joint functions corresponding to the outlet air temperature response Tél) are
computed by solving the adjoint sensitivity system given in Eq. (3.40) using
rél) 2 OR/ T Y = 1 as the only non-zero source term; for this case, the solu-
tion of Eq. (3.40) has been depicted in Figure 3.11. Note that the value of the
adjoint function 0*” obtained by solving the adjoint sensitivity system given in
Eq. (3.40) is o4 = —1.313 x 10°  [K/(J/kg)], as indicated in Figure 3.11.
Now select a variation 077 ;, in the inlet air temperature 7, ;,, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = T

to Ta,in:
OR O SoND o anNg N N ON,
2 — () 22" (@) 2212 (1) Y4V3 () 94V 5
545 aTa,in ; <Mw 8Ta,in * fu 8Tva,in * 'a ajja,in o aTa,in fa 8Ta,in
N ON; | T 41K
=0- [0(49) aT4 , + Ha T 5 = _(0(49)) Cyp 2+_ + WinQag

_( ) Rair |m | m [ 1 —L—F ksum + 96f Lfill
A T e A VR VAR Re  AZ,D,

out fill fill
qg- Patm V2 Az
s | Z ——A rain T T o .
+Rai?“ ’ Ttiin ( " 29 : 2
(D.96)
Re-writing Eq. (D.96) in the form
(49) 845 + Ha agﬂ{jfn
0 = —wa) <D97)
8Ta,in

indicates that the value of the adjoint function 0%

could be computed indepen-
dently if the sensitivity S5 were available, since the quantities 8N§4g) JOT,in =
1.0309 x 10*[J/(kg - K)] and ON5/0T, ;, = 0.40491[J/(m? - K)] are known. To
first-order in the parameter perturbation, the finite-difference formula given in Eq.
(3.23) can be used to compute the approximate sensitivity SIP; subsequently, this

value can be used in conjunction with Eq. (D.97) to compute a “finite-difference
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sensitivity” value, denoted as [0(49)}SFD, for the respective adjoint, which would

be accurate up to second-order in the respective parameter perturbation:

ropero _ _SH s [T Tl 0Ny ] [N
8N4§49) 5Ta,in ¢ a,-Z—’a,,in aT‘a,in
8Ta,2‘n
(D.98)

Numerically, the inlet air temperature 7y ;,(= Ty) has the nominal (“base-

case”) value of Ty, = 298.882 [K]. The corresponding nominal value T, o
1)

of the response T s Témm = 298.7979 [K]. Consider next a perturbation
6T,m = (0.0001) Ty,

a,in)?

for which the perturbed value of the inlet air tempera-

ture becomes 77" = 0T, in = 298.852 [K]. Re-computing the perturbed re-

azn azn

sponse by solving Eqs. (2.38) - (2.50) with the value of 77" yields the “perturbed

CL’LTL

response” value T\% = 298.7960 [K]. Using now the nominal and perturbed re-

a,pert —
sponse values together with the parameter perturbation in the finite-difference ex-
pression given in Eq. (3.23) yields the corresponding “finite-difference-computed
sensitivity” SEP £ W = 0.06555. Using this value together with the
nominal values of the other quantities appearing in the expression on the right
side of Eq. (D.98) yields [0(49)]SFD = —1.391x 107° [K/(J/kg)]. This result com-
pares well with the value 0®? = —1.313 x 1075 [K/(J/kg)] obtained by solving
the adjoint sensitivity system given in Eq. (3.40), cf., Figure 3.11. When solving
this adjoint sensitivity system, the computation of 0*?) depends on the previously
computed adjoint functions o”, i =1,...,I — 1; hence, the forgoing verification

(49) also provides an indirect verification that

of the computational accuracy of o
the functions o®, i = 1,...,I — 1, were also computed accurately. The same
parameter perturbation was utilized to perform the same verification procedure
for the adjoint function 0o*? with respect to the other four responses; Table D.7

displays the obtained results, which compare well with the values in the bar plots

in Figures 3.11 - 3.15.
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Table D.7: Verification Table for adjoint function 0(49) with respect to the responses Tél), TS’O), RHM), mEE’O)

and m,,.
1 (SFD)
Response Tain " sED [0(49)] o(49)
£i
of interest (K] K] -] K/ (J/kg)]
Base case 298.882 298.7979
T 0.06555 -1.39-10—° -1.31-107°
Perturbed case 298.852 298.7960
50 SFD)
Response Ta,in T st [0(49)]( 0(49)
of interest (K] (K] -] [K/ (J/kg)]
Base case 298.882 297.4225
T3 0.25125 7211075 -7.28.10~5
Perturbed case 298.852 297.4149
Response Tain RH™ Sis [0(49)] (SFD) 0(49)
of interest (K] (%) (K] [(J/k:g)fl]
Base case 298.882 99.79724
RH® 0.09039 4.32-107° 5.02-107°
Perturbed case 298.852 99.79453
50 SFD)
Response Tain m\()v ) Siz? [0(49)]( 0(49)
of interest k (kg/s)
K] [kg/s] [GaL2)] [ G5t ]
Base case 298.882 43.90797
m{>® 0.012694 9.91.1077 9.18.1077
Perturbed case 298.852 43.90758
SFD
Response Ta,in ma SED [0(49)] ( ) 0(49)
of interest k (kg/s)
K] (ho/s [tha/e)] (G923
Base case 298.882 15.83890
ma -2.03711 -1.22.10~4 -1.18-10~%
Perturbed case 298.852 15.90091
(49)

D.3.3 Verification of the adjoint function 7, ’ for all re-

sponses

When R = T.", the quantities réi) defined in Egs. (3.42) - (3.43) all van-
ish except for a single component, namely: rél) = 0R/0Ta(1) = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response Tél) are
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computed by solving the adjoint sensitivity system given in Eq. (3.40) using
rél) 2 OR/ T = 1 as the only non-zero source term; for this case, the solu-
tion of Eq. (3.40) has been depicted in Figure 3.11. Note that the value of the
adjoint function 749 obtained by solving the adjoint sensitivity system given in
Eq. (3.40) is 749 = 21,555 [K], as indicated in Figure 3.11. Now select a varia-
tion 0wy, in the inlet air humidity ratio w;,, and note that Eq. (3.22) yields the

following expression for the sensitivity of the response R = T to Win:

OR Do aN®  oN®  an gND ON,
S 2 _ (HZ2-"1 ("2 (HZ-'3 (@) 4 " YN
46 &um ; (Mw &um + Tw 8&)1” + Ta &um to &um + a &um

(19) (19)
_o0— <T<49>5N_3 n 0(49>3N_4> — [ (1) 4 o) AT, )]

¢ 8win awin ¢ 9.4
(D.99)
Re-writing Eq. (D.99) in the form
P9 = Sy — 019 1O (T, . ) (D.100)

indicates that the value of the adjoint function 71549) could be computed indepen-

dently if the sensitivity Sss were available, since the 0*?) has been verified in (the
previous) Section D.1.1.2 and the quantity hg}g) (Ttin, @) is known. To first-order
in the parameter perturbation, the finite-difference formula given in Eq. (3.23)
can be used to compute the approximate sensitivity S¥P; subsequently, this value
can be used in conjunction with Eq. (D.100) to compute a “finite-difference sen-

(49):| SEFD

sitivity” value, denoted as |:Ta , for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[7(49)]5FD = —SED _ o1 . 0 (T, . ) (D.101)

a g,a

Numerically, the inlet air humidity ratio w;, has the nominal (“base-case”)

value of w, = 0.0137976 . The corresponding nominal value Té}gom of the response
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T is T om = 298.7979 [K]. Consider next a perturbation dwi, = (0.00125) w?,,

for which the perturbed value of the inlet air humidity ratio becomes w?"" = w9 —
dwin = 0.0137803. Re-computing the perturbed response by solving Eqgs. (2.38)
- (2.50) with the value of w2 yields the “perturbed response” value Té};ﬂt =
298.7977 [K]. Using now the nominal and perturbed response values together
with the parameter perturbation in the finite-difference expression given in Eq.
(3.23) yields the corresponding “finite-difference-computed sensitivity” SkP £
T3 eri= T om

a,pert
dwin

= 11.878 [K]. Using this value together with the nominal values of
the other quantities appearing in the expression on the right side of Eq. (D.101)
yields [7549)] - 21.5697 [K]. This result compares well with the value 78 =
21.555 [K] obtained by solving the adjoint sensitivity system given in Eq. (3.40),
cf. Figure 3.11. When solving this adjoint sensitivity system, the computation of
7(549) depends on the previously computed adjoint functions Téi), 1 =1,...,1 —
1; hence, the forgoing verification of the computational accuracy of 749 also
provides an indirect verification that the functions réi), 1=1,...,1 —1 were also
computed accurately. The same parameter perturbation was utilized to perform
the same verification procedure for the adjoint function 799 ith respect to the

other four responses; Table D.8 displays the obtained results, which compare well

with the values in the bar plots in Figures 3.11 - 3.15.

Table D.8: Verification Table for adjoint function 7'(549) with respect to the responses Tél), Tfo), RH®, mE,?())

and m,.
1 49 (SFD) 49
Response Win T§1 ) Szlft]sj [T(a )] Tg )
of interest
(%] (K] (K] (K]

Base case 0.0137976 298.7979

T 11.878 21.569 21.555
Perturbed case 0.0137803 298.7977
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50 49)](SFD) 19
Response Win T‘("’ ) Sg‘? [T; >] Tg )
of interest
(%] (K] (K] (K]
Base case 0.0137976 297.4225
{50 201.180 -15.593 -15.799
Perturbed case 0.0137803 297.4190
(SFD)
Response Win RH™) SEE [7'2149)] 7'249)
of interest
(%] (%] (-] (-]
Base case 0.0137976 99.79724
RHM 24.4676 -152.46 -152.50
Perturbed case 0.0137803 99.79681
50 49)](SFD) 49
Response Win my; ) Sie [Tg >] Tg )
of interest
(7] [kg/s] [kg/s] [kg/s]
Base case 0.0137976 43.90797
m{? 15.1936 -17.533 -17.549
Perturbed case 0.0137803 43.90770
49)7 (SFD) "
Response @Win ma SEE [T:(a 9>] 7';(1 ®)
of interest
(%] [kg/s] [kg/s] [kg/s]
Base case 0.0137976 15.83890
mga 43.92139 256.109 256.059
Perturbed case 0.0137803 15.83903
(1)

D.3.4 Verification of the adjoint function 7, for all re-

sponses

When R = T.", the quantities réi) defined in Egs. (3.42) - (3.43) all van-
ish except for a single component, namely: 7’:(31) = 8R/8T£1) = 1.Thus, the ad-
joint functions corresponding to the outlet air temperature response T: CEI) are
computed by solving the adjoint sensitivity system given in Eq. (3.40) using
rél) 2 OR/ T =1 as the only non-zero source term; for this case, the solution
of Eq. (3.40) has been depicted in Figure 3.11. Note that the values of the adjoint

function 7 obtained by solving the adjoint sensitivity system given in Eq. (3.40)

280



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

is as follows: 74 = —4.98 x 1075 [K/(J/s) ], as indicated in Figure 3.11. Now

select a variation 07}, ;, in the inlet water temperature 7, ;,, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = Tél)

to Twﬂ'nl
OR 2 oND o SONG  CaNS o aND ON;
A _ (4) 1 (4) 2 () 3 () 4 5
S3 aT’w,in Z (/j’w 8jﬁw,in * T aTw,in * Ta aTw,in o aTw,in * fa aTw,in
aN(l)
=0- 1(“1)877—2» =0 =7 - (M in - ary) -
’ (D.102)
Re-writing Eq. (D.102) in the form
S.
7 = SR B (D.103)

(mw,in . alf)

indicates that the value of the adjoint function 7'15,1) could be computed indepen-

dently if the sensitivity S5 were available, since the quantity 1., ,a1 ¢ is known.
To first-order in the parameter perturbation, the finite-difference formula given
in Eq. (3.23) can be used to compute the approximate sensitivity SI?; subse-

quently, this value can be used in conjunction with Eq. (D.103) to compute a

(1):| SFD

“finite-difference sensitivity” value, denoted as |:Tw , for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:
FD
ErR R (D.104)

v (mw,in . alf)

Numerically, the inlet water temperature, T, ;», has the nominal (“base-case”)

= 208.893 [K]. As before, the corresponding nominal value T om

of the response TV is T Mom = 298.7979 [K]. Consider now a perturbation

value of TY

w,in

8T,y n = (0.000067) T?

w,in?

for which the perturbed value of the inlet water tem-

t
perature becomes 77" = T

w,in w,in

— 0Ty in = 298.873 [K]. Re-computing the per-
turbed response by solving Eqs. (2.38) - (2.50) with the value of T2 yields

w,in
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the “perturbed response” value Ta(}p)ert

= 208.7795 [K]. Using now the nominal
and perturbed response values together with the parameter perturbation in the
finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

T )

—apert RO — ().91889. Using this value

» QFD A

difference-computed sensitivity
together with the nominal values of the other quantities appearing in the expres-
sion on the right side of Eq. (D.104) yields [7}5;1):| T —4.99x107% [K/(J/s) ].
This result compares well with the value 74 = —4.98 x 10~ [K/(J/s) ] obtained
by solving the adjoint sensitivity system given in Eq. (3.40), cf. Figure 3.11. The
same parameter perturbation was utilized to perform the same verification proce-
dure for the adjoint function 7'15)1) with respect to the other four responses; Table

D.9 displays the obtained results, which compare well with the values in the bar

plots in Figures 3.11 - 3.15.

Table D.9: Verification Table for adjoint function 7'1(01) with respect to the responses Tél), Tfo), RH(1>7 mEEO)

and m,.
1 1 (SFD) 1
Response Tw,in T"g ) 3" [Ts”)] T‘(")
of interest
(K] (K] (-] (K/(J/s)]
Base case 298.893 298.7979
T 0.91889 -4.99-10—6 -4.98-10—6
Perturbed case 298.873 298.7795
50 1)1(SFD) 1
Response Tw,in T‘(N ) SEP [TSN)] T‘(")
of interest
(K] (K] (-] [K/ (J/s)]
Base case 298.893 297.4225
T 0.50358 -2.73-10—6 -2.73-10—6
Perturbed case 298.873 297.4124
(SFD)
Response Tw,in RH®) SED [Ts\})] T\(;s})
of interest _
K] (%] (1] [(779)7]
Base case 298.893 99.79724
RHM -0.10693 5.77-10~7 5.78-10~7
Perturbed case 298.873 99.7994
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50 1)1(SFD) 1
Response Tw,in m‘(,v ) SgD [TSN)] T‘(”)
of interest k 1
K] [kg/s] (922 [(1/kg) 7]
Base case 298.893 43.90797
m{® -0.031364 1701077 1.70-10~7
Perturbed case 298.873 43.90859
(SFD)
Response Tw,in ma SED ["'8)] TE&})
of interest k -1
K] [kg/s] [Ea/e)] [(7/kp) ]
Base case 298.893 15.83980
ma 1.91042 -1.037-107®  -1.035-107®
Perturbed case 298.873 15.80159

D.3.5 Verification of the adjoint function ,u,(ﬂl) for all re-

sponses

When R = T.", the quantities T’éi) defined in Egs. (3.42) - (3.43) all van-
ish except for a single component, namely: rél) = 8R/0T£1) = 1.Thus, the ad-
joint functions corresponding to the outlet air temperature response Tél) are
computed by solving the adjoint sensitivity system given in Eq. (3.40) using
rél) 2 OR/ TV =1 as the only non-zero source term; for this case, the solution
of Eq. (3.40) has been depicted in Figure 3.11. Note that the values of the ad-
joint function u&} ) obtained by solving the adjoint sensitivity system given in Eq.
(3.40) is as follows: p) = 10.30109 [K/(kg/s) ], as indicated in Figure 3.11.
Now select a variation dm,, ;, in the inlet water mass flow rate m, ;,, and note
that Eq. (3.22) yields the following expression for the sensitivity of the response

R=TY to Moy i,
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49 7 7 % 7
2 O _ [Z <u<i>3L1() Lo 0N ONS L ONY )

w w a
aan,in i—1 aan,in aan,in aan,in aan,in

1) (1) 1) (1)
e ] :0_<“ WO @ ON o 0N O )

a w w a
87nw,in amw,in 87nw,in amw,in 87nw,in

= - [ij) (1) 78 (Twinarg — arg T + aos — agg)

@)
e (LY L (el Fae )
¢ Mq Mq

Since the adjoint functions 749 and 0 have been already verified as de-

(D.105)

scribed in Sections D.1.1.3 and D.1.1.2, it follows that the computed values of

adjoint functions 7" = 2128.24 [K] o) = —8.4254 x 107* [K/(J/kg)] can also

be considered as being accurate, since they constitute the starting point for solv-
(1)

ing the adjoint sensitivity system in Eq. (3.40); 74’ was proved being accurate in

Section D.1.1.4. Re-writing Eq. (D.105) in the form

) = Su+ 70 (Tonary — g TP + aop — aoy)
o (D.106)
Oy (L) Lo (M)
Mg Mg

indicates that the value of the adjoint function ug,,l) could be computed inde-

pendently if the sensitivity Sy, were available, since all the other quantities are
known. To first-order in the parameter perturbation, the finite-difference formula
given in Eq. (3.23) can be used to compute the approximate sensitivity SIP;
subsequently, this value can be used in conjunction with Eq. (D.106) to compute

(1)i| SFD

a “finite-difference sensitivity” value, denoted as [,uw , for the respective ad-

joint, which would be accurate up to second-order in the respective parameter
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perturbation:

[/LS)]SFD pl) = SEP 4 (V. (Twinary — a1y TP + agp — aog)

0L (L) 4o a, T + ag,
myg Mg

Numerically, the inlet water mass flow rate, my, ;,, has the nominal (“base-

(D.107)

case”) value of mj, ;, = 44.0193 [kg/s]. As before, the corresponding nominal

value T, a(lgom of the response 7" is T a(l,%om = 298.7979 |K]. Consider now a pertur-

bation 61, ;, = (0.00068) m for which the perturbed value of the inlet water

'LU 'Ln’
mass flow rate becomes mﬁf:fl =m, ;, — My in = 43.9893 [kg/s]. Re-computing

the perturbed response by solving Egs. (2.38) - (2.50) with the value of m?*"

w,in

yields the “perturbed response” value T = 298.7978 [K]. Using now the nom-

a,pert =
inal and perturbed response values together with the parameter perturbation in
the finite-difference expression given in Eq. (3.23) yields the corresponding “finite-
difference-computed sensitivity” Sh” £ W = 0.00328 [ ] Using this
value together with the nominal values of the other quantities appearing in the ex-
pression on the right side of Eq. (D.107) yields [ Hao } L 10.9768 [K/(kg/s) |.
This result compares well with the value u&’ = 10.30109 [K/(kg/s) | obtained
by solving Eq. (3.40), cf. Figure 3.11. The same parameter perturbation was uti-
lized to perform the same verification procedure for the adjoint function ,uz(vl ) with

respect to the other four responses; Table D.10 displays the obtained results,

which compare well with the values in the bar plots in Figures 3.11 - 3.15.

Table D.10: Verification Table for adjoint function ,u( ) with respect to the responses Tél), TSO), RH(l),

1(30) and m,,.
1 1 (SFD) 1
Response My in Tg ) SEAP [F"\(N)] P‘EV)
of interest K K
(/5] 1K) Ed [7]
Base case 44.0193 298.7979
T 0.00328 10.977 10.301

Perturbed case 43.9893 298.7978
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50 1)](SFD) 1
Response My in T\(N ) Siy [l"‘(ﬂ)] “‘(N>
of interest K K
[kg/s] K] [ 2] [#5]
Base case 44.0193 297.4225
T 0.03142 6.0444 6.0443
Perturbed case 43.9893 297.4215
(SFD)
Response My in RH®) SZ;P [u&l)] HEA})
of interest _ -1
[kg/s) (%] [(kg/)7] [(kg/5)7]
Base case 44.0193 99.79724
RH® -0.001267 -265.511 -265.511
Perturbed case 43.9893 99.79728
50 1)1(8FD) 1
Response My, in m‘<)v ) sk [u‘(”)] [L‘(N)
of interest
[kg/s] [kg/s] (-] [-]
Base case 44.0193 43.90797
m{? 0.99986 0.52753 0.52753
Perturbed case 43.9893 43.87797
1)1 (SFD) 1
Response My in Ma Siy [l"‘(ﬁ)] “‘(N )
of interest
[kg/s] [kg/s] (-] (-]
Base case 44.0193 15.38980
ma 0.010543 22.807 22.807
Perturbed case 43.9893 15.83948
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Appendix E

Derivatives of the Model
Equations with respect to the

Model Parameters

E.1 Derivatives of the Model Equations with re-
spect to the Model Parameters for Case la:
Fan Off, Saturated Outlet Air Conditions,

with Inlet Air Unsaturated

The verification procedure of the adjoint functions for case la is reported in
this section.

The following notation will be used for the derivatives of the above equations
with respect to the parameters:

1,J
a,

aNY
5 L 0=1,2345 i=1,..1 j=1.,N,. (E.1)
Q
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RESPECT TO THE MODEL PARAMETERS

E.1.1 Derivatives of the liquid continuity equations with

respect to the parameters

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a® : Ty, are as follows:

Ny oNY 1 [ PETTTY ) PRTY, )

9al) 0Ty, - R T&Hl) - Ta(i)
(E.2)
OM (my, 0D (T, , ,
. (ma, @) . (dba); (=1 i=1,.,K; j=1,
@D(w (Tdb) a) aT1db
where K is the control volume at which its outlet air is saturated, and
OM(mq, ) 2 M(m,, )
8Dav(Tdbaa) B 3 Dav(Tdbaa) (E3)
0D (T, ) _ 1.5 ao.ppT"” — Daw(Tap, @) - (ag.p,, + 2 - as.p,, Tup)
Ty, a1.p,, + a2.py, Tap + az.p,, T’ (E4)
Ny oNY 1 [PETETY @) WD Py
= =a == - — -
g 0T, ' R Ty (0.622 + w@) 7"
(E.5)

OM(mg, )  ODgy(Typ, )
0Dy, (T, @) 0T a '

(=1, 1=K+1,...1I, j=1,
The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with
respect to the parameter a(® : Thp are as follows:

oN{ Ny o,
= = Q ’
(905(2) apo L

=0; (=1, i=1,..,1; j=2. (E.6)
The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a®) To,in are as follows:

oN{y) aniY
8a(13) IaTl. =a’=0; (=1;i=1..,I; j=3. (E.7)
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a® : P, are as follows:

Ny OND

oo™ — 9P :a’f‘l:(); (=1; 1=1,...K; j=4, (E.8)
atm
N _ONY _ i M(ma, ) 0
N =% =7 o i N
0o 8Patm R Ta( )(0.622 + w(z)) (Eg)

(=1, i=K+1,...I; j=4.

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a® : V, are as follows:

ON{  oN{) |
Sl = g = =0 (=L i=1..1 j=5  (B10)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

6)

respect to the parameter a(® : k,,,, are as follows:

oN{ oN{ |
@ — o = =0 f=1 =11 j=6 (E.11)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a(¥ : ;i are as follows:

OND _oND o 1 [PEIETY e PR, )| 0M(mg, @)
9o " Top T TR i T 2

(=1, 1=1,..K; =T,

(B.12)
where
0 Req < 2300
aM(ma7 a) . a1 N M(m a)Re(m a)
S R Bt 7 2300 < Rey < 10000 (E.13)
—0.8 - Mlme) Reg > 10000
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8N1(i) @Nfi) a7 1 P5§+1)(ngi+1), a) W Pyt OM (ma, @)
= =a) == : - i ’
da® ~ op M TR paES) (0.622 + w@) TS Op

(=K+1;, i=1,..,.1I;, j=T1.
(E.14)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

8)

respect to the parameter o® : v are as follows:

ON®  aNY o1
R

0a® — oy — ' TR

Tgﬂ) o Tcgi) v )

PEITIY o) P(T, a)] OM (mg, o)

(E.15)
where
OM(mq, @) _ 1 M(mq, @) (E.16)
ov 3 v
oND oND o 1 [PEVTIY a) ' Pasm OM(mq, @)
e =a, = = . - i 3
9a® o " TR T+ (0.622 + w®) TV v
(=1, 1=K+1,...,I; j=8.
(E.17)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a® : k,;, are as follows:

oN®D N
aa(lg) - akl, =ad’ =0, (=1, i=1,..,1, j=9. (E.18)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

10)

respect to the parameter a(!9) : f,, are as follows:

Ny AN

0a/(10) afht =% 0 ¢ L 17"'717 J 10. ( )

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

11)

respect to the parameter o'V : f,., are as follows:
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Ny oNY

L[ PEYTE ey PRI, o) | OM (ma, o)
= =a = — - _ _ .
00 = of - TR 25 e T
(=1, +=1,...1;, j=11,
(E.20)
where

aM(maa Oz) _ Mu,0 Nu(Re7 a) (%) v [Dcw (Tdba a)]Z/swtsaASW“f (E.21>
afmt B DhI

ON{  oNy)

_ _an_ 1 PEITIY @) wip, OM (m,, o)
Oa(11) afmt 1 }_% Tu(,iJrl) (0622 + w(z)) Tél) afmt )

(=1, i=K+1,...1, j=11.

(E.22)
The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a('?) : f are as follows:

ONY” = N _ ad'? =0 (=1 i
1 - 9 - 9

FINET) 57 1,...I; j=12. (E.23)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a(!3) : g are as follows:

oNy?  ONY _ i

_ M(mg,a) [PEYTEY a) POTY )]
9a0® ~ fag M R T+ 7 ’
(=1, i=1,...,.K; j=13,
(E.24)
OND NP _ i M(maa) 1 0PI, a)
a3~ day ! R it dag (E.25)
(=1, i=K+1,...I; j=13.
where
(i+1) (i1)
8va éTw ,a) _ PQS§+1)<T1£;i+1)a a) (E26)
Qg
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

14)

respect to the parameter a(!¥) : q; are as follows:

ONy _ONY _ i M(mee) | PETTETY @) PRI, @)

da®) — 9a; — 1 R <ng7;+1))2 <Téz’))2 ;
(=1, i=1,...,.K; j=14,
‘ ‘ (E.27)
ONY 0N aa_ M(ma,o) 1 0PI, o)
(14) — - n (i+1) ’
Oa Oaq R T\ Oay (F.28)
(=1 i=K+1,..,I; j=14.
where
(i4+1) /n(i+1) (i4+1) /n(i+1)
OPs;s ' (Tw 7, ) _ Py (Tw 7, @) (E.29)

day T

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(15)

respect to the parameter o™ : ag,, are as follows:

9005 Bag. 4 T 0; ¢=1; i=1,..,1; j=15. (E.30)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(16)

respect to the parameter o'** : a;,, are as follows:

oND oND
604(16) = da L=ay"=0; ¢(=1; i=1,..,1; j=16. (E.31)
1,cpa

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

17)

respect to the parameter a(!”) : ay.c,, are as follows:

aN® ON® ,
804(17) ~ Ba L=ay'"=0; (=1; i=1,..I; j=1T. (E.32)
2,Cpa
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(18)

respect to the parameter o'*® : qg p,, are as follows:

oNt  oN{ s _ 1 PTEY, ) PRIV, o)

900 ~ dagp,, ' R TG+ T

(E.33)
OM (myg, 0D 4 (T, . .
. (ma, @) . (T O4); (=1, 1=1,..,K; j=18,
aDav (Tdb’ a) 8a07DaU
where % was defined previously in Eq. (E.3), and
Do (T, T'?®
OD oo (Tap, ) _ db . (E.34)
dag,p,, 1,D,, + 2,0, Tay + a3 D, Tab
OND NP g 1 [ PETTETY «) w® Py,
= =a = = - — -
9a(® " dagp,, ' R T+ (0.622 + w®) T
(E.35)

' 8M(ma, a) ) aDav(Tdba a)
aDav (Tdb7 a) aa07Dav

o =1 1=K+1,...1, j=18.

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

19)

respect to the parameter o' : a; p_, are as follows:

oNy Ny _ e 1| PEVIET ) PRI, @)

09 dayp, ' R Ty 7
(E.36)
OM (my, 0D 4 (Tg, ) .
. (ma, @) . (T a); (=1; i=1,..,K; j=19,
OD (T, ) dayp,,
where % was defined previously in Eq. (E.3), and
OD o (T, ao.p,, Tap'™
Duw(Ta, @) _ 0.Du Ll - (E.37)
day p,, (a1,D40 + a2,0,, Tap + as.p,, Tar”)
oNY N o 1| PETETY a) w® Py,
= = a4 = = - — -
99 "~ darp,, ' R T+ (0.622 + w®) T
(E.38)

‘ aM(m(“ Oz) ) aDav(Tdbu a)
0D o (Tpy, ) day p,,

(=1, i=K+1,....I; 7=109.
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(20)

respect to the parameter o'*" : ay p,, are as follows:

Ny N g 1 PETETY @) PRIV, @)

9o dayp, ' R T8+ 7
(E.39)
M(myg, D oo (T, , ,
L OM(me, @) ODalTwe), gy g =0,
aDav(Tdba a) day p,,
where % was defined previously in Eq. (E.3), and
0D (T, ao b, Tp>®
- (T, ) _ 0, D L - (F.40)
42,Dqy (al,Dav + a2, p.,Tay + as.p,, T )
OND NPy 1 [ PETEY «) w® Py,
= = a4 = = - — -
9a® — dayp,, ' R T+ (0.622 + w®) T
(E.41)

_ OM (mg, o) .8Dm,(Tdb,a)

o l=1, i=K+1... 1, 7=20.
aDav<Tdb:a) 3a2,D(w ’ ! Tt g

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

21)

respect to the parameter a?V) : a3 p_, are as follows:

ONY AN o

806(21) n (9a37D¢w

qué+1) (Tf$+1) a) qu;) (TéZ) a)
TQE]Hl) o Ta(i)

: |
R

(E.42)
OM(ma, @)  ODgy(Tap, @)

. S f=1; i=1,... K, j=21,
a-DCL’U (Tdb7 a) aa37DaU Z j

where aM(m’“o‘)) was defined previously in Eq. (E.3), and

8Dmu (Tdbva

0D o(Tip, ) __ ao,Dadeb3'5 (E.43)
0@3,[)@ (al,Dm) + CI,27Dadeb + a3 Day Tdb2)2 ‘

P, o) @ Patm

oNY Ny 1
9oV dagp,, ' R T+ (0.622 + w®) T

(E.44)
~OM(mg, ) ODgy(Tip, )
8Dcw (len a) aa3,Dav ’

(=1, 1=K+1,...1;, j=21.
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(22)

respect to the parameter o'*?) : apy are as follows:

ONY 0N _ oo

= = =0, (=1, i=1,..,1; j=22. E.45
9a(22) dagy ) y e ds ( )

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

23)

respect to the parameter a3 : a, ¢ are as follows:

oN{ oN{" _
0a)  dayy

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

24)

respect to the parameter a4 : ag, are as follows:

aN(i) aN(i) '
804&4) — 8@1 = azl,u =0, (=1; i=1,..,I; j=24. (E.47)
Og

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(25)

respect to the parameter o'*” : a4 are as follows:

aN(i) aN(i) )
S = g =T =0 (=1 i=1..1 j=2. (E.48)
1g

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

26)

respect to the parameter a9 : ap Ny, are as follows:

ONY  ONY s 1 PETVTSTY, @) PR(TY, )

00 " dagn., - R T T
(E.49)
OM(m,, ) ONu(Re, a) , :
. . =1, 1=1,...K; j=26
ONu(Re, o) dagNu DT e ’
where
M M(my,

OM (Re, o) (Mg, @) (E.50)

ONu(Re, ) h Nu(Re, o)

295



APPENDIX E. DERIVATIVES OF THE MODEL EQUATIONS WITH
RESPECT TO THE MODEL PARAMETERS

1 Reg < 2300
ONu(Re,a)

5 0 2300 < Rey < 10000 (E.51)
a0, Nu

0 Reqg > 10000

OND _ 0N _ 1L [PEVIE ) O
90~ Jag n R 76 (0.622 + w@) TV

(E.52)
OM (mg, ) ONu(Re, )
ONu(Re, ) Jap, N

. (=1 i=K+1,.., I, j=26.

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a®” : a; v, are as follows:
oNy _oNY _ 1[PPI a) PRI, @)
0a®) " day n, 1 R Tgﬂ) Tf)
(E.53)
OM(mg, ) ONu(Re, o) . .
. . s =1 i=1,...K; j=27
ONu(Re, ) day nu ! e 7
where % was defined previously in Eq. (E.50), and
0 Reg < 2300
ONu(Re, o
% = ¢ Re(mg,a) 2300 < Regq < 10000 (E.54)
a1 ,Nu
0 Reg > 10000
8N1(i) — 8‘Nl(l) = ai,27 _ l P5;+1>(Tlg’i+l)a a) . W(i)Patm
8a®) " dayne ' R T8+ (0.622 + w®) TV
(E.55)

- OM(mg, ) ONu(Re, o)
ONu(Re, ) dai Nu

o =1 1=K+1,...1, j=217.

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(28)

respect to the parameter o'*® : ag n, are as follows:

PEDTIY o) PTY, )
quﬂ) - Téi)

804(28) a (‘9a27Nu ! ﬁ

] (E.56)

OM(mg4, ) ONu(Re, a)

. =1 i=1,...K; =28
ONu(Re, o) dag nu ! SRR ’
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where % was defined previously in Eq. (E.50), and
0 Reg < 2300
ONu(Re, a
% =91 2300 < Rey < 10000 (E.57)
2,Nu
0 Reg > 10000
aNl(i) _ 8N1(i) _ o _ l Pv(gﬂ)(Ty(jH)’a) - wOp,,
o) dagne ' R i+ (0.622 + w®) TS

(E.58)
OM (mg, ) ONu(Re, )
ONu(Re, ) Jas N

(=1 i=K+1,.. I, j=28.

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

29)

respect to the parameter a9 : as o, are as follows:

OND _OND i L [PEV(TY 0)  PITY, )

d9a29) aa&NU -1 R TU(Jz'H) Téz)
(E.59)
OM(mg4, ) ONu(Re, o) , ,
. . o =1 1=1,..K; j=29
ONu(Re, o) dagnu T e ’
where % was defined previously in Eq. (E.50), and
0 Reg < 2300
ONu(Re, a
% =10 2300 < Reyq < 10000 (E.60)
a3 ,Nu
[Re(ma, @)]®® - Pri Rey > 10000
ON? oN{ e 1PV a) wOP,
9a®)  dagny ' R s 0.622 + w®) T
( ) (E.61)

OM (mg, ) ONu(Re, )
ONu(Re, ) Jas N

(=1 i=K+1,..,I; j=29.

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(30)

respect to the parameter o'*” : Wy, are as follows:

Ny N g

Oa(30) Ware N 0; =1 1=1,...1I; j=30. ( )
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The derivatives of the “liquid continuity equations”

31)

respect to the parameter a®) : Wagy are as follows:

OND N
(9(1(31) 8dey !

The derivatives of the “liquid continuity equations”

32)

respect to the parameter a®? : Azy, are as follows:

ONY N
804(32) aAde -

The derivatives of the “liquid continuity equations”

(33)

respect to the parameter o'>? : Azg,, are as follows:

oD N0 _

9aB® " OAzpan

The derivatives of the “liquid continuity equations”

(34)

respect to the parameter o'** : Dy,,, are as follows:

ONY 0N
9a®D ~ 9Dy

The derivatives of the “liquid continuity equations”

(35)

respect to the parameter o'*?) : Azgy; are as follows:

ONY 0Ny s,

8(1/(35) n 8Azﬁu -

The derivatives of the “liquid continuity equations”

36)

respect to the parameter a®®) . Az, are as follows:

8N1(i) B 0]\71@ — 45 — 0

9268~ 9Az.. 1

[cf. Egs. (2.2) - (2.5)] with

(E.63)

[cf. Egs. (2.2) - (2.5)] with

(E.64)

[cf. Egs. (2.2) - (2.5)] with

(E.65)

[cf. Egs. (2.2) - (2.5)] with

(E.66)

[cf. Egs. (2.2) - (2.5)] with

(E.67)

[cf. Egs. (2.2) - (2.5)] with
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(37)

respect to the parameter o'®” : Az, are as follows:

OND  oN®
Lo 1 =% =0 (=1, i=1,..,I; j=3T. (E.69)

9aBD — Az, 1

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

38)

respect to the parameter a®®) : Az, are as follows:

aNl(Z) _ aNl(Z) _ 38
9aB®) " 9Azg ¢

=0, (=1, i=1,...1; j=38. (E.70)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

39)

respect to the parameter a®? : D), are as follows:

OND _OND e 1 [PRTTETY ) PRI )| 0M (e, )
= =qa) = = - - - )
Ha39) oD, 1 R TU(JzH) Ta(z) oDy, )
(=1, i=1,...,.K; j=39,
(E.71)
where
—M(mg, )/ Dy, Rey < 2300
aM(ma’ a) az, NuM (ma,o)
oD = —emea) 2300 < Rey < 10000 (E.72)
—0.2- M(mg,a)/Dy, Reg > 10000
aNl(l) — aNl(l) = ai,39 — l P152+1) (T1S)i+1)7 a) . w(i)Patm aM(ma’ a) .
90 ~ 9D, ' TR T+ (0622 + w7 | 0Dy
(=1, i=K+1,...1, j=39.
(E.73)
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(40)

respect to the o™ : Ay are as follows:

oN{  oND _ o _ | PEV@S ) PRTY )| OM(m,, a)

900 ~ 9Azy ~— ' R T+ 7" OAg

w

(=1; i=1,..,K; j=40,

(E.74)
where
0 Req < 2300
8M(ma7a) _ a1, NuM (ma,a) Re(mg,ar)
oA ) e 2300 < Rey < 10000 (E.75)
—0.8- M(ma, O()/Afm Reg > 10000
8N1(i) 8N1(i) i 1 Pv(iﬂ)(TgH), a) wOP,,. OM (m,, o)
= =a = = - — - ;
9ot Az — R TSt (0.622+w®) T | OAgi
(=1, i=K+1,...I; j=40.
(E.76)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter ol . Agyry are as follows:

8N1(i) _ 8N1(i) _oim 1 PzgiJrl)(Tz(uiH),a) Pzgi’)(Tagi)»a) OM (ma, cv)

8(1(41) B a145urf - @ B ﬁ TSH) TCEZ) aAAsu’/’f ’

(=1; 1=1,...,.K; j=41,

(B.77)
where
OM (my, M(m,,
(ma, ) _ M(ma, o) (E.78)
aAsqu Asurf
oND N 1 [PEVNTIY ) W Papm | OM(ma, @)
= =a) == . - i ;
o) Auy ' R TS (0.622 +w) 75" | OAsurs
(=1, i=K+1,..,I; j=41.
(E.79)
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(42)

respect to the parameter o'** : Pr are as follows:

ON N 1 [PV ey PRI )| 0M(ma, o)
p— CI/ =

da@ ~ gPr M TR oA S0 oPr
(=1 i=1.,K; j=42
(E.80)
where
OM(mg, a) — 552 Reg < 10000 (E.81)
0 Pr 0 Rey > 10000
oY ON{ _ i L [PEVIEY @) WP | 0M(maa).
o2 gpr — ! R 7D (0.622 + w®) TS obr
(=1 i=K+1..I j=42
(E.82)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(43)

respect to the parameter a'*? : wy,, are as follows:

oN®  oND L 1 [PEVTIY ) POTY, )| oM (ma, o)
J— CI/ p—

60[(43) N 8wt5a -t B ﬁ T(H_l) Tél) awtsa ’

w

(=1; 1=1,....K; 57 =43,

(E.83)
where
OM (my, ) Miz,0 frme Nu(Re, &) (g )1/3[Dav(Tdb’a)]2/3A5Wf (E.84)
a'wtsa Dh[
oNY N _ s L [PEVTEY ) @R | 0M(maa).
0@ " dune P TR 7D (0.622 + w®) T | Owesa
(E.85)
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(44)

respect to the parameter o'** : m,, ;,, are as follows:

ONY _ ONYY
804(44) N 8mw7m

oNy N _ |
« Moy in

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

respect to the parameter a(*?) : Thin are as follows:

oN" N |
2 s = aTl =a® =0, (=1, i=1,...I; j=45. (E.88)
(07 a,in

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

46)

respect to the parameter a*9 : w;, are as follows:

oNy oN{ _ |
_ 1 = . L= =0, (=1, i=1,...1; j=46. (E.89)
(07 Win

The derivatives of the “liquid continuity equations” [cf. Egs. (2.2) - (2.5)] with

(47)

respect to the parameter a'*” : Sc are as follows:

OND ONO _ 1 [PEVEE ) PRI, a)] 9M(ma, )
— = a7 = ’

0atD — 9Se — ' TR SR B 7o dSc 7

(=1; i=1,..,K; j=4T,

(E.90)
where
OM(mq,0) 1 M(ma, @) (E.91)
0Sc 3 Sc
oN®  oN® o 1 [PEYTY ) W P | OM(ma, @)
= = a4 - = i - i )
9o ~ 98¢ ' TR e+ (0622 + w7 | 98
(=1 i=K+1,..,1; j=4T.
(E.92)

302



APPENDIX E. DERIVATIVES OF THE MODEL EQUATIONS WITH
RESPECT TO THE MODEL PARAMETERS

E.1.2 Derivatives of the liquid energy balance equations

with respect to the parameters

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

with respect to the parameter a(!) : Ty, are as follows:

aNy Ny
804(1) N 3Tdb

=a'=0; (=2 i=1,.I j=1 (E.93)

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

with respect to the parameter a(® : T4y, are as follows:

oNy aNg

e T = as 0; =2, 1=1,...,1; j=2. ( )

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

with respect to the parameter a(® : T.in are as follows:

oN{Y aNY o, oMY (T i, )

00 =T, 2 ey, S B = = (199)

where

(E.96)

aNy 9Ny

= =a?=0; (=2i= = E.97
9a® ~ AT, 2 0, (=2yi=2,.1Ij=3. (E.97)

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

with respect to the parameter aW . P, are as follows:

oNy  ONy

5l = gp = 0:0=2 i=1,..,I, j=A4, (E.98)
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The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

with respect to the parameter a® : V,, are as follows:

Ny oNy
8@(25) _ av2 =a’=0, (=2 i=1,..,I, j=5, (E.99)

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]
with respect to the parameter a'® : kg, are as follows:

OND Ny
ST T =0 =0 (=2 i=1..1 j=6 (E.100)

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

with respect to the parameter o!”) : y are as follows:

Ny oN{ ., ie1) oy OH (ma, @) . .
3o = o =0 = — (TG - T >T’ (=2 i=1,..I; j=T1,
(E.101)
where
0 Rey < 2300
6H<ma7a) a1, Nu-H(ma,o)-Re(mg, o)
R R 2300 < Req < 10000 (E.102)
—0.8 . Hmec) Reg > 10000

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

with respect to the parameter a(® : v are as follows:

aN(i) aN(i) ‘
304(28) - 85 ECL;»BZO; (=2, 1=1,...,1; j=8. (E.103)

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

9

with respect to the parameter a(® : k,;, are as follows:

ONy) NS g

: Ay OH (mg, o)
= — _ (G+1) _ p(e)y 22N e
9a® — Ok 2 (T = 17)

(=2 i=1,..,1; 7=9
8kair ) ;v ) L4y ] )

(E.104)
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where

OH(mg, )  H(mg, )  fruNu(Re, @)wisqAsury
akair B kair B Dh[ .

(E.105)

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

10)

with respect to the parameter a(!9) : f,, are as follows:

OH(m,, ) , ,
oY) p—9 =1, 1, j=10,
O fu /

ONy  ONY g
—_ —a7

dain = g7 =@ =~ (L -T7)

a

where

OH(mg, )  H(mg, )  kair Nu(Re, @) wisq Asury

O fnt B Int DI (E.107)

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

with respect to the parameter o'V : f,., are as follows:

Ny Ny

da(1) afmt—az 0; =2, 1=1,...I; j=11. ( )

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

(12)

with respect to the parameter a'** : f are as follows:

oNy) Ny
o = =aP =0 (=% il j=12  (B109

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter a® : gy are as follows:
ONW ONLW ‘
2= 2 =P =0; (=2 i=1,..,1, j=13. (E.110)

806(13) 8@0
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The derivatives of the liquid energy balance equations [cf. Eqgs

14)

with respect to the parameter o™ : a; are as follows:

aNz(i) aNz(i) _ 014 , .
aa(14): B, =a, =0; (=2 i=1,...I; j=14.

The derivatives of the liquid energy balance equations [cf. Eqs

15)

with respect to the parameter a*® : ao,c,, are as follows:

6N(i) 8N(i) ‘
804(?5) — 0@02 =ay’ =0, (=2 i=1,..,1, j=15.

The derivatives of the liquid energy balance equations [cf. Eqs

(16)

with respect to the parameter « D a1, are as follows:

oNy’  ONY) i | |
006 ~ day,,, =ay =0, (=2, i=1,..,I; j=16.

The derivatives of the liquid energy balance equations [cf. Eqs

(17)

with respect to the parameter a'*" : ay,, are as follows:

oNe®  aN® . | |
daln — Dane,. ay ' =0, (=2 i1=1,..,1I; j=1T.

The derivatives of the liquid energy balance equations [cf. Eqs

(18)

with respect to the parameter a'*® : ag p,, are as follows:

aN(i) aN(i) )
80458) :8a0; =as"® =0, (=2 i=1,..1, j=18.

The derivatives of the liquid energy balance equations [cf. Eqs

19)

with respect to the parameter ') : a; p,, are as follows:

ONSY  oN{ |
aa(ig) = 8(1112) Eaglgzo;g:Q; 221,,[7 ]:19
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L (2:6) - (2.8)]

(E.111)

L (2.6) - (2.8)]

(E.112)

L (2.6) - (2.8)]

(E.113)

L (26) - (2.8)]

(E.114)

L (26) - (2.8)]

(E.115)

L (2.6) - (2.8)]

(E.116)
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The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

20)

with respect to the parameter a??) : ay p,, are as follows:

ON®D N ,
8a(§0) - o =ap =0 (=2 i=1,..,1; j=20. (E.117)
2,Dav

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

21)

with respect to the parameter a®V) : a3 p,, are as follows:

aND  gn®
Oozél) = 2 _=g"'=0;, (=2, i=1,..,1, j=21. (E.118)
3,Dav

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

(22)

with respect to the parameter a'“?) : agy are as follows:

i g (@) (@) (i+1) /(1)
6N2() _ 6]\72() = 22 — ) Ohy' (T, cv) B m(”l)ahf (Tw ", )
02 Jagy — ° w Datoy — w Daos

(E.119)

— ml — ml+)

w I

(=2, 1=1,....,1; j=22

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

23)

with respect to the parameter a(®) : q; ¢ are as follows:

ONY NS oy O (T a) 0T (T @)
(23) = = a27 w T a. My
da Oasy Oax g Jar g (E.120)
= TOm — 7DD, p— 9. =1, I, j=23.

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

24)

with respect to the parameter a®¥ : aq, are as follows:

O (T, )
(9@09

oNy  ONY o

24 () _ o, (1)
0oy — Datog =ay = —(my —my")

(E.121)
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The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

(25)

with respect to the parameter a'*) : a,, are as follows:

oM (11,

(9@19

ONL HNL . i i
304(;5) - 8af = a5” = —(m{) —m{*)
9

w w

(E.122)
S (mg) _ mgﬂ)) T, (=2 i=1,...I; j=25.

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

(26)

with respect to the parameter o'* : ag n,, are as follows:

NS ON{ o

= = % = — (T4 — 7)) OH (mq, ) ONu(Re, )
804(26) 8aQ7Nu 2 w a aNU(Re, a) aa()’Nu ) (E 123)
(=2 1=1,....1;, j =26,
where
R o (B.124)

ONu(Re,a)  Nu(Re, )

and % was defined in Eq. (E.51).

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

(27)

with respect to the parameter « : a1 Ny are as follows:

Ny ON{ o

, A OH(mg, o) ONu(Re, o)
_ () ) @ Q).
Ha(27) - aal,Nu = Gy (T T ) )

ONu(Re,)  Jay ny

w a

(E.125)

where % was defined in Eq. (E.124) and W was defined in Eq. (E.54).

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

(28)

with respect to the parameter a'*® : ay y,, are as follows:

ONy _ ONy i T
90 ~ Dagye 2 (T = 1)

OH(m,,a) ONu(Re, o)
ONu(Re, )  Jagny

= w a

(E.126)
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where % was defined in Eq. (E.124) and %Fjia) was defined in Eq. (E.57).

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

(29)

with respect to the parameter « : ag Ny are as follows:

NS ONY .y

. A OH(mg, o) ONu(Re, o)
— = — (7)) _ (@) @ .
9a® " agy, (177 = 127) /

ONu(Re, o)  0Oas ny

(E.127)
(=2, 1=1,...,1; j=29,

where 2H2ma9) (aq defined in Eq. (E.124) and 224E%%) was defined in Eq. (E.60).
ONu(Re,x) daz Ny

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

(30)

with respect to the parameter a'\*" : Wy, are as follows:

oNy Ny _ |
S S =% =0 (=2 =11 j=30. (E.128)
dkx

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]
with respect to the parameter o Wik, are as follows:
oN;) _ ON i

Da3) Gdey_% 0; £=24=1.,5 j=3L ( )

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]
with respect to the parameter a®? : Azy, are as follows:
ON, _ oNy i

Oa(32) ONzg. @2 0; £=2 i=1,.,I; j=32 ( )

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]
with respect to the parameter o33 : Az, are as follows:
ONS Ny

0069~ OAzpam 2 0; (=2 i=1,..1; j=33. ( )
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The derivatives of the liquid energy balance equations [cf. Eqgs

(34)

with respect to the parameter a** : Dy, are as follows:

ONS  oNy) .
805(34) - aD; ECLZQ’SZL:O,KZQ’ /l: 1,,[7 j:34’

The derivatives of the liquid energy balance equations [cf. Eqgs

(35)

with respect to the parameter o'>®) : Az are as follows:

ONy N .
= =a;"=0; (=2; i=1,..,I; j=235.
804(35) aAme “ ’ ! et

The derivatives of the liquid energy balance equations [cf. Eqgs

(36)

with respect to the parameter « 1 AZzpgin are as follows:

Ny OND L | |

The derivatives of the liquid energy balance equations [cf. Eqs

(37)

with respect to the parameter « : Az, are as follows:

ONG  aNy L | |
OaB7) :8Azbsza2 =0;, (=2, i=1,..,I; 7=3T.

The derivatives of the liquid energy balance equations [cf. Eqs

38)

with respect to the parameter a® . Az, are as follows:

Ny ONY s
804(38) n (‘9Azde -2

—0; (=2 i=1,..,1; j=38

The derivatives of the liquid energy balance equations [cf. Eqs

39)

with respect to the parameter a®? : Dy, are as follows:

NS NS s

- N OH (mg, o)
=23 = — (7U+) _ ) a ).
909 ~ 9D, ~ (T = 1.7)

oD,

w a

L (2:6) - (2.8)]

(E.132)

L (2:6) - (2.8)]

(E.133)

L (2:6) - (2.8)]

(E.134)

L (2:6) - (2.8)]

(E.135)

L (2.6) - (2.8)]

(E.136)

. (2:6) - (2.8)]

(E.137)
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where
—H(mg, o)/ Dy, Req < 2300
OH(mg, c) 0 N H (11a,0x)
oD, ) ~ Mufmealp, 2300 < Rey < 10000 (E.138)

—0.2 H(mg, a)/Dy Req > 10000

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

(40)

with respect to the parameter o'*" : Asy; are as follows:

aNz(i) N aNQ(i) _ 4,40 aH(maaa),

= — (T — )

02l ~ Ay “ OAgu (E.139)
(=2, 1=1,....1;, j=140,
where
0 Reg < 2300
OH(ma, @) _ ) ultlmwe) Retmea) 9300 < Re, < 10000 (E.140)

aAf’Lll - Nu(Re,a)Afi”
—0.8 - H(mg,a)/Agy Req > 10000

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

with respect to the parameter a*!) : A,,,; are as follows:

(1) (i)
aNQ _ aNQ = CLi,41 _ (T(H_l) . T(Z)) 0H(ma, a) )
304(41) aASurf 2 w a 8A5urf ) (E 141)
622,7/:17 ’]"72417
where
OH(m,, o)  H(mg, ) _ frtkair Nu(Re, a)wys, (B.142)

@Asurf - Asurf Dh]

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

42)

with respect to the parameter a*? : Pr are as follows:

Ny ONY

. A\ OH(mg, )
_ () ) “ @)
o™ ~ dpPr 0t ( )

Obr (E.143)

w a
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where
0 Rey < 10000
9H(ma, ) _ 4= (E.144)
0 Pr H(ma,a)/(3-Pr) Rey > 10000

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

(43)

with respect to the parameter o'** : wy,, are as follows:

Ny ONY

, A\ OH(mg, )
_ = oM — _ () _ )y 222V e
a3 OW¢sq @2 ( v a )

I

OWisa (E.145)

where

aH(maa a) . fhtNU(Re, a)kairAsu'r‘f

E.146
awtsa DhI ( )

The derivatives of the liquid energy balance equations [cf. Eqgs. (2.6) - (2.8)]

(44)

with respect to the parameter a'** : m,, ;, are as follows:

oN," _ 0N

= - . —_ 1@ (72
Das) OMuyin “ d Tuins ) hg,w(Tw ) (E.147)
= Lynd1f — Q1 9T1$12) + aof — ao g, t= 2, i=1 j= 44,
oNy)  oNy)
2 2 =giM=0, (=2 i=2,.1 j=4d. (E.148)

90D " Oy i

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]
with respect to the parameter a*®) : T, ;, are as follows:
NS ONS

- =a® =0, (=2 i= L= E.149
o T, =% 0 (=% =Ll j=45 (E.149)

The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

(46)

with respect to the parameter « : wy, are as follows:

oNy ANy
dat6) " duw,, 2
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The derivatives of the liquid energy balance equations [cf. Egs. (2.6) - (2.8)]

(47)

with respect to the parameter o'*") : Sc are as follows:

Ny Ny

94D~ 95 % s 0=2 i=1,..,I; j=A4T. (E.151)
aQ c

E.1.3 Derivatives of the water vapor continuity equations

with respect to the parameters
The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]
with respect to the parameter a!) : Ty are as follows:

ONy Ny

8(1/(1) N aTdb

(E.152)

Il
S
w .=
[
Il
=
~
Il
o«
~
I
—_
~
<
Il
—_

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to the parameter a® : Ty, are as follows:

ONy)  ONSY

NG 8po_a3 0, (=3 i=1,...1—-1; j=2, (E.153)

aN?EI) 8N:§]) _ 12 Owiy . .
9a® ~ o, ~ % Tor, (T IThI=2 (154

where
ao+-L
Owin, 0.622a; Pyme Tar
0Ty N 2 ao+--\ 2’
T
P T;fdp (Patm —€ dp)

(E.155)

The derivatives of the water vapor continuity equations [cf. Eqgs. (2.9) - (2.11)]

(3

with respect to the parameter a(® : Toy.in are as follows:

Ny oNgY i
_ _ b

5 = o = % =0, (=3;i=1;j=3, (E.156)
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The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to the parameter a@W . P, are as follows:

Ny an{
aa<34> :api =a' =0, (=3; i=1,..,1-1; j=4, (E.157)

aN?EI) aN?EI) _ T4 Owin, . .
90~ O~ T OB T lI=A (E.158)

where )
Qw0622 Tw

- g 27
aPatm (Patm _ eaOJerp)

(E.159)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to the parameter a® : V,, are as follows:

aNy Ny

5 = By =9 0; (=3 i=1,..,I; j=5. ( )

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to the parameter a(® : ki, are as follows:

oNy” oN{ |
. =a°=0;, (=3 i=1,..,1; j=6. (E.161)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to the parameter o!”) : i are as follows:

aa<37> - aj =ay =0, (=3 i=1...1 j="T. (E.162)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to the parameter a® : v are as follows:

ONy N
3(1(38) - 85 =a®=0; (=3 i=1,.,I, j=8 (E.163)
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The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to the parameter a® : k. are as follows:

ONy oNy
8@(?)9) _ akg- =ay’=0; (=3 i=1,.,1; j=9. (E.164)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

(10)

with respect to the parameter a'™” : fp,; are as follows:

ONY  ONS) g

9219 ~ afy, =ag 0, ¢=3; i=1,...,1; j=10. ( )

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

11)

with respect to the parameter o'V : f,., are as follows:

ONy”  oNy _
0o Ofme

aé’ll = 076 =3; 1=1, ...,[; ] = 11. <E166)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to the parameter a(!?) : f are as follows:

oNy)  oNy)
GaiT — g =T =0 (=3 i= LT =12 (E.167)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

13)

with respect to the parameter a(’® : gy are as follows:

oNy” ON{)

%D — Do = a;°=0; (=3; 1=1,..,1-1; 7=13, (E.168)
(0% (on)

OND  aNSD s Ow,

Oa(13) day a3 dag | 30 v J ) ( )

where a
Bwin  0.622P,pe"™ Tar

8@ ao+o 2
0 <Patm —€ po)

(E.170)
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The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

14)

with respect to the parameter o™ : a; are as follows:

aNyg  anNy
5@(34) _ aagl =ai"=0;, (=3 i=1,.,1—-1; j=14, (E.171)

aN:ﬁEI) 8N?EI) aI,14 _ awm‘

ol = gy =B T g (U ISHI=I (E.172)

where

ap+ 2L
Oy, 0.622P,,¢" " Tan ( |
= TRL E.173
O Tap (Patm —e 0+po)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

15)

with respect to the parameter a1 ao,c,, are as follows:

8N(i) 8N(i) .
- (:i%) -~ L=ay"=0; (=3;i=1,.1; j=15 (E.174)
a aO,cpa

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

16)

with respect to the parameter a('% : ai,, are as follows:

aN(i) aN(i) '
. (fﬁ) - = S =ay"=0; (=3, i=1,...I; j=16. (E.175)
Q al,cpa

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

17)

with respect to the parameter a(1”) : a3.c,, are as follows:

aN(i) aN(i) .
3 57) =5 S =a"=0; (=3 i=1,.,1; j=1T. (E.176)
«Q aQ,cpa

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

(18)

with respect to the parameter a'*® : ag p,, are as follows:

aN(i) 8N(i) 4
0,Dqv
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The derivatives of the water vapor continuity equations [cf. Eqgs

19)

with respect to the parameter ') : a; p,, are as follows:

aN(i) aN(i) ‘
80639) = aalz Eaglgzo; 623, Zzl,,[’ j:19

The derivatives of the water vapor continuity equations [cf. Eqgs

20)

with respect to the parameter a'®®) : ay p,, are as follows:

aN(i) aN(i) ‘
805(:;0) :8(12; 56%720:(); (=3; i=1,..,1; 7=20.

The derivatives of the water vapor continuity equations [cf. Eqgs

(21)

with respect to the parameter a'“") : a3 p,, are as follows:

aN(i) aN(i) '
5000 = Gag, =4 =0 (=3 i=1..L j=2L

The derivatives of the water vapor continuity equations [cf. Eqs

(22)

with respect to the parameter a'** : agy are as follows:

aN?Ei) _ aszgi) — 22
9a ~ Bag;

=0;, (=3, i=1,...1;5 =22.

The derivatives of the water vapor continuity equations [cf. Eqgs

(23)

with respect to the parameter a'*” : a;¢ are as follows:

&ﬁmzaﬁfzﬁﬁz& =3 i=1,.,I;j =23

The derivatives of the water vapor continuity equations [cf. Eqs

24)

with respect to the parameter a4 : aog are as follows:

aN(i) aN(i) '
&ﬁ@zag =05 =0, (=3 i=1,.,1;j=24
g

L (2.9) - (2.11))]

(E.178)

- (2.9) - (2.11)]

(E.179)

(2.9) - (2.11)]

(E.180)

L (2.9) - (2.11)]

(E.181)

L(2.9) - (2.11)]

(E.182)

L (2.9) - (2.11)]

(E.183)
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The derivatives of the water vapor continuity equations [cf. Eqgs

25)

with respect to the parameter o : a4 are as follows:

ONS _oNy _ s
_ONS" _ s

9D day, 2

;o =3 1=1,...,1;5 =25.

The derivatives of the water vapor continuity equations [cf. Eqs

26)

with respect to the parameter a(20) . ap Ny, are as follows:

ONy) AN
804(26) N aa()’Nu -

The derivatives of the water vapor continuity equations [cf. Eqs

(27)

with respect to the parameter a'*" : a; y,, are as follows:

aNy N

82T Al o o
304(27)_3611,%:&3 =0; (=3, i=1,..,I;j=2T.

The derivatives of the water vapor continuity equations [cf. Eqs

(28)

with respect to the parameter a'*® : ay y,, are as follows:

oNy  ON{ .
8(1(28) :aa;; =a;®=0; (=3 i=1,.,I; j=28.

The derivatives of the water vapor continuity equations [cf. Eqs

(29)

with respect to the parameter o'*”) : a3 y,, are as follows:

ONy) ANy
8a(29) N 0a37Nu

:aé’29:0; C=3; 1=1,..,1; j=29.

The derivatives of the water vapor continuity equations [cf. Eqs

30)

with respect to the parameter a®? : Wy, are as follows:

oNy) NS
8&(30) = 0ij =a;=0; (=3 i=1,..I; j=30.

L (2.9) - (2.11))]

(E.184)

L (2.9) - (2.11)]

(E.185)

L (2.9) - (2.11)]

(E.186)

L (2.9) - (2.11)]

(E.187)

L (2.9) - (2.11)]

(E.188)

L (2.9) - (2.11)]

(E.189)
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The derivatives of the water vapor continuity equations [cf. Eqgs

31)

with respect to the parameter o) : Wagy are as follows:

oNy' _ oNy _ im | |
daBh) Wy =ay =0; (=3;1=1,..,1; j=3L

The derivatives of the water vapor continuity equations [cf. Eqs

32)

with respect to the parameter a®? : Azy, are as follows:

NS _ ONS | |
804(32) N aAde. = a3 _07 6—3, 'L—l,...,I7 7 = 32.

The derivatives of the water vapor continuity equations [cf. Eqs

(33)

with respect to the parameter « : Azyqy, are as follows:

oNy  aNy
8a(§3) _ aAz?; =ai® =0, (=3 i=1,...1, j=33.

The derivatives of the water vapor continuity equations [cf. Eqs

(34)

with respect to the parameter a'** : Dy, are as follows:

aN(i) 8N(i) ‘
80_/(24) :aD; Eag34:(); (=3; i=1,...1I; j=34,

The derivatives of the water vapor continuity equations [cf. Eqs

(35)

with respect to the parameter o'>?) : Az are as follows:

ONy  ONY L . .
- =a5® =0, (=3 i=1,..1, j=35.
80 Oz 3 T T e

The derivatives of the water vapor continuity equations [cf. Eqs

36)

with respect to the parameter aB%) . Az, are as follows:

ONy  ONY

a0 OAzZuin  °

=ay =0; (=3, 1=1,...,1;, 7=36.

L (2.9) - (2.11))]

(E.190)

L (2.9) - (2.11)]

(E.191)

L (2.9) - (2.11)]

(E.192)

L (2.9) - (2.11)]

(E.193)

L (2.9) - (2.11)]

(E.194)

(2.9) - (2.11)]

(E.195)
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The derivatives of the water vapor continuity equations [cf. Eqgs

37)

with respect to the parameter aB? . Az, are as follows:

aN(z‘) aN(z’) '
aa<§7> - aAz,, =ag"=0; (=3 i=1..1 j=3T

The derivatives of the water vapor continuity equations [cf. Eqgs

38)

with respect to the parameter a®® : Az, are as follows:

8N3§i) B 8N3§i) — 58—
9aB®) " 9Azz 3

The derivatives of the water vapor continuity equations [cf. Eqgs

(39)

with respect to the parameter o'*”) : D), are as follows:

ONg”  oNy _
806(39) n 8Dh

The derivatives of the water vapor continuity equations [cf. Eqs

(40)

with respect to the parameter o'*" : Az are as follows:

N oND _ g
804(40) N aAfm o

=0;, (=3, i=1,..,1I; j=40.

The derivatives of the water vapor continuity equations [cf. Eqs

with respect to the parameter o A ¢ are as follows:

OND N :
6@51) =7 3 ; =ai"' =0, (=3 i=1,...1; j=4l.

The derivatives of the water vapor continuity equations [cf. Eqs

with respect to the parameter a*? : Pr are as follows:

Ny Ny
da® ~ gpr

L (2.9) - (2.11))]

(E.196)

L (2.9) - (2.11)]

(E.197)

L (2.9) - (2.11)]

(E.198)

L (2.9) - (2.11)]

(E.199)

L (2.9) - (2.11)]

(E.200)

L(2.9) - (2.11))]

(E.201)
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The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

43)

with respect to the parameter a3 : w,,, are as follows:

aN(i) aN(i) ‘
5 (23) =5 3 Eag’4320; (=3; i=1,..,1;, 7=43. (E.202)
& Wisa

The derivatives of the water vapor continuity equations [cf. Eqgs. (2.9) - (2.11)]

44)

with respect to the parameter a(*¥ : Map,in, are as follows:

aN?El) aN:’El) 1,44 1
8a(44) amw7in - CL3 maa e 37 ? 17 J 447 ( )

oNG  oN®
806(44) B (9mw,m

=ay" =0, (=3 i=2,..,1I; j=44. (E.204)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

with respect to the parameter a(*?) T4 in are as follows:

aN(i) aN(i) A
Sy = gp =5 =0 [=3 =11 j=45 (E.205)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

(46)

with respect to the parameter « : wy, are as follows:

Ny anN{
5@(36) _ 0; =ay =0, (=3 i=1,..,]—1; j=46, (E.206)

oNy” _oNg e _

a0 ~ o ; 0=3; i=1; j=46. (E.207)

The derivatives of the water vapor continuity equations [cf. Egs. (2.9) - (2.11)]

47)

with respect to the parameter o*”) : Sc are as follows:

N oNY

dal) 98¢

=ai =0, (=3 i=1,..,I; j=4T. (E.208)
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E.1.4 Derivatives of the air/water vapor energy balance
equations with respect to the parameters
The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)] with respect to the parameter a(!) : Ty, are as follows:

oNy)  oNy
801(1) N 8Tdb

=at' =0, (=4 i=1,..,]-1 j=1, (E.209)

ONS N ia o (T 21305 O (Tuin, )
= =a, = B e— Wi
804(1) aTdb 4 P 2 ’ o 8Ta,in

e

p

(T(ED +273.15

5 ,a)—i—winalg; (=4, +=1; 7=1.

(E.210)
Note: The value of the inlet air temperature is set equal to dry-bulb temperature,
although these quantities are treated as two different parameters in the model.
The dry-bulb temperature is used in mass diffusivity calculations. The relation
between the two parameters, i.e., T, = Ty, needs to be accounted for when
computing the respective derivatives: the derivative of Eq. (2.13) with respect to
the dry-bulb temperature must be the same as the derivative of Eq. (2.13) with

respect to the inlet air temperature.

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)] with respect to the parameter a(? : Ty, are as follows:

oNy  oNy? _
801(2) N 8po -

a? =0, (=4 i=1,..1-1; j=2 (E.211)

aNzEI) _ aNzEI) _ 12 _ Owin
4

= = = Th.in ;o U=4; =1, =2,
9@ 0Ty, 0Ty (15Tt 0) ' /

(E.212)

where gﬁ}% was defined in Eq. (E.155).
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The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

3

- (2.14)] with respect to the parameter a(® : T, ;, are as follows:

aN(l) aN(l)
S — g = =0l=4 =1 j=3, (E.213)
« w,in

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)] with respect to the parameter o : P,,, are as follows:

Ny oNy
RO api =at=0; (=4; i=1,..,1-1; j=4, (E.214)

ON _oN{ _ 4 Owi
8a(4) aPatm o aPatm

(algTa,in+a09>; 6247 ZZ[? ]:47
(E.215)

where 8‘3,:’; was defined in Eq. (E.159).

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)] with respect to the parameter o : V,, are as follows:

oN  oNy) |
2 Lo=gS=0; (=4, i=1,..I; j=5, (E.216)

daB® 9V,

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)] with respect to the parameter a(% : kg, are as follows:

oNy  oND
@ o = =0 =4 =11 j=6 (E.217)

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)] with respect to the parameter o) : y are as follows:

ONy  ON{ . (TS — T 0H (m,
LN JOH(mw @) 4 in, s =7,

20 Ou Ma ou
(E.218)
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where %ﬂ“’a) was defined in Eq. (E.102).

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)] with respect to the parameter a(® : v are as follows:

oN{  aN{
3@(48) - a;/l =ad®=0;, (=4; i=1,..,I; j=8. (E.219)

The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)
- (2.14)] with respect to the parameter a(*) : kg, are as follows:
oNy oN{) _ o (TS =) 0H (ma, o)

= =a = (=4, i=1,..,1; 7=9
009~ Dhgy e Okair T I

where 8Ha(;”‘?’°‘) was defined in Eq. (E.105).

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

10)

- (2.14)] with respect to the parameter a(!9) : f,, are as follows:

N oNY _ o (8T — 1) 0H (ma, @)
a0~ Bfy m, Ofue

(=4; +=1,...1;, j=10,

where % was defined in Eq. (E.107).

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

11)

- (2.14)] with respect to the parameter a(*") : f,., are as follows:

N(i) N(i) )
g = aaf4 =ay"' =0; (=4 i=1,.1 j=11 (E-222)
« mt

The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

12)

- (2.14)] with respect to the parameter a(?) : f are as follows:

aN®  an®
aa(%): af4 Eajl,12:0; (=4, i=1,....I; j=12. (E.223)
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The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

13)

- (2.14)] with respect to the parameter a(*®) : ay are as follows:

oND  oND
aaéfﬁ _ 8;0 =a® =0, (=4; i=1,...,1—1; j=13, (E.224)

9a3) " dag 4 Oay

on{" aND Owin
= T = = T 0y T tang): (=4 i=1; j=13,

(E.225)

where 85;’: was defined in Eq. (E.170).

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

(14)

- (2.14)] with respect to the parameter o'*) : a; are as follows:

oNy’ oN{ _ |
aaé@ _ 8@41 =a=0; (=4 i=1,..,1-1; j=14, (E.226)

aNiI) _ E)Nf) — o1 — Owin,
Da14) da; ~ * day

(a’lgTa,in+a09); 6247 Z:I’ 3214’
(E.227)

where %JT"I" was defined in Eq. (E.173).

The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

15)

- (2.14)] with respect to the parameter a!®) : aq ., are as follows:

() (T +273.15
G (T

8Nf) aNf) _ 15 (i+1) (i)
9009 ~ dag,,. 4 T (7~ 1)

9a0,¢,. (E.228)

_ i) ).

a a )

(=4; +=1,...1, j=15.

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

16)

- (2.14)] with respect to the parameter a(!%) : ai,, are as follows:

acy” (% a)

OND  ONY e | |
_ _ 016 _ (1) _ o)
9019 ~ day,.. ay (T} 7;")

O c,, (E.229)
= 0.5 (T — TO) (T +273.15); €=4; i=1,...I; j=16.
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The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

17)

- (2.14)] with respect to the parameter a'”) : ay ., are as follows:

() (T8 +273.15
G (T

ONY ON{ iy o
0an Das.,, =aq = (Ta -1, )

0a3.¢,, (E.230)
= 0.25 (TOHY) = TO) [T +273.15)%; ¢ =4; i=1,...1; j=1T.

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

18)

- (2.14)] with respect to the parameter a(® : aq p,, are as follows:

aN(i) aN(i) A
804(41:8) = % L= =0; (=4 i=1,..,1, j=18. (E.231)
0,Dav

The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

19)

- (2.14)] with respect to the parameter a(*) : a; p_, are as follows:

aN(i) 8N(i) ‘
804é9) = =ay? =0, (=4 i=1,.,1; j=19. (E.232)
1,Dqv

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

20)

- (2.14)] with respect to the parameter a(®? : ay p_, are as follows:

aN(i) aN(i) ‘
2,Dgv

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)
- (2.14)] with respect to the parameter a®V : az p,, are as follows:
ONY _ N _

90~ daz p,. = ay 0; =4, 1=1,...,1; 7=21. (E.234)
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The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

22)

- (2.14)] with respect to the parameter a(?? : ag; are as follows:

(()N(i) (()N(i) ‘
S = g =0 =0 (=4 =11 j=22 (E.235)
of

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

23)

- (2.14)] with respect to the parameter a(®® : a;; are as follows:

ON; N _ iz
o) Jayp !

=0; (=4; i=1,...I, j=23. (E.236)

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

24)

- (2.14)] with respect to the parameter a(® : aq, are as follows:

i i 7 i+1
6Ni) _ aNi) _ ai’24 _ W(H_l) . W(Z) 4 mgv) _ mgv+ )
00D~ dag, T

(E.237)
(=4, 1=1,...,1; j=24.

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

25)

- (2.14)] with respect to the parameter a®) : a,, are as follows:

i i (& _, (i+1) (i+1)
8N§ ) _ 8]\72 ) — % — GG+ O <mw MM > T )
o) Jay, ! “ ¢ mg, ’

(=4; 1=1,...1, j=25.
(E.238)

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

26)

- (2.14)] with respect to the parameter a(?® : qg v, are as follows:

NS ONY o (TS0 — 1) 9H(ma, ) ONu(Re, @)
9a ~ dagn, My ONu(Re, )  Odagny (E.239)
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where gﬁ&'ge’z)) and aj\ézgjf;a) were defined previously in Egs. (E.124) and (E.51)

respectively.

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

27)

- (2.14)] with respect to the parameter a®” : a; y, are as follows:

8]\75) B 8Nf) 027 (Tu(jﬂ) —Ta(i)) OH (mq, o) ONu(Re, )

9aC) " dayn, My ONu(Re, )  Oayny (E.240)

where gﬁi?ﬁi‘éfx)) and B%ijf;a) were defined previously in Egs. (E.124) and (E.54),

respectively.

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

28)

- (2.14)] with respect to the parameter a®® : a, y, are as follows:

oN B oN i (TS — 79 9H (m, @) ONu(Re, o)
5a®  Dagre A My ONu(Re,@)  daznu ~ (E.241)

where gﬁi??é% and aj\ézgve;a) were defined previously in Egs. (E.124) and (E.57),

respectively.

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

29)

- (2.14)] with respect to the parameter a® . as o, are as follows:

6Nf) B aNii) s (Tlgz‘—s—l) —Téi)) 8H(ma,a) 8Nu(Re,Oé)‘

9a®) " Bagny 4 my ONu(Re,a)  OJagnu (E.242)

where gﬁ&’géz)) and mgzgf;a) were defined previously in Egs. (E.124) and (E.60),

respectively.
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The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

30)

- (2.14)] with respect to the parameter a®% : Wy, are as follows:

oND  oND
20 g = =0 =4 =10 =30, (E.243)
dkx

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

31)

- (2.14)] with respect to the parameter a(®V : Wy, are as follows:

Ny ONy 4

e adey_a4 0, ¢=4; i=1,...1; j=3l. ( )

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

(32)

- (2.14)] with respect to the parameter a'®? : Azy, are as follows:

NS _oNy _ i

= = =0; (=4, i=1,...I; j=232. E.245
aa(32) 8A2dk 07 ) Z ) ) 7 .] 3 ( )

The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

33)

- (2.14)] with respect to the parameter a(®*® : Az;,, are as follows:

Ny ONY

a(33) aAZﬁm—% 0; (=4; i=1,..,I; j=33. ( )

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

34)

- (2.14)] with respect to the parameter a® : Dy, are as follows:

aN(i) aN(i) ‘
3 é4) = 8D4 =a"=0; (=4 i=1,.,1; j=34, (E.247)
«Q fan

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

35)

- (2.14)] with respect to the parameter a'®) : Az are as follows:

= =a}®=0; (=4 i=1,.,1 j=35. E.248
00 ~ DAz M ’ ST (219
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The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

36)

- (2.14)] with respect to the parameter aB%) . Az, are as follows:

Ny N

9o = Dz 4 0 (=t =L L g =30 (E.249)

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

37)

- (2.14)] with respect to the parameter a®”) : Az, are as follows:

oND  oND
aaé?) _ aA; =a"=0; (=4; i=1,.1; j=3T. (E.250)
bs

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

38)

- (2.14)] with respect to the parameter a®® : Az, are as follows:

oN® N,
5 A =W =0 f=4 =11 j=38 (E.251)
de

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

(39)

- (2.14)] with respect to the parameter o'*?) : D), are as follows:

ONy ONY i (T = TY) OH (ma, o)
_ _ i _ .

804(39) N 8Dh - mg 8Dh 7

(E.252)
(=4; i=1,..,1; j=39,

where %ﬁ’a) was defined in Eq. (E.138).

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

(40)

- (2.14)] with respect to the parameter o!*? : Az are as follows:

ONy Ny _ a0 (00T = TE) 0H (ma, @)

90~ A T T m, OArar

(E.253)

where %f‘_’l’f) was defined in Eq. (E.140).
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The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

- (2.14)] with respect to the parameter a*!) : A,,; are as follows:

Ny N _ (T — 1) 0H (my, ).
9ol = 9A,, " ma Ay

(E.254)

where %ﬂ“j‘) was defined in Eq. (E.142).

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

42)

- (2.14)] with respect to the parameter a(*? : Pr are as follows:

ONY N _ i (TS = TE) 0H (ma, @)

42) 4 ’
804( ) aPr Mg 31:’1“ <E255)

where BHéT;;’a) was defined in Eq. (E.144).

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

43)

- (2.14)] with respect to the parameter a3 : w,,, are as follows:

ONY  aND e (TS — 1Y 0H (my, )
J— a7 .

0™ dwyee myg Owisa (E.256)
6247 7':17 717 j:437

where
OH(mq,c0) _ fulNu(Re, o)kair Asurs (E.257)

3wtsa Dh_[

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

44)

- (2.14)] with respect to the parameter a(*) : m,, ;, are as follows:

aNil) o aNil) — 44 _ hg?w(ngz)7a) o alths)z) + aog

0 Omy, My my ’

(E.258)
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Ny oNy _ . .
8a(i4) _ 3m4, _ a4’44 =0; (=4, i=2,..,1; j=44. (E.259)

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

- (2.14)] with respect to the parameter a(*® : T, ;,, are as follows:

oNy oNy
S e = =0 (=4 =111 j=45  (E260)

ahfg(]{cj_l) (Taﬂ'na a)
Win
aT'a,in

6a(45) N 8Ta,in N 2
<T§” +273.15

oND  gND T 1 273.15
4 _ 4 :ai’45=C,§” + o

—
= C’p

5 ,a)—l—wmalg; (=4; =1, j5=45.

(E.261)

The derivatives of the air/water vapor energy balance equations [cf. Egs. (2.12)

(46)

- (2.14)] with respect to the parameter o'*®) : w;, are as follows:

OND  aND
aaé@ _ &f =ai =0, (=4; i=1,...1—1; j=46, (E.262)

oNy  oNy"
ot = g = = W () (=4 i=1 j=46.  (E263)

The derivatives of the air/water vapor energy balance equations [cf. Eqgs. (2.12)

47)

- (2.14)] with respect to the parameter a*”) : Sc are as follows:

ONY _ONY _

Jad) ~ §Sec 4 =0, (=4, 1=1,..,I; j=4T7. (E.264)
o C
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E.1.5 Derivatives of the mechanical energy equations with

respect to the parameters

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter aM) : T, are as follows:

+ (E.265)

1 . L ksum + 96f Lfill
Az, A, ) T Re A%,D,

out fill

g'Patm |7 Az .
= | Z _w_Arain__ ) €:5a =1
+Rair'T§b ( + Z 5 7

since

Tap = Toin- (E.266)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter o? : Ty, are as follows:

= =ai=0;, (=5 j=2 (E.267)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect
to the parameter a(® : T, are as follows:

ON;  ONj 3
5

9ol ~ Ty =0; (=5 j=23. (E.268)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter a® : P,,,, are as follows:

oo 0P, °  2-P%, ol e

1 1 ksum 96f Lfill g
W2z, 2 a2 ) T Re @00 | T R T

out in fill € fill h air tdb

I

V2 Toas 1 1 US|
2= gy At B A T | gt o+ Y

(=5, j=A4.
(E.269)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter a(® : V,, are as follows:

ON, ON, :

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

6)

to the parameter o9 : ki, are as follows:

ON; 0N
0a(®) " Okgyum

M| - Mg
2p(Tan, @) - Ay,

— 6 _

: £=5;, j=6. (E.271)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

—~

7

to the parameter o'”) : p are as follows:

ON, N,

96f - Ly

7 fill )

ay = “mg; =5 j=T. E.272
> QP(Tdba O{) . Afill . D}zL J ( )

5
2o Opu

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

8)

to the parameter a(® : v are as follows:

ONy,  ON, _
aa(s?) - 3_,,5 =a;=0; (=5 j=38 (E.273)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter a® : k... are as follows:

ON, 0N,
80./(9) N 8kai,«

=al=0; (=5 j=09. (E.274)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

10)

to the parameter a(!? : f,, are as follows:

8N5_(9N5_10__ _ K. M
5000 g =@ =0 €=5 j=10 (E.275)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

11)

to the parameter a(™) : f,., are as follows:

ON. ON,
5 S =ai'=0;, (=5 j=I11 (E.276)

Do) O fnt

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(12)

to the parameter a''® : f are as follows:

ON, ON, 96[/Z . al = Mg .
s _ONs _ 5 galmal ma oo (E.277)

912~ af T 2p(Tya) - Re-A%;, - Dy’

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

13)

to the parameter o™ : qq are as follows:

ON, ON, :

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(14)

to the parameter a'**) : a; are as follows:

ON, ON, :
Fal = o, =% =0 £=5 j=14 (E-279)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(15)

to the parameter '™ : aq,, are as follows:

ON, ON, -
8a(155) ~ dag =ay =0; (=5 j=15 (E.280)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

16)

to the parameter a1 aic,, are as follows:

ON ON .
804(156) = % —=a’=0; (=5 j=16 (E.281)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(17)

to the parameter o' : ay,, are as follows:

ON, ON, ,
804(157) = Dy =a =0; (=5 j=1T. (E.282)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(18)

to the parameter a'*® : ag p,, are as follows:

ON, ON,
8@(158) = 8%5 =q°=0; (=5 j=18 (E.283)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

19)

to the parameter a* : a; p_, are as follows:

ON, ON, ,
8@“2) = 8a1§ =a’=0; (=5 j=19. (E.284)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(20)

to the parameter a'*” : as p,, are as follows:

ON. ON.
8@(2%) = aaﬂf =a’=0; (=5 j=20. (E.285)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(21)

to the parameter a'*" : as p,, are as follows:

ON. ON, _
804(251) = aa“;” =ai'=0; (=5 j=2I. (E.286)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

22)

to the parameter a(®? : ag 7 are as follows:

ON, Ny _
0a?)  dagy 5

=0; (=5 j=22 (E.287)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(23)

to the parameter o'* : a;; are as follows:

8‘]\/1’)_8‘]\[5_23_. k. ) —
90l = B4y, =0 =0 (=5 j=2 (E.288)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(24)

to the parameter o> : a4 are as follows:

3~ Bag, 0

=0, (=5 j=24. (E.289)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

25)

to the parameter o/(?® : a4 are as follows:

8‘]\[5_8]\[5_25_. — K. -
90 ~ day, a;’ =0; (=25 j=25. (E.290)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(26)

to the parameter « : ap Ny are as follows:

ON, ON,
B = aaoji =az’=0; (=5 j=20. (E.291)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(27)

to the parameter « : a1 Ny are as follows:

ON, 0N,
5alh = Jan =% =0 (=5 j=21 (E.292)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

28)

to the parameter o/(?®) ag Ny are as follows:

ON, ON,
804(22) = 8@1; =a*=0;, (=5 j=28. (E.293)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(29)

to the parameter o'*” : ag n, are as follows:

ON. ON,
aa<259> = 8@1; =a=0; (=5 j=29. (E.294)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(30)

to the parameter « : Wi are as follows:

IN; IN; 30 M - maq 4
= =a = ; £=5; j=30. E.295
D30 OW gk, o p(T, ) - W3, - Wi, ’ ( )

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter a(®Y : Wy, are as follows:

ONy _ 0Ny _

31 |ma| TMyg .
aBL oWy, P (E.296)

o p(Tdb7 a) ' Wc%k‘x ’ I/I/vc:lgk:l/7

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(32)

to the parameter o' : Azy. are as follows:

ON, ON, Pym | 1 1 :
5 5 32 _ t { ] ; =05 j=232. (E.297)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(33)

to the parameter a'>® : Azy,, are as follows:

ON, ON, Pam | 1 1 :
50t = DAy = @ =R, [_ - _} Tm s B

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

34)

to the parameter a/®% : D ¢4y, are as follows:

ON; 0N,
806(34) N anan

32 |mg| - m ,
34 a a
= — ; £=05; j =234 E

Qs p(le” ) 2.5 v J ( 299)

fan

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(35) .

to the parameter o'”? : Azgy; are as follows:

ON; ONs _ 3 96/ - |mal - mq Patm
= =a - -
804(35) 8Azfill > Qp(Tdb, ) - Re 'A?[ill -y gRair . Tél)
b ) L (E.300)
atm .
: =5; j=35.
- gRaiT -1 2Ta,in ZQ CE »

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(36)

to the parameter a'*® : Az, are as follows:

90~ 00zum 0 R |Tu Wl £=5 7=3% (B0

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(37) .

to the parameter o' : Az, are as follows:

ONy, 0Ny _ 4 Pum[1 1 |
= T |5 f=5 =37 (B302
9o~ Az, ~ 0 " IRy [Ta 7O T (302
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(38)

to the parameter a'°®) : Az, are as follows:

ON; ON; 38 96f - [mal - my ,
— =38 = . (=5 j=383.
806(38) 8Azde % 2p(Tdb, a) -Re ‘A?cill . l)h7 » J <E303>

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(39)

to the parameter o'*”) : D), are as follows:

IONy _ ONy 0 96 - prair - Lyiu - ma
O (39) oDy, 5 p(len a) . Afill . Dz’

(=5 j=39.  (E.304)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

(40)

to the parameter a'*” : Ay are as follows:

aNS 8N5 40 ksum ' |ma| * Mg 96f * Mair - Lfill * My, .

== = Q — Y
D0 Ay ° p(Tw, ) - Agyy 2p(Ta, @) - A%y, - Dy,

(E.305)
¢=5; j=A40.

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter aV) : A,,, ¢ are as follows:

Gt = AL S0 =0 (=5 =L (E.306)
The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

42)

to the parameter a*? : Pr are as follows:

=_—2=0q"=0; (=5 j=42. (E.307)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

43)

to the parameter a*? : w,, are as follows:

ON, ON, .
Tl = aw: =a5’ =0; (=5 j=43. (E.308)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter a*¥) : m,, ;,, are as follows:

N, N,
ON; ON; M0 (=5 j=44. (E.309)

0o~ Dm0

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter o/(*?) T, in are as follows:

. |ma‘ “My

8N5 _ 8N5 _ CL45 _ Rair
806(45) aTa,in - 2 : Patm
1 1 ksum 96 Ly;
<AT_A_2+A2 >+ Rf'A2fil)
in fill e Tt

out

(E.310)

'Pam V2 A
g at -(Z—I——w—AzTQin—?Z); ¢ =5; j=45.

Rair : T(i,m 29

_|_

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter a(*9 : w,, are as follows:

ON, ON,
5 95 _ 16—, ¢=5, j=46. (E.311)

8Oé(46) N &um -

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter a*”) : Sc are as follows:

(E.312)

ON, ON,
b= P =q"=0; (=5 j=4T.
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E.2 Derivatives of the Model Equations with re-
spect to the Model Parameters for Case 1b:
Fan Off, Saturated Outlet Air Conditions,

with Inlet Air Saturated

The differences between the governing equations for case 1la and case 1b are
only in the “liquid continuity equations”. Other governing equations (i.e., liquid
energy balance equations; water vapor continuity equations; air/water vapor en-
ergy balance equations; mechanical energy equation) are the same for both cases,
and their derivatives in Subsections E.1.2 through E.1.5. Therefore for case 1b,
only the derivatives of the “liquid continuity equations” with respect to parame-
ters are derived as follows, since the derivatives of other governing equations with
respect to parameters are the same as that of case 1la. The notation used will be

the following:

~ i=1,..,1; j=1,.., N, (E.313)

E.2.1 Derivatives of the liquid continuity equations with

respect to the parameters

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter o)) : Ty, are as follows:

aNY aN? 1 [PEYTTTY @) PRI @)

dal) 0T, 'R T+ 70
v v a (E.314)

‘ OM (mg, o) . 0D o (Tip, )
0D (T, @) OTap ’

(=1; 1=1,...1;, =1,

aM(ma,a) and aDaU (Tdbaa)

Do (o) S~ were defined in Egs. (E.3) and (E.4), respectively.

where
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter a(® : T4y, are as follows:

oN{ oNy
dp

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter a(® : To,in are as follows:

oN®  oND . .
908 T, = w =0 ==l =3 (E.316)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter aW . P, are as follows:

oN{  oN{) |
L — 8P1t =a'=0; (=1 i=1,.,1 j=4, (E.317)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter a® : V,, are as follows:

ony? oNy _ . .
804(15) = 8V1 =a"=0; (=1, i=1,..,I; j=05, (E.318)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter a'® : kg, are as follows:

oNy  oN®
@ o = =0 =1 =11 j=6 (E.319)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter o!”) : i are as follows:

oNy oND o 1 [PEVTITY ) PRTY )| oM (m,. @)

R TG+ 7@ o '

(E.320)
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where %ﬂ‘“a) was defined in Eq. (E.13).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter o® : v are as follows:

Ny _oN{ _ s 1 [PEV@Y a) PRI, )] 9M(ma, @)
90® ~ ov M TR 70+ 70 o

(E.321)

where W was defined in Eq. (E.16).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter a® : k,;, are as follows:

OND  oND
= = at =0 (=L i=1 L =0, (5:322)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

10)

with respect to the parameter a(!9) : f,, are as follows:

oND _OND _
919 Ofy

=0; (=1;i=1,...I; j=10. (E.323)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter oV : f,., are as follows:

8N1(i) B 3N1(i) _ a1 P&H)(Tgﬂ)aa) PIES)(T‘g ya) | OM(ma, )

aa(n) N afmt - B }=2 T(i+1) Ta(l) 8fmt 7

w

(=1, 1=1,...,I; j=11,
(E.324)

where W was defined in Eq. (E.21).
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(12)

with respect to the parameter a'*® : f are as follows:

ON® NP
oD = a;‘ =a"=0; (=1 i=1,.1 j=12 (E.325)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

13)

with respect to the parameter a(’® : gy are as follows:

ONy ON{ iy M(mg o) | PSS 0) PRI, o)

a3 day R Tt 7O ;

(E.326)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

14)

with respect to the parameter a(! : q; are as follows:

OND_OND _ o M(mae) | PETEY @) PRI )|
00~ 9a; ~ R (T@H))Q (T“))2 |

(=1, 1=1,....,1; j=14,

(E.327)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

15)

with respect to the parameter a(1%) : ao,c,, are as follows:

ON®Y N .
5 &5) =3 1 — aﬁ’“’ =0; (=1, i=1,..,1; j=15. (E.328)
a aO,cpa

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.25) - (2.27)]

(16)

with respect to the parameter « D a1, are as follows:

8]\7(1') 8N(i) '
5 &6) = > 1 azl,16 =0; (=1, i=1,...,I; j=16. (E.329)
Q al,cpa
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

17)

with respect to the parameter a/!7) : ay,c,, are as follows:

N oN® .
5 (17) =3 (I azl,17 =0; (=1, i=1,...,I; j=17. (E.330)
a aQ,cpa

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

18)

with respect to the parameter a'® : ag p,, are as follows:

oNy Ny s 1 [ PET@EY a) PRI )
a = — -

Da18) — dap p,, ' "R Tl(fﬂ) Téz)

(E.331)
COM(mg, @) 9D,y (Tip, 0v)
0Dy (T, ) dao.p,,

(=1, 1=1,...,1; j=18,

OM (mg,cx)

_OM{ma,0) 9Dav (Tap,x)
aDav (Tdbva)

where was defined previously in Eq. (E.3), and 2 oo was defined

previously in Eq. (E.34).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

19)

with respect to the parameter ') : a; p,, are as follows:

aNY  oN{Y _ o | Pyt o) PRI, 0

a1 ~ da;p, ' R AR 7

(E.332)
- OM(mg, ) 9D, (T, @)
8Dav(Tdb7 a) 8a17Da’U

s =1 0=1,..,1;, =19,

OM (mg,or)

B Ty WS defined previously in Eq. (E.3), and 9DavTan-®) yras defined

where d
a1,Dqy

previously in Eq. (E.37).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

20)

with respect to the parameter a(?”) : ay p_ are as follows:

oN® Ny 1 [ PETITETTY ) PRI, )
_ _ 0 _ _

9a® ~ dayp., ' R i) 70

(E.333)
) 8M(ma, a) . aDaU (Tdb7 a)
0D o (T, ) das p,,

;=1 1=1,...,1; j=20,
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OM (mq,cx)

8Dav (Tdbva)
8Dav(Tdb7a) and

3 was defined
a2, Dgy

where was defined previously in Eq. (E.3),

previously in Eq. (E.40).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(21)

with respect to the parameter a'“") : a3 p, are as follows:

oNY _ oNY o _ L [PEVTT a)  PR(TY, @)
E Té}i—&-l) TCSZ)
8M(ma, Oﬂ) 8D,w (Tdb7 a)
8Dav (Tdba a) 8a:’>7Dav

8a(21) N 8(137[)(“) -

(E.334)

s =1 0=1,..,1;, 7 =21,

oM (ma’a)) was defined previously in Eq. (E.3), and W

A was defined
aDav(Tdbya yDav

where

previously in Eq. (E.43).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

22)

with respect to the parameter o*? : aq 7 are as follows:

ONY N, , ,
— = % — . — M — M — E335
NG a%f_% 0; (=1; i=1,..,I; j=22. ( )

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

23)

with respect to the parameter a(®) : q; ¢ are as follows:

9a(23) Day; =a" =0, (=1;i=1,..,I; j=23. (E.336)

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.25) - (2.27)]

24)

with respect to the parameter a4 : apy are as follows:

aN(i) 8N(i) A
&ﬁ@:aé =ai" =0 (=1 i=1,..1 j=24 (E.337)
g
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(25)

with respect to the parameter a'*) : a,, are as follows:

oN{ oN{ |
aaéS) — aal = (IZ1725 = O’ E = ]_’ Z = 1, ceey .[, ] = 25 <E338)
1g

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

(26)

with respect to the parameter o'* : ag n,, are as follows:

ONY N s 1 PETETY @) PRTY, )

2020 dagn, R (1) B 7
o v a (E.339)
OM(mg, ) ONu(Re, )

ONu(Re,a)  Oagnu

(=1, 1=1,...,1; j=26,

OM (mg,or)

ONu(Re,ax)
ONu(Re,ax) and

3 was defined
ao,Nu

where was defined previously in Eq. (E.50)

previously in Eq. (E.51).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(27)

with respect to the parameter a'*" : a; y,, are as follows:

oN? oN{ 1 (PY@TY e PRI,

0021 8@171\7“ ! R T(iJFl) Ta(l)

w

(E.340)

- OM(mg, a) ONu(Re, o)

(=1, i=1,....1; =27
ONu(Re, )  Jay ny > ot J ’

where 2M(me.2) (ag defined previously in Eq. (E.50) and W was defined

ONu(Re,ax)

previously in Eq. (E.54).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(28)

with respect to the parameter o'* : ay y,, are as follows:

ON{ N s 1 [PEVTETY ) PR, @)
aa(zs) aag,NU -t E qu)i'i'l) Tél)

(E.341)

OM(mg, ) ONu(Re, )

(=1 1=1..1 7=28
ONu(Re, )  das nu ! ety ’
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OM (mg,or)

ONu(Re,ax)
ONu(Re,x) and

5 was defined
a2 Nu

where was defined previously in Eq. (E.50)

previously in Eq. (E.57).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

29)

with respect to the parameter a9 . as o, are as follows:

ONY N g 1 PETETY @) PRTY, )

20 " dasn, - R (1) 70
o v “ (E.342)
OM (mg, ) ONu(Re, , .
. (m4, @) u(Re a); (=1, 1=1,...,I; j=29,
ONu(Re,ax)  0Oas ny
where 2Mmaa) oo defined previously in Eq. (E.50) and ONu(Re.) s defined
ONu(Re,a) Oaz Ny

previously in Eq. (E.60).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

30)

with respect to the parameter a0 . W, are as follows:

8N1(Z) _ E)Nl(z) — 30 _ (.
806(30) 8dex -

(=1, i=1,..,1I; j=230. (E.343)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter a3V : Wy, are as follows:

8N(i) aN(i) '
aa(él) - ((WV;C = a11,31 =0; (=1, i=1,...1I; j=3L (E.344)
y

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(32)

with respect to the parameter o' : Azy. are as follows:

ONY N _ i

= = =0; (=1 i=1,...1I: j=232. E.345
aa(32) 8A2dk ) ) Z bl ) b ] ( )
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

33)

with respect to the parameter a3 : AZfan are as follows:

ONY _ OND
8oz(33) 8Azfan -t

=0; (=1; i=1,...1; j=233. (E.346)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

34)

with respect to the parameter a4 : D4y, are as follows:

Ny aN?

NED an(m_a1 0, (=1, i=1,...1; j=34, ( )

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(35)

with respect to the parameter o'>*) : Az are as follows:

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.25) - (2.27)]

(36)

with respect to the parameter a'*® : Az, ., are as follows:

aN®d  aN®
5 (;6) _ A S azl,36 =0;, (=1, i=1,...1I; j7=236. (E.349)
«Q Zrain

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(37)

with respect to the parameter « : Az, are as follows:

aN(i) aN(i) A
9ol ~ aa = =0 L=Lii=1 T =T (E.350)
bs

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

38)

with respect to the parameter a® . Az, are as follows:

oN®D  aND
2@ T oA = =0 L=l =11 j=38 (E.351)
de
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(39)

with respect to the parameter o'\*?) : D), are as follows:

OND N 1 [PETSY 0) PO, )] 0M(m, )
p— a/ P

0009 ~ 9D, ~ " TR ¥ 0 oD,

(=1; +=1,....1;, =39,
(E.352)

OM (mq,ox)

where oD,

was defined previously in Eq. (E.72).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter a®?) : Ay are as follows:

NG oN® 1 [PV @) P, )] 0M(me, o)
g Ea,7 = = " - . 3
Do) Ay ! R Tty 7" OAsin

(E.353)

OM (mg,or)

AL Was defined previously in Eq. (E.75).

where

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter a*!) : A, are as follows:

8N1(i) _ 8N1(i) _ a1 Pﬁ?”(Tg“),a) P”(?(TCS o) | OM(m,, o)

dah) - a145u7’f - E T&H_l) - Tél) aAsqu ’
(=1; +=1,....1;, j=41,
(E.354)
where %ﬁ’fa) was defined previously in Eq. (E.78).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter a(*? : Pr are as follows:

8N1(i) 8N1(i) a2 1 P152+1)(T15}i+1)7 a) P’U(S) (Ta(z &) | OM(mq, o)
J— =a ’ —

9o — gPr — ' TR ARy 7 aPr

(=1, 1=1,....,1; j =42,
(E.355)
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OM (mq,cx)

5 was defined previously in Eq. (E.81).

where

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

43)

with respect to the parameter a3 : w,,, are as follows:

ONY N _ s
aOK(43) B 3wtsa

1
- - }:% TQE,Z'JFU Tél) 8U)iﬁsa

P ) PRI o) | 0M(may ).

(E.356)

where %t:a’a) was defined in Eq. (E.84).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(44)

with respect to the parameter a'** : m,, ;, are as follows:

oNy _oNy

D " om. M ;o U=1i=1; j=44, (E.357)
N(i) aN(i) '
ONy” =g =0 (=1 i=2..,]; j=44 (E.358)

8(1/(44) N 3mw7m

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

with respect to the parameter a*>) : T, ;, are as follows:

@N(i) 8N(i) '
e =T =0 (=T =l =45 (E35)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

(46)

with respect to the parameter o'\*® : w;,, are as follows:

oN{ Ny _ |
= =t =0 (=1 =105 =46 (E.360)
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.25) - (2.27)]

47)

with respect to the parameter a*”) : S¢ are as follows:

oND N . 1 [PEYTEY a) POTY )| oM (ma, o)
i .

9o~ 95¢ ~ ' TR TG 70 dSc

(=1; 1=1,.... 1, j =47,
(E.361)

OM (mq,cx)

where i

was defined previously in Eq. (E.91).

E.3 Derivatives of the Model Equations with re-
spect to the Model Parameters for Case 2:

Fan Off, Unsaturated Air Conditions

The differences between the governing equations for case la and case 2 are
only in the “liquid continuity equations”. Other governing equations (i.e., liquid
energy balance equations; water vapor continuity equations; air/water vapor en-
ergy balance equations; mechanical energy equation) are the same for both cases,
and their derivatives in Subsections E.1.2 through E.1.5. Therefore for case 2,
only the derivatives of the “liquid continuity equations” with respect to parame-
ters are derived as follows, since the derivatives of other governing equations with
respect to parameters are the same as that of case 1a.

The notation used will be the following:

N
Ba)

i=1,.,1; j=1,..,N,. (E.362)
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E.3.1 Derivatives of the liquid continuity equations with

respect to the parameters

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a(!) : Ty, are as follows:

oN® N 1 [ PETETY a) w® Py
= =a] == - - -
o) OTy 'R Ty 0.622 + w(®) 74"
v (0622 +wO)Ta" ] g 563)
OM (my, OD 4o (T, , ,
. (1m0, @) . (T a). (=1, 1=1,...,I; =1,
8D,w (Tdba a) ajﬁdb
where 8%‘55?}‘;;‘2) and aD’lgg‘Zb’a) were defined in Eqs. (E.3) and (E.4), respectively.

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a(® : T4y, are as follows:

ONY _oNy
804(2) 8po -

=0; (=1, i=1,...1; j=2. (E.364)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a(® : T..in are as follows:

oNtY  on®
5 (13) :8T1 =a;°=0; (=1 i=1; j=3, (E.365)
(07 w,in

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter aW . P, are as follows:

aNl(i) B aNl(i) — M(m,, ) w®

0™ OPym R T9(0.622 + w®)’

(E.366)
(=1, 1=1,...,I; j=4,
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a® : V,, are as follows:

oNy? oNy _
S = gy =@t =0 (=1 i=1..0; j=5, (E.367)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a'® : kg, are as follows:

oN{ oN{ |
@ o = =0 =1 =11 j=6 (E-368)

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]
with respect to the parameter o!”) : i are as follows:

oNy onND o 1 [PET(TETY a) W Potr OM(1ma, o)
—_— :a e )

0 op ~ ' R 75+ (0.622 + w@) T o

(E.369)

where %ﬂ“’a) was defined in Eq. (E.13).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter o® : v are as follows:
oND oND o 1 [PEVTY ) W Py | OM(ma, @)
= =a; = = - - 3 ;
Pa® ~ oy — U TR paERy (0.622 + w®) TV v

(=1, i=1,...,I; 7=8.
(E.370)

where W was defined in Eq. (E.16).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a® : k,;, are as follows:

OND N
S — g = =0 (=1 i=10 =9, (E.371)
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(10)

with respect to the parameter a'*” : f;,; are as follows:

Ny AN g

= =ai'’=0; (=1 i= L j= £.372
aa(l()) afht = O, 14 1, 7 1,...7], ] 10. ( )

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

11)

with respect to the parameter o'V : f,., are as follows:

8N;l(i) aNl(i) in 1 quﬂ)(TgH)a o) W Patr OM(1ma, )
= =a == - — - ;
9o "~ Of, ' R T8+ (0.622 + w®) TV | O fme

(=1, i=1,...1; j=11.
(E.373)

where W was defined in Eq. (E.21).

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

(12)

with respect to the parameter a'** : f are as follows:

oN{ Ny _ |
oalin = g == f=li= 1k j=12 (E.374)

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

13)

with respect to the parameter a® : qq are as follows:

oNy Ny _ gits _ M(ma, @) 1 OPSI(TE @)

a3 =y = o (i+1) ’
Do dag R T Oag (E.375)
62177’:17 7Iaj:13
where
(i+1) (i+1)
ans (Tw 7a) _ P(i—l—l) (Té}i—‘rl), a) (E376)

aao vs
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(14)

with respect to the parameter a''*) : a; are as follows:

6N1(i) B 6N1(i) _ i M(mg,a) 1 8P£§+1)(T$+1),a)‘

9000 =~ 9y " T R 0 dax C(E37)
(=1; i=1,..,1, j=14
where
oP(T ) o) - PE(TETY, a) (E.378)

day o TS‘H)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(15)

with respect to the parameter o™ : ag,, are as follows:

(0 (0

NO  oN®

3 5 =g =@ =0 (=Li=1..1 j=1 (B.379)
« aO,cpa

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

with respect to the parameter o/1% : ai,, are as follows:
aN(i) aN(i) )
Lo — 1 =% =0, ¢=1, i=1,...,I; j=16. (E.380)

da16) dai,,

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a'”) : ay ., are as follows:
N(i) N(i) ,
ONy_ _ ON; =a'"=0; (=1, i=1,...1; j=1T. (E.381)

3a(17) n aag’cm

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

(18)

with respect to the parameter a'*® : ag p,, are as follows:

oND  oND 1 [PEVTEY o) w® Py,
8(1/(18) N 8@07D(w -t - E TzE)H_I) (()622 +w(z))Tz§Z)

(E.382)
) 8M(ma, a) . aDaU (Tdb7 a)
0D o (T, ) dao.p,,

;o =1, 1=1,...,I; j=18.
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OM (mq,cx)

8Dav (Tdbva)
8Dav (Tdbva) and

3 was defined
a0, Dq

where was defined previously in Eq. (E.3),

previously in Eq. (E.34).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(19)

with respect to the parameter a'*) : a; p,, are as follows:

oNy N e 1 [PET(TETY, o ) Py
06 ~ darp. ' R TG+ (0.622 + w@) TV

(E.383)
OM(mg, @) 9Day(Tup, @)
8Dm,(Tdb, Oé) aal,Dm

;o =1 0=1,....1;, j=19.

oM (ma’a)) was defined previously in Eq. (E.3), and W

m was deﬁned

where

previously in Eq. (E.37).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

20)

with respect to the parameter a'®”) : ay p,, are as follows:

OND N _ 1 [BEVEE ) PR,
9a® " dasp,, ' R Ti+y (0.622 + w®) T

(E.384)
8M(ma, a) aDav (leh a)
8Dm, (Tdb, OC) aa/2,Da'u

;o =1, 1=1,...,I; j=20.

OM (mg,or)

0Dy (Tap,cx)
aDav (Tdbva)

3 was defined
a2,Dav

where was defined previously in Eq. (E.3), and

previously in Eq. (E.40).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(21)

with respect to the parameter a'“") : a3 p,, are as follows:

aNl(i) _ 8N1(i) w1 P1§§+1)(T1gi+l)’a) B wdp,.
9a®) " dazp,, R T (0622 + w®) T

(E.385)
' 3M(ma, a) . aDav(len a)
0D, (Tdb; a) aa3,Dav

;o 0=1; 1=1,...,I; j=21.

—8%]\552‘;‘7’2) was defined previously in Eq. (E.3), and W was defined

»Pav

where

previously in Eq. (E.43).
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(22)

with respect to the parameter a'* : agy are as follows:

ONY N _ oo

= = =0, (=1, 1=1,..,I; j=22. E.386
9a(22) day ; y e dy ] ( )

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

23)

with respect to the parameter a(®) : q; ¢ are as follows:

oN®  oNP
8aé3) = aallf = Clzl’23 =0; (=1, i=1,...,1; 7=23. (E.387)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(24)

with respect to the parameter a'“* : ay, are as follows:

aN(i) aN(i) ‘
8Océ4) = aa; = all,24 =0, (=1, 1=1,...1; j=24. (E.388)
g

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(25)

with respect to the parameter a'“” : a,, are as follows:

9a(25) day, =a" =0 (=1 i=1,...,1; j=25 (E.389)

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

26)

with respect to the parameter a9 ap Ny, are as follows:

aND N s 1 [ PETETY @) w® Py
00~ dagne ' R TS+ (0.622 + w®) TS

(E.390)

- OM(mg, a) ONu(Re, o)

(=1, i1=1,...,I; 5=26.
ONu(Re, )  dag nu P T e
OM (mg,ax)

ONu(Re,ax)
ONu(Re,a) and

3 was defined
a0, Nu

where was defined previously in Eq. (E.50),

previously in Eq. (E.51).
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(27)

with respect to the parameter « : a1 Ny are as follows:

oNy oN{" _ . 1 [ PEEY o) W Patm
a0 daine U R TG+ (0.622 + w@) TV

(E.391)
OM (mg, o) ONu(Re, ar)
ONu(Re,a) dainy

(=1, i=1,...I; j=2T.
where % was defined previously in Eq. (E.50), and %ﬁf’) was defined

previously in Eq. (E.54).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

28)

with respect to the parameter a(?® : ag Ny are as follows:

ONY Ny e 1 [PV ) w® Py
Oa(28) 8(12’]\[“ - R qui—i-l) (0622+w(1))T¢£Z)

(E.392)
- OM(mg, o) ONu(Re, o)
ONu(Re,a)  dagny

(=1, i=1,..,I; j=28
where % was defined previously in Eq. (E.50), and %’}j&a) was defined

previously in Eq. (E.57)

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

(29)

with respect to the parameter o'*” : a3 n,, are as follows:

aND N g 1 [ PETETY @) wdp,
9a®) — dagne ' R TS+ (0.622 + w®) 73"

(E.393)
OM (mg, o) ONu(Re, )
ONu(Re,a)  Oas ny

;o =1, 1=1,...,I; j=29.

OM (ma,or)

ONu(Re,ox)
ONu(Re,a) and

3 was defined
a3 Nu

where was defined previously in Eq. (E.50),

previously in Eq. (E.60).
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(30)

with respect to the parameter a'\*" : Wy, are as follows:

ONY N g

Oa(30) Ware “ 0; £=11i=1,..,I; j=30. ( )

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

31)

with respect to the parameter o : Wik, are as follows:

ONY Ny
(‘9a(31) 8dey !

=0; (=1;4i=1,..,1; j=3l. (E.395)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a2 ;. Az, are as follows:

N(i) aN(z) '
gaéz) = 8A; =a/" =0, (=1 i=1,.,I j=32 (E.396)
dk

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

33)

with respect to the parameter a3 : Azfqn are as follows:

ONY _ ONY
806(33) 8Azfan — !

=0; (=1,i=1,..,I; j=33. (E.397)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

34)

with respect to the parameter o : D4y, are as follows:

oN{ N 4

906D ~ 9Dy, 1 0; (=Li=1..1; j=34, (E.398)

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

(35)

with respect to the parameter o'>?) : Az are as follows:

009 — Az L 0, £=1;i=1,...,1; j=35. (E.399)
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The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(36)

with respect to the parameter « 1 AZpgin are as follows:

3N(i) aN(i) A
5 (;6) _ A I azl,36 =0, (=1,i=1,..,1;, j=36. (E.400)
« Zrain

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

37)

with respect to the parameter a®” : Az, are as follows:

N(i) N(i) )
gaé?) - SA; =a/”" =0; (=1 i=1,.,1; j=3T (E.401)
bs

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a(®® : Az, are as follows:

ONC _ONY s
806(38) n 8Azde -

=0; ¢(=1,i=1,..1, j=38. (E.402)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(39)

with respect to the parameter o'*” : D), are as follows:

OND N 1 [P @) w® Py, OM (g, a)
= =a)" == . — . ;
9o 9D, — ' R TS+ (0.622 + w) TV | 9Dy

(=1;i=1,.,I; j=39.
(E.403)

OM (ma,a)

where 9D,

was defined previously in Eq. (E.72).

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

(40)

with respect to the parameter a'™ : Ay are as follows:

oNY _oN{ _ o L [PEVTETY ) wOPu | 9M(maa),
a0 DA ' R T+ (0.622 + w T | OApiu

(E.404)
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OM (mq,o)

where = Ao Was defined previously in Eq. (E.75).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter oY) : A, are as follows:

oNy! Ny _ w1 |[PE(TY a) WP | OM(my,0)
= =a] == ; - i )
0 OAgyy R Ty (0.622+w®) Tg" | OAsury

(=1;i=1,...,I; j=41.
(E.405)

OM (mq,o)

where =55 was defined previously in Eq. (E.78).

surf

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a*? : Pr are as follows:
ON{” _oNy _ a1 PEITE™ a) w9 P M (mg, @)
9™ ~ opPr ~ ' TR T+ (0.622+w®) TV | OPr

(=1;1=1,..,1; 7 =142
(E.406)

OM (mq,a)

5p— was defined previously in Eq. (E.81).

where

The derivatives of the “liquid continuity equations” [cf. Eqgs. (2.38) - (2.40)]

with respect to the parameter a*3 : w,,, are as follows:
8N1(i) — 5N1(i) — i l P75§+1)(T15)i+1)’ ) _ W Patr OM(ma, a)-
00~ Owy, ' R Ty (0.622 + W) T | Owisa

(=1, 1=1,....1;, j=143.
(E.407)

where %’Z’a) was defined in Eq. (E.84).

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

44)

with respect to the parameter a(*¥ : May,in, are as follows:

oN _ oNyY
90 " Ompm L

o 0=1;i=1; j=44, (E.408)
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oNy’  aN{ | | |
804(;1) = (9m1. = a1’44 =0; (=1,1=2,..,1; j=44. (E.409)

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a(*?) : T4 in are as follows:

aN(i) 8N(i) A
5 (}15) - aTl =a!® =0, (=1,i=1,...,1; j=45. (E.410)
« a,in

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

(46)

with respect to the parameter « : Wy, are as follows:

NO  an®
gémzal =d =0, (=1 i=1,.,I; j=46. (E.411)
Q Win

The derivatives of the “liquid continuity equations” [cf. Egs. (2.38) - (2.40)]

with respect to the parameter a*”) : Sc are as follows:

6N1(i) 6N1(i) PUEE | pit (T,Sfﬂ), @) WwOP, OM (my, )
= = a4 = = - — - X
Da47) 0Sc ! R T&H‘l) (0.622 + w®) Ta(z) 0Sc

(=1;1=1,...,1; 7 =4T.
(E.412)

OM (mgq,)

55— was defined previously in Eq. (E.91).

where
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