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Abstract

The present work focuses on performing sensitivity and uncertainty analy-

sis, data assimilation, model calibration, model validation and best-estimate pre-

dictions with reduced uncertainties on a counter-flow, wet cooling tower model

developed by SRNL. The methodologies are part of two distinct mathematical

frameworks: the Adjoint Sensitivity Analysis Methodology (ASAM) is used to

compute the adjoint sensitivities of the model quantities of interest (called “model

responses”) with respect to the model parameters; the Predictive Modeling of

Coupled Multi-Physics Systems (PM CMPS) simultaneously combines all of the

available computed information and experimentally measured data to yield opti-

mal values of the system parameters and responses, while simultaneously reducing

the corresponding uncertainties in parameters and responses. A cooling tower dis-

charges waste heat produced by an industrial plant to the external environment.

The amount of thermal energy discharged into the environment can be determined

by measurements of quantities representing the external conditions, such as out-

let air temperature, outlet water temperature, and outlet air relative humidity,

in conjunction with computational models that simulate numerically the cooling

tower behavior. Variations in the model parameters (e.g., material properties,

model correlations, boundary conditions) cause variations in the model response.

The functional derivatives of the model response with respect to the model pa-

rameters (called “sensitivities”) are needed to quantify such response variations

1
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changes. In this work, the comprehensive adjoint sensitivity analysis methodol-

ogy for nonlinear systems is applied to compute the sensitivities of the cooling

tower responses to all of the model parameters. These sensitivities are used in

this work for (i) ranking the model parameters according to the magnitude of

their contribution to response uncertainties; (ii) propagating the uncertainties in

the model parameters to quantify the uncertainties in the model responses; (iii)

performing model validation and predictive modeling, combining computational

and experimental information, including the respective uncertainties, to obtain

optimally predicted best-estimate nominal values for the model parameters and

responses, with reduced predicted uncertainties.

2



Chapter 1

Introduction

1.1 State-of-the-art of sensitivity and uncertainty

analysis, data assimilation, model calibra-

tion, model validation, best-estimate pre-

dictions with reduced uncertainties

It is common practice, in the modern era, to base the process of understanding

and eventually predicting the behavior of complex physical systems on simulating

operational situations through system codes. In order to provide a more thorough

and accurate comprehension of the system dynamics, these numerical simulations

are often and preferably flanked by experimental measurements. In practice, re-

peated measurements of the same physical quantity produce values differing from

each other and from the measured quantity’s true value, which remains unknown;

the errors leading to this variation in results can be of methodological, instru-

mental or personal nature.

It is not feasible to obtain experimental results devoid of uncertainty, and this

3



CHAPTER 1. INTRODUCTION

means that a range of values possibly representative of the true value always exists

around any value stemming from experimental measurements. A quantification

of this range is critical to any practical application of the measured data, whose

nominal measured values are insufficient for applications unless the quantitative

uncertainties associated to the experimental data are also provided. Not even

numerical models can reveal the true value of the investigated quantity, for two

reasons: first, any numerical model is imperfect, meaning that it constitutes an

inevitable simplification of the real world system it aims to represent; in second

place, a hypothetically perfect model would still have uncertain values for its

model parameters - such as initial conditions, boundary conditions and material

properties - and the stemming results would therefore still be differing from the

true value and from the experimental measurements of the quantity.

With both computational and experimental results at hand, the final aim is to

obtain a probabilistic description of possible future outcomes based on all recog-

nized errors and uncertainties. This operation falls within the scope of predictive

modeling procedures, which rely on three key elements: model calibration, model

extrapolation and estimation of the validation domain. The first step of the pro-

cedure involves the adjustment of the numerical model parameters accordingly

to the experimental results; this aim is achieved by integrating computed and

measured data, and the associated procedure is known as model calibration. In

order for this operation to be properly executed, all errors and uncertainties at

any level of the modeling path leading to numerical results have to be identified

and characterized, including errors and uncertainties on the model parameters,

numerical discretization errors and possible incomplete knowledge of the physical

process being modeled. Calibration of models is performed through the mathe-

matical framework provided by data assimilation procedures; these procedures

strongly rely on sensitivity analysis, and for this reason are often cumbersome in

4



CHAPTER 1. INTRODUCTION

terms of computational load.

Generally speaking, sensitivity analyses can be conducted with two different

techniques, respectively known as direct or forward methods and adjoint meth-

ods. The forward methods calculate the finite difference of a small perturbation

in a parameter by means of differences between the responses of two independent

calculations, and are advantageous only for systems in which the number of re-

sponses exceeds the number of model parameters; unfortunately this is seldom

the case in real large-scale systems. In this work, this problem has been overcome

by using the adjoint sensitivity analysis methodology (ASAM) by Cacuci [1-4]: as

opposed to forward methods, the ASAM is most efficient for systems in which

the number of parameters is greater than the number of responses, such as the

model investigated in this thesis and many others currently used for numerical

simulations of industrial systems. This methodology has been recently extended

to second-order sensitivities (2nd-ASAM) by Cacuci for linear [5-6] and nonlinear

systems [7-8], for computing exactly and efficiently the second-order functional

derivatives of system responses to the system model parameters. Model extrapo-

lation addresses the prediction of uncertainty in new environments or conditions

of interest, including both untested parts of the parameter space and higher lev-

els of system complexity in the validation hierarchy. Estimation of the validation

domain addresses the estimation of contours of constant uncertainty in the high-

dimensional space that characterizes the application of interest.

The first systematic studies focused on obtaining best-estimate values for

model parameters were produced almost simultaneously in the mid 1960s by

independent groups of scientists all around the world [9-11], with the aim of pos-

sibly improving the cross section values by means of experiments conducted in

order to measure reaction rates and multiplication factors. In the 1970s, Rowlands

[12] and Gandini [13] used a weighted least-square procedure - response sensitiv-

5



CHAPTER 1. INTRODUCTION

ities being used as weights - to combine uncertainties in the model parameters

with uncertainties in the experimental data, typifying a trend which had been

developing under the name of “cross-section adjustment”. Best-estimate system

responses such as reaction rates, multiplication factors and Doppler coefficients

were predicted by making use of the “adjusted” parameters and uncertainties in

the investigated reactor physics models. By the late-1970s the weighting functions

values, obtained as the first-order response sensitivities, started being computed

by means of adjoint neutron fluxes, as in Kuroi [14], Dragt [15] and Weisbin

[16]. It is worth noting that all of the abovementioned works addressed merely

the time-independent linear neutron transport or diffusion problem, a mathe-

matically well-known case for which the corresponding adjoint equations were

already known and readily available. The general adjoint method for computing

efficiently sensitivities for nonlinear, time-dependent or stationary problems was

formulated in 1981 by Cacuci [1]; just one year later, Barhen presented the first

general formulation of a “data adjustment” for time-dependent nonlinear prob-

lems [17]. This methodology regrettably failed to spread to other scientific fields,

and after a stagnation period was rediscovered in its basic ideas to be adapted to

the geophysical sciences, under the name of “data assimilation”. Since then, well

over a thousand works on data assimilation have been published in the geophysi-

cal sciences alone, under the name of “3D-VAR” (for time-independent problems,

and “4D-VAR” for time-dependent problems). Although too numerous to cite ex-

tensively here, representative works can be found cited in the books by Lewis [18],

Lahoz [19] and Cacuci [20]. A comprehensive mathematical methodology aimed

at yielding best-estimate predictions for large-scale nonlinear time-dependent sys-

tems has been recently published by Cacuci and Ionescu-Bujor [21]. Besides ex-

tending the results yielded from the standard data assimilation procedures, this

methodology provides quantitative indicators, stemming from sensitivities and

6



CHAPTER 1. INTRODUCTION

covariances, for the evaluation of the consistency among the computational and

experimental values of parameters and responses. This comprehensive predictive

modeling methodology, which has already yielded successful results when applied

to large-scale experimental cases and to the validation of nuclear reactor system

codes related to reactor physics [22]-[23], light water reactors [24] and sodium-

cooled fast reactors [25], has been used in this work to perform the assimilation

of experimental measurements and the calibration of model parameters for the

cooling tower model under investigation.

1.2 Aim and outline of the work

This work concentrates on a counter-flow cooling tower operated as a natu-

ral draft/wind-aided cooling tower, under saturated and unsaturated conditions.

A model for the steady-state simulation of both cross-flow and counter-flow wet

cooling towers has been developed by Savannah River National Laboratory, im-

plemented in the “CTTool” system code and presented in [26]. In this thesis, a

relevantly more efficient numerical method has been developed and applied to

the cooling tower model presented in [26], leading to the accurate computation

of the steady-state distributions for the following quantities: (i) the water mass

flow rates at the exit of each control volume along the height of the fill section of

the cooling tower; (ii) the water temperatures at the exit of each control volume

along the height of the fill section of the cooling tower; (iii) the air temperatures

at the exit of each control volume along the height of the fill section of the cooling

tower; (iv) the humidity ratios at the exit of each control volume along the height

of the fill section of the cooling tower; and (v) the air mass flow rates at the exit of

the cooling tower. As shown in the foregoing of the thesis, the application of the

numerical method selected eliminates the convergence issues experienced when

applying the solution method implemented in [26], yielding accurate results for

7
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all the control volumes of the cooling tower and for all the data set of interest.

The development of the adjoint sensitivity model for the cooling tower has

been realized by applying the general adjoint sensitivity analysis methodology

(ASAM) for nonlinear systems [1-4]. The first critical topic of this work is repre-

sented by the development of the adjoint sensitivity model for the cooling tower

system, with the aim of allowing the computation of the sensitivities (functional

derivatives) of the model responses to all the model parameters in an efficient and

exact way, eliminating repeated calculations and approximations introduced by

using finite difference methods. The forward cooling tower model presents nonlin-

earity in their state functions; the adjoint sensitivity model possesses the relevant

feature of being instead linear in the adjoint state functions, whose one-to-one

correspondence to the forward state functions is essential for the calculation of

the adjoint sensitivities. Moreover, the utilization of the adjoint state functions

allows the simultaneous computation of the sensitivities of each model response

to all of the 47 independent model parameters just by means of a single adjoint

model run; obtaining the same results making use of finite-difference forward

methods would require 47 separate computations, with the relevant disadvantage

of leading to approximate results of the sensitivities, as opposed to the exact

ones yielded by applying the adjoint procedure. For all the cases the following

five model responses have been selected: (i) the water mass flow rate at the outlet

of the bottom control volume of the fill section of the cooling tower, m
(50)
w ; (ii) the

water temperature at the outlet of of the bottom control volume of the fill section

of the cooling tower, T
(50)
w ; (iii) the air temperature at the outlet of the top control

volume of the fill section of the cooling tower, T
(1)
a ; (iv) the humidity ratio at the

outlet of the top control volume of the fill section of the cooling tower, RH(1);

and (v) the air mass flow rate at the outlet of the cooling tower, ma. Hence,

the nonlinear model analyzed in this work has 47 independent parameters and

8
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5 responses, and this would cause a sensitivity analysis conducted with forward

methods not only to yield approximate results, but to be extremely cumbersome

in terms of computational time. For this reason, the application of the ASAM to

this specific cooling tower model is extremely convenient.

The adjoint sensitivities are necessary to realize many operations, such as:

(i) ranking the model parameters according to the magnitude of their contribu-

tion to response uncertainties; (ii) determine the propagation of uncertainties,

in form of variances and covariances, of the parameters in the model in order

to quantify the uncertainties of the model responses; (iii) allow predictive mod-

eling operations, such as experimental data assimilation and model parameters

calibration, with the aim to yield best-estimate predicted nominal values both

for model parameters and responses, with correspondently reduced values for the

predicted uncertainties associated. After being calculated, sensitivities are subse-

quently used for the application of the PM CMPS methodology, aimed at yielding

best-estimate predicted nominal values and uncertainties for model parameters

and responses. This methodology simultaneously combines all of the available

computed information and experimentally measured data for the counter-flow

cooling tower operating under saturated and unsaturated conditions. The best-

estimate results predicted by the “predictive modeling for coupled multi-physics

systems” (PM CMPS) methodology reveal that the predicted values of the stan-

dard deviations of the model responses, even those for which no experimental

data have been recorded, are smaller than the smallest value between either the

computed or the measured standard deviations for the respective responses. As a

result of the data assessment, model calibration and model validation procedures

applied, the CTTool code will be validated in this thesis. The CTTool is foreseen

to be part of a facility modeling program suite, which is envisaged to encompass

modules simulating chemical processes and atmospheric transport of pollutants.

9



CHAPTER 1. INTRODUCTION

This work is organized as follows: Chapter 2 provides a description of the phys-

ical system simulated, along with presenting the governing equations underlying

the model used in this work for simulating a counter-flow cooling tower operat-

ing under saturated and unsaturated conditions. The three cases and subcases

analyzed in this work and their corresponding mathematical models are hereby

detailed, as well as the new solution scheme implemented and applied to the model

and the accurate steady-state distributions for the model responses. Chapter 3

presents the development of the adjoint sensitivity model for the counter-flow

cooling tower operating under saturated and unsaturated conditions using the

general adjoint sensitivity analysis methodology (ASAM) for nonlinear systems

[1-4]. The mathematical framework of the PM CMPS [27] is also detailed. Chap-

ter 4 presents the results of applying the ASAM and PM CMPS methodologies

to all the cases listed in Chapter 2. This thesis concludes with Chapter 5 by

discussing the significance of these predicted results and by indicating possible

further generalizations of the adjoint sensitivity analysis and PM CMPS method-

ologies.

10



Chapter 2

Description of the system

2.1 Context on cooling towers

An unavoidable necessity of any energy-producing plant housing an industrial

process is to release waste heat into the external environment. The most popular

solution to accomplish this task is through the use of a cooling tower, which can

provide a temperature decrease of the operational fluid of the plant by evapora-

tion and sensible heat transfer. Cooling tower can be generally classified by heat

transfer method in dry cooling towers and wet cooling towers. Dry cooling towers

foresee a physical separation between the working fluid (e.g. water) and the ex-

ternal ambient air; due to the lack of direct contact between the two streams, in

these towers convective heat transfer is the dominating heat exchange mechanic.

Wet cooling towers present no physical barrier between the working fluid and

the ambient air; this allows wet cooling towers to be operated on the principle of

evaporative cooling. According to the different flow regimes in the fill, the cooling

tower can be further divided into cross-flow type (in which the air flow is directed

perpendicular to the water flow, with the induced air moving horizontally while

the water falls vertically) or counter-flow type (in which the air flow is directly
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opposite of the water flow).

The amount of thermal energy discharged into the atmosphere can be deter-

mined by making coupled use of a model simulating the cooling tower behavior

and experimental measurements of the quantities representing the external con-

ditions, such as outlet air temperature, outlet water temperature and outlet air

relative humidity. In the case of a thermal imagery-based cooling tower model,

an inner model and an outer model are necessary in order to fulfil the need to

relate a remotely measured cooling tower throat or area-weighted temperature

to a cooling water inlet temperature. The inner model has the aim of quanti-

fying the water temperature decrease in relation to the inlet water temperature

and air temperature and humidity, while the outer model addresses iteratively

the inlet water temperature using the remotely measured throat or area-weighted

temperature in order to match the desired temperature value.

The cooling tower model analyzed and studied in this work has been developed

by Savannah River National Laboratory (SRNL), implemented in the “CTTool”

system code and presented in [26]. The “CTTool” code simulates steady-state

thermal performance for both cross-flow and counter-flow wet cooling towers. The

needed inputs are the water temperature and mass flow rate at the inlet of the

cooling tower and the temperature and humidity ratio of the external air at the

inlet of the cooling tower; the computed responses are the exhaust air temperature

and relative humidity, the outlet water temperature and the outlet water mass

flow rate. If the cooling tower fans are on, the mass flow rate of water and air is

known, and the system is referred to as a mechanical draft cooling tower. If the

fans are off - and the air mass flow rate becomes therefore an additional unknown

- an additional mechanical energy equation is instead used to solve for the mass

flow rate of air through the cooling tower, with the system being operated as a

natural draft/wind aided cooling tower.

12
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2.2 Description of the cooling tower model

The counter-flow cooling tower considered in this work has been originally

developed in [26] and has been thoroughly described in [28], from which Figures

2.1 - 2.3 have been taken. Natural draft air enters the tower through the “rain

section” above the water basin, passes through the fill section and the drift elim-

inator, and exits the tower at the top through an exhaust comprising a fan. Hot

water flows downward, entering the tower above the fill section and being sprayed

over the fill section, with the result of creating a uniform film flow through the

fill.

Figure 2.1: Flow through a counter-flow cooling tower

13
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At the interface between water and air phenomena of both heat and mass

transfer occur; these processes are mostly occurring in the fill section. The drift

eliminator is aimed to retain water droplets from the air flow; just below the fill

section, water droplets fall into a collection basin, located at the bottom of the

cooling tower.

The mathematical quantification of the heat and mass transfer processes oc-

curring in the counter-flow cooling tower of interest is accomplished by solving

the following balance equations: (A) liquid continuity; (B) liquid energy balance;

(C) water vapor continuity; (D) air/water vapor energy balance; (E) mechanical

energy balance. In deriving these equations, several assumptions have been made,

namely:

1. air and water stream temperatures are uniform at any cross section;

2. the cross-sectional area of the cooling tower is assumed to be uniform;

3. the heat and mass transfer only occur in the direction normal to flows;

4. the heat and mass transfer through tower walls to the environment is ne-

glected;

5. the heat transfer from the cooling tower fan and motor assembly to the air

is neglected;

6. the air and water vapor is considered a mixture of ideal gasses;

7. the flow between flat plates is saturated through the fill section.

The assumptions listed above have been made by the CTTool code developers

at SRNL, and do not affect the general accuracy of the model. This work addresses

cooling towers of moderate size, for which the contribution of the heat and mass

transfer phenomena occurring in the rain section is negligible. Figure 2.2 shows
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how the fill section is nodalized in vertically stacked control volumes. A closer

picture of the heat and mass transfer processes occurring at the free surface

between the water film and the air flow within a control volume is shown in

Figure 2.3.

Figure 2.2: Vertically stacked control vol-

umes (i = 1, .., I) constituting the fill sec-

tion of the cooling tower, together with

the symbols denoting forward state func-

tions
(
m

(i)
w , T

(i)
w , T

(i)
a , ω(i),ma; i = 1, .., I

)
and adjoint state functions(
µ

(i)
w , τ

(i)
w , τ

(i)
a , o(i), µa; i = 1, .., I

)
.

Figure 2.3: Heat and mass transfer phenomena oc-

curring between falling water film and rising air in

a typical control volume of the cooling tower fill

section.
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As for the counter-flow cooling tower under saturated condition, the analysis

has been further divided into two subcases, based on the air inlet boundary

conditions at the fill section entrance. The first subcase describes a situation

in which air enters the fill section in unsaturated condition, but it gets saturated

before reaching the outlet of the fill section; in the second subcase air enters the fill

section already saturated, exiting the fill section also saturated. For both subcases,

the outlet air flow from the fill section is saturated; the difference lies in the

inlet air conditions. The measured benchmark data sets for F-area cooling towers

(counter-flow cooling tower, fan-on and fan-off mode) at SRNL [33] also support

such a separation. Those two subcases are treated separately for the mathematical

model and the adjoint sensitivity model, since the governing equations for the two

subcases are different, as described in the following.

2.3 Governing equations of the mathematical

models and cases selected

This work aims to investigate the behavior of the cooling tower in the regime

of the normally occurring operating conditions. The cases of interest have been

divided depending on:

1. the air condition (saturated or unsaturated) at the inlet of the cooling tower;

2. the air condition (saturated or unsaturated) at the outlet of the cooling

tower;

These criteria led to the following cases:

• Case 1: the cooling tower is operated in fan-off mode (natural draft) and

the outlet air is in saturated conditions; this case is split into two subcases
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according to the inlet air conditions:

– Subcase I: the inlet air is in unsaturated conditions; this means that

unsaturated inlet air becomes saturated at a certain control volume of

the fill section along the height of the cooling tower. This subcase will

be referred to as case 1a;

– Subcase II: the inlet air is in saturated conditions: in this subcase,

air is in saturated condition from the inlet through the outlet of the fill

section, i.e., air is saturated in all the 49 control volumes. This subcase

will be referred to as case 1b.

• Case 2: the cooling tower is operated in fan-off mode (natural draft) and

the outlet air is in unsaturated conditions; in this case, it is only possible

for inlet air to be in unsaturated conditions as well, hence there is no need

for subcases.

The most general case in terms of the governing equations underlying the

model is case 1a, in which the air saturation point is located somewhere inside

the cooling tower; mathematically speaking case 1b and case 2 are particular

cases of case 1a, in which the air saturation point is located, on the air path,

outside of the cooling tower, respectively before the inlet and after the outlet of

the cooling tower itself.

2.3.1 Mathematical Model for Case 1a: Natural Draft Cool-

ing Tower operated in Saturated Outlet Air Condi-

tion, with Inlet Air Unsaturated

In this subcase, unsaturated inlet air becomes saturated at a certain control

volume of the fill section. Assuming air gets saturated at the exit of the Kth

17
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control volume, where 1 < K ≤ I, then in control volumes between #1 to #K

air is in saturated condition; in control volumes between #K + 1 to #I air is in

unsaturated condition. Note that the flow direction of air is upward from the #I

control volume to the #1 control volume, as illustrated in Figure 2.2.

In the natural draft/wind-aided mode, the mass flowrate of dry air is unknown.

With the fan off and hot water flowing through the cooling tower, air will continue

to flow through the tower due to buoyancy. Wind pressure at the air inlet to the

cooling tower will also enhance air flow through the tower. The air flowrate is

determined from the overall mechanical energy equation for the dry air flow. The

state functions underlying the cooling tower model (cf. Figures 2.1 - 2.3) are as

follows:

1. the water mass flow rates, denoted as m
(i)
w (i = 2, ..., 50), at the exit of each

control volume, i, along the height of the fill section of the cooling tower;

2. the water temperatures, denoted as T
(i)
w (i = 2, ..., 50), at the exit of each

control volume, i,along the height of the fill section of the cooling tower;

3. the air temperatures, denoted as T
(i)
a (i = 1, ..., 49), at the exit of each

control volume, i, along the height of the fill section of the cooling tower;

4. the humidity ratios, denoted as ω(i) (i = 1, ..., 49), at the exit of each control

volume, i, along the height of the fill section of the cooling tower;

5. the air mass flow rate, denoted as ma, constant along the height of the fill

section of the cooling tower.

It is convenient to consider the above state functions to be components of the

following (column) vectors:

mw ≡
[
m(2)
w , ...,m(I+1)

w

]†
, Tw ≡

[
T (2)
w , ..., T (I+1)

w

]†
,

Ta ≡
[
T (1)
a , ..., T (I)

a

]†
, ω ≡

[
ω(1), ..., ω(I)

]†
, ma

(2.1)
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In this work, the dagger (†) will be used to denote “transposition”, and all

vectors will be considered to be column vectors. The governing conservation equa-

tions within the total of I = 49 control volumes represented in Figure 2.2 are as

follows [26]:

A. Liquid continuity equations:

(i) Control Volume i = 1 :

N
(1)
1 (mw,Tw,Ta,ω,ma;α) , m(2)

w −mw,in

+
M (ma,α)

R

P (2)
vs

(
T

(2)
w ,α

)
T

(2)
w

−
P

(1)
vs

(
T

(1)
a ,α

)
T

(1)
a

 = 0

(2.2)

(ii) Control Volumes i = 2, ... , K :

N
(i)
1 (mw,Tw,Ta,ω,ma;α) , m(i+1)

w −m(i)
w

+
M (ma,α)

R

P (i+1)
vs

(
T

(i+1)
w ,α

)
T

(i+1)
w

−
P

(i)
vs

(
T

(i)
a ,α

)
T

(i)
a

 = 0

(2.3)

where K is the control volume at which its outlet air is saturated.

(iii) Control Volumes i = K + 1, ... , I − 1 :

N
(i)
1 (mw,Tw,Ta,ω,ma;α) , m(i+1)

w −m(i)
w

+
M (ma,α)

R

P (i+1)
vs

(
T

(i+1)
w ,α

)
T

(i+1)
w

− ω(i)Patm

T
(i)
a (0.622 + ω(i))

 = 0

(2.4)

(iv) Control Volume i = I :

N
(I)
1 (mw,Tw,Ta,ω,ma;α) , m(I+1)

w −m(I)
w

+
M (ma,α)

R

P (I+1)
vs

(
T

(I+1)
w ,α

)
T

(I+1)
w

− ω(I)Patm

T
(I)
a (0.622 + ω(I))

 = 0

(2.5)
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B. Liquid energy balance equations:

(i) Control Volume i = 1 :

N
(1)
2 (mw,Tw,Ta,ω,ma;α) , mw,inhf (Tw,in,α)

−
(
T (2)
w − T (1)

a

)
H (ma,α)−m(2)

w h
(2)
f

(
T (2)
w ,α

)
−
(
mw,in −m(2)

w

)
h(2)
g,w

(
T (2)
w ,α

)
= 0

(2.6)

(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
2 (mw,Tw,Ta,ω,ma;α) , m(i)

w h
(i)
f

(
T (i)
w ,α

)
−
(
T (i+1)
w − T (i)

a

)
H (ma,α)−m(i+1)

w h
(i+1)
f

(
T (i+1)
w ,α

)
−
(
m(i)
w −m(i+1)

w

)
h(i+1)
g,w

(
T (i+1)
w ,α

)
= 0

(2.7)

(iii) Control Volume i = I :

N
(I)
2 (mw,Tw,Ta,ω,ma;α) , m(I)

w h
(I)
f

(
T (I)
w ,α

)
−
(
T (I+1)
w − T (I)

a

)
H (ma,α)−m(I+1)

w h
(I+1)
f

(
T (I+1)
w ,α

)
−
(
m(I)
w −m(I+1)

w

)
h(I+1)
g,w

(
T (I+1)
w ,α

)
= 0

(2.8)

C. Water vapor continuity equations:

(i) Control Volume i = 1 :

N
(1)
3 (mw,Tw,Ta,ω,ma;α) , ω(2) − ω(1) +

mw.in −m(2)
w

|ma|
= 0 (2.9)

(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
3 (mw,Tw,Ta,ω,ma;α) , ω(i+1) − ω(i) +

m
(i)
w −m(i+1)

w

|ma|
= 0

(2.10)

(iii) Control Volume i = I :

N
(I)
3 (mw,Tw,Ta,ω,ma;α) , ωin − ω(I) +

m
(I)
w −m(I+1)

w

|ma|
= 0 (2.11)
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D. Air/water vapor energy balance equations:

(i) Control Volume i = 1 :

N
(1)
4 (mw,Tw,Ta,ω,ma;α) ,

(
T (2)
a − T (1)

a

)
C(1)
p

(
T

(1)
a + 273.15

2
,α

)

−ω(1)h(1)
g,a

(
T (1)
a ,α

)
+

(
T

(2)
w − T (1)

a

)
H (ma,α)

|ma|

+

(
mw,in −m(2)

w

)
h

(2)
g,w

(
T

(2)
w ,α

)
|ma|

+ ω(2)h(2)
g,a

(
T (2)
a ,α

)
= 0

(2.12)

(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
4 (mw,Tw,Ta,ω,ma;α) ,

(
T (i+1)
a − T (i)

a

)
C(i)
p

(
T

(i)
a + 273.15

2
,α

)

−ω(i)h(i)
g,a

(
T (i)
a ,α

)
+

(
T

(i+1)
w − T (i)

a

)
H (ma,α)

|ma|

+

(
m

(i)
w −m(i+1)

w

)
h

(i+1)
g,w

(
T

(i+1)
w ,α

)
|ma|

+ ω(i+1)h(i+1)
g,a

(
T (i+1)
a ,α

)
= 0

(2.13)

(iii) Control Volume i = I :

N
(I)
4 (mw,Tw,Ta,ω,ma;α) ,

(
Ta,in − T (I)

a

)
Cp

(I)

(
T

(I)
a + 273.15

2
,α

)

−ω(I)h(I)
g,a

(
T (I)
a ,α

)
+

(
T

(I+1)
w − T (I)

a

)
H (ma,α)

|ma|

+

(
m

(I)
w −m(I+1)

w

)
h

(I+1)
g,w

(
T

(I+1)
w ,α

)
|ma|

+ ωinhg,a (Ta,in,α) = 0

(2.14)
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E. Mechanical energy equation:

N5 (mw,Tw,Ta,ω,ma;α) ,

[
1

2ρ (Ttdb,α)

(
1

Aout(α)2 −
1

Ain(α)2 +
ksum

Afill
2

)

+
f

2ρ (Ttdb,α)

96

Re (ma,α)

Lfill (α)

Afill
2Dh

]
|ma|ma − gZ (α) ρ (Ttdb,α)

−Vw
2ρ (Ttdb,α)

2
+ ∆zraingρ (Ttdb,α) + gρ

(
T (1)
a ,α

)
∆z4−2 (α)

+g∆z (α)
Patm
Rair

[
1

2Ta,in
+

1

2T
(1)
a

+
I∑
i=2

1

T
(i)
a

]
= 0

(2.15)

The components of the vector α, which appears in Eqs. (2.2)-(2.15), are the

model parameters which are referred to as αi, i.e.,

α , (α1, ..., αNα) (2.16)

where Nα = 47 represents the total number of model parameters. These model

parameters are quantities which have been derived experimentally, and their dis-

tributions are only partially known; the first four moments (mean, variance/co-

variance, skewness, and kurtosis) of these parameter distributions have neverthe-

less been determined, as detailed in Appendix B.

In the original work [26], the solution of Eqs. (2.2)-(2.15) was achieved by

making use of a two-stage iterative method including an “inner-iteration” which

utilized Newton’s method inside each control volume, coupled with an outer iter-

ation supposed to guarantee the convergence of the whole model. Unfortunately,

this procedure could not achieve convergence for all the data points taken into

consideration; several alternatives from [34] and [35] were therefore analyzed and

tested, and the original solution method in [26] was in the end substituted with

a more accurate and efficient one, based on the joint use of Newton’s method

and the GMRES linear iterative solver for sparse matrices [36] comprised in the
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NSPCG package [35]. The GMRES method selected [36] computes an approxi-

mated solution of the linear system of interest making use of the Arnoldi iteration,

minimizing the norm of the vector of the residuals over a Krylov subspace. More

in detail, the single computational steps are hereby listed:

(a) Eqs. (2.2)-(2.15) are written in vector form as

N (u) = 0 (2.17)

where the following definitions were used:

N ,
(
N

(1)
1 , .., N

(I)
2 , ..., N

(1)
3 , ..., N

(I)
4 , ..., N5

)†
,

u , (mw, Tw, Ta, ω, ma)
†

(2.18)

(b) Initial solution guess, u0, is set to be the inlet boundary conditions;

(c) Outer iteration loop comprises steps (d) through (g); iterate over these steps

until convergence for n = 0, 1, 2, ..., ;

(d) Inner iteration loop: for m = 1, 2, ..., use the iterative GMRES linear solver

coupled with the Modified Incomplete Cholesky (MIC) preconditioner, to

solve, until convergence, the following system to compute the vector δu:

J (un) δu = −N (un) , (2.19)

where with n the current outer loop iteration number is denoted, and J (un)

indicates the Jacobian matrix of derivatives of Eqs. (2.2)-(2.15) with respect

to the state functions:

J (un) ,



A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

A4 B4 C4 D4 E4

A5 B5 C5 D5 E5


; (2.20)

23



CHAPTER 2. DESCRIPTION OF THE SYSTEM

components of this block matrix are detailed in Subsection C.1 of Appendix

C. More in detail, J (un) is a non-symmetric sparse matrix of order 197 by

197, with 166 nonzero diagonals because of the presence of the column vec-

tors (E1, ...,E4) and of the row vectors (A5, ...,D5), which are responsible

for 142 diagonals of the Jacobian matrix to contain just one non-zero ele-

ment; this would have led to a massive efficiency loss of the diagonal storage

format, which is the one selected for the GMRES linear solver, with the

“condensed” Jacobian Matrix having dimensions 197 by 166. By producing

the approximation of setting vectors (E1, ...,E4) and (A5, ...,D5) to zero the

Jacobian matrix becomes a non-symmetric sparse matrix of order 197 by 197,

with just 14 nonzero diagonals. The non-symmetric diagonal storage format

is used to store the respective 14 nonzero diagonals, so that the “condensed”

Jacobian matrix has dimensions 197 by 14. Since the Jacobian is highly non-

symmetric, the computational cost of the GMRES solver iterations grows as

O(m2), where m is the number of iterations performed within the GMRES

solver. The restart feature allows to configure the GMRES solver in order

to reduce this computational cost: for the specific application, an optimized

value of 10 is chosen for the restart frequency. The convergence of the GM-

RES solver can be sped up by tuning the values of the parameters OMEGA

and LVFILL [35] in the modified incomplete factorization methods for the

MIC preconditioner; for the application of interest, the chosen optimal values

were: OMEGA = 0.000000001 and LVFILL = 1. The sparse GMRES solver

does not perform an internal update of the Jacobian matrix. The following

criterion is used to test the default convergence of GMRES [35],[ 〈
z̃(m), z̃(m)

〉
〈δu(m), δu(m)〉

] 1
2

< ζ (2.21)

where z̃(m) is used to indicate the pseudo-residual at mth-iteration of the
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GMRES solver, δu(m) is the solution of Eq. (2.19) at mth-iteration, and ζ

denotes the stopping test value for the GMRES solver;

(e) Set

un+1 = un + δu (2.22)

where n is the number of the current outer loop iteration, and update the

Jacobian;

(f) The outer loop convergence has to be tested until the solution error is less

than a specified maximum value. For the solution of Eqs. (2.2)-(2.15), the

following maximum error criterion has been used:

error = max


∣∣∣δm(i)

w

∣∣∣
m

(i)
w

,

∣∣∣δT (i)
w

∣∣∣
T

(i)
w

,

∣∣∣δT (i)
a

∣∣∣
T

(i)
a

,

∣∣δω(i)
∣∣

ω(i)
,
|δma|
ma

 < 10−6 (2.23)

(g) Set n = n+ 1 and return to step (d).

For all the 377 saturated benchmark data sets taken into consideration for

case 1a, the above strategy for the solution of Eqs. (2.2)-(2.15) has reached con-

vergence.

As mentioned above and vastly reported in Appendix A, each of these data

sets comprises measurements of the following quantities: (i) outlet air temperature

measured with the “Tidbit” sensor; (ii) outlet air temperature measured with the

“Hobo” sensor; (iii) outlet water temperature; (iv) outlet air relative humidity.

For each of the 377 benchmark data sets, the outer loop iterations detailed above

(i.e., steps (c) through (g)) reaches convergence in 4 iterations; for each outer

loop iteration, the GMRES solver needs 12 iterations for solving Eq. (2.19). The

solution accuracy is tested through a “zero-to-zero” verification, which yields an

error of the order of 10−5.
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Based on the above-mentioned measured quantities comprised in the bench-

mark data sets, the quantities computed by solving the governing system are:

(a) the vector mw ,
[
m

(2)
w , ...,m

(I+1)
w

]†
of water mass flow rates at the exit of

each control volume i, (i = 1, ..., 49);

(b) the vector Tw ,
[
T

(2)
w , ..., T

(I+1)
w

]†
of water temperatures at the exit of each

control volume i, (i = 1, ..., 49);

(c) the vector Ta ,
[
T

(1)
a , ..., T

(I)
a

]†
of air temperatures at the exit of each control

volume i, (i = 1, ..., 49);

(d) the vector RH ,
[
RH(1), ..., RH(I)

]†
, having as components the air relative

humidity at the exit of each control volume i, (i = 1, ..., 49);

(e) the scalar ma, representing the air mass flow rate along the height of the

cooling tower.

It is worth specifying that the water mass flow rates m
(i)
w , the water temper-

atures T
(i)
w , the air temperatures T

(i)
a and the air mass flow rate ma are obtained

directly as the solutions of Eqs. (2.2)-(2.15); the air relative humidity value, RH(i),

is calculated instead, for each control volume, by means of the following expres-

sion:

RH(i) =
Pv
(
ω(i),α

)
Pvs

(
T

(i)
a ,α

) × 100 =

(
ω(i)Patm
ω(i)+0.622

)
(
e
a0+

a1

T
(i)
a

) × 100 (2.24)

The nominal values of the model parameters (αi), used in solving Eqs. (2.2)-

(2.15), are listed in Table B.1 of Subsection B.1.1, Appendix B. It is important

to note that the nominal values for the first five parameters α1 through α5 (i.e.,

the dry bulb air temperature, dew point temperature, inlet water temperature,

atmospheric pressure and wind speed) are obtained through a statistic mean of

the values of the respective quantities in the 377 saturated data sets which fall in
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case 1a. This solution strategy with Eqs. (2.17) through (2.23) has been applied

to cases 1a, 1b and 2, i.e. all the cases in which the cooling tower is operated in

natural draft mode.

(a) (b)

(c) (d)

Figure 2.4: Bar plots of the state functions for (a) m
(i)
w , (i = 2, ..., 50); (b) T

(i)
w , (i = 2, ..., 50); (c) T

(i)
a ,

(i = 1, ..., 49); (d) RH(i), (i = 1, ..., 49) at the exit of each control volume along the height of the fill section of

the cooling tower (for case 1a: fan off, saturated outlet air condition, with inlet air unsaturated).

The bar plots presented above in Figure 2.4 display the respective values of

the water mass flow rates m
(i)
w , the water temperatures T

(i)
w , the air temperatures
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T
(i)
a , and the air relative humidity, RH(i), at the exit of each of the 49 control

volumes.

As shown in Figure 2.4, water mass flow rate m
(i)
w decreases around 0.10 kg/s

along the height of the fill section, from 44.021 kg/s at the inlet to 43.914 kg/s

at the outlet; water temperature T
(i)
w decreases around 1.9 K, from 298.77 K at

the inlet to 296.86 K at the outlet; air temperature T
(i)
a increases around 4.38 K,

from 294.03 K at the inlet to 298.41 K at the outlet; and the air relative humidity

RH(i)increases around 3.32%, from 96.78% at the inlet to 100.11% at the outlet.

It is worth noting that the increase and decrease of the responses of interest are

nonlinear along the height of the fill section. Air becomes saturated at the exit

of the 23rd control volume, as shown in Figure 2.4(d). Thus air is in unsaturated

condition from the inlet of the fill section (i.e., the 49th control volume) to the

24th control volume; it is in saturated condition from the 23rd control volume to

the outlet of the fill section (i.e., the 1st control volume).

2.3.2 Mathematical Model for Case 1b: Natural Draft Cool-

ing Tower operated in Saturated Outlet Air Condi-

tion, with Inlet Air Saturated

In this subcase, air is in saturated condition from the inlet through the outlet

of the fill section, i.e., air is saturated in all the 49 control volumes. The state

functions for the water mass flow rates m
(i)
w (i = 2, ..., 50), the water temperatures

T
(i)
w (i = 2, ..., 50), the air temperatures T

(i)
a (i = 1, ..., 49), the humidity ratios

ω(i) (i = 1, ..., 49), and the air mass flow rate are defined the same way as in case

1a, as described in Subsection 2.3.1.

The governing conservation equations within the total of I=49 control volumes

represented in Figure 2.2 are the following [26]:
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A. Liquid continuity equations:

(i) Control Volume i = 1 :

N
(1)
1 (mw,Tw,Ta,ω,ma;α) , m(2)

w −mw,in

+
M (ma,α)

R

P (2)
vs

(
T

(2)
w ,α

)
T

(2)
w

−
P

(1)
vs

(
T

(1)
a ,α

)
T

(1)
a

 = 0

(2.25)

(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
1 (mw,Tw,Ta,ω,ma;α) , m(i+1)

w −m(i)
w

+
M (ma,α)

R

P (i+1)
vs

(
T

(i+1)
w ,α

)
T

(i+1)
w

−
P

(i)
vs

(
T

(i)
a ,α

)
T

(i)
a

 = 0

(2.26)

(iii) Control Volume i = I :

N
(I)
1 (mw,Tw,Ta,ω,ma;α) , m(I+1)

w −m(I)
w

+
M (ma,α)

R

P (I+1)
vs

(
T

(I+1)
w ,α

)
T

(I+1)
w

−
P

(I)
vs

(
T

(I)
a ,α

)
T

(I)
a

 = 0

(2.27)

B. Liquid energy balance equations:

(i) Control Volume i = 1 :

N
(1)
2 (mw,Tw,Ta,ω,ma;α) , mw,inhf (Tw,in,α)

−
(
T (2)
w − T (1)

a

)
H (ma,α)−m(2)

w h
(2)
f

(
T (2)
w ,α

)
−
(
mw,in −m(2)

w

)
h(2)
g,w

(
T (2)
w ,α

)
= 0

(2.28)

(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
2 (mw,Tw,Ta,ω,ma;α) , m(i)

w h
(i)
f

(
T (i)
w ,α

)
−
(
T (i+1)
w − T (i)

a

)
H (ma,α)−m(i+1)

w h
(i+1)
f

(
T (i+1)
w ,α

)
−
(
m(i)
w −m(i+1)

w

)
h(i+1)
g,w

(
T (i+1)
w ,α

)
= 0

(2.29)
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(iii) Control Volume i = I :

N
(I)
2 (mw,Tw,Ta,ω,ma;α) , m(I)

w h
(I)
f

(
T (I)
w ,α

)
−
(
T (I+1)
w − T (I)

a

)
H (ma,α)−m(I+1)

w h
(I+1)
f

(
T (I+1)
w ,α

)
−
(
m(I)
w −m(I+1)

w

)
h(I+1)
g,w

(
T (I+1)
w ,α

)
= 0

(2.30)

C. Water vapor continuity equations:

(i) Control Volume i = 1 :

N
(1)
3 (mw,Tw,Ta,ω,ma;α) , ω(2) − ω(1) +

mw.in −m(2)
w

|ma|
= 0 (2.31)

(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
3 (mw,Tw,Ta,ω,ma;α) , ω(i+1) − ω(i) +

m
(i)
w −m(i+1)

w

|ma|
= 0

(2.32)

(iii) Control Volume i = I :

N
(I)
3 (mw,Tw,Ta,ω,ma;α) , ωin − ω(I) +

m
(I)
w −m(I+1)

w

|ma|
= 0 (2.33)

D. Air/water vapor energy balance equations:

(i) Control Volume i = 1 :

N
(1)
4 (mw,Tw,Ta,ω,ma;α) ,

(
T (2)
a − T (1)

a

)
C(1)
p

(
T

(1)
a + 273.15

2
,α

)

−ω(1)h(1)
g,a

(
T (1)
a ,α

)
+

(
T

(2)
w − T (1)

a

)
H (ma,α)

|ma|

+

(
mw,in −m(2)

w

)
h

(2)
g,w

(
T

(2)
w ,α

)
|ma|

+ ω(2)h(2)
g,a

(
T (2)
a ,α

)
= 0

(2.34)
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(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
4 (mw,Tw,Ta,ω,ma;α) ,

(
T (i+1)
a − T (i)

a

)
C(i)
p

(
T

(i)
a + 273.15

2
,α

)

−ω(i)h(i)
g,a

(
T (i)
a ,α

)
+

(
T

(i+1)
w − T (i)

a

)
H (ma,α)

|ma|

+

(
m

(i)
w −m(i+1)

w

)
h

(i+1)
g,w

(
T

(i+1)
w ,α

)
|ma|

+ ω(i+1)h(i+1)
g,a

(
T (i+1)
a ,α

)
= 0

(2.35)

(iii) Control Volume i = I :

N
(I)
4 (mw,Tw,Ta,ω,ma;α) ,

(
Ta,in − T (I)

a

)
Cp

(I)

(
T

(I)
a + 273.15

2
,α

)

−ω(I)h(I)
g,a

(
T (I)
a ,α

)
+

(
T

(I+1)
w − T (I)

a

)
H (ma,α)

|ma|

+

(
m

(I)
w −m(I+1)

w

)
h

(I+1)
g,w

(
T

(I+1)
w ,α

)
|ma|

+ ωinhg,a (Ta,in,α) = 0

(2.36)

E. Mechanical energy equation:

N5 (mw,Tw,Ta,ω,ma;α) ,

[
1

2ρ (Ttdb,α)

(
1

Aout(α)2 −
1

Ain(α)2 +
ksum

Afill
2

)

+
f

2ρ (Ttdb,α)

96

Re (ma,α)

Lfill (α)

Afill
2Dh

]
|ma|ma − gZ (α) ρ (Ttdb,α)

−Vw
2ρ (Ttdb,α)

2
+ ∆zraingρ (Ttdb,α) + gρ

(
T (1)
a ,α

)
∆z4−2 (α)

+g∆z (α)
Patm
Rair

[
1

2Ta,in
+

1

2T
(1)
a

+
I∑
i=2

1

T
(i)
a

]
= 0

(2.37)
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The differences between the governing equations for case 1a and case 1b are in

the “liquid continuity equations”. Specifically, for case 1a, the “liquid continuity

equations” are defined in Eqs. (2.2)-(2.5); whereas for case 1b, they are defined

in Eqs. (2.25)-(2.27). Other governing equations (i.e., liquid energy balance equa-

tions; water vapor continuity equations; and the air/water vapor energy balance

equations) are the same for both cases 1a and 1b.

The components of the model parameter vector α, which appears in Eqs.

(2.25)-(2.37), are the same as that of case 1a. The nominal values of the model

parameters (αi) are listed in Table B.9 of Subsection B.1.2, Appendix B. Again,

the nominal values for the first five parameters α1 through α5 are the statistic

mean values of the respective quantities in the 290 saturated data sets which

are considered in case 1b. These model parameters (i.e., α1 through α5) are ex-

perimentally derived quantities, and their complete distributions are not known;

however, the first four moments (means, variance/covariance, skewness, and kur-

tosis) of each of these parameter distributions have been calculated, as detailed

in Appendix B, Subsection B.1.2.

Similarly, the above-mentioned solution strategy, i.e. Newton’s method to-

gether with the GMRES linear iterative solver for sparse matrices, already used

in solving Eqs. (2.2)-(2.15) for case 1a, is also used to solve Eqs. (2.25)-(2.37) for

case 1b. The procedure converged successfully for all the 290 saturated bench-

mark data sets which are considered in case 1b. For each of these benchmark data

sets, the outer loop iterations converge in 4 iterations; for each outer loop iter-

ation, the GMRES solver used for solving Eq. (2.19) converges in 12 iterations.

The “zero-to-zero” verification of the solution accuracy using Eqs. (2.25) through

(2.37) gives an error of the order of 10−5.

The responses of interest such as the water mass flow rates m
(i)
w , the water

temperatures T
(i)
w , the air temperatures T

(i)
a , and the air mass flow rate ma are
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obtained directly as the solutions of Eqs. (2.25)-(2.37), while the air relative

humidity, RH(i), is computed for each control volume using Eq. (2.24). The bar

plots presented in Figure 2.5 display the respective values of the water mass flow

rates m
(i)
w , the water temperatures T

(i)
w , the air temperatures T

(i)
a , and the air

relative humidity, RH(i), at the exit of each of the 49 control volumes.

(a) (b)

(c) (d)

Figure 2.5: Bar plots of the state functions for (a) m
(i)
w , (i = 2, ..., 50); (b) T

(i)
w , (i = 2, ..., 50); (c) T

(i)
a ,

(i = 1, ..., 49); (d) RH(i), (i = 1, ..., 49) at the exit of each control volume along the height of the fill section of

the cooling tower (for case 1b: fan off, saturated outlet air condition, with inlet air saturated).
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As shown in the Figure 2.5, water mass flow rate m
(i)
w decreases around 0.11

kg/s along the height of the fill section, from 44.01 kg/s at the inlet to 43.89

kg/s at the outlet; water temperature T
(i)
w decreases around 2.1 K, from 299.54

K at the inlet to 297.46 K at the outlet; air temperature T
(i)
a increases around

4.7 K, from 294.40 K at the inlet to 299.1 K at the outlet; and the air relative

humidity RH(i) increases around 0.80%, from 101.58% at the inlet to 102.38% at

the outlet. As shown in Figure 2.5(d), air is in saturated condition from the inlet

through the outlet of the fill section.

2.3.3 Mathematical Model for Case 2: Natural Draft Cool-

ing Tower operated in Unsaturated Outlet Air Con-

dition, with Inlet Air Unsaturated

In this case, air is in unsaturated condition from the inlet through the outlet

of the fill section, i.e., air is unsaturated in all the 49 control volumes.

The state functions for the the water mass flow rates m
(i)
w (i = 2, ..., 50), the

water temperatures T
(i)
w (i = 2, ..., 50), the air temperatures T

(i)
a (i = 1, ..., 49),

the humidity ratios ω(i) (i = 1, ..., 49), and the mass flow rates are defined the

same way as in cases 1a and 1b, Sections 2.3.1 and 2.3.2.

The governing conservation equations within the total of I=49 control volumes

represented in Figure 2.2 are the following [26]:

A. Liquid continuity equations:

(i) Control Volume i = 1 :

N
(1)
1 (mw,Tw,Ta,ω,ma;α) , m(2)

w −mw,in

+
M (ma,α)

R

P (2)
vs

(
T

(2)
w ,α

)
T

(2)
w

− ω(1)Patm

T
(1)
a (0.622 + ω(1))

 = 0

(2.38)
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(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
1 (mw,Tw,Ta,ω,ma;α) , m(i+1)

w −m(i)
w

+
M (ma,α)

R

P (i+1)
vs

(
T

(i+1)
w ,α

)
T

(i+1)
w

− ω(i)Patm

T
(i)
a (0.622 + ω(i))

 = 0

(2.39)

(iii) Control Volume i = I :

N
(I)
1 (mw,Tw,Ta,ω,ma;α) , m(I+1)

w −m(I)
w

+
M (ma,α)

R

P (I+1)
vs

(
T

(I+1)
w ,α

)
T

(I+1)
w

− ω(I)Patm

T
(I)
a (0.622 + ω(I))

 = 0

(2.40)

B. Liquid energy balance equations:

(i) Control Volume i = 1 :

N
(1)
2 (mw,Tw,Ta,ω,ma;α) , mw,inhf (Tw,in,α)

−
(
T (2)
w − T (1)

a

)
H (ma,α)−m(2)

w h
(2)
f

(
T (2)
w ,α

)
−
(
mw,in −m(2)

w

)
h(2)
g,w

(
T (2)
w ,α

)
= 0

(2.41)

(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
2 (mw,Tw,Ta,ω,ma;α) , m(i)

w h
(i)
f

(
T (i)
w ,α

)
−
(
T (i+1)
w − T (i)

a

)
H (ma,α)−m(i+1)

w h
(i+1)
f

(
T (i+1)
w ,α

)
−
(
m(i)
w −m(i+1)

w

)
h(i+1)
g,w

(
T (i+1)
w ,α

)
= 0

(2.42)

(iii) Control Volume i = I :

N
(I)
2 (mw,Tw,Ta,ω,ma;α) , m(I)

w h
(I)
f

(
T (I)
w ,α

)
−
(
T (I+1)
w − T (I)

a

)
H (ma,α)−m(I+1)

w h
(I+1)
f

(
T (I+1)
w ,α

)
−
(
m(I)
w −m(I+1)

w

)
h(I+1)
g,w

(
T (I+1)
w ,α

)
= 0

(2.43)
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C. Water vapor continuity equations:

(i) Control Volume i = 1 :

N
(1)
3 (mw,Tw,Ta,ω,ma;α) , ω(2) − ω(1) +

mw.in −m(2)
w

|ma|
= 0 (2.44)

(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
3 (mw,Tw,Ta,ω,ma;α) , ω(i+1) − ω(i) +

m
(i)
w −m(i+1)

w

|ma|
= 0

(2.45)

(iii) Control Volume i = I :

N
(I)
3 (mw,Tw,Ta,ω,ma;α) , ωin − ω(I) +

m
(I)
w −m(I+1)

w

|ma|
= 0 (2.46)

D. Air/water vapor energy balance equations:

(i) Control Volume i = 1 :

N
(1)
4 (mw,Tw,Ta,ω,ma;α) ,

(
T (2)
a − T (1)

a

)
C(1)
p

(
T

(1)
a + 273.15

2
,α

)

−ω(1)h(1)
g,a

(
T (1)
a ,α

)
+

(
T

(2)
w − T (1)

a

)
H (ma,α)

|ma|

+

(
mw,in −m(2)

w

)
h

(2)
g,w

(
T

(2)
w ,α

)
|ma|

+ ω(2)h(2)
g,a

(
T (2)
a ,α

)
= 0

(2.47)

(ii) Control Volumes i = 2, ... , I − 1 :

N
(i)
4 (mw,Tw,Ta,ω,ma;α) ,

(
T (i+1)
a − T (i)

a

)
C(i)
p

(
T

(i)
a + 273.15

2
,α

)

−ω(i)h(i)
g,a

(
T (i)
a ,α

)
+

(
T

(i+1)
w − T (i)

a

)
H (ma,α)

|ma|

+

(
m

(i)
w −m(i+1)

w

)
h

(i+1)
g,w

(
T

(i+1)
w ,α

)
|ma|

+ ω(i+1)h(i+1)
g,a

(
T (i+1)
a ,α

)
= 0

(2.48)

36



CHAPTER 2. DESCRIPTION OF THE SYSTEM

(iii) Control Volume i = I :

N
(I)
4 (mw,Tw,Ta,ω,ma;α) ,

(
Ta,in − T (I)

a

)
Cp

(I)

(
T

(I)
a + 273.15

2
,α

)

−ω(I)h(I)
g,a

(
T (I)
a ,α

)
+

(
T

(I+1)
w − T (I)

a

)
H (ma,α)

|ma|

+

(
m

(I)
w −m(I+1)

w

)
h

(I+1)
g,w

(
T

(I+1)
w ,α

)
|ma|

+ ωinhg,a (Ta,in,α) = 0

(2.49)

E. Mechanical energy equation:

N5 (mw,Tw,Ta,ω,ma;α) ,

[
1

2ρ (Ttdb,α)

(
1

Aout(α)2 −
1

Ain(α)2 +
ksum

Afill
2

)

+
f

2ρ (Ttdb,α)

96

Re (ma,α)

Lfill (α)

Afill
2Dh

]
|ma|ma − gZ (α) ρ (Ttdb,α)

−Vw
2ρ (Ttdb,α)

2
+ ∆zraingρ (Ttdb,α) + gρ

(
T (1)
a ,α

)
∆z4−2 (α)

+g∆z (α)
Patm
Rair

[
1

2Ta,in
+

1

2T
(1)
a

+
I∑
i=2

1

T
(i)
a

]
= 0

(2.50)

The differences with the governing equations of cases 1a and 1b listed above

are, again, in the “liquid continuity equations”. All the other governing equations

(i.e., liquid energy balance equations; water vapor continuity equations; and the

air/water vapor energy balance equations) remain unaltered.

The components of the model parameter vector α, which appears in Eqs.

(2.38)-(2.50), are the same as that of cases 1a and 1b. The nominal values of the

model parameters (αi) are listed in Table B.15 of Subsection B.1.3, Appendix

B. Again, the nominal values for the first five parameters α1 through α5 are the

statistic mean values of the respective quantities in the 6717 unsaturated data

sets considered. These model parameters (i.e., α1 through α5) are experimentally
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derived quantities, and their complete distributions are not known; however, the

first four moments (means, variance/covariance, skewness, and kurtosis) of each

of these parameter distributions have been calculated, as detailed in Appendix

B, Subsection B.1.3.

(a) (b)

(c) (d)

Figure 2.6: Bar plots of the state functions for (a) m
(i)
w , (i = 2, ..., 50); (b) T

(i)
w , (i = 2, ..., 50); (c) T

(i)
a ,

(i = 1, ..., 49); (d) RH(i), (i = 1, ..., 49) at the exit of each control volume along the height of the fill section of

the cooling tower (for case 2: fan off, unsaturated air conditions).
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The solution strategy mentioned in Subsection 2.1.1, i.e. Newton’s method

together with the GMRES linear iterative solver for sparse matrices, already

used for cases 1a and 1b, is also used to solve Eqs. (2.38)-(2.50) for case 2. The

procedure converged successfully for all the 6717 unsaturated benchmark data

sets. The outer loop converge in 4 iterations; for each outer loop iteration, the

GMRES solver used for solving Eq. (2.19) converges in 8 iterations. The “zero-to-

zero” verification of the solution accuracy using Eqs. (2.38) through (2.50) gives

an error of the order of 10−5. The bar plots presented in Figure 2.6 display the

respective values of the water mass flow rates m
(i)
w , the water temperatures T

(i)
w ,

the air temperatures T
(i)
a , and the air relative humidity, RH(i), at the exit of each

of the 49 control volumes.
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Description of the mathematical

framework

3.1 Development of the Adjoint Sensitivity Model

with the Adjoint Sensitivity Analysis Method-

ology (ASAM)

This section presents the development of the cooling tower adjoint sensitivity

model, along with the solution method for computing the adjoint state functions.

3.1.1 Development of the Cooling Tower Adjoint Sensi-

tivity Model for Case 1a: Fan Off, Saturated Outlet

Air Conditions, with Inlet Air Unsaturated

The experimentally measured and/or computed responses of case 1a listed in

Section 2.3.1 can be represented in the functional form R (mw,Tw,Ta,ω,ma;α),

where R denotes a known functional of the model state functions and parame-
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ters. As generally proved in [1], it is possible to compute the sensitivity of this

functional to arbitrary variations in the model parameters δα , (δα1, ..., δαNα)

and state functions δmw, δTw, δTa, δω, δma by means of the response Gâteaux

(G-)differential DR (m0
w,T

0
w,T

0
a,ω

0,m0
a;α

0; δmw, δTw, δTa, δω, δma; δα), which

is defined as:

DR
(
m0

w,T
0
w,T

0
a,ω

0,m0
a;α

0; δmw, δTw, δTa, δω, δma; δα
)
,

d

dε

[
R
(
m0

w + εδmw,T
0
w + εδTw,T

0
a + εδTa,ω

0 + εδω,m0
a + εδma;α

0 + εδα
)]
ε=0

= DRdirect +DRindirect

(3.1)

where the so-called “direct effect” term, DRdirect, and the so-called “indirect

effect” term, DRindirect, are respectively defined as follows:

DRdirect ,
Nα∑
i=1

(
∂R

∂αi
δαi

)
(3.2)

DRindirect ,
I∑
i=1

(
∂R

∂m
(i+1)
w

δm(i+1)
w +

∂R

∂T
(i+1)
w

δT (i+1)
w +

∂R

∂T
(i)
a

δT (i)
a +

∂R

∂ω(i)
δω(i)

)

+
∂R

∂ma

δma = R1 · δmw + R2 · δTw + R3 · δTa + R4 · δω +R5 · δma

= DRdirect +DRindirect

(3.3)

where the components of the vectors R` ,
(
r

(1)
` , ..., r

(I)
`

)
, ` = 1, 2, 3, 4 are defined

as follows:

r
(i)
1 ,

∂R

∂m
(i+1)
w

; r
(i)
2 ,

∂R

∂T
(i+1)
w

; r
(i)
3 ,

∂R

∂T
(i)
a

; r
(i)
4 ,

∂R

∂ω(i)
; i = 1, ..., I.

(3.4)
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and where R5 is defined as follows:

R5 ,
∂R

∂ma

(3.5)

Since Eqs. (2.2) - (2.15) relate the model parameters to the model state func-

tions, changes in the model parameters will cause changes in the state variables.

More in detail, it has been found in [1-4] that to first-order in the parameter

variations, the respective change in the state variables values can be obtained by

solving the G-differentiated model equations, namely:

d

dε

[
N
(
u0 + εδu;α0 + εδα

)]
ε=0

= 0. (3.6)

Differentiating as above Eqs. (2.2) through (2.15) yields the following forward

sensitivity system:



A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

A4 B4 C4 D4 E4

A5 B5 C5 D5 E5





δmw

δTw

δTa

δω

δma


=



Q1

Q2

Q3

Q4

Q5


, (3.7)

where the components of the vectors Q` ,
(
q

(1)
` , ..., q

(I)
`

)
, ` = 1, 2, 3, 4 are defined

as follows:

q
(i)
` ,

Nα∑
j=1

(
∂N

(i)
`

∂αj
δαj

)
; i = 1, ..., I; ` = 1, 2, 3, 4. (3.8)

and where Q5 is defined as follows:

Q5 ,
Nα∑
j=1

(
∂N5

∂αj
δαj

)
. (3.9)
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The system in Eq. (3.7) is referred to as the forward sensitivity system, which

can be generally solved to calculate the variations induced in the state functions

values by any change in the model parameters values. The “indirect effect” term

in Eq. (3.3), DRindirect, can in turn be obtained by using the solution of Eq. (3.7).

Practically though, since the parameter variations to be considered are usually a

large number, computing DRindirect by repeatedly solving Eq. (3.7) happens to

become computationally very expensive.

The application of the Adjoint Sensitivity Analysis Procedure (ASAM) for-

mulated in [1-4] allows to avoid the need for repeatedly solving Eq. (3.7): the

ASAM proceeds by forming the inner-product of Eq. (3.7) with a yet unspec-

ified vector of the form [µw, τw, τ a, o, µa]
†, presenting the same structure as

the vector u , (mw, Tw, Ta, ω, ma)
†, transposing the resulting scalar equa-

tion and using Eq. (3.3). Furthermore, the procedure requires that the vector

[µw, τw, τ a, o, µa]
† satisfies the following adjoint sensitivity system:



A†1 A†2 A†3 A†4 A†5

B†1 B†2 B†3 B†4 B†5

C†1 C†2 C†3 C†4 C†5

D†1 D†2 D†3 D†4 D†5

E†1 E†2 E†3 E†4 E†5





µw

τw

τ a

o

µa


=



R1

R2

R3

R4

R5


; (3.10)

it therefore ultimately follows that the “indirect effect” term can be expressed as:

DRindirect , µw ·Q1 + τw ·Q2 + τ a ·Q3 + o ·Q4 + µa ·Q5 (3.11)

The system in Eq. (3.10) is called the adjoint sensitivity system, which - no-

tably - is independent of parameter variations. This means, as already mentioned

before, that the adjoint sensitivity system needs to be solved just once to allow
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computing the selected adjoint functions [µw, τw, τ a, o, µa]
†. The adjoint func-

tions are then used to compute DRindirect, in an efficient and exact way, by using

Eq. (3.11).

In order to provide an illustrative example of computing the response sensitiv-

ities through the adjoint sensitivity system, let’s assume that the model response

of interest is the air relative humidity, RH(i), in a generic control volume i, as

in Eq. (2.24). For this model response, the “direct effect” term, indicated as

D
[
RH(i)

]
direct

, is directly obtained in the form:

D
[
RH(i)

]
direct

=
∂
(
RH(i)

)
∂Patm

(δPatm) +
∂
(
RH(i)

)
∂a0

(δa0) +
∂
(
RH(i)

)
∂a1

(δa1) ,

i = 1, ..., I;

(3.12)

where:

∂
(
RH(i)

)
∂Patm

=
∂

∂Patm

 Pv
(
ω(i),α

)
Pvs

(
T

(i)
a ,α

) × 100

 =
0.622

(0.622 + ω(i)) e
a0+

a1

T
(i)
a

× 100;

i = 1, ..., I;

(3.13)

∂
(
RH(i)

)
∂a0

=
∂

∂a0

 Pv
(
ω(i),α

)
Pvs

(
T

(i)
a ,α

) × 100

 = − 0.622Patm

(0.622 + ω(i)) e
a0+

a1

T
(i)
a

× 100;

i = 1, ..., I;

(3.14)

∂
(
RH(i)

)
∂a1

=
∂

∂a1

 Pv
(
ω(i),α

)
Pvs

(
T

(i)
a ,α

) × 100

 = − 0.622Patm

(0.622 + ω(i)) e
a0+

a1

T
(i)
a

−1

T
(i)
a

× 100;

i = 1, ..., I.

(3.15)
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On the other side, the “indirect effect” term, indicated as D
[
RH(i)

]
indirect

, is

promptly obtained in the form:

D
[
RH(i)

]
indirect

=
∂
(
RH(i)

)
∂ω(i)

(
δω(i)

)
+
∂
(
RH(i)

)
∂T

(i)
a

(
δT (i)

a

)
; i = 1, ..., I; (3.16)

where:

∂
(
RH(i)

)
∂ω(i)

=
∂

∂ω(i)

 Pv
(
ω(i),α

)
Pvs

(
T

(i)
a ,α

) × 100

 =
100

Pvs

(
T

(i)
a , α

) ∂Pv (ω(i),α
)

∂ω(i)

=
0.622Patm

(0.622 + ω(i))
2
e
a0+

a1

T
(i)
a

× 100; i = 1, ..., I;

(3.17)

∂
(
RH(i)

)
∂T

(i)
a

=
∂

∂T
(i)
a

 Pv
(
ω(i),α

)
Pvs

(
T

(i)
a ,α

) × 100



= 100× Pv
(
ω(i),α

) ∂

∂T
(i)
a

 1

Pvs

(
T

(i)
a ,α

)


=
0.622Patm

(0.622 + ω(i)) e
a0+

a1

T
(i)
a

a1[
T

(i)
a

]2 × 100; i = 1, ..., I.

(3.18)

Dimensional analysis allows to determine the units of the adjoint functions

from Eq. (3.11). More in detail, the units for the adjoint functions must satisfy

the following relations:

[
µ(i)
w

]
=

[R]

[N1]
;
[
τ (i)
w

]
=

[R]

[N2]
;

[
τ (i)
a

]
=

[R]

[N3]
;

[
o(i)
]

=
[R]

[N4]
; [µa] =

[R]

[N5]

(3.19)

where [R] indicates the unit of the response R, while the units for the respective

governing equations are the following:

[N1] =
kg

s
; [N2] =

J

s
; [N3] = [−] ; [N4] =

J

kg
; [N5] =

J

m3
(3.20)
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Table 3.1 below lists the units of the adjoint functions for five responses of

interest: R , T
(1)
a , R , T

(50)
w , R , RH(1), R , m

(50)
w and R , ma, respectively,

in which, T
(1)
a denotes exit air temperature; T

(50)
w denotes exit water temperature;

RH(1) denotes exit air relative humidity; m
(50)
w denotes exit water mass flow rate;

and ma denotes air mass flow rate.

Responses
[
µ
(i)
w

] [
τ
(i)
w

] [
τ
(i)
a

] [
o(i)
]

[µa]

R , T (1)
a K/(kg/s) K/(J/s) K K/(J/kg) K/

(
J/m3

)
R , T (50)

w K/(kg/s) K/(J/s) K K/(J/kg) K/
(
J/m3

)
R , RH(1) (kg/s)

−1
(J/s)

−1 − (J/kg)
−1 (

J/m3
)−1

R , m(50)
w − (J/kg)

−1
kg/s (kg/s)/(J/kg) (kg/s)/

(
J/m3

)
R , ma − (J/kg)

−1
kg/s (kg/s)/(J/kg) (kg/s)/

(
J/m3

)
Table 3.1: Units of the adjoint functions

for different responses in natural draft cases.

Remembering that the adjoint sensitivity system in Eq. (3.10) is linear in the

adjoint state functions, it follows that numerical methods appropriate for large-

scale sparse linear systems can be used to solve it. Namely, the selected numerical

method was NSPCG, a “Package for Solving Large Sparse Linear Systems by

Various Iterative Methods” [35]; 12 to 18 iterations were sufficient for the solution

of the adjoint system within convergence criterion of ζ = 10−12.

Figures 3.1 through 3.5 below display the bar plots of the adjoint functions

corresponding to the five measured responses of interest, namely: (i) the exit air

temperature R , T
(1)
a ; (ii) the outlet (exit) water temperature R , T

(50)
w ; (iii)

the exit air humidity ratio R , RH(1); (iv) the outlet (exit) water mass flow rate

R , m
(50)
w ; and (v) the air mass flow rate R , ma.
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(a) (b)

(c) (d)

Figure 3.1: Bar plots of adjoint functions for the response R , T
(1)
a as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1a: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R , T
(1)
a , the value of µa is −0.24204.
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(a) (b)

(c) (d)

Figure 3.2: Bar plots of adjoint functions for the response R , T
(50)
w as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1a: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R , T
(50)
w , the value of µa is −0.31664.

48



CHAPTER 3. DESCRIPTION OF THE MATHEMATICAL FRAMEWORK

(a) (b)

(c) (d)

Figure 3.3: Bar plots of adjoint functions for the response R , RH(1) as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1a: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R , RH(1), the value of µa is −0.00603.
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(a) (b)

(c) (d)

Figure 3.4: Bar plots of adjoint functions for the response R , m
(50)
w as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1a: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R , m
(50)
w , the value of µa is −0.01765.
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(a) (b)

(c) (d)

Figure 3.5: Bar plots of adjoint functions for the response R , ma as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1a: fan off, saturated outlet air condition, with inlet air unsaturated.

For the response R , ma, the value of µa is 4.4364.

An independent verification of the numerical accuracy of the computed adjoint

functions can be performed by first noting that from Eqs. (3.1), (3.2) and (3.11)
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follows that

DR
(
m0

w,T
0
w,T

0
a,ω

0,m0
a;α

0; δmw, δTw, δTa, δω, δma; δα
)

=
Nα∑
j=1

Sj δαj,

(3.21)

where Nα indicates the total number of model parameters, and where Sj repre-

sents the “absolute sensitivity” of the response R with respect to the parameter

αj, defined as:

Sj ,
∂R

∂αj
−

[
I∑
i=1

(
µ(i)
w

∂N
(i)
1

∂αj
+ τ (i)

w

∂N
(i)
2

∂αj
+ τ (i)

a

∂N
(i)
3

∂αj
+ o(i)∂N

(i)
4

∂αj

)
+ µa

∂N5

∂αj

]
(3.22)

All the derivatives with respect to the model parameter αj on the right side of

Eq. (3.22) are known quantities. The absolute response sensitivity Sj can be also

computed independently, as follows:

1. consider an arbitrarily small perturbation δαj to the model parameter αj;

2. re-compute the perturbed response R
(
α0
j + δαj

)
, where α0

j denotes the un-

perturbed parameter value;

3. use the finite difference formula

SFDj
∼=
R
(
α0
j + δαj

)
−R

(
α0
j

)
δαj

+O(δαj)
2; (3.23)

4. use the approximate equality between Eqs. (3.23) and (3.22) to obtain in-

dependently the respective values of the adjoint function(s) being verified.

The independent verification methodology discussed in steps (1)-(4) above will

be vastly illustrated in Section D.1 of Appendix D, where the adjoint functions

depicted in Figures 3.1 - 3.5 will be verified.
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3.1.2 Development of the Cooling Tower Adjoint Sensi-

tivity Model for Case 1b: Fan Off, Saturated Outlet

Air Conditions, with Inlet Air Saturated

The procedure for deriving the cooling tower adjoint sensitivity model for

case 1b is the same as that for case 1a, described in Section 3.1.1. The responses

of interest can be represented in the functional form R (mw,Tw,Ta,ω,ma;α).

The sensitivity of this response to arbitrary variations in the model parameters

δα , (δα1, ..., δαNα) and state functions δmw, δTw, δTa, δω, δma is defined as

follows:

DR
(
m0

w,T
0
w,T

0
a,ω

0,ma;α
0; δmw, δTw, δTa, δω, δma; δα

)
,

d

dε

[
R
(
m0

w + εδmw,T
0
w + εδTw,T

0
a + εδTa,ω

0 + εδω,m0
a + εδma;α

0 + εδα
)]
ε=0

= DRdirect +DRindirect,

(3.24)

DRdirect ,
Nα∑
i=1

(
∂R

∂αi
δαi

)
, (3.25)

where the “direct effect” term, DRdirect, and the “indirect effect” term, DRindirect,

are as follows:

DRindirect ,
I∑
i=1

(
∂R

∂m
(i+1)
w

δm(i+1)
w +

∂R

∂T
(i+1)
w

δT (i+1)
w +

∂R

∂T
(i)
a

δT (i)
a +

∂R

∂ω(i)
δω(i)

)

+
∂R

∂ma

δma = R1 · δmw + R2 · δTw + R3 · δTa + R4 · δω +R5 · δma,

(3.26)

where the components of the vectors R` ,
(
r

(1)
` , ..., r

(I)
`

)
, ` = 1, 2, 3, 4 are defined

as follows:
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r
(i)
1 ,

∂R

∂m
(i+1)
w

; r
(i)
2 ,

∂R

∂T
(i+1)
w

; r
(i)
3 ,

∂R

∂T
(i)
a

; r
(i)
4 ,

∂R

∂ω(i)
; i = 1, ..., I.

(3.27)

and where R5 is defined as follows:

R5 ,
∂R

∂ma

(3.28)

Since Eqs. (2.25) - (2.37) relate the model parameters to the model state func-

tions, changes in the model parameters will cause changes in the state variables.

More in detail, it has been found in [1-4] that to first-order in the parameter

variations, the respective change in the state variables values can be obtained by

solving the G-differentiated model equations, namely:

d

dε

[
N
(
u0 + εδu;α0 + εδα

)]
ε=0

= 0, (3.29)

Performing the above differentiation on Eqs. (2.25) through (2.37) yields the

following forward sensitivity system:



AI
1 BI

1 CI
1 DI

1 EI
1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

A4 B4 C4 D4 E4

A5 B5 C5 D5 E5





δmw

δTw

δTa

δω

δma


=



QI
1

Q2

Q3

Q4

Q5


, (3.30)

where the components of the vectors QI
1 ,

(
q

(1)
1 , ..., q

(I)
1

)
and Q` ,

(
q

(1)
` , ..., q

(I)
`

)
,

` = 2, 3, 4 are defined as:

q
(i)
` ,

Nα∑
j=1

(
∂N

(i)
`

∂αj
δαj

)
; i = 1, ..., I; ` = 1, 2, 3, 4. (3.31)

and where Q5 is defined as follows:

54



CHAPTER 3. DESCRIPTION OF THE MATHEMATICAL FRAMEWORK

Q5 ,
Nα∑
j=1

(
∂N5

∂αj
δαj

)
. (3.32)

The vector QI
1 on the right hand side of Eq. (3.30) is denoted separately

from others to highlight the difference of this source term from the one in case

1a. As mentioned earlier in Section 2.3.2, the differences between the governing

equations for cases 1a and 1b are in the “liquid continuity equations”. Other

governing equations (i.e., liquid energy balance equations; water vapor continuity

equations; the air/water vapor energy balance equations; and the mechanical

energy equation) are the same for both subcases. As a result, the Jacobian matrix

presented in Eq. (3.30), which represents the derivatives of Eqs. (2.25) - (2.37)

with respect to the state functions, is different from the Jacobian matrix presented

in Eq. (3.7), which represents the derivatives of Eqs. (2.2) - (2.15) with respect

to the state functions. More specifically, the Jacobian matrix-components in the

first row, namely AI
1, BI

1,CI
1, DI

1 and EI
1, are changed as defined in Section C.2 of

Appendix C. Other matrix-components are kept the same as that in the Jacobian

matrix in Eq. (3.7).

Apply then the ASAM proceeding by forming the inner-product of Eq. (3.30)

with a yet unspecified vector of the form [µw, τw, τ a, o, µa]
†, presenting the same

structure as the vector u , (mw, Tw, Ta,ω,ma)
†, transposing the resulting

scalar equation and using Eq. (3.26). Furthermore, the procedure requires that

the vector [µw, τw, τ a, o, µa]
† satisfies the following adjoint sensitivity system:



AI
1
†

A†2 A†3 A†4 A†5

BI
1
†

B†2 B†3 B†4 B†5

CI
1
†

C†2 C†3 C†4 C†5

DI
1
†

D†2 D†3 D†4 D†5

EI
1
†

E†2 E†3 E†4 E†5





µw

τw

τ a

o

µa


=



R1

R2

R3

R4

R5


; (3.33)
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it ultimately results that the “indirect effect” term can be expressed in the form

DRindirect , µw ·QI
1 + τw ·Q2 + τ a ·Q3 + o ·Q4 + µa ·Q5 (3.34)

The adjoint sensitivity system, as defined in Eq. (3.33), is independent of

parameter variations. Therefore, the adjoint sensitivity system needs to be solved

only once to compute the adjoint functions [µw, τw, τ a, o, µa]
†. In turn, the

adjoint functions are used to compute DRindirect, efficiently and exactly, using

Eq. (3.34). For case 1b, the units of the adjoint functions are listed in Table 3.1.

Since the adjoint sensitivity system represented by Eq. (3.33) is linear in the

adjoint state functions, it can be solved by using numerical methods appropri-

ate for large-scale sparse linear systems. As in case 1a, it was solved by using

NSPCG, a “Package for Solving Large Sparse Linear Systems by Various Iter-

ative Methods” [35]; 12 to 18 iterations sufficed for solving the adjoint system

within convergence criterion of ζ = 10−12.

The bar plots presented in Figures 3.6 - 3.10 display the trend of the adjoint

functions corresponding to the five measured responses of interest, namely: (i) the

exit air temperature R , T
(1)
a ; (ii) the outlet (exit) water temperature R , T

(50)
w ;

(iii) the exit air humidity ratio R , RH(1); (iv) the outlet (exit) water mass flow

rate R , m
(50)
w ; and (v) the air mass flow rate R , ma.

For case 1b, the verification of the adjoint functions depicted in Figures 3.6

- 3.10 has been performed with the same methodology as for case 1a, and it is

included in Section D.2 of Appendix D.
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(a) (b)

(c) (d)

Figure 3.6: Bar plots of adjoint functions for the response R , T
(1)
a as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R , T
(1)
a , the value of µa is −0.2627.
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(a) (b)

(c) (d)

Figure 3.7: Bar plots of adjoint functions for the response R , T
(50)
w as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R , T
(50)
w , the value of µa is −0.30696.
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(a) (b)

(c) (d)

Figure 3.8: Bar plots of adjoint functions for the response R , RH(1) as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R , RH(1), the value of µa is −0.03451.
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(a) (b)

(c) (d)

Figure 3.9: Bar plots of adjoint functions for the response R , m
(50)
w as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R , m
(50)
w , the value of µa is −0.01664.
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(a) (b)

(c) (d)

Figure 3.10: Bar plots of adjoint functions for the response R , ma as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 1b: fan off, saturated outlet air condition, with inlet air saturated.

For the response R , ma, the value of µa is 4.29938.
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3.1.3 Development of the Cooling Tower Adjoint Sensi-

tivity Model for Case 2: Fan Off, Unsaturated Air

Conditions

The development of the cooling tower adjoint sensitivity model follows the

same path as detailed in Section 3.1.1 for case 1a. The total sensitivity of a model

response R (mw,Tw,Ta,ω,ma;α), with respect to arbitrary variations in the

model parameters δα , (δα1, ..., δαNα) and state functions δmw, δTw, δTa, δω,

δma, around the nominal values (m0
w,T

0
w,T

0
a,ω

0,m0
a;α

0) of the parameters and

state functions, is obtained by means of the G-differential of the model response

to these changes. This G-differential is referred to as DR(m0
w,T

0
w,T

0
a,ω

0,m0
a;α

0;

δmw, δTw, δTa, δω, δma; δα), and introducing the adjoint sensitivity functions it

becomes:

DR
(
m0

w,T
0
w,T

0
a,ω

0,m0
a;α

0; δmw, δTw, δTa, δω, δma; δα
)

=
Nα∑
i=1

(
∂R

∂αi
δαi

)
+DRindirect

(3.35)

where the “indirect effect” term, DRindirect, is again obtained as:

DRindirect , µw ·Q1 + τw ·Q2 + τ a ·Q3 + o ·Q4 + µa ·Q5 (3.36)

Performing the differentiation in Eq. (3.29) on Eqs. (2.39) - (2.51), and reminding

the differences between the governing equation systems of case 1a and case 2 (see

Section 2.3.3), the forward sensitivity system for case 2 is as follows:

AII
1 BII

1 CII
1 DII

1 EII
1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

A4 B4 C4 D4 E4

A5 B5 C5 D5 E5





δmw

δTw

δTa

δω

δma


=



QII
1

Q2

Q3

Q4

Q5


, (3.37)
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where the components of the vectors QII
1 ,

(
q

(1)
1 , ..., q

(I)
1

)
and Q` ,

(
q

(1)
` , ..., q

(I)
`

)
,

` = 2, 3, 4 are defined as:

q
(i)
` ,

Nα∑
j=1

(
∂N

(i)
`

∂αj
δαj

)
; i = 1, ..., I; ` = 1, 2, 3, 4. (3.38)

and where Q5 is defined as follows:

Q5 ,
Nα∑
j=1

(
∂N5

∂αj
δαj

)
. (3.39)

The vector QII
1 on the right hand side of Eq. (3.37) is denoted separately from

others to highlight the difference of this source term from the one in case 1a. As

mentioned earlier in Section 2.3.3, the differences between the governing equations

for cases 1a and 2 are only in the “liquid continuity equations”. As a result, the

Jacobian matrix presented in Eq. (3.37), which represents the derivatives of Eqs.

(2.39) - (2.51) with respect to the state functions, is different from the Jacobian

matrix presented in Eq. (3.7), which represents the derivatives of Eqs. (2.2) -

(2.15) with respect to the state functions. More specifically, the Jacobian matrix-

components in the first row, namely AII
1 , BII

1 ,CII
1 , DII

1 and EII
1 , are changed

as defined in Section C.3 of Appendix C. Other matrix-components are kept

the same as that in the Jacobian matrix in the RHS of Eq. (3.7). Hence, the

vector [µw, τw, τ a, o, µa]
† is required to be the solution of the following adjoint

sensitivity system:



AII
1
†

A†2 A†3 A†4 A†5

BII
1
†

B†2 B†3 B†4 B†5

CII
1
†

C†2 C†3 C†4 C†5

DII
1
†

D†2 D†3 D†4 D†5

EII
1
†

E†2 E†3 E†4 E†5





µw

τw

τ a

o

µa


=



R1

R2

R3

R4

R5


; (3.40)
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it ultimately results that the “indirect effect” term can be expressed in the form

DRindirect , µw ·QII
1 + τw ·Q2 + τ a ·Q3 + o ·Q4 + µa ·Q5 (3.41)

The vectors R` ,
(
r

(1)
` , ..., r

(I)
`

)
, ` = 1, 2, 3, 4 in Eq. (3.40) comprise the func-

tional derivatives of the model responses with respect to the state functions, i.e.,:

r
(i)
1 ,

∂R

∂m
(i+1)
w

; r
(i)
2 ,

∂R

∂T
(i+1)
w

; r
(i)
3 ,

∂R

∂T
(i)
a

; r
(i)
4 ,

∂R

∂ω(i)
; i = 1, ..., I.

(3.42)

and where R5 is defined as follows:

R5 ,
∂R

∂ma

(3.43)

It is worth reminding that the adjoint sensitivity system in Eq. (3.40) is inde-

pendent of parameter variations. This feature allows the selected adjoint functions

[µw, τw, τ a, o, µa]
† to be computed by solving the adjoint sensitivity system just

once. For case 2, the units of the adjoint functions are the same as that listed

in Table 1. Since the adjoint sensitivity system represented by Eq. (3.40) is lin-

ear in the adjoint state functions, it can be solved by using numerical methods

appropriate for large-scale sparse linear systems. As in case 1, it was solved by

using NSPCG, a “Package for Solving Large Sparse Linear Systems by Various

Iterative Methods” [35]; 12 to 18 iterations sufficed for solving the adjoint system

within convergence criterion of ζ = 10−12. The bar plots presented in Figures

3.11 - 3.15 display the trend of the adjoint functions corresponding to the five

measured responses of interest, namely: (i) the exit air temperature R , T
(1)
a ; (ii)

the outlet (exit) water temperature R , T
(50)
w ; (iii) the exit air humidity ratio

R , RH(1); (iv) the outlet (exit) water mass flow rate R , m
(50)
w ; and (v) the

air mass flow rate R , ma. For case 2, the verification of the adjoint functions

depicted in Figures 3.11 - 3.15 has been performed with the same methodology

as for case 1a, Section 3.1.1, and it is included in Section D.3 of Appendix D.
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(a) (b)

(c) (d)

Figure 3.11: Bar plots of adjoint functions for the response R , T
(1)
a as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 2: fan off, unsaturated air conditions.

For the response R , T
(1)
a , the value of µa is −0.12651.
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(a) (b)

(c) (d)

Figure 3.12: Bar plots of adjoint functions for the response R , T
(50)
w as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 2: fan off, unsaturated air conditions.

For the response R , T
(50)
w , the value of µa is −0.3771.
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(a) (b)

(c) (d)

Figure 3.13: Bar plots of adjoint functions for the response R , RH(1) as functions of the height of the

cooling tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d)

o ,
(
o(1), ..., o(49)

)
, for case 2: fan off, unsaturated air conditions.

For the response R , RH(1), the value of µa is −0.00743.
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(a) (b)

(c) (d)

Figure 3.14: Bar plots of adjoint functions for the response R , m
(50)
w as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 2: fan off, unsaturated air conditions.

For the response R , m
(50)
w , the value of µa is −0.0306.
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(a) (b)

(c) (d)

Figure 3.15: Bar plots of adjoint functions for the response R , ma as functions of the height of the cooling

tower fill section: (a) µw ,
(
µ

(1)
w , ..., µ

(49)
w

)
, (b) τw ,

(
τ

(1)
w , ..., τ

(49)
w

)
, (c) τa ,

(
τ

(1)
a , ..., τ

(49)
a

)
, (d) o ,(

o(1), ..., o(49)
)
, for case 2: fan off, unsaturated air conditions.

For the response R , ma, the value of µa is 5.805.
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3.2 Data assimilation, model calibration and best-

estimate predictions with reduced uncertain-

ties: Predictive Modeling for Coupled Multi-

Physics Systems (PM CMPS)

In this subsection the mathematical framework of the Predictive Modeling

of Coupled Multi-Physics Systems (PM CMPS) methodology [21] is described.

The PM CMPS methodology [21] comprises both the ideas of “forward” and “in-

verse” modeling within a mathematically and conceptually consolidated frame-

work, which includes data assimilation, model calibration and prediction of best-

estimate values for model parameters and responses, with optimized reduced un-

certainties.

In general, a physical system subject in which experimental measurements

can be made can be modeled with the following elements:

• A system of linear/nonlinear governing equations relating the system inde-

pendent variables and parameters to the state functions of the system;

• (In)equality constraints that bound the range of the system parameters;

• One or more quantities of interest, referred to as system responses, obtained

by solving the mathematical model;

• Experimental values of the system responses, accompanied by their respec-

tive nominal values and uncertainties.

The mathematical framework for the PM CMPS methodology has been pre-

sented by Cacuci and Ionescu-Bujor in [21] for time-dependent systems; in this
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chapter the notation has been simplified to consider only time-independent sys-

tems, since the one system analyzed in this work falls within this category.

Generally, a time-independent physical system will comprise Nα not exactly

known model parameters, αn, referred to as the components of a (column) vector,

α, denoted as:

α = {αn|n = 1, . . . , Nα} (3.44)

The mean values of the model parameters αn are defined as α0
n , 〈αn〉, while the

covariances between two generic parameters αi and αj are denoted as cov (αi, αj).

The mean values α0
n are treated as being known a priori; from that follows that

the vector α0, referred to as α0 = {α0
n|n = 1, . . . , Nα} is considered to be known

a priori as well. The covariances cov (αi, αj) are also treated as being known a

priori; these covariances are regarded to be the elements of the a priori known

parameter covariance matrix, denoted as C
(Nα×Nα)
αα and defined as:

C(Nα×Nα)
αα , [cov (αi, αj)]Nα×Nα ,

〈(
αi − α0

i

) (
αj − α0

j

)〉
Nα×Nα

;

i, j = 1, . . . , Nα

(3.45)

Generally, the model will also comprise Nr experimentally measured responses,

ri, regarded as the components of the column vector:

r = {ri| i = 1, . . . , Nr} (3.46)

The mean values of the experimentally measured responses, ri, denoted as rmi ,

as well as the covariances between two measured responses ri and rj, denoted

as
〈
(ri − rmi )

(
rj − rmj

)〉
, are regarded to be a priori known. The mean measured

values rmi are organized as the components of the vector rm defined as:

rm = {rmi | i = 1, . . . , Nr} , rmi , 〈ri〉 , i = 1, . . . , Nr, (3.47)
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while the covariances
〈
(ri − rmi )

(
rj − rmj

)〉
of the experimentally measured re-

sponses are treated as being the components of the a priori known measured

covariance matrix, denoted as C
(Nr×Nr)
rr , and defined as:

C(Nr×Nr)
rr ,

〈
(ri − rmi )

(
rj − rmj

)〉
Nr×Nr

, i, j = 1, . . . , Nr. (3.48)

Parameters and responses may be also generically correlated to each other; such

correlations are computed through a priori known parameter-response matrices,

denoted as C
(Nα×Nr)
αr , and defined as follows:

C(Nα×Nr)
αr ,

〈(
α−α0

)
(r− rm)†

〉
=
[
C(Nr×Nα)
rα

]†
(3.49)

For notation clarity reasons, the size of the vectors and matrices in the follow-

ing will not be shown in the subsequent formulas. In general, a response computed

using the model can depend nonlinearly and implicitly on the model parameters.

Uncertainties due to parameters induce uncertainties in the responses which,

in this case, can be computed deterministically using propagation of moments

method. The computed response is linearized via a functional Taylor-series ex-

pansion around the nominal parameter values α0 as:

r (α) = R
(
α0
)

+ S
(
α−α0

)
+ higher order terms (3.50)

where R (α0) represents the vector of computed responses at the nominal param-

eter values α0 and S denotes the Nr×Nα dimensional matrix containing the first

Gâteaux derivatives of the computed responses with respect to the parameters:

SNr×Nαrα ,


∂r1
∂α1

· · · ∂r1
∂αNα

...
. . .

...

∂rNr
∂α1

· · · ∂rNr
∂αNα

 . (3.51)
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The expectation value 〈r〉 is computed by integrating the expansion of the

responses over the unknown joint probability distribution p (α, r) :

〈r〉 =

∫
Dα

r (α) p (α, r) dα (3.52)

where Dα is the domain of all α values. Substituting the first-order Taylor ex-

pansion of Eq. (3.76) into Eq. (3.78) yields

〈r〉 =

∫
Dα

R
(
α0
)
p (α, r) dα+

∫
Dα

Nα∑
i1=1

∂R

∂αi1

∣∣∣∣
α0

δαi1p (α, r) dα (3.53)

The terms independent of α can be pulled out of the integral, to have:

〈r〉 = R
(
α0
) ∫

Dα

p (α, r) dα+
Nα∑
i1=1

∂R

∂αi1

∣∣∣∣
α0

∫
Dα

δαi1p (α, r) dα (3.54)

The result of the integral in the first term is 1, since p (α, r) is a probability

distribution integrated over the whole domain. The integrand in the second term

is the first central moment, which is zero. The expectation value is therefore:

〈r〉 = R
(
α0
)

(3.55)

The computed responses covariance matrix can be calculated as follows:

Ccomp
rr ,

〈[
r (α)−R

(
α0
)] [

r (α)−R
(
α0
)]T〉

=
[
S
(
α0
)] 〈[

α−α0
] [
α−α0

]T〉 [
S
(
α0
)]T

=
[
S
(
α0
)]

Cα

[
S
(
α0
)]T

(3.56)

The application of the maximum entropy algorithm described in [21] to the com-

putational and experimental information listed above yields that the most objec-

tive probability distribution for this information is a multivariate Gaussian of the
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form:

p (z|C) dz =
e−

1
2
Q(z)

|2πC|
1
2

dz, (3.57)

where:

Q(z) , z†C−1z, −∞ < zj <∞ (3.58)

z ,

α−α0

r− rm

 , (3.59)

C =

Cα Cαr

CT
αr Crr

 . (3.60)

If no specific loss function is provided, the recommended best-estimate mean

vector zBE and its respective best-estimate posterior covariance matrix are usually

computed assuming quadratic loss. The bulk of the contribution in Eq. (3.84) is

extracted by computing it at the point where Q attains a minimum subject to

Eq. (3.76). When higher-order terms as well as numerical errors are neglected this

relation can be conveniently written in the form:

Z
(
α0
)

z + d = 0, (3.61)

where:

d , R
(
α0
)
− rm (3.62)

and Z denotes the partitioned matrix:

Z , (S I) , (3.63)

where I is a Nr×Nr identity matrix. Finding the minimum of Q (z) subject to Eq.

(3.87) is a constrained minimization problem that may be solved by introducing
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Lagrange multipliers λ to construct an augmented functional:

P (z, λ) , Q (z) + 2λ†
[
Z
(
α0
)
z + d

]
= min (3.64)

at

z = zBE ,

αBE −α0

rBE − rm

 . (3.65)

The point where the functional P (z, λ) reaches its minimum may be found

through the conditions:

∇zP (z, λ) = 0, ∇λP (z, λ) = 0, at z = zBE. (3.66)

The solution to this constrained minimization problem is presented in detail in the

Appendix of [21]. The resulting best-estimate parameters, responses and reduced

uncertainties covariance matrix are listed in the following.

A. Optimally predicted “best-estimate” nominal values, αpred, for the model

parameters:

αpred = α0 −
(
CααS

†
rα −Cαr

)
[Drr]

−1 [rc (α0, β0
)
− rm

]
, (3.67)

where the matrix Drr is defined as

Drr = SrαCααS
†
rα − SrαCαr −C†αrS

†
rα + Crr, (3.68)

and the elements of the matrix SNr×Nαrα are the first-order sensitivities of all

model responses with respect to all model parameters, defined as follows:

SNr×Nαrα ,


∂r1
∂α1

· · · ∂r1
∂αNα

...
. . .

...

∂rNr
∂α1

· · · ∂rNr
∂αNα

 . (3.69)
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It is worth noticing that, in case just the first-order sensitivities are being

considered, the first term on the right side of Eq. (3.94) corresponds to the

covariance matrix of the computed responses, Ccomp
rr , i.e.,

Ccomp
rr = SrαCααS

†
rα

(3.70)

B. Reduced predicted uncertainties, Cpred
αα , for the predicted nominal parameter

values, given by the expression below:

Cpred
αα = Cαα −

(
CααS

†
rα −Cαr

)
[Drr]

−1(CααS
†
rα −Cαr

)†
; (3.71)

C. Optimally predicted “best-estimate” nominal values, rpred, for the model re-

sponses, given by the expression below:

rpred = rm −
(
C†αrS

†
rα −Crr

)
[Drr]

−1 [rc (α0, β0
)
− rm

]
; (3.72)

D. Reduced predicted uncertainties, Cpred
rr , for the predicted nominal parameter

values, given by the expression below:

Cpred
rr = Crr −

(
C†αrS

†
rα −Crr

)
[Drr]

−1(C†αrS†rα −Crr

)†
; (3.73)

E. Predicted correlations, Cpred
αr , between the predicted model parameters and

responses, given by the expression below:

Cpred
αr = Cαr −

(
CααS

†
rα −Cαr

)
[Drr]

−1(C†αrS†rα −Crr

)†
. (3.74)

It is important to notice that in the case of a perfect model (which means

that Cαα = 0 and Cαr = 0), Eqs. (3.70) through (3.100) would yield

αpred = α0 (3.75)

and

rpred = rc
(
α0, β0

)
, (3.76)
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with all accompanying uncertainties being null (i.e., Cpred
rr = 0, Cpred

αα = 0,

Cpred
αr = 0).

Practically, a perfect model would get from the PM CMPS methodology

predicted values for the parameters and responses that would exactly match

the model original parameters and computed responses values (considered

as perfect); on the other side the experimental data would not influence the

predictions whatsoever (as it is logical, since imperfect measurements could

in no way improve “perfect” model predictions).

On the other hand, if the measurements were perfect, (i.e., Crr = 0 and

Cαr = 0), but the model were imperfect, then Eqs. (3.70) through (3.100)

would yield

αpred = α0 −CααS
†
rα

[
SrαCααS

†
rα

]−1
rd
(
α0
)
, (3.77)

rpred = rm, (3.78)

Cpred
rr = 0, Cpred

αr = 0, Cpred
αα = Cαα −CααS

†
rα

[
SrαCααS

†
rα

]−1
SrαCαα.

(3.79)

In case the measurement were perfect, the PM CMPS predicted values for the

responses would therefore match the measured values (considered as perfect),

while the model uncertain parameters would be optimized by considering the

respective measurements in order to lead to improved nominal values and

reduced parameters uncertainties.
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Chapter 4

Results

This chapter presents the results stemming from the application of the ASAM

and of the PM CMPS methodologies described in Chapter 3 to the cooling tower

model of interest. Every case listed in Chapter 2 has been treated separately, to

provide to the reader the numeric results for all the operating conditions analyzed;

a cross-comparison of the most relevant results has been performed and is detailed

in Section 4.2.

4.1 Adjoint Sensitivity Analysis of the cooling

tower cases of interest

As it can be found detailed in Appendix A, there are a total of 8079 measured

benchmark data sets for the cooling tower model with the “fan-off”. Out of the

8079 total data sets, 667 benchmark data sets present outlet air in “saturated

conditions”, falling therefore within case 1. In Appendix A it is shown that these

667 data sets are further separated based on their air inlet boundary conditions

at the fill section entrance. Case 1a describes a situation in which air enters the

78



CHAPTER 4. RESULTS

fill section in unsaturated condition, but it gets saturated before reaching the

outlet of the fill section; in case 1b air enters the fill section already saturated,

exiting the fill section also saturated. For both cases, air exits the fill section

in saturated conditions, and only the inlet air conditions are different. Among

the 667 saturated data sets, 377 of them have unsaturated air inlet boundary

conditions, and therefore are grouped into case 1a; the other 290 data sets have

saturated air inlet boundary conditions, and therefore are grouped into case 1b.

Out of the 8079 total data sets, 6717 benchmark data sets present outlet air in

unsaturated conditions, and are therefore relevant to case 2.

The nominal values for boundary and atmospheric conditions used for the

sensitivity analysis were obtained, as described in Appendix A, from the statistics

of the aforementioned groups of 377 data sets for case 1a, 290 data sets for

case 1b and 6717 data sets for case 2. In turn, these “saturated” boundary and

atmospheric conditions were used to obtain the sensitivity results reported, below,

in Subsections 4.1.1 - 4.1.3. Subsections 4.1.1 - 4.1.3 provide the numerical values

and rankings, in descending order, of the relative sensitivities computed using the

adjoint sensitivity analysis methodology for the five model responses T
(1)
a , T

(50)
w ,

m
(50)
w , RH(1) and ma of case 1a, case 1b and case 2, respectively.

Note that the relative sensitivity, RS (αi), of a response R (αi) to a parameter

αi is defined as RS (αi) , [dR (αi)/dαi ] [αi/R (αi) ]. Thus, the relative sensitivi-

ties are unit-less and are very useful in ranking the sensitivities to highlight their

relative importance for the respective response. A relative sensitivity of 1.00 indi-

cates that a change of 1% in the respective parameter will induce a 1% change in

a response that is linear in the respective sensitivity. The higher the relative sen-

sitivity, the more important the respective parameter to the respective response.
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4.1.1 Adjoint Sensitivity Analysis of Case 1a: Fan Off,

Saturated Outlet Air Conditions, with Inlet Air Un-

saturated

4.1.1.1 Relative sensitivities of the outlet air temperature, T
(1)
a

The sensitivities of the air outlet temperature with respect to all of the model

parameters for case 1a have been computed using Eq. (3.22). The numerical

results and ranking of the relative sensitivities, in descending order of their mag-

nitudes, are provided in Table 4.1, below, along with their respective relative

standard deviations.

Table 4.1: Ranked relative sensitivities of the outlet air temperature, T
(1)
a , for case 1a.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet water temperature, Tw,in 298.77 K 0.8346 0.47

2 Air temperature (dry bulb), Tdb 294.03 K 0.1436 0.61

3 Inlet air temperature, Ta,in 294.03 K 0.1429 0.61

4 Pvs(T) parameters, a0 25.5943 -0.0231 0.04

5 Pvs(T) parameters, a1 -5229.89 0.0151 0.08

6 Dew point temperature, Tdp 293.49 K 0.0127 0.55

7 Fill section equivalent diameter, Dh 0.0381 m -0.0045 1

8 Atmospheric pressure, Patm 100853 Pa -0.0041 0.28

9 Fan shroud inner diameter, Dfan 4.1 m -0.0031 1

10 Cpa(T) parameters, a0,cpa 1030.5 -0.003 0.03

11 Thermal conductivity of air at T=300 K, kair 0.02624 W/(m·K) 0.0027 6.04

12 Heat transfer coefficient multiplier, fht 1 0.0027 50

13 Nusselt parameters, a0,Nu 8.235 0.0022 25

14 Wetted fraction of fill surface area, wtsa 1 0.0022 0

15 Fill section surface area, Asurf 14221 m2 0.0022 25

16 Wind speed, Vw 1.352 m/s -0.0018 46.15

17 Fill section flow area, Afill 67.29 m2 -0.0018 10

18 Water enthalpy hf(T) parameters, a1f 4186.51 0.0015 0.04

19 Cooling tower deck height above ground, ∆zdk 10.0 m -0.0014 1
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Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

20 Fill section height, ∆zfill 2.013 m 0.0012 1

21 Dynamic viscosity of air at T=300 K, µ 1.983·10−5 kg/(m·s) 0.0012 4.88

22 Fill section frictional loss multiplier, f 4 0.0012 50

23 Inlet water mass flow rate, mw,in 44.0213 kg/s 0.0011 5

24 Inlet air humidity ratio, ωin 0.01552 0.00069 8.15

25 Dav(T) parameters, a1,dav 2.65322 0.00067 0.11

26 hg(T) parameters, a0g 2005743 -0.00065 0.05

27 Mass transfer coefficient multiplier, fmt 1 -0.00053 50

28 Dav(T) parameters, a2,dav -6.1681·10−3 -0.00045 0.37

29 Fan shroud height, ∆zfan 3.0 m -0.00042 1

30 hf(T) parameters, a0f -1143423 -0.00037 0.05

31 Dav(T) parameters, a0,dav 7.06085·10−9 -0.00035 0

32 Sum of loss coefficients above fill, ksum 10 0.0003 50

33 hg(T) parameters, a1g 1815.437 -0.00027 0.19

34 Rain section height, ∆zrain 1.633 m 0.00023 1

35 Kinematic viscosity of air at T=300 K, ν 1.568·10−5 m2/s -0.00018 12.09

36 Prandlt number of air at T=80 ◦C, Pr 0.708 0.00018 0.71

37 Schmidt number, Sc 0.6188 -0.00018 1.19

38 Cpa(T) parameters, a1,cpa -0.19975 0.00017 1

39 Basin section height, ∆zbs 1.168 m 0.00016 1

40 Dav(T) parameters, a3,dav 6.55265·10−6 0.00014 0.58

41 Cpa(T) parameters, a2,cpa 3.9734·10−4 -0.00009 0.84

42 Drift eliminator thickness, ∆zde 0.1524 m 0.00008 1

43 Cooling tower deck width in x-dir, Wdkx 8.5 m 0.00005 1

44 Cooling tower deck width in y-dir, Wdky 8.5 m 0.00005 1

45 Nusselt parameters, a1,Nu 0.0031498 0.0011 31.75

46 Nusselt parameters, a2,Nu 0.9902987 0.00008 33.02

47 Nusselt parameters, a3,Nu 0.023 0 38.26

As the results in Table 4.1 indicate, the first 3 parameters (i.e., Tw,in, Tdb and

Ta,in) have relative sensitivities between ca. 15% and 83%, and are therefore the

most important for the air outlet temperature response, T
(1)
a . The largest sensi-

tivity has a value ca. 83%, which means that a 1% change in Tw,in would induce a
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0.83% change in T
(1)
a . The next three parameters (i.e., a0, a1 and Tdp) have rela-

tive sensitivities between 1% and 3%, and are therefore somewhat important. The

remaining 41 parameters are relatively unimportant for this response, having rel-

ative sensitivities smaller than 1% of the largest relative sensitivity (with respect

to Ta,in) for this response. Positive sensitivities imply that a positive change in

the respective parameter would cause an increase in the response, while negative

sensitivities imply that a positive change in the respective parameter would cause

a decrease in the response.

4.1.1.2 Relative sensitivities of the outlet water temperature, T
(50)
w

The results and ranking of the relative sensitivities of the outlet water tem-

perature with respect to the most important 9 parameters for this response are

listed in Table 4.2. The largest sensitivity of T
(50)
w is to the parameter Tw,in, and

has the value of 0.4856; this means that a 1% increase in Tw,in would induce a

0.4856% increase in T
(50)
w . The sensitivities to the remaining 38 model parameters

have not been listed since they are smaller than 1% of the largest sensitivity (with

respect to Tw,in) for this response.

Table 4.2: Ranked relative sensitivities of the outlet water temperature, T
(50)
w , for case 1a.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet water temperature, Tw,in 298.77 K 0.4856 0.47

2 Inlet air temperature, Ta,in 294.03 K 0.246 0.61

3 Air temperature (dry bulb), Tdb 294.03 K 0.2434 0.61

4 Dew point temperature, Tdp 293.49 K 0.2074 0.55

5 Pvs(T) parameters, a0 25.5943 -0.114 0.04

6 Pvs(T) parameters, a1 -5229.89 0.0742 0.08

7 Inlet air humidity ratio, ωin 0.01552 0.0114 8.15

8 Water enthalpy hf(T) parameters, a1f 4186.51 0.0079 0.04

9 Inlet water mass flow rate, mw,in 44.01 kg/s 0.0058 5
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4.1.1.3 Relative sensitivities of the outlet water mass flow rate, m
(50)
w

The results and ranking of the relative sensitivities of the outlet water mass

flow rate with respect to the most important 7 parameters for this response are

listed in Table 4.3. This response is most sensitive to mw,in (a 1% increase in this

parameter would cause a 1.00% increase in the response) and the second largest

sensitivity is to the parameter Tw,in (a 1% increase in this parameter would cause

a 0.198% decrease in the response). The sensitivities to the remaining 40 model

parameters have not been listed since they are smaller than 1% of the largest

sensitivity (with respect to mw,in) for this response.

Table 4.3: Ranked relative sensitivities of the outlet water temperature, T
(50)
w , for case 1a.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet water mass flow rate, mw,in 44.0213 kg/s 1.0021 5

2 Inlet water temperature, Tw,in 298.77 K -0.1983 0.47

3 Dew point temperature, Tdp 293.49 K 0.1069 0.55

4 Pvs(T) parameters, a0 25.5943 -0.0593 0.04

5 Inlet air temperature, Ta,in 294.03 K 0.0557 0.61

6 Air temperature (dry bulb), Tdb 294.03 K 0.0543 0.61

7 Pvs(T) parameters, a1 -5229.89 0.0386 0.08

4.1.1.4 Relative sensitivities of the outlet air relative humidity, RH(1)

The results and ranking of the relative sensitivities of the outlet air relative

humidity with respect to the most important 19 parameters for this response are

listed in Table 4.4. The first three sensitivities of this response are quite large.

In particular, an increase of 1% in Ta,in or Tdb would cause a decrease in the

response of 2.11% or 1.95%, respectively. On the other hand, an increase of 1%

in Tdp would cause an increase of 1.58% in the response. The sensitivities to the
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remaining 28 model parameters have not been listed since they are smaller than

1% of the largest sensitivity (with respect to Ta,in) for this response.

Table 4.4: Ranked relative sensitivities of the outlet air relative humidity, RH(1), for case 1a.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet air temperature, Ta,in 294.03 K -2.1108 0.61

2 Air temperature (dry bulb), Tdb 294.03 K -1.9468 0.61

3 Dew point temperature, Tdp 293.49 K 1.5759 0.55

4 Inlet water temperature, Tw,in 298.77 K 0.3398 0.47

5 Dav(T) parameters, a1,dav 2.653 -0.1559 0.11

6 Atmospheric pressure, Patm 100853 Pa 0.1276 0.28

7 Mass transfer coefficient multiplier, fmt 1 0.1239 50

8 Thermal conductivity of air at T=300 K, kair 0.02624 W/(m·K) -0.1238 6.04

9 Heat transfer coefficient multiplier, fht 1 -0.1238 50

10 Cpa(T) parameters, a0,cpa 1030.5 0.1231 0.03

11 Dav(T) parameters, a2,dav -6.1681·10−3 0.1066 0.37

12 Inlet air humidity ratio, ωin 0.01552 0.0863 8.15

13 Pvs(T) parameters, a0 25.5943 -0.0847 0.04

14 Dav(T) parameters, a0,dav 7.06085·10−9 0.0826 0

15 Pvs(T) parameters, a1 -5229.89 0.071 0.08

16 Prandlt number of air at T=80 ◦C, Pr 0.708 -0.0413 0.71

17 Kinematic viscosity of air at T=300 K, ν 1.568·10−5 m2/s 0.0413 12.09

18 Schmidt number, Sc 0.6188 0.0413 1.19

19 Dav(T) parameters, a3,dav 6.55265·10−6 -0.0333 0.58

4.1.1.5 Relative sensitivities of the air mass flow rate, ma

The results and ranking of the relative sensitivities of the outlet air relative

humidity with respect to the most important 15 parameters for this response are

listed in Table 4.5. The first three sensitivities of this response are very large

(relative sensitivities much larger than unity are customarily considered to be

very significant). In particular, an increase of 1% in Tdb or Ta,in would cause a
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decrease in the response of 24.48% or 24.45%, respectively. On the other hand,

an increase of 1% in Tw,in would cause an increase of 22.21% in the response.

The sensitivities to the remaining 32 model parameters have not been listed since

they are smaller than 1% of the largest sensitivity (with respect to Tdb) for this

response.

Table 4.5: Ranked relative sensitivities of the air mass flow rate, ma, for case 1a.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Air temperature (dry bulb), Tdb 294.03 K -24.478 0.61

2 Inlet air temperature, Ta,in 294.03 K -24.456 0.61

3 Inlet water temperature, Tw,in 298.77 K 22.209 0.47

4 Atmospheric pressure, Patm 100853 Pa 1.2204 0.28

5 Fan shroud inner diameter, Dfan 4.1 m 0.8567 1

6 Pvs(T) parameters, a0 25.5943 -0.8069 0.04

7 Dew point temperature, Tdp 293.49 K 0.5673 0.55

8 Fill section equivalent diameter, Dh 0.0381 m 0.5568 1

9 Pvs(T) parameters, a1 -5229.89 0.5259 0.08

10 Wind speed, Vw 1.352 m/s 0.4825 46.15

11 Fill section flow area, Afill 67.29 m2 0.4783 10

12 Cooling tower deck height above ground, ∆zdk 10.0 m 0.3797 1

13 Fill section height, ∆zfill 2.013 m -0.317 1

14 Dynamic viscosity of air at T=300 K, µ 1.983·10−5 kg/(m·s) -0.3134 4.88

15 Fill section frictional loss multiplier, f 4 -0.3134 50

Overall, the air mass flow rate, ma, displays the largest sensitivities, so this re-

sponse is the most sensitive to parameter variations. The other responses, namely

the outlet air temperature, the outlet water temperature, the outlet water mass

flow rate and the outlet air relative humidity display sensitivities of comparable

magnitude.
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4.1.2 Adjoint Sensitivity Analysis of Case 1b: Fan Off,

Saturated Outlet Air Conditions, with Inlet Air Sat-

urated

4.1.2.1 Relative sensitivities of the outlet air temperature, T
(1)
a

The sensitivities of the air outlet temperature with respect to all of the model

parameters for case 1b have been computed using Eq. (3.22). The numerical

results and ranking of the relative sensitivities, in descending order of their mag-

nitudes, are provided in Table 4.6, below, along with their respective relative

standard deviations.

Table 4.6: Ranked relative sensitivities of the outlet air temperature, T
(1)
a , for case 1b.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet water temperature, Tw,in 299.54 K 0.8161 0.36

2 Inlet air temperature, Ta,in 294.40 K 0.1753 0.34

3 Air temperature (dry bulb), Tdb 294.40 K 0.1741 0.34

4 Pvs(T) parameters, a0 25.5943 -0.0272 0.04

5 Pvs(T) parameters a1 -5229.89 0.0176 0.08

6 Fill section equivalent diameter, Dh 0.0381 m -0.0051 1

7 Atmospheric pressure, Patm 100606 Pa -0.0049 0.31

8 Cpa(T) parameters, a0,cpa 1030.5 -0.0037 0.03

9 Fan shroud inner diameter, Dfan 4.1 m -0.0036 1

10 Thermal conductivity of air at T=300 K, kair 0.02624 W/(m·K) 0.0035 6.04

11 Heat transfer coefficient multiplier, fht 1 0.0035 50

12 Fill section surface area, Asurf 14221 m2 0.0025 25

13 Wetted fraction of fill surface area, wtsa 1 0.0025 0

14 Nusselt parameters, a0,Nu 8.235 0.0025 25

15 Fill section flow area, Afill 67.29 m2 -0.002 10

16 Wind speed, Vw 1.80 m/s -0.002 10

17 Dew point temperature, Tdp 294.66 K -0.0019 0.37

18 Water enthalpy hf(T) parameters, a1f 4186.51 0.0017 0.04

19 Cooling tower deck height above ground, ∆zdk 10.0 m -0.0016 1
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Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

20 Fill section height, ∆zfill 2.013 m 0.0013 1

21 Fill section frictional loss multiplier, f 4 0.0013 50

22 Dynamic viscosity of air at T=300 K, µ 1.983·10−5 kg/(m·s) 0.0013 4.88

23 Inlet water mass flow rate, mw,in 44.01 kg/s 0.0013 5

24 Dav(T) parameters, a1,dav 2.65322 0.0012 0.11

25 Mass transfer coefficient multiplier, fmt 1 -0.00095 50

26 Dav(T) parameters, a2,dav -6.1681·10−3 -0.00082 0.37

27 hg(T) parameters, a0g 2005743 -0.00077 0.05

28 Dav(T) parameters, a0,dav 7.06085·10−9 -0.00064 0

29 Fan shroud height, ∆zfan 3.0 m -0.00048 1

30 Water enthalpy hf(T) parameters, a0f -1143423 -0.00044 0.05

31 Sum of loss coefficients above fill, ksum 10 0.00035 50

32 hg(T) parameters, a1g 1815.437 -0.00033 0.19

33 Prandlt number of air at T=80 ◦C, Pr 0.708 0.00032 0.71

34 Schmidt number, Sc 0.619 -0.00032 12.12

35 Kinematic viscosity of air at T=300 K, ν 1.568·10−5 m2/s -0.00032 12.09

36 Rain section height, ∆zrain 1.633 m 0.00026 1

37 Dav(T) parameters, a3,dav 6.55265·10−6 0.00026 0.58

38 Cpa(T) parameters, a1,cpa -0.19975 0.00021 1

39 Basin section height, ∆zbs 1.168 m 0.00019 1

40 Cpa(T) parameters, a2,cpa 3.9734·10−4 -0.00012 0.84

41 Inlet air humidity ratio, ωin 0.01588 -0.00011 8.08

42 Drift eliminator thickness, ∆zde 0.1524 m 0.00009 1

43 Cooling tower deck width in x-dir, Wdkx 8.5 m 0.00006 1

44 Cooling tower deck width in y-dir, Wdky 8.5 m 0.00006 1

45 Nusselt parameters, a1,Nu 0.0031498 0 31.75

46 Nusselt parameters, a2,Nu 0.9902987 0 33.02

47 Nusselt parameters, a3,Nu 0.023 0 38.26

As the results in Table 4.6 indicate, the first 3 parameters (i.e., Tw,in, Ta,in

and Tdb) have relative sensitivities between ca. 17% and 81%, and are therefore

the most important for the air outlet temperature response, T
(1)
a . The largest

sensitivity has a value of 0.8161, which means that a 1% change in Tw,in would
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induce a 0.81% change in T
(1)
a . The next two parameters (i.e., a0 and a1) have

relative sensitivities between 1% and 3%, and are therefore somewhat important.

The remaining 42 parameters are relatively unimportant for this response, hav-

ing relative sensitivities smaller than 1% of the largest relative sensitivity (with

respect to Tw,in) for this response.

4.1.2.2 Relative sensitivities of the outlet water temperature, T
(50)
w

The results and ranking of the relative sensitivities of the outlet water tem-

perature with respect to the most important 9 parameters for this response are

listed in Table 4.7. The largest two sensitivities of T
(50)
w are to the parameters

Ta,in and Tdb. An increase of 1% in Ta,in or Tdb would cause an increase in the

response of 0.486% or 0.480%, respectively. The sensitivities to the remaining 38

model parameters have not been listed since they are smaller than 1% of the

largest sensitivity (with respect to Ta,in) for this response.

Table 4.7: Ranked relative sensitivities of the outlet water temperature, T
(50)
w , for case 1b.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet air temperature, Ta,in 294.40 K 0.4858 0.34

2 Air temperature (dry bulb), Tdb 294.40 K 0.48 0.34

3 Inlet water temperature, Tw,in 299.54 K 0.4567 0.36

4 Pvs(T) parameters, a0 25.5943 -0.117 0.04

5 Pvs(T) parameters, a1 -5229.89 0.0756 0.08

6 Water enthalpy hf(T) parameters, a1f 4186.51 0.0083 0.04

7 Inlet water mass flow rate, mw,in 44.01 kg/s 0.006 5

8 Atmospheric pressure, Patm 100606 Pa -0.0058 0.31

9 Dav(T) parameters, a1,dav 2.65322 0.0056 0.11
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4.1.2.3 Relative sensitivities of the outlet water mass flow rate, m
(50)
w

The results and ranking of the relative sensitivities of the outlet water mass

flow rate with respect to the most important 6 parameters for this response are

listed in Table 4.8. This response is most sensitive to mw,in (a 1% increase in this

parameter would cause a 1.00% increase in the response) and the second largest

sensitivity is to the parameter Tw,in (a 1% increase in this parameter would cause

a 0.213% decrease in the response). The sensitivities to the remaining 41 model

parameters have not been listed since they are smaller than 1% of the largest

sensitivity (with respect to mw,in) for this response.

Table 4.8: Ranked relative sensitivities of the outlet water temperature, T
(50)
w , for case 1b.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet water mass flow rate, mw,in 44.01 kg/s 1.0022 5

2 Inlet water temperature, Tw,in 299.54 K -0.2129 0.36

3 Inlet air temperature, Ta,in 294.40 K 0.1783 0.34

4 Air temperature (dry bulb), Tdb 294.40 K 0.1752 0.34

5 Pvs(T) parameters, a0 25.5943 -0.0613 0.04

6 Pvs(T) parameters, a1 -5229.89 0.0396 0.08

4.1.2.4 Relative sensitivities of the outlet air relative humidity, RH(1)

The results and ranking of the relative sensitivities of the outlet air relative

humidity with respect to the most important 15 parameters for this response are

listed in Table 4.9. The first three sensitivities of this response are quite large.

In particular, an increase of 1% in Ta,in or Tdb would cause a decrease in the

response of 14.35% or 14.02%, respectively. On the other hand, an increase of 1%

in Tdp would cause an increase of 13.22% in the response. The sensitivities to the
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remaining 32 model parameters have not been listed since they are smaller than

1% of the largest sensitivity (with respect to Ta,in) for this response.

Table 4.9: Ranked relative sensitivities of the outlet air relative humidity, RH(1), for case 1b.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet air temperature, Ta,in 294.40 K -14.347 0.34

2 Air temperature (dry bulb), Tdb 294.40 K -14.024 0.34

3 Dew point temperature, Tdp 294.66 K 13.216 0.37

4 Inlet air humidity ratio, ωin 0.0162 0.7257 8.07

5 Inlet water temperature, Tw,in 299.54 K 0.6619 0.36

6 Dav(T) parameters, a1,dav 2.653 -0.3078 0.11

7 Pvs(T) parameters, a0 25.5943 -0.2779 0.04

8 Atmosphere pressure, Patm 100606 Pa 0.2535 0.31

9 Thermal conductivity of air at T=300 K, kair 0.02624 W/(m·K) -0.2475 6.04

10 Heat transfer coefficient multiplier, fht 1 -0.2475 50

11 Cpa(T) parameters, a0,cpa 1030.5 0.2449 0.03

12 Mass transfer coefficient multiplier, fmt 1 0.2446 50

13 Pvs(T) parameters, a1 -5229.89 0.2324 0.08

14 Dav(T) parameters, a2,dav -6.1681·10−3 0.2107 0.37

15 Dav(T) parameters, a0,dav 7.06085·10−9 0.163 0

4.1.2.5 Relative sensitivities of the air mass flow rate, ma

The results and ranking of the relative sensitivities of the outlet air relative

humidity with respect to the most important 14 parameters for this response are

listed in Table 4.10. The first three sensitivities of this response are very large

(relative sensitivities much larger than unity are customarily considered to be

very significant). In particular, an increase of 1% in Tdb or Ta,in would cause a

decrease in the response of 22.04% or 22.00%, respectively. On the other hand,

an increase of 1% in Tw,in would cause an increase of 20.37% in the response.
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The sensitivities to the remaining 33 model parameters have not been listed since

they are smaller than 1% of the largest sensitivity (with respect to Tdb) for this

response.

Table 4.10: Ranked relative sensitivities of the air mass flow rate, ma, for case 1b.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Air temperature (dry bulb), Tdb 294.40 K -22.043 0.34

2 Inlet air temperature, Ta,in 294.40 K -22.002 0.34

3 Inlet water temperature, Tw,in 299.54 K 20.375 0.36

4 Atmospheric pressure, Patm 100606 Pa 1.1942 0.31

5 Pvs(T) parameters, a0 25.5943 -0.8716 0.04

6 Fan shroud inner diameter, Dfan 4.1 m 0.86 1

7 Pvs(T) parameters, a1 -5229.89 0.5649 0.08

8 Fill section equivalent diameter, Dh 0.0381 m 0.5365 1

9 Fill section flow area, Afill 67.29 m2 0.4704 10

10 Wind speed, Vw 1.80 m/s 0.4676 10

11 Cooling tower deck height above ground, ∆zdk 10.0 m 0.3804 1

12 Fill section height, ∆zfill 2.013 m -0.3097 1

13 Fill section frictional loss multiplier, f 4 -0.3048 50

14 Dynamic viscosity of air at T=300 K, µ 1.983·10−5 kg/(m·s) -0.3048 4.88

The air mass flow rate, ma, together with the outlet air relative humidity,

RH(1), displays the largest sensitivities, so these two responses are the most sen-

sitive to parameter variations. The other responses, namely the outlet air temper-

ature, the outlet water temperature, and the outlet water mass flow rate display

sensitivities of comparable magnitudes.
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4.1.3 Adjoint Sensitivity Analysis of Case 2: Fan Off, Un-

saturated Air Conditions

4.1.3.1 Relative sensitivities of the outlet air temperature, T
(1)
a

Table 4.11 lists the sensitivities, computed using Eq. (3.22), of the air outlet

temperature with respect to all of the model parameters. The parameters have

been ranked according to the descending order of their relative sensitivities.

Table 4.11: Ranked relative sensitivities of the outlet air temperature, T
(1)
a , for case 2.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet water temperature, Tw,in 298.893 K 0.91878 0.56

2 Air temperature (dry bulb), Tdb 298.882 K 0.06522 1.35

3 Inlet air temperature, Ta,in 298.882 K 0.06478 1.35

4 Pvs(T) parameters, a0 25.5943 -0.01266 0.04

5 Dew point temperature, Tdp 292.077 K 0.01005 0.78

6 Pvs(T) parameters, a1 -5229.89 0.00828 0.08

7 Wind speed, Vw 1.859 m/s -0.00172 50.7

8 Fill section equivalent diameter, Dh 0.0381 m -0.00168 1

9 Fan shroud inner diameter, Dfan 4.1 m -0.00104 1

10 Atmospheric pressure, Patm 100588 Pa -0.00084 0.41

11 Water enthalpy hf(T) parameters, a1f 4186.51 0.0007 0.04

12 Nusselt parameter, a0,Nu 8.235 0.0007 25

13 Fill section surface area, Asurf 14221 m2 0.0007 25

14 Wetted fraction of fill surface area, wtsa 1 0.0007 0

15 Fill section flow area, Afill 67.29 m2 -0.00068 10

16 Inlet air humidity ratio, ωin 0.0139 0.00055 13.8

17 Inlet water mass flow rate, mw,in 44.0193 kg/s 0.00048 5

18 Dynamic viscosity of air at T=300 K, µ 1.983·10−5 kg/(m·s) 0.00048 4.88

19 Fill section frictional loss multiplier, f 4 0.00048 50

20 Fill section height, ∆zfill 2.013 m 0.00046 1

21 Dav(T) parameters, a1,dav 2.65322 -0.00043 0.11

22 Cpa(T) parameters, a0,cpa 1030.5 -0.00041 0.03

23 Thermal conductivity of air at T=300 K, kair 0.02624 W/(m·K) 0.00037 6.04
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Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

24 Heat transfer coefficient multiplier, fht 1 0.00037 50

25 hg(T) parameters, a0g 2005744 -0.00036 0.05

26 Mass transfer coefficient multiplier, fmt 1 0.00034 50

27 Dav(T) parameters, a2,dav -6.17·10−3 0.0003 0.37

28 Dav(T) parameters, a0,dav 7.06·10−9 0.00022 0

29 hf(T) parameters, a0f -1143423 -0.0002 0.05

30 Kinematic viscosity of air at T=300 K, ν 1.568·10−5 m2/s 0.00011 12.09

31 Prandlt number of air at T=80 ◦C, Pr 0.708 -0.00011 0.71

32 Schmidt number, Sc 0.5998 0.00011 2.66

33 hg(T) parameters, a1g 1815.437 -0.00011 0.19

34 Sum of loss coefficients above fill, ksum 10 0.0001 50

35 Dav(T) parameters, a3,dav 6.55·10−6 -0.000094 0.58

36 Drift eliminator thickness, ∆zde 0.1524 m 0.000034 1

37 Cpa(T) parameter, a1,cpa -0.19975 0.000023 1

38 Cooling tower deck width in x-dir, Wdkx 8.5 m 0.000017 1

39 Cooling tower deck width in y-dir, Wdky 8.5 m 0.000017 1

40 Cooling tower deck height above ground, ∆zdk 10.0 m 0.000014 1

41 Cpa(T) parameter, a2,cpa 3.97·10−4 -0.000013 0.84

42 Fan shroud height, ∆zfan 3.0 m 0.000004 1

43 Rain section height, ∆zrain 1.633 m -0.000002 1

44 Basin section height, ∆zbs 1.168 m -0.000001 1

45 Nusselt parameters, a1,Nu 0.0031498 0 31.75

46 Nusselt parameters, a2,Nu 0.9902987 0 33.02

47 Nusselt parameters, a3,Nu 0.023 0 38.26

As the results in Table 4.11 indicate, the first parameter (i.e., Tw,in) has a

relative sensitivity around 90%, and is therefore the most important for the air

outlet temperature response, T
(1)
a , since that means that a 1% change in Tw,in

would induce a 0.91% change in T
(1)
a . The next four parameters (i.e., Tdb, Ta,in,

a0, Tdp) have relative sensitivities between 1% and 6%, and are therefore some-

what important. Parameters #6 through #9 (i.e.,. a1, Vw, Dh, Dfan) have relative

sensitivities between 0.1% and 0.8%. The remaining 38 parameters are relatively
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unimportant for this response, having relative sensitivities smaller than 1% of the

largest relative sensitivity (with respect toTa,in) for this response. Positive sensi-

tivities imply that a positive change in the respective parameter would cause an

increase in the response, while negative sensitivities imply that a positive change

in the respective parameter would cause a decrease in the response.

4.1.3.2 Relative sensitivities of the outlet water temperature, T
(50)
w

The results and ranking of the relative sensitivities of the outlet water tem-

perature with respect to the most important 9 parameters for this response are

listed in Table 4.12. The largest sensitivity of T
(50)
w is to the parameter Tw,in, and

has the value of 0.5055; this means that a 1% increase in Tw,in would induce a

0.5055% increase in T
(50)
w . The sensitivities to the remaining 38 model parameters

have not been listed since they are smaller than 1% of the largest sensitivity (with

respect to Tw,in) for this response.

Table 4.12: Ranked relative sensitivities of the outlet water temperature, T
(50)
w , for case 2.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet water temperature, Tw,in 298.893 K 0.50556 0.56

2 Inlet air temperature, Ta,in 298.882 K 0.25323 1.35

3 Air temperature (dry bulb), Tdb 298.882 K 0.25263 1.35

4 Dew point temperature, Tdp 292.077 K 0.171 0.78

5 Pvs(T) parameters, a0 25.5943 -0.12617 0.04

6 Pvs(T) parameters, a1 -5229.89 0.08251 0.08

7 Inlet air humidity ratio, ωin 0.0139 0.00934 13.8

8 Water enthalpy hf(T) parameter, a1f 4186.50768 0.00704 0.04

9 Wind speed, Vw 1.859 m/s -0.00595 50.7
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4.1.3.3 Relative sensitivities of the outlet water mass flow rate, m
(50)
w

The results and ranking of the relative sensitivities of the outlet water mass

flow rate with respect to the most important 12 parameters for this response are

listed in Table 4.13. This response is most sensitive to mw,in (a 1% increase in this

parameter would cause a 1.01% increase in the response) and the second largest

sensitivity is to the parameter Tw,in (a 1% increase in this parameter would cause

a 0.214% decrease in the response). The sensitivities to the remaining 35 model

parameters have not been listed since they are smaller than 1% of the largest

sensitivity (with respect to mw,in) for this response.

Table 4.13: Ranked relative sensitivities of the outlet water temperature, T
(50)
w , for case 2.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet water mass flow rate, mw,in 44.0193 kg/s 1.0024 5

2 Inlet water temperature, Tw,in 298.893 K -0.21368 0.56

3 Dew point temperature, Tdp 292.077 K 0.08748 0.78

4 Inlet air temperature, Ta,in 298.882 K 0.08692 1.35

5 Air temperature (dry bulb), Tdb 298.882 K 0.08663 1.35

6 Pvs(T) parameters, a0 25.5943 -0.06479 0.04

7 Pvs(T) parameters, a1 -5229.89 0.04238 0.08

8 Inlet air humidity ratio, ωin 0.0139 0.00478 13.8

9 Wind speed, Vw 1.859 m/s -0.00313 50.7

10 Fan shroud inner diameter, Dfan 4.1 m -0.00189 1

11 Fill section equivalent diameter, Dh 0.0381 m -0.00152 1

12 Fill section flow area, Afill 67.29 m2 0.00124 10

4.1.3.4 Relative sensitivities of the outlet air relative humidity, RH(1)

The results and ranking of the relative sensitivities of the outlet air relative

humidity with respect to the most important 29 parameters for this response are

listed in Table 4.14. The first three sensitivities of this response are the most
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relevant ; in particular, an increase of 1% in Tdb or Ta,in would cause an increase

in the response of 0.27% or 0.25%, respectively. On the other hand, an increase

of 1% in Tw,in would cause a decrease of 0.32% in the response. The sensitivities

to the remaining 18 model parameters have not been listed since they are smaller

than 1% of the largest sensitivity (with respect to Tw,in) for this response.

Table 4.14: Ranked relative sensitivities of the outlet air relative humidity, RH(1), for case 2.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet water temperature, Tw,in 298.893 K -0.31903 0.56

2 Air temperature (dry bulb), Tdb 298.882 K 0.27111 1.35

3 Inlet air temperature, Ta,in 298.882 K 0.24914 1.35

4 Dew point temperature, Tdp 292.077 K 0.062 0.78

5 Dav(T) parameters, a1,dav 2.65322 -0.21076 0.11

6 Fill section equivalent diameter, Dh 0.0381 m -0.01753 1

7 Mass transfer coefficient multiplier, fmt 1 0.01662 50

8 Dav(T) parameters, a2,dav -0.006168 0.01464 0.37

9 Wind speed, Vw 1.859 m/s -0.01353 50.7

10 Dav(T) parameters, a0,dav 7.06·10−9 0.01108 0

11 Fill section surface area, Asurf 14221 m2 0.00991 25

12 Wetted fraction of fill surface area, wtsa 1 0.00991 0

13 Nusselt parameters, a0,Nu 8.235 0.00991 25

14 Fan shroud inner diameter, Dfan 4.1 m -0.0082 1

15 Thermal conductivity of air at T=300 K, kair 0.02624 W/(m·K) -0.00671 6.04

16 Heat transfer coefficient multiplier, fht 1 -0.00671 50

17 Cpa(T) parameters, a0,cpa 1030.5 0.0067 0.03

18 Pvs(T) parameters, a0 25.5943 -0.00656 0.04

19 Kinematic viscosity of air at T=300 K, ν 1.568·10−5 m2/s 0.00554 12.09

20 Prandlt number of air at T=80 ◦C, Pr 0.708 -0.00554 0.71

21 Schmidt number, Sc 0.5998 0.00554 2.66

22 Fill section flow area, Afill 67.29 m2 -0.00539 10

23 Dav(T) parameters, a3,dav 6.55·10−6 -0.00465 0.58

24 Dynamic viscosity of air at T=300 K, µ 1.983·10−5 kg/(m·s) 0.00381 4.88

25 Fill section frictional loss multiplier, f 4 0.00381 50

26 Pvs(T) parameters, a1 -5229.89 0.00379 0.08
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Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

27 Atmosphere pressure, Patm 100588 Pa 0.00372 0.41

28 Fill section height, ∆zfill 2.013 m 0.00362 1

29 Inlet air humidity ratio, ωin 0.0139 0.00339 13.8

4.1.3.5 Relative sensitivities of the air mass flow rate, ma

The results and ranking of the relative sensitivities of the air mass flow rate

with respect to the most important 14 parameters for this response are listed in

Table 4.15. The first three sensitivities of this response are very large (relative

sensitivities larger than unity are customarily considered to be very significant).

In particular, an increase of 1% in Ta,in or Tdb would cause a decrease in the

response of 38.51% or 38.49%, respectively. On the other hand, an increase of 1%

in Tw,in would cause an increase of 36% in the response. The sensitivities to the

remaining 33 model parameters have not been listed since they are smaller than

1% of the largest sensitivity (with respect to Ta,in) for this response.

Table 4.15: Ranked relative sensitivities of the air mass flow rate, ma, for case 2.

Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

1 Inlet air temperature, Ta,in 298.882 K -38.51406 1.35

2 Air temperature (dry bulb), Tdb 298.882 K -38.49249 1.35

3 Inlet water temperature, Tw,in 298.893 K 36.0013 0.56

4 Atmosphere pressure, Patm 100588 Pa 1.37474 0.41

5 Wind speed, Vw 1.859 m/s 1.36609 50.7

6 Fan shroud inner diameter, Dfan 4.1 m 0.8279 1

7 Pvs(T) parameters, a0 25.5943 -0.767 0.04

8 Fill section equivalent diameter, Dh 0.0381 m 0.74221 1

9 Dew point temperature, Tdp 292.077 K 0.70105 0.78
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Rank

#
Parameter (αi) Nominal Value

Rel.

Sens.

RS (αi)

Rel. std.

dev. (%)

10 Fill section flow area, Afill 67.29 m2 0.54384 10

11 Pvs(T) parameters, a1 -5229.89 0.50156 0.08

12 Dynamic viscosity of air at T=300 K, µ 1.983·10−5 kg/(m·s) -0.38448 4.88

13 Fill section frictional loss multiplier, f 4 -0.38448 50

14 Fill section height, ∆zfill 2.013 m -0.36512 1

Overall, the air mass flow rate, ma, displays the largest sensitivities, so this re-

sponse is the most sensitive to parameter variations. The other responses, namely

the outlet air temperature, the outlet water temperature, the outlet water mass

flow rate and the outlet air relative humidity display sensitivities of comparable

magnitude for case 2.

4.2 Cross-comparison of the most relevant sen-

sitivities

In Tables 4.16 through 4.20, the ranked relative sensitivities for each response

are compared side-by-side between the three natural draft operating conditions,

i.e., case 1a, case 1b and case 2. Among the three operating conditions, case 2

is defined as a working condition in which air is unsaturated from the inlet to

outlet of the cooling tower; while in the saturated case 1b, on the contrary, air is

saturated from inlet to outlet of the cooling tower; the saturated case 1a is the

combination of the these two cases, i.e., air in the lower portion of the fill section

of the cooling tower is in unsaturated conditions, reaching saturation at some

point along the height of the tower and remaining saturated in the upper part of

the cooling tower. Cross-comparison of sensitivity results reveals the sensitivity

variations between the three operating conditions.
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4.2.1 Relative sensitivities of the outlet air temperature,

T
(1)
a

The relative sensitivities and corresponding parameters listed in Table 4.16

are extracted from Table 4.1 in Paragraph 4.1.1.1, from Table 4.6 in Paragraph

4.1.2.1, and from Table 4.11 in Paragraph 4.1.3.1.

Table 4.16: Cross-comparison of the top 5 relative sensitivities for the response of outlet air temperature, T
(1)
a ,

between the natural draft cases 1a, 1b and 2.

Rank #

Rel. Sens. in Unsaturated

Conditions - Case 2

(based on 6717

unsaturated data sets)

Rel. Sens. in Saturated Conditions

Case 1a

(based on 377 data sets

with inlet air unsaturated)

Case 1b

(based on 290 data sets

with inlet air unsaturated)

1
0.9179

Tw,in

0.8346

Tw,in

0.8161

Tw,in

2
0.0652

Tdb

0.1436

Ta,in

0.1754

Ta,in

3
0.0648

Ta,in

0.1429

Tdb

0.1741

Tdb

4
-0.0127

a0

-0.0231

a0

-0.0272

a0

5
0.0101

Tdp

0.0151

a1

0.0176

a1

As shown in Table 4.16, for all three operating conditions, the first most

sensitive parameters of the response of air outlet temperature, T
(1)
a , is the same

(i.e., Tw,in). The 2nd and 3rd most sensitive parameter are inverted in the case

2 with respect to cases 1a and 1b, but with values very close between the two

parameters. The parameters that ranks in 4th place for this response is the same

for all cases (i.e., a0). The 5th parameter is a0 for cases 1a and 1b and Tdp

for the case 2. For the first parameter (i.e., Tw,in), case 2 displays the largest
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sensitivity for this response; case 1b has the smallest sensitivity; while case 1a

has an intermediate value of sensitivity between the two. This is expected since

case 1a is a mixed case between case 2 and the saturated case 1b. For all the

remaining parameters in the table the situation is reversed, with case 1b showing

the largest sensitivity values and the unsaturated case presenting the smallest

ones, with case 1a still in the middle. Generally, the sensitivity magnitude of case

1a is slightly closer to that of case 1b. This can be explained by the fact that

air remains unsaturated less than half of the height of the fill section, and flows

in saturated conditions for more than half of the height of the fill section, as

analyzed in Section 2.3.1.

4.2.2 Relative sensitivities of the outlet water tempera-

ture, T
(50)
w

The relative sensitivities and corresponding parameters listed in Table 4.17

are extracted from Table 4.2 in Paragraph 4.1.1.2, from Table 4.7 in Paragraph

4.1.2.2, and from Table 4.12 in Paragraph 4.1.3.2.

Table 4.17: Cross-comparison of the top 5 relative sensitivities for the response of outlet water temperature,

T
(50)
w , between the natural draft cases 1a, 1b and 2.

Rank #

Rel. Sens. in Unsaturated

Conditions - Case 2

(based on 6717

unsaturated data sets)

Rel. Sens. in Saturated Conditions

Case 1a

(based on 377 data sets

with inlet air unsaturated)

Case 1b

(based on 290 data sets

with inlet air unsaturated)

1
0.9179

Tw,in

0.8346

Tw,in

0.8161

Tw,in

2
0.0652

Tdb

0.1436

Ta,in

0.1754

Ta,in

3
0.0648

Ta,in

0.1429

Tdb

0.1741

Tdb

100



CHAPTER 4. RESULTS

Rank #

Rel. Sens. in Unsaturated

Conditions - Case 2

(based on 6717

unsaturated data sets)

Rel. Sens. in Saturated Conditions

Case 1a

(based on 377 data sets

with inlet air unsaturated)

Case 1b

(based on 290 data sets

with inlet air unsaturated)

4
-0.0127

a0

-0.0231

a0

-0.0272

a0

5
0.0101

Tdp

0.0151

a1

0.0176

a1

As shown in Table 4.17, for the response of water outlet temperature, T
(50)
w ,

both case 2 and case 1a are most sensitive to the parameter Tw,in, whereas case 1b

is most sensitive to the parameter Ta,in. As a comparison, the response of water

outlet temperature to the parameter Tw,in ranks in 3rd place, with a value com-

parable to the other two cases. The next two most sensitive parameters that rank

from 2nd to 3rd places of this response are also different between the operating

conditions: for both case 2 and case 1a, parameters Ta,in and Tdb rank in 2nd and

3rd places, respectively; however, for case 1b, parameters that take the 2nd and

3rd places are Tdb and Tw,in, respectively. The parameters that take the 4th and

5th places are also different between the operating conditions, as shown in the

table. Overall, for the response of water outlet temperature, T
(50)
w , the sensitivity

behavior of case 1a is more similar to that of the case 2.

4.2.3 Relative sensitivities of the outlet water mass flow

rate, m
(50)
w

The relative sensitivities and corresponding parameters listed in Table 4.18

are extracted from Table 4.3 in Paragraph 4.1.1.3, from Table 4.8 in Paragraph

4.1.2.3, and from Table 4.13 in Paragraph 4.1.3.3.
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Table 4.18: Cross-comparison of the top 5 relative sensitivities for the response of outlet water mass flow rate,

m
(50)
w , between the natural draft cases 1a, 1b and 2.

Rank #

Rel. Sens. in Unsaturated

Conditions - Case 2

(based on 6717

unsaturated data sets)

Rel. Sens. in Saturated Conditions

Case 1a

(based on 377 data sets

with inlet air unsaturated)

Case 1b

(based on 290 data sets

with inlet air unsaturated)

1
1.002

mw,in

1.002

mw,in

1.002

mw,in

2
-0.2137

Tw,in

-0.1983

Tw,in

-0.2129

Tw,in

3
0.0875

Tdp

0.1069

Tdp

0.1783

Ta,in

4
0.0869

Ta,in

-0.0593

a0

0.1751

Tdb

5
0.0867

Tdb

0.0557

Ta,in

-0.0613

a0

As shown in Table 4.18, for all three operating conditions, the first two most

sensitive parameters of the response of water outlet mass flow rate, m
(50)
w , are the

same (i.e., mw,in and Tw,in, respectively). In addition, for each of the first two pa-

rameters, all three operating conditions have comparable sensitivity magnitudes.

This indicates that the sensitivities of the first two parameters are insensitive

to the operating condition change. The third most sensitive parameter of this

response is different between the operating conditions: for both case 2 and case

1a, this parameter is Tdp; whereas, for case 1b, this parameter is Ta,in. Similarly,

the parameters that take the 4th and 5th places are also different between the

operating conditions, as shown in the table.
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4.2.4 Relative sensitivities of the outlet air relative hu-

midity, RH(1)

The relative sensitivities and corresponding parameters listed in Table 4.19

are extracted from Table 4.4 in Paragraph 4.1.1.4, from Table 4.9 in Paragraph

4.1.2.4, and from Table 4.14 in Paragraph 4.1.3.4.

Table 4.19: Cross-comparison of the top 5 relative sensitivities for the response of outlet air relative humidity,

RH(1), between the natural draft cases 1a, 1b and 2.

Rank #

Rel. Sens. in Unsaturated

Conditions - Case 2

(based on 6717

unsaturated data sets)

Rel. Sens. in Saturated Conditions

Case 1a

(based on 377 data sets

with inlet air unsaturated)

Case 1b

(based on 290 data sets

with inlet air unsaturated)

1
-0.3190

Tw,in

-2.1108

Ta,in

-14.347

Ta,in

2
0.2711

Tdb

-1.9469

Tdb

-14.024

Tdb

3
0.2491

Ta,in

1.5759

Tdp

13.216

Tdp

4
0.0620

Tdp

0.3398

Tw,in

0.7257

ωin

5
-0.2108

a1,dav

-0.1559

a1,dav

0.6619

Tw,in

As shown in Table 4.19, for cases 1a and 1b, the first three most sensitive

parameters of the response of air outlet relative humidity,RH(1), are the same

(i.e., Ta,in, Tdb and Tdp, respectively); the order is different for case 2. The next

two most sensitive parameters that rank the 4th and 5th places of this response

are different between the operating conditions.

For each of the first three parameters, all three operating conditions are sen-

sitive to the parameter changes. In which, case 1b is the most sensitive case; and
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case 2 is the least sensitive case comparatively. For instance, 1% change in Ta,in,

Tdb or Tdp will cause around 0.2% change in RH(1) for case 2, around 2% change

in RH(1) for case 1a; and nearly 15% change in RH(1) for case 1b, respectively.

Overall, for the response of air outlet relative humidity, RH(1), the sensitivity

behavior of case 1a is also more similar to that of case 1b, as also the signs of

most of the sensitivity values, inverted in case 2 with respect to case 1a and 1b,

show in Table 4.19.

4.2.5 Relative sensitivities of the air mass flow rate, ma

The relative sensitivities and corresponding parameters listed in Table 4.20

are extracted from Table 4.5 in Paragraph 4.1.1.5, from Table 4.10 in Paragraph

4.1.2.5, and from Table 4.15 in Paragraph 4.1.3.5.

Table 4.20: Cross-comparison of the top 5 relative sensitivities for the response of water outlet temperature,

T
(50)
w , between the natural draft cases 1a, 1b and 2.

Rank #

Rel. Sens. in Unsaturated

Conditions - Case 2

(based on 6717

unsaturated data sets)

Rel. Sens. in Saturated Conditions

Case 1a

(based on 377 data sets

with inlet air unsaturated)

Case 1b

(based on 290 data sets

with inlet air unsaturated)

1
-38.514

Ta,in

-24.478

Tdb

-22.043

Tdb

2
-38.492

Tdb

-24.456

Ta,in

-22.002

Ta,in

3
36.001

Tw,in

22.209

Tw,in

20.375

Tw,in

4
1.3747

Patm

1.2204

Patm

1.1942

Patm

5
1.3661

Vw

0.8567

Dfan

-0.8716

a0
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As shown in Table 4.20, for all the operating conditions, the first three most

sensitive parameters of the response of air mass flow rate, ma, are the same (i.e.,

Tdb, Ta,in and Tw,in, respectively) with the order of the first two being swapped for

the unsaturated case. Patm is the 4th more sensitive parameter in all operating

conditions, and with values comparable between the three cases; the parameters

ranking in 5th place are different for the three operating conditions.

For each of the first three parameters, all three operating conditions are sensi-

tive to the parameter changes. Differently from the response RH(1), case 1b is this

time the least sensitive case, while case 2 is the most sensitive case comparatively.

For instance, 1% change in Ta,in, Tdb or Tw,in will cause around 38% change in ma

for case 2, around 24% change in ma for case 1a; and nearly 22% change in ma

for case 1b, respectively. Overall, for the response of air mass flow rate, ma, the

sensitivity behavior of case 1a is also more similar to that of case 1b.

4.3 Uncertainty Analysis and Predictive Mod-

eling of the cooling tower cases of interest

The results of the application of the “predictive modeling for coupled multi-

physics systems” (PM CMPS) methodology, simultaneously combining all of

the available computed information and experimentally measured data for the

counter-flow cooling tower, are reported in this section for all the selected cases

of interest. Previously computed adjoint sensitivities are hereby used for yielding

best-estimate predicted nominal values and uncertainties for model parameters

and responses.
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4.3.1 Uncertainty Analysis and Predictive Modeling of

Case 1a: Fan Off, Saturated Outlet Air Conditions,

with Inlet Air Unsaturated

The a priori response-parameter covariance matrix, Crα, for case 1a, is com-

puted in Appendix A, Eq. (A.5), and is reproduced in Eq. (4.1):

Crα ≡ Cov
(
Tmeasa,out , T

meas
w,out , RH

meas, α1, ..., α47

)

=


1.53 1.01 0.76 −104.46 0.11 0 ... 0

1.10 1.08 1.28 −111.01 0.12 0 ... 0

0.05 0.34 −0.75 76.60 −0.25 0 ... 0


(4.1)

where the measured correlated parameters are: α1 , Tdb, α2 , Tdp, α3 , Tw,in,

α4 , Patm, and α5 , Vw.

The a priori parameter covariance matrix, Cαα, for case 1a, is partly computed

in Appendix B, Eq. (B.1), and is reproduced in Eq. (4.2).

Cαα ≡


V ar(α1) Cov(α1, α2) • Cov(α1, α47)

Cov(α2, α1) V ar(α2) • Cov(α2, α47)

• • • •

Cov(α47, α1) • • V ar(α47)



=



3.18 2.17 1.19 −187.06 0.26 0 • 0

2.17 2.58 1.26 −178.24 0.28 0 • 0

1.19 1.26 2.00 −184.39 0.26 0 • 0

−187.06 −178.24 −184.39 82133 0.42 0 • 0

0.26 0.28 0.26 0.42 0.39 0 • 0

0 0 0 0 0 0 • 0

• • • • • • • •

0 0 0 0 0 0 • 5.33× 10−5



(4.2)
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The a priori covariance matrix of the computed responses, Ccomp
rr , for case 1a,

is obtained by using Eqs. (3.96) and (4.2) together with the sensitivity results

presented in Tables 4.1 - 4.5 ; the end result is:

Ccomp
rr ≡ Cov

(
T (1)
a , T (50)

w , RH(1)
)

= SrαCααS
†
rα

=


∂T

(1)
a

∂α1
, ..., ∂T

(1)
a

∂αNα

∂T
(50)
w

∂α1
, ..., ∂T

(50)
w

∂αNα

∂RH(1)

∂α1
, ..., ∂RH

(1)

∂αNα




V ar(α1) Cov(α1, α2) • Cov(α1, α47)

Cov(α2, α1) V ar(α2) • Cov(α2, α47)

• • • •

Cov(α52, α1) • • V ar(α47)




∂T
(1)
a

∂α1
, ..., ∂T

(1)
a

∂αNα

∂T
(50)
w

∂α1
, ..., ∂T

(50)
w

∂αNα

∂RH(1)

∂α1
, ..., ∂RH

(1)

∂αNα


†

=


1.98 1.60 −3.42

1.60 1.88 −2.82

−3.42 −2.82 80.71

 .
(4.3)

The a priori covariance matrix, Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
, Crr, of the

measured responses (namely: the outlet air temperature, Tmeasa,out ≡
[
T

(1)
a

]measured
;

the outlet water temperature, Tmeasw,out ≡
[
T

(50)
w

]measured
, and the outlet air relative

humidity, RHmeas
out ≡

[
RH(1)

]measured
) for case 1a is computed in Appendix A,

Eq. (A.4), and is as follows:

Crr ≡ Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
=


1.10 0.61 −0.04

0.61 1.25 −0.64

−0.04 −0.64 3.68

 . (4.4)

4.3.1.1 Model Calibration: Predicted Best-Estimated Parameter Val-

ues with Reduced Predicted Standard Deviations

The best-estimate nominal parameter values have been calculated using Eq.

(3.93) coupled with the a priori matrices given in Eqs. (4.1) - (4.4) and the sensi-

tivities listed in Tables 4.1 - 4.5. The resulting best-estimate nominal values are

listed in Table 4.21. The best-estimate absolute standard deviations of the param-

eters are also listed in this table. These values are obtained as the square-roots
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of the diagonal elements of the matrix Cpred
αα , which is computed using Eq. (3.97)

together with the a priori matrices presented in Eqs. (4.1) - (4.4) and the sensitiv-

ities listed in Tables 4.1 - 4.5. For a more direct comparison, the original nominal

parameter values and original absolute standard deviations are also listed. As

shown in Table 4.21, all the best-estimate standard deviations are smaller or at

most equal to the original standard deviations. The variations in the parameters

values are proportional to the magnitudes of their corresponding sensitivities:

the parameters undergoing the largest reductions in their best-estimate standard

deviations are those characterized by the largest sensitivities.

Table 4.21: Best-estimated nominal parameter values and their standard deviations for case 1a.

i
Model Independent sdf

Scalar Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

1
Air temperature (dry bulb),

(K)
Tdb 294.03 1.79 294.954 1.7

2 Dew point temperature (K) Tdp 293.49 1.61 293.68 1.51

3 Inlet water temperature (K) Tw,in 298.78 1.42 298.533 1.09

4 Atmospheric pressure (Pa) Patm 100853 287 100883 269

5 Wind speed (m/s) Vw 1.42 0.62 1.274 0.62

6
Sum of loss coefficients

above fill
ksum 10 5 10.061 5

7
Dynamic viscosity of air at

T=300 K (kg/m·s)
µ 1.98·10−5 9.68·10−7 1.98·10−5 9.66·10−7

8
Kinematic viscosity of air at

T=300 K (m2/s)
ν 1.57·10−5 1.89·10−6 1.57·10−5 1.89·10−6

9
Thermal conductivity of air

at T=300 K (W/m·K)
kair 0.02624 1.58·10−3 0.02611 1.58·10−3

10
Heat transfer coefficient

multiplier
fht 1 0.5 0.6603 0.346

11
Mass transfer coefficient

multiplier
fmt 1 0.5 0.9671 0.364
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i
Model Independent sdf

Scalar Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

12
Fill section frictional loss

multiplier
f 4 2 4.093 1.92

13
Pvs(T) parameters

a0 25.5943 0.01 25.5942 0.01

14 a1 -5229.89 4.4 -5229.97 4.4

15

Cpa(T) parameters

a0,cpa 1030.5 0.294 1030.5 0.294

16 a1,cpa -0.19975 0.002 -0.19975 0.002

17 a2,cpa 3.97·10−4 3.40·10−6 3.97·10−4 3.35·10−6

18

Dav(T) parameters

a0,dav 7.06·10−9 0 7.06·10−9 0

19 a1,dav 2.65322 0.003 2.65322 0.003

20 a2,dav -6.17·10−3 2.30·10−5 -6.17·10−3 2.30·10−5

21 a3,dav 6.55·10−6 3.80·10−8 6.55·10−6 3.80·10−8

22
hf(T) parameters

a0f -1143423 543 -1143423 543

23 a1f 4186.50768 1.8 4186.50955 1.8

24
hg(T) parameters

a0g 2005743.99 1046 2005743.4 1046

25 a1g 1815.437 3.5 1815.43526 3.5

26

Nusselt parameters

a0,Nu 8.235 2.059 7.46776 2.024

27 a1,Nu 0.00314987 0.00105 0.00314987 0.001

28 a2,Nu 0.9902987 0.329 0.9902987 0.327

29 a3,Nu 0.023 0.0088 0.023 0.0088

30
Cooling tower deck width in

x-dir (m)
Wdkx 8.5 0.085 8.5 0.085

31
Cooling tower deck width in

y-dir (m)
Wdky 8.5 0.085 8.5 0.085

32
Cooling tower deck height

above ground (m)
∆zdk 10 0.1 10 0.1

33 Fan shroud height (m) ∆zfan 3 0.03 3 0.03
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i
Model Independent sdf

Scalar Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

34
Fan shroud inner diameter

(m)
Dfan 4.1 0.041 4.1 0.041

35 Fill section height (m) ∆zfill 2.013 0.02013 2.013 0.02013

36 Rain section height (m) ∆zrain 1.633 0.01633 1.633 0.01633

37 Basin section height (m) ∆zbs 1.168 0.01168 1.168 0.01168

38
Drift eliminator thickness

(m)
∆zde 0.1524 0.00152 0.1524 0.00152

39
Fill section equivalent diam-

eter (m)
Dh 0.0381 0.00038 0.0381 0.00038

40 Fill section flow area (m2) Afill 67.29 6.729 67.1945 6.705

41
Fill section surface area

(m2)
Asurf 14221 3555.3 12896 3495

42
Prandtl number of air at

T=80 ◦C
Pr 0.708 0.005 0.708 0.005

43
Wetted fraction of fill sur-

face area
wtsa 1 0 1 0

i
Boundary Parameters

(αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

44
Inlet water mass flow rate

(kg/s)
mw,in 44.02 2.20 44.2145 2.192

45 Inlet air temperature (K) Ta,in 294.03 1.79 294.3174 1.57

46 Inlet air humidity ratio ωin 0.01552 0.00149 0.01567 0.00136

i
Special Dependent sdfjg

Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

47 Schmidt number Sc 0.619 0.0073 0.6193 0.0073
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4.3.1.2 Predicted Best-Estimated Response Values with Reduced Pre-

dicted Standard Deviations

Using the a priori matrices in Eqs. (4.1) - (4.4) together with the sensitivities

listed in Tables 4.1 - 4.5 in Eq. (3.99), the following predicted response covariance

matrix, Cpred
rr , is obtained:

Cpred
rr ≡ Cov

([
T (1)
a

]be
,
[
T (50)
w

]be
,
[
RH(1)

]be)
=


0.953 0.795 −0.291

0.795 0.939 −0.283

−0.291 −0.283 3.130

 .

(4.5)

The best-estimate response-parameter correlation matrix, Cpred
αr , is obtained

by means of Eq. (3.100) in conjunction with the a priori matrices presented in

Eqs. (4.1) - (4.4) and the sensitivities listed in Tables 4.1 - 4.5.

The best-estimate nominal values of the outlet air temperature, T
(1)
a ; outlet

water temperature T
(50)
w ; and outlet air relative humidity, RH(1), have been com-

puted using Eq. (3.98) coupled with the a priori matrices given in Eqs. (4.1) -

(4.4) and the sensitivities listed in Tables 4.1 - 4.5. The resulting best-estimate

nominal values are displayed in Table 4.22. To facilitate comparison, the corre-

sponding measured and computed nominal values are also presented in this table.

Note that there are no direct measurements for the outlet water flow rate, m
(50)
w

and the air mass flow rate ma. For these two responses, therefore, the predicted

best-estimate nominal values have been obtained by a forward re-computation

using the best-estimate nominal parameter values listed in Table 4.21, while the

predicted best estimate standard deviation for this response has been obtained

by using “best-estimate” values in Eq. (3.96), i.e.,

[Ccomp
rr ]be = [Srα]be[Cαα]be

[
S†rα
]be (4.6)
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Table 4.22: Computed, measured, and optimal best-estimate nominal values and standard deviations for the

outlet air temperature, outlet water temperature, outlet air relative humidity, outlet water mass flow rate and

air mass flow rate responses for case 1a.

Nominal Values and

Standard Deviations

T
(1)
a T

(50)
w RH(1) m

(50)
w ma

[K] [K] [%] [kg/s] [kg/s]

Measured

nominal value 296.45 297.91 102.28 — —

standard deviation ±1.05 ±1.12 ±1.92 — —

Computed

nominal value 298.41 296.86 100.11 43.91 20.11

standard deviation ±1.41 ±1.37 ±8.98 ±2.20 ±6.97

Best-estimate

nominal value 297.86 296.94 103.48 44.12 16.15

standard deviation ±0.97 ±0.96 ±1.77 ±2.19 ±5.73

The results presented in Table 4.22 indicate that, as anticipated, the predicted

standard deviations are smaller than either the computed or the experimentally

measured ones. This is consequential to utilizing the PM CMPS methodology

together with consistent computational and experimental information. Unspot-

ted errors can often make the used information inconsistent; methods to confront

these situations are discussed in [37]. It is also worth noting that the PM CMPS

methodology has reduced the predicted standard deviation for the water mass

flow rate and for the air mass flow rate responses, despite the lack of experimen-

tally measure data. This is due to the global characteristics of the PM CMPS

methodology to foresee a simultaneous combination of all the available data in

the phase-space, yielding this way the aforementioned best-estimate predicted re-

sults; currently used data assimilation methodologies, on the other hand, proceed

by combine the available information in a sequential way [38, 39].
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4.3.2 Uncertainty Analysis and Predictive Modeling of

Case 1b: Fan Off, Saturated Outlet Air Conditions,

with Inlet Air Saturated

The a priori response-parameter covariance matrix, Crα, for case 1b, is com-

puted in Appendix A, Eq. (A.9), and is reproduced in Eq. (4.7).

Crα ≡ Cov
(
Tmeasa,out , T

meas
w,out , RH

meas, α1, ..., α47

)

=


0.45 0.52 0.52 1.12 0.007 0 ... 0

0.50 0.55 0.60 −51.14 −0.13 0 ... 0

0.02 0.08 0.06 123.51 −0.23 0 ... 0


(4.7)

where the measured correlated parameters are: α1 , Tdb, α2 , Tdp, α3 , Tw,in,α4 ,

Patm, and α5 , Vw.

The a priori parameter covariance matrix, Cαα, for case 1b, is partly computed

in Appendix B, Eq. (B.4), and is reproduced in Eq. (4.8).

Cαα ≡


V ar(α1) Cov(α1, α2) • Cov(α1, α47)

Cov(α2, α1) V ar(α2) • Cov(α2, α47)

• • • •

Cov(α47, α1) • • V ar(α47)



=



0.97 1.04 0.60 −128.15 0.07 0 • 0

1.04 1.16 0.66 −138.34 0.06 0 • 0

0.60 0.66 1.14 −51.83 0.02 0 • 0

−128.15 −138.34 −51.83 97463 30.66 0 • 0

0.07 0.06 0.02 30.66 0.52 0 • 0

0 0 0 0 0 0 • 0

• • • • • • • •

0 0 0 0 0 0 • 1.68× 10−5



(4.8)
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The a priori covariance matrix of the computed responses, Ccomp
rr , for case 1a,

is obtained by using Eqs. (3.96) and (4.8) together with the sensitivity results

presented in Tables 4.6 - 4.10 ; the end result is:

Ccomp
rr ≡ Cov

(
T (1)
a , T (50)

w , RH(1)
)

= SrαCααS
†
rα

=


∂T

(1)
a

∂α1
, ..., ∂T

(1)
a

∂αNα

∂T
(50)
w

∂α1
, ..., ∂T

(50)
w

∂αNα

∂RH(1)

∂α1
, ..., ∂RH

(1)

∂αNα




V ar(α1) Cov(α1, α2) • Cov(α1, α47)

Cov(α2, α1) V ar(α2) • Cov(α2, α47)

• • • •

Cov(α52, α1) • • V ar(α47)




∂T
(1)
a

∂α1
, ..., ∂T

(1)
a

∂αNα

∂T
(50)
w

∂α1
, ..., ∂T

(50)
w

∂αNα

∂RH(1)

∂α1
, ..., ∂RH

(1)

∂αNα


†

=


1.46 1.27 −9.01

1.27 1.76 −15.75

−9.01 −15.75 370.72

 .
(4.9)

The a priori covariance matrix, Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
, Crr, of the

measured responses (namely: the outlet air temperature, Tmeasa,out ≡
[
T

(1)
a

]measured
;

the outlet water temperature, Tmeasw,out ≡
[
T

(50)
w

]measured
, and the outlet air relative

humidity, RHmeas
out ≡

[
RH(1)

]measured
) for case 1b is computed in Appendix A,

Eq. (A.8), and is as follows:

Crr ≡ Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
=


0.75 0.18 0.14

0.18 0.79 0.21

0.14 0.21 1.65

 . (4.10)

4.3.2.1 Model Calibration: Predicted Best-Estimated Parameter Val-

ues with Reduced Predicted Standard Deviations

The best-estimate nominal parameter values have been calculated using Eq.

(3.93) coupled with the a priori matrices given in Eqs. (4.7) - (4.10) and the

sensitivities listed in Tables 4.6 - 4.10. The resulting best-estimate nominal values

are listed in Table 4.23. The best-estimate absolute standard deviations of the

parameters are also listed in this table. These values are obtained as the square-
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roots of the diagonal elements of the matrix Cpred
αα , which is computed using Eq.

(3.97) coupled with the a priori matrices presented in Eqs. (4.7) - (4.10) and

the sensitivities listed in Tables 4.6 - 4.10. For a more direct comparison, the

original nominal parameter values and original absolute standard deviations are

also listed. As shown in Table 4.23, all the best-estimate standard deviations are

smaller or at most equal to the original standard deviations. The variations in the

parameters values are proportional to the magnitudes of their corresponding sen-

sitivities: the parameters undergoing the largest reductions in their best-estimate

standard deviations are those characterized by the largest sensitivities.

Table 4.23: Best-estimated nominal parameter values and their standard deviations for case 1b.

i
Model Independent sdf

Scalar Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

1
Air temperature (dry bulb),

(K)
Tdb 294.4 0.98 294.115 0.93

2 Dew point temperature (K) Tdp 294.661 1.08 294.41 1.02

3 Inlet water temperature (K) Tw,in 299.543 1.07 298.411 0.9

4 Atmospheric pressure (Pa) Patm 100605 312 100767 292

5 Wind speed (m/s) Vw 1.377 0.72 1.803 0.69

6
Sum of loss coefficients

above fill
ksum 10 5 9.613 4.98

7
Dynamic viscosity of air at

T=300 K (kg/m·s)
µ 1.98·10−5 9.68·10−7 1.98·10−5 9.67·10−7

8
Kinematic viscosity of air at

T=300 K (m2/s)
ν 1.57·10−5 1.89·10−6 1.56·10−5 1.89·10−6

9
Thermal conductivity of air

at T=300 K (W/m·K)
kair 0.02624 1.58·10−3 0.02611 1.58·10−3

10
Heat transfer coefficient

multiplier
fht 1 0.5 0.6711 0.36

11
Mass transfer coefficient

multiplier
fmt 1 0.5 0.7223 0.36
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i
Model Independent sdf

Scalar Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

12
Fill section frictional loss

multiplier
f 4 2 3.4307 1.88

13
Pvs(T) parameters

a0 25.5943 0.01 25.5943 0.01

14 a1 -5229.89 4.4 -5229.92 4.4

15

Cpa(T) parameters

a0,cpa 1030.5 0.294 1030.5 0.294

16 a1,cpa -0.19975 0.002 -0.19975 0.002

17 a2,cpa 3.97·10−4 3.40·10−6 3.97·10−4 3.35·10−6

18

Dav(T) parameters

a0,dav 7.06·10−9 0 7.06·10−9 0

19 a1,dav 2.65322 0.003 2.65322 0.003

20 a2,dav -6.17·10−3 2.30·10−5 -6.17·10−3 2.30·10−5

21 a3,dav 6.55·10−6 3.80·10−8 6.55·10−6 3.80·10−8

22
hf(T) parameters

a0f -1143423 543 -1143423 543

23 a1f 4186.50768 1.8 4186.5085 1.8

24
hg(T) parameters

a0g 2005743.99 1046 2005743.74 1046

25 a1g 1815.437 3.5 1815.43646 3.5

26

Nusselt parameters

a0,Nu 8.235 2.059 6.98576 2

27 a1,Nu 0.00314987 0.00105 0.00314987 0.001

28 a2,Nu 0.9902987 0.329 0.9902987 0.327

29 a3,Nu 0.023 0.0088 0.023 0.0088

30
Cooling tower deck width in

x-dir (m)
Wdkx 8.5 0.085 8.5 0.085

31
Cooling tower deck width in

y-dir (m)
Wdky 8.5 0.085 8.5 0.085

32
Cooling tower deck height

above ground (m)
∆zdk 10 0.1 10 0.1

33 Fan shroud height (m) ∆zfan 3 0.03 3 0.03
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i
Model Independent sdf

Scalar Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

34
Fan shroud inner diameter

(m)
Dfan 4.1 0.041 4.1 0.041

35 Fill section height (m) ∆zfill 2.013 0.02013 2.013 0.02013

36 Rain section height (m) ∆zrain 1.633 0.01633 1.633 0.01633

37 Basin section height (m) ∆zbs 1.168 0.01168 1.168 0.01168

38
Drift eliminator thickness

(m)
∆zde 0.1524 0.00152 0.1524 0.00152

39
Fill section equivalent diam-

eter (m)
Dh 0.0381 0.00038 0.0381 0.00038

40 Fill section flow area (m2) Afill 67.29 6.729 67.881 6.692

41
Fill section surface area

(m2)
Asurf 14221 3555.3 12064 3455

42
Prandtl number of air at

T=80 ◦C
Pr 0.708 0.005 0.708 0.005

43
Wetted fraction of fill sur-

face area
wtsa 1 0 1 0

i
Boundary Parameters

(αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

44
Inlet water mass flow rate

(kg/s)
mw,in 44.0089 2.20 44.0939 2.188

45 Inlet air temperature (K) Ta,in 294.40 0.98 294.524 0.89

46 Inlet air humidity ratio ωin 0.0162008 0.00131 0.016083 0.001

i
Special Dependent sdfjg

Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

47 Schmidt number Sc 0.6178 0.0041 0.6178 0.004
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4.3.2.2 Predicted Best-Estimated Response Values with Reduced Pre-

dicted Standard Deviations

Using the a priori matrices in Eqs. (4.7) - (4.10) together with the sensitivities

listed in Tables 4.6 - 4.10 in Eq. (3.99), the following predicted response covariance

matrix, Cpred
rr , is obtained:

Cpred
rr ≡ Cov

([
T (1)
a

]be
,
[
T (50)
w

]be
,
[
RH(1)

]be)
=


0.59 0.37 0.17

0.37 0.53 0.18

0.17 0.18 1.62

 . (4.11)

The best-estimate response-parameter correlation matrix, Cpred
αr , is obtained

by means of Eq. (3.100) in conjunction with the a priori matrices presented in

Eqs. (4.7) - (4.10) and the sensitivities listed in Tables 4.6 - 4.10.

The best-estimate nominal values of the outlet air temperature, T
(1)
a ; outlet

water temperature T
(50)
w ; and outlet air relative humidity, RH(1), have been com-

puted using Eq. (3.98) coupled with the a priori matrices given in Eqs. (4.7) -

(4.10) and the sensitivities listed in Tables 4.6 - 4.10. The resulting best-estimate

nominal values are displayed in Table 4.24. To facilitate comparison, the corre-

sponding measured and computed nominal values are also presented in this table.

Note that there are no direct measurements for the outlet water flow rate, m
(50)
w

and the air mass flow rate ma. For these two responses, therefore, the predicted

best-estimate nominal values have been obtained by a forward re-computation

using the best-estimate nominal parameter values listed in Table 4.23, while the

predicted best estimate standard deviation for this response has been obtained

by using “best-estimate” values in Eq. (3.96), i.e.,

[Ccomp
rr ]be = [Srα]be[Cαα]be

[
S†rα
]be (4.12)

118



CHAPTER 4. RESULTS

Table 4.24: Computed, measured, and optimal best-estimate nominal values and standard deviations for the

outlet air temperature, outlet water temperature, outlet air relative humidity, outlet water mass flow rate and

air mass flow rate responses for case 1b.

Nominal Values and

Standard Deviations

T
(1)
a T

(50)
w RH(1) m

(50)
w ma

[K] [K] [%] [kg/s] [kg/s]

Measured

nominal value 299.10 297.46 102.37 — —

standard deviation ±0.86 ±0.89 ±1.28 — —

Computed

nominal value 296.50 298.21 102.83 43.89 20.75

standard deviation ±1.21 ±1.33 ±19.25 ±2.20 ±6.54

Best-estimate

nominal value 297.41 296.82 102.76 44.02 23.18

standard deviation ±0.77 ±0.73 ±1.27 ±2.19 ±7.20

The results presented in Table 4.24 indicate that the predicted standard de-

viations are smaller than either the computed or the experimentally measured

ones, except for the air mass flow rate. This exception is due to the simultaneous

use of all the available data, which causes the responses nominal values (and their

respective standard deviations) to be mutually correlated because of the covari-

ances between model parameters and responses (Crα 6= 0). In order to verify the

correctness of the calculation performed, a separate case without considering the

covariances between model parameters and responses (Crα = 0) has been devel-

oped and analyzed, and the results confirmed the theory expectations, yielding

all predicted standard deviations smaller than either the computed or the ex-

perimentally measured ones, even for the air mass flow rate. In the PM CMPS

framework, the standard deviation values of the responses for which no exper-

imental data are available are only influenced by the correlations to the other

responses’ values, both experimental and computed. For this reason, the results

of the fully-correlated model (with Crα 6= 0) have been chosen: in fact, despite

the slightly bigger standard deviation for the air mass flow rate, which is the con-
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sequence of all the information simultaneously used in the PM CMPS methodol-

ogy, those results are to be considered the most accurate, since they were obtained

by means of the simultaneous using of all the available data.

4.3.3 Uncertainty Analysis and Predictive Modeling of

Case 2: Fan Off, Unsaturated Air Conditions

The a priori response-parameter covariance matrix, Crα, for case 2, is com-

puted in Appendix A, Eq. (A.13), and is reproduced in Eq. (4.7).

Crα ≡ Cov
(
Tmeasa,out , T

meas
w,out , RH

meas, α1, ..., α47

)

=


10.36 2.81 2.22 −232.64 1.30 0 · · ·

1.58 1.96 2.01 −23.76 −0.10 0 · · ·

−35.89 2.43 −0.79 720.11 −5.48 0 · · ·


(4.13)

where the measured correlated parameters are: α1 , Tdb, α2 , Tdp, α3 , Tw,in,α4 ,

Patm, and α5 , Vw. The a priori parameter covariance matrix, Cαα, for case 2, is

partly computed in Appendix B, Eq. (B.5), and is reproduced in Eq. (4.14).

Cαα ≡


V ar(α1) Cov(α1, α2) • Cov(α1, α47)

Cov(α2, α1) V ar(α2) • Cov(α2, α47)

• • • •

Cov(α47, α1) • • V ar(α47)



=



16.27 3.56 2.13 −494.48 2.45 0 • 0

3.56 5.23 2.22 −138.46 0.28 0 • 0

2.13 2.22 2.85 −58.63 0.12 0 • 0

−494.48 −138.46 −58.63 166678.40 −49.62 0 • 0

2.45 0.28 0.12 −49.62 0.89 0 • 0

0 0 0 0 0 0 • 0

• • • • • • • •

0 0 0 0 0 0 • 0.00025



(4.14)
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The a priori covariance matrix of the computed responses, Ccomp
rr , for case 2,

is obtained by using Eqs. (3.96) and (4.14) together with the sensitivity results

presented in Tables 4.11 - 4.15; the end result is:

Ccomp
rr ≡ Cov

(
T (1)
a , T (50)

w , RH(1)
)

= SrαCααS
†
rα

=


∂T

(1)
a

∂α1
, ..., ∂T

(1)
a

∂αNα

∂T
(50)
w

∂α1
, ..., ∂T

(50)
w

∂αNα

∂RH(1)

∂α1
, ..., ∂RH

(1)

∂αNα




V ar(α1) Cov(α1, α2) • Cov(α1, α47)

Cov(α2, α1) V ar(α2) • Cov(α2, α47)

• • • •

Cov(α52, α1) • • V ar(α47)




∂T
(1)
a

∂α1
, ..., ∂T

(1)
a

∂αNα

∂T
(50)
w

∂α1
, ..., ∂T

(50)
w

∂αNα

∂RH(1)

∂α1
, ..., ∂RH

(1)

∂αNα


†

=


2.78 2.64 0.11

2.64 3.85 0.56

0.11 0.56 1.37

 .
(4.15)

The a priori covariance matrix, Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
, Crr, of the

measured responses (namely: the outlet air temperature, Tmeasa,out ≡
[
T

(1)
a

]measured
;

the outlet water temperature, Tmeasw,out ≡
[
T

(50)
w

]measured
, and the outlet air relative

humidity, RHmeas
out ≡

[
RH(1)

]measured
) for case 2 is computed in Appendix A, Eq.

(A.12), and is as follows:

Crr ≡ Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
=


8.09 1.91 −27.74

1.91 1.94 −1.97

−27.74 −1.97 195.81

 . (4.16)

4.3.3.1 Model Calibration: Predicted Best-Estimated Parameter Val-

ues with Reduced Predicted Standard Deviations

The best-estimate nominal parameter values have been calculated using Eq.

(3.93) coupled with the a priori matrices given in Eqs. (4.13) - (4.16) and the

sensitivities listed in Tables 4.11 - 4.15. The resulting best-estimate nominal values

are listed in Table 4.25, below. The best-estimate absolute standard deviations of

these parameters are also listed in this table. These values have been obtained as

the square-roots of the diagonal elements of the matrix Cpred
αα , which is computed
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using Eq. (3.97) together with the a priori matrices presented in Eqs. (4.13) -

(4.16) and the sensitivities listed in Tables 4.11 - 4.15. For a more direct com-

parison, the original nominal parameter values and original absolute standard

deviations are also listed. As it is clear from Table 4.25, all the predicted best-

estimate standard deviations are smaller or at most equal to the original standard

deviations. The variations in the parameters values are proportional to the mag-

nitudes of their corresponding sensitivities: the parameters undergoing the largest

reductions in their best-estimate standard deviations are those characterized by

the largest sensitivities.

Table 4.25: Best-estimated nominal parameter values and their standard deviations for case 2.

i
Model Independent sdf

Scalar Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

1
Air temperature (dry bulb),

(K)
Tdb 298.882 4.034 298.799 2.23

2 Dew point temperature (K) Tdp 292.077 2.287 292.803 2.16

3 Inlet water temperature (K) Tw,in 298.893 1.687 298.712 1.63

4 Atmospheric pressure (Pa) Patm 100588 408.26 100566 397.57

5 Wind speed (m/s) Vw 1.859 0.941 1.794 0.783

6
Sum of loss coefficients

above fill
ksum 10 5 10.045 4.996

7
Dynamic viscosity of air at

T=300 K (kg/m·s)
µ 1.98·10−5 9.68·10−7 1.98·10−5 9.67·10−7

8
Kinematic viscosity of air at

T=300 K (m2/s)
ν 1.57·10−5 1.90·10−6 1.57·10−5 1.90·10−6

9
Thermal conductivity of air

at T=300 K (W/m·K)
kair 0.02624 1.58·10−3 0.02624 1.58·10−3

10
Heat transfer coefficient

multiplier
fht 1 0.5 1.00532 0.5

11
Mass transfer coefficient

multiplier
fmt 1 0.5 0.9342 0.496
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i
Model Independent sdf

Scalar Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

12
Fill section frictional loss

multiplier
f 4 2 4.088 1.96

13
Pvs(T) parameters

a0 25.5943 0.01 25.5943 0.01

14 a1 -5229.89 4.4 -5229.92 4.4

15

Cpa(T) parameters

a0,cpa 1030.5 0.294 1030.5 0.294

16 a1,cpa -0.19975 0.002 -0.19975 0.002

17 a2,cpa 3.97·10−4 3.35·10−6 3.97·10−4 3.35·10−6

18

Dav(T) parameters

a0,dav 7.06·10−9 0 7.06·10−9 0

19 a1,dav 2.65322 0.003 2.65322 0.003

20 a2,dav -6.17·10−3 2.30·10−5 -6.17·10−3 2.30·10−5

21 a3,dav 6.55·10−6 3.80·10−8 6.55·10−6 3.80·10−8

22
hf(T) parameters

a0f -1143423 543 -1143423 543

23 a1f 4186.50768 1.8 4186.50822 1.8

24
hg(T) parameters

a0g 2005743.99 1046 2005743.78 1046

25 a1g 1815.437 3.5 1815.4363 3.5

26

Nusselt parameters

a0,Nu 8.235 2.059 8.11039 2.055

27 a1,Nu 0.00314987 0.00105 0.00314987 0.001

28 a2,Nu 0.9902987 0.329 0.9902987 0.327

29 a3,Nu 0.023 0.0088 0.023 0.0088

30
Cooling tower deck width in

x-dir (m)
Wdkx 8.5 0.085 8.5 0.085

31
Cooling tower deck width in

y-dir (m)
Wdky 8.5 0.085 8.5 0.085

32
Cooling tower deck height

above ground (m)
∆zdk 10 0.1 10 0.1

33 Fan shroud height (m) ∆zfan 3 0.03 3 0.03
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i
Model Independent sdf

Scalar Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

34
Fan shroud inner diameter

(m)
Dfan 4.1 0.041 4.1 0.041

35 Fill section height (m) ∆zfill 2.013 0.02013 2.013 0.02013

36 Rain section height (m) ∆zrain 1.633 0.01633 1.633 0.01633

37 Basin section height (m) ∆zbs 1.168 0.01168 1.168 0.01168

38
Drift eliminator thickness

(m)
∆zde 0.1524 0.00152 0.1524 0.00152

39
Fill section equivalent diam-

eter (m)
Dh 0.0381 0.00038 0.0381 0.00038

40 Fill section flow area (m2) Afill 67.29 6.729 67.207 6.72

41
Fill section surface area

(m2)
Asurf 14221 3555.3 14005 3548.6

42
Prandtl number of air at

T=80 ◦C
Pr 0.708 0.005 0.708 0.005

43
Wetted fraction of fill sur-

face area
wtsa 1 0 1 0

i
Boundary Parameters

(αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

44
Inlet water mass flow rate

(kg/s)
mw,in 44.0193 2.201 44.0696 2.199

45 Inlet air temperature (K) Ta,in 294.40 4.034 299.841 2.73

46 Inlet air humidity ratio ωin 0.01379 0.00192 0.01406 0.00191

i
Special Dependent sdfjg

Parameters (αi)

Math.

Notation

Original

Nominal

Value

Original

Absolute

Std. Dev.

Best-

estimate

Nominal

Value

Best-

estimate

Absolute

Std. Dev.

47 Schmidt number Sc 0.5999 0.0159 0.5999 0.0159
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4.3.3.2 Predicted Best-Estimated Response Values with Reduced Pre-

dicted Standard Deviations

Using the a priori matrices in Eqs. (4.13) - (4.16) together with the sensitiv-

ities listed in Tables 4.11 - 4.15 in Eq. (3.99), the following predicted response

covariance matrix, Cpred
rr , is obtained:

Cpred
rr ≡ Cov

([
T (1)
a

]be
,
[
T (50)
w

]be
,
[
RH(1)

]be)
=


6.71 2.73 −22.80

2.73 2.37 −1.79

−22.80 −1.79 145.19

 .

(4.17)

The best-estimate response-parameter correlation matrix, Cpred
αr , is obtained

by means of Eq. (3.100) in conjunction with the a priori matrices presented in

Eqs. (4.13) - (4.16) and the sensitivities listed in Tables 4.11 - 4.15.

The best-estimate nominal values of the outlet air temperature, T
(1)
a ; outlet

water temperature T
(50)
w ; and outlet air relative humidity, RH(1), have been com-

puted using Eq. (3.98) coupled with the a priori matrices given in Eqs. (4.13) -

(4.16) and the sensitivities listed in Tables 4.11 - 4.15. The resulting best-estimate

nominal values are displayed in Table 4.26. To facilitate comparison, the corre-

sponding measured and computed nominal values are also presented in this table.

Note that there are no direct measurements for the outlet water flow rate, m
(50)
w

and the air mass flow rate ma. For these two responses, therefore, the predicted

best-estimate nominal values have been obtained by a forward re-computation

using the best-estimate nominal parameter values listed in Table 4.25, while the

predicted best estimate standard deviation for this response has been obtained

by using “best-estimate” values in Eq. (3.96), i.e.,

[Ccomp
rr ]be = [Srα]be[Cαα]be

[
S†rα
]be (4.18)
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Table 4.26: Computed, measured, and optimal best-estimate nominal values and standard deviations for the

outlet air temperature, outlet water temperature, outlet air relative humidity, outlet water mass flow rate and

air mass flow rate responses for case 2.

Nominal Values and

Standard Deviations

T
(1)
a T

(50)
w RH(1) m

(50)
w ma

[K] [K] [%] [kg/s] [kg/s]

Measured

nominal value 299.11 298.10 89.61 — —

standard deviation ±2.84 ±1.39 ±13.62 — —

Computed

nominal value 298.79 297.42 99.80 43.91 15.84

standard deviation ±1.67 ±1.96 ±1.17 ±2.20 ±12.20

Best-estimate

nominal value 298.65 297.52 99.69 43.97 14.86

standard deviation ±1.57 ±1.38 ±1.09 ±2.19 ±8.34

The results presented in Table 4.26 indicate that, as anticipated, the predicted

standard deviations are smaller than either the computed or the experimentally

measured ones. This is consequential to utilizing the PM CMPS methodology

together with consistent computational and experimental information. Unspot-

ted errors can often make the used information inconsistent; methods to confront

these situations are discussed in [37]. It is also worth noting that the PM CMPS

methodology has reduced the predicted standard deviation for the water mass

flow rate and for the air mass flow rate responses, despite the lack of experimen-

tally measure data. This is due to the global characteristics of the PM CMPS

methodology to foresee a simultaneous combination of all the available data in

the phase-space, yielding this way the aforementioned best-estimate predicted re-

sults; currently used data assimilation methodologies, on the other hand, proceed

by combine the available information in a sequential way [38, 39].
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4.4 Uncertainty Analysis and Predictive Mod-

eling of Mechanical Draft Cases

The results of particular cases of case 1 and case 2 are shown, for verification

purposes, in this section: the air conditions are in fact the same as in case 1 and

2, but the difference consists in the cooling tower being operated in mechanical

draft mode, determining a priori the air mass flow rate through the cooling tower

and therefore simplifying the governing equations system. The results shown are

from [31, 32].

Following the same naming criteria used for case 1 and 2 in Chapter 2, we

can list them as:

• Case 3: the cooling tower is operated in fan-on mode (mechanical draft)

and the outlet air is in saturated conditions; just as case 1, this case is split

into two subcases according to the inlet air conditions:

– Subcase I: the inlet air is in unsaturated conditions; this means that

unsaturated inlet air becomes saturated at a certain control volume of

the fill section along the height of the cooling tower. This particular

case of case 1a will be referred to as case 3a;

– Subcase II: the inlet air is in saturated conditions: in this subcase,

air is in saturated condition from the inlet through the outlet of the

fill section, i.e., air is saturated in all the 49 control volumes. This

particular case of case 1b will be referred to as case 3b.

• Case 4: the cooling tower is operated in fan-on mode (mechanical draft)

and the outlet air is in unsaturated conditions; this is a particular case of

case 2. Just as for case 2, in this case it is only possible for inlet air to be

in unsaturated conditions as well, hence there is no need for subcases.
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For brevity reasons, only the predicted best-estimated response values with

the relative reduced predicted standard deviations are hereby reported.

4.4.1 Predicted Best-Estimated Response Values with Re-

duced Predicted Standard Deviations for Case 3a

The a priori matrices for Case 3a are detailed in [32]. The four system re-

sponses are T
(1)
a , T

(50)
w , RH(1) and m

(50)
w . The air mass flow rate ma is no longer a

response, since its value is known being the cooling tower operated in mechanical

draft mode.

The resulting best-estimate nominal values are displayed in Table 4.27. To

facilitate comparison, the corresponding measured and computed nominal values

are also presented in this table. Note that there are no direct measurements for

the outlet water flow rate, m
(50)
w . For this response, therefore, the predicted best-

estimate nominal value has been obtained by a forward re-computation using

the best-estimate nominal parameter values listed in [32], while the predicted

best estimate standard deviation for this response has been obtained by using

“best-estimate” values in Eq. (3.96), i.e.,

[Ccomp
rr ]be = [Srα]be[Cαα]be

[
S†rα
]be (4.19)

The results presented in Table 4.27 indicate that, as anticipated, the predicted

standard deviations are smaller than either the computed or the experimentally

measured ones. More specifically, comparing to the best-estimated standard devi-

ations, the experimentally measured standard deviations associated with the mea-

sured quantities for T
(1)
a , T

(50)
w and RH(1) are reduced by 2.3%, 1.8% and 5.9%,

respectively; whereas, the computed standard deviations associated with the com-

puted quantities for T
(1)
a , T

(50)
w and RH(1) are reduced by 22%, 38%, and 68%,
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respectively. As it can be seen, the improvements to the computed standard devi-

ations are quite large, especially to the standard deviation of the computed outlet

air relative humidity response. This is consequential to utilizing the PM CMPS

methodology together with consistent computational and experimental informa-

tion. Unspotted errors can often make the used information inconsistent; methods

to confront these situations are discussed in [37]. It is also worth noting that the

PM CMPS methodology has reduced the predicted standard deviation for the

water mass flow rate response, despite the lack of experimentally measure data.

This is due to the peculiar characteristic of the PM CMPS methodology to foresee

a simultaneous combination of all the available data in the phase-space, yielding

this way the aforementioned best-estimate predicted results; currently used data

assimilation methodologies, on the other hand, proceed by combine the available

information in a sequential way [38, 39].

Table 4.27: Computed, measured, and optimal best-estimate nominal values and standard deviations for the

outlet air temperature, outlet water temperature, outlet air relative humidity, and outlet water mass flow rate

responses for case 3a.

Nominal Values and

Standard Deviations

T
(1)
a T

(50)
w RH(1) m

(50)
w

[K] [K] [%] [kg/s]

Measured

nominal value 294.24 294.71 101.14 —

standard deviation ±1.28 ±1.10 ±2.70 —

Computed

nominal value 295.22 294.24 100.29 43.75

standard deviation ±1.60 ±1.75 ±7.94 ±2.20

Best-estimate

nominal value 294.53 294.73 101.54 43.66

standard deviation ±1.25 ±1.08 ±2.54 ±2.19
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4.4.2 Predicted Best-Estimated Response Values with Re-

duced Predicted Standard Deviations for Case 3b

The a priori matrices for Case 3b are detailed in [32]. The four system re-

sponses are T
(1)
a , T

(50)
w , RH(1) and m

(50)
w . The air mass flow rate ma is no longer a

response, since its value is known being the cooling tower operated in mechanical

draft mode.

The resulting best-estimate nominal values are displayed in Table 4.28. To

facilitate comparison, the corresponding measured and computed nominal values

are also presented in this table. Note that there are no direct measurements for

the outlet water flow rate, m
(50)
w . For this response, therefore, the predicted best-

estimate nominal value has been obtained by a forward re-computation using

the best-estimate nominal parameter values listed in [32], while the predicted

best estimate standard deviation for this response has been obtained by using

“best-estimate” values in Eq. (3.96), i.e.,

[Ccomp
rr ]be = [Srα]be[Cαα]be

[
S†rα
]be (4.20)

Table 4.28: Computed, measured, and optimal best-estimate nominal values and standard deviations for the

outlet air temperature, outlet water temperature, outlet air relative humidity, and outlet water mass flow rate

responses for case 3b.

Nominal Values and

Standard Deviations

T
(1)
a T

(50)
w RH(1) m

(50)
w

[K] [K] [%] [kg/s]

Measured

nominal value 294.77 295.17 101.73 —

standard deviation ±0.90 ±0.86 ±2.48 —

Computed

nominal value 295.84 294.97 101.99 43.76

standard deviation ±1.33 ±1.49 ±11.57 ±2.19

Best-estimate

nominal value 294.99 295.18 102.03 43.62

standard deviation ±0.88 ±0.85 ±2.41 ±2.18
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The results presented in Table 4.28 indicate that the predicted standard de-

viations are smaller than either the computed or the experimentally measured

ones. More specifically, comparing to the best-estimated standard deviations,

the experimentally measured standard deviations associated with the measured

quantities for T
(1)
a , T

(50)
w and RH(1) are reduced by 2.2%, 1.2% and 2.8%, respec-

tively; whereas, the computed standard deviations associated with the computed

quantities for T
(1)
a , T

(50)
w and RH(1) are reduced by 34%, 43%, and 79%, respec-

tively. Again, the computed standard deviations are substantially improved by the

PM CMPS methodology. Moreover, the standard deviation associated with the

computed outlet water mass flow rate, m
(50)
w , is also reduced by 0.5%, even though

the measurements are not available for this response. Unspotted errors can often

make the used information inconsistent; methods to confront these situations are

discussed in [37]. It is also worth noting that the PM CMPS methodology has

reduced the predicted standard deviation for the water mass flow rate response,

despite the lack of experimentally measure data. This is due to the peculiar char-

acteristic of the PM CMPS methodology to foresee a simultaneous combination

of all the available data in the phase-space, yielding this way the aforementioned

best-estimate predicted results; currently used data assimilation methodologies,

on the other hand, proceed by combine the available information in a sequential

way [38, 39].

4.4.3 Predicted Best-Estimated Response Values with Re-

duced Predicted Standard Deviations for Case 3b

The a priori matrices for Case 4 are detailed in [31]. The four system responses

are T
(1)
a , T

(50)
w , RH(1) and m

(50)
w . The air mass flow rate ma is no longer a response,

since its value is known being the cooling tower operated in mechanical draft

mode.
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The resulting best-estimate nominal values are displayed in Table 4.29. To

facilitate comparison, the corresponding measured and computed nominal values

are also presented in this table. Note that there are no direct measurements for

the outlet water flow rate, m
(50)
w . For this response, therefore, the predicted best-

estimate nominal value has been obtained by a forward re-computation using

the best-estimate nominal parameter values listed in [31], while the predicted

best estimate standard deviation for this response has been obtained by using

“best-estimate” values in Eq. (3.96), i.e.,

[Ccomp
rr ]be = [Srα]be[Cαα]be

[
S†rα
]be (4.21)

Table 4.29: Computed, measured, and optimal best-estimate nominal values and standard deviations for the

outlet air temperature, outlet water temperature, outlet air relative humidity, and outlet water mass flow rate

responses for case 4.

Nominal Values and

Standard Deviations

T
(1)
a T

(50)
w RH(1) m

(50)
w

[K] [K] [%] [kg/s]

Measured

nominal value 298.34 295.68 81.98 —

standard deviation ±3.36 ±1.59 ±15.89 —

Computed

nominal value 297.46 294.58 86.12 43.60

standard deviation ±3.30 ±2.78 ±14.90 ±2.21

Best-estimate

nominal value 298.45 295.67 82.12 43.67

standard deviation ±2.59 ±1.54 ±12.05 ±2.20

The results presented in Table 4.29 indicate that the predicted standard de-

viations are smaller than either the computed or the experimentally measured

ones; again, the computed standard deviations are substantially improved by the

PM CMPS methodology. Moreover, the standard deviation associated with the

computed outlet water mass flow rate, m
(50)
w , is also reduced by 0.5%, even though
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the measurements are not available for this response. Unspotted errors can often

make the used information inconsistent; methods to confront these situations are

discussed in [37]. It is also worth noting that the PM CMPS methodology has

reduced the predicted standard deviation for the water mass flow rate response,

despite the lack of experimentally measure data. This is due to the peculiar char-

acteristic of the PM CMPS methodology to foresee a simultaneous combination

of all the available data in the phase-space, yielding this way the aforementioned

best-estimate predicted results; currently used data assimilation methodologies,

on the other hand, proceed by combine the available information in a sequential

way [38, 39].
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Discussion and Conclusions

The CTTool model, which has been validated in this thesis, is foreseen to

be part of a facility modeling program suite, within which it is envisaged to be

coupled to modules simulating the chemical processes which would provide the

input for the cooling tower model, as well as to atmospheric transport models,

which would couple the output of the cooling tower model to the external environ-

ment. Within this framework, the present work focused on performing sensitivity

and uncertainty analysis, data assimilation, model calibration, model validation

and best-estimate predictions with reduced uncertainties on a counter-flow, wet

cooling tower model developed by Savannah River National Laboratory.

A relevantly more refined and efficient numerical method was developed and

applied to the cooling tower model originally presented in [26]; this allowed to

reach convergence for all the data sets, and increased the accuracy in computing

the steady state distributions of the model’s quantities of interest. The behav-

ior of the cooling tower has been investigated under several different operating

conditions; more specifically, three cases have been selected depending on the air

conditions at the inlet of the cooling tower and the air conditions at the outlet of

the cooling tower. For all the cases the following five model responses have been
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selected: (i) the water mass flow rate at the outlet of the bottom control volume

of the fill section of the cooling tower, m
(50)
w ; (ii) the water temperature at the

outlet of of the bottom control volume of the fill section of the cooling tower,

T
(50)
w ; (iii) the air temperature at the outlet of the top control volume of the fill

section of the cooling tower, T
(1)
a ; (iv) the humidity ratio at the outlet of the top

control volume of the fill section of the cooling tower, RH(1); and (v) the air mass

flow rate at the outlet of the cooling tower, ma.

Applying the general adjoint sensitivity analysis methodology, the sensitivities

of the model responses to all the model parameters were calculated in an efficient

and exact way by implementing the adjoint cooling tower sensitivity model. While

the cooling tower governing system presents nonlinearity in the forward state

function, the adjoint sensitivity model possesses the relevant feature of being

linear in the adjoint functions, whose one-to-one correspondence to the forward

state functions has been pointed out. As discussed, the utilization of the adjoint

functions allows the simultaneous computation of the sensitivities of each model

response to all of the 47 model parameters just running a single adjoint model

computation; obtaining the same results making use of the forward model together

with finite-differences methods would require 47 separate computations, with the

relevant disadvantage of leading to approximate results of the sensitivities, as

opposed to the exact ones yielded by applying the adjoint procedure.

The aforementioned adjoint functions have been obtained, by solving the ad-

joint sensitivity system, and thoroughly verified, in order to pave the way to the

specific calculations necessary to yield the response sensitivities. These sensitivi-

ties have then been numerically computed for the subsequent realization of several

operations, such as: (i) ranking the model parameters according to the magnitude

of their contribution to response uncertainties; (ii) determining the propagation of

uncertainties, in form of variances and covariances, of the parameters in the model
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in order to quantify the uncertainties of the model responses; (iii) allowing pre-

dictive modeling operations, such as experimental data assimilation and model

parameters calibration, with the aim to yield best-estimate predicted nominal

values both for model parameters and responses, with correspondently reduced

values for the predicted uncertainties associated.

More specifically, the ASAM was used to efficiently obtain the sensitivities

of all the model responses to the model parameters, and therefore list, for each

case, the magnitude of all the model parameters’ contributions to the model

responses’ uncertainties. These sensitivities, whose exact values would have been

impossible to obtain by using forward methods, and whose approximate values

would have still been very computationally expensive to compute without the

application of the ASAM, showed that the three cases analyzed yield sensitivity

values very different from each other, despite the three cooling tower governing

systems appearing very similar to each other. This phenomenon is particularly

evident when analyzing and ranking the sensitivity values of the air humidity ratio

and of the air mass flow rate responses with respect to the model parameters;

the values of these sensitivities are shown in fact to change up to one order of

magnitude from one case to the other. It was also shown that the air humidity

ratio and of the air mass flow rate are not only the responses presenting the

highest sensitivity values with respect to a few key-parameters, but also those

showing non-negligible sensitivity values to the highest number of parameters.

By making use of the computed sensitivities within the framework of the “pre-

dictive modeling for coupled multi-physics systems” (PM CMPS) methodology,

explicit mathematical formulations have been derived for the best-estimate nomi-

nal values of the model parameters and responses, together with the best-estimate

reduced standard deviations of the predicted model parameters and responses.

The results stemming from this work show that the PM CMPS procedure allows
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to improve the predicted standard deviation reducing them to values smaller than

the smallest between the standard deviation values relative to computed and mea-

sured results, even in the case of responses for which experimentally measured

values are not available. The only exception to what just stated occurred in the

framework of the mixed, partially saturated case: the best-estimate standard devi-

ation value for the air mass flow rate response is slightly bigger than the standard

deviation value relative to the computed response. This exception is due to the

simultaneous use of all the available data, which causes the responses nominal val-

ues (and their respective standard deviations) to be mutually correlated because

of the covariances between model parameters and responses (Crα 6= 0). In order

to verify the correctness of the calculation performed, a separate case without

considering the covariances between model parameters and responses (Crα = 0)

has been developed and analyzed, and the results confirmed the theory expecta-

tions, yielding all predicted standard deviations smaller than either the computed

or the experimentally measured ones, even for the air mass flow rate.

In the PM CMPS framework, the standard deviation values of the responses

for which no experimental data are available are only influenced by the correla-

tions to the other responses’ values, both experimental and computed. For this

reason, therefore, the results of the fully-correlated model (with Crα 6= 0) have

been chosen: in fact, despite the slightly bigger standard deviation for the air

mass flow rate, which can be interpreted as a consequence of all the information

simultaneously used in the PM CMPS methodology, those results are to be con-

sidered the most accurate, since they were obtained by means of the simultaneous

using of all the available data. All the responses for which both experimental and

computational results are available have their standard deviations reduced by

the application of the predictive modeling methodology. This is due to the pe-

culiar characteristic of the PM CMPS methodology to foresee a simultaneous
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combination of all the available data in the phase-space, yielding this way the

aforementioned best-estimate predicted results; currently used data assimilation

methodologies, on the other hand, proceed by combining the available informa-

tion in a sequential way [40, 41]. The reduced standard deviation values have to

be attributed to the coupled application of the PM CMPS methodology together

with consistent (as opposed to discrepant) computational and experimental in-

formation. Unspotted errors can often make the used information inconsistent;

methods to confront these situations are discussed in [39].

The adjoint sensitivity analysis methodology utilized for the exact and effi-

cient computation of the 1st-order response sensitivities to model parameters has

been recently extended to calculate the 2nd-order response sensitivities with re-

spect to parameters for linear [5, 6] and nonlinear [7, 8] large-scale systems. As

discussed in [5-8], the major effects of the 2nd-order response sensitivities on the

computed moments of the response distribution are: (a) causing the “response

expected value” to differ from the “response nominal value”; and (b) a decisive

contribution in causing asymmetries in the distribution of the model response. It

is worth noting that ignoring second-order sensitivities would void the third-order

response correlations, causing the skewness of the response to be overlooked. As a

natural consequence, any occurrence falling in a response’s long/short tails, as it

happens for uncommon but relevant events (e.g., major accidents, catastrophes),

would most probably be ignored. Current efforts are aimed at extending the ad-

joint sensitivity analysis and the PM CMPS methodologies to further generalized

applications, in order to make possible the computation of 3rd- and higher-order

sensitivities and response distributions. The possibility to exactly and efficiently

compute high-order response sensitivities for large-scale systems is expected to

provide a relevant contribution to the areas of uncertainty quantification, model

validation, reduced-order modeling, and predictive modeling/data assimilation.
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Appendix A

Statistical Analysis of

Experimentally Measured

Responses

Starting from April, 2004 to August, 2004, a total of 8079 benchmark data sets

for F-area cooling towers (fan-off mode) were measured and recorded at SRNL

(Savannah River National Laboratory) for F-Area Cooling Towers, one every

fifteen minutes [33]. In each one of these data sets the following (four) measured

quantities are contained: (i) outlet air temperature measured with the “Tidbit”

sensor, which will be referred to in the following as Ta,out(T idbit); (ii) outlet air

temperature measured with the “Hobo” sensor, which will be referred to in the

following as Ta,out(Hobo); (iii) outlet water temperature, which will be referred to

as Tmeasw,out ; (iv) outlet air relative humidity, which will be referred to as RHmeas.

SRNL compared these measurements to the numerical results obtained by using

their CTTool code [26] as far the air exit relative humidity (RH) is regarded; a

data set is intended as saturated if the computed value of RH falls in the super

saturation range (equal to or greater than 100%). With this procedure, 667 data
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sets out of the 8079 complexively measured have been identified as “saturated”.

These 667 saturated points are further separated into two subcases based on

the air inlet boundary conditions at the fill section entrance. As already men-

tioned, case 1a describes a situation in which air enters the fill section in unsatu-

rated condition, but it gets saturated before reaching the outlet of the fill section;

in case 1b air enters the fill section already saturated, exiting the fill section also

saturated. Among the 667 saturated data sets, 377 of them have unsaturated air

inlet boundary conditions, thus they are grouped into case 1a; whereas the other

290 data sets have saturated air inlet boundary conditions at the fill section en-

trance, thus they are grouped into case 1b. In other 6717 benchmark data sets

the air conditions are always unsaturated; hence these data sets are considered

to belong to case 2.

Histogram plots of these measurement sets (each set containing measurements

of Ta,out(T idbit), Ta,out(Hobo), T
meas
w,out , and RHmeas), together with statistical analy-

ses thereof are presented in Section A.1 for case 1a, in Section A.2 for case 1b

and in Section A.3 for case 2. The measured outlet (exit) air relative humidity,

RHmeas, was obtained using Hobo humidity sensors. The accuracy of these sen-

sors is depicted in Figure A.1, which indicates the following tolerances (standard

deviations): ±2.5% for relative humidity from 10 to 90%; between ±2.5% and

±3.5% for relative humidity from 90% to 95%; and ±3.5% ∼ ±4.0% from 95

to 100%. However, when exposed to relative humidity above 95%, the maximum

sensor error may temporally increase by an additional 1%, so that the error can

reach values between ±4.5% to ±5.0% for relative humidity from 95 to 100%.
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Figure A.1: Humidity sensor accuracy plot (adopted from the specification of HOBO Pro v2).

A.1 Statistical Analysis of experimentally mea-

sured responses for Case 1a: Fan Off, Satu-

rated Outlet Air Conditions, with Inlet Air

Unsaturated

A total of 377 measured data sets are grouped into case 1a, as they are con-

sidered according to the results produced by CTTool code to be “saturated” at

the outlet of the fill section, and for each data set, air enters the fill section in

unsaturated condition. Although the computed relative humidity for each of the

377 data sets is greater than 100%, the measured relative humidity RHmeas ac-

tually spans the range from 95.5% to 104.1%. However, if the humidity sensor’s

tolerance (standard deviation, as shown in Figure A.1) is taken into account, it

would make it possible for a measurement with RHmeas in the range of 95% ∼

105% to be nevertheless “saturated”. Figure A.2 shows the histogram plot of the
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measured outlet air relative humidity for the 377 benchmark data sets which were

considered as “saturated”. This plot, as well as all of the other histogram plots

in this work, has its total respective area normalized to unity. As shown in this

figure, the measured relative humidity RHmeas values fall in a range spanning

from 95.5% to 104.1% (which are both within the 95% ∼ 105% range limit).

Figure A.2: Histogram plot of the measured air outlet relative humidity, within the 377 data sets collected by

SRNL from F-Area cooling towers for case 1a.

The statistical properties of the (measured air outlet relative humidity) dis-

tribution shown in Figure A.2 have been computed using standard packages, and

are presented in Table A.1. These statistical properties will be needed for the un-

certainty quantification and predictive modeling computations presented in the

main body of this work.

Table A.1: Statistics of the air outlet relative humidity distribution [%] for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

95.5 104.1 8.6 102.28 1.92 3.68 -0.83 3.03

The histogram plots and their corresponding statistical characteristics of the

377 data sets for the other measurements, namely for: the outlet air temperature[
Ta,out(T idbit)

]
measured using the “Tidbit” sensors; the outlet air temperature
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[
Ta,out(Hobo)

]
measured using the “Hobo” sensors; and the outlet water temper-

ature
[
Tmeasw,out

]
are reported below in Figures A.3 through A.6, and Tables A.2

through A.5, respectively.

Figure A.3: Histogram plot of the air outlet temperature measured using “Tidbit” sensors, within the 377 data

sets collected by SRNL from F-Area cooling towers for case 1a.

Table A.2: Statistics of the air outlet temperature distribution [K], measured using “Tidbit” sensors for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

293.91 304.31 10.4 296.79 1.06 1.12 1.71 12.18

Figure A.4: Histogram plot of the air outlet temperature measured using “Hobo” sensors, within the 377 data

sets collected by SRNL from F-Area cooling towers for case 1a.
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Table A.3: Air outlet temperature distribution statistics [K], measured using “Hobo” sensors for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

294.00 302.63 8.63 296.41 1.01 1.02 1.08 7.68

Figure A.5: Histogram plot of water outlet temperature measurements, within the 377 data sets collected by

SRNL from F-Area cooling towers for case 1a.

Table A.4: Water outlet temperature [K] distribution statistics for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

295.81 300.32 4.51 297.91 1.10 1.21 0.46 2.25

Putting the above-mentioned four measured responses in the following order:

(i) outlet air temperature Ta,out(T idbit); (ii) outlet air temperature Ta,out(Hobo); (iii)

outlet water temperature Tmeasw,out ; and (iv) outlet air relative humidity RHmeas
out ,

yields the following “measured response covariance matrix”, denoted as:
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Cov
(
Ta,out(T idbit), Ta,out(Hobo), T

meas
w,out , RH

meas
out

)

=


1.12 1.05 0.62 −0.07

1.05 1.02 0.59 −0.003

0.62 0.59 1.21 −0.64

−0.07 −0.003 −0.64 3.68


(A.1)

For the future purposes of uncertainty quantification, data assimilation, model

calibration and predictive modeling, the data measurements provided by the

“Tidbit” and “Hobo” temperature sensors can be combined into an “averaged”

data set of measured air outlet temperatures, which will be indicated as Tmeasa,out .

The histogram plot and corresponding statistical characteristics of this averaged

quantity are shown in Figure A.6 and Table A.5, respectively.

Figure A.6: Histogram plot of air outlet temperatures averaged from Figures A.3 and A.4.

Table A.5: Statistics of the averaged air outlet temperature distribution [K] for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

294.3 303.47 9.17 296.45 1.03 1.06 1.40 9.76
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Calculating the covariance matrix, denoted as
[
Cov

(
Tmeasa,out , T

meas
w,out , RH

meas
out

)]
data

,

for all of the considered experimental data points for the averaged outlet air tem-

perature
[
Tmeasa,out

]
, the outlet water temperature

[
Tmeasw,out

]
, and the outlet air relative

humidity [RHmeas
out ], yields the following covariance matrix:

[
Cov

(
Tmeasa,out , T

meas
w,out , RH

meas
out

)]
data

=


1.06 0.61 −0.04

0.61 1.21 −0.65

−0.04 −0.65 3.68

 (A.2)

A comparison between the results in Eqs. (A.1) and (A.2) makes clear that

the elimination of the second column and row in Eq. (A.1) yields a 3-by-3 matrix

which has entries basically equivalent to the covariance matrix shown in Eq.

(A.2). Therefore, this means that the temperature distributions measured by the

“Tidbit” and “Hobo” sensors do not need to be dealt with as separate data sets

for the purposes of uncertainty quantification and predictive modeling.

The standard deviation of the humidity sensor utilized for the measurements

(σsensor = 5.0%for the response RH(1)) have been already considered for the data

at the 100%-saturation point by including in the category of the “saturated” data

sets those that have their respective measured relative humidity, RHmeas, between

95.5% and 104.1%. In addition to that, the respective uncertainties of the tem-

perature sensors (standard deviations, σsensor = 0.2K for both responses T
(1)
a and

T
(50)
w ) must also be taken into consideration for the 377 data sets. The measuring

methods and devices are not dependent with respect to each other, therefore the

data standard deviation σstatistic, stemming from the statistical analysis of the 377

benchmark data sets, and the sensor standard deviation, σsensor, stemming from

the instrument’s uncertainty, must stack according to the well-known formula of

“addition of the variances of uncorrelated variates”, i.e.:

σ =
√
σ2
statistic

+ σ2
sensor

(A.3)
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Coupling the above relation with the result presented in Eq. (A.2) will lead to

incremented values of the variances on the diagonal of the respective “measured

covariance matrix”; this new form of the covariance matrix which will be denoted

as Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
. The obtained result is:

Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
=


1.10 0.61 −0.04

0.61 1.25 −0.64

−0.04 −0.64 3.68

 (A.4)

In the predictive modeling formalism (which includes uncertainty quantifica-

tion, data assimilation, and model calibration) the covariance matrix between

the measured parameters and responses is required as an input. In the case of

interest, all the parameters and responses can be considered as uncorrelated, ex-

cepting the measured responses considered in this Appendix and the measured

parameters listed in Appendix B. The “parameter-response” covariance matrix

in Eq. (A.5), indicated as Cov
(
Tmeasa,out , T

meas
w,out , RH

meas, α1, ..., α47

)
, refers to the

above mentioned parameters (namely: dry-bulb air temperature, Tdb; dew-point

air temperature, Tdp, inlet water temperature, Tw,in, atmospheric pressure, Patm

and wind speed Vw) and responses (i.e., average outlet air temperature, outlet

water temperature, and outlet air relative humidity):

Cov
(
Tmeasa,out , T

meas
w,out , RH

meas, α1, ..., α47

)

=


1.53 1.01 0.76 −104.46 0.11 0 ... 0

1.10 1.08 1.28 −111.01 0.12 0 ... 0

0.05 0.34 −0.75 76.60 −0.25 0 ... 0


(A.5)
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A.2 Statistical Analysis of experimentally mea-

sured responses for Case 1b: Fan Off, Satu-

rated Outlet Air Conditions, with Inlet Air

Saturated

A total of 290 measured data sets are grouped into case 1b, as they are

considered according to the results produced by CTTool code to be “saturated”

at the outlet of the fill section, and for each data set, air enters the fill section in

saturated condition. Although the computed relative humidity for each of the 290

data sets is greater than 100%, the measured relative humidity RHmeas actually

spans the range from 98.8% to 104.1%. However, if the humidity sensor’s tolerance

(standard deviation, as shown in Figure A.1) is taken into account, it would

make it possible for a measurement with RHmeasin the range of 95% ∼ 105% to

be nevertheless “saturated”. Consequently, all the 290 benchmark data sets have

their RHmeas falling into the 95% ∼ 15% range, therefore they were all considered

as valid “saturated” data sets.

Figure A.7: Histogram plot of the measured air outlet relative humidity, within the 290 data sets collected by

SRNL from F-Area cooling towers for case 1b.

Figure A.7 shows the histogram plot of the measured air outlet relative hu-
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midity for the 290 benchmark data sets, which were considered as “saturated”.

As shown in this figure, the measured relative humidity RHmeas spans the range

from 98.8% to 104.1%.

The statistical properties of the (measured air outlet relative humidity) dis-

tribution shown in Figure A.7 have been computed using standard packages, and

are presented in Table A.6. These statistical properties will be needed for the un-

certainty quantification and predictive modeling computations presented in the

main body of this work.

Table A.6: Statistics of the air outlet relative humidity distribution [%] for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

98.8 104.1 5.3 102.83 1.28 1.65 -0.72 2.07

The histogram plots and their corresponding statistical characteristics of the

290 data sets for the other measurements, namely for: the outlet air temperature[
Ta,out(T idbit)

]
measured using the “Tidbit” sensors; the outlet air temperature[

Ta,out(Hobo)
]

measured using the “Hobo” sensors; and the outlet water temper-

ature
[
Tmeasw,out

]
are reported below in Figures A.8 through A.10, and Tables A.7

through A.9, respectively.

Figure A.8: Histogram plot of the air outlet temperature measured using “Tidbit” sensors, within the 290 data

sets collected by SRNL from F-Area cooling towers for case 1b.
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Table A.7: Statistics of the air outlet temperature distribution [K], measured using “Tidbit” sensors for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

294.74 298.66 3.92 296.53 0.84 0.70 0.66 2.51

Figure A.9: Histogram plot of the air outlet temperature measured using “Hobo” sensors, within the 290 data

sets collected by SRNL from F-Area cooling towers for case 1b.

Table A.8: Air outlet temperature distribution statistics [K], measured using “Hobo” sensors for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

294.22 298.66 4.44 296.47 0.85 0.72 0.62 2.63

Figure A.10: Histogram plot of water outlet temperature measurements, within the 290 data sets collected by

SRNL from F-Area cooling towers for case 1b.
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Table A.9: Water outlet temperature [K] distribution statistics for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

295.54 299.98 4.44 298.21 0.87 0.75 -0.60 3.34

Putting the above-mentioned four measured responses in the following order:

(i) outlet air temperature Ta,out(T idbit); (ii) outlet air temperature Ta,out(Hobo); (iii)

outlet water temperature Tmeasw,out ; and (iv) outlet air relative humidity RHmeas
out ,

yields the following “measured response covariance matrix”, denoted as:

Cov
(
Ta,out(T idbit), Ta,out(Hobo), T

meas
w,out , RH

meas
out

)

=


0.70 0.71 0.19 0.13

0.71 0.72 0.18 0.14

0.19 0.18 0.75 0.21

0.13 0.14 0.21 1.65


(A.6)

For the future purposes of uncertainty quantification, data assimilation, model

calibration and predictive modeling, the data measurements provided by the

“Tidbit” and “Hobo” temperature sensors can be combined into an “averaged”

data set of measured air outlet temperatures, which will be indicated as Tmeasa,out .

Figure A.11: Histogram plot of air outlet temperatures averaged from Figures A.8 and A.9.
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Table A.10: Statistics of the averaged air outlet temperature distribution [K] for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

294.48 298.66 4.18 296.50 0.84 0.71 0.65 2.56

The histogram plot and corresponding statistical characteristics of the averaged

temperature Tmeasa,out are shown in Figure A.11 and Table A.10, respectively.

Calculating the covariance matrix, denoted as
[
Cov

(
Tmeasa,out , T

meas
w,out , RH

meas
out

)]
data

,

for all of the considered experimental data points for the averaged outlet air tem-

perature
[
Tmeasa,out

]
, the outlet water temperature

[
Tmeasw,out

]
, and the outlet air relative

humidity [RHmeas
out ], yields the following covariance matrix:

[
Cov

(
Tmeasa,out , T

meas
w,out , RH

meas
out

)]
data

=


0.71 0.18 0.14

0.18 0.75 0.21

0.14 0.21 1.65

 (A.7)

A comparison between the results in Eqs. (A.6) and (A.7) makes clear that

the elimination of the second column and row in Eq. (A.6) yields a 3-by-3 matrix

which has entries basically equivalent to the covariance matrix shown in Eq.

(A.7). Therefore, this means that the temperature distributions measured by the

“Tidbit” and “Hobo” sensors do not need to be dealt with as separate data sets

for the purposes of uncertainty quantification and predictive modeling.

The standard deviation of the humidity sensor utilized for the measurements

(σsensor = 5.0% for the response RH(1)) have been already considered for the

data at the 100%-saturation point by including in the category of the “saturated”

data sets those that have their respective measured relative humidity, RHmeas,

between 95.5% and 104.1%. In addition to that, the respective uncertainties of

the temperature sensors (standard deviations, σsensor = 0.2K for both responses

T
(1)
a and T

(50)
w ) must also be taken into consideration for the 290 data sets. Using
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the relation in the above Eq. (A.3) in conjunction with the result presented in Eq.

(A.7) will lead to an increase of the variances on the diagonal of the respective

“measured covariance matrix”. The final result obtained is:

Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
=


0.75 0.18 0.14

0.18 0.79 0.21

0.14 0.21 1.65

 (A.8)

In the predictive modeling formalism (which includes uncertainty quantifica-

tion, data assimilation, and model calibration) the covariance matrix between

the measured parameters and responses is required as an input. In the case of

interest, all the parameters and responses can be considered as uncorrelated, ex-

cepting the measured responses considered in this Appendix and the measured

parameters listed in Appendix B. The “parameter-response” covariance matrix

in Eq. (A.9), indicated as Cov
(
Tmeasa,out , T

meas
w,out , RH

meas, α1, ..., α47

)
, refers to the

above mentioned parameters (namely: dry-bulb air temperature, Tdb; dew-point

air temperature, Tdp, inlet water temperature, Tw,in, atmospheric pressure, Patm

and wind speed Vw) and responses (i.e., average outlet air temperature, outlet

water temperature, and outlet air relative humidity):

Cov
(
Tmeasa,out , T

meas
w,out , RH

meas, α1, ..., α47

)

=


0.45 0.52 0.52 1.12 0.007 0 ... 0

0.50 0.55 0.60 −51.14 −0.13 0 ... 0

0.02 0.08 0.06 123.51 −0.23 0 ... 0


(A.9)
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A.3 Statistical Analysis of experimentally mea-

sured responses for Case 2: Fan Off, Unsat-

urated Air Conditions

Histogram plots of the 6717 measurement sets considered for case 2 (each

set containing measurements of Tα,out(T idbit), Tα,out(Hobo), T
meas
w,out , and RHmeas), to-

gether with statistical analyses thereof are presented in this section of the Ap-

pendix A. As shown in Figure A.12, although the computed relative humidity

for each of the 6717 data sets is less than 100%, the measured relative humidity

RHmeas actually spans the range from 33.0% to 104.1%; in this range, 4925 data

sets have their respective RHmeas less than 100% while the other 1792 data sets

have their respective RHmeas over 100%. This situation is nevertheless consis-

tent with the range of the sensors when their tolerances (standard deviations)

are taken into account, which would make it possible for a measurement with

RHmeas= 105% to be nevertheless “unsaturated”. Consequently, all the 6717

benchmark data sets plotted in Figure A.12, were considered as “unsaturated”,

since their respective RHmeas was below the 105% threshold.

Figure A.12: Histogram plot of the measured air outlet relative humidity, within the 6717 data sets collected

by SRNL from F-Area cooling towers for case 2.
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The statistical properties of the (measured air outlet relative humidity) dis-

tribution shown in Figure A.12 have been computed using standard packages,

and are presented in Table A.11. These statistical properties will be needed for

the uncertainty quantification and predictive modeling computations presented

in the main body of this work.

Table A.11: Statistics of the air outlet relative humidity distribution [%] for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

38.2 104.1 65.9 89.61 13.63 185.72 -1.01 3.22

The histogram plots and their corresponding statistical characteristics of the

290 data sets for the other measurements, namely for: the outlet air temperature[
Ta,out(T idbit)

]
measured using the “Tidbit” sensors; the outlet air temperature[

Ta,out(Hobo)
]

measured using the “Hobo” sensors; and the outlet water tempera-

ture
[
Tmeasw,out

]
are reported below in Figures A.13 through A.15, and Tables A.12

through A.14, respectively.

Figure A.13: Histogram plot of the air outlet temperature measured using “Tidbit” sensors, within the 6717

data sets collected by SRNL from F-Area cooling towers for case 2.
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Table A.12: Statistics of the air outlet temperature distribution [K], measured using “Tidbit” sensors for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

292.94 309.52 16.58 299.21 2.92 8.55 0.59 2.71

Figure A.14: Histogram plot of the air outlet temperature measured using “Hobo” sensors, within the 6717

data sets collected by SRNL from F-Area cooling towers for case 2.

Table A.13: Air outlet temperature distribution statistics [K], measured using “Hobo” sensors for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

292.93 308.90 15.97 299.00 2.77 7.68 0.58 2.75

Figure A.15: Histogram plot of water outlet temperature measurements, within the 6717 data sets collected by

SRNL from F-Area cooling towers for case 2.

156



APPENDIX A. STATISTICAL ANALYSIS OF MEASURED RESPONSES

Table A.14: Water outlet temperature [K] distribution statistics for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

293.08 301.70 8.62 298.10 1.39 1.94 -0.51 3.31

Ordering the above-mentioned four measured responses as follows: (i) outlet

air temperature Ta,out(T idbit); (ii) outlet air temperature Ta,out(Hobo); (iii) outlet

water temperature Tmeasw,out ; and (iv) outlet air relative humidity RHmeas
out , yields

the following “measured response covariance matrix”, denoted as:

Cov
(
Ta,out(T idbit), Ta,out(Hobo), T

meas
w,out , RH

meas
out

)

=


8.55 8.06 1.92 −28.43

8.06 7.68 1.91 −27.04

1.92 1.91 1.94 −1.97

−28.43 −27.04 −1.97 185.72


(A.10)

For the future purposes of uncertainty quantification, data assimilation, model

calibration and predictive modeling, the data measurements provided by the

“Tidbit” and “Hobo” temperature sensors can be combined into an “averaged”

data set of measured air outlet temperatures, which will be indicated as Tmeasa,out .

Figure A.16: Histogram plot of air outlet temperatures averaged from Figures A.13 and A.14.
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Table A.15: Statistics of the averaged air outlet temperature distribution [K] for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

292.93 309.10 16.17 299.11 2.84 8.09 0.58 2.71

The histogram plot and corresponding statistical characteristics of the averaged

temperature Tmeasa,out are shown in Figure A.16 and Table A.15, respectively.

Calculating the covariance matrix, denoted as
[
Cov

(
Tmeasa,out , T

meas
w,out , RH

meas
out

)]
data

,

for all of the considered experimental data points for the averaged outlet air tem-

perature
[
Tmeasa,out

]
, the outlet water temperature

[
Tmeasw,out

]
, and the outlet air relative

humidity [RHmeas
out ], yields the following covariance matrix:

[
Cov

(
Tmeasa,out , T

meas
w,out , RH

meas
out

)]
data

=


8.09 1.91 −27.74

1.91 1.94 −1.97

−27.74 −1.97 185.72

 (A.11)

A comparison between the results in Eqs. (A.10) and (A.11) makes clear

that the elimination of the second column and row in Eq. (A.10) yields a 3-by-3

matrix which has entries basically equivalent to the covariance matrix shown in

Eq. (A.11). Therefore, this means that the temperature distributions measured

by the “Tidbit” and “Hobo” sensors do not need to be dealt with as separate

data sets for the purposes of uncertainty quantification and predictive modeling.

The standard deviation of the humidity sensor utilized for the measurements

(σsensor = 5.0% for the response RH(1)) have been already considered by in-

cluding in the category of the “unsaturated” data sets those that have their

respective measured relative humidity, RHmeas, up to 105.0%. In addition to

that, the respective uncertainties of the temperature sensors (standard devia-

tions, σsensor = 0.2K for both responses T
(1)
a and T

(50)
w ) must also be taken into

consideration for the 6717 data sets.
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Coupling Eq. (A.3) with the result presented in Eq. (A.11) will lead to in-

cremented values of the variances on the diagonal of the respective “measured

covariance matrix”. The obtained result is:

Cov
(
Tmeasa,out , T

meas
w,out , RH

meas
out

)
=


8.09 1.91 −27.74

1.91 1.94 −1.97

−27.74 −1.97 195.81

 (A.12)

In the predictive modeling formalism (which includes uncertainty quantifica-

tion, data assimilation, and model calibration) the covariance matrix between

the measured parameters and responses is required as an input. In the case of

interest, all the parameters and responses can be considered as uncorrelated, ex-

cepting the measured responses considered in this Appendix and the measured

parameters listed in Appendix B. The “parameter-response” covariance matrix

in Eq. (A.13), indicated as Cov
(
Tmeasa,out , T

meas
w,out , RH

meas, α1, ..., α47

)
, refers to the

above mentioned parameters (namely: dry-bulb air temperature, Tdb; dew-point

air temperature, Tdp, inlet water temperature, Tw,in, atmospheric pressure, Patm

and wind speed Vw) and responses (i.e., average outlet air temperature, outlet

water temperature, and outlet air relative humidity):

Cov
(
Tmeasa,out , T

meas
w,out , RH

meas, α1, ..., α47

)

=


10.36 2.81 2.22 −232.64 1.30 0 ... 0

1.58 1.96 2.01 −23.76 −0.10 0 ... 0

−35.89 2.43 −0.79 720.11 −5.48 0 ... 0


(A.13)
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Appendix B

Model Parameters for the SRNL

F-Area Cooling Towers

B.1 Model Parameters for Case 1a: Fan Off,

Saturated Outlet Air Conditions, with Inlet

Air Unsaturated

The mean values and standard deviations for the independent model param-

eters αi , ( i = 1, ..., Nα = 47) , presented in Table B.1 have been derived in col-

laboration with Dr. Sebastian Aleman of SRNL (private communications, 2016).

Table B.1: Model Parameters for SRNL F-area Cooling Towers for case 1a.

i
Model Independent sdfddsfsf

Scalar Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

1 Air temperature (dry bulb), (K) Tdb 294.03 1.79 0.61

2 Dew point temperature (K) Tdp 293.49 1.61 0.55

3 Inlet water temperature (K) Tw,in 298.78 1.42 0.47

4 Atmospheric pressure (Pa) Patm 100853 287 0.28

5 Wind speed (m/s) Vw 1.42 0.62 42.52
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i
Model Independent sdfddsfsf

Scalar Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

6 Sum of loss coefficients above fill ksum 10 5 50

7
Dynamic viscosity of air at T=300 K

(kg/m·s)
µ 1.98·10−5 9.68·10−7 4.88

8
Kinematic viscosity of air at T=300 K

(m2/s)
ν 1.57·10−5 1.89·10−6 12.09

9
Thermal conductivity of air at T=300

K (W/m·K)
kair 0.02624 1.58·10−3 6.04

10 Heat transfer coefficient multiplier fht 1 0.5 50

11 Mass transfer coefficient multiplier fmt 1 0.5 50

12 Fill section frictional loss multiplier f 4 2 50

13
Pvs(T) parameters

a0 25.5943 0.01 0.04

14 a1 -5229.89 4.4 0.08

15

Cpa(T) parameters

a0,cpa 1030.5 0.294 0.03

16 a1,cpa -0.19975 0.002 1.00

17 a2,cpa 3.97·10−4 3.40·10−6 0.84

18

Dav(T) parameters

a0,dav 7.06·10−9 0 0

19 a1,dav 2.65322 0.003 0.11

20 a2,dav -6.17·10−3 2.30·10−5 0.37

21 a3,dav 6.55·10−6 3.80·10−8 0.58

22
hf(T) parameters

a0f -1143423 543 0.05

23 a1f 4186.50768 1.8 0.04

24
hg(T) parameters

a0g 2005743.99 1046 0.05

25 a1g 1815.437 3.5 0.19

26

Nusselt parameters

a0,Nu 8.235 2.059 25

27 a1,Nu 0.00314987 0.00105 33.25

28 a2,Nu 0.9902987 0.329 33.25

29 a3,Nu 0.023 0.0088 38.26
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i
Model Independent sdfddsfsf

Scalar Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

30 Cooling tower deck width in x-dir (m) Wdkx 8.5 0.085 1

31 Cooling tower deck width in y-dir (m) Wdky 8.5 0.085 1

32
Cooling tower deck height above

ground (m)
∆zdk 10 0.1 1

33 Fan shroud height (m) ∆zfan 3 0.03 1

34 Fan shroud inner diameter (m) Dfan 4.1 0.041 1

35 Fill section height (m) ∆zfill 2.013 0.02013 1

36 Rain section height (m) ∆zrain 1.633 0.01633 1

37 Basin section height (m) ∆zbs 1.168 0.01168 1

38 Drift eliminator thickness (m) ∆zde 0.1524 0.00152 1

39 Fill section equivalent diameter (m) Dh 0.0381 0.00038 1

40 Fill section flow area (m2) Afill 67.29 6.729 10

41 Fill section surface area (m2) Asurf 14221 3555.3 25

42 Prandtl number of air at T=80 ◦C Pr 0.708 0.005 0.71

43 Wetted fraction of fill surface area wtsa 1 0 0

i Boundary Parameters (αi)
Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

44 Inlet water mass flow rate (kg/s) mw,in 44.02 2.20 5

45 Inlet air temperature (K) Ta,in 294.03 1.79 0.61

46 Inlet air humidity ratio ωin 0.01552 0.00149 8.15

i
Special Dependent sdfdfdgdsfsf

Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

47 Schmidt number Sc 0.619 0.0073 1.19

The above independent model parameters are used for computing various

dependent model parameters and thermal material properties, as shown in Tables

B.2 and B.3.
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Table B.2: Dependent Scalar Model Parameters.

Dependent Scalar Parameters Math. Notation
Defining Equation or

Correlation

Mass diffusivity of water vapor in air (m2/s) Dav(Ta,α)
a0,davT

1.5

a1,dav+(a2,dav+a3,davT )T

Heat transfer coefficient (W/m2·K) h(α) fhtNukair
Dh

Mass transfer coefficient (m/s) km(α)
fmtShDav(Tdb,α)

Dh

Heat transfer term (W/K) H(ma,α) h (α)wtsaAff

Mass transfer term (m3/s) M(ma,α) MH2Okm (α)wtsaAff

Density of dry air (kg/m3) ρ(α) Patm
RairTdb

Air velocity in the fill section (m/s) va(ma,α)
|ma|

ρ(α)Afill

Fill falling-film surface area per vertical section (m2) Aff
Asurf

I

Rain section inlet flow area (m2) Ain WdkxWdky

Height for natural convection (m) Z ∆zdk + ∆zfan −∆zbs

Height above fill section (m) ∆z4−2 Z −∆zfill −∆zrain

Fill section control volume height (m) ∆z
∆zfill

I

Fill section length, including drift eliminator (m) Lfill ∆zfill + ∆zde

Fan shroud inner radius (m) rfan 0.5Dfan

Fan shroud flow area (m2) Aout π rfan
2

Table B.3: Thermal Properties (Dependent Scalar Model Parameters).

Thermal Properties sdfdfdgdfdgfdgfdsfsf

(functions of state variables)
Math. Notation

Defining Equation or

Correlation

hf(Tw) = saturated liquid enthalpy (J/kg) hf (Tw,α) a0f + a1fTw

Hg(Tw) = saturated vapor enthalpy (J/kg) hg,w(Tw,α) a0g + a1gTw

Hg(Ta) = saturated vapor enthalpy (J/kg) hg,a(Ta,α) a0g + a1gTa

Cpa(T) = specific heat of dry air (J/kg·K) Cp(T,α) a0,cpa + (a1,cpa + a2,cpaT )T

Pvs(Tw) = saturation pressure (Pa) Pvs(Tw,α) Pc · ea0+
a1
Tw , in which Pc = 1.0 Pa

Pvs(Ta) = saturation pressure (Pa) Pvs(Ta,α) Pc ·ea0+
a1
Ta , in which Pc = 1.0 Pa.

Note 1: The measurements of parameters α1 through α5 (i.e., the dry bulb

air temperature, dew point temperature, inlet water temperature, atmospheric

pressure and wind speed) were taken at the SRNL site, where the F-area cooling

towers are located. Out of the 8079 total benchmark data sets [33], 377 data sets

have been considered in case 1a; through these data sets the statistical properties
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(means, variance and covariance, skewness and kurtosis) for these model param-

eters have been derived, as shown in Figures B.1 through B.5 and Tables B.4

through B.8.

Figure B.1: Histogram plot of dry-bulb air temperature data collected by SRNL from F-Area cooling towers

for case 1a.

Table B.4: Statistics of the dry-bulb air temperature distribution [K] for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

290.61 303.92 13.31 294.03 1.78 3.18 1.38 8.67

Figure B.2: Histogram plot of dew-point air temperature data collected by SRNL from F-Area cooling towers

for case 1a.
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Table B.5: Statistics of the dew-point air temperature distribution [K] for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

288.94 296.95 8.01 293.49 1.61 2.58 -0.49 2.97

Figure B.3: Histogram plot of inlet water temperature data collected by SRNL from F-Area cooling towers for

case 1a.

Table B.6: Statistics of the inlet water temperature distribution [K] for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

296.11 301.72 5.61 298.77 1.41 2.00 0.49 2.21

Figure B.4: Histogram plot of atmospheric pressure data collected by SRNL from F-Area cooling towers for

case 1a.
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Table B.7: Statistics of the atmospheric pressure distribution [Pa] for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

100104 101452 1348 100853 286.59 82133 -0.49 1.99

Figure B.5: Histogram plot of wind speed data collected by SRNL from F-Area cooling towers for case 1a.

Table B.8: Statistics of the wind speed distribution [m/s] for case 1a.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

0.22 3.93 3.71 1.35 0.62 0.39 0.90 4.00

The 5-by-5 covariance matrix for the above experimental data has also been

computed and is provided below, with the five model parameters ordered as fol-

lows: dry-bulb air temperature Tdb, dew-point air temperature Tdp, inlet water

temperature Tw,in, atmospheric air pressure Patm, and wind speed Vw.

Cov (Tdb;Tdp;Tw,in;Patm;Vw) =



3.18 2.17 1.19 −187.06 0.26

2.17 2.58 1.26 −178.24 0.28

1.19 1.26 2.00 −184.39 0.26

−187.06 −178.24 −184.39 82133 0.42

0.26 0.28 0.26 0.42 0.39


(B.1)
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The covariance matrix in Eq. (B.1) neglects the uncertainty associated with

sensor readings throughout the data collection period. When combining uncer-

tainties by adding variances, the contribution from the sensors is 0.04 K for each

of the first three parameters, which accounts for a maximum of ca. 2% of the

total variance (for the dry-bulb air temperature, specifically). The uncertainty in

the atmospheric pressure sensor is at this time unknown. For these reasons, their

contribution to overall uncertainty is considered insignificant at this time.

Note 2: Temperature and pressure values are initially input in units of [◦C]

and [mb], respectively, but are internally converted to [K] and [Pa] for computa-

tional purposes.

Note 3: Inlet air humidity ratio is defined as follows:

ωin =
0.622Pvs(Tdp, α)

Patm − Pvs(Tdp, α)
=

0.622e
a0+

a1
Tdp

Patm − e
a0+

a1
Tdp

(B.2)

Note 4: The Nusselt number is defined as follows:

Nu =



a0,Nu Red < 2300

a1,Nu · Red + a2,Nu 2300 ≤ Red ≤ 10000

a3,Nu · Red
0.8 · Pr

1
3 Red > 10000

(B.3)
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B.2 Model Parameters for Case 1b: Fan Off,

Saturated Outlet Air Conditions, with Inlet

Air Saturated

The mean values and standard deviations for the independent model param-

eters αi , ( i = 1, ..., Nα = 47) , presented in Table B.1 have been derived in col-

laboration with Dr. Sebastian Aleman of SRNL (private communications, 2016).

Table B.9: Model Parameters for SRNL F-area Cooling Towers for case 1a.

i
Model Independent sdfddsfsf

Scalar Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

1 Air temperature (dry bulb), (K) Tdb 294.4 0.98 0.34

2 Dew point temperature (K) Tdp 294.661 1.08 0.37

3 Inlet water temperature (K) Tw,in 299.543 1.07 0.36

4 Atmospheric pressure (Pa) Patm 100605 312 0.31

5 Wind speed (m/s) Vw 1.377 0.72 52.40

6 Sum of loss coefficients above fill ksum 10 5 50

7
Dynamic viscosity of air at T=300 K

(kg/m·s)
µ 1.98·10−5 9.68·10−7 4.88

8
Kinematic viscosity of air at T=300 K

(m2/s)
ν 1.57·10−5 1.89·10−6 12.09

9
Thermal conductivity of air at T=300

K (W/m·K)
kair 0.02624 1.58·10−3 6.04

10 Heat transfer coefficient multiplier fht 1 0.5 50

11 Mass transfer coefficient multiplier fmt 1 0.5 50

12 Fill section frictional loss multiplier f 4 2 50

13
Pvs(T) parameters

a0 25.5943 0.01 0.04

14 a1 -5229.89 4.4 0.08
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i
Model Independent sdfddsfsf

Scalar Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

15

Cpa(T) parameters

a0,cpa 1030.5 0.294 0.03

16 a1,cpa -0.19975 0.002 1

17 a2,cpa 3.97·10−4 3.40·10−6 0.84

18

Dav(T) parameters

a0,dav 7.06·10−9 0 0

19 a1,dav 2.65322 0.003 0.11

20 a2,dav -6.17·10−3 2.30·10−5 0.37

21 a3,dav 6.55·10−6 3.80·10−8 0.58

22
hf(T) parameters

a0f -1143423 543 0.05

23 a1f 4186.50768 1.8 0.04

24
hg(T) parameters

a0g 2005743.99 1046 0.05

25 a1g 1815.437 3.5 0.19

26

Nusselt parameters

a0,Nu 8.235 2.059 25

27 a1,Nu 0.00314987 0.00105 31.75

28 a2,Nu 0.9902987 0.329 34.09

29 a3,Nu 0.023 0.0088 38.26

30 Cooling tower deck width in x-dir (m) Wdkx 8.5 0.085 1

31 Cooling tower deck width in y-dir (m) Wdky 8.5 0.085 1

32
Cooling tower deck height above

ground (m)
∆zdk 10 0.1 1

33 Fan shroud height (m) ∆zfan 3 0.03 1

34 Fan shroud inner diameter (m) Dfan 4.1 0.041 1

35 Fill section height (m) ∆zfill 2.013 0.02013 1

36 Rain section height (m) ∆zrain 1.633 0.01633 1

37 Basin section height (m) ∆zbs 1.168 0.01168 1

38 Drift eliminator thickness (m) ∆zde 0.1524 0.00152 1

39 Fill section equivalent diameter (m) Dh 0.0381 0.00038 1

40 Fill section flow area (m2) Afill 67.29 6.729 10
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i
Model Independent sdfddsfsf

Scalar Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

41 Fill section surface area (m2) Asurf 14221 3555.3 25

42 Prandtl number of air at T=80 ◦C Pr 0.708 0.005 071

43 Wetted fraction of fill surface area wtsa 1 0 0

i Boundary Parameters (αi)
Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

44 Inlet water mass flow rate (kg/s) mw,in 44.0089 2.20 5

45 Inlet air temperature (K) Ta,in 294.40 0.98 0.34

46 Inlet air humidity ratio ωin 0.0162008 0.00131 6.75

i
Special Dependent sdfdfdgdsfsf

Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

47 Schmidt number Sc 0.6178 0.0041 0.66

The above independent model parameters are used for computing various

dependent model parameters and thermal material properties, as shown in Tables

B.2 and B.3.

Note 1: The measurements of parameters α1 through α5 (i.e., the dry bulb

air temperature, dew point temperature, inlet water temperature, atmospheric

pressure and wind speed) were taken at the SRNL site, where the F-area cooling

towers are located. Out of the 8079 total benchmark data sets [33], 290 data sets

have been considered in case 1b; through these data sets the statistical properties

(means, variance and covariance, skewness and kurtosis) for these model param-

eters have been derived, as shown in Figures B.6 through B.10 and Tables B.10

through B.14.
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Figure B.6: Histogram plot of dry-bulb air temperature data collected by SRNL from F-Area cooling towers

for case 1b.

Table B.10: Statistics of the dry-bulb air temperature distribution [K] for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

291.50 297.22 5.72 294.40 0.98 0.97 -0.43 3.37

Figure B.7: Histogram plot of dew-point air temperature data collected by SRNL from F-Area cooling towers

for case 1b.

Table B.11: Statistics of the dew-point air temperature distribution [K] for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

291.59 297.35 5.76 294.66 1.08 1.16 -0.22 3.24
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Figure B.8: Histogram plot of inlet water temperature data collected by SRNL from F-Area cooling towers for

case 1b.

Table B.12: Statistics of the inlet water temperature distribution [K] for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

296.93 301.79 4.86 299.54 1.07 1.14 -0.15 3.01

Figure B.9: Histogram plot of atmospheric pressure data collected by SRNL from F-Area cooling towers for

case 1b.

Table B.13: Statistics of the atmospheric pressure distribution [Pa] for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

100124 101383 1259 100605 312 97463 0.66 2.29
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Figure B.10: Histogram plot of wind speed data collected by SRNL from F-Area cooling towers for case 1b.

Table B.14: Statistics of the wind speed distribution [m/s] for case 1b.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

0.02 4.32 4.30 1.38 0.72 0.52 1.15 4.72

The 5-by-5 covariance matrix for the above experimental data has also been

computed and is provided below, with the five model parameters ordered as fol-

lows: dry-bulb air temperature Tdb, dew-point air temperature Tdp, inlet water

temperature Tw,in, atmospheric air pressure Patm, and wind speed Vw.

Cov (Tdb;Tdp;Tw,in;Patm;Vw) =



0.97 1.04 0.60 −128.15 0.07

1.04 1.16 0.66 −138.34 0.06

0.60 0.66 1.14 −51.83 0.02

−128.15 −138.34 −51.83 97463 30.66

0.07 0.06 0.02 30.66 0.52


(B.4)

The covariance matrix in Eq. (B.4) neglects the uncertainty associated with

sensor readings throughout the data collection period. When combining uncer-

tainties by adding variances, the contribution from the sensors is 0.04 K for each

of the first three parameters, which accounts for a maximum of ca. 4% of the
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total variance (for the dry-bulb air temperature, specifically). The uncertainty in

the atmospheric pressure sensor is at this time unknown. For these reasons, their

contribution to overall uncertainty is considered insignificant at this time.

B.3 Model Parameters for Case 2: Fan Off, Un-

saturated Air Conditions

The mean values and standard deviations for the independent model param-

eters αi , ( i = 1, ..., Nα = 47) , presented in Table B.1 have been derived in col-

laboration with Dr. Sebastian Aleman of SRNL (private communications, 2016).

Table B.15: Model Parameters for SRNL F-area Cooling Towers for case 1a.

i
Model Independent sdfddsfsf

Scalar Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

1 Air temperature (dry bulb), (K) Tdb 298.882 4.034 1.35

2 Dew point temperature (K) Tdp 292.077 2.287 0.78

3 Inlet water temperature (K) Tw,in 298.893 1.687 0.56

4 Atmospheric pressure (Pa) Patm 100588 408.26 0.41

5 Wind speed (m/s) Vw 1.859 0.941 50.7

6 Sum of loss coefficients above fill ksum 10 5 50

7
Dynamic viscosity of air at T=300 K

(kg/m·s)
µ 1.98·10−5 9.68·10−7 4.88

8
Kinematic viscosity of air at T=300 K

(m2/s)
ν 1.57·10−5 1.90·10−6 12.09

9
Thermal conductivity of air at T=300

K (W/m·K)
kair 0.02624 1.58·10−3 6.04

10 Heat transfer coefficient multiplier fht 1 0.5 50

11 Mass transfer coefficient multiplier fmt 1 0.5 50

12 Fill section frictional loss multiplier f 4 2 50
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i
Model Independent sdfddsfsf

Scalar Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

13
Pvs(T) parameters

a0 25.5943 0.01 0.04

14 a1 -5229.89 4.4 0.08

15

Cpa(T) parameters

a0,cpa 1030.5 0.294 0.03

16 a1,cpa -0.19975 0.002 1

17 a2,cpa 3.97·10−4 3.35·10−6 0.84

18

Dav(T) parameters

a0,dav 7.06·10−9 0 0

19 a1,dav 2.65322 0.003 0.11

20 a2,dav -6.17·10−3 2.30·10−5 0.37

21 a3,dav 6.55·10−6 3.80·10−8 0.58

22
hf(T) parameters

a0f -1143423 543 0.05

23 a1f 4186.50768 1.8 0.04

24
hg(T) parameters

a0g 2005743.99 1046 0.05

25 a1g 1815.437 3.5 0.19

26

Nusselt parameters

a0,Nu 8.235 2.059 25

27 a1,Nu 0.00314987 0.00105 31.75

28 a2,Nu 0.9902987 0.329 33.02

29 a3,Nu 0.023 0.0088 38.26

30 Cooling tower deck width in x-dir (m) Wdkx 8.5 0.085 1

31 Cooling tower deck width in y-dir (m) Wdky 8.5 0.085 1

32
Cooling tower deck height above

ground (m)
∆zdk 10 0.1 1

33 Fan shroud height (m) ∆zfan 3 0.03 1

34 Fan shroud inner diameter (m) Dfan 4.1 0.041 1

35 Fill section height (m) ∆zfill 2.013 0.02013 1

36 Rain section height (m) ∆zrain 1.633 0.01633 1

37 Basin section height (m) ∆zbs 1.168 0.01168 1

38 Drift eliminator thickness (m) ∆zde 0.1524 0.00152 1
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i
Model Independent sdfddsfsf

Scalar Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

39 Fill section equivalent diameter (m) Dh 0.0381 0.00038 1

40 Fill section flow area (m2) Afill 67.29 6.729 10

41 Fill section surface area (m2) Asurf 14221 3555.3 25

42 Prandtl number of air at T=80 ◦C Pr 0.708 0.005 0.71

43 Wetted fraction of fill surface area wtsa 1 0 0

i Boundary Parameters (αi)
Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

44 Inlet water mass flow rate (kg/s) mw,in 44.0193 2.201 5

45 Inlet air temperature (K) Ta,in 294.40 4.034 1.35

46 Inlet air humidity ratio ωin 0.01379 0.00192 13.80

i
Special Dependent sdfdfdgdsfsf

Parameters (αi)

Math.

Notation

Nominal

Value

Absolute

Std. Dev.

Relative

Std. Dev.

47 Schmidt number Sc 0.5999 0.0159 2.66

The above independent model parameters are used for computing various

dependent model parameters and thermal material properties, as shown in Tables

B.2 and B.3.

Note 1: The measurements of parameters α1 through α5 (i.e., the dry bulb

air temperature, dew point temperature, inlet water temperature, atmospheric

pressure and wind speed) were taken at the SRNL site, where the F-area cooling

towers are located. Out of the 8079 total benchmark data sets [33], 6717 data sets

have been considered in case 2; through these data sets the statistical properties

(means, variance and covariance, skewness and kurtosis) for these model param-

eters have been derived, as shown in Figures B.11 through B.15 and Tables B.16

through B.20.

176



APPENDIX B. PARAMETERS FOR THE F-AREA COOLING TOWERS

Figure B.11: Histogram plot of dry-bulb air temperature data collected by SRNL from F-Area cooling towers

for case 2.

Table B.16: Statistics of the dry-bulb air temperature distribution [K] for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

289.50 309.91 20.41 298.88 4.03 16.27 0.36 2.38

Figure B.12: Histogram plot of dew-point air temperature data collected by SRNL from F-Area cooling towers

for case 2.

Table B.17: Statistics of the dew-point air temperature distribution [K] for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

282.58 298.06 15.48 292.08 2.29 5.23 -0.66 3.11
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Figure B.13: Histogram plot of inlet water temperature data collected by SRNL from F-Area cooling towers for

case 2.

Table B.18: Statistics of the inlet water temperature distribution [K] for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

293.93 303.39 9.46 298.89 1.69 2.85 -0.16 2.91

Figure B.14: Histogram plot of atmospheric pressure data collected by SRNL from F-Area cooling towers for

case 2.

Table B.19: Statistics of the atmospheric pressure distribution [Pa] for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

99617 101677 2060 100588 408.6 166678 0.079 2.57
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Figure B.15: Histogram plot of wind speed data collected by SRNL from F-Area cooling towers for case 2.

Table B.20: Statistics of the wind speed distribution [m/s] for case 2.

Minimum Maximum Range Mean Std.Dev. Variance Skewness Kurtosis

0.00 6.60 6.60 1.859 0.94 0.89 0.71 3.42

The 5-by-5 covariance matrix for the above experimental data has also been

computed and is provided below, with the five model parameters ordered as fol-

lows: dry-bulb air temperature Tdb, dew-point air temperature Tdp, inlet water

temperature Tw,in, atmospheric air pressure Patm, and wind speed Vw.

Cov (Tdb;Tdp;Tw,in;Patm;Vw) =



16.27 3.56 2.13 −494.48 2.45

3.56 5.23 2.22 −138.46 0.28

2.13 2.22 2.85 −58.63 0.12

−494.48 −138.46 −58.63 166678.40 −49.62

2.45 0.28 0.12 −49.62 0.89


(B.5)

The covariance matrix in Eq. (B.5) neglects the uncertainty associated with

sensor readings throughout the data collection period. When combining uncer-

tainties by adding variances, the contribution from the sensors is 0.04 K for each

of the first three parameters, which accounts for a maximum of ca. 4% of the

total variance (for the dry-bulb air temperature, specifically). The uncertainty in
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the atmospheric pressure sensor is at this time unknown. For these reasons, their

contribution to overall uncertainty is considered insignificant at this time.
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Appendix C

Derivative Matrix (Jacobian) of

the Model Equations with

Respect to the State Functions

This section presents the functional derivatives of the model governing equa-

tions with respect to the vector-values state function u , (mw, Tw, Ta,ω,ma)
†.

The notation for the derivatives of (i) the liquid continuity equations, (ii) the

liquid energy balance equations, (iii) the water vapor continuity equations, and

(iv) the air/water vapor energy balance equations with respect to the state (i.e.,

dependent) variables will be as follows:

ai,j` ≡
∂N

(i)
`

∂m
(j+1)
w

; ` = 1, 2, 3, 4; i = 1, ..., I; j = 1, ..., I; (C.1)

bi,j` ≡
∂N

(i)
`

∂T
(j+1)
w

; ` = 1, 2, 3, 4; i = 1, ..., I; j = 1, ..., I; (C.2)

ci,j` ≡
∂N

(i)
`

∂T
(j)
a

; ` = 1, 2, 3, 4; i = 1, ..., I; j = 1, ..., I; (C.3)
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di,j` ≡
∂N

(i)
`

∂ω(j)
; ` = 1, 2, 3, 4; i = 1, ..., I; j = 1, ..., I; (C.4)

ei` ≡
∂N

(i)
`

∂ma

; ` = 1, 2, 3, 4; i = 1, ..., I; (C.5)

The notation for the derivatives of the mechanical energy equations with re-

spect to the state (i.e., dependent) variables will be as follows:

aj5 ≡
∂N5

∂m
(j+1)
w

; j = 1, ..., I; (C.6)

bj5 ≡
∂N5

∂T
(j+1)
w

; j = 1, ..., I; (C.7)

cj5 ≡
∂N5

∂T
(j)
a

; j = 1, ..., I; (C.8)

dj5 ≡
∂N5

∂ω(j)
; j = 1, ..., I; (C.9)

e5 ≡
∂N5

∂ma

; (C.10)

Used in the following of the document, the partial derivatives ofH(ma, α) with

respect to ma are listed as follows:

1) For Red < 2300 :

∂H1

∂ma

=
∂
[
fhta0,NuKairwtsaAsurf

DhI

]
∂ma

= 0; (C.11)
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2) For 2, 300 ≤ Red ≤ 10, 000 :

∂H2

∂ma

=

∂

[
fht·

(
a1,Nu

Dh·|ma|
µairAfill

+a2,Nu

)
KairwtsaAsurf

DhI

]
∂ma

=
fhta1,NuKairwtsaAsurf

µairAfillI
· sgn(ma);

(C.12)

3) For Red > 10, 000 :

∂H3

∂ma

=

∂

fhta3,Nu·
(
Dh·|ma|
µairAfill

)0.8

Pr
1
3KairwtsaAsurf

DhI


∂ma

=
4

5

fhta3,NuPr
1
3KairwtsaAsurf

(µairAfill)
0.8 · (Dhma)

0.2 · I
· sgn(ma);

(C.13)

Used in the following of the document, the partial derivatives ofM(ma, α) with

respect to ma are listed as follows:

1) For Red < 2300 :

∂M1

∂ma

=

∂

[
Mh2ofmta0,Nuν

1
3
airD

2
3
avwtsaAsurf

Pr
1
3DhI

]
∂ma

= 0;
(C.14)
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2) For 2, 300 ≤ Red ≤ 10, 000 :

∂M2

∂ma

=

∂

Mh2ofmt·
(
Dh·|ma|·a1,Nu

Afillνair
+a2,Nu

)
ν

1
3
airD

2
3
avwtsaAsurf

Pr
1
3DhI


∂ma

=
Mh2ofmt · a1,NuD

2
3
avwtsaAsurf

Afillν
2
3
airPr

1
3 I

· sgn(ma);

(C.15)

3) For Red > 10, 000 :

∂M3

∂ma

=

∂

Mh2ofmt·a1,Nu

(
Dh·|ma|
Afillνair

)0.8

ν
1
3
airD

2
3
avwtsaAsurf

DhI


∂ma

=
4

5

Mh2ofmt · a3,Nuν
1
3
airD

2
3
avwtsaAsurf

(maDh)
0.2(Afillνair)

0.8I
· sgn(ma);

(C.16)

C.1 Jacobian Matrix of Case 1a: Fan Off, Satu-

rated Outlet Air Conditions, with Inlet Air

Unsaturated

C.1.1 Derivatives of the liquid continuity equations with

respect to the state variables

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to m
(j)
w are as follows:
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∂N
(i)
1

∂m
(j+1)
w

≡ ai,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i− 1, i; (C.17)

∂N
(i)
1

∂m
(i)
w

≡ ai,i−1
1 = −1; i = 2, ..., I; j = i− 1; (C.18)

∂N
(i)
1

∂m
(i+1)
w

≡ ai,i1 = 1; i = 1, ..., I; j = i. (C.19)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix A1 defined as follows:

A1 ≡
(
ai,j1

)
I×I =



1 0 . 0 0

−1 1 . 0 0

. . . . .

0 0 . 1 0

0 0 . −1 1


(C.20)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to T
(j)
w are as follows:

∂N
(i)
1

∂T
(j+1)
w

≡ bi,j1 = 0;

i = 1, ..., I; j = 1, ..., I; j 6= i;

(C.21)

∂N
(i)
1

∂T
(i+1)
w

≡ bi,i1 = −M(ma,α)

R

P
(i+1)
vs (T

(i+1)
w ,α)

[T
(i+1)
w ]

2

{
a1

T
(i+1)
w

+ 1

}
;

i = 1, ..., I; j = i.

(C.22)
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For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix B1 defined as follows:

B1 ≡
(
bi,j1

)
I×I =



b1,1
1 0 . 0 0

0 b2,2
1 . 0 0

. . . . .

0 0 . bI−1,I−1
1 0

0 0 . 0 bI,I1


(C.23)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to T
(j)
a are as follows:

∂N
(i)
1

∂T
(j)
a

≡ ci,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i; (C.24)

∂N
(i)
1

∂T
(i)
a

≡ ci,i1 =
M(ma,α)

R

P
(i)
vs (T

(i)
a ,α)[

T
(i)
a

]2

[
1 +

a1

T
(i)
a

]
; i = 1, ..., K; j = i. (C.25)

∂N
(i)
1

∂T
(i)
a

≡ ci,i1 =
M(ma,α)

R

ω(i)Patm[
T

(i)
a

]2

(0.622 + ω(i))
; i = K + 1, ..., I; j = i. (C.26)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix C1 defined as follows:

C1 ≡
(
ci,j1

)
I×I =



c1,1
1 0 . 0 0

0 c2,2
1 . 0 0

. . . . .

0 0 . cI−1,I−1
1 0

0 0 . 0 cI,I1


(C.27)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to ω(j)are as follows:

∂N
(i)
1

∂ω(j)
≡ di,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i; (C.28)

∂N
(i)
1

∂ω(i)
≡ di,i1 = 0; i = 1, ..., K; j = i. (C.29)

∂N
(i)
1

∂ω(i)
≡ di,i1 =

M(ma,α)

R

Patm

[0.622 + ω(i)]T
(i)
a

{
ω(i)

[0.622 + ω(i)]
− 1

}
;

i = K + 1, ..., I; j = i.

(C.30)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix D1 defined as follows:

D1 ≡
(
di,j1

)
I×I =



d1,1
1 0 . 0 0

0 d2,2
1 . 0 0

. . . . .

0 0 . dI−1,I−1
1 0

0 0 . 0 dI,I1


(C.31)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to ma are:

1) For Red < 2300

∂N
(i)
1

∂ma

≡ ei1 = 0; i = 1, ..., I; (C.32)
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2) For 2, 300 ≤ Red ≤ 10, 000

∂N
(i)
1

∂ma

≡ ei1 =

[
Pvs(T

(i+1)
w ,α)

R · T (i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
· ∂M2(ma,α)

∂ma

;

i = 1, ..., K;

(C.33)

∂N
(i)
1

∂ma

≡ ei1 =

[
Pvs(T

(i+1)
w ,α)

R · T (i+1)
w

− ω(i)Patm

R · T (i)
a (0.622 + ω(i))

]
· ∂M2(ma,α)

∂ma

;

i = K + 1, ..., I;

(C.34)

3) For Red > 10, 000

∂N
(i)
1

∂ma

≡ ei1 =

[
Pvs(T

(i+1)
w ,α)

R · T (i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
· ∂M3(ma,α)

∂ma

;

i = 1, ..., K;

(C.35)

∂N
(i)
1

∂ma

≡ ei1 =

[
Pvs(T

(i+1)
w ,α)

R · T (i+1)
w

− ω(i)Patm

R · T (i)
a (0.622 + ω(i))

]
· ∂M3(ma,α)

∂ma

;

i = K + 1, ..., I;

(C.36)

For subsequent use, the above quantities are considered to be the components

of the I column vector E1 defined as follows:

E1 ≡
(
ei1
)
I

=



e1
1

e2
1

...

eI−1
1

eI1


(C.37)
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C.1.2 Derivatives of the liquid energy balance equations

with respect to the state variables

Derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)] with

respect to m
(j)
w are as follows:

∂N
(i)
2

∂m
(j+1)
w

≡ ai,j2 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i− 1, i; (C.38)

∂N
(i)
2

∂m
(i)
w

≡ ai,i−1
2 = h

(i)
f (T (i)

w ,α)− h(i+1)
g (T (i+1)

w ,α); i = 2, ..., I; j = i− 1; (C.39)

∂N
(i)
2

∂m
(i+1)
w

≡ ai,i2 = h(i+1)
g (T (i+1)

w ,α)− h(i+1)
f (T (i+1)

w ,α); i = 1, ..., I; j = i. (C.40)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix A2 defined as follows:

A2 ≡
(
ai,j2

)
I×I =



a1,1
2 0 . 0 0

a2,1
2 a2,2

2 . 0 0

. . . . .

0 0 . aI−1,I−1
2 0

0 0 . aI,I−1
2 aI,I2


(C.41)

Derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)] with

respect to T
(j)
w are as follows:

∂N
(i)
2

∂T
(j+1)
w

≡ bi,j2 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i− 1, i; (C.42)

∂N
(i)
2

∂T
(i)
w

≡ bi,i−1
2 = m(i)

w

∂h
(i)
f

∂T
(i)
w

; i = 2, ..., I; j = i− 1; (C.43)
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∂N
(i)
2

∂T
(i+1)
w

≡ bi,i2 = −m(i+1)
w

∂h
(i+1)
f

∂T
(i+1)
w

−
(
m(i)
w −m(i+1)

w

) ∂h(i+1)
g,w

∂T
(i+1)
w

−H(ma,α); i = 1, ..., I; j = i.

(C.44)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix B2 defined as follows:

B2 ≡
(
bi,j2

)
I×I =



b1,1
2 0 . 0 0

b2,1
2 b2,2

2 . 0 0

. . . . .

0 0 . bI−1,I−1
2 0

0 0 . bI,I−1
2 bI,I2


(C.45)

Derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)] with

respect to T
(j)
a are as follows:

∂N
(i)
2

∂T
(j)
a

≡ ci,j2 = 0; i = 1, ..., I; i = 1, ..., I; j 6= i; (C.46)

∂N
(i)
2

∂T
(i)
a

≡ ci,i2 = H(ma,α); i = 1, ..., I; j = i. (C.47)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix C2 defined as follows:

C2 ≡
(
ci,j2

)
I×I =



c1,1
2 0 . 0 0

0 c2,2
2 . 0 0

. . . . .

0 0 . cI−1,I−1
2 0

0 0 . 0 cI,I2


(C.48)
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The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to ω(j) are as follows:

∂N
(i)
2

∂ω(j)
≡ di,j2 = 0; i = 1, ..., I; j = 1, ..., I. (C.49)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix:

D2 ≡
[
di,j2

]
I×I = 0. (C.50)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to ma are:

1) For Red < 2300 :

∂N
(i)
2

∂ma

≡ ei2 = 0; i = 1, ..., I; (C.51)

2) For 2, 300 ≤ Red ≤ 10, 000 :

∂N
(i)
2

∂ma

≡ ei2 = −(T (i+1)
w − T (i)

a ) · ∂H2(ma,α)

∂ma

; i = 1, ..., I; (C.52)

3) For Red > 10, 000 :

∂N
(i)
2

∂ma

≡ ei2 = −(T (i+1)
w − T (i)

a ) · ∂H3(ma,α)

∂ma

; i = 1, ..., I; (C.53)
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For subsequent use, the above quantities are considered to be the components

of the I column vector E2 defined as follows:

E2 ≡
(
ei2
)
I

=



e1
2

e2
2

...

eI−1
2

eI2


(C.54)

C.1.3 Derivatives of the water vapor continuity equations

with respect to the state variables

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to m
(j)
w are as follows:

∂N
(i)
3

∂m
(j+1)
w

≡ ai,j3 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i− 1, i; (C.55)

∂N
(i)
3

∂m
(i)
w

≡ ai,i−1
3 =

1

ma

; i = 2, ..., I; j = i− 1; (C.56)

∂N
(i)
3

∂m
(i+1)
w

≡ ai,i3 = − 1

ma

; i = 1, ..., I; j = i. (C.57)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix A3 defined as follows:
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A3 ≡
(
ai,j3

)
I×I =

1

ma



−1 0 . 0 0

1 −1 . 0 0

. . . . .

0 0 . −1 0

0 0 . 1 −1


. (C.58)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to T
(j)
w are as follows:

∂N
(i)
3

∂T
(j+1)
w

≡ bi,j3 = 0; i = 1, ..., I; j = 1, ..., I. (C.59)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix

B3 ≡
[
bi,j3

]
I×I = 0. (C.60)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to T
(j)
a are as follows:

∂N
(i)
3

∂T
(j)
a

≡ ci,j3 = 0; i = 1, ..., I; j = 1, ..., I. (C.61)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix

C3 ≡
[
ci,j3

]
I×I = 0. (C.62)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to ω(j) are:

∂N
(i)
3

∂ω(j)
≡ di,j3 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i, i+ 1; (C.63)
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∂N
(i)
3

∂ω(i)
≡ di,i3 = −1; i = 1, ..., I; j = i. (C.64)

∂N
(i)
3

∂ω(i+1)
≡ di,i+1

3 = 1; i = 1, ..., I − 1; j = i+ 1. (C.65)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix D3 defined as follows:

D3 ≡
(
di,j3

)
I×I =



−1 1 . 0 0

0 −1 . 0 0

. . . . .

0 0 . −1 1

0 0 . 0 −1


(C.66)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to maare:

∂N
(i)
3

∂ma

≡ ei3 = −(m(i)
w −m(i+1)

w ) · sgn(ma)

m2
a

= −(m
(i)
w −m(i+1)

w )

ma · |ma|
;

i = 1, ..., I;

(C.67)

For subsequent use, the above quantities are considered to be the components

of the I column vector E3 defined as follows:

E3 ≡
(
ei3
)
I

=



e1
3

e2
3

...

eI−1
3

eI3


(C.68)
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C.1.4 Derivatives of the air/water vapor energy balance

equations with respect to the state variables

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to m
(j)
w are:

∂N
(i)
4

∂m
(j+1)
w

≡ ai,j4 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i− 1, i; (C.69)

∂N
(i)
4

∂m
(i)
w

≡ ai,i−1
4 =

h
(i+1)
g,w (T

(i+1)
w ,α)

ma

; i = 2, ..., I; j = i− 1; (C.70)

∂N
(i)
4

∂m
(i+1)
w

≡ ai,i4 = −h
(i+1)
g,w (T

(i+1)
w ,α)

ma

; i = 1, ..., I; j = i. (C.71)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix A4 defined as follows:

A4 ≡
(
ai,j4

)
I×I =



a1,1
4 0 . 0 0

a2,1
4 a2,2

4 . 0 0

. . . . .

0 0 . aI−1,I−1
4 0

0 0 . aI,I−1
4 aI,I4


(C.72)

Derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12) -

(2.14)] with respect T
(j)
w :

∂N
(i)
4

∂T
(j+1)
w

≡ bi,j4 = 0; i = 1, ..., I; j 6= i; (C.73)

∂N
(i)
4

∂T
(i+1)
w

≡ bi,i4 =
1

ma

[(
m(i)
w −m(i+1)

w

) ∂h(i+1)
g,w

∂T
(i+1)
w

+H(ma,α)

]
;

i = 1, ..., I; j = i.

(C.74)
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For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix B4 defined as follows:

B4 ≡
(
bi,j4

)
I×I =



b1,1
4 0 . 0 0

0 b2,2
4 . 0 0

. . . . .

0 0 . bI−1,I−1
4 0

0 0 . 0 bI,I4


(C.75)

Derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12) -

(2.14)] with respect to T
(j)
a :

ci,j4 ≡
∂N

(i)
4

∂T
(j)
a

= 0; i = 1, ..., I; j 6= i, i+ 1; (C.76)

∂N
(i)
4

∂T
(i)
a

≡ ci,i4 =
(
T (i+1)
a − T (i)

a

) ∂C(i)
p

∂T
(i)
a

− C(i)
p (

T
(i)
a + 273.15

2
,α)

−ω(i)∂h
(i)
g,a

∂T
(i)
a

− H(ma,α)

ma

; i = 1, ..., I; j = i.

(C.77)

∂N
(i)
4

∂T
(i+1)
a

≡ ci,i+1
4 = C(i)

p (
T

(i)
a + 273.15

2
,α) + ω(i+1) ∂h

(i+1)
g,a

∂T
(i+1)
a

;

i = 1, ..., I − 1; j = i+ 1.

(C.78)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix defined as follows:
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C4 ≡
(
ci,j4

)
I×I =



c1,1
4 c1,2

4 . 0 0

0 c2,2
4 . 0 0

. . . . .

0 0 . cI−1,I−1
4 cI−1,I

4

0 0 . 0 cI,I4


(C.79)

Derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12) -

(2.14)] with respect to ω(j):

∂N
(i)
4

∂ω(j)
≡ di,j4 = 0; i = 1, ..., I; j 6= i, i+ 1; (C.80)

∂N
(i)
4

∂ω(i)
≡ di,i4 = −h(i)

g,a(T
(i)
a ,α) ; i = 1, ..., I; j = i; (C.81)

∂N
(i)
4

∂ω(i+1)
≡ di,i+1

4 = h(i+1)
g,a (T (i+1)

a ,α); i = 1, ..., I − 1; j = i+ 1. (C.82)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix D4 defined as follows:

D4 ≡
(
di,j4

)
I×I =



d1,1
4 d1,2

4 . 0 0

0 d2,2
4 . 0 0

. . . . .

0 0 . dI−1,I−1
4 dI−1,I

4

0 0 . 0 dI,I4


(C.83)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to maare:
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1) For Red < 2300 :

∂N
(i)
4

∂ma

≡ ei4 = −(T
(i+1)
w − T (i)

a )

ma · |ma|
·H(ma,α)−

(m
(i)
w −m(i+1)

w ) · h(i+1)
g,w (T

(i+1)
w ,α)

ma · |ma|
; i = 1, ..., I;

(C.84)

2) For 2, 300 ≤ Red ≤ 10, 000 :

∂N
(i)
4

∂ma

≡ ei4 =
(T

(i+1)
w − T (i)

a )

|ma|
· ∂H2(ma,α)

∂ma

− (T
(i+1)
w − T (i)

a )

ma · |ma|
·H(ma,α)

−(m
(i)
w −m(i+1)

w ) · h(i+1)
g,w (T

(i+1)
w ,α)

ma · |ma|
; i = 1, ..., I;

(C.85)

3) For Red > 10, 000 :

∂N
(i)
4

∂ma

≡ ei4 =
(T

(i+1)
w − T (i)

a )

|ma|
· ∂H3(ma,α)

∂ma

− (T
(i+1)
w − T (i)

a )

ma · |ma|
·H(ma,α)

−(m
(i)
w −m(i+1)

w ) · h(i+1)
g,w (T

(i+1)
w ,α)

ma · |ma|
; i = 1, ..., I;

(C.86)

For subsequent use, the above quantities are considered to be the components

of the I column vector E4 defined as follows:

E4 ≡
(
ei4
)
I

=



e1
4

e2
4

...

eI−1
4

eI4


(C.87)
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C.1.5 Derivatives of the mechanical energy equation with

respect to the state variables

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to m
(j)
w are:

aj5 ≡
∂N5

∂m
(j)
w

= 0; j = 1, ..., I. (C.88)

For subsequent use, the above quantities are considered to be the components

of the I row vector A5 defined as follows:

A5 ≡
(
ai5
)
I

= (a1
5 a2

5 · · · aI−1
5 aI5) (C.89)

Derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect to

T
(j)
w :

bj5 ≡
∂N5

∂T
(j)
w

= 0; j = 1, ..., I. (C.90)

For subsequent use, the above quantities are considered to be the components

of the I row vector B5 defined as follows:

B5 ≡
(
bi5
)
I

= (b1
5 b2

5 · · · bI−1
5 bI5) (C.91)

Derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect to

T
(j)
a :

cj5 ≡
∂N5

∂T
(j)
a

= − Patmg∆z

Rair

[
T

(j)
a

]2 ; j = 2, ..., I. (C.92)

c1
5 ≡

∂N5

∂T
(1)
a

= −
Patmg

(
∆z
2

+ ∆z4−2

)
Rair

[
T

(1)
a

]2 ; j = 1. (C.93)
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For subsequent use, the above quantities are considered to be the components

of the I row vector C5 defined as follows:

C5 ≡
(
ci5
)
I

= (c1
5 c2

5 · · · cI−1
5 cI5) (C.94)

Derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect to

ω(j):

dj5 ≡
∂N5

∂ω(j)
= 0; j = 1, ..., I. (C.95)

For subsequent use, the above quantities are considered to be the components

of the I row vector D5 defined as follows:

D5 ≡
(
di5
)
I

= (d1
5 d2

5 · · · dI−1
5 dI5) (C.96)

Derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect to

ma:

e5 ≡
∂N5

∂ma

=
48f (∆zfill + ∆zde)(
Patm

RairTtdb

)(
Dh

2

µair

)
Afill

+
1

2

[
1

(πrfan2)2 −
1

(WdkxWdky)
2 +

ksum

Afill
2

](
RairTtdb
Patm

)
(2 · |ma|);

(C.97)

For subsequent use, the above quantities are considered to be the components

of the 1-component row vector E5 defined as follows:

E5 ≡ (e5) (C.98)
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C.2 Jacobian Matrix of Case 1b: Fan Off, Satu-

rated Outlet Air Conditions, with Inlet Air

Saturated

As mentioned in Subsection 3.1.2, the Jacobian matrix of case 1b presents sim-

ilarities with the Jacobian matrix of case 1a detailed above in Section C.1. More

precisely, the sub-matrices (Ai,Bi,Ci,Di,Ei; i = 2, 3, 4, 5) whose elements rep-

resents the derivatives of Eqs. (2.28) - (2.37) with respect to the vector valued

state function u , (mw, Tw, Ta,ω,ma)
† remain the same as in Section C.1,

where those sub-matrices represents the same derivatives for Eqs. (2.6) - (2.15);

for reasons of brevity, they have not been repeated for case 1b. On the other

side, the sub-matrices
(
AI
i ,B

I
i ,C

I
i ,D

I
i ,E

I
i ; i = 1

)
whose elements represents

the derivatives of Eqs. (2.25) - (2.27) with respect to the vector valued state

function u , (mw, Tw, Ta,ω,ma)
†, are different from their respective formu-

lations (Ai,Bi,Ci,Di,Ei; i = 1) in Section C.1.1, and therefore they will be

hereby detailed.

C.2.1 Derivatives of the liquid continuity equations with

respect to the state variables

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to m
(j)
w are as follows:

∂N
(i)
1

∂m
(j+1)
w

≡ ai,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i− 1, i; (C.99)

∂N
(i)
1

∂m
(i)
w

≡ ai,i−1
1 = −1; i = 2, ..., I; j = i− 1; (C.100)
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∂N
(i)
1

∂m
(i+1)
w

≡ ai,i1 = 1; i = 1, ..., I; j = i. (C.101)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix AI
1 defined as follows:

AI
1 ≡

(
ai,j1

)
I×I =



1 0 . 0 0

−1 1 . 0 0

. . . . .

0 0 . 1 0

0 0 . −1 1


(C.102)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to T
(j)
w are as follows:

∂N
(i)
1

∂T
(j+1)
w

≡ bi,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i; (C.103)

∂N
(i)
1

∂T
(i+1)
w

≡ bi,i1 = −M(ma,α)

R

P
(i+1)
vs (T

(i+1)
w ,α)

[T
(i+1)
w ]

2

{
a1

T
(i+1)
w

+ 1

}
;

i = 1, ..., I; j = i.

(C.104)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix BI
1 defined as follows:

BI
1 ≡

(
bi,j1

)
I×I =



b1,1
1 0 . 0 0

0 b2,2
1 . 0 0

. . . . .

0 0 . bI−1,I−1
1 0

0 0 . 0 bI,I1


(C.105)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to T
(j)
a are as follows:

∂N
(i)
1

∂T
(j)
a

≡ ci,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i; (C.106)

∂N
(i)
1

∂T
(i)
a

≡ ci,i1 =
M(ma,α)

R

P
(i)
vs (T

(i)
a ,α)

[T
(i)
a ]

2

{
a1

T
(i)
a

+ 1

}
; i = 1, ..., I; j = i. (C.107)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix CI
1 defined as follows:

CI
1 ≡

(
ci,j1

)
I×I =



c1,1
1 0 . 0 0

0 c2,2
1 . 0 0

. . . . .

0 0 . cI−1,I−1
1 0

0 0 . 0 cI,I1


(C.108)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to ω(j)are as follows:

∂N
(i)
1

∂ω(j)
≡ di,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i; (C.109)

∂N
(i)
1

∂ω(i)
≡ di,i1 = 0; i = 1, ..., I; j = i. (C.110)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix DI
1 defined as follows:

DI
1 ≡

[
di,j1

]
I×I = 0. (C.111)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to ma are:

1) For Red < 2300 :

∂N
(i)
1

∂ma

≡ ei1 = 0; i = 1, ..., I; (C.112)

2) For 2, 300 ≤ Red ≤ 10, 000 :

∂N
(i)
1

∂ma

≡ ei1 =

[
Pvs(T

(i+1)
w ,α)

R · T (i+1)
w

− P
(i)
vs (T

(i)
a ,α)

R · T (i)
a

]
· ∂M2(ma,α)

∂ma

;

i = 1, ..., I;

(C.113)

3) For Red > 10, 000 :

∂N
(i)
1

∂ma

≡ ei1 =

[
Pvs(T

(i+1)
w ,α)

R · T (i+1)
w

− P
(i)
vs (T

(i)
a ,α)

R · T (i)
a

]
· ∂M3(ma,α)

∂ma

;

i = 1, ..., I;

(C.114)

For subsequent use, the above quantities are considered to be the components

of the I column vector EI
1 defined as follows:

EI
1 ≡

(
ei1
)
I

=



e1
1

e2
1

...

eI−1
1

eI1


(C.115)
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C.2.2 Derivatives of the liquid energy balance equations

with respect to the state variables

Derivatives of the liquid energy balance equations [cf. Eqs. (2.28) - (2.30)]

with respect to the vector-values state function u , (mw, Tw, Ta,ω,ma)
† for

case 1b are identical to the respective derivatives of Eqs. (2.6) - (2.8) detailed for

case 1a.

See Eqs. (C.38) through (C.54) in Section C.1.2.

C.2.3 Derivatives of the water vapor continuity equations

with respect to the state variables

Derivatives of the water vapor continuity equations [cf. Eqs. (2.31) - (2.33)]

with respect to the vector-values state function u , (mw, Tw, Ta,ω,ma)
† for

case 1b are identical to the respective derivatives of Eqs. (2.9) - (2.11) detailed

for case 1a. See Eqs. (C.55) through (C.68) in Section C.1.3.

C.2.4 Derivatives of the air/water vapor energy balance

equations with respect to the state variables

Derivatives of the air/water vapor balance equations [cf. Eqs. (2.34) - (2.36)]

with respect to the vector-values state function u , (mw, Tw, Ta,ω,ma)
† for

case 1b are identical to the respective derivatives of Eqs. (2.12) - (2.14) detailed

for case 1a. See Eqs. (C.69) through (C.87) in Section C.1.4.
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C.2.5 Derivatives of the mechanical energy equation with

respect to the state variables

Derivatives of mechanical energy equation [cf. Eq. (2.37)] with respect to the

vector-values state function u , (mw, Tw, Ta,ω,ma)
† for case 1b are identical

to the respective derivatives of Eq. (2.15) detailed for case 1a. See Eqs. (C.88)

through (C.98) in Section C.1.5.

C.3 Jacobian Matrix of Case 2: Fan Off, Unsat-

urated Air Conditions

As mentioned in Subsection 3.1.3, the Jacobian matrix of case 2 presents sim-

ilarities with the Jacobian matrix of case 1a detailed above in Section C.1. More

precisely, the sub-matrices (Ai,Bi,Ci,Di,Ei; i = 2, 3, 4, 5) whose elements rep-

resents the derivatives of Eqs. (2.41) - (2.50) with respect to the vector valued

state function u , (mw, Tw, Ta,ω,ma)
† remain the same as in Section C.1,

where those sub-matrices represents the same derivatives for Eqs. (2.6) - (2.15);

for reasons of brevity, they have not been repeated for case 2. On the other side,

the sub-matrices
(
AII
i ,B

II
i ,C

II
i ,D

II
i ,E

II
i ; i = 1

)
whose elements represents the

derivatives of Eqs. (2.38) - (2.40) with respect to the vector valued state func-

tion u , (mw, Tw, Ta,ω,ma)
†, are different from their respective formulations

(Ai,Bi,Ci,Di,Ei; i = 1) in Section C.1.1, and therefore they will be hereby

detailed.

206



APPENDIX C. DERIVATIVE MATRIX (JACOBIAN) OF THE MODEL
EQUATIONS WITH RESPECT TO THE STATE FUNCTIONS

C.3.1 Derivatives of the liquid continuity equations with

respect to the state variables

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to m
(j)
w are as follows:

∂N
(i)
1

∂m
(j+1)
w

≡ ai,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i− 1, i; (C.116)

∂N
(i)
1

∂m
(i)
w

≡ ai,i−1
1 = −1; i = 2, ..., I; j = i− 1; (C.117)

∂N
(i)
1

∂m
(i+1)
w

≡ ai,i1 = 1; i = 1, ..., I; j = i. (C.118)

For subsequent use, the above quantities are considered to be the components

of the I × I matrix AII
1 defined as follows:

AII
1 ≡

(
ai,j1

)
I×I =



1 0 . 0 0

−1 1 . 0 0

. . . . .

0 0 . 1 0

0 0 . −1 1


(C.119)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to T
(j)
w are as follows:

∂N
(i)
1

∂T
(j+1)
w

≡ bi,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i; (C.120)
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∂N
(i)
1

∂T
(i+1)
w

≡ bi,i1 = −M(ma,α)

R

P
(i+1)
vs (T

(i+1)
w ,α)

[T
(i+1)
w ]

2

{
a1

T
(i+1)
w

+ 1

}
;

i = 1, ..., I; j = i.

(C.121)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix BII
1 defined as follows:

BII
1 ≡

(
bi,j1

)
I×I =



b1,1
1 0 . 0 0

0 b2,2
1 . 0 0

. . . . .

0 0 . bI−1,I−1
1 0

0 0 . 0 bI,I1


(C.122)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to T
(j)
a are as follows:

∂N
(i)
1

∂T
(j)
a

≡ ci,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i; (C.123)

∂N
(i)
1

∂T
(i)
a

≡ ci,i1 =
M(ma, α)

R

ω(i)Patm[
T

(i)
a

]2

(0.622 + ω(i))
; i = 1, ..., I; j = i. (C.124)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix CII
1 defined as follows:

CII
1 ≡

(
ci,j1

)
I×I =



c1,1
1 0 . 0 0

0 c2,2
1 . 0 0

. . . . .

0 0 . cI−1,I−1
1 0

0 0 . 0 cI,I1


. (C.125)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to ω(j)are as follows:

∂N
(i)
1

∂ω(j)
≡ di,j1 = 0; i = 1, ..., I; j = 1, ..., I; j 6= i; (C.126)

∂N
(i)
1

∂ω(i)
≡ di,i1 =

M(ma, α)

R

Patm

[0.622 + ω(i)]T
(i)
a

{
ω(i)

[0.622 + ω(i)]
− 1

}
;

i = 1, ..., I; j = i.

(C.127)

For subsequent use, the above quantities are considered to be the components

of the I × I diagonal matrix DII
1 defined as follows:

DII
1 ≡

(
di,j1

)
I×I =



d1,1
1 0 . 0 0

0 d2,2
1 . 0 0

. . . . .

0 0 . dI−1,I−1
1 0

0 0 . 0 dI,I1


. (C.128)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to ma are:

1) For Red < 2300 :

∂N
(i)
1

∂ma

≡ ei1 = 0; i = 1, ..., I; (C.129)

2) For 2, 300 ≤ Red ≤ 10, 000 :

∂N
(i)
1

∂ma

≡ ei1 =

[
Pvs(T

(i+1)
w ,α)

R · T (i+1)
w

− ω(i)Patm

R · T (i)
a (0.622 + ω(i))

]
· ∂M2(ma,α)

∂ma

;

i = 1, ..., I;

(C.130)
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3) For Red > 10, 000 :

∂N
(i)
1

∂ma

≡ ei1 =

[
Pvs(T

(i+1)
w ,α)

R · T (i+1)
w

− ω(i)Patm

R · T (i)
a (0.622 + ω(i))

]
· ∂M3(ma,α)

∂ma

;

i = 1, ..., I;

(C.131)

For subsequent use, the above quantities are considered to be the components

of the I column vector EII
1 defined as follows:

EII
1 ≡

(
ei1
)
I

=



e1
1

e2
1

...

eI−1
1

eI1


. (C.132)

C.3.2 Derivatives of the liquid energy balance equations

with respect to the state variables

Derivatives of the liquid energy balance equations [cf. Eqs. (2.41) - (2.43)]

with respect to the vector-values state function u , (mw, Tw, Ta,ω,ma)
† for

case 2 are identical to the respective derivatives of Eqs. (2.6) - (2.8) detailed for

case 1a. See Eqs. (C.38) through (C.54) in Section C.1.2.

C.3.3 Derivatives of the water vapor continuity equations

with respect to the state variables

Derivatives of the water vapor continuity equations [cf. Eqs. (2.44) - (2.46)]

with respect to the vector-values state function u , (mw, Tw, Ta,ω,ma)
† for
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case 2 are identical to the respective derivatives of Eqs. (2.9) - (2.11) detailed for

case 1a. See Eqs. (C.55) through (C.68) in Section C.1.3.

C.3.4 Derivatives of the air/water vapor energy balance

equations with respect to the state variables

Derivatives of the air/water vapor balance equations [cf. Eqs. (2.47) - (2.49)]

with respect to the vector-values state function u , (mw, Tw, Ta,ω,ma)
† for

case 2 are identical to the respective derivatives of Eqs. (2.12) - (2.14) detailed

for case 1a. See Eqs. (C.69) through (C.87) in Section C.1.4.

C.3.5 Derivatives of the mechanical energy equation with

respect to the state variables

Derivatives of mechanical energy equation [cf. Eq. (2.50)] with respect to the

vector-values state function u , (mw, Tw, Ta,ω,ma)
† for case 2 are identical

to the respective derivatives of Eq. (2.15) detailed for case 1a. See Eqs. (C.88)

through (C.98) in Section C.1.5.
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Appendix D

Verification of the Model Adjoint

Functions

This appendix provides a complete display of the procedure followed to ver-

ify the numerical accuracy of the adjoint functions computed for all cases. Five

specific adjoint functions
(
µa; o

(49); τ
(49)
a ; τ

(1)
w ; µ

(1)
w

)
have been selected for each

of the five responses of the model
(
T

(1)
a ; T

(50)
w ; RH(1); m

(50)
w ; ma

)
for the nat-

ural draft cases (case 1a, case 1b and case 2); four specific adjoint functions(
o(49); τ

(49)
a ; τ

(1)
w ; µ

(1)
w

)
have been selected for each of the four responses of the

model
(
T

(1)
a ; T

(50)
w ; RH(1); m

(50)
w

)
for the mechanical draft cases (case 3a, case

3b and case 4). The adjoint functions have been selected in such a way that, once

those have been verified, all the other adjoint functions would be consequently

verified as well.
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D.1 Verification of the Model Adjoint Functions

for Case 1a: Fan Off, Saturated Outlet Air

Conditions, with Inlet Air Unsaturated

The verification procedure of the adjoint functions for case 1a is reported in

this section. For clarity reasons, the adjoint functions have been grouped based

on the response they refer to.

D.1.1 Verification of the Adjoint Functions for the Outlet

Air Temperature Response T
(1)
a

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.4) - (3.5) all vanish except

for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the adjoint functions

corresponding to the outlet air temperature response T
(1)
a are computed by solving

the adjoint sensitivity system given in Eq. (3.10) using r
(1)
3 , ∂R/∂T

(1)
a = 1 as

the only non-zero source term; for this case, the solution of Eq. (3.10) has been

depicted in Figure 3.1.

D.1.1.1 Verification of the adjoint function µa

Note that the value of the adjoint function µa obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is µa = −0.24204 [K/(J/m3)], as indicated

in Figure 3.1. Now select a variation δVw in the wind speed Vw, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = T
(1)
a

to Vw:

213



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

S5 ,
∂R

∂Vw
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Vw
+ τ (i)

w

∂N
(i)
2

∂Vw
+ τ (i)

a

∂N
(i)
3

∂Vw
+ o(i)∂N

(i)
4

∂Vw

)
+ µa

∂N5

∂Vw

]

= 0− µa
∂N5

∂Vw
= − (µa) [−Vw · ρ(Ttdb,α)] .

(D.1)

Re-writing Eq. (D.1) in the form

µa = − S5

∂N5/∂Vw
(D.2)

indicates that the value of the adjoint function µa could be computed inde-

pendently if the sensitivity S5 were available, since the quantity ∂N5/∂Vw =

−2.1795 [J/(m4/s)] is known. To first-order in the parameter perturbation, the

finite-difference formula given in Eq. (3.23) can be used to compute the approx-

imate sensitivity SFD5 ; subsequently, this value can be used in conjunction with

Eq. (D.2) to compute a “finite-difference sensitivity” value, denoted as [µa]
SFD,

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

[µa]
SFD = − SFD5

∂N5/∂Vw
= −

[
T

(1)
a,pert − T

(1)
a,nom

δVw

] [
∂N5

∂Vw

]−1

(D.3)

Numerically, the wind speed Vw has the nominal (“base-case”) value of V 0
w =

1.353 [m/s]. The corresponding nominal value T
(1)
a,nom of the response T

(1)
a is

T
(1)
a,nom = 298.4131 [K]. Consider next a perturbation δVw = (0.017)V 0

w , for which

the perturbed value of the wind speed becomes V pert
w = V 0

w − δVw = 1.33 [m/s].

Re-computing the perturbed response by solving Eqs. (2.2) - (2.15) with the value

of V pert
w yields the “perturbed response” value T

(1)
a,pert = 298.4220 [K]. Using now

the nominal and perturbed response values together with the parameter perturba-

tion in the finite-difference expression given in Eq. (3.23) yields the corresponding
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“finite-difference-computed sensitivity” SFD5 ,
T

(1)
a,pert−T

(1)
a,nom

δVw
= −0.38757

[
K
m/s

]
.

Using this value together with the nominal values of the other quantities appear-

ing in the expression on the right side of Eq. (D.3) yields [µa]
SFD = −0.23973

[K/(J/m3)]. This result compares well with the value µa = −0.24204 [K/(J/m3)]

obtained by solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure

3.1.

D.1.1.2 Verification of the adjoint function o(49)

Note that the value of the adjoint function o(49) obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is o(49) = −4.299 × 10−5 [K/(J/kg)], as

indicated in Figure 3.1. Now select a variation δTa,in in the inlet air temperature

Ta,in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = T
(1)
a to Ta,in:

S45 ,
∂R

∂Ta,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Ta,in
+ τ (i)

w

∂N
(i)
2

∂Ta,in
+ τ (i)

a

∂N
(i)
3

∂Ta,in
+ o(i) ∂N

(i)
4

∂Ta,in

)
+ µa

∂N5

∂Ta,in

]

= 0−

[
o(49)∂N

(49)
4

∂Ta,in
+ µa

∂N5

∂Ta,in

]
= −(o(49))

[
Cp

(
T

(49)
a + tK

2

)
+ ωinα1g

]

− (µa) ·

{
Rair

2 · Patm
· |ma| ·ma ·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]

+
g · Patm
Rair · T 2

a,in

·
(
Z +

V 2
w

2g
−∆zrain −

∆z

2

)}
.

(D.4)

Re-writing Eq. (D.4) in the form

o(49) = −
S45 + µa

∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

(D.5)

indicates that the value of the adjoint function o(49) could be computed indepen-

dently if the sensitivity S45 were available, since the quantity ∂N
(49)
4 /∂Ta,in =
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1.03310 × 103 [J/(kg ·K)] is known. To first-order in the parameter perturba-

tion, the finite-difference formula given in Eq. (3.23) can be used to compute the

approximate sensitivity SFD45 ; subsequently, this value can be used in conjunc-

tion with Eq. (D.5) to compute a “finite-difference sensitivity” value, denoted as[
o(49)

]SFD
, for the respective adjoint, which would be accurate up to second-order

in the respective parameter perturbation:

[
o(49)

]SFD
= −

SFD45 + µa
∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

= −

[
T

(1)
a,pert − T

(1)
a,nom

δTa,in
+ µa

∂N5

∂Ta,in

][
∂N

(49)
4

∂Ta,in

]−1

(D.6)

Numerically, the inlet air temperature Ta,in(= Tdb) has the nominal (“base-case”)

value of T 0
a,in = 294.03 [K]. The corresponding nominal value T

(1)
a,nom of the re-

sponse T
(1)
a is T

(1)
a,nom = 298.4131 [K]. Consider next a perturbation δTa,in =

(0.00102)T 0
a,in, for which the perturbed value of the inlet air temperature be-

comes T perta,in = T 0
a,in−δTa,in = 294.00 [K]. Re-computing the perturbed response by

solving Eqs. (2.2) - (2.15) with the value of T perta,in yields the “perturbed response”

value T
(1)
a,pert = 298.4087 [K]. Using now the nominal and perturbed response val-

ues together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

ity” SFD45 ,
T

(1)
a,pert−T

(1)
a,nom

δTa,in
= 0.14582. Using this value together with the nominal

values of the other quantities appearing in the expression on the right side of

Eq. (D.6) yields
[
o(49)

]SFD
= −4.307 × 10−5 [K/(J/kg)]. This result compares

well with the value o(49) = −4.299 × 10−5 [K/(J/kg)] obtained by solving the

adjoint sensitivity system given in Eq. (3.10), cf., Figure 3.1. When solving this

adjoint sensitivity system, the computation of o(49) depends on the previously

computed adjoint functions o(i), i = 1, ..., I − 1; hence, the forgoing verification

of the computational accuracy of o(49) also provides an indirect verification that

the functions o(i), i = 1, ..., I − 1, were also computed accurately.
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D.1.1.3 Verification of the adjoint function τ
(49)
a

Note that the value of the adjoint function τ
(49)
a obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is τ
(49)
a = 95.392 [K], as indicated in Figure

3.1. Now select a variation δωin in the inlet air humidity ratio ωin, and note

that Eq. (3.22) yields the following expression for the sensitivity of the response

R = T
(1)
a to ωin:

S46 ,
∂R

∂ωin
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂ωin
+ τ (i)

w

∂N
(i)
2

∂ωin
+ τ (i)

a

∂N
(i)
3

∂ωin
+ o(i)∂N

(i)
4

∂ωin

)
+ µa

∂N5

∂ωin

]

= 0−

(
τ (49)
a

∂N
(49)
3

∂ωin
+ o(49)∂N

(49)
4

∂ωin

)
= −

[
τ (49)
a · (1) + o(49) · h(50)

g,a (Ta,in,α)
]
.

(D.7)

Re-writing Eq. (D.7) in the form

τ (49)
a = −S46 − o(49) · h(50)

g,a (Ta,in,α) (D.8)

indicates that the value of the adjoint function τ
(49)
a could be computed indepen-

dently if the sensitivity S46 were available, since the o(49) has been verified in (the

previous) Section D.1.1.2 and the quantity h
(50)
g,a (Ta,in,α) is known. To first-order

in the parameter perturbation, the finite-difference formula given in Eq. (3.23)

can be used to compute the approximate sensitivity SFD46 ; subsequently, this value

can be used in conjunction with Eq. (D.8) to compute a “finite-difference sensi-

tivity” value, denoted as
[
τ

(49)
a

]SFD
, for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[
τ (49)
a

]SFD
= −SFD46 − o(49) · h(50)

g,a (Ta,in,α) (D.9)

Numerically, the inlet air humidity ratio ωin has the nominal (“base-case”)

value of ω0
in = 0.015029407. The corresponding nominal value T

(1)
a,nom of the re-

sponse T
(1)
a is T

(1)
a,nom = 298.4131 [K]. Consider next a perturbation δωin =
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(0.001243)ω0
in, for which the perturbed value of the inlet air humidity ratio be-

comes ωpertin = ω0
in−δωin = 0.015010726. Re-computing the perturbed response by

solving Eqs. (2.2) - (2.15) with the value of ωpertin yields the “perturbed response”

value T
(1)
a,pert = 298.4128 [K]. Using now the nominal and perturbed response val-

ues together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensi-

tivity” SFD46 ,
T

(1)
a,pert−T

(1)
a,nom

δωin
= 14.309 [K]. Using this value together with the

nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.9) yields
[
τ

(49)
a

]SFD
= 94.837 [K]. This result compares well with

the value τ
(49)
a = 95.392 [K] obtained by solving the adjoint sensitivity system

given in Eq. (3.10), cf. Figure 3.1. When solving this adjoint sensitivity system,

the computation of τ
(49)
a depends on the previously computed adjoint functions

τ
(i)
a , i = 1, ..., I−1; hence, the forgoing verification of the computational accuracy

of τ
(49)
a also provides an indirect verification that the functions τ

(i)
a , i = 1, ..., I−1

were also computed accurately.

D.1.1.4 Verification of the adjoint function τ
(1)
w

Note that the value of the adjoint function τ
(1)
w obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is as follows: τ
(1)
w = −4.52×10−6 [K/(J/s) ],

indicated in Figure 3.1. Now select a variation δTw,in in the inlet water tem-

perature Tw,in, and note that Eq. (3.22) yields the following expression for the

sensitivity of the response R = T
(1)
a to Tw,in:

S3 ,
∂R

∂Tw,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Tw,in
+ τ (i)

w

∂N
(i)
2

∂Tw,in
+ τ (i)

a

∂N
(i)
3

∂Tw,in
+ o(i) ∂N

(i)
4

∂Tw,in

)
+ µa

∂N5

∂Tw,in

]

= 0− τ (1)
w

∂N
(1)
2

∂Tw,in
= 0− τ (1)

w · (mw,in · a1f ) .

(D.10)
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Re-writing Eq. (D.10) in the form

τ (1)
w = − S3

(mw,in · a1f )
(D.11)

indicates that the value of the adjoint function τ
(1)
w could be computed indepen-

dently if the sensitivity S3 were available, since the quantity mw,in · a1f is known.

To first-order in the parameter perturbation, the finite-difference formula given

in Eq. (3.23) can be used to compute the approximate sensitivity SFD3 ; subse-

quently, this value can be used in conjunction with Eq. (D.11) to compute a

“finite-difference sensitivity” value, denoted as
[
τ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation: [
τ (1)
w

]SFD
= − SFD3

(mw,in · a1f )
(D.12)

Numerically, the inlet water temperature, Tw,in, has the nominal (“base-case”)

value of T 0
w,in = 298.774 [K]. As before, the corresponding nominal value T

(1)
a,nom

of the response T
(1)
a is T

(1)
a,nom = 298.4131 [K]. Consider now a perturbation

δTw,in = (0.0000669)T 0
w,in, for which the perturbed value of the inlet water

temperature becomes T pertw,in = T 0
w,in − δTw,in = 298.754 [K]. Re-computing the

perturbed response by solving Eqs. (2.2) - (2.15) with the value of T pertw,in yields

the “perturbed response” value T
(1)
a,pert = 298.3964 [K]. Using now the nominal

and perturbed response values together with the parameter perturbation in the

finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SFD3 ,
T

(1)
a,pert−T

(1)
a,nom

δTw,in
= 0.83401. Using this value

together with the nominal values of the other quantities appearing in the expres-

sion on the right side of Eq. (D.12) yields
[
τ

(1)
w

]SFD
= −4.53× 10−6 [K/(J/s) ].

This result compares well with the value τ
(1)
w = −4.52×10−6 [K/(J/s) ] obtained

by solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.1.
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D.1.1.5 Verification of the adjoint function µ
(1)
w

Note that the value of the adjoint function µ
(1)
w obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is as follows: µ
(1)
w = 11.0208 [K/(kg/s) ],

respectively, as indicated in Figure 3.1. Now select a variation δmw,in in the

inlet water mass flow rate mw,in, and note that Eq. (3.22) yields the following

expression for the sensitivity of the response R = T
(1)
a to mw,in:

S44 ,
∂R

∂mw,in

−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂mw,in

+ τ (i)
w

∂N
(i)
2

∂mw,in

+ τ (i)
a

∂N
(i)
3

∂mw,in

+ o(i) ∂N
(i)
4

∂mw,in

)

+µa
∂N5

∂mw,in

]
= 0−

(
µ(1)
w

∂N
(1)
1

∂mw,in

+ τ (1)
w

∂N
(1)
2

∂mw,in

+ τ (1)
a

∂N
(1)
3

∂mw,in

+ o(1) ∂N
(1)
4

∂mw,in

)

= −

[
µ(1)
w · (−1) + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)

+τ (1)
a ·

(
1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

)]
.

(D.13)

Since the adjoint functions τ
(49)
a and o(49) have been already verified as de-

scribed in Sections D.1.1.2 and D.1.1.3, it follows that the computed values of

adjoint functions τ
(1)
a = 2156.57 [K] and o(1) = −8.4654 × 10−4 [K/(J/kg)] can

also be considered as being accurate, since they constitute the starting point for

solving the adjoint sensitivity system in Eq. (3.10); τ
(1)
w was proved being accurate

in Section D.1.1.4. Re-writing Eq. (D.13) in the form:

µ(1)
w = S44 + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.14)

indicates that the value of the adjoint function µ
(1)
w could be computed inde-

pendently if the sensitivity S44 were available, since all the other quantities are
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known. To first-order in the parameter perturbation, the finite-difference formula

given in Eq. (3.23) can be used to compute the approximate sensitivity SFD44 ;

subsequently, this value can be used in conjunction with Eq. (D.14) to compute a

“finite-difference sensitivity” value, denoted as
[
µ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:

[
µ(1)
w

]SFD
= µ(1)

w = SFD44 + τ (1)
w ·

(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.15)

Numerically, the inlet water mass flow rate, mw,in, has the nominal (“base-

case”) value of m0
w,in = 44.0213 [kg/s]. As before, the corresponding nominal

value T
(1)
a,nom of the response T

(1)
a is T

(1)
a,nom = 298.4131 [K]. Next, consider a per-

turbation δmw,in = (0.0004839)m0
w,in, for which the perturbed value of the inlet

air temperature becomes mpert
w,in = m0

w,in − δmw,in = 44.00 [kg/s]. Re-computing

the perturbed response by solving Eqs. (2.2) - (2.15) with the value of mpert
w,in yields

the “perturbed response” value T
(1)
a,pert = 298.4129 [K]. Using now the nominal

and perturbed response values together with the parameter perturbation in the

finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SFD44 ,
T

(1)
a,pert−T

(1)
a,nom

δmw,in
= 0.00725

[
K
kg/s

]
. Using this

value together with the nominal values of the other quantities appearing in the ex-

pression on the right side of Eq. (D.15) yields
[
µ

(1)
w

]SFD
= 11.0208 [K/(kg/s) ].

This result compares well with the value µ
(1)
w = 11.0208 [K/(kg/s) ] obtained

by solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.1.

221



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

D.1.2 Verification of the Adjoint Functions for the Outlet

Water Temperature Response T
(50)
w

When R = T
(50)
w , the quantities r

(i)
` defined in Eqs. (3.4) - (3.5) all vanish

except for a single component, namely: r
(49)
2 , ∂R/∂T

(50)
w = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response T
(50)
w are

computed by solving the adjoint sensitivity system given in Eq. (3.10) using

r
(49)
2 , ∂R/∂T

(50)
w = 1 as the only non-zero source term; for this case, the solu-

tion of Eq. (3.10) has been depicted in Figure 3.2.

D.1.2.1 Verification of the adjoint function µa

Note that the value of the adjoint function µa obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is µa = −0.31664 [K/(J/m3)], as indicated

in Figure 3.2. Now select a variation δVw in the wind speed Vw, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = T
(50)
w

to Vw:

S5 ,
∂R

∂Vw
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Vw
+ τ (i)

w

∂N
(i)
2

∂Vw
+ τ (i)

a

∂N
(i)
3

∂Vw
+ o(i)∂N

(i)
4

∂Vw

)
+ µa

∂N5

∂Vw

]

= 0− µa
∂N5

∂Vw
= − (µa) [−Vw · ρ(Ttdb,α)] .

(D.16)

Re-writing Eq. (D.16) in the form

µa = − S5

∂N5/∂Vw
(D.17)

indicates that the value of the adjoint function µa could be computed inde-

pendently if the sensitivity S5 were available, since the quantity ∂N5/∂Vw =

−2.1795 [J/(m4/s)] is known. To first-order in the parameter perturbation, the

finite-difference formula given in Eq. (3.23) can be used to compute the approx-
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imate sensitivity SFD5 ; subsequently, this value can be used in conjunction with

Eq. (D.17) to compute a “finite-difference sensitivity” value, denoted as [µa]
SFD,

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

[µa]
SFD = − SFD5

∂N5/∂Vw
= −

[
T

(1)
a,pert − T

(1)
a,nom

δVw

] [
∂N5

∂Vw

]−1

(D.18)

Numerically, the wind speed Vw has the nominal (“base-case”) value of V 0
w =

1.353 [m/s]. The corresponding nominal value T
(50)
w,nom of the response T

(50)
w is

T
(50)
w,nom = 296.8570 [K]. Consider next a perturbation δVw = (0.017)V 0

w , for which

the perturbed value of the wind speed becomes V pert
w = V 0

w − δVw = 1.33 [m/s].

Re-computing the perturbed response by solving Eqs. (2.2) - (2.15) with the

value of V pert
w yields the “perturbed response” value T

(50)
w,pert = 296.8687 [K].

Using now the nominal and perturbed response values together with the pa-

rameter perturbation in the finite-difference expression given in Eq. (3.23) yields

the corresponding “finite-difference-computed sensitivity” SFD5 ,
T

(50)
w,pert−T

(50)
w,nom

δVw
=

−0.5109
[
K
m/s

]
. Using this value together with the nominal values of the other

quantities appearing in the expression on the right side of Eq. (D.18) yields

[µa]
SFD = −0.31602 [K/(J/m3)]. This result compares well with the value µa =

−0.31664 [K/(J/m3)] obtained by solving the adjoint sensitivity system given

in Eq. (3.10), cf., Figure 3.2.

D.1.2.2 Verification of the adjoint function o(49)

Note that the value of the adjoint function o(49) obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is o(49) = −1.1217× 10−4 [K/(J/kg)], as

indicated in Figure 3.2. Now select a variation δTa,in in the inlet air temperature

Ta,in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = T
(50)
w to Ta,in:
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S45 ,
∂R

∂Ta,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Ta,in
+ τ (i)

w

∂N
(i)
2

∂Ta,in
+ τ (i)

a

∂N
(i)
3

∂Ta,in
+ o(i) ∂N

(i)
4

∂Ta,in

)
+ µa

∂N5

∂Ta,in

]

= 0−

[
o(49)∂N

(49)
4

∂Ta,in
+ µa

∂N5

∂Ta,in

]
= −(o(49))

[
Cp

(
T

(49)
a + tK

2

)
+ ωinα1g

]

− (µa) ·

{
Rair

2 · Patm
· |ma| ·ma ·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]

+
g · Patm
Rair · T 2

a,in

·
(
Z +

V 2
w

2g
−∆zrain −

∆z

2

)}
.

(D.19)

Re-writing Eq. (D.19) in the form

o(49) = −
S45 + µa

∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

(D.20)

indicates that the value of the adjoint function o(49) could be computed indepen-

dently if the sensitivity S45 were available, since the quantity ∂N
(49)
4 /∂Ta,in =

1.03310 × 103 [J/(kg ·K)] is known. To first-order in the parameter perturba-

tion, the finite-difference formula given in Eq. (3.23) can be used to compute the

approximate sensitivity SFD45 ; subsequently, this value can be used in conjunc-

tion with Eq. (D.20) to compute a “finite-difference sensitivity” value, denoted

as
[
o(49)

]SFD
, for the respective adjoint, which would be accurate up to second-

order in the respective parameter perturbation:

[
o(49)

]SFD
= −

SFD45 + µa
∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

= −

[
T

(1)
a,pert − T

(1)
a,nom

δTa,in
+ µa

∂N5

∂Ta,in

][
∂N

(49)
4

∂Ta,in

]−1

(D.21)

Numerically, the inlet air temperature Ta,in(= Tdb) has the nominal (“base-

case”) value of T 0
a,in = 294.03 [K]. The corresponding nominal value T

(50)
w,nom of

the response T
(50)
w is T

(50)
w,nom = 296.8570 [K]. Consider next a perturbation

δTa,in = (0.00102)T 0
a,in, for which the perturbed value of the inlet air temper-

ature becomes T perta,in = T 0
a,in − δTa,in = 294.00 [K]. Re-computing the perturbed

224



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

response by solving Eqs. (2.2) - (2.15) with the value of T perta,in yields the “perturbed

response” value T
(50)
w,pert = 296.8496 [K]. Using now the nominal and perturbed re-

sponse values together with the parameter perturbation in the finite-difference ex-

pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

sensitivity” SFD45 ,
T

(50)
w,pert−T

(50)
w,nom

δTa,in
= 0.24117. Using this value together with the

nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.21) yields
[
o(49)

]SFD
= −1.1088 × 10−4 [K/(J/kg)]. This result

compares well with the value o(49) = −1.1217 × 10−4 [K/(J/kg)] obtained by

solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure 3.2. When

solving this adjoint sensitivity system, the computation of o(49) depends on the

previously computed adjoint functions o(i), i = 1, ..., I − 1; hence, the forgoing

verification of the computational accuracy of o(49) also provides an indirect veri-

fication that the functions o(i), i = 1, ..., I − 1, were also computed accurately.

D.1.2.3 Verification of the adjoint function τ
(49)
a

Note that the value of the adjoint function τ
(49)
a obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is τ
(49)
a = 60.389 [K], as indicated in Figure

3.2. Now select a variation δωin in the inlet air humidity ratio ωin, and note

that Eq. (3.22) yields the following expression for the sensitivity of the response

R = T
(50)
w to

S46 ,
∂R

∂ωin
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂ωin
+ τ (i)

w

∂N
(i)
2

∂ωin
+ τ (i)

a

∂N
(i)
3

∂ωin
+ o(i)∂N

(i)
4

∂ωin

)
+ µa

∂N5

∂ωin

]

= 0−

(
τ (49)
a

∂N
(49)
3

∂ωin
+ o(49)∂N

(49)
4

∂ωin

)
= −

[
τ (49)
a · (1) + o(49) · h(50)

g,a (Ta,in,α)
]
.

(D.22)

Re-writing Eq. (D.22) in the form

τ (49)
a = −S46 − o(49) · h(50)

g,a (Ta,in,α) (D.23)
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indicates that the value of the adjoint function τ
(49)
a could be computed indepen-

dently if the sensitivity S46 were available, since the o(49) has been verified in (the

previous) Section D.1.2.2 and the quantity h
(50)
g,a (Ta,in,α) is known. To first-order

in the parameter perturbation, the finite-difference formula given in Eq. (3.23)

can be used to compute the approximate sensitivity SFD46 ; subsequently, this value

can be used in conjunction with Eq. (D.23) to compute a “finite-difference sen-

sitivity” value, denoted as
[
τ

(49)
a

]SFD
, for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[
τ (49)
a

]SFD
= −SFD46 − o(49) · h(50)

g,a (Ta,in,α) (D.24)

Numerically, the inlet air humidity ratio ωin has the nominal (“base-case”)

value of ω0
in = 0.015029407. The corresponding nominal value T

(50)
w,nom of the re-

sponse T
(50)
w is T

(50)
w,nom = 296.8570 [K]. Consider next a perturbation δωin =

(0.001243)ω0
in, for which the perturbed value of the inlet air humidity ratio be-

comes ωpertin = ω0
in−δωin = 0.015010726. Re-computing the perturbed response by

solving Eqs. (2.2) - (2.15) with the value of ωpertin yields the “perturbed response”

value T
(50)
w,pert = 296.8528 [K]. Using now the nominal and perturbed response val-

ues together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

ity” SFD46 ,
T

(50)
w,pert−T

(50)
w,nom

δωin
= 226.203 [K]. Using this value together with the

nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.24) yields
[
τ

(49)
a

]SFD
= 58.656 [K]. This result compares well

with the value τ
(49)
a = 60.389 [K] obtained by solving the adjoint sensitivity

system given in Eq. (3.10), cf. Figure 3.2. When solving this adjoint sensitivity

system, the computation of τ
(49)
a depends on the previously computed adjoint

functions τ
(i)
a , i = 1, ..., I − 1; hence, the forgoing verification of the computa-

tional accuracy of τ
(49)
a also provides an indirect verification that the functions

τ
(i)
a , i = 1, ..., I − 1 were also computed accurately.
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D.1.2.4 Verification of the adjoint function τ
(1)
w

Note that the value of the adjoint function τ
(1)
w obtained by solving the

adjoint sensitivity system given in Eq. (3.10) is as follows: τ
(1)
w = −2.618 ×

10−6 [K/(J/s) ], indicated in Figure 3.2. Now select a variation δTw,in in the

inlet water temperature Tw,in, and note that Eq. (3.22) yields the following ex-

pression for the sensitivity of the response R = T
(50)
w to Tw,in:

S3 ,
∂R

∂Tw,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Tw,in
+ τ (i)

w

∂N
(i)
2

∂Tw,in
+ τ (i)

a

∂N
(i)
3

∂Tw,in
+ o(i) ∂N

(i)
4

∂Tw,in

)
+ µa

∂N5

∂Tw,in

]

= 0− τ (1)
w

∂N
(1)
2

∂Tw,in
= 0− τ (1)

w · (mw,in · a1f ) .

(D.25)

Re-writing Eq. (D.25) in the form

τ (1)
w = − S3

(mw,in · a1f )
(D.26)

indicates that the value of the adjoint function τ
(1)
w could be computed indepen-

dently if the sensitivity S3 were available, since the quantity mw,in · a1f is known.

To first-order in the parameter perturbation, the finite-difference formula given

in Eq. (3.23) can be used to compute the approximate sensitivity SFD3 ; subse-

quently, this value can be used in conjunction with Eq. (D.26) to compute a

“finite-difference sensitivity” value, denoted as
[
τ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:

[
τ (1)
w

]SFD
= − SFD3

(mw,in · a1f )
(D.27)

Numerically, the inlet water temperature, Tw,in, has the nominal (“base-case”)

value of T 0
w,in = 298.774 [K]. The corresponding nominal value T

(50)
w,nom of the re-

sponse T
(50)
w is T

(50)
w,nom = 296.8570 [K]. Consider now a perturbation δTw,in =
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(0.0000669)T 0
w,in, for which the perturbed value of the inlet water temperature

becomes T pertw,in = T 0
w,in − δTw,in = 298.754 [K]. Re-computing the perturbed re-

sponse by solving Eqs. (2.2) - (2.15) with the value of T pertw,in yields the “perturbed

response” value T
(50)
w,pert = 296.8473 [K]. Using now the nominal and perturbed re-

sponse values together with the parameter perturbation in the finite-difference ex-

pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

sensitivity” SFD3 ,
T

(50)
w,pert−T

(50)
w,nom

δTw,in
= 0.48288. Using this value together with the

nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.27) yields
[
τ

(1)
w

]SFD
= −2.620×10−6 [K/(J/s) ]. This result com-

pares well with the value τ
(1)
w = −2.618 × 10−6 [K/(J/s) ] obtained by solving

the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.2.

D.1.2.5 Verification of the adjoint function µ
(1)
w

Note that the value of the adjoint function µ
(1)
w obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is as follows: µ
(1)
w = 6.4310 [K/(kg/s) ],

respectively, as indicated in Figure 3.2. Now select a variation δmw,in in the

inlet water mass flow rate mw,in, and note that Eq. (3.22) yields the following

expression for the sensitivity of the response R = T
(50)
w to mw,in:

S44 ,
∂R

∂mw,in

−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂mw,in

+ τ (i)
w

∂N
(i)
2

∂mw,in

+ τ (i)
a

∂N
(i)
3

∂mw,in

+ o(i) ∂N
(i)
4

∂mw,in

)

+µa
∂N5

∂mw,in

]
= 0−

(
µ(1)
w

∂N
(1)
1

∂mw,in

+ τ (1)
w

∂N
(1)
2

∂mw,in

+ τ (1)
a

∂N
(1)
3

∂mw,in

+ o(1) ∂N
(1)
4

∂mw,in

)

= −

[
µ(1)
w · (−1) + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)

+τ (1)
a ·

(
1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

)]
.

(D.28)
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Since the adjoint functions τ
(49)
a and o(49) have been already verified as de-

scribed in Sections D.1.2.2 and D.1.2.3, it follows that the computed values of

adjoint functions τ
(1)
a = −189.56 [K] and o(1) = 7.44× 10−5 [K/(J/kg)] can also

be considered as being accurate, since they constitute the starting point for solv-

ing the adjoint sensitivity system in Eq. (3.10); τ
(1)
w was proved being accurate in

Section D.1.2.4. Re-writing Eq. (D.28) in the form:

µ(1)
w = S44 + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.29)

indicates that the value of the adjoint function µ
(1)
w could be computed inde-

pendently if the sensitivity S44 were available, since all the other quantities are

known. To first-order in the parameter perturbation, the finite-difference formula

given in Eq. (3.23) can be used to compute the approximate sensitivity SFD44 ;

subsequently, this value can be used in conjunction with Eq. (D.29) to compute a

“finite-difference sensitivity” value, denoted as
[
µ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:

[
µ(1)
w

]SFD
= µ(1)

w = SFD44 + τ (1)
w ·

(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.30)

Numerically, the inlet water mass flow rate, mw,in, has the nominal (“base-

case”) value of m0
w,in = 44.0213 [kg/s]. The corresponding nominal value T

(50)
w,nom

of the response T
(50)
w is T

(50)
w,nom = 296.8570 [K]. Next, consider a perturba-

tion δmw,in = (0.0004839)m0
w,in, for which the perturbed value of the inlet

water mass flow rate becomes mpert
w,in = m0

w,in − δmw,in = 44.00 [kg/s]. Re-

computing the perturbed response by solving Eqs. (2.2) - (2.15) with the value
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of mpert
w,in yields the “perturbed response” value T

(50)
w,pert = 296.8562 [K]. Using

now the nominal and perturbed response values together with the parameter

perturbation in the finite-difference expression given in Eq. (3.23) yields the

corresponding “finite-difference-computed sensitivity” SFD44 ,
T

(50)
w,pert−T

(50)
w,nom

δmw,in
=

0.03885
[

K
kg/s

]
. Using this value together with the nominal values of the other

quantities appearing in the expression on the right side of Eq. (D.30) yields[
µ

(1)
w

]SFD
= 11.0208 [K/(kg/s) ]. This result compares well with the value

µ
(1)
w = 11.0208 [K/(kg/s) ] obtained by solving the adjoint sensitivity system

given in Eq. (3.10), cf. Figure 3.2.

D.1.3 Verification of the Adjoint Functions for the Outlet

Air Relative Humidity RH(1)

When R = RH(1), the quantities r
(i)
` defined in Eqs. (3.4) - (3.5) all vanish

except for two components, namely:

r
(1)
3 ≡

∂RH(1)

∂T
(1)
a

=
∂

∂T
(1)
a

 Pv
(
ω(1), α

)
Pvs

(
T

(1)
a , α

) × 100

 = 100×
Pv
(
ω(1), α

)
Pvs

(
T

(1)
a , α

) a1[
T

(1)
a

]2

(D.31)

r
(1)
4 ≡

∂RH(1)

∂ω(1)
=

∂

∂ω(1)

 Pv
(
ω(1), α

)
Pvs

(
T

(1)
a , α

) × 100

 =
0.622Patm

(0.622 + ω(1))
2
e
a0+

a1

T
(1)
a

× 100

(D.32)

Thus, the adjoint functions corresponding to the outlet air temperature response

RH(1) are computed by solving the adjoint sensitivity system given in Eq. (3.10)

using r
(1)
3 and r

(1)
4 as the only non-zero source terms; for this case, the solution

of Eq. (3.10) has been depicted in Figure 3.3.
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D.1.3.1 Verification of the adjoint function µa

Note that the value of the adjoint function µa obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is µa = 0.00603
[
(J/m3)

−1
]
, as indicated

in Figure 3.3. Now select a variation δVw in the wind speed Vw, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = RH(1)

to Vw:

S5 ,
∂R

∂Vw
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Vw
+ τ (i)

w

∂N
(i)
2

∂Vw
+ τ (i)

a

∂N
(i)
3

∂Vw
+ o(i)∂N

(i)
4

∂Vw

)
+ µa

∂N5

∂Vw

]

= 0− µa
∂N5

∂Vw
= − (µa) [−Vw · ρ(Ttdb,α)] .

(D.33)

Re-writing Eq. (D.33) in the form

µa = − S5

∂N5/∂Vw
(D.34)

indicates that the value of the adjoint function µa could be computed inde-

pendently if the sensitivity S5 were available, since the quantity ∂N5/∂Vw =

−2.1795 [J/(m4/s)] is known. To first-order in the parameter perturbation, the

finite-difference formula given in Eq. (3.23) can be used to compute the approx-

imate sensitivity SFD5 ; subsequently, this value can be used in conjunction with

Eq. (D.34) to compute a “finite-difference sensitivity” value, denoted as [µa]
SFD,

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

[µa]
SFD = − SFD5

∂N5/∂Vw
= −

[
T

(1)
a,pert − T

(1)
a,nom

δVw

] [
∂N5

∂Vw

]−1

(D.35)

Numerically, the wind speed Vw has the nominal (“base-case”) value of V 0
w =

1.353 [m/s]. The corresponding nominal value RH
(1)
nom of the response RH(1) is
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RH
(1)
nom = 100.1052%. Consider next a perturbation δVw = (0.017)V 0

w , for which

the perturbed value of the wind speed becomes V pert
w = V 0

w − δVw = 1.33 [m/s].

Re-computing the perturbed response by solving Eqs. (2.2) - (2.15) with the

value of V pert
w yields the “perturbed response” value RH

(1)
pert = 100.1049%. Us-

ing now the nominal and perturbed response values together with the parameter

perturbation in the finite-difference expression given in Eq. (D.35) yields the

corresponding “finite-difference-computed sensitivity” SFD5 ,
RH

(1)
pert−RH

(1)
nom

δVw
=

0.01078
[
(m/s)−1]. Using this value together with the nominal values of the

other quantities appearing in the expression on the right side of Eq. (D.35)

yields [µa]
SFD = 0.00667

[
(J/m3)

−1
]
. This result compares well with the value

µa = 0.00603
[
(J/m3)

−1
]

obtained by solving the adjoint sensitivity system

given in Eq. (3.10), cf., Figure 3.3.

D.1.3.2 Verification of the adjoint function o(49)

Note that the value of the adjoint function o(49) obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is o(49) = 6.692 × 10−4
[
(J/kg)−1], as

indicated in Figure 3.3. Now select a variation δTa,in in the inlet air temperature

Ta,in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = RH(1) to Ta,in:

S45 ,
∂R

∂Ta,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Ta,in
+ τ (i)

w

∂N
(i)
2

∂Ta,in
+ τ (i)

a

∂N
(i)
3

∂Ta,in
+ o(i) ∂N

(i)
4

∂Ta,in

)
+ µa

∂N5

∂Ta,in

]

= 0−

[
o(49)∂N

(49)
4

∂Ta,in
+ µa

∂N5

∂Ta,in

]
= −(o(49))

[
Cp

(
T

(49)
a + tK

2

)
+ ωinα1g

]

− (µa) ·

{
Rair

2 · Patm
· |ma| ·ma ·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]

+
g · Patm
Rair · T 2

a,in

·
(
Z +

V 2
w

2g
−∆zrain −

∆z

2

)}
.

(D.36)

232



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

Re-writing Eq. (D.36) in the form

o(49) = −
S45 + µa

∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

(D.37)

indicates that the value of the adjoint function o(49) could be computed indepen-

dently if the sensitivity S45 were available, since the quantity ∂N
(49)
4 /∂Ta,in =

1.03310 × 103 [J/(kg ·K)] is known. To first-order in the parameter perturba-

tion, the finite-difference formula given in Eq. (3.23) can be used to compute the

approximate sensitivity SFD45 ; subsequently, this value can be used in conjunc-

tion with Eq. (D.37) to compute a “finite-difference sensitivity” value, denoted

as
[
o(49)

]SFD
, for the respective adjoint, which would be accurate up to second-

order in the respective parameter perturbation:

[
o(49)

]SFD
= −

SFD45 + µa
∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

= −

[
T

(1)
a,pert − T

(1)
a,nom

δTa,in
+ µa

∂N5

∂Ta,in

][
∂N

(49)
4

∂Ta,in

]−1

(D.38)

Numerically, the inlet air temperature Ta,in(= Tdb) has the nominal (“base-

case”) value of T 0
a,in = 294.03 [K]. The corresponding nominal value RH

(1)
nom

of the response RH(1) is RH
(1)
nom = 100.1052%. Consider next a perturbation

δTa,in = (0.00102)T 0
a,in, for which the perturbed value of the inlet air temper-

ature becomes T perta,in = T 0
a,in − δTa,in = 294.00 [K]. Re-computing the perturbed

response by solving Eqs. (2.2) - (2.15) with the value of T perta,in yields the “perturbed

response” value RH
(1)
pert = 100.1260%. Using now the nominal and perturbed re-

sponse values together with the parameter perturbation in the finite-difference ex-

pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

sensitivity” SFD45 ,
RH

(1)
pert−RH

(1)
nom

δTa,in
= −0.69388 [K−1]. Using this value together

with the nominal values of the other quantities appearing in the expression on

the right side of Eq. (D.38) yields
[
o(49)

]SFD
= 6.932 × 10−4

[
(J/kg)−1]. This

233



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

result compares well with the value o(49) = 6.692×10−4
[
(J/kg)−1] obtained by

solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure 3.3. When

solving this adjoint sensitivity system, the computation of o(49) depends on the

previously computed adjoint functions o(i), i = 1, ..., I − 1; hence, the forgoing

verification of the computational accuracy of o(49) also provides an indirect veri-

fication that the functions o(i), i = 1, ..., I − 1, were also computed accurately.

D.1.3.3 Verification of the adjoint function τ
(49)
a

Note that the value of the adjoint function τ
(49)
a obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is τ
(49)
a = −2235.5 [−], as indicated in

Figure 3.3. Now select a variation δωin in the inlet air humidity ratio ωin, and

note that Eq. (3.22) yields the following expression for the sensitivity of the

response R = RH(1) to ωin:

S46 ,
∂R

∂ωin
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂ωin
+ τ (i)

w

∂N
(i)
2

∂ωin
+ τ (i)

a

∂N
(i)
3

∂ωin
+ o(i)∂N

(i)
4

∂ωin

)
+ µa

∂N5

∂ωin

]

= 0−

(
τ (49)
a

∂N
(49)
3

∂ωin
+ o(49)∂N

(49)
4

∂ωin

)
= −

[
τ (49)
a · (1) + o(49) · h(50)

g,a (Ta,in,α)
]
.

(D.39)

Re-writing Eq. (D.39) in the form

τ (49)
a = −S46 − o(49) · h(50)

g,a (Ta,in,α) (D.40)

indicates that the value of the adjoint function τ
(49)
a could be computed indepen-

dently if the sensitivity S46 were available, since the o(49) has been verified in (the

previous) Section D.1.3.2 and the quantity h
(50)
g,a (Ta,in, α) is known. To first-order

in the parameter perturbation, the finite-difference formula given in Eq. (3.23)

can be used to compute the approximate sensitivity SFD46 ; subsequently, this value

can be used in conjunction with Eq. (D.40) to compute a “finite-difference sen-
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sitivity” value, denoted as
[
τ

(49)
a

]SFD
, for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[
τ (49)
a

]SFD
= −SFD46 − o(49) · h(50)

g,a (Ta,in,α) (D.41)

Numerically, the inlet air humidity ratio ωin has the nominal (“base-case”)

value of ω0
in = 0.015029407. The corresponding nominal value RH

(1)
nom of the

response RH(1) is RH
(1)
nom = 100.1052%. Consider next a perturbation δωin =

(0.001243)ω0
in, for which the perturbed value of the inlet air humidity ratio be-

comes ωpertin = ω0
in−δωin = 0.015010726. Re-computing the perturbed response by

solving Eqs. (2.2) - (2.15) with the value of ωpertin yields the “perturbed response”

value RH
(1)
pert = 100.0951%. Using now the nominal and perturbed response val-

ues together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensi-

tivity” SFD46 ,
RH

(1)
pert−RH

(1)
nom

δωin
= 537.96 [−]. Using this value together with the

nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.41) yields
[
τ

(49)
a

]SFD
= −2298.3 [−]. This result compares well

with the value τ
(49)
a = −2235.5 [−] obtained by solving the adjoint sensitivity

system given in Eq. (3.10), cf. Figure 3.3. When solving this adjoint sensitivity

system, the computation of τ
(49)
a depends on the previously computed adjoint

functions τ
(i)
a , i = 1, ..., I − 1; hence, the forgoing verification of the computa-

tional accuracy of τ
(49)
a also provides an indirect verification that the functions

τ
(i)
a , i = 1, ..., I − 1 were also computed accurately.

D.1.3.4 Verification of the adjoint function τ
(1)
w

Note that the value of the adjoint function τ
(1)
w obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is as follows: τ
(1)
w = −6.18×10−7

[
(J/s)−1],

indicated in Figure 3.3. Now select a variation δTw,in in the inlet water tem-
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perature Tw,in, and note that Eq. (3.22) yields the following expression for the

sensitivity of the response R = RH(1) to Tw,in:

S3 ,
∂R

∂Tw,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Tw,in
+ τ (i)

w

∂N
(i)
2

∂Tw,in
+ τ (i)

a

∂N
(i)
3

∂Tw,in
+ o(i) ∂N

(i)
4

∂Tw,in

)
+ µa

∂N5

∂Tw,in

]

= 0− τ (1)
w

∂N
(1)
2

∂Tw,in
= 0− τ (1)

w · (mw,in · a1f ) .

(D.42)

Re-writing Eq. (D.42) in the form

τ (1)
w = − S3

(mw,in · a1f )
(D.43)

indicates that the value of the adjoint function τ
(1)
w could be computed indepen-

dently if the sensitivity S3 were available, since the quantity mw,in · a1f is known.

To first-order in the parameter perturbation, the finite-difference formula given

in Eq. (3.23) can be used to compute the approximate sensitivity SFD3 ; subse-

quently, this value can be used in conjunction with Eq. (D.43) to compute a

“finite-difference sensitivity” value, denoted as
[
τ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation: [
τ (1)
w

]SFD
= − SFD3

(mw,in · a1f )
(D.44)

Numerically, the inlet water temperature, Tw,in, has the nominal (“base-case”)

value of T 0
w,in = 298.774 [K]. The corresponding nominal value RH

(1)
nom of the re-

sponse RH(1) is RH
(1)
nom = 100.1052%. Consider now a perturbation δTw,in =

(0.0000669)T 0
w,in, for which the perturbed value of the inlet water temperature

becomes T pertw,in = T 0
w,in − δTw,in = 298.754 [K]. Re-computing the perturbed re-

sponse by solving Eqs. (2.2) - (2.15) with the value of T pertw,in yields the “perturbed

response” value RH
(1)
pert = 100.1029%. Using now the nominal and perturbed re-
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sponse values together with the parameter perturbation in the finite-difference ex-

pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

sensitivity” SFD3 ,
RH

(1)
pert−RH

(1)
nom

δTw,in
= 0.48288 [K−1]. Using this value together with

the nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.44) yields
[
τ

(1)
w

]SFD
= −6.16× 10−7

[
(J/s)−1]. This result com-

pares well with the value τ
(1)
w = −6.18× 10−7

[
(J/s)−1] obtained by solving the

adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.3.

D.1.3.5 Verification of the adjoint function µ
(1)
w

Note that the value of the adjoint function µ
(1)
w obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is as follows: µ
(1)
w = −235.106

[
(kg/s)−1],

respectively, as indicated in Figure 3.3. Now select a variation δmw,in in the

inlet water mass flow rate mw,in, and note that Eq. (3.22) yields the following

expression for the sensitivity of the response R = RH(1) to mw,in:

S44 ,
∂R

∂mw,in

−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂mw,in

+ τ (i)
w

∂N
(i)
2

∂mw,in

+ τ (i)
a

∂N
(i)
3

∂mw,in

+ o(i) ∂N
(i)
4

∂mw,in

)

+µa
∂N5

∂mw,in

]
= 0−

(
µ(1)
w

∂N
(1)
1

∂mw,in

+ τ (1)
w

∂N
(1)
2

∂mw,in

+ τ (1)
a

∂N
(1)
3

∂mw,in

+ o(1) ∂N
(1)
4

∂mw,in

)

= −

[
µ(1)
w · (−1) + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)

+τ (1)
a ·

(
1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

)]
.

(D.45)

Since the adjoint functions τ
(49)
a and o(49) have been already verified as de-

scribed in Sections D.1.3.2 and D.1.3.3, it follows that the computed values of

adjoint functions τ
(1)
a = −19110.5 [−] and o(1) = 0.005632

[(
J
kg

)−1
]

can also be

considered as being accurate, since they constitute the starting point for solving
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the adjoint sensitivity system in Eq. (3.10); τ
(1)
w was proved being accurate in

Section D.1.3.4. Re-writing Eq. (D.45) in the form:

µ(1)
w = S44 + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.46)

indicates that the value of the adjoint function µ
(1)
w could be computed inde-

pendently if the sensitivity S44 were available, since all the other quantities are

known. To first-order in the parameter perturbation, the finite-difference formula

given in Eq. (3.23) can be used to compute the approximate sensitivity SFD44 ;

subsequently, this value can be used in conjunction with Eq. (D.46) to compute a

“finite-difference sensitivity” value, denoted as
[
µ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:[
µ(1)
w

]SFD
= µ(1)

w = SFD44 + τ (1)
w ·

(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.47)

Numerically, the inlet water mass flow rate, mw,in, has the nominal (“base-

case”) value of m0
w,in = 44.0213 [kg/s]. The corresponding nominal value RH

(1)
nom

of the response RH(1) is RH
(1)
nom = 100.1052%. Next, consider a perturbation

δmw,in = (0.0004839)m0
w,in, for which the perturbed value of the inlet water

mass flow rate becomes mpert
w,in = m0

w,in − δmw,in = 44.00 [kg/s]. Re-computing

the perturbed response by solving Eqs. (2.2) - (2.15) with the value of mpert
w,in

yields the “perturbed response” value RH
(1)
pert = 100.1052%. Using now the nom-

inal and perturbed response values together with the parameter perturbation in

the finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SFD44 ,
RH

(1)
pert−RH

(1)
nom

δmw,in
= −8.075×10−4

[(
kg
s

)−1
]
.
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Using this value together with the nominal values of the other quantities appear-

ing in the expression on the right side of Eq. (D.47) yields
[
µ

(1)
w

]SFD
= −235.106[

(kg/s)−1]. This result compares well with the value µ
(1)
w = −235.106

[
(kg/s)−1]

obtained by solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure

3.3.

D.1.4 Verification of the Adjoint Functions for the Outlet

Water Mass Flow Rate m
(50)
w

When R = m
(50)
w , the quantities r

(i)
` defined in Eqs. (3.4) - (3.5) all vanish

except for a single component, namely: r
(49)
1 , ∂R/∂m

(50)
w = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response m
(50)
w are

computed by solving the adjoint sensitivity system given in Eq. (3.10) using

r
(49)
1 , ∂R/∂m

(50)
w = 1 as the only non-zero source term; for this case, the solu-

tion of Eq. (3.10) has been depicted in Figure 3.4.

D.1.4.1 Verification of the adjoint function µa

Note that the value of the adjoint function µa obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is µa = −0.017646 [(kg/s) / (J/m3)], as

indicated in Figure 3.4. Now select a variation δVw in the wind speed Vw, and note

that Eq. (3.22) yields the following expression for the sensitivity of the response

R = m
(50)
w to Vw:

S5 ,
∂R

∂Vw
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Vw
+ τ (i)

w

∂N
(i)
2

∂Vw
+ τ (i)

a

∂N
(i)
3

∂Vw
+ o(i)∂N

(i)
4

∂Vw

)
+ µa

∂N5

∂Vw

]

= 0− µa
∂N5

∂Vw
= − (µa) [−Vw · ρ(Ttdb,α)] .

(D.48)
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Re-writing Eq. (D.48) in the form

µa = − S5

∂N5/∂Vw
(D.49)

indicates that the value of the adjoint function µa could be computed inde-

pendently if the sensitivity S5 were available, since the quantity ∂N5/∂Vw =

−2.1795 [J/(m4/s)] is known. To first-order in the parameter perturbation, the

finite-difference formula given in Eq. (3.23) can be used to compute the approx-

imate sensitivity SFD5 ; subsequently, this value can be used in conjunction with

Eq. (D.49) to compute a “finite-difference sensitivity” value, denoted as [µa]
SFD,

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

[µa]
SFD = − SFD5

∂N5/∂Vw
= −

[
T

(1)
a,pert − T

(1)
a,nom

δVw

] [
∂N5

∂Vw

]−1

(D.50)

Numerically, the wind speed Vw has the nominal (“base-case”) value of V 0
w =

1.353 [m/s]. The corresponding nominal value m
(50)
w,nom of the response m

(50)
w is

m
(50)
w,nom = 43.91418 [kg/s]. Consider next a perturbation δVw = (0.017)V 0

w , for

which the perturbed value of the wind speed becomes V pert
w = V 0

w − δVw =

1.33 [m/s]. Re-computing the perturbed response by solving Eqs. (2.2) - (2.15)

with the value of V pert
w yields the “perturbed response” value m

(50)
w,pert = 43.91484

[kg/s]. Using now the nominal and perturbed response values together with the

parameter perturbation in the finite-difference expression given in Eq. (3.23)

yields the corresponding value for the “finite-difference-computed sensitivity”

SFD5 ,
m

(50)
w,pert−m

(50)
w,nom

δVw
= −0.02847 [(kg/s) / (m/s)]. Using this value together

with the nominal values of the other quantities appearing in the expression on

the right side of Eq. (D.50) yields [µa]
SFD = −0.017612 [(kg/s) / (J/m3)]. This

result compares well with the value µa = −0.017646 [(kg/s) / (J/m3)] obtained

by solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure 3.4.

240



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

D.1.4.2 Verification of the adjoint function o(49)

Note that the value of the adjoint function o(49) obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is o(49) = −9.08×10−7 [(kg/s) / (J/kg)], as

indicated in Figure 3.4. Now select a variation δTa,in in the inlet air temperature

Ta,in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = m
(50)
w to Ta,in:

S45 ,
∂R

∂Ta,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Ta,in
+ τ (i)

w

∂N
(i)
2

∂Ta,in
+ τ (i)

a

∂N
(i)
3

∂Ta,in
+ o(i) ∂N

(i)
4

∂Ta,in

)
+ µa

∂N5

∂Ta,in

]

= 0−

[
o(49)∂N

(49)
4

∂Ta,in
+ µa

∂N5

∂Ta,in

]
= −(o(49))

[
Cp

(
T

(49)
a + tK

2

)
+ ωinα1g

]

− (µa) ·

{
Rair

2 · Patm
· |ma| ·ma ·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]

+
g · Patm
Rair · T 2

a,in

·
(
Z +

V 2
w

2g
−∆zrain −

∆z

2

)}
.

(D.51)

Re-writing Eq. (D.51) in the form

o(49) = −
S45 + µa

∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

(D.52)

indicates that the value of the adjoint function o(49) could be computed indepen-

dently if the sensitivity S45 were available, since the quantity ∂N
(49)
4 /∂Ta,in =

1.03310 × 103 [J/(kg ·K)] is known. To first-order in the parameter perturba-

tion, the finite-difference formula given in Eq. (3.23) can be used to compute the

approximate sensitivity SFD45 ; subsequently, this value can be used in conjunc-

tion with Eq. (D.52) to compute a “finite-difference sensitivity” value, denoted

as
[
o(49)

]SFD
, for the respective adjoint, which would be accurate up to second-
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order in the respective parameter perturbation:

[
o(49)

]SFD
= −

SFD45 + µa
∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

= −

[
T

(1)
a,pert − T

(1)
a,nom

δTa,in
+ µa

∂N5

∂Ta,in

][
∂N

(49)
4

∂Ta,in

]−1

(D.53)

Numerically, the inlet air temperature Ta,in(= Tdb) has the nominal (“base-

case”) value of T 0
a,in = 294.03 [K]. The corresponding nominal value m

(50)
w,nom

of the response m
(50)
w is m

(50)
w,nom = 43.91418 [kg/s]. Consider next a pertur-

bation δTa,in = (0.00102)T 0
a,in, for which the perturbed value of the inlet air

temperature becomes T perta,in = T 0
a,in − δTa,in = 294.00 [K]. Re-computing the per-

turbed response by solving Eqs. (2.2) - (2.15) with the value of T perta,in yields the

“perturbed response” value m
(50)
w,pert = 43.91394 [kg/s]. Using now the nomi-

nal and perturbed response values together with the parameter perturbation

in the finite-difference expression given in Eq. (3.23) yields the corresponding

“finite-difference-computed sensitivity” SFD45 ,
m

(50)
w,pert−m

(50)
w,nom

δTa,in
= 0.00821

[
kg
s·K

]
.

Using this value together with the nominal values of the other quantities ap-

pearing in the expression on the right side of Eq. (D.53) yields
[
o(49)

]SFD
=

−7.96× 10−7 [(kg/s) / (J/kg)]. This result compares well with the value o(49) =

−9.08 × 10−7 [(kg/s) / (J/kg)] obtained by solving the adjoint sensitivity sys-

tem given in Eq. (3.10), cf., Figure 3.4. When solving this adjoint sensitivity

system, the computation of o(49) depends on the previously computed adjoint

functions o(i), i = 1, ..., I − 1; hence, the forgoing verification of the computa-

tional accuracy of o(49) also provides an indirect verification that the functions

o(i), i = 1, ..., I − 1, were also computed accurately.

D.1.4.3 Verification of the adjoint function τ
(49)
a

Note that the value of the adjoint function τ
(49)
a obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is τ
(49)
a = −14.812 [kg/s], as indicated in
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Figure 3.4. Now select a variation δωin in the inlet air humidity ratio ωin, and note

that Eq. (3.22) yields the following expression for the sensitivity of the response

R = m
(50)
w to ωin:

S46 ,
∂R

∂ωin
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂ωin
+ τ (i)

w

∂N
(i)
2

∂ωin
+ τ (i)

a

∂N
(i)
3

∂ωin
+ o(i)∂N

(i)
4

∂ωin

)
+ µa

∂N5

∂ωin

]

= 0−

(
τ (49)
a

∂N
(49)
3

∂ωin
+ o(49)∂N

(49)
4

∂ωin

)
= −

[
τ (49)
a · (1) + o(49) · h(50)

g,a (Ta,in,α)
]
.

(D.54)

Re-writing Eq. (D.54) in the form

τ (49)
a = −S46 − o(49) · h(50)

g,a (Ta,in,α) (D.55)

indicates that the value of the adjoint function τ
(49)
a could be computed indepen-

dently if the sensitivity S46 were available, since the o(49) has been verified in (the

previous) Section 3.1.4.2 and the quantity h
(50)
g,a (Ta,in, α) is known. To first-order

in the parameter perturbation, the finite-difference formula given in Eq. (3.23)

can be used to compute the approximate sensitivity SFD46 ; subsequently, this value

can be used in conjunction with Eq. (D.55) to compute a “finite-difference sen-

sitivity” value, denoted as
[
τ

(49)
a

]SFD
, for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[
τ (49)
a

]SFD
= −SFD46 − o(49) · h(50)

g,a (Ta,in,α) (D.56)

Numerically, the inlet air humidity ratio ωin has the nominal (“base-case”)

value of ω0
in = 0.015029407. The corresponding nominal value m

(50)
w,nom of the re-

sponse m
(50)
w is m

(50)
w,nom = 43.91418 [kg/s]. Consider next a perturbation δωin =

(0.001243)ω0
in, for which the perturbed value of the inlet air humidity ratio be-

comes ωpertin = ω0
in−δωin = 0.015010726. Re-computing the perturbed response by
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solving Eqs. (2.2) - (2.15) with the value of ωpertin yields the “perturbed response”

value m
(50)
w,pert = 43.91386 [kg/s]. Using now the nominal and perturbed response

values together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

ity” SFD46 ,
m

(50)
w,pert−m

(50)
w,nom

δωin
= 17.254 [kg/s]. Using this value together with the

nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.56) yields
[
τ

(49)
a

]SFD
= −14.948 [kg/s]. This result compares well

with the value τ
(49)
a = −14.812 [kg/s] obtained by solving the adjoint sensitivity

system given in Eq. (3.10), cf. Figure 3.4. When solving this adjoint sensitivity

system, the computation of τ
(49)
a depends on the previously computed adjoint

functions τ
(i)
a , i = 1, ..., I − 1; hence, the forgoing verification of the computa-

tional accuracy of τ
(49)
a also provides an indirect verification that the functions

τ
(i)
a , i = 1, ..., I − 1 were also computed accurately.

D.1.4.4 Verification of the adjoint function τ
(1)
w

Note that the value of the adjoint function τ
(1)
w obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is as follows: τ
(1)
w = 1.581×10−7

[
(J/kg)−1],

indicated in Figure 3.4. Now select a variation δTw,in in the inlet water tem-

perature Tw,in, and note that Eq. (3.22) yields the following expression for the

sensitivity of the response R = m
(50)
w to Tw,in:

S3 ,
∂R

∂Tw,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Tw,in
+ τ (i)

w

∂N
(i)
2

∂Tw,in
+ τ (i)

a

∂N
(i)
3

∂Tw,in
+ o(i) ∂N

(i)
4

∂Tw,in

)
+ µa

∂N5

∂Tw,in

]

= 0− τ (1)
w

∂N
(1)
2

∂Tw,in
= 0− τ (1)

w · (mw,in · a1f ) .

(D.57)

Re-writing Eq. (D.57) in the form

τ (1)
w = − S3

(mw,in · a1f )
(D.58)
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indicates that the value of the adjoint function τ
(1)
w could be computed indepen-

dently if the sensitivity S3 were available, since the quantity mw,in · a1f is known.

To first-order in the parameter perturbation, the finite-difference formula given

in Eq. (3.23) can be used to compute the approximate sensitivity SFD3 ; subse-

quently, this value can be used in conjunction with Eq. (D.58) to compute a

“finite-difference sensitivity” value, denoted as
[
τ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation: [
τ (1)
w

]SFD
= − SFD3

(mw,in · a1f )
(D.59)

Numerically, the inlet water temperature, Tw,in, has the nominal (“base-case”)

value of T 0
w,in = 298.774 [K]. The corresponding nominal value m

(50)
w,nom of the re-

sponse m
(50)
w is m

(50)
w,nom = 43.91418 [kg/s]. Consider now a perturbation δTw,in =

(0.0000669)T 0
w,in, for which the perturbed value of the inlet water temperature

becomes T pertw,in = T 0
w,in − δTw,in = 298.754 [K]. Re-computing the perturbed re-

sponse by solving Eqs. (2.2) - (2.15) with the value of T pertw,in yields the “perturbed

response” value m
(50)
w,pert = 43.91477 [kg/s]. Using now the nominal and perturbed

response values together with the parameter perturbation in the finite-difference

expression given in Eq. (3.23) yields the corresponding “finite-difference-computed

sensitivity” SFD3 ,
m

(50)
w,pert−m

(50)
w,nom

δTw,in
= −0.031364

[
kg
s·K

]
. Using this value together

with the nominal values of the other quantities appearing in the expression on

the right side of Eq. (D.59) yields
[
τ

(1)
w

]SFD
= 1.580 × 10−7

[
(J/kg)−1]. This

result compares well with the value τ
(1)
w = 1.581× 10−7

[
(J/kg)−1] obtained by

solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.4.

D.1.4.5 Verification of the adjoint function µ
(1)
w

Note that the value of the adjoint function µ
(1)
w obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is as follows: µ
(1)
w = 0.61393 [−], respec-
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tively, as indicated in Figure 3.4. Now select a variation δmw,in in the inlet water

mass flow rate mw,in, and note that Eq. (3.22) yields the following expression for

the sensitivity of the response R = m
(50)
w to mw,in:

S44 ,
∂R

∂mw,in

−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂mw,in

+ τ (i)
w

∂N
(i)
2

∂mw,in

+ τ (i)
a

∂N
(i)
3

∂mw,in

+ o(i) ∂N
(i)
4

∂mw,in

)

+µa
∂N5

∂mw,in

]
= 0−

(
µ(1)
w

∂N
(1)
1

∂mw,in

+ τ (1)
w

∂N
(1)
2

∂mw,in

+ τ (1)
a

∂N
(1)
3

∂mw,in

+ o(1) ∂N
(1)
4

∂mw,in

)

= −

[
µ(1)
w · (−1) + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)

+τ (1)
a ·

(
1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

)]
.

(D.60)

Since the adjoint functions τ
(49)
a and o(49) have been already verified as de-

scribed in Sections D.1.4.2 and D.1.4.3, it follows that the computed values of

adjoint functions τ
(1)
a = −10.569 [kg/s] and o(1) = 4.16× 10−6

[(
kg
s

)
/
(
J
kg

)]
can

also be considered as being accurate, since they constitute the starting point for

solving the adjoint sensitivity system in Eq. (3.10); τ
(1)
w was proved being accurate

in Section D.1.4.4. Re-writing Eq. (D.60) in the form:

µ(1)
w = S44 + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.61)

indicates that the value of the adjoint function µ
(1)
w could be computed inde-

pendently if the sensitivity S44 were available, since all the other quantities are

known. To first-order in the parameter perturbation, the finite-difference formula

given in Eq. (3.23) can be used to compute the approximate sensitivity SFD44 ;

subsequently, this value can be used in conjunction with Eq. (D.61) to compute a

“finite-difference sensitivity” value, denoted as
[
µ

(1)
w

]SFD
, for the respective ad-
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joint, which would be accurate up to second-order in the respective parameter

perturbation:[
µ(1)
w

]SFD
= µ(1)

w = SFD44 + τ (1)
w ·

(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.62)

Numerically, the inlet water mass flow rate, mw,in, has the nominal (“base-

case”) value of m0
w,in = 44.0213 [kg/s]. The corresponding nominal value m

(50)
w,nom

of the response m
(50)
w is m

(50)
w,nom = 43.91418 [kg/s]. Next, consider a perturbation

δmw,in = (0.0004839)m0
w,in, for which the perturbed value of the inlet water

mass flow rate becomes mpert
w,in = m0

w,in−δmw,in = 44.00 [kg/s]. Re-computing the

perturbed response by solving Eqs. (2.2) - (2.15) with the value of mpert
w,in yields the

“perturbed response” value m
(50)
w,pert = 43.89289 [kg/s]. Using now the nominal

and perturbed response values together with the parameter perturbation in the

finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SFD44 ,
m

(50)
w,pert−m

(50)
w,nom

δmw,in
= 0.99973 [−]. Using this

value together with the nominal values of the other quantities appearing in the

expression on the right side of Eq. (D.62) yields
[
µ

(1)
w

]SFD
= 0.61393 [−]. This

result compares well with the value µ
(1)
w = 0.61393 [−] obtained by solving the

adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.4.

D.1.5 Verification of the Adjoint Functions for the Outlet

Air Mass Flow Rate ma

When R = m
(50)
w , the quantities r

(i)
` defined in Eqs. (3.4) - (3.5) all vanish ex-

cept for a single component, namely: R5 , ∂R/∂ma = 1.Thus, the adjoint func-

tions corresponding to the outlet air temperature response m
(50)
w are computed by

solving the adjoint sensitivity system given in Eq. (3.10) using R5 , ∂R/∂ma = 1
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as the only non-zero source term; for this case, the solution of Eq. (3.10) has been

depicted in Figure 3.5.

D.1.5.1 Verification of the adjoint function µa

Note that the value of the adjoint function µa obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is µa = 4.4364 [(kg/s) / (J/m3)], as

indicated in Figure 3.5. Now select a variation δVw in the wind speed Vw, and

note that Eq. (3.22) yields the following expression for the sensitivity of the

response R = ma to Vw:

S5 ,
∂R

∂Vw
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Vw
+ τ (i)

w

∂N
(i)
2

∂Vw
+ τ (i)

a

∂N
(i)
3

∂Vw
+ o(i)∂N

(i)
4

∂Vw

)
+ µa

∂N5

∂Vw

]

= 0− µa
∂N5

∂Vw
= − (µa) [−Vw · ρ(Ttdb,α)] .

(D.63)

Re-writing Eq. (D.63) in the form

µa = − S5

∂N5/∂Vw
(D.64)

indicates that the value of the adjoint function µa could be computed inde-

pendently if the sensitivity S5 were available, since the quantity ∂N5/∂Vw =

−2.1795 [J/(m4/s)] is known. To first-order in the parameter perturbation, the

finite-difference formula given in Eq. (3.23) can be used to compute the approx-

imate sensitivity SFD5 ; subsequently, this value can be used in conjunction with

Eq. (D.64) to compute a “finite-difference sensitivity” value, denoted as [µa]
SFD,

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

[µa]
SFD = − SFD5

∂N5/∂Vw
= −

[
T

(1)
a,pert − T

(1)
a,nom

δVw

] [
∂N5

∂Vw

]−1

(D.65)
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Numerically, the wind speed Vw has the nominal (“base-case”) value of V 0
w =

1.353 [m/s]. The corresponding nominal valuema,nom of the responsema isma,nom =

20.11022 [kg/s]. Consider next a perturbation δVw = (0.017)V 0
w , for which the

perturbed value of the wind speed becomes V pert
w = V 0

w − δVw = 1.33 [m/s].

Re-computing the perturbed response by solving Eqs. (2.2) - (2.15) with the

value of V pert
w yields the “perturbed response” value ma,pert = 19.94624 [kg/s].

Using now the nominal and perturbed response values together with the param-

eter perturbation in the finite-difference expression given in Eq. (3.23) yields the

corresponding “finite-difference-computed sensitivity” SFD5 ,
ma,pert−ma,nom

δVw
=

7.1295 [(kg/s) / (m/s)]. Using this value together with the nominal values of the

other quantities appearing in the expression on the right side of Eq. (D.65) yields

[µa]
SFD = 4.4099 [(kg/s) / (J/m3)]. This result compares well with the value

µa = 4.4364 [(kg/s) / (J/m3)] obtained by solving the adjoint sensitivity system

given in Eq. (3.10), cf., Figure 3.5.

D.1.5.2 Verification of the adjoint function o(49)

Note that the value of the adjoint function o(49) obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is o(49) = −1.7873×10−4 [(kg/s) / (J/kg)],

as indicated in Figure 3.5. Now select a variation δTa,in in the inlet air temperature

Ta,in, and note that Eq. (3.22) yields the following expression for the sensitivity

of the response R = ma to Ta,in:
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S45 ,
∂R

∂Ta,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Ta,in
+ τ (i)

w

∂N
(i)
2

∂Ta,in
+ τ (i)

a

∂N
(i)
3

∂Ta,in
+ o(i) ∂N

(i)
4

∂Ta,in

)
+ µa

∂N5

∂Ta,in

]

= 0−

[
o(49)∂N

(49)
4

∂Ta,in
+ µa

∂N5

∂Ta,in

]
= −(o(49))

[
Cp

(
T

(49)
a + tK

2

)
+ ωinα1g

]

− (µa) ·

{
Rair

2 · Patm
· |ma| ·ma ·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]

+
g · Patm
Rair · T 2

a,in

·
(
Z +

V 2
w

2g
−∆zrain −

∆z

2

)}
.

(D.66)

Re-writing Eq. (D.66) in the form

o(49) = −
S45 + µa

∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

(D.67)

indicates that the value of the adjoint function o(49) could be computed indepen-

dently if the sensitivity S45 were available, since the quantity ∂N
(49)
4 /∂Ta,in =

1.03310 × 103 [J/(kg ·K)] is known. To first-order in the parameter perturba-

tion, the finite-difference formula given in Eq. (3.23) can be used to compute the

approximate sensitivity SFD45 ; subsequently, this value can be used in conjunc-

tion with Eq. (D.67) to compute a “finite-difference sensitivity” value, denoted

as
[
o(49)

]SFD
, for the respective adjoint, which would be accurate up to second-

order in the respective parameter perturbation:

[
o(49)

]SFD
= −

SFD45 + µa
∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

= −

[
T

(1)
a,pert − T

(1)
a,nom

δTa,in
+ µa

∂N5

∂Ta,in

][
∂N

(49)
4

∂Ta,in

]−1

(D.68)

Numerically, the inlet air temperature Ta,in(= Tdb) has the nominal (“base-

case”) value of T 0
a,in = 294.03 [K]. The corresponding nominal value ma,nom of the

response ma is ma,nom = 20.11022 [kg/s]. Consider next a perturbation δTa,in =
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(0.00102)T 0
a,in, for which the perturbed value of the inlet air temperature becomes

T perta,in = T 0
a,in−δTa,in = 294.00 [K]. Re-computing the perturbed response by solv-

ing Eqs. (2.2) - (2.15) with the value of T perta,in yields the “perturbed response”

value ma,pert = 20.16037 [kg/s]. Using now the nominal and perturbed response

values together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

ity” SFD45 ,
ma,pert−ma,nom

δTa,in
= −1.6714

[
kg
s·K

]
. Using this value together with the

nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.68) yields
[
o(49)

]SFD
= −1.7992 × 10−4 [(kg/s) / (J/kg)]. This

result compares well with the value o(49) = −1.7873 × 10−4 [(kg/s) / (J/kg)]

obtained by solving the adjoint sensitivity system given in Eq. (3.10), cf., Figure

3.5. When solving this adjoint sensitivity system, the computation of o(49) de-

pends on the previously computed adjoint functions o(i), i = 1, ..., I − 1; hence,

the forgoing verification of the computational accuracy of o(49) also provides an

indirect verification that the functions o(i), i = 1, ..., I − 1, were also computed

accurately.

D.1.5.3 Verification of the adjoint function τ
(49)
a

Note that the value of the adjoint function τ
(49)
a obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is τ
(49)
a = 412.302 [kg/s], as indicated in

Figure 3.5. Now select a variation δωin in the inlet air humidity ratio ωin, and note

that Eq. (3.22) yields the following expression for the sensitivity of the response

R = ma to ωin:

S46 ,
∂R

∂ωin
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂ωin
+ τ (i)

w

∂N
(i)
2

∂ωin
+ τ (i)

a

∂N
(i)
3

∂ωin
+ o(i)∂N

(i)
4

∂ωin

)
+ µa

∂N5

∂ωin

]

= 0−

(
τ (49)
a

∂N
(49)
3

∂ωin
+ o(49)∂N

(49)
4

∂ωin

)
= −

[
τ (49)
a · (1) + o(49) · h(50)

g,a (Ta,in,α)
]
.

(D.69)

251



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

Re-writing Eq. (D.69) in the form

τ (49)
a = −S46 − o(49) · h(50)

g,a (Ta,in,α) (D.70)

indicates that the value of the adjoint function τ
(49)
a could be computed indepen-

dently if the sensitivity S46 were available, since the o(49) has been verified in (the

previous) Section D.1.5.2 and the quantity h
(50)
g,a (Ta,in, α) is known. To first-order

in the parameter perturbation, the finite-difference formula given in Eq. (3.23)

can be used to compute the approximate sensitivity SFD46 ; subsequently, this value

can be used in conjunction with Eq. (D.70) to compute a “finite-difference sen-

sitivity” value, denoted as
[
τ

(49)
a

]SFD
, for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[
τ (49)
a

]SFD
= −SFD46 − o(49) · h(50)

g,a (Ta,in,α) (D.71)

Numerically, the inlet air humidity ratio ωin has the nominal (“base-case”)

value of ω0
in = 0.015029407. The corresponding nominal value ma,nom of the re-

sponse ma is ma,nom = 20.11022 [kg/s]. Consider next a perturbation δωin =

(0.001243)ω0
in, for which the perturbed value of the inlet air humidity ratio be-

comes ωpertin = ω0
in−δωin = 0.015010726. Re-computing the perturbed response by

solving Eqs. (2.2) - (2.15) with the value of ωpertin yields the “perturbed response”

value ma,pert = 20.10942 [kg/s]. Using now the nominal and perturbed response

values together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

ity” SFD46 ,
ma,pert−ma,nom

δωin
= 42.865 [kg/s]. Using this value together with the

nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.71) yields
[
τ

(49)
a

]SFD
= 411.031 [kg/s]. This result compares well

with the value τ
(49)
a = 412.302 [kg/s] obtained by solving the adjoint sensitivity

system given in Eq. (3.10), cf. Figure 3.5. When solving this adjoint sensitivity
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system, the computation of τ
(49)
a depends on the previously computed adjoint

functions τ
(i)
a , i = 1, ..., I − 1; hence, the forgoing verification of the computa-

tional accuracy of τ
(49)
a also provides an indirect verification that the functions

τ
(i)
a , i = 1, ..., I − 1 were also computed accurately.

D.1.5.4 Verification of the adjoint function τ
(1)
w

Note that the value of the adjoint function τ
(1)
w obtained by solving the

adjoint sensitivity system given in Eq. (3.10) is as follows: τ
(1)
w = −8.111 ×

10−6
[
(J/kg)−1], indicated in Figure 3.5. Now select a variation δTw,in in the inlet

water temperature Tw,in, and note that Eq. (3.22) yields the following expression

for the sensitivity of the response R = ma to Tw,in:

S3 ,
∂R

∂Tw,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Tw,in
+ τ (i)

w

∂N
(i)
2

∂Tw,in
+ τ (i)

a

∂N
(i)
3

∂Tw,in
+ o(i) ∂N

(i)
4

∂Tw,in

)
+ µa

∂N5

∂Tw,in

]

= 0− τ (1)
w

∂N
(1)
2

∂Tw,in
= 0− τ (1)

w · (mw,in · a1f ) .

(D.72)

Re-writing Eq. (D.72) in the form

τ (1)
w = − S3

(mw,in · a1f )
(D.73)

indicates that the value of the adjoint function τ
(1)
w could be computed indepen-

dently if the sensitivity S3 were available, since the quantity mw,in · a1f is known.

To first-order in the parameter perturbation, the finite-difference formula given

in Eq. (3.23) can be used to compute the approximate sensitivity SFD3 ; subse-

quently, this value can be used in conjunction with Eq. (D.73) to compute a

“finite-difference sensitivity” value, denoted as
[
τ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation: [
τ (1)
w

]SFD
= − SFD3

(mw,in · a1f )
(D.74)
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Numerically, the inlet water temperature, Tw,in, has the nominal (“base-case”)

value of T 0
w,in = 298.774 [K]. The corresponding nominal value ma,nom of the re-

sponse ma is ma,nom = 20.11022 [kg/s]. Consider now a perturbation δTw,in =

(0.0000669)T 0
w,in, for which the perturbed value of the inlet water temperature be-

comes T pertw,in = T 0
w,in−δTw,in = 298.754 [K]. Re-computing the perturbed response

by solving Eqs. (2.2) - (2.15) with the value of T pertw,in yields the “perturbed re-

sponse” value ma,pert = 20.08029 [kg/s]. Using now the nominal and perturbed re-

sponse values together with the parameter perturbation in the finite-difference ex-

pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

sensitivity” SFD3 ,
ma,pert−ma,nom

δTw,in
= 1.49647

[
kg
s·K

]
. Using this value together with

the nominal values of the other quantities appearing in the expression on the

right side of Eq. (D.74) yields
[
τ

(1)
w

]SFD
= −8.120 × 10−6

[
(J/kg)−1]. This re-

sult compares well with the value τ
(1)
w = −8.111× 10−6

[
(J/kg)−1] obtained by

solving the adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.5.

D.1.5.5 Verification of the adjoint function µ
(1)
w

Note that the value of the adjoint function µ
(1)
w obtained by solving the adjoint

sensitivity system given in Eq. (3.10) is as follows: µ
(1)
w = 19.774 [−], respectively,

as indicated in Figure 3.5. Now select a variation δmw,in in the inlet water mass

flow rate mw,in, and note that Eq. (3.22) yields the following expression for the

sensitivity of the response R = ma to mw,in:
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S44 ,
∂R

∂mw,in

−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂mw,in

+ τ (i)
w

∂N
(i)
2

∂mw,in

+ τ (i)
a

∂N
(i)
3

∂mw,in

+ o(i) ∂N
(i)
4

∂mw,in

)

+µa
∂N5

∂mw,in

]
= 0−

(
µ(1)
w

∂N
(1)
1

∂mw,in

+ τ (1)
w

∂N
(1)
2

∂mw,in

+ τ (1)
a

∂N
(1)
3

∂mw,in

+ o(1) ∂N
(1)
4

∂mw,in

)

= −

[
µ(1)
w · (−1) + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)

+τ (1)
a ·

(
1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

)]
.

(D.75)

Since the adjoint functions τ
(49)
a and o(49) have been already verified as de-

scribed in Sections D.1.5.2 and D.1.5.3, it follows that the computed values of

adjoint functions τ
(1)
a = 3308.26 [kg/s] and o(1) = −0.001299

[(
kg
s

)
/
(
J
kg

)]
can

also be considered as being accurate, since they constitute the starting point for

solving the adjoint sensitivity system in Eq. (3.10); τ
(1)
w was proved being accurate

in Section D.1.5.4. Re-writing Eq. (D.75) in the form:

µ(1)
w = S44 + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.76)

indicates that the value of the adjoint function µ
(1)
w could be computed inde-

pendently if the sensitivity S44 were available, since all the other quantities are

known. To first-order in the parameter perturbation, the finite-difference formula

given in Eq. (3.23) can be used to compute the approximate sensitivity SFD44 ;

subsequently, this value can be used in conjunction with Eq. (D.76) to compute a

“finite-difference sensitivity” value, denoted as
[
µ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation:
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[
µ(1)
w

]SFD
= µ(1)

w = SFD44 + τ (1)
w ·

(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.77)

Numerically, the inlet water mass flow rate, mw,in, has the nominal (“base-

case”) value of m0
w,in = 44.0213 [kg/s]. The corresponding nominal value ma,nom

of the response ma is ma,nom = 20.11022 [kg/s]. Next, consider a perturbation

δmw,in = (0.0004839)m0
w,in, for which the perturbed value of the inlet water

mass flow rate becomes mpert
w,in = m0

w,in − δmw,in = 44.00 [kg/s]. Re-computing

the perturbed response by solving Eqs. (2.2) - (2.15) with the value of mpert
w,in yields

the “perturbed response” value ma,pert = 20.10986 [kg/s]. Using now the nominal

and perturbed response values together with the parameter perturbation in the

finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SFD44 ,
ma,pert−ma,nom

δmw,in
= 0.01723 [−]. Using this

value together with the nominal values of the other quantities appearing in the

expression on the right side of Eq. (D.77) yields
[
µ

(1)
w

]SFD
= 19.774 [−]. This

result compares well with the value µ
(1)
w = 19.774 [−] obtained by solving the

adjoint sensitivity system given in Eq. (3.10), cf. Figure 3.5.
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D.2 Verification of the Model Adjoint Functions

for Case 1b: Fan Off, Saturated Outlet Air

Conditions, with Inlet Air Saturated

The verification procedure of the adjoint functions for case 1b is reported in

this section.

D.2.1 Verification of the adjoint function µa for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.27) - (3.28) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response T
(1)
a are

computed by solving the adjoint sensitivity system given in Eq. (3.33) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solution

of Eq. (3.33) has been depicted in Figure 3.6. Note that the value of the adjoint

function µa obtained by solving the adjoint sensitivity system given in Eq. (3.33)

is µa = −0.26270 [K/(J/m3)], as indicated in Figure 3.6. Now select a variation

δVw in the wind speed Vw, and note that Eq. (3.22) yields the following expression

for the sensitivity of the response R = T
(1)
a to Vw:

S5 ,
∂R

∂Vw
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Vw
+ τ (i)

w

∂N
(i)
2

∂Vw
+ τ (i)

a

∂N
(i)
3

∂Vw
+ o(i)∂N

(i)
4

∂Vw

)
+ µa

∂N5

∂Vw

]

= 0− µa
∂N5

∂Vw
= − (µa) [−Vw · ρ(Ttdb,α)] .

(D.78)

Re-writing Eq. (D.78) in the form

µa = − S5

∂N5/∂Vw
(D.79)

257



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

indicates that the value of the adjoint function µa could be computed inde-

pendently if the sensitivity S5 were available, since the quantity ∂N5/∂Vw =

−1.6392 [J/(m4/s)] is known. To first-order in the parameter perturbation, the

finite-difference formula given in Eq. (3.23) can be used to compute the approx-

imate sensitivity SFD5 ; subsequently, this value can be used in conjunction with

Eq. (D.79) to compute a “finite-difference sensitivity” value, denoted as [µa]
SFD,

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

[µa]
SFD = − SFD5

∂N5/∂Vw
= −

[
T

(1)
a,pert − T

(1)
a,nom

δVw

] [
∂N5

∂Vw

]−1

(D.80)

Numerically, the wind speed Vw has the nominal (“base-case”) value of V 0
w =

1.377 [m/s]. The corresponding nominal value T
(1)
a,nom of the response T

(1)
a is

T
(1)
a,nom = 299.1041 [K]. Consider next a perturbation δTa,in = (0.0196)V 0

w ,

for which the perturbed value of the wind speed becomes V pert
w = V 0

w - δVw =

1.35 [m/s]. Re-computing the perturbed response by solving Eqs. (2.25) - (2.37)

with the value of V pert
w yields the “perturbed response” value T

(1)
a,pert = 299.1156 [K].

Using now the nominal and perturbed response values together with the param-

eter perturbation in the finite-difference expression given in Eq. (3.23) yields

the corresponding “finite-difference-computed sensitivity” SFD5 ,
T

(1)
a,pert−T

(1)
a,nom

δVw
=

−0.42620
[
K
m/s

]
. Using this value together with the nominal values of the other

quantities appearing in the expression on the right side of Eq. (D.80) yields

[µa]
SFD = −0.26000 [K/(J/m3)]. This result compares well with the value µa =

−0.26270 [K/(J/m3)] obtained by solving the adjoint sensitivity system given in

Eq. (3.33), cf., Figure 3.6. The same parameter perturbation was utilized to per-

form the same verification procedure for the adjoint function µa with respect to

the other four responses; Table D.1 displays the obtained results, which compare

well with the values in the bar plots in Figures 3.6 - 3.10.
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Table D.1: Verification Table for adjoint function µa with respect to the responses T
(1)
a , T

(50)
w , RH(1), m

(50)
w

and ma.

Response dsff

of interest

Vw T
(1)
a SFD

5 [µa](SFD) µa

[m/s] [K] [K/ (m/s)]
[
K/
(
J/m3

)]

T
(1)
a

Base case 1.377 299.1041
-0.42620 -0.26000 -0.26270

Perturbed case 1.35 299.1156

Response dsff

of interest

Vw T
(50)
w SFD

5 [µa](SFD) µa

[m/s] [K] [K/ (m/s)]
[
K/
(
J/m3

)]

T
(50)
w

Base case 1.377 297.4568
-0.49813 -0.30388 -0.30451

Perturbed case 1.35 297.4703

Response dsff

of interest

Vw RH(1) SFD
5 [µa](SFD) µa

[m/s] [%]
[
(m/s)−1

] [(
J/m3

)−1
]

RH(1)
Base case 1.377 102.3758

-0.05731 -0.03496 -0.03451

Perturbed case 1.35 102.3774

Response dsff

of interest

Vw m
(50)
w SFD

5 [µa](SFD) µa

[m/s] [kg/s]
[

(kg/s)
(m/s)

] [
(kg/s)

(J/m3)

]

m
(50)
w

Base case 1.377 43.89312
-0.02723 -0.016609 -0.016642

Perturbed case 1.35 43.89386

Response dsff

of interest

Vw ma SFD
5 [µa](SFD) µa

[m/s] [kg/s]
[

(kg/s)
(m/s)

] [
(kg/s)

(J/m3)

]

ma

Base case 1.377 20.75415
6.9984 4.2692 4.2994

Perturbed case 1.35 20.56520

D.2.2 Verification of the adjoint function o(49) for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.27) - (3.28) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-
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joint functions corresponding to the outlet air temperature response T
(1)
a are

computed by solving the adjoint sensitivity system given in Eq. (3.33) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solution

of Eq. (3.33) has been depicted in Figure 3.6. Note that the value of the adjoint

function o(49) obtained by solving the adjoint sensitivity system given in Eq. (3.33)

is o(49) = −6.622 × 10−5 [K/(J/kg)], as indicated in Figure 3.6. Now select a

variation δTa,in in the inlet air temperature Ta,in, and note that Eq. (3.22) yields

the following expression for the sensitivity of the response R = T
(1)
a to Ta,in:

S45 ,
∂R

∂Ta,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Ta,in
+ τ (i)

w

∂N
(i)
2

∂Ta,in
+ τ (i)

a

∂N
(i)
3

∂Ta,in
+ o(i) ∂N

(i)
4

∂Ta,in

)
+ µa

∂N5

∂Ta,in

]

= 0−

[
o(49)∂N

(49)
4

∂Ta,in
+ µa

∂N5

∂Ta,in

]
= −(o(49))

[
Cp

(
T

(49)
a + tK

2

)
+ ωinα1g

]

− (µa) ·

{
Rair

2 · Patm
· |ma| ·ma ·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]

+
g · Patm
Rair · T 2

a,in

·
(
Z +

V 2
w

2g
−∆zrain −

∆z

2

)}
.

(D.81)

Re-writing Eq. (D.81) in the form

o(49) = −
S45 + µa

∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

(D.82)

indicates that the value of the adjoint function o(49) could be computed indepen-

dently if the sensitivity S45 were available, since the quantities ∂N
(49)
4 /∂Ta,in =

1.03523 × 103 [J/(kg ·K)] is known. To first-order in the parameter perturba-

tion, the finite-difference formula given in Eq. (3.23) can be used to compute the

approximate sensitivity SFD45 ; subsequently, this value can be used in conjunc-

tion with Eq. (D.82) to compute a “finite-difference sensitivity” value, denoted

as
[
o(49)

]SFD
, for the respective adjoint, which would be accurate up to second-

260



APPENDIX D. VERIFICATION OF THE MODEL ADJOINT FUNCTIONS

order in the respective parameter perturbation:

[
o(49)

]SFD
= −

SFD45 + µa
∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

= −

[
T

(1)
a,pert − T

(1)
a,nom

δTa,in
+ µa

∂N5

∂Ta,in

][
∂N

(49)
4

∂Ta,in

]−1

(D.83)

Numerically, the inlet air temperature Ta,in(= Tdb) has the nominal (“base-

case”) value of T 0
a,in = 294.4 [K]. The corresponding nominal value T

(1)
a,nom of the

response T
(1)
a is T

(1)
a,nom = 299.1041 [K]. Consider next a perturbation δTa,in =

(0.000068)T 0
a,in, for which the perturbed value of the inlet air temperature be-

comes T perta,in = T 0
a,in- δTa,in = 294.38 [K]. Re-computing the perturbed response by

solving Eqs. (2.25) - (2.37) with the value of T perta,in yields the “perturbed response”

value T
(1)
a,pert = 299.1005 [K]. Using now the nominal and perturbed response val-

ues together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

ity” SFD45 ,
T

(1)
a,pert−T

(1)
a,nom

δTa,in
= 0.17720. Using this value together with the nominal

values of the other quantities appearing in the expression on the right side of

Eq. (D.83) yields
[
o(49)

]SFD
= −6.529 × 10−5 [K/(J/kg)]. This result compares

well with the value o(49) = −6.622 × 10−5 [K/(J/kg)] obtained by solving the

adjoint sensitivity system given in Eq. (3.33), cf., Figure 3.6. When solving this

adjoint sensitivity system, the computation of o(49) depends on the previously

computed adjoint functions o(i), i = 1, ..., I − 1; hence, the forgoing verification

of the computational accuracy of o(49) also provides an indirect verification that

the functions o(i), i = 1, ..., I − 1, were also computed accurately. The same

parameter perturbation was utilized to perform the same verification procedure

for the adjoint function o(49) with respect to the other four responses; Table D.2

displays the obtained results, which compare well with the values in the bar plots

in Figures 3.6 - 3.10.
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Table D.2: Verification Table for adjoint function o(49) with respect to the responses T
(1)
a , T

(50)
w , RH(1), m

(50)
w

and ma.

Response dsff

of interest

Ta,in T
(1)
a SFD

45

[
o(49)

](SFD)
o(49)

[K] [K] [−] [K/ (J/kg)]

T
(1)
a

Base case 294.40 299.1041
0.17720 -6.53·10−5 -6.62·10−5

Perturbed case 294.38 299.1005

Response dsff

of interest

Ta,in T
(50)
w SFD

45

[
o(49)

](SFD)
o(49)

[K] [K] [−] [K/ (J/kg)]

T
(50)
w

Base case 294.40 297.4568
0.48509 -3.46·10−4 -3.52·10−4

Perturbed case 294.38 297.4471

Response dsff

of interest

Ta,in RH(1) SFD
45

[
o(49)

](SFD)
o(49)

[K] [%]
[
K−1

] [
(J/kg)−1

]

RH(1)
Base case 294.40 102.3758

-4.8756 4.72·10−3 4.83·10−3

Perturbed case 294.38 102.4734

Response dsff

of interest

Ta,in m
(50)
w SFD

45

[
o(49)

](SFD)
o(49)

[K] [kg/s]
[

(kg/s)
K

] [
(kg/s)
(J/kg)

]

m
(50)
w

Base case 294.40 43.89312
0.026119 -1.85·10−5 -1.90·10−5

Perturbed case 294.38 43.89260

Response dsff

of interest

Ta,in ma SFD
45

[
o(49)

](SFD)
o(49)

[K] [kg/s]
[

(kg/s)
K

] [
(kg/s)
(J/kg)

]

ma

Base case 294.40 20.75415
-1.5528 -2.33·10−4 -2.34·10−4

Perturbed case 294.38 20.78521

D.2.3 Verification of the adjoint function τ
(49)
a for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.27) - (3.28) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response T
(1)
a are
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computed by solving the adjoint sensitivity system given in Eq. (3.33) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solu-

tion of Eq. (3.33) has been depicted in Figure 3.6. Note that the value of the

adjoint function τ
(49)
a obtained by solving the adjoint sensitivity system given in

Eq. (3.33) is τ
(49)
a = 170.187 [K], as indicated in Figure 3.6. Now select a varia-

tion δωin in the inlet air humidity ratio ωin, and note that Eq. (3.22) yields the

following expression for the sensitivity of the response R = T
(1)
a to ωin:

S46 ,
∂R

∂ωin
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂ωin
+ τ (i)

w

∂N
(i)
2

∂ωin
+ τ (i)

a

∂N
(i)
3

∂ωin
+ o(i)∂N

(i)
4

∂ωin

)
+ µa

∂N5

∂ωin

]

= 0−

(
τ (49)
a

∂N
(49)
3

∂ωin
+ o(49)∂N

(49)
4

∂ωin

)
= −

[
τ (49)
a · (1) + o(49) · h(50)

g,a (Ta,in,α)
]
.

(D.84)

Re-writing Eq. (D.84) in the form

τ (49)
a = −S46 − o(49) · h(50)

g,a (Ta,in,α) (D.85)

indicates that the value of the adjoint function τ
(49)
a could be computed inde-

pendently if the sensitivity S46 were available, since the o(49) has been verified

in Section D.1.1.2 and the quantity h
(50)
g,a (Ta,in, α) is known. To first-order in the

parameter perturbation, the finite-difference formula given in Eq. (3.23) can be

used to compute the approximate sensitivity SFD46 ; subsequently, this value can be

used in conjunction with Eq. (D.85) to compute a “finite-difference sensitivity”

value, denoted as
[
τ

(49)
a

]SFD
, for the respective adjoint, which would be accurate

up to second-order in the respective parameter perturbation:

[
τ (49)
a

]SFD
= −SFD46 − o(49) · h(50)

g,a (Ta,in,α) (D.86)
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Numerically, the inlet air humidity ratio ωin has the nominal (“base-case”)

value of ω0
in = 0.0162008658. The corresponding nominal value T

(1)
a,nom of the re-

sponse T
(1)
a is T

(1)
a,nom = 299.10408 [K]. Consider next a perturbation δωin =

(0.001236)ω0
in, for which the perturbed value of the inlet air humidity ratio be-

comes ωpertin = ω0
in−δωin = 0.016180844. Re-computing the perturbed response by

solving Eqs. (2.25) - (2.37) with the value of ωpertin yields the “perturbed response”

value T
(1)
a,pert = 299.10412 [K]. Using now the nominal and perturbed response

values together with the parameter perturbation in the finite-difference expression

given in Eq. (3.23) yields the corresponding “finite-difference-computed sensitiv-

ity” SFD46 ,
T

(1)
a,pert−T

(1)
a,nom

δωin
= −1.9686 [K]. Using this value together with the

nominal values of the quantities appearing in the expression on the right side

of Eq. (D.86) yields
[
τ

(49)
a

]SFD
= 170.185 [K]. This result compares well with

the value τ
(49)
a = 170.187 [K] obtained by solving the adjoint sensitivity system

given in Eq. (3.33), cf. Figure 3.6. When solving this adjoint sensitivity system,

the computation of τ
(49)
a depends on the previously computed adjoint functions

τ
(i)
a , i = 1, ..., I−1; hence, the forgoing verification of the computational accuracy

of τ
(49)
a also provides an indirect verification that the functions τ

(i)
a , i = 1, ..., I−1

were also computed accurately. The same parameter perturbation was utilized to

perform the same verification procedure for the adjoint function τ
(49)
a with re-

spect to the other four responses; Table D.3 displays the obtained results, which

compare well with the values in the bar plots in Figures 3.6 - 3.10.

Table D.3: Verification Table for adjoint function τ
(49)
a with respect to the responses T

(1)
a , T

(50)
w , RH(1), m

(50)
w

and ma.

Response dsff

of interest

ωin T
(1)
a SFD

46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [K] [K] [K]

T
(1)
a

Base case 0.01620087 299.1041
-1.9686 170.185 170.187

Perturbed case 0.01618084 298.10412
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Response dsff

of interest

ωin T
(50)
w SFD

46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [K] [K] [K]

T
(50)
w

Base case 0.01620087 297.4568
-2.2834 895.14 895.14

Perturbed case 0.01618084 297.4569

Response dsff

of interest

ωin RH(1) SFD
46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [%] [−] [−]

RH(1)
Base case 0.01620087 102.3758

4585.87 -16863 -16863

Perturbed case 0.01618084 102.2841

Response dsff

of interest

ωin m
(50)
w SFD

46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [kg/s] [kg/s] [kg/s]

m
(50)
w

Base case 0.01620087 43.89312
-0.1249 48.309 48.309

Perturbed case 0.01618084 43.89314

Response dsff

of interest

ωin ma SFD
46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [kg/s] [kg/s] [kg/s]

ma

Base case 0.01620087 20.75415
-4.1485 599.72 599.72

Perturbed case 0.01618084 20.75424

D.2.4 Verification of the adjoint function τ
(1)
w for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.27) - (3.28) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response T
(1)
a are

computed by solving the adjoint sensitivity system given in Eq. (3.33) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solution

of Eq. (3.33) has been depicted in Figure 3.6. Note that the values of the adjoint

function τ
(1)
w obtained by solving the adjoint sensitivity system given in Eq. (3.33)
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is as follows: τ
(1)
w = −4.42 × 10−6 [K/(J/s) ], as indicated in Figure 3.6. Now

select a variation δTw,in in the inlet water temperature Tw,in, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = T
(1)
a

to Tw,in:

S3 ,
∂R

∂Tw,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Tw,in
+ τ (i)

w

∂N
(i)
2

∂Tw,in
+ τ (i)

a

∂N
(i)
3

∂Tw,in
+ o(i) ∂N

(i)
4

∂Tw,in

)
+ µa

∂N5

∂Tw,in

]

= 0− τ (1)
w

∂N
(1)
2

∂Tw,in
= 0− τ (1)

w · (mw,in · a1f ) .

(D.87)

Re-writing Eq. (D.87) in the form

τ (1)
w = − S3

(mw,in · a1f )
(D.88)

indicates that the value of the adjoint function τ
(1)
w could be computed indepen-

dently if the sensitivity S3 were available, since the quantity mw,ina1 f is known.

To first-order in the parameter perturbation, the finite-difference formula given

in Eq. (3.23) can be used to compute the approximate sensitivity SFD3 ; subse-

quently, this value can be used in conjunction with Eq. (D.88) to compute a

“finite-difference sensitivity” value, denoted as
[
τ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation: [
τ (1)
w

]SFD
= − SFD3

(mw,in · a1f )
(D.89)

Numerically, the inlet water temperature, Tw,in, has the nominal (“base-case”)

value of T 0
w,in = 299.543 [K]. As before, the corresponding nominal value T

(1)
a,nom

of the response T
(1)
a is T

(1)
a,nom = 299.1041 [K]. Consider now a perturbation

δTw,in = (0.0000668)T 0
w,in, for which the perturbed value of the inlet water tem-

perature becomes T pertw,in = T 0
w,in − δTw,in = 299.523 [K]. Re-computing the per-

turbed response by solving Eqs. (2.25) - (2.37) with the value of T pertw,in yields

the “perturbed response” value T
(1)
a,pert = 299.0878 [K]. Using now the nominal
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and perturbed response values together with the parameter perturbation in the

finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SFD3 ,
T

(1)
a,pert−T

(1)
a,nom

δTw,in
= 0.81533. Using this value

together with the nominal values of the other quantities appearing in the expres-

sion on the right side of Eq. (D.89) yields
[
τ

(1)
w

]SFD
= −4.42× 10−6 [K/(J/s) ].

This result compares well with the value τ
(1)
w = −4.42 × 10−6 [K/(J/s) ] ob-

tained by solving the adjoint sensitivity system given in Eq. (3.33), cf. Figure 3.6.

The same parameter perturbation was utilized to perform the same verification

procedure for the adjoint function τ
(1)
w with respect to the other four responses;

Table D.4 displays the obtained results, which compare well with the values in

the bar plots in Figures 3.6 - 3.10.

Table D.4: Verification Table for adjoint function τ
(1)
w with respect to the responses T

(1)
a , T

(50)
w , RH(1), m

(50)
w

and ma.

Response dsff

of interest

Tw,in T
(1)
a SFD

3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [K] [−] [K/ (J/s)]

T
(1)
a

Base case 299.543 299.1041
0.81533 -4.42·10−6 -4.42·10−6

Perturbed case 299.523 299.0878

Response dsff

of interest

Tw,in T
(50)
w SFD

3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [K] [−] [K/ (J/s)]

T
(50)
w

Base case 299.543 297.4568
0.45398 -2.464·10−6 -2.462·10−6

Perturbed case 299.523 297.4478

Response dsff

of interest

Tw,in RH(1) SFD
3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [%]
[
K−1

] [
(J/s)−1

]

RH(1)
Base case 299.543 102.3758

0.22604 -1.227·10−6 -1.228·10−6

Perturbed case 299.523 102.3713
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Response dsff

of interest

Tw,in m
(50)
w SFD

3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [kg/s]
[

(kg/s)
K

] [
(J/kg)−1

]

m
(50)
w

Base case 299.543 43.89312
-0.03117 1.692·10−7 1.693·10−7

Perturbed case 299.523 43.8937

Response dsff

of interest

Tw,in ma SFD
3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [kg/s]
[

(kg/s)
K

] [
(J/kg)−1

]

ma

Base case 299.543 20.75415
1.41412 -7.669·10−6 -7.662·10−6

Perturbed case 299.523 20.72589

D.2.5 Verification of the adjoint function µ
(1)
w for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.27) - (3.28) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response T
(1)
a are

computed by solving the adjoint sensitivity system given in Eq. (3.33) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solu-

tion of Eq. (3.33) has been depicted in Figure 3.6. Note that the values of the

adjoint function µ
(1)
w obtained by solving the adjoint sensitivity system given in

Eq. (3.33) is as follows: µ
(1)
w = 10.765 [K/(kg/s) ], as indicated in Figure 3.6.

Now select a variation δmw,in in the inlet water mass flow rate mw,in, and note

that Eq. (3.22) yields the following expression for the sensitivity of the response

R = T
(1)
a to mw,in:
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S44 ,
∂R

∂mw,in

−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂mw,in

+ τ (i)
w

∂N
(i)
2

∂mw,in

+ τ (i)
a

∂N
(i)
3

∂mw,in

+ o(i) ∂N
(i)
4

∂mw,in

)

+µa
∂N5

∂mw,in

]
= 0−

(
µ(1)
w

∂N
(1)
1

∂mw,in

+ τ (1)
w

∂N
(1)
2

∂mw,in

+ τ (1)
a

∂N
(1)
3

∂mw,in

+ o(1) ∂N
(1)
4

∂mw,in

)

= −

[
µ(1)
w · (−1) + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)

+τ (1)
a ·

(
1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

)]
.

(D.90)

Since the adjoint functions τ
(49)
a and o(49) have been already verified as de-

scribed in Sections D.1.1.3 and D.1.1.2, it follows that the computed values of

adjoint functions τ
(1)
a = 2144.188 [K] o(1) = −8.4127× 10−4 [K/(J/kg)] can also

be considered as being accurate, since they constitute the starting point for solv-

ing the adjoint sensitivity system in Eq. (3.33); τ
(1)
w was proved being accurate in

Section D.1.1.4.

Re-writing Eq. (D.90) in the form

µ(1)
w = S44 + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.91)

indicates that the value of the adjoint function µ
(1)
w could be computed inde-

pendently if the sensitivity S44 were available, since all the other quantities are

known. To first-order in the parameter perturbation, the finite-difference formula

given in Eq. (3.23) can be used to compute the approximate sensitivity SFD44 ;

subsequently, this value can be used in conjunction with Eq. (D.91) to compute a

“finite-difference sensitivity” value, denoted as
[
µ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter
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perturbation:

[
µ(1)
w

]SFD
= µ(1)

w = SFD44 + τ (1)
w ·

(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.92)

Numerically, the inlet water mass flow rate, mw,in, has the nominal (“base-

case”) value of m0
w,in = 44.0089 [kg/s]. As before, the corresponding nominal

value T
(1)
a,nom of the response T

(1)
a is T

(1)
a,nom = 299.1041 [K]. Consider now a pertur-

bation δmw,in = (0.002475)m0
w,in, for which the perturbed value of the inlet water

mass flow rate becomesmpert
w,in = m0

w,in − δmw,in = 43.90 [kg/s]. Re-computing the

perturbed response by solving Eqs. (2.25) - (2.37) with the value of mpert
w,in yields

the “perturbed response” value T
(1)
a,pert = 299.1031 [K]. Using now the nominal

and perturbed response values together with the parameter perturbation in the

finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SFD44 ,
T

(1)
a,pert−T

(1)
a,nom

δmw,in
= 0.00858

[
K
kg/s

]
. Using this

value together with the nominal values of the other quantities appearing in the

expression on the right side of Eq. (D.92) yields
[
µ

(1)
w

]SFD
= 10.765 [K/(kg/s) ].

This result compares well with the value µ
(1)
w = 10.765 [K/(kg/s) ] obtained by

solving the adjoint sensitivity system given in Eq. (3.33), cf. Figure 3.6. The same

parameter perturbation was utilized to perform the same verification procedure

for the adjoint function µ
(1)
w with respect to the other four responses; Table D.5

displays the obtained results, which compare well with the values in the bar plots

in Figures 3.6 - 3.10.
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Table D.5: Verification Table for adjoint function µ
(1)
w with respect to the responses T

(1)
a , T

(50)
w , RH(1), m

(50)
w

and ma.

Response dsff

of interest

mw,in T
(1)
a SFD

44

[
µ

(1)
w

](SFD)
µ

(1)
w

[K/s] [K]
[
K
kg/s

] [
K
kg/s

]

T
(1)
a

Base case 44.0089 299.1041
0.00858 10.765 10.765

Perturbed case 43.90 299.1031

Response dsff

of interest

mw,in T
(50)
w SFD

44

[
µ

(1)
w

](SFD)
µ

(1)
w

[kg/s] [K]
[
K
kg/s

] [
K
kg/s

]

T
(50)
w

Base case 44.0089 297.4568
0.04092 6.04792 6.04784

Perturbed case 43.90 297.4524

Response dsff

of interest

mw,in RH(1) SFD
44

[
µ

(1)
w

](SFD)
µ

(1)
w

[kg/s] [%]
[
(kg/s)−1

] [
(kg/s)−1

]

RH(1)
Base case 44.0089 102.3758

0.01034 -215.61 -215.61

Perturbed case 43.90 102.3747

Response dsff

of interest

mw,in m
(50)
w SFD

44

[
µ

(1)
w

](SFD)
µ

(1)
w

[kg/s] [kg/s] [−] [−]

m
(50)
w

Base case 44.0089 43.89312
0.99961 0.58679 0.58679

Perturbed case 43.90 43.8937

Response dsff

of interest

mw,in ma SFD
44

[
µ

(1)
w

](SFD)
µ

(1)
w

[kg/s] [kg/s] [−] [−]

ma

Base case 44.0089 20.75415
0.01931 18.6601 18.6600

Perturbed case 43.90 20.75205
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D.3 Verification of the Model Adjoint Functions

for Case 2: Fan Off, Unsaturated Air Con-

ditions

The verification procedure of the adjoint functions for case 2 is reported in

this section.

D.3.1 Verification of the adjoint function µa for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.42) - (3.43) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response T
(1)
a are

computed by solving the adjoint sensitivity system given in Eq. (3.40) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solution

of Eq. (3.40) has been depicted in Figure 3.11. Note that the value of the ad-

joint function µa obtained by solving the adjoint sensitivity system given in Eq.

(3.40) is µa = −0.12651 [K/(J/m3)], as indicated in Figure 3.11. Now select a

variation δVw in the wind speed Vw, and note that Eq. (3.22) yields the following

expression for the sensitivity of the response R = T
(1)
a to Vw:

S5 ,
∂R

∂Vw
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Vw
+ τ (i)

w

∂N
(i)
2

∂Vw
+ τ (i)

a

∂N
(i)
3

∂Vw
+ o(i)∂N

(i)
4

∂Vw

)
+ µa

∂N5

∂Vw

]

= 0− µa
∂N5

∂Vw
= − (µa) [−Vw · ρ(Ttdb,α)] .

(D.93)

Re-writing Eq. (D.93) in the form

µa = − S5

∂N5/∂Vw
(D.94)
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indicates that the value of the adjoint function µa could be computed inde-

pendently if the sensitivity S5 were available, since the quantity ∂N5/∂Vw =

−2.1795 [J/(m4/s)] is known. To first-order in the parameter perturbation, the

finite-difference formula given in Eq. (3.23) can be used to compute the approx-

imate sensitivity SFD5 ; subsequently, this value can be used in conjunction with

Eq. (D.94) to compute a “finite-difference sensitivity” value, denoted as [µa]
SFD,

for the respective adjoint, which would be accurate up to second-order in the

respective parameter perturbation:

[µa]
SFD = − SFD5

∂N5/∂Vw
= −

[
T

(1)
a,pert − T

(1)
a,nom

δVw

] [
∂N5

∂Vw

]−1

(D.95)

Numerically, the wind speed Vw has the nominal (“base-case”) value of V 0
w =

1.859 [m/s]. The corresponding nominal value T
(1)
a,nom of the response T

(1)
a is

T
(1)
a,nom = 298.7979 [K]. Consider next a perturbation δTa,in = (0.01)V 0

w , for which

the perturbed value of the wind speed becomes V pert
w = V 0

w - δVw = 1.84041 [m/s].

Re-computing the perturbed response by solving Eqs. (2.38) - (2.50) with the

value of V pert
w yields the “perturbed response” value T

(1)
a,pert = 298.8029 [K].

Using now the nominal and perturbed response values together with the pa-

rameter perturbation in the finite-difference expression given in Eq. (3.23) yields

the corresponding “finite-difference-computed sensitivity” SFD5 ,
T

(1)
a,pert−T

(1)
a,nom

δVw
=

−0.27219
[
K
m/s

]
. Using this value together with the nominal values of the other

quantities appearing in the expression on the right side of Eq. (D.95) yields

[µa]
SFD = −0.12489 [K/(J/m3)]. This result compares well with the value µa =

−0.12651 [K/(J/m3)] obtained by solving the adjoint sensitivity system given

in Eq. (3.40), cf., Figure 3.11. The same parameter perturbation was utilized

to perform the same verification procedure for the adjoint function µa with re-

spect to the other four responses; Table D.6 displays the obtained results, which

compare well with the values in the bar plots in Figures 3.11 - 3.15.
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Table D.6: Verification Table for adjoint function µa with respect to the responses T
(1)
a , T

(50)
w , RH(1), m

(50)
w

and ma.

Response dsff

of interest

Vw T
(1)
a SFD

5 [µa](SFD) µa

[m/s] [K] [K/ (m/s)]
[
K/
(
J/m3

)]

T
(1)
a

Base case 1.859 298.7979
-0.27219 -0.12489 -0.12651

Perturbed case 1.84041 298.8029

Response dsff

of interest

Vw T
(50)
w SFD

5 [µa](SFD) µa

[m/s] [K] [K/ (m/s)]
[
K/
(
J/m3

)]

T
(50)
w

Base case 1.859 297.4225
-0.95514 -0.43824 -0.43692

Perturbed case 1.84041 297.4402

Response dsff

of interest

Vw RH(1) SFD
5 [µa](SFD) µa

[m/s] [%]
[
(m/s)−1

] [(
J/m3

)−1
]

RH(1)
Base case 1.859 99.79724

-0.71122 -0.32632 -0.33332

Perturbed case 1.84041 99.81046

Response dsff

of interest

Vw m
(50)
w SFD

5 [µa](SFD) µa

[m/s] [kg/s]
[

(kg/s)
(m/s)

] [
(kg/s)

(J/m3)

]

m
(50)
w

Base case 1.859 43.90797
-0.073996 -0.033951 -0.033873

Perturbed case 1.84041 43.90934

Response dsff

of interest

Vw ma SFD
5 [µa](SFD) µa

[m/s] [kg/s]
[

(kg/s)
(m/s)

] [
(kg/s)

(J/m3)

]

ma

Base case 1.859 15.83980
11.63149 5.33677 5.34064

Perturbed case 1.84041 15.62357

D.3.2 Verification of the adjoint function o(49) for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.42) - (3.43) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-
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joint functions corresponding to the outlet air temperature response T
(1)
a are

computed by solving the adjoint sensitivity system given in Eq. (3.40) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solu-

tion of Eq. (3.40) has been depicted in Figure 3.11. Note that the value of the

adjoint function o(49) obtained by solving the adjoint sensitivity system given in

Eq. (3.40) is o(49) = −1.313 × 10−5 [K/(J/kg)], as indicated in Figure 3.11.

Now select a variation δTa,in in the inlet air temperature Ta,in, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = T
(1)
a

to Ta,in:

S45 ,
∂R

∂Ta,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Ta,in
+ τ (i)

w

∂N
(i)
2

∂Ta,in
+ τ (i)

a

∂N
(i)
3

∂Ta,in
+ o(i) ∂N

(i)
4

∂Ta,in

)
+ µa

∂N5

∂Ta,in

]

= 0−

[
o(49)∂N

(49)
4

∂Ta,in
+ µa

∂N5

∂Ta,in

]
= −(o(49))

[
Cp

(
T

(49)
a + tK

2

)
+ ωinα1g

]

− (µa) ·

{
Rair

2 · Patm
· |ma| ·ma ·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]

+
g · Patm
Rair · T 2

a,in

·
(
Z +

V 2
w

2g
−∆zrain −

∆z

2

)}
.

(D.96)

Re-writing Eq. (D.96) in the form

o(49) = −
S45 + µa

∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

(D.97)

indicates that the value of the adjoint function o(49) could be computed indepen-

dently if the sensitivity S45 were available, since the quantities ∂N
(49)
4 /∂Ta,in =

1.0309 × 103 [J/(kg ·K)] and ∂N5/∂Ta,in = 0.40491 [J/(m3 ·K)] are known. To

first-order in the parameter perturbation, the finite-difference formula given in Eq.

(3.23) can be used to compute the approximate sensitivity SFD45 ; subsequently, this

value can be used in conjunction with Eq. (D.97) to compute a “finite-difference
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sensitivity” value, denoted as
[
o(49)

]SFD
, for the respective adjoint, which would

be accurate up to second-order in the respective parameter perturbation:

[
o(49)

]SFD
= −

SFD45 + µa
∂N5

∂Ta,in

∂N
(49)
4

∂Ta,in

= −

[
T

(1)
a,pert − T

(1)
a,nom

δTa,in
+ µa

∂N5

∂Ta,in

][
∂N

(49)
4

∂Ta,in

]−1

(D.98)

Numerically, the inlet air temperature Ta,in(= Tdb) has the nominal (“base-

case”) value of T 0
a,in = 298.882 [K]. The corresponding nominal value T

(1)
a,nom

of the response T
(1)
a is T

(1)
a,nom = 298.7979 [K]. Consider next a perturbation

δTa,in = (0.0001)T 0
a,in, for which the perturbed value of the inlet air tempera-

ture becomes T perta,in = T 0
a,in- δTa,in = 298.852 [K]. Re-computing the perturbed re-

sponse by solving Eqs. (2.38) - (2.50) with the value of T perta,in yields the “perturbed

response” value T
(1)
a,pert = 298.7960 [K]. Using now the nominal and perturbed re-

sponse values together with the parameter perturbation in the finite-difference ex-

pression given in Eq. (3.23) yields the corresponding “finite-difference-computed

sensitivity” SFD45 ,
T

(1)
a,pert−T

(1)
a,nom

δTa,in
= 0.06555. Using this value together with the

nominal values of the other quantities appearing in the expression on the right

side of Eq. (D.98) yields
[
o(49)

]SFD
= −1.391×10−5 [K/(J/kg)]. This result com-

pares well with the value o(49) = −1.313× 10−5 [K/(J/kg)] obtained by solving

the adjoint sensitivity system given in Eq. (3.40), cf., Figure 3.11. When solving

this adjoint sensitivity system, the computation of o(49) depends on the previously

computed adjoint functions o(i), i = 1, ..., I − 1; hence, the forgoing verification

of the computational accuracy of o(49) also provides an indirect verification that

the functions o(i), i = 1, ..., I − 1, were also computed accurately. The same

parameter perturbation was utilized to perform the same verification procedure

for the adjoint function o(49) with respect to the other four responses; Table D.7

displays the obtained results, which compare well with the values in the bar plots

in Figures 3.11 - 3.15.
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Table D.7: Verification Table for adjoint function o(49) with respect to the responses T
(1)
a , T

(50)
w , RH(1), m

(50)
w

and ma.

Response dsff

of interest

Ta,in T
(1)
a SFD

45

[
o(49)

](SFD)
o(49)

[K] [K] [−] [K/ (J/kg)]

T
(1)
a

Base case 298.882 298.7979
0.06555 -1.39·10−5 -1.31·10−5

Perturbed case 298.852 298.7960

Response dsff

of interest

Ta,in T
(50)
w SFD

45

[
o(49)

](SFD)
o(49)

[K] [K] [−] [K/ (J/kg)]

T
(50)
w

Base case 298.882 297.4225
0.25125 -7.21·10−5 -7.28·10−5

Perturbed case 298.852 297.4149

Response dsff

of interest

Ta,in RH(1) SFD
45

[
o(49)

](SFD)
o(49)

[K] [%]
[
K−1

] [
(J/kg)−1

]

RH(1)
Base case 298.882 99.79724

0.09039 4.32·10−5 5.02·10−5

Perturbed case 298.852 99.79453

Response dsff

of interest

Ta,in m
(50)
w SFD

45

[
o(49)

](SFD)
o(49)

[K] [kg/s]
[

(kg/s)
K

] [
(kg/s)
(J/kg)

]

m
(50)
w

Base case 298.882 43.90797
0.012694 9.91·10−7 9.18·10−7

Perturbed case 298.852 43.90758

Response dsff

of interest

Ta,in ma SFD
45

[
o(49)

](SFD)
o(49)

[K] [kg/s]
[

(kg/s)
K

] [
(kg/s)
(J/kg)

]

ma

Base case 298.882 15.83890
-2.03711 -1.22·10−4 -1.18·10−4

Perturbed case 298.852 15.90091

D.3.3 Verification of the adjoint function τ
(49)
a for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.42) - (3.43) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response T
(1)
a are
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computed by solving the adjoint sensitivity system given in Eq. (3.40) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solu-

tion of Eq. (3.40) has been depicted in Figure 3.11. Note that the value of the

adjoint function τ
(49)
a obtained by solving the adjoint sensitivity system given in

Eq. (3.40) is τ
(49)
a = 21.555 [K], as indicated in Figure 3.11. Now select a varia-

tion δωin in the inlet air humidity ratio ωin, and note that Eq. (3.22) yields the

following expression for the sensitivity of the response R = T
(1)
a to ωin:

S46 ,
∂R

∂ωin
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂ωin
+ τ (i)

w

∂N
(i)
2

∂ωin
+ τ (i)

a

∂N
(i)
3

∂ωin
+ o(i)∂N

(i)
4

∂ωin

)
+ µa

∂N5

∂ωin

]

= 0−

(
τ (49)
a

∂N
(49)
3

∂ωin
+ o(49)∂N

(49)
4

∂ωin

)
= −

[
τ (49)
a · (1) + o(49) · h(50)

g,a (Ta,in,α)
]
.

(D.99)

Re-writing Eq. (D.99) in the form

τ (49)
a = −S46 − o(49) · h(50)

g,a (Ta,in,α) (D.100)

indicates that the value of the adjoint function τ
(49)
a could be computed indepen-

dently if the sensitivity S46 were available, since the o(49) has been verified in (the

previous) Section D.1.1.2 and the quantity h
(50)
g,a (Ta,in, α) is known. To first-order

in the parameter perturbation, the finite-difference formula given in Eq. (3.23)

can be used to compute the approximate sensitivity SFD46 ; subsequently, this value

can be used in conjunction with Eq. (D.100) to compute a “finite-difference sen-

sitivity” value, denoted as
[
τ

(49)
a

]SFD
, for the respective adjoint, which would be

accurate up to second-order in the respective parameter perturbation:

[
τ (49)
a

]SFD
= −SFD46 − o(49) · h(50)

g,a (Ta,in,α) (D.101)

Numerically, the inlet air humidity ratio ωin has the nominal (“base-case”)

value of ω0
in = 0.0137976 . The corresponding nominal value T

(1)
a,nom of the response
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T
(1)
a is T

(1)
a,nom = 298.7979 [K]. Consider next a perturbation δωin = (0.00125)ω0

in,

for which the perturbed value of the inlet air humidity ratio becomes ωpertin = ω0
in−

δωin = 0.0137803. Re-computing the perturbed response by solving Eqs. (2.38)

- (2.50) with the value of ωpertin yields the “perturbed response” value T
(1)
a,pert =

298.7977 [K]. Using now the nominal and perturbed response values together

with the parameter perturbation in the finite-difference expression given in Eq.

(3.23) yields the corresponding “finite-difference-computed sensitivity” SFD46 ,
T

(1)
a,pert−T

(1)
a,nom

δωin
= 11.878 [K]. Using this value together with the nominal values of

the other quantities appearing in the expression on the right side of Eq. (D.101)

yields
[
τ

(49)
a

]SFD
= 21.5697 [K]. This result compares well with the value τ

(49)
a =

21.555 [K] obtained by solving the adjoint sensitivity system given in Eq. (3.40),

cf. Figure 3.11. When solving this adjoint sensitivity system, the computation of

τ
(49)
a depends on the previously computed adjoint functions τ

(i)
a , i = 1, ..., I −

1; hence, the forgoing verification of the computational accuracy of τ
(49)
a also

provides an indirect verification that the functions τ
(i)
a , i = 1, ..., I − 1 were also

computed accurately. The same parameter perturbation was utilized to perform

the same verification procedure for the adjoint function τ
(49)
a with respect to the

other four responses; Table D.8 displays the obtained results, which compare well

with the values in the bar plots in Figures 3.11 - 3.15.

Table D.8: Verification Table for adjoint function τ
(49)
a with respect to the responses T

(1)
a , T

(50)
w , RH(1), m

(50)
w

and ma.

Response dsff

of interest

ωin T
(1)
a SFD

46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [K] [K] [K]

T
(1)
a

Base case 0.0137976 298.7979
11.878 21.569 21.555

Perturbed case 0.0137803 298.7977
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Response dsff

of interest

ωin T
(50)
w SFD

46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [K] [K] [K]

T
(50)
w

Base case 0.0137976 297.4225
201.180 -15.593 -15.799

Perturbed case 0.0137803 297.4190

Response dsff

of interest

ωin RH(1) SFD
46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [%] [−] [−]

RH(1)
Base case 0.0137976 99.79724

24.4676 -152.46 -152.50

Perturbed case 0.0137803 99.79681

Response dsff

of interest

ωin m
(50)
w SFD

46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [kg/s] [kg/s] [kg/s]

m
(50)
w

Base case 0.0137976 43.90797
15.1936 -17.533 -17.549

Perturbed case 0.0137803 43.90770

Response dsff

of interest

ωin ma SFD
46

[
τ

(49)
a

](SFD)
τ

(49)
a

[%] [kg/s] [kg/s] [kg/s]

ma

Base case 0.0137976 15.83890
43.92139 256.109 256.059

Perturbed case 0.0137803 15.83903

D.3.4 Verification of the adjoint function τ
(1)
w for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.42) - (3.43) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response T
(1)
a are

computed by solving the adjoint sensitivity system given in Eq. (3.40) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solution

of Eq. (3.40) has been depicted in Figure 3.11. Note that the values of the adjoint

function τ
(1)
w obtained by solving the adjoint sensitivity system given in Eq. (3.40)
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is as follows: τ
(1)
w = −4.98 × 10−6 [K/(J/s) ], as indicated in Figure 3.11. Now

select a variation δTw,in in the inlet water temperature Tw,in, and note that Eq.

(3.22) yields the following expression for the sensitivity of the response R = T
(1)
a

to Tw,in:

S3 ,
∂R

∂Tw,in
−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂Tw,in
+ τ (i)

w

∂N
(i)
2

∂Tw,in
+ τ (i)

a

∂N
(i)
3

∂Tw,in
+ o(i) ∂N

(i)
4

∂Tw,in

)
+ µa

∂N5

∂Tw,in

]

= 0− τ (1)
w

∂N
(1)
2

∂Tw,in
= 0− τ (1)

w · (mw,in · a1f ) .

(D.102)

Re-writing Eq. (D.102) in the form

τ (1)
w = − S3

(mw,in · a1f )
(D.103)

indicates that the value of the adjoint function τ
(1)
w could be computed indepen-

dently if the sensitivity S3 were available, since the quantity mw,ina1 f is known.

To first-order in the parameter perturbation, the finite-difference formula given

in Eq. (3.23) can be used to compute the approximate sensitivity SFD3 ; subse-

quently, this value can be used in conjunction with Eq. (D.103) to compute a

“finite-difference sensitivity” value, denoted as
[
τ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter

perturbation: [
τ (1)
w

]SFD
= − SFD3

(mw,in · a1f )
(D.104)

Numerically, the inlet water temperature, Tw,in, has the nominal (“base-case”)

value of T 0
w,in = 298.893 [K]. As before, the corresponding nominal value T

(1)
a,nom

of the response T
(1)
a is T

(1)
a,nom = 298.7979 [K]. Consider now a perturbation

δTw,in = (0.000067)T 0
w,in, for which the perturbed value of the inlet water tem-

perature becomes T pertw,in = T 0
w,in − δTw,in = 298.873 [K]. Re-computing the per-

turbed response by solving Eqs. (2.38) - (2.50) with the value of T pertw,in yields
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the “perturbed response” value T
(1)
a,pert = 298.7795 [K]. Using now the nominal

and perturbed response values together with the parameter perturbation in the

finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SFD3 ,
T

(1)
a,pert−T

(1)
a,nom

δTw,in
= 0.91889. Using this value

together with the nominal values of the other quantities appearing in the expres-

sion on the right side of Eq. (D.104) yields
[
τ

(1)
w

]SFD
= −4.99×10−6 [K/(J/s) ].

This result compares well with the value τ
(1)
w = −4.98×10−6 [K/(J/s) ] obtained

by solving the adjoint sensitivity system given in Eq. (3.40), cf. Figure 3.11. The

same parameter perturbation was utilized to perform the same verification proce-

dure for the adjoint function τ
(1)
w with respect to the other four responses; Table

D.9 displays the obtained results, which compare well with the values in the bar

plots in Figures 3.11 - 3.15.

Table D.9: Verification Table for adjoint function τ
(1)
w with respect to the responses T

(1)
a , T

(50)
w , RH(1), m

(50)
w

and ma.

Response dsff

of interest

Tw,in T
(1)
a SFD

3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [K] [−] [K/ (J/s)]

T
(1)
a

Base case 298.893 298.7979
0.91889 -4.99·10−6 -4.98·10−6

Perturbed case 298.873 298.7795

Response dsff

of interest

Tw,in T
(50)
w SFD

3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [K] [−] [K/ (J/s)]

T
(50)
w

Base case 298.893 297.4225
0.50358 -2.73·10−6 -2.73·10−6

Perturbed case 298.873 297.4124

Response dsff

of interest

Tw,in RH(1) SFD
3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [%]
[
K−1

] [
(J/s)−1

]

RH(1)
Base case 298.893 99.79724

-0.10693 5.77·10−7 5.78·10−7

Perturbed case 298.873 99.7994
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Response dsff

of interest

Tw,in m
(50)
w SFD

3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [kg/s]
[

(kg/s)
K

] [
(J/kg)−1

]

m
(50)
w

Base case 298.893 43.90797
-0.031364 1.70·10−7 1.70·10−7

Perturbed case 298.873 43.90859

Response dsff

of interest

Tw,in ma SFD
3

[
τ

(1)
w

](SFD)
τ

(1)
w

[K] [kg/s]
[

(kg/s)
K

] [
(J/kg)−1

]

ma

Base case 298.893 15.83980
1.91042 -1.037·10−5 -1.035·10−5

Perturbed case 298.873 15.80159

D.3.5 Verification of the adjoint function µ
(1)
w for all re-

sponses

When R = T
(1)
a , the quantities r

(i)
` defined in Eqs. (3.42) - (3.43) all van-

ish except for a single component, namely: r
(1)
3 , ∂R/∂T

(1)
a = 1.Thus, the ad-

joint functions corresponding to the outlet air temperature response T
(1)
a are

computed by solving the adjoint sensitivity system given in Eq. (3.40) using

r
(1)
3 , ∂R/∂T

(1)
a = 1 as the only non-zero source term; for this case, the solution

of Eq. (3.40) has been depicted in Figure 3.11. Note that the values of the ad-

joint function µ
(1)
w obtained by solving the adjoint sensitivity system given in Eq.

(3.40) is as follows: µ
(1)
w = 10.30109 [K/(kg/s) ], as indicated in Figure 3.11.

Now select a variation δmw,in in the inlet water mass flow rate mw,in, and note

that Eq. (3.22) yields the following expression for the sensitivity of the response

R = T
(1)
a to mw,in:
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S44 ,
∂R

∂mw,in

−

[
49∑
i=1

(
µ(i)
w

∂N
(i)
1

∂mw,in

+ τ (i)
w

∂N
(i)
2

∂mw,in

+ τ (i)
a

∂N
(i)
3

∂mw,in

+ o(i) ∂N
(i)
4

∂mw,in

)

+µa
∂N5

∂mw,in

]
= 0−

(
µ(1)
w

∂N
(1)
1

∂mw,in

+ τ (1)
w

∂N
(1)
2

∂mw,in

+ τ (1)
a

∂N
(1)
3

∂mw,in

+ o(1) ∂N
(1)
4

∂mw,in

)

= −

[
µ(1)
w · (−1) + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)

+τ (1)
a ·

(
1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

)]
.

(D.105)

Since the adjoint functions τ
(49)
a and o(49) have been already verified as de-

scribed in Sections D.1.1.3 and D.1.1.2, it follows that the computed values of

adjoint functions τ
(1)
a = 2128.24 [K] o(1) = −8.4254 × 10−4 [K/(J/kg)] can also

be considered as being accurate, since they constitute the starting point for solv-

ing the adjoint sensitivity system in Eq. (3.40); τ
(1)
w was proved being accurate in

Section D.1.1.4. Re-writing Eq. (D.105) in the form

µ(1)
w = S44 + τ (1)

w ·
(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.106)

indicates that the value of the adjoint function µ
(1)
w could be computed inde-

pendently if the sensitivity S44 were available, since all the other quantities are

known. To first-order in the parameter perturbation, the finite-difference formula

given in Eq. (3.23) can be used to compute the approximate sensitivity SFD44 ;

subsequently, this value can be used in conjunction with Eq. (D.106) to compute

a “finite-difference sensitivity” value, denoted as
[
µ

(1)
w

]SFD
, for the respective ad-

joint, which would be accurate up to second-order in the respective parameter
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perturbation:[
µ(1)
w

]SFD
= µ(1)

w = SFD44 + τ (1)
w ·

(
Tw,ina1f − a1gT

(2)
w + a0f − a0g

)
+τ (1)

a ·
(

1

ma

)
+ o(1) ·

(
a1gT

(2)
w + a0g

ma

) (D.107)

Numerically, the inlet water mass flow rate, mw,in, has the nominal (“base-

case”) value of m0
w,in = 44.0193 [kg/s]. As before, the corresponding nominal

value T
(1)
a,nom of the response T

(1)
a is T

(1)
a,nom = 298.7979 [K]. Consider now a pertur-

bation δmw,in = (0.00068)m0
w,in, for which the perturbed value of the inlet water

mass flow rate becomes mpert
w,in = m0

w,in − δmw,in = 43.9893 [kg/s]. Re-computing

the perturbed response by solving Eqs. (2.38) - (2.50) with the value of mpert
w,in

yields the “perturbed response” value T
(1)
a,pert = 298.7978 [K]. Using now the nom-

inal and perturbed response values together with the parameter perturbation in

the finite-difference expression given in Eq. (3.23) yields the corresponding “finite-

difference-computed sensitivity” SFD44 ,
T

(1)
a,pert−T

(1)
a,nom

δmw,in
= 0.00328

[
K
kg/s

]
. Using this

value together with the nominal values of the other quantities appearing in the ex-

pression on the right side of Eq. (D.107) yields
[
µ

(1)
w

]SFD
= 10.9768 [K/(kg/s) ].

This result compares well with the value µ
(1)
w = 10.30109 [K/(kg/s) ] obtained

by solving Eq. (3.40), cf. Figure 3.11. The same parameter perturbation was uti-

lized to perform the same verification procedure for the adjoint function µ
(1)
w with

respect to the other four responses; Table D.10 displays the obtained results,

which compare well with the values in the bar plots in Figures 3.11 - 3.15.

Table D.10: Verification Table for adjoint function µ
(1)
w with respect to the responses T

(1)
a , T

(50)
w , RH(1),

m
(50)
w and ma.

Response dsff

of interest

mw,in T
(1)
a SFD

44

[
µ

(1)
w

](SFD)
µ

(1)
w

[K/s] [K]
[
K
kg/s

] [
K
kg/s

]

T
(1)
a

Base case 44.0193 298.7979
0.00328 10.977 10.301

Perturbed case 43.9893 298.7978
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Response dsff

of interest

mw,in T
(50)
w SFD

44

[
µ

(1)
w

](SFD)
µ

(1)
w

[kg/s] [K]
[
K
kg/s

] [
K
kg/s

]

T
(50)
w

Base case 44.0193 297.4225
0.03142 6.0444 6.0443

Perturbed case 43.9893 297.4215

Response dsff

of interest

mw,in RH(1) SFD
44

[
µ

(1)
w

](SFD)
µ

(1)
w

[kg/s] [%]
[
(kg/s)−1

] [
(kg/s)−1

]

RH(1)
Base case 44.0193 99.79724

-0.001267 -265.511 -265.511

Perturbed case 43.9893 99.79728

Response dsff

of interest

mw,in m
(50)
w SFD

44

[
µ

(1)
w

](SFD)
µ

(1)
w

[kg/s] [kg/s] [−] [−]

m
(50)
w

Base case 44.0193 43.90797
0.99986 0.52753 0.52753

Perturbed case 43.9893 43.87797

Response dsff

of interest

mw,in ma SFD
44

[
µ

(1)
w

](SFD)
µ

(1)
w

[kg/s] [kg/s] [−] [−]

ma

Base case 44.0193 15.38980
0.010543 22.807 22.807

Perturbed case 43.9893 15.83948
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Appendix E

Derivatives of the Model

Equations with respect to the

Model Parameters

E.1 Derivatives of the Model Equations with re-

spect to the Model Parameters for Case 1a:

Fan Off, Saturated Outlet Air Conditions,

with Inlet Air Unsaturated

The verification procedure of the adjoint functions for case 1a is reported in

this section.

The following notation will be used for the derivatives of the above equations

with respect to the parameters:

ai,j` ≡
∂N

(i)
`

∂α(j)
; ` = 1, 2, 3, 4, 5; i = 1, ..., I; j = 1, ..., Nα. (E.1)
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E.1.1 Derivatives of the liquid continuity equations with

respect to the parameters

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(1) : Tdb are as follows:

∂N
(i)
1

∂α(1)
=
∂N

(i)
1

∂Tdb
≡ ai,11 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂Tdb
; ` = 1; i = 1, ..., K; j = 1,

(E.2)

where K is the control volume at which its outlet air is saturated, and

∂M(ma,α)

∂Dav(Tdb,α)
=

2

3
· M(ma,α)

Dav(Tdb,α) (E.3)

∂Dav(Tdb,α)

∂Tdb
=

1.5 · a0,DavTdb
0.5 −Dav(Tdb,α) · (a2,Dav + 2 · a3,DavTdb)

a1,Dav + a2,DavTdb + a3,DavTdb
2 (E.4)

∂N
(i)
1

∂α(1)
=
∂N

(i)
1

∂Tdb
≡ ai,11 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂Tdb
. ` = 1; i = K + 1, ..., I; j = 1,

(E.5)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(2) : Tdp are as follows:

∂N
(i)
1

∂α(2)
=
∂N

(i)
1

∂Tdp
≡ ai,21 = 0; ` = 1; i = 1, ..., I; j = 2. (E.6)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(3) : Tw,in are as follows:

∂N
(1)
1

∂α(3)
=
∂N

(1)
1

∂Tw,in
≡ ai,31 = 0; ` = 1; i = 1, ..., I; j = 3. (E.7)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(4) : Patm are as follows:

∂N
(i)
1

∂α(4)
=
∂N

(i)
1

∂Patm
≡ ai,41 = 0; ` = 1; i = 1, ..., K; j = 4, (E.8)

∂N
(i)
1

∂α(4)
=
∂N

(i)
1

∂Patm
≡ ai,41 = −M(ma,α)

R

ω(i)

T
(i)
a (0.622 + ω(i))

;

` = 1; i = K + 1, ..., I; j = 4.

(E.9)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(5) : Vw are as follows:

∂N
(i)
1

∂α(5)
=
∂N

(i)
1

∂Vw
≡ ai,51 = 0; ` = 1; i = 1, ..., I; j = 5, (E.10)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(6) : ksum are as follows:

∂N
(i)
1

∂α(6)
=
∂N

(i)
1

∂ksum
≡ ai,61 = 0; ` = 1; i = 1, ..., I; j = 6. (E.11)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(7) : µ are as follows:

∂N
(i)
1

∂α(7)
=
∂N

(i)
1

∂µ
≡ ai,71 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂µ
;

` = 1; i = 1, ..., K; j = 7,

(E.12)

where

∂M(ma,α)

∂µ
=


0 Red < 2300

−a1,Nu·M(ma,α)·Re(ma,α)

Nu(Re,α)·µ 2300 ≤ Red ≤ 10000

−0.8 · M(ma,α)
µ

Red > 10000

(E.13)
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∂N
(i)
1

∂α(7)
=
∂N

(i)
1

∂µ
≡ ai,71 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂µ
;

` = K + 1; i = 1, ..., I; j = 7.

(E.14)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(8) : ν are as follows:

∂N
(i)
1

∂α(8)
=
∂N

(i)
1

∂ν
≡ ai,81 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂ν
;

` = 1; i = 1, ..., K; j = 8,

(E.15)

where

∂M(ma,α)

∂ν
=

1

3

M(ma,α)

ν
(E.16)

∂N
(i)
1

∂α(8)
=
∂N

(i)
1

∂ν
≡ ai,81 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂ν
;

` = 1; i = K + 1, ..., I; j = 8.

(E.17)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(9) : kair are as follows:

∂N
(i)
1

∂α(9)
=
∂N

(i)
1

∂kair
≡ ai,91 = 0; ` = 1; i = 1, ..., I; j = 9. (E.18)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(10) : fht are as follows:

∂N
(i)
1

∂α(10)
=
∂N

(i)
1

∂fht
≡ ai,10

1 = 0; ` = 1; i = 1, ..., I; j = 10. (E.19)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(11) : fmt are as follows:
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∂N
(i)
1

∂α(11)
=
∂N

(i)
1

∂fmt
≡ ai,11

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂fmt
;

` = 1; i = 1, ..., I; j = 11,

(E.20)

where

∂M(ma,α)

∂fmt
=
MH2O Nu(Re,α)

(
ν
Pr

)1/3
[Dav(Tdb,α)]

2/3wtsaAsurf

DhI
(E.21)

∂N
(i)
1

∂α(11)
=
∂N

(i)
1

∂fmt
≡ ai,11

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂fmt
;

` = 1; i = K + 1, ..., I; j = 11.

(E.22)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(12) : f are as follows:

∂N
(i)
1

∂α(12)
=
∂N

(i)
1

∂f
≡ ai,12

1 = 0; ` = 1; i = 1, ..., I; j = 12. (E.23)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(13) : a0 are as follows:

∂N
(i)
1

∂α(13)
=
∂N

(i)
1

∂a0

≡ ai,13
1 =

M(ma,α)

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
;

` = 1; i = 1, ..., K; j = 13,

(E.24)

∂N
(i)
1

∂α(13)
=
∂N

(i)
1

∂a0

≡ ai,13
1 =

M(ma,α)

R

1

T
(i+1)
w

∂P
(i+1)
vs (T

(i+1)
w ,α)

∂a0

;

` = 1; i = K + 1, ..., I; j = 13.

(E.25)

where

∂P
(i+1)
vs (T

(i+1)
w ,α)

∂a0

= P (i+1)
vs (T (i+1)

w ,α) (E.26)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(14) : a1 are as follows:

∂N
(i)
1

∂α(14)
=
∂N

(i)
1

∂a1

≡ ai,14
1 =

M(ma,α)

R

P (i+1)
vs (T

(i+1)
w ,α)(

T
(i+1)
w

)2 − P
(i)
vs (T

(i)
a ,α)(

T
(i)
a

)2

 ;

` = 1; i = 1, ..., K; j = 14,

(E.27)

∂N
(i)
1

∂α(14)
=
∂N

(i)
1

∂a1

≡ ai,14
1 =

M(ma,α)

R

1

T
(i+1)
w

∂P
(i+1)
vs (T

(i+1)
w ,α)

∂a1

;

` = 1; i = K + 1, ..., I; j = 14.

(E.28)

where

∂P
(i+1)
vs (T

(i+1)
w ,α)

∂a1

=
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

(E.29)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(15) : a0,cpa are as follows:

∂N
(i)
1

∂α(15)
=

∂N
(i)
1

∂a0,cpa

≡ ai,15
1 = 0; ` = 1; i = 1, ..., I; j = 15. (E.30)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(16) : a1,cpa are as follows:

∂N
(i)
1

∂α(16)
=

∂N
(i)
1

∂a1,cpa

≡ ai,16
1 = 0; ` = 1; i = 1, ..., I; j = 16. (E.31)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(17) : a2,cpa are as follows:

∂N
(i)
1

∂α(17)
=

∂N
(i)
1

∂a2,cpa

≡ ai,17
1 = 0; ` = 1; i = 1, ..., I; j = 17. (E.32)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(18) : a0,Dav are as follows:

∂N
(i)
1

∂α(18)
=

∂N
(i)
1

∂a0,Dav

≡ ai,18
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a0,Dav

; ` = 1; i = 1, ..., K; j = 18,

(E.33)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and

∂Dav(Tdb,α)

∂a0,Dav

=
Tdb

1.5

a1,Dav + a2,DavTdb + a3,DavTdb
2 (E.34)

∂N
(i)
1

∂α(18)
=

∂N
(i)
1

∂a0,Dav

≡ ai,18
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a0,Dav

; ` = 1; i = K + 1, ..., I; j = 18.

(E.35)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(19) : a1,Dav are as follows:

∂N
(i)
1

∂α(19)
=

∂N
(i)
1

∂a1,Dav

≡ ai,19
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a1,Dav

; ` = 1; i = 1, ..., K; j = 19,

(E.36)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and

∂Dav(Tdb,α)

∂a1,Dav

= − a0,DavTdb
1.5(

a1,Dav + a2,DavTdb + a3,DavTdb
2
)2 (E.37)

∂N
(i)
1

∂α(19)
=

∂N
(i)
1

∂a1,Dav

≡ ai,19
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a1,Dav

; ` = 1; i = K + 1, ..., I; j = 19.

(E.38)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(20) : a2,Dav are as follows:

∂N
(i)
1

∂α(20)
=

∂N
(i)
1

∂a2,Dav

≡ ai,20
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a2,Dav

; ` = 1; i = 1, ..., K; j = 20,

(E.39)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and

∂Dav(Tdb,α)

∂a2,Dav

= − a0,DavTdb
2.5(

a1,Dav + a2,DavTdb + a3,DavTdb
2
)2 (E.40)

∂N
(i)
1

∂α(20)
=

∂N
(i)
1

∂a2,Dav

≡ ai,20
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a2,Dav

; ` = 1; i = K + 1, ..., I; j = 20.

(E.41)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(21) : a3,Dav are as follows:

∂N
(i)
1

∂α(21)
=

∂N
(i)
1

∂a3,Dav

≡ ai,21
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a3,Dav

; ` = 1; i = 1, ..., K; j = 21,

(E.42)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and

∂Dav(Tdb,α)

∂a3,Dav

= − a0,DavTdb
3.5(

a1,Dav + a2,DavTdb + a3,DavTdb
2
)2 (E.43)

∂N
(i)
1

∂α(21)
=

∂N
(i)
1

∂a3,Dav

≡ ai,21
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a3,Dav

; ` = 1; i = K + 1, ..., I; j = 21.

(E.44)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(22) : a0f are as follows:

∂N
(i)
1

∂α(22)
=
∂N

(i)
1

∂a0f

≡ ai,22
1 = 0; ` = 1; i = 1, ..., I; j = 22. (E.45)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(23) : a1f are as follows:

∂N
(i)
1

∂α(23)
=
∂N

(i)
1

∂a1f

≡ ai,23
1 = 0; ` = 1; i = 1, ..., I; j = 23. (E.46)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(24) : a0g are as follows:

∂N
(i)
1

∂α(24)
=
∂N

(i)
1

∂a0g

≡ ai,24
1 = 0; ` = 1; i = 1, ..., I; j = 24. (E.47)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(25) : a1g are as follows:

∂N
(i)
1

∂α(25)
=
∂N

(i)
1

∂a1g

≡ ai,25
1 = 0; ` = 1; i = 1, ..., I; j = 25. (E.48)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(26) : a0,Nu are as follows:

∂N
(i)
1

∂α(26)
=

∂N
(i)
1

∂a0,Nu

≡ ai,26
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)
· ∂Nu(Re,α)

∂a0,Nu

; ` = 1; i = 1, ..., K; j = 26,

(E.49)

where

∂M(Re,α)

∂Nu(Re,α)
=

M(ma,α)

Nu(Re,α)
(E.50)
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∂Nu(Re,α)

∂a0,Nu

=


1 Red < 2300

0 2300 ≤ Red ≤ 10000

0 Red > 10000

(E.51)

∂N
(i)
1

∂α(26)
=

∂N
(i)
1

∂a0,Nu

≡ ai,26
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)
· ∂Nu(Re,α)

∂a0,Nu

; ` = 1; i = K + 1, ..., I; j = 26.

(E.52)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(27) : a1,Nu are as follows:

∂N
(i)
1

∂α(27)
=

∂N
(i)
1

∂a1,Nu

≡ ai,27
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)
· ∂Nu(Re,α)

∂a1,Nu

; ` = 1; i = 1, ..., K; j = 27,

(E.53)

where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50), and

∂Nu(Re,α)

∂a1,Nu

=


0 Red < 2300

Re(ma,α) 2300 ≤ Red ≤ 10000

0 Red > 10000

(E.54)

∂N
(i)
1

∂α(27)
=

∂N
(i)
1

∂a1,Nu

≡ ai,27
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)
· ∂Nu(Re,α)

∂a1,Nu

; ` = 1; i = K + 1, ..., I; j = 27.

(E.55)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(28) : a2,Nu are as follows:

∂N
(i)
1

∂α(28)
=

∂N
(i)
1

∂a2,Nu

≡ ai,28
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)
· ∂Nu(Re,α)

∂a2,Nu

; ` = 1; i = 1, ..., K; j = 28,

(E.56)
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where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50), and

∂Nu(Re,α)

∂a2,Nu

=


0 Red < 2300

1 2300 ≤ Red ≤ 10000

0 Red > 10000

(E.57)

∂N
(i)
1

∂α(28)
=

∂N
(i)
1

∂a2,Nu

≡ ai,28
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)
· ∂Nu(Re,α)

∂a2,Nu

; ` = 1; i = K + 1, ..., I; j = 28.

(E.58)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(29) : a3,Nu are as follows:

∂N
(i)
1

∂α(29)
=

∂N
(i)
1

∂a3,Nu

≡ ai,29
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)
· ∂Nu(Re,α)

∂a3,Nu

; ` = 1; i = 1, ..., K; j = 29,

(E.59)

where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50), and

∂Nu(Re,α)

∂a3,Nu

=


0 Red < 2300

0 2300 ≤ Red ≤ 10000

[Re(ma,α)]0.8 · Pr
1
3 Red > 10000

(E.60)

∂N
(i)
1

∂α(29)
=

∂N
(i)
1

∂a3,Nu

≡ ai,29
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)
· ∂Nu(Re,α)

∂a3,Nu

; ` = 1; i = K + 1, ..., I; j = 29.

(E.61)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(30) : Wdkx are as follows:

∂N
(i)
1

∂α(30)
=

∂N
(i)
1

∂Wdkx

≡ ai,30
1 = 0; ` = 1; i = 1, ..., I; j = 30. (E.62)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(31) : Wdky are as follows:

∂N
(i)
1

∂α(31)
=

∂N
(i)
1

∂Wdky

≡ ai,31
1 = 0; ` = 1; i = 1, ..., I; j = 31. (E.63)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(32) : ∆zdk are as follows:

∂N
(i)
1

∂α(32)
=

∂N
(i)
1

∂∆zdk
≡ ai,32

1 = 0; ` = 1; i = 1, ..., I; j = 32. (E.64)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(33) : ∆zfan are as follows:

∂N
(i)
1

∂α(33)
=

∂N
(i)
1

∂∆zfan
≡ ai,33

1 = 0; ` = 1; i = 1, ..., I; j = 33. (E.65)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(34) : Dfan are as follows:

∂N
(i)
1

∂α(34)
=

∂N
(i)
1

∂Dfan

≡ ai,34
1 = 0; ` = 1; i = 1, ..., I; j = 34. (E.66)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(35) : ∆zfill are as follows:

∂N
(i)
1

∂α(35)
=

∂N
(i)
1

∂∆zfill
≡ ai,35

1 = 0; ` = 1; i = 1, ..., I; j = 35. (E.67)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(36) : ∆zrain are as follows:

∂N
(i)
1

∂α(36)
=

∂N
(i)
1

∂∆zrain
≡ ai,36

1 = 0; ` = 1; i = 1, ..., I; j = 36. (E.68)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(37) : ∆zbs are as follows:

∂N
(i)
1

∂α(37)
=
∂N

(i)
1

∂∆zbs
≡ ai,37

1 = 0; ` = 1; i = 1, ..., I; j = 37. (E.69)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(38) : ∆zde are as follows:

∂N
(i)
1

∂α(38)
=

∂N
(i)
1

∂∆zde
≡ ai,38

1 = 0; ` = 1; i = 1, ..., I; j = 38. (E.70)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(39) : Dh are as follows:

∂N
(i)
1

∂α(39)
=
∂N

(i)
1

∂Dh

≡ ai,39
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂Dh

;

` = 1; i = 1, ..., K; j = 39,

(E.71)

where

∂M(ma,α)

∂Dh

=


−M(ma,α)/Dh Red < 2300

−a2,NuM(ma,α)

Nu(Re,α)Dh
2300 ≤ Red ≤ 10000

−0.2 ·M(ma,α)/Dh Red > 10000

(E.72)

∂N
(i)
1

∂α(39)
=
∂N

(i)
1

∂Dh

≡ ai,39
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂Dh

;

` = 1; i = K + 1, ..., I; j = 39.

(E.73)

299



APPENDIX E. DERIVATIVES OF THE MODEL EQUATIONS WITH
RESPECT TO THE MODEL PARAMETERS

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the α(40) : Afill are as follows:

∂N
(i)
1

∂α(40)
=
∂N

(i)
1

∂Afill
≡ ai,40

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂Afill
;

` = 1; i = 1, ..., K; j = 40,

(E.74)

where

∂M(ma,α)

∂Afill
=


0 Red < 2300

−a1,NuM(ma,α) Re(ma,α)

Nu(Re,α)Afill
2300 ≤ Red ≤ 10000

−0.8 ·M(ma,α)/Afill Red > 10000

(E.75)

∂N
(i)
1

∂α(40)
=
∂N

(i)
1

∂Afill
≡ ai,40

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂Afill
;

` = 1; i = K + 1, ..., I; j = 40.

(E.76)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(41) : Asurf are as follows:

∂N
(i)
1

∂α(41)
=

∂N
(i)
1

∂Asurf
≡ ai,41

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂Asurf
;

` = 1; i = 1, ..., K; j = 41,

(E.77)

where
∂M(ma,α)

∂Asurf
=
M(ma,α)

Asurf
(E.78)

∂N
(i)
1

∂α(41)
=

∂N
(i)
1

∂Asurf
≡ ai,41

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂Asurf
;

` = 1; i = K + 1, ..., I; j = 41.

(E.79)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(42) : Pr are as follows:

∂N
(i)
1

∂α(42)
=
∂N

(i)
1

∂ Pr
≡ ai,42

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂ Pr
;

` = 1; i = 1, ..., K; j = 42,

(E.80)

where

∂M(ma,α)

∂ Pr
=

 −
M(ma,α)

3·Pr
Red ≤ 10000

0 Red > 10000
(E.81)

∂N
(i)
1

∂α(42)
=
∂N

(i)
1

∂ Pr
≡ ai,42

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂ Pr
;

` = 1; i = K + 1, ..., I; j = 42.

(E.82)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(43) : wtsa are as follows:

∂N
(i)
1

∂α(43)
=
∂N

(i)
1

∂wtsa
≡ ai,43

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂wtsa
;

` = 1; i = 1, ..., K; j = 43,

(E.83)

where

∂M(ma,α)

∂wtsa
=
MH2Ofmt Nu(Re,α)

(
ν
Pr

)1/3
[Dav(Tdb,α)]

2/3Asurf

DhI
(E.84)

∂N
(i)
1

∂α(43)
=
∂N

(i)
1

∂wtsa
≡ ai,43

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂wtsa
;

` = 1; i = K + 1, ..., I; j = 43.

(E.85)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(44) : mw,in are as follows:

∂N
(1)
1

∂α(44)
=

∂N
(1)
1

∂mw,in

≡ a1,44
1 = −1; ` = 1; i = 1; j = 44, (E.86)

∂N
(i)
1

∂α(44)
=

∂N
(i)
1

∂mw,in

≡ ai,44
1 = 0; ` = 1; i = 2, ..., I; j = 44. (E.87)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(45) : Ta,in are as follows:

∂N
(i)
1

∂α(45)
=
∂N

(i)
1

∂Ta,in
≡ ai,45

1 = 0; ` = 1; i = 1, ..., I; j = 45. (E.88)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(46) : ωin are as follows:

∂N
(i)
1

∂α(46)
=
∂N

(i)
1

∂ωin
≡ ai,46

1 = 0; ` = 1; i = 1, ..., I; j = 46. (E.89)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.2) - (2.5)] with

respect to the parameter α(47) : Sc are as follows:

∂N
(i)
1

∂α(47)
=
∂N

(i)
1

∂Sc
≡ ai,47

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂Sc
;

` = 1; i = 1, ..., K; j = 47,

(E.90)

where

∂M(ma,α)

∂Sc
=

1

3

M(ma,α)

Sc
(E.91)

∂N
(i)
1

∂α(47)
=
∂N

(i)
1

∂Sc
≡ ai,47

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂Sc
;

` = 1; i = K + 1, ..., I; j = 47.

(E.92)
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E.1.2 Derivatives of the liquid energy balance equations

with respect to the parameters

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(1) : Tdb are as follows:

∂N
(i)
2

∂α(1)
=
∂N

(i)
2

∂Tdb
≡ ai,12 = 0; ` = 2; i = 1, ..., I; j = 1. (E.93)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(2) : Tdp are as follows:

∂N
(i)
2

∂α(2)
=
∂N

(i)
2

∂Tdp
≡ ai,22 = 0; ` = 2; i = 1, ..., I; j = 2. (E.94)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(3) : Tw,in are as follows:

∂N
(1)
2

∂α(3)
=
∂N

(1)
2

∂Tw,in
≡ a1,3

2 = mw,in

∂h
(1)
f (Tw,in,α)

∂Tw,in
; ` = 2; i = 1; j = 3, (E.95)

where

∂h
(1)
f (Tw,in,α)

∂Tw,in
= a1f , (E.96)

∂N
(i)
2

∂α(3)
=

∂N
(i)
2

∂Tw,in
≡ ai,32 = 0; ` = 2; i = 2, ...I; j = 3. (E.97)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(4) : Patm are as follows:

∂N
(i)
2

∂α(4)
=
∂N

(i)
2

∂Patm
≡ ai,42 = 0; ` = 2; i = 1, ..., I; j = 4, (E.98)

303



APPENDIX E. DERIVATIVES OF THE MODEL EQUATIONS WITH
RESPECT TO THE MODEL PARAMETERS

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(5) : Vw are as follows:

∂N
(i)
2

∂α(5)
=
∂N

(i)
2

∂Vw
≡ ai,52 = 0; ` = 2; i = 1, ..., I; j = 5, (E.99)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(6) : ksum are as follows:

∂N
(i)
2

∂α(6)
=
∂N

(i)
2

∂ksum
≡ ai,62 = 0; ` = 2; i = 1, ..., I; j = 6. (E.100)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(7) : µ are as follows:

∂N
(i)
2

∂α(7)
=
∂N

(i)
2

∂µ
≡ ai,72 = −

(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂µ
; ` = 2; i = 1, ..., I; j = 7,

(E.101)

where

∂H(ma,α)

∂µ
=


0 Red < 2300

−a1,Nu·H(ma,α)·Re(ma,α)

Nu(Re,α)·µ 2300 ≤ Red ≤ 10000

−0.8 · H(ma,α)
µ

Red > 10000

(E.102)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(8) : ν are as follows:

∂N
(i)
2

∂α(8)
=
∂N

(i)
2

∂ν
≡ ai,82 = 0; ` = 2; i = 1, ..., I; j = 8. (E.103)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(9) : kair are as follows:

∂N
(i)
2

∂α(9)
=
∂N

(i)
2

∂kair
≡ ai,92 = −

(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂kair
; ` = 2; i = 1, ..., I; j = 9,

(E.104)
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where

∂H(ma,α)

∂kair
=
H(ma,α)

kair
=
fhtNu(Re,α)wtsaAsurf

DhI
. (E.105)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(10) : fht are as follows:

∂N
(i)
2

∂α(10)
=
∂N

(i)
2

∂fht
≡ ai,10

2 = −
(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂fht
; ` = 2; i = 1, ..., I; j = 10,

(E.106)

where

∂H(ma,α)

∂fht
=
H(ma,α)

fht
=
kairNu(Re,α)wtsaAsurf

DhI
. (E.107)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(11) : fmt are as follows:

∂N
(i)
2

∂α(11)
=
∂N

(i)
2

∂fmt
≡ ai,11

2 = 0; ` = 2; i = 1, ..., I; j = 11. (E.108)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(12) : f are as follows:

∂N
(i)
2

∂α(12)
=
∂N

(i)
2

∂f
≡ ai,12

2 = 0; ` = 2; i = 1, ..., I; j = 12. (E.109)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(13) : a0 are as follows:

∂N
(i)
2

∂α(13)
=
∂N

(i)
2

∂a0

≡ ai,13
2 = 0; ` = 2; i = 1, ..., I; j = 13. (E.110)
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The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(14) : a1 are as follows:

∂N
(i)
2

∂α(14)
=
∂N

(i)
2

∂a1

≡ ai,14
2 = 0; ` = 2; i = 1, ..., I; j = 14. (E.111)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(15) : a0,cpa are as follows:

∂N
(i)
2

∂α(15)
=

∂N
(i)
2

∂a0,cpa

≡ ai,15
2 = 0; ` = 2; i = 1, ..., I; j = 15. (E.112)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(16) : a1,cpa are as follows:

∂N
(i)
2

∂α(16)
=

∂N
(i)
2

∂a1,cpa

≡ ai,16
2 = 0; ` = 2; i = 1, ..., I; j = 16. (E.113)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(17) : a2,cpa are as follows:

∂N
(i)
2

∂α(17)
=

∂N
(i)
2

∂a2,cpa

≡ ai,17
2 = 0; ` = 2; i = 1, ..., I; j = 17. (E.114)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(18) : a0,Dav are as follows:

∂N
(i)
2

∂α(18)
=

∂N
(i)
2

∂a0,Dav

≡ ai,18
2 = 0; ` = 2; i = 1, ..., I; j = 18. (E.115)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(19) : a1,Dav are as follows:

∂N
(i)
2

∂α(19)
=

∂N
(i)
2

∂a1,Dav

≡ ai,19
2 = 0; ` = 2; i = 1, ..., I; j = 19. (E.116)
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The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(20) : a2,Dav are as follows:

∂N
(i)
2

∂α(20)
=

∂N
(i)
2

∂a2,Dav

≡ ai,20
2 = 0; ` = 2; i = 1, ..., I; j = 20. (E.117)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(21) : a3,Dav are as follows:

∂N
(i)
2

∂α(21)
=

∂N
(i)
2

∂a3,Dav

≡ ai,21
2 = 0; ` = 2; i = 1, ..., I; j = 21. (E.118)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(22) : a0f are as follows:

∂N
(i)
2

∂α(22)
=
∂N

(i)
2

∂a0f

≡ ai,22
2 = m(i)

w

∂h
(i)
f (T

(i)
w ,α)

∂a0f

−m(i+1)
w

∂h
(i+1)
f (T

(i+1)
w ,α)

∂a0f

= m(i)
w −m(i+1)

w ; ` = 2; i = 1, ..., I; j = 22.

(E.119)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(23) : a1f are as follows:

∂N
(i)
2

∂α(23)
=
∂N

(i)
2

∂a1f

≡ ai,23
2 = m(i)

w

∂h
(i)
f (T

(i)
w ,α)

∂a1f

−m(i+1)
w

∂h
(i+1)
f (T

(i+1)
w ,α)

∂a1f

= T (i)
w m(i)

w − T (i+1)
w m(i+1)

w ; ` = 2; i = 1, ..., I; j = 23.

(E.120)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(24) : a0g are as follows:

∂N
(i)
2

∂α(24)
=
∂N

(i)
2

∂a0g

≡ ai,24
2 = −(m(i)

w −m(i+1)
w )

∂h
(i+1)
g,w (T

(i+1)
w ,α)

∂a0g

= m(i+1)
w −m(i)

w ; ` = 2; i = 1, ..., I; j = 24.

(E.121)
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The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(25) : a1g are as follows:

∂N
(i)
2

∂α(25)
=
∂N

(i)
2

∂a1g

≡ ai,25
2 = −(m(i)

w −m(i+1)
w )

∂h
(i+1)
g,w (T

(i+1)
w ,α)

∂a1g

= −
(
m(i)
w −m(i+1)

w

)
T (i+1)
w ; ` = 2; i = 1, ..., I; j = 25.

(E.122)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(26) : a0,Nu are as follows:

∂N
(i)
2

∂α(26)
=

∂N
(i)
2

∂a0,Nu

≡ ai,26
2 = −

(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a0,Nu

;

` = 2; i = 1, ..., I; j = 26,

(E.123)

where

∂H(ma,α)

∂Nu(Re,α)
=

H(ma,α)

Nu(Re,α)
(E.124)

and ∂Nu(Re,α)
∂a0,Nu

was defined in Eq. (E.51).

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(27) : a1,Nu are as follows:

∂N
(i)
2

∂α(27)
=

∂N
(i)
2

∂a1,Nu

≡ ai,27
2 = −

(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a1,Nu

;

` = 2; i = 1, ..., I; j = 27,

(E.125)

where ∂H(ma,α)
∂Nu(Re,α)

was defined in Eq. (E.124) and ∂Nu(Re,α)
∂a1,Nu

was defined in Eq. (E.54).

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(28) : a2,Nu are as follows:

∂N
(i)
2

∂α(28)
=

∂N
(i)
2

∂a2,Nu

≡ ai,28
2 = −

(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a2,Nu

;

` = 2; i = 1, ..., I; j = 28,

(E.126)
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where ∂H(ma,α)
∂Nu(Re,α)

was defined in Eq. (E.124) and ∂Nu(Re,α)
∂a2,Nu

was defined in Eq. (E.57).

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(29) : a3,Nu are as follows:

∂N
(i)
2

∂α(29)
=

∂N
(i)
2

∂a3,Nu

≡ ai,29
2 = −

(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a3,Nu

;

` = 2; i = 1, ..., I; j = 29,

(E.127)

where ∂H(ma,α)
∂Nu(Re,α)

was defined in Eq. (E.124) and ∂Nu(Re,α)
∂a3,Nu

was defined in Eq. (E.60).

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(30) : Wdkx are as follows:

∂N
(i)
2

∂α(30)
=

∂N
(i)
2

∂Wdkx

≡ ai,30
2 = 0; ` = 2; i = 1, ..., I; j = 30. (E.128)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(31) : Wdky are as follows:

∂N
(i)
2

∂α(31)
=

∂N
(i)
2

∂Wdky

≡ ai,31
2 = 0; ` = 2; i = 1, ..., I; j = 31. (E.129)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(32) : ∆zdk are as follows:

∂N
(i)
2

∂α(32)
=

∂N
(i)
2

∂∆zdk
≡ ai,32

2 = 0; ` = 2; i = 1, ..., I; j = 32. (E.130)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(33) : ∆zfan are as follows:

∂N
(i)
2

∂α(33)
=

∂N
(i)
2

∂∆zfan
≡ ai,33

2 = 0; ` = 2; i = 1, ..., I; j = 33. (E.131)
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The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(34) : Dfan are as follows:

∂N
(i)
2

∂α(34)
=

∂N
(i)
2

∂Dfan

≡ ai,34
2 = 0; ` = 2; i = 1, ..., I; j = 34, (E.132)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(35) : ∆zfill are as follows:

∂N
(i)
2

∂α(35)
=

∂N
(i)
2

∂∆zfill
≡ ai,35

2 = 0; ` = 2; i = 1, ..., I; j = 35. (E.133)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(36) : ∆zrain are as follows:

∂N
(i)
2

∂α(36)
=

∂N
(i)
2

∂∆zrain
≡ ai,36

2 = 0; ` = 2; i = 1, ..., I; j = 36. (E.134)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(37) : ∆zbs are as follows:

∂N
(i)
2

∂α(37)
=
∂N

(i)
2

∂∆zbs
≡ ai,37

2 = 0; ` = 2; i = 1, ..., I; j = 37. (E.135)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(38) : ∆zde are as follows:

∂N
(i)
2

∂α(38)
=

∂N
(i)
2

∂∆zde
≡ ai,38

2 = 0; ` = 2; i = 1, ..., I; j = 38. (E.136)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(39) : Dh are as follows:

∂N
(i)
2

∂α(39)
=
∂N

(i)
2

∂Dh

≡ ai,39
2 = −

(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂Dh

;

` = 2; i = 1, ..., I; j = 39,

(E.137)
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where

∂H(ma,α)

∂Dh

=


−H(ma,α)/Dh Red < 2300

−a2,NuH(ma,α)

Nu(Re,α)Dh
2300 ≤ Red ≤ 10000

−0.2 ·H(ma,α)/Dh Red > 10000

(E.138)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(40) : Afill are as follows:

∂N
(i)
2

∂α(40)
=
∂N

(i)
2

∂Afill
≡ ai,40

2 = −
(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂Afill
;

` = 2; i = 1, ..., I; j = 40,

(E.139)

where

∂H(ma,α)

∂Afill
=


0 Red < 2300

−a1,NuH(ma,α) Re(ma,α)

Nu(Re,α)Afill
2300 ≤ Red ≤ 10000

−0.8 ·H(ma,α)/Afill Red > 10000

(E.140)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(41) : Asurf are as follows:

∂N
(i)
2

∂α(41)
=

∂N
(i)
2

∂Asurf
≡ ai,41

2 = −
(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂Asurf
;

` = 2; i = 1, ..., I; j = 41,

(E.141)

where
∂H(ma,α)

∂Asurf
=
H(ma,α)

Asurf
=
fhtkairNu(Re,α)wtsa

DhI
. (E.142)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(42) : Pr are as follows:

∂N
(i)
2

∂α(42)
=
∂N

(i)
2

∂ Pr
≡ ai,42

2 = −
(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂ Pr
;

` = 2; i = 1, ..., I; j = 42,

(E.143)
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where

∂H(ma,α)

∂ Pr
=

 0 Red ≤ 10000

H(ma,α)/(3 · Pr) Red > 10000
(E.144)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(43) : wtsa are as follows:

∂N
(i)
2

∂α43
=
∂N

(i)
2

∂wtsa
≡ ai,43

2 = −
(
T (i+1)
w − T (i)

a

) ∂H(ma,α)

∂wtsa
;

` = 2; i = 1, ..., I; j = 43,

(E.145)

where

∂H(ma,α)

∂wtsa
=
fhtNu(Re,α)kairAsurf

DhI
. (E.146)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(44) : mw,in are as follows:

∂N
(1)
2

∂α(44)
=

∂N
(1)
2

∂mw,in

≡ a1,44
2 = h

(1)
f (Tw,in,α)− h(2)

g,w(T (2)
w ,α)

= Tw,ina1f − a1 gT
(2)
w + a0f − a0 g, ` = 2; i = 1; j = 44,

(E.147)

∂N
(i)
2

∂α(44)
=

∂N
(i)
2

∂mw,in

≡ ai,44
2 = 0; ` = 2; i = 2, ..., I; j = 44. (E.148)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(45) : Ta,in are as follows:

∂N
(i)
2

∂α(45)
=
∂N

(i)
2

∂Ta,in
≡ ai,45

2 = 0; ` = 2; i = 1, ..., I; j = 45. (E.149)

The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(46) : ωin are as follows:

∂N
(i)
2

∂α(46)
=
∂N

(i)
2

∂ωin
≡ ai,46

2 = 0; ` = 2; i = 1, ..., I; j = 46. (E.150)
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The derivatives of the liquid energy balance equations [cf. Eqs. (2.6) - (2.8)]

with respect to the parameter α(47) : Sc are as follows:

∂N
(i)
2

∂α(47)
=
∂N

(i)
2

∂Sc
≡ ai,47

2 = 0; ` = 2; i = 1, ..., I; j = 47. (E.151)

E.1.3 Derivatives of the water vapor continuity equations

with respect to the parameters

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(1) : Tdb are as follows:

∂N
(i)
3

∂α(1)
=
∂N

(i)
3

∂Tdb
≡ ai,13 = 0; ` = 3; i = 1, ..., I; j = 1. (E.152)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(2) : Tdp are as follows:

∂N
(i)
3

∂α(2)
=
∂N

(i)
3

∂Tdp
≡ ai,23 = 0; ` = 3; i = 1, ..., I − 1; j = 2, (E.153)

∂N
(I)
3

∂α(2)
=
∂N

(I)
3

∂Tdp
≡ aI,23 =

∂ωin
∂Tdp

; ` = 3; i = I; j = 2, (E.154)

where

∂ωin
∂Tdp

= − 0.622a1Patme
a0+

a1
Tdp

Ttdp
2
(
Patm − e

a0+
a1
Tdp

)2 . (E.155)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(3) : Tw,in are as follows:

∂N
(1)
3

∂α(3)
=
∂N

(1)
3

∂Tw,in
≡ a1,3

3 = 0; ` = 3; i = I; j = 3, (E.156)
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The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(4) : Patm are as follows:

∂N
(i)
3

∂α(4)
=
∂N

(i)
3

∂Patm
≡ ai,43 = 0; ` = 3; i = 1, ..., I − 1; j = 4, (E.157)

∂N
(I)
3

∂α(4)
=
∂N

(I)
3

∂Patm
≡ aI,43 =

∂ωin
∂Patm

; ` = 3; i = I; j = 4, (E.158)

where

∂ωin
∂Patm

= − 0.622e
a0+

a1
Tdp(

Patm − e
a0+

a1
Tdp

)2 . (E.159)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(5) : Vw are as follows:

∂N
(i)
3

∂α(5)
=
∂N

(i)
3

∂Vw
≡ ai,53 = 0; ` = 3; i = 1, ..., I; j = 5. (E.160)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(6) : ksum are as follows:

∂N
(i)
3

∂α(6)
=
∂N

(i)
3

∂ksum
≡ ai,63 = 0; ` = 3; i = 1, ..., I; j = 6. (E.161)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(7) : µ are as follows:

∂N
(i)
3

∂α(7)
=
∂N

(i)
3

∂µ
≡ ai,73 = 0; ` = 3; i = 1, ..., I; j = 7. (E.162)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(8) : ν are as follows:

∂N
(i)
3

∂α(8)
=
∂N

(i)
3

∂ν
≡ ai,83 = 0; ` = 3; i = 1, ..., I; j = 8. (E.163)
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The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(9) : kair are as follows:

∂N
(i)
3

∂α(9)
=
∂N

(i)
3

∂kair
≡ ai,93 = 0; ` = 3; i = 1, ..., I; j = 9. (E.164)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(10) : fht are as follows:

∂N
(i)
3

∂α(10)
=
∂N

(i)
3

∂fht
≡ ai,10

3 = 0; ` = 3; i = 1, ..., I; j = 10. (E.165)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(11) : fmt are as follows:

∂N
(i)
3

∂α(11)
=
∂N

(i)
3

∂fmt
≡ ai,11

3 = 0; ` = 3; i = 1, ..., I; j = 11. (E.166)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(12) : f are as follows:

∂N
(i)
3

∂α(12)
=
∂N

(i)
3

∂f
≡ ai,12

3 = 0; ` = 3; i = 1, ..., I; j = 12. (E.167)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(13) : a0 are as follows:

∂N
(i)
3

∂α(13)
=
∂N

(i)
3

∂a0

≡ ai,13
3 = 0; ` = 3; i = 1, ..., I − 1; j = 13, (E.168)

∂N
(I)
3

∂α(13)
=
∂N

(I)
3

∂a0

≡ aI,13
3 =

∂ωin
∂a0

; ` = 3; i = I; j = 13, (E.169)

where

∂ωin
∂a0

=
0.622Patme

a0+
a1
Tdp(

Patm − e
a0+

a1
Tdp

)2 ; (E.170)
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The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(14) : a1 are as follows:

∂N
(i)
3

∂α(14)
=
∂N

(i)
3

∂a1

≡ ai,14
3 = 0; ` = 3; i = 1, ..., I − 1; j = 14, (E.171)

∂N
(I)
3

∂α(14)
=
∂N

(I)
3

∂a1

≡ aI,14
3 =

∂ωin
∂a1

; ` = 3; i = I; j = 14, (E.172)

where

∂ωin
∂a1

=
0.622Patme

a0+
a1
Tdp

Tdp

(
Patm − e

a0+
a1
Tdp

)2 . (E.173)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(15) : a0,cpa are as follows:

∂N
(i)
3

∂α(15)
=

∂N
(i)
3

∂a0,cpa

≡ ai,15
3 = 0; ` = 3; i = 1, ..., I; j = 15. (E.174)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(16) : a1,cpa are as follows:

∂N
(i)
3

∂α(16)
=

∂N
(i)
3

∂a1,cpa

≡ ai,16
3 = 0; ` = 3; i = 1, ..., I; j = 16. (E.175)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(17) : a2,cpa are as follows:

∂N
(i)
3

∂α(17)
=

∂N
(i)
3

∂a2,cpa

≡ ai,17
3 = 0; ` = 3; i = 1, ..., I; j = 17. (E.176)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(18) : a0,Dav are as follows:

∂N
(i)
3

∂α(18)
=

∂N
(i)
3

∂a0,Dav

≡ ai,18
3 = 0; ` = 3; i = 1, ..., I; j = 18. (E.177)

316



APPENDIX E. DERIVATIVES OF THE MODEL EQUATIONS WITH
RESPECT TO THE MODEL PARAMETERS

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(19) : a1,Dav are as follows:

∂N
(i)
3

∂α(19)
=

∂N
(i)
3

∂a1,Dav

≡ ai,19
3 = 0; ` = 3; i = 1, ..., I; j = 19. (E.178)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(20) : a2,Dav are as follows:

∂N
(i)
3

∂α(20)
=

∂N
(i)
3

∂a2,Dav

≡ ai,20
3 = 0; ` = 3; i = 1, ..., I; j = 20. (E.179)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(21) : a3,Dav are as follows:

∂N
(i)
3

∂α(21)
=

∂N
(i)
3

∂a3,Dav

≡ ai,21
3 = 0; ` = 3; i = 1, ..., I; j = 21. (E.180)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(22) : a0f are as follows:

∂N
(i)
3

∂α(22)
=
∂N

(i)
3

∂a0f

≡ ai,22
3 = 0; ` = 3; i = 1, ..., I; j = 22. (E.181)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(23) : a1f are as follows:

∂N
(i)
3

∂α(23)
=
∂N

(i)
3

∂a1f

≡ ai,23
3 = 0; ` = 3; i = 1, ..., I; j = 23. (E.182)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(24) : a0g are as follows:

∂N
(i)
3

∂α(24)
=
∂N

(i)
3

∂a0g

≡ ai,24
3 = 0; ` = 3; i = 1, ..., I; j = 24. (E.183)
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The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(25) : a1g are as follows:

∂N
(i)
3

∂α(25)
=
∂N

(i)
3

∂a1g

≡ ai,25
3 = 0; ` = 3; i = 1, ..., I; j = 25. (E.184)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(26) : a0,Nu are as follows:

∂N
(i)
3

∂α(26)
=

∂N
(i)
3

∂a0,Nu

≡ ai,26
3 = 0; ` = 3; i = 1, ..., I; j = 26. (E.185)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(27) : a1,Nu are as follows:

∂N
(i)
3

∂α(27)
=

∂N
(i)
3

∂a1,Nu

≡ ai,27
3 = 0; ` = 3; i = 1, ..., I; j = 27. (E.186)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(28) : a2,Nu are as follows:

∂N
(i)
3

∂α(28)
=

∂N
(i)
3

∂a2,Nu

≡ ai,28
3 = 0; ` = 3; i = 1, ..., I; j = 28. (E.187)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(29) : a3,Nu are as follows:

∂N
(i)
3

∂α(29)
=

∂N
(i)
3

∂a3,Nu

≡ ai,29
3 = 0; ` = 3; i = 1, ..., I; j = 29. (E.188)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(30) : Wdkx are as follows:

∂N
(i)
3

∂α(30)
=

∂N
(i)
3

∂Wdkx

≡ ai,30
3 = 0; ` = 3; i = 1, ..., I; j = 30. (E.189)
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The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(31) : Wdky are as follows:

∂N
(i)
3

∂α(31)
=

∂N
(i)
3

∂Wdky

≡ ai,31
3 = 0; ` = 3; i = 1, ..., I; j = 31. (E.190)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(32) : ∆zdk are as follows:

∂N
(i)
3

∂α(32)
=

∂N
(i)
3

∂∆zdk
≡ ai,32

3 = 0; ` = 3; i = 1, ..., I; j = 32. (E.191)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(33) : ∆zfan are as follows:

∂N
(i)
3

∂α(33)
=

∂N
(i)
3

∂∆zfan
≡ ai,33

3 = 0; ` = 3; i = 1, ..., I; j = 33. (E.192)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(34) : Dfan are as follows:

∂N
(i)
3

∂α(34)
=

∂N
(i)
3

∂Dfan

≡ ai,34
3 = 0; ` = 3; i = 1, ..., I; j = 34, (E.193)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(35) : ∆zfill are as follows:

∂N
(i)
3

∂α(35)
=

∂N
(i)
3

∂∆zfill
≡ ai,35

3 = 0; ` = 3; i = 1, ..., I; j = 35. (E.194)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(36) : ∆zrain are as follows:

∂N
(i)
3

∂α(36)
=

∂N
(i)
3

∂∆zrain
≡ ai,36

3 = 0; ` = 3; i = 1, ..., I; j = 36. (E.195)
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The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(37) : ∆zbs are as follows:

∂N
(i)
3

∂α(37)
=
∂N

(i)
3

∂∆zbs
≡ ai,37

3 = 0; ` = 3; i = 1, ..., I; j = 37. (E.196)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(38) : ∆zde are as follows:

∂N
(i)
3

∂α(38)
=

∂N
(i)
3

∂∆zde
≡ ai,38

3 = 0; ` = 3; i = 1, ..., I; j = 38. (E.197)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(39) : Dh are as follows:

∂N
(i)
3

∂α(39)
=
∂N

(i)
3

∂Dh

≡ ai,39
3 = 0; ` = 3; i = 1, ..., I; j = 39. (E.198)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(40) : Afill are as follows:

∂N
(i)
3

∂α(40)
=
∂N

(i)
3

∂Afill
≡ ai,40

3 = 0; ` = 3; i = 1, ..., I; j = 40. (E.199)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(41) : Asurf are as follows:

∂N
(i)
3

∂α(41)
=

∂N
(i)
3

∂Asurf
≡ ai,41

3 = 0; ` = 3; i = 1, ..., I; j = 41. (E.200)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(42) : Pr are as follows:

∂N
(i)
3

∂α(42)
=
∂N

(i)
3

∂ Pr
≡ ai,42

3 = 0; ` = 3; i = 1, ..., I; j = 42. (E.201)
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The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(43) : wtsa are as follows:

∂N
(i)
3

∂α(43)
=
∂N

(i)
3

∂wtsa
≡ ai,43

3 = 0; ` = 3; i = 1, ..., I; j = 43. (E.202)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(44) : mw,in are as follows:

∂N
(1)
3

∂α(44)
=

∂N
(1)
3

∂mw,in

≡ a1,44
3 =

1

ma

; ` = 3; i = 1; j = 44, (E.203)

∂N
(i)
3

∂α(44)
=

∂N
(i)
3

∂mw,in

≡ ai,44
3 = 0; ` = 3; i = 2, ..., I; j = 44. (E.204)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(45) : Ta,in are as follows:

∂N
(i)
3

∂α(45)
=
∂N

(i)
3

∂Ta,in
≡ ai,45

3 = 0; ` = 3; i = 1, ..., I; j = 45. (E.205)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(46) : ωin are as follows:

∂N
(i)
3

∂α(46)
=
∂N

(i)
3

∂ωin
≡ ai,46

3 = 0; ` = 3; i = 1, ..., I − 1; j = 46, (E.206)

∂N
(I)
3

∂α(46)
=
∂N

(I)
3

∂ωin
≡ aI,46

3 = 1; ` = 3; i = I; j = 46. (E.207)

The derivatives of the water vapor continuity equations [cf. Eqs. (2.9) - (2.11)]

with respect to the parameter α(47) : Sc are as follows:

∂N
(i)
3

∂α(47)
=
∂N

(i)
3

∂Sc
≡ ai,47

3 = 0; ` = 3; i = 1, ..., I; j = 47. (E.208)
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E.1.4 Derivatives of the air/water vapor energy balance

equations with respect to the parameters

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(1) : Tdb are as follows:

∂N
(i)
4

∂α(1)
=
∂N

(i)
4

∂Tdb
≡ ai,14 = 0; ` = 4; i = 1, ..., I − 1; j = 1, (E.209)

∂N
(I)
4

∂α(1)
=
∂N

(I)
4

∂Tdb
≡ aI,14 = C(I)

p

(
T

(I)
a + 273.15

2
,α

)
+ ωin

∂h
(I+1)
g,a (Ta,in,α)

∂Ta,in

= C(I)
p

(
T

(I)
a + 273.15

2
,α

)
+ ωina1g; ` = 4; i = I; j = 1.

(E.210)

Note: The value of the inlet air temperature is set equal to dry-bulb temperature,

although these quantities are treated as two different parameters in the model.

The dry-bulb temperature is used in mass diffusivity calculations. The relation

between the two parameters, i.e., Ta,in = Tdb, needs to be accounted for when

computing the respective derivatives: the derivative of Eq. (2.13) with respect to

the dry-bulb temperature must be the same as the derivative of Eq. (2.13) with

respect to the inlet air temperature.

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(2) : Tdp are as follows:

∂N
(i)
4

∂α(2)
=
∂N

(i)
4

∂Tdp
≡ ai,24 = 0; ` = 4; i = 1, ..., I − 1; j = 2, (E.211)

∂N
(I)
4

∂α(2)
=
∂N

(I)
4

∂Tdp
≡ aI,24 =

∂ωin
∂Tdp

(a1 gTa,in + a0 g) ; ` = 4; i = I; j = 2,

(E.212)

where ∂ωin
∂Tdp

was defined in Eq. (E.155).
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The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(3) : Tw,in are as follows:

∂N
(1)
4

∂α(3)
=
∂N

(1)
4

∂Tw,in
≡ a1,3

4 = 0; ` = 4; i = 1; j = 3, (E.213)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(4) : Patm are as follows:

∂N
(i)
4

∂α(4)
=
∂N

(i)
4

∂Patm
≡ ai,44 = 0; ` = 4; i = 1, ..., I − 1; j = 4, (E.214)

∂N
(I)
4

∂α(4)
=
∂N

(I)
4

∂Patm
≡ aI,44 =

∂ωin
∂Patm

(a1 gTa,in + a0 g) ; ` = 4; i = I; j = 4,

(E.215)

where ∂ωin
∂Patm

was defined in Eq. (E.159).

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(5) : Vw are as follows:

∂N
(i)
4

∂α(5)
=
∂N

(i)
4

∂Vw
≡ ai,54 = 0; ` = 4; i = 1, ..., I; j = 5, (E.216)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(6) : ksum are as follows:

∂N
(i)
4

∂α(6)
=
∂N

(i)
4

∂ksum
≡ ai,64 = 0; ` = 4; i = 1, ..., I; j = 6. (E.217)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(7) : µ are as follows:

∂N
(i)
4

∂α(7)
=
∂N

(i)
4

∂µ
≡ ai,74 =

(T
(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂µ
; ` = 4; i = 1, ..., I; j = 7,

(E.218)
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where ∂H(ma,α)
∂µ

was defined in Eq. (E.102).

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(8) : ν are as follows:

∂N
(i)
4

∂α(8)
=
∂N

(i)
4

∂ν
≡ ai,84 = 0; ` = 4; i = 1, ..., I; j = 8. (E.219)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(9) : kair are as follows:

∂N
(i)
4

∂α(9)
=
∂N

(i)
4

∂kair
≡ ai,94 =

(T
(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂kair
; ` = 4; i = 1, ..., I; j = 9,

(E.220)

where ∂H(ma,α)
∂kair

was defined in Eq. (E.105).

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(10) : fht are as follows:

∂N
(i)
4

∂α(10)
=
∂N

(i)
4

∂fht
≡ ai,10

4 =
(T

(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂fht
; ` = 4; i = 1, ..., I; j = 10,

(E.221)

where ∂H(ma,α)
∂fht

was defined in Eq. (E.107).

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(11) : fmt are as follows:

∂N
(i)
4

∂α(11)
=
∂N

(i)
4

∂fmt
≡ ai,11

4 = 0; ` = 4; i = 1, ..., I; j = 11. (E.222)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(12) : f are as follows:

∂N
(i)
4

∂α(12)
=
∂N

(i)
4

∂f
≡ ai,12

4 = 0; ` = 4; i = 1, ..., I; j = 12. (E.223)
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The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(13) : a0 are as follows:

∂N
(i)
4

∂α(13)
=
∂N

(i)
4

∂a0

≡ ai,13
4 = 0; ` = 4; i = 1, ..., I − 1; j = 13, (E.224)

∂N
(I)
4

∂α(13)
=
∂N

(I)
4

∂a0

≡ aI,13
4 =

∂ωin
∂a0

(a1 gTa,in + a0 g) ; ` = 4; i = I; j = 13,

(E.225)

where ∂ωin
∂a0

was defined in Eq. (E.170).

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(14) : a1 are as follows:

∂N
(i)
4

∂α(14)
=
∂N

(i)
4

∂a1

≡ ai,14
4 = 0; ` = 4; i = 1, ..., I − 1; j = 14, (E.226)

∂N
(I)
4

∂α(14)
=
∂N

(I)
4

∂a1

≡ aI,14
4 =

∂ωin
∂a1

(a1 gTa,in + a0 g) ; ` = 4; i = I; j = 14,

(E.227)

where ∂ωin
∂a1

was defined in Eq. (E.173).

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(15) : a0,cpa are as follows:

∂N
(i)
4

∂α(15)
=

∂N
(i)
4

∂a0,cpa

≡ ai,15
4 =

(
T (i+1)
a − T (i)

a

) ∂C(i)
p

(
T

(i)
a +273.15

2
,α
)

∂a0,cpa

= T (i+1)
a − T (i)

a ; ` = 4; i = 1, ..., I; j = 15.

(E.228)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(16) : a1,cpa are as follows:

∂N
(i)
4

∂α(16)
=

∂N
(i)
4

∂a1,cpa

≡ ai,16
4 =

(
T (i+1)
a − T (i)

a

) ∂C(i)
p

(
T

(i)
a +273.15

2
,α
)

∂a1,cpa

= 0.5
(
T (i+1)
a − T (i)

a

)
(T (i)

a + 273.15); ` = 4; i = 1, ..., I; j = 16.

(E.229)
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The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(17) : a2,cpa are as follows:

∂N
(i)
4

∂α(17)
=

∂N
(i)
4

∂a2,cpa

≡ ai,17
4 =

(
T (i+1)
a − T (i)

a

) ∂C(i)
p

(
T

(i)
a +273.15

2
,α
)

∂a2,cpa

= 0.25
(
T (i+1)
a − T (i)

a

) [
T (i)
a + 273.15

]2
; ` = 4; i = 1, ..., I; j = 17.

(E.230)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(18) : a0,Dav are as follows:

∂N
(i)
4

∂α(18)
=

∂N
(i)
4

∂a0,Dav

≡ ai,18
4 = 0; ` = 4; i = 1, ..., I; j = 18. (E.231)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(19) : a1,Dav are as follows:

∂N
(i)
4

∂α(19)
=

∂N
(i)
4

∂a1,Dav

≡ ai,19
4 = 0; ` = 4; i = 1, ..., I; j = 19. (E.232)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(20) : a2,Dav are as follows:

∂N
(i)
4

∂α(20)
=

∂N
(i)
4

∂a2,Dav

≡ ai,20
4 = 0; ` = 4; i = 1, ..., I; j = 20. (E.233)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(21) : a3,Dav are as follows:

∂N
(i)
4

∂α(21)
=

∂N
(i)
4

∂a3,Dav

≡ ai,21
4 = 0; ` = 4; i = 1, ..., I; j = 21. (E.234)
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The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(22) : a0f are as follows:

∂N
(i)
4

∂α(22)
=
∂N

(i)
4

∂a0f

≡ ai,22
4 = 0; ` = 4; i = 1, ..., I; j = 22. (E.235)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(23) : a1f are as follows:

∂N
(i)
4

∂α(23)
=
∂N

(i)
4

∂a1f

≡ ai,23
4 = 0; ` = 4; i = 1, ..., I; j = 23. (E.236)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(24) : a0g are as follows:

∂N
(i)
4

∂α(24)
=
∂N

(i)
4

∂a0g

≡ ai,24
4 = ω(i+1) − ω(i) +

m
(i)
w −m(i+1)

w

ma

;

` = 4; i = 1, ..., I; j = 24.

(E.237)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(25) : a1g are as follows:

∂N
(i)
4

∂α(25)
=
∂N

(i)
4

∂a1g

≡ ai,25
4 = ω(i+1)T (i+1)

a − ω(i)T (i)
a +

(
m

(i)
w −m(i+1)

w

)
T

(i+1)
w

ma

;

` = 4; i = 1, ..., I; j = 25.

(E.238)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(26) : a0,Nu are as follows:

∂N
(i)
4

∂α(26)
=

∂N
(i)
4

∂a0,Nu

≡ ai,26
4 =

(T
(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a0,Nu

;

` = 4; i = 1, ..., I; j = 26,

(E.239)
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where ∂H(ma,α)
∂Nu(Re,α)

and ∂Nu(Re,α)
∂a0,Nu

were defined previously in Eqs. (E.124) and (E.51)

respectively.

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(27) : a1,Nu are as follows:

∂N
(i)
4

∂α(27)
=

∂N
(i)
4

∂a1,Nu

≡ ai,27
4 =

(T
(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a1,Nu

;

` = 4; i = 1, ..., I; j = 27,

(E.240)

where ∂H(ma,α)
∂Nu(Re,α)

and ∂Nu(Re,α)
∂a1,Nu

were defined previously in Eqs. (E.124) and (E.54),

respectively.

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(28) : a2,Nu are as follows:

∂N
(i)
4

∂α(28)
=

∂N
(i)
4

∂a2,Nu

≡ ai,28
4 =

(T
(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a2,Nu

;

` = 4; i = 1, ..., I; j = 28,

(E.241)

where ∂H(ma,α)
∂Nu(Re,α)

and ∂Nu(Re,α)
∂a2,Nu

were defined previously in Eqs. (E.124) and (E.57),

respectively.

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(29) : a3,Nu are as follows:

∂N
(i)
4

∂α(29)
=

∂N
(i)
4

∂a3,Nu

≡ ai,29
4 =

(T
(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a3,Nu

;

` = 4; i = 1, ..., I; j = 29,

(E.242)

where ∂H(ma,α)
∂Nu(Re,α)

and ∂Nu(Re,α)
∂a3,Nu

were defined previously in Eqs. (E.124) and (E.60),

respectively.
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The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(30) : Wdkx are as follows:

∂N
(i)
4

∂α(30)
=

∂N
(i)
4

∂Wdkx

≡ ai,30
4 = 0; ` = 4; i = 1, ..., I; j = 30. (E.243)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(31) : Wdky are as follows:

∂N
(i)
4

∂α(31)
=

∂N
(i)
4

∂Wdky

≡ ai,31
4 = 0; ` = 4; i = 1, ..., I; j = 31. (E.244)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(32) : ∆zdk are as follows:

∂N
(i)
4

∂α(32)
=

∂N
(i)
4

∂∆zdk
≡ ai,32

4 = 0; ` = 4; i = 1, ..., I; j = 32. (E.245)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(33) : ∆zfan are as follows:

∂N
(i)
4

∂α(33)
=

∂N
(i)
4

∂∆zfan
≡ ai,33

4 = 0; ` = 4; i = 1, ..., I; j = 33. (E.246)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(34) : Dfan are as follows:

∂N
(i)
4

∂α(34)
=

∂N
(i)
4

∂Dfan

≡ ai,34
4 = 0; ` = 4; i = 1, ..., I; j = 34, (E.247)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(35) : ∆zfill are as follows:

∂N
(i)
4

∂α(35)
=

∂N
(i)
4

∂∆zfill
≡ ai,35

4 = 0; ` = 4; i = 1, ..., I; j = 35. (E.248)
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The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(36) : ∆zrain are as follows:

∂N
(i)
4

∂α(36)
=

∂N
(i)
4

∂∆zrain
≡ ai,36

4 = 0; ` = 4; i = 1, ..., I; j = 36. (E.249)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(37) : ∆zbs are as follows:

∂N
(i)
4

∂α(37)
=
∂N

(i)
4

∂∆zbs
≡ ai,37

4 = 0; ` = 4; i = 1, ..., I; j = 37. (E.250)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(38) : ∆zde are as follows:

∂N
(i)
4

∂α(38)
=

∂N
(i)
4

∂∆zde
≡ ai,38

4 = 0; ` = 4; i = 1, ..., I; j = 38. (E.251)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(39) : Dh are as follows:

∂N
(i)
4

∂α(39)
=
∂N

(i)
4

∂Dh

≡ ai,39
4 =

(T
(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂Dh

;

` = 4; i = 1, ..., I; j = 39,

(E.252)

where ∂H(ma,α)
∂Dh

was defined in Eq. (E.138).

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(40) : Afill are as follows:

∂N
(i)
4

∂α(40)
=
∂N

(i)
4

∂Afill
≡ ai,40

4 =
(T

(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂Afill
;

` = 4; i = 1, ..., I; j = 40,

(E.253)

where ∂H(ma,α)
∂Afill

was defined in Eq. (E.140).
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The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(41) : Asurf are as follows:

∂N
(i)
4

∂α(41)
=

∂N
(i)
4

∂Asurf
≡ ai,41

4 =
(T

(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂Asurf
;

` = 4; i = 1, ..., I; j = 41,

(E.254)

where ∂H(ma,α)
∂Asurf

was defined in Eq. (E.142).

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(42) : Pr are as follows:

∂N
(i)
4

∂α(42)
=
∂N

(i)
4

∂ Pr
≡ ai,42

4 =
(T

(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂ Pr
;

` = 4; i = 1, ..., I; j = 42,

(E.255)

where ∂H(ma,α)
∂ Pr

was defined in Eq. (E.144).

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(43) : wtsa are as follows:

∂N
(i)
4

∂α(43)
=
∂N

(i)
4

∂wtsa
≡ ai,43

4 =
(T

(i+1)
w − T (i)

a )

ma

∂H(ma,α)

∂wtsa
;

` = 4; i = 1, ..., I; j = 43,

(E.256)

where

∂H(ma,α)

∂wtsa
=
fhtNu(Re,α)kairAsurf

DhI
(E.257)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(44) : mw,in are as follows:

∂N
(1)
4

∂α(44)
=

∂N
(1)
4

∂mw,in

≡ a1,44
4 =

h
(2)
g,w(T

(2)
w ,α)

ma

=
a1gT

(2)
w + a0g

ma

;

` = 4; i = 1; j = 44,

(E.258)
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∂N
(i)
4

∂α(44)
=

∂N
(i)
4

∂mw,in

≡ ai,44
4 = 0; ` = 4; i = 2, ..., I; j = 44. (E.259)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(45) : Ta,in are as follows:

∂N
(i)
4

∂α(45)
=
∂N

(i)
4

∂Ta,in
≡ ai,45

4 = 0; ` = 4; i = 1, ..., I − 1; j = 45, (E.260)

∂N
(I)
4

∂α(45)
=
∂N

(I)
4

∂Ta,in
≡ aI,45

4 = C(I)
p

(
T

(I)
a + 273.15

2
,α

)
+ ωin

∂h
(I+1)
g,a (Ta,in,α)

∂Ta,in

= C(I)
p

(
T

(I)
a + 273.15

2
,α

)
+ ωina1g; ` = 4; i = I; j = 45.

(E.261)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(46) : ωin are as follows:

∂N
(i)
4

∂α(46)
=
∂N

(i)
4

∂ωin
≡ ai,46

4 = 0; ` = 4; i = 1, ..., I − 1; j = 46, (E.262)

∂N
(I)
4

∂α(46)
=
∂N

(I)
4

∂ωin
≡ aI,46

4 = h(I+1)
g,a (Ta,in,α); ` = 4; i = I; j = 46. (E.263)

The derivatives of the air/water vapor energy balance equations [cf. Eqs. (2.12)

- (2.14)] with respect to the parameter α(47) : Sc are as follows:

∂N
(i)
4

∂α(47)
=
∂N

(i)
4

∂Sc
≡ ai,47

4 = 0; ` = 4; i = 1, ..., I; j = 47. (E.264)
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E.1.5 Derivatives of the mechanical energy equations with

respect to the parameters

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(1) : Tdb are as follows:

∂N5

∂α(1)
=
∂N5

∂Tdb
≡ a1

5 ≡
Rair

2 · Patm
· |ma| ·ma

·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]
+

+
g · Patm
Rair · T 2

db

·
(
Z +

V 2
w

2g
−∆zrain −

∆z

2

)
; ` = 5; j = 1.

(E.265)

since

Tdb = Ta,in. (E.266)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(2) : Tdp are as follows:

∂N5

∂α(2)
=
∂N5

∂Tdp
≡ a2

5 = 0; ` = 5; j = 2. (E.267)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(3) : Tw,in are as follows:

∂N5

∂α(3)
=

∂N5

∂Tw,in
≡ a3

5 = 0; ` = 5; j = 3. (E.268)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(4) : Patm are as follows:

∂N5

∂α(4)
=

∂N5

∂Patm
≡ a4

5 ≡ −
Rair · Ttdb
2 · P 2

atm

· |ma| ·ma

·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]
+

g

Rair · Ttdb

·

[
−Z − V 2

w

2g
+ ∆zrain + ∆z4−2

Ttdb

T
(1)
a

+ ∆z · Ttdb ·

(
1

2Ta,in
+

1

2T
(1)
a

+
I∑
i=2

1

T
(i)
a

)]
;

` = 5; j = 4.

(E.269)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(5) : Vw are as follows:

∂N5

∂α(5)
=
∂N5

∂Vw
≡ a5

5 = −Vw · ρ(Tdb,α); ` = 5; j = 5. (E.270)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(6) : ksum are as follows:

∂N5

∂α(6)
=

∂N5

∂ksum
≡ a6

5 =
|ma| ·ma

2ρ(Tdb,α) · A2
fill

; ` = 5; j = 6. (E.271)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(7) : µ are as follows:

∂N5

∂α(7)
=
∂N5

∂µ
≡ a7

5 =
96f · Lfill

2ρ(Tdb,α) · Afill ·D2
h

·ma; ` = 5; j = 7. (E.272)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(8) : ν are as follows:

∂N5

∂α(8)
=
∂N5

∂ν
≡ a8

5 = 0; ` = 5; j = 8. (E.273)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(9) : kair are as follows:

∂N5

∂α(9)
=

∂N5

∂kair
≡ a9

5 = 0; ` = 5; j = 9. (E.274)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(10) : fht are as follows:

∂N5

∂α(10)
=
∂N5

∂fht
≡ a10

5 = 0; ` = 5; j = 10. (E.275)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(11) : fmt are as follows:

∂N5

∂α(11)
=
∂N5

∂fmt
≡ a11

5 = 0; ` = 5; j = 11. (E.276)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(12) : f are as follows:

∂N5

∂α(12)
=
∂N5

∂f
≡ a12

5 =
96 · Lfill · |ma| ·ma

2ρ(Tdb,α) · Re ·A2
fill ·Dh

; ` = 5; j = 12. (E.277)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(13) : a0 are as follows:

∂N5

∂α(13)
=
∂N5

∂a0

≡ a13
5 = 0; ` = 5; j = 13. (E.278)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(14) : a1 are as follows:

∂N5

∂α(14)
=
∂N5

∂a1

≡ a14
5 = 0; ` = 5; j = 14. (E.279)

335



APPENDIX E. DERIVATIVES OF THE MODEL EQUATIONS WITH
RESPECT TO THE MODEL PARAMETERS

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(15) : a0,cpa are as follows:

∂N5

∂α(15)
=

∂N5

∂a0,cpa

≡ a15
5 = 0; ` = 5; j = 15. (E.280)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(16) : a1,cpa are as follows:

∂N5

∂α(16)
=

∂N5

∂a1,cpa

≡ a16
5 = 0; ` = 5; j = 16. (E.281)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(17) : a2,cpa are as follows:

∂N5

∂α(17)
=

∂N5

∂a2,cpa

≡ a17
5 = 0; ` = 5; j = 17. (E.282)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(18) : a0,Dav are as follows:

∂N5

∂α(18)
=

∂N5

∂a0,Dav

≡ a18
5 = 0; ` = 5; j = 18. (E.283)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(19) : a1,Dav are as follows:

∂N5

∂α(19)
=

∂N5

∂a1,Dav

≡ a19
5 = 0; ` = 5; j = 19. (E.284)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(20) : a2,Dav are as follows:

∂N5

∂α(20)
=

∂N5

∂a2,Dav

≡ a20
5 = 0; ` = 5; j = 20. (E.285)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(21) : a3,Dav are as follows:

∂N5

∂α(21)
=

∂N5

∂a3,Dav

≡ a21
5 = 0; ` = 5; j = 21. (E.286)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(22) : a0f are as follows:

∂N5

∂α(22)
=
∂N5

∂a0f

≡ a22
5 = 0; ` = 5; j = 22. (E.287)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(23) : a1f are as follows:

∂N5

∂α(23)
=
∂N5

∂a1f

≡ a23
5 = 0; ` = 5; j = 23. (E.288)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(24) : a0g are as follows:

∂N5

∂α(24)
=
∂N5

∂a0g

≡ a24
5 = 0; ` = 5; j = 24. (E.289)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(25) : a1g are as follows:

∂N5

∂α(25)
=
∂N5

∂a1g

≡ a25
5 = 0; ` = 5; j = 25. (E.290)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(26) : a0,Nu are as follows:

∂N5

∂α(26)
=

∂N5

∂a0,Nu

≡ a26
5 = 0; ` = 5; j = 26. (E.291)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(27) : a1,Nu are as follows:

∂N5

∂α(27)
=

∂N5

∂a1,Nu

≡ a27
5 = 0; ` = 5; j = 27. (E.292)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(28) : a2,Nu are as follows:

∂N5

∂α(28)
=

∂N5

∂a1,Nu

≡ a28
5 = 0; ` = 5; j = 28. (E.293)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(29) : a3,Nu are as follows:

∂N5

∂α(29)
=

∂N5

∂a1,Nu

≡ a29
5 = 0; ` = 5; j = 29. (E.294)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(30) : Wdkx are as follows:

∂N5

∂α(30)
=

∂N5

∂Wdkx

≡ a30
5 =

|ma| ·ma

ρ(Tdb,α) ·W 3
dkx ·W 2

dky

; ` = 5; j = 30. (E.295)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(31) : Wdky are as follows:

∂N5

∂α(31)
=

∂N5

∂Wdky

≡ a31
5 =

|ma| ·ma

ρ(Tdb,α) ·W 2
dkx ·W 3

dky

; ` = 5; j = 31. (E.296)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(32) : ∆zdk are as follows:

∂N5

∂α(32)
=

∂N5

∂∆zdk
≡ a32

5 = g
Patm
Rair

[
1

T
(1)
a

− 1

Tdb

]
; ` = 5; j = 32. (E.297)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(33) : ∆zfan are as follows:

∂N5

∂α(33)
=

∂N5

∂∆zfan
≡ a33

5 = g
Patm
Rair

[
1

T
(1)
a

− 1

Tdb

]
; ` = 5; j = 33. (E.298)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(34) : Dfan are as follows:

∂N5

∂α(34)
=

∂N5

∂Dfan

≡ a34
5 = − 32 · |ma| ·ma

ρ(Tdb,α) · π2 ·D5
fan

; ` = 5; j = 34. (E.299)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(35) : ∆zfill are as follows:

∂N5

∂α(35)
=

∂N5

∂∆zfill
≡ a35

5 =
96f · |ma| ·ma

2ρ(Tdb,α) · Re ·A2
fill ·Dh

− g Patm

Rair · T (1)
a

+ g
Patm
Rair · I

·

[
1

2Ta,in
+

1

2T
(1)
a

+
I∑
i=2

1

T
(i)
a

]
; ` = 5; j = 35.

(E.300)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(36) : ∆zrain are as follows:

∂N5

∂α(36)
=

∂N5

∂∆zrain
≡ a36

5 = g
Patm
Rair

[
1

Tdb
− 1

T
(1)
a

]
; ` = 5; j = 36. (E.301)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(37) : ∆zbs are as follows:

∂N5

∂α(37)
=

∂N5

∂∆zbs
≡ a37

5 = g
Patm
Rair

[
1

Tdb
− 1

T
(1)
a

]
; ` = 5; j = 37. (E.302)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(38) : ∆zde are as follows:

∂N5

∂α(38)
=

∂N5

∂∆zde
≡ a38

5 =
96f · |ma| ·ma

2ρ(Tdb,α) · Re ·A2
fill ·Dh

; ` = 5; j = 38. (E.303)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(39) : Dh are as follows:

∂N5

∂α(39)
=
∂N5

∂Dh

≡ a39
5 = −96f · µair · Lfill ·ma

ρ(Tdb,α) · Afill ·D3
h

; ` = 5; j = 39. (E.304)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(40) : Afill are as follows:

∂N5

∂α(40)
=

∂N5

∂Afill
≡ a40

5 = −ksum · |ma| ·ma

ρ(Tdb,α) · A3
fill

− 96f · µair · Lfill ·ma

2ρ(Tdb,α) · A2
fill ·D2

h

;

` = 5; j = 40.

(E.305)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(41) : Asurf are as follows:

∂N5

∂α(41)
=

∂N5

∂Asurf
≡ a41

5 = 0; ` = 5; j = 41. (E.306)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(42) : Pr are as follows:

∂N5

∂α(42)
=
∂N5

∂ Pr
≡ a42

5 = 0; ` = 5; j = 42. (E.307)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(43) : wtsa are as follows:

∂N5

∂α(43)
=

∂N5

∂wtsa
≡ a43

5 = 0; ` = 5; j = 43. (E.308)
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The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(44) : mw,in are as follows:

∂N5

∂α(44)
=

∂N5

∂mw,in

≡ a44
5 = 0; ` = 5; j = 44. (E.309)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(45) : Ta,in are as follows:

∂N5

∂α(45)
=

∂N5

∂Ta,in
≡ a45

5 =
Rair

2 · Patm
· |ma| ·ma

·

[(
1

A2
out

− 1

A2
in

+
ksum
A2
fill

)
+

96f

Re
· Lfill
A2
fillDh

]

+
g · Patm
Rair · T 2

a,in

·
(
Z +

V 2
w

2g
−∆zrain −

∆z

2

)
; ` = 5; j = 45.

(E.310)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(46) : ωin are as follows:

∂N5

∂α(46)
=
∂N5

∂ωin
≡ a46

5 = 0; ` = 5; j = 46. (E.311)

The derivatives of the mechanical energy equation [cf. Eq. (2.15)] with respect

to the parameter α(47) : Sc are as follows:

∂N5

∂α(47)
=
∂N5

∂Sc
≡ a47

5 = 0; ` = 5; j = 47. (E.312)
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E.2 Derivatives of the Model Equations with re-

spect to the Model Parameters for Case 1b:

Fan Off, Saturated Outlet Air Conditions,

with Inlet Air Saturated

The differences between the governing equations for case 1a and case 1b are

only in the “liquid continuity equations”. Other governing equations (i.e., liquid

energy balance equations; water vapor continuity equations; air/water vapor en-

ergy balance equations; mechanical energy equation) are the same for both cases,

and their derivatives in Subsections E.1.2 through E.1.5. Therefore for case 1b,

only the derivatives of the “liquid continuity equations” with respect to parame-

ters are derived as follows, since the derivatives of other governing equations with

respect to parameters are the same as that of case 1a. The notation used will be

the following:

ai,j1 ≡
∂N

(i)
1

∂α(j)
; i = 1, ..., I; j = 1, ..., Nα. (E.313)

E.2.1 Derivatives of the liquid continuity equations with

respect to the parameters

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(1) : Tdb are as follows:

∂N
(i)
1

∂α(1)
=
∂N

(i)
1

∂Tdb
≡ ai,11 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂Tdb
; ` = 1; i = 1, ..., I; j = 1,

(E.314)

where ∂M(ma,α)
∂Dav(Tdb,α)

and ∂Dav(Tdb,α)
∂Tdb

were defined in Eqs. (E.3) and (E.4), respectively.
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(2) : Tdp are as follows:

∂N
(i)
1

∂α(2)
=
∂N

(i)
1

∂Tdp
≡ ai,21 = 0; ` = 1; i = 1, ..., I; j = 2. (E.315)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(3) : Tw,in are as follows:

∂N
(1)
1

∂α(3)
=
∂N

(1)
1

∂Tw,in
≡ a1,3

1 = 0; ` = 1; i = 1; j = 3, (E.316)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(4) : Patm are as follows:

∂N
(i)
1

∂α(4)
=
∂N

(i)
1

∂Patm
≡ ai,41 = 0; ` = 1; i = 1, ..., I; j = 4, (E.317)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(5) : Vw are as follows:

∂N
(i)
1

∂α(5)
=
∂N

(i)
1

∂Vw
≡ ai,51 = 0; ` = 1; i = 1, ..., I; j = 5, (E.318)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(6) : ksum are as follows:

∂N
(i)
1

∂α(6)
=
∂N

(i)
1

∂ksum
≡ ai,61 = 0; ` = 1; i = 1, ..., I; j = 6. (E.319)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(7) : µ are as follows:

∂N
(i)
1

∂α(7)
=
∂N

(i)
1

∂µ
≡ ai,71 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂µ
;

` = 1; i = 1, ..., I; j = 7,

(E.320)
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where ∂M(ma,α)
∂µ

was defined in Eq. (E.13).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(8) : ν are as follows:

∂N
(i)
1

∂α(8)
=
∂N

(i)
1

∂ν
≡ ai,81 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂ν
;

` = 1; i = 1, ..., I; j = 8,

(E.321)

where ∂M(ma,α)
∂ν

was defined in Eq. (E.16).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(9) : kair are as follows:

∂N
(i)
1

∂α(9)
=
∂N

(i)
1

∂kair
≡ ai,91 = 0; ` = 1; i = 1, ..., I; j = 9. (E.322)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(10) : fht are as follows:

∂N
(i)
1

∂α(10)
=
∂N

(i)
1

∂fht
≡ ai,10

1 = 0; ` = 1; i = 1, ..., I; j = 10. (E.323)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(11) : fmt are as follows:

∂N
(i)
1

∂α(11)
=
∂N

(i)
1

∂fmt
≡ ai,11

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂fmt
;

` = 1; i = 1, ..., I; j = 11,

(E.324)

where ∂M(ma,α)
∂fmt

was defined in Eq. (E.21).
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(12) : f are as follows:

∂N
(i)
1

∂α(12)
=
∂N

(i)
1

∂f
≡ ai,12

1 = 0; ` = 1; i = 1, ..., I; j = 12. (E.325)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(13) : a0 are as follows:

∂N
(i)
1

∂α(13)
=
∂N

(i)
1

∂a0

≡ ai,13
1 =

M(ma,α)

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
;

` = 1; i = 1, ..., I; j = 13,

(E.326)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(14) : a1 are as follows:

∂N
(i)
1

∂α(14)
=
∂N

(i)
1

∂a1

≡ ai,14
1 =

M(ma,α)

R

P (i+1)
vs (T

(i+1)
w ,α)(

T
(i+1)
w

)2 − P
(i)
vs (T

(i)
a ,α)(

T
(i)
a

)2

 ;

` = 1; i = 1, ..., I; j = 14,

(E.327)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(15) : a0,cpa are as follows:

∂N
(i)
1

∂α(15)
=

∂N
(i)
1

∂a0,cpa

≡ ai,15
1 = 0; ` = 1; i = 1, ..., I; j = 15. (E.328)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(16) : a1,cpa are as follows:

∂N
(i)
1

∂α(16)
=

∂N
(i)
1

∂a1,cpa

≡ ai,16
1 = 0; ` = 1; i = 1, ..., I; j = 16. (E.329)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(17) : a2,cpa are as follows:

∂N
(i)
1

∂α(17)
=

∂N
(i)
1

∂a2,cpa

≡ ai,17
1 = 0; ` = 1; i = 1, ..., I; j = 17. (E.330)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(18) : a0,Dav are as follows:

∂N
(i)
1

∂α(18)
=

∂N
(i)
1

∂a0,Dav

≡ ai,18
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a0,Dav

; ` = 1; i = 1, ..., I; j = 18,

(E.331)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and ∂Dav(Tdb,α)
∂a0,Dav

was defined

previously in Eq. (E.34).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(19) : a1,Dav are as follows:

∂N
(i)
1

∂α(19)
=

∂N
(i)
1

∂a1,Dav

≡ ai,19
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a1,Dav

; ` = 1; i = 1, ..., I; j = 19,

(E.332)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and ∂Dav(Tdb,α)
∂a1,Dav

was defined

previously in Eq. (E.37).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(20) : a2,Dav are as follows:

∂N
(i)
1

∂α(20)
=

∂N
(i)
1

∂a2,Dav

≡ ai,20
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a2,Dav

; ` = 1; i = 1, ..., I; j = 20,

(E.333)

346



APPENDIX E. DERIVATIVES OF THE MODEL EQUATIONS WITH
RESPECT TO THE MODEL PARAMETERS

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and ∂Dav(Tdb,α)
∂a2,Dav

was defined

previously in Eq. (E.40).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(21) : a3,Dav are as follows:

∂N
(i)
1

∂α(21)
=

∂N
(i)
1

∂a3,Dav

≡ ai,21
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a3,Dav

; ` = 1; i = 1, ..., I; j = 21,

(E.334)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and ∂Dav(Tdb,α)
∂a3,Dav

was defined

previously in Eq. (E.43).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(22) : a0f are as follows:

∂N
(i)
1

∂α(22)
=
∂N

(i)
1

∂a0f

≡ ai,22
1 = 0; ` = 1; i = 1, ..., I; j = 22. (E.335)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(23) : a1f are as follows:

∂N
(i)
1

∂α(23)
=
∂N

(i)
1

∂a1f

≡ ai,23
1 = 0; ` = 1; i = 1, ..., I; j = 23. (E.336)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(24) : a0g are as follows:

∂N
(i)
1

∂α(24)
=
∂N

(i)
1

∂a0g

≡ ai,24
1 = 0; ` = 1; i = 1, ..., I; j = 24. (E.337)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(25) : a1g are as follows:

∂N
(i)
1

∂α(25)
=
∂N

(i)
1

∂a1g

≡ ai,25
1 = 0; ` = 1; i = 1, ..., I; j = 25. (E.338)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(26) : a0,Nu are as follows:

∂N
(i)
1

∂α(26)
=

∂N
(i)
1

∂a0,Nu

≡ ai,26
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a0,Nu

; ` = 1; i = 1, ..., I; j = 26,

(E.339)

where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50) and ∂Nu(Re,α)
∂a0,Nu

was defined

previously in Eq. (E.51).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(27) : a1,Nu are as follows:

∂N
(i)
1

∂α(27)
=

∂N
(i)
1

∂a1,Nu

≡ ai,27
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a1,Nu

; ` = 1; i = 1, ..., I; j = 27,

(E.340)

where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50) and ∂Nu(Re,α)
∂a1,Nu

was defined

previously in Eq. (E.54).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(28) : a2,Nu are as follows:

∂N
(i)
1

∂α(28)
=

∂N
(i)
1

∂a2,Nu

≡ ai,28
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a2,Nu

; ` = 1; i = 1, ..., I; j = 28,

(E.341)
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where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50) and ∂Nu(Re,α)
∂a2,Nu

was defined

previously in Eq. (E.57).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(29) : a3,Nu are as follows:

∂N
(i)
1

∂α(29)
=

∂N
(i)
1

∂a3,Nu

≡ ai,29
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a3,Nu

; ` = 1; i = 1, ..., I; j = 29,

(E.342)

where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50) and ∂Nu(Re,α)
∂a3,Nu

was defined

previously in Eq. (E.60).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(30) : Wdkx are as follows:

∂N
(i)
1

∂α(30)
=

∂N
(i)
1

∂Wdkx

≡ ai,30
1 = 0; ` = 1; i = 1, ..., I; j = 30. (E.343)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(31) : Wdky are as follows:

∂N
(i)
1

∂α(31)
=

∂N
(i)
1

∂Wdky

≡ ai,31
1 = 0; ` = 1; i = 1, ..., I; j = 31. (E.344)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(32) : ∆zdk are as follows:

∂N
(i)
1

∂α(32)
=

∂N
(i)
1

∂∆zdk
≡ ai,32

1 = 0; ` = 1; i = 1, ..., I; j = 32. (E.345)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(33) : ∆zfan are as follows:

∂N
(i)
1

∂α(33)
=

∂N
(i)
1

∂∆zfan
≡ ai,33

1 = 0; ` = 1; i = 1, ..., I; j = 33. (E.346)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(34) : Dfan are as follows:

∂N
(i)
1

∂α(34)
=

∂N
(i)
1

∂Dfan

≡ ai,34
1 = 0; ` = 1; i = 1, ..., I; j = 34, (E.347)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(35) : ∆zfill are as follows:

∂N
(i)
1

∂α(35)
=

∂N
(i)
1

∂∆zfill
≡ ai,35

1 = 0; ` = 1; i = 1, ..., I; j = 35. (E.348)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(36) : ∆zrain are as follows:

∂N
(i)
1

∂α(36)
=

∂N
(i)
1

∂∆zrain
≡ ai,36

1 = 0; ` = 1; i = 1, ..., I; j = 36. (E.349)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(37) : ∆zbs are as follows:

∂N
(i)
1

∂α(37)
=
∂N

(i)
1

∂∆zbs
≡ ai,37

1 = 0; ` = 1; i = 1, ..., I; j = 37. (E.350)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(38) : ∆zde are as follows:

∂N
(i)
1

∂α(38)
=

∂N
(i)
1

∂∆zde
≡ ai,38

1 = 0; ` = 1; i = 1, ..., I; j = 38. (E.351)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(39) : Dh are as follows:

∂N
(i)
1

∂α(39)
=
∂N

(i)
1

∂Dh

≡ ai,39
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂Dh

;

` = 1; i = 1, ..., I; j = 39,

(E.352)

where ∂M(ma,α)
∂Dh

was defined previously in Eq. (E.72).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(40) : Afill are as follows:

∂N
(i)
1

∂α(40)
=
∂N

(i)
1

∂Afill
≡ ai,40

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂Afill
;

` = 1; i = 1, ..., I; j = 40,

(E.353)

where ∂M(ma,α)
∂Afill

was defined previously in Eq. (E.75).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(41) : Asurf are as follows:

∂N
(i)
1

∂α(41)
=

∂N
(i)
1

∂Asurf
≡ ai,41

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂Asurf
;

` = 1; i = 1, ..., I; j = 41,

(E.354)

where ∂M(ma,α)
∂Asurf

was defined previously in Eq. (E.78).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(42) : Pr are as follows:

∂N
(i)
1

∂α(42)
=
∂N

(i)
1

∂ Pr
≡ ai,42

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂ Pr
;

` = 1; i = 1, ..., I; j = 42,

(E.355)
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where ∂M(ma,α)
∂ Pr

was defined previously in Eq. (E.81).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(43) : wtsa are as follows:

∂N
(i)
1

∂α(43)
=
∂N

(i)
1

∂wtsa
≡ ai,43

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂wtsa
;

` = 1; i = 1, ..., I; j = 43,

(E.356)

where ∂M(ma,α)
∂wtsa

was defined in Eq. (E.84).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(44) : mw,in are as follows:

∂N
(1)
1

∂α(44)
=

∂N
(1)
1

∂mw,in

≡ a1,44
1 = −1; ` = 1; i = 1; j = 44, (E.357)

∂N
(i)
1

∂α(44)
=

∂N
(i)
1

∂mw,in

≡ ai,44
1 = 0; ` = 1; i = 2, ..., I; j = 44. (E.358)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(45) : Ta,in are as follows:

∂N
(i)
1

∂α(45)
=
∂N

(i)
1

∂Ta,in
≡ ai,45

1 = 0; ` = 1; i = 1, ..., I; j = 45. (E.359)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(46) : ωin are as follows:

∂N
(i)
1

∂α(46)
=
∂N

(i)
1

∂ωin
≡ ai,46

1 = 0; ` = 1; i = 1, ..., I; j = 46. (E.360)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.25) - (2.27)]

with respect to the parameter α(47) : Sc are as follows:

∂N
(i)
1

∂α(47)
=
∂N

(i)
1

∂Sc
≡ ai,47

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− P
(i)
vs (T

(i)
a ,α)

T
(i)
a

]
∂M(ma,α)

∂Sc
;

` = 1; i = 1, ..., I; j = 47,

(E.361)

where ∂M(ma,α)
∂Sc

was defined previously in Eq. (E.91).

E.3 Derivatives of the Model Equations with re-

spect to the Model Parameters for Case 2:

Fan Off, Unsaturated Air Conditions

The differences between the governing equations for case 1a and case 2 are

only in the “liquid continuity equations”. Other governing equations (i.e., liquid

energy balance equations; water vapor continuity equations; air/water vapor en-

ergy balance equations; mechanical energy equation) are the same for both cases,

and their derivatives in Subsections E.1.2 through E.1.5. Therefore for case 2,

only the derivatives of the “liquid continuity equations” with respect to parame-

ters are derived as follows, since the derivatives of other governing equations with

respect to parameters are the same as that of case 1a.

The notation used will be the following:

ai,j1 ≡
∂N

(i)
1

∂α(j)
; i = 1, ..., I; j = 1, ..., Nα. (E.362)
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E.3.1 Derivatives of the liquid continuity equations with

respect to the parameters

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(1) : Tdb are as follows:

∂N
(i)
1

∂α(1)
=
∂N

(i)
1

∂Tdb
≡ ai,11 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂Tdb
. ` = 1; i = 1, ..., I; j = 1,

(E.363)

where ∂M(ma,α)
∂Dav(Tdb,α)

and ∂Dav(Tdb,α)
∂Tdb

were defined in Eqs. (E.3) and (E.4), respectively.

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(2) : Tdp are as follows:

∂N
(i)
1

∂α(2)
=
∂N

(i)
1

∂Tdp
≡ ai,21 = 0; ` = 1; i = 1, ..., I; j = 2. (E.364)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(3) : Tw,in are as follows:

∂N
(1)
1

∂α(3)
=
∂N

(1)
1

∂Tw,in
≡ a1,3

1 = 0; ` = 1; i = 1; j = 3, (E.365)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(4) : Patm are as follows:

∂N
(i)
1

∂α(4)
=
∂N

(i)
1

∂Patm
≡ ai,41 = −M(ma,α)

R

ω(i)

T
(i)
a (0.622 + ω(i))

;

` = 1; i = 1, ..., I; j = 4,

(E.366)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(5) : Vw are as follows:

∂N
(i)
1

∂α(5)
=
∂N

(i)
1

∂Vw
≡ ai,51 = 0; ` = 1; i = 1, ..., I; j = 5, (E.367)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(6) : ksum are as follows:

∂N
(i)
1

∂α(6)
=
∂N

(i)
1

∂ksum
≡ ai,61 = 0; ` = 1; i = 1, ..., I; j = 6. (E.368)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(7) : µ are as follows:

∂N
(i)
1

∂α(7)
=
∂N

(i)
1

∂µ
≡ ai,71 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂µ
;

` = 1; i = 1, ..., I; j = 7.

(E.369)

where ∂M(ma,α)
∂µ

was defined in Eq. (E.13).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(8) : ν are as follows:

∂N
(i)
1

∂α(8)
=
∂N

(i)
1

∂ν
≡ ai,81 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂ν
;

` = 1; i = 1, ..., I; j = 8.

(E.370)

where ∂M(ma,α)
∂ν

was defined in Eq. (E.16).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(9) : kair are as follows:

∂N
(i)
1

∂α(9)
=
∂N

(i)
1

∂kair
≡ ai,91 = 0; ` = 1; i = 1, ..., I; j = 9. (E.371)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(10) : fht are as follows:

∂N
(i)
1

∂α(10)
=
∂N

(i)
1

∂fht
≡ ai,10

1 = 0; ` = 1; i = 1, ..., I; j = 10. (E.372)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(11) : fmt are as follows:

∂N
(i)
1

∂α(11)
=
∂N

(i)
1

∂fmt
≡ ai,11

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma,α)

∂fmt
;

` = 1; i = 1, ..., I; j = 11.

(E.373)

where ∂M(ma,α)
∂fmt

was defined in Eq. (E.21).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(12) : f are as follows:

∂N
(i)
1

∂α(12)
=
∂N

(i)
1

∂f
≡ ai,12

1 = 0; ` = 1; i = 1, ..., I; j = 12. (E.374)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(13) : a0 are as follows:

∂N
(i)
1

∂α(13)
=
∂N

(i)
1

∂a0

≡ ai,13
1 =

M(ma,α)

R

1

T
(i+1)
w

∂P
(i+1)
vs (T

(i+1)
w ,α)

∂a0

;

` = 1; i = 1, ..., I; j = 13.

(E.375)

where

∂P
(i+1)
vs (T

(i+1)
w ,α)

∂a0

= P (i+1)
vs (T (i+1)

w ,α). (E.376)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(14) : a1 are as follows:

∂N
(i)
1

∂α(14)
=
∂N

(i)
1

∂a1

≡ ai,14
1 =

M(ma,α)

R

1

T
(i+1)
w

∂P
(i+1)
vs (T

(i+1)
w ,α)

∂a1

;

` = 1; i = 1, ..., I; j = 14.

(E.377)

where

∂P
(i+1)
vs (T

(i+1)
w ,α)

∂a1

=
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

. (E.378)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(15) : a0,cpa are as follows:

∂N
(i)
1

∂α(15)
=

∂N
(i)
1

∂a0,cpa

≡ ai,15
1 = 0; ` = 1; i = 1, ..., I; j = 15. (E.379)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(16) : a1,cpa are as follows:

∂N
(i)
1

∂α(16)
=

∂N
(i)
1

∂a1,cpa

≡ ai,16
1 = 0; ` = 1; i = 1, ..., I; j = 16. (E.380)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(17) : a2,cpa are as follows:

∂N
(i)
1

∂α(17)
=

∂N
(i)
1

∂a2,cpa

≡ ai,17
1 = 0; ` = 1; i = 1, ..., I; j = 17. (E.381)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(18) : a0,Dav are as follows:

∂N
(i)
1

∂α(18)
=

∂N
(i)
1

∂a0,Dav

≡ ai,18
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a0,Dav

; ` = 1; i = 1, ..., I; j = 18.

(E.382)
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where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and ∂Dav(Tdb,α)
∂a0,Dav

was defined

previously in Eq. (E.34).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(19) : a1,Dav are as follows:

∂N
(i)
1

∂α(19)
=

∂N
(i)
1

∂a1,Dav

≡ ai,19
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a1,Dav

; ` = 1; i = 1, ..., I; j = 19.

(E.383)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and ∂Dav(Tdb,α)
∂a1,Dav

was defined

previously in Eq. (E.37).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(20) : a2,Dav are as follows:

∂N
(i)
1

∂α(20)
=

∂N
(i)
1

∂a2,Dav

≡ ai,20
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a2,Dav

; ` = 1; i = 1, ..., I; j = 20.

(E.384)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and ∂Dav(Tdb,α)
∂a2,Dav

was defined

previously in Eq. (E.40).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(21) : a3,Dav are as follows:

∂N
(i)
1

∂α(21)
=

∂N
(i)
1

∂a3,Dav

≡ ai,21
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Dav(Tdb,α)
· ∂Dav(Tdb,α)

∂a3,Dav

; ` = 1; i = 1, ..., I; j = 21.

(E.385)

where ∂M(ma,α)
∂Dav(Tdb,α)

was defined previously in Eq. (E.3), and ∂Dav(Tdb,α)
∂a3,Dav

was defined

previously in Eq. (E.43).
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(22) : a0f are as follows:

∂N
(i)
1

∂α(22)
=
∂N

(i)
1

∂a0f

≡ ai,22
1 = 0; ` = 1; i = 1, ..., I; j = 22. (E.386)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(23) : a1f are as follows:

∂N
(i)
1

∂α(23)
=
∂N

(i)
1

∂a1f

≡ ai,23
1 = 0; ` = 1; i = 1, ..., I; j = 23. (E.387)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(24) : a0g are as follows:

∂N
(i)
1

∂α(24)
=
∂N

(i)
1

∂a0g

≡ ai,24
1 = 0; ` = 1; i = 1, ..., I; j = 24. (E.388)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(25) : a1g are as follows:

∂N
(i)
1

∂α(25)
=
∂N

(i)
1

∂a1g

≡ ai,25
1 = 0; ` = 1; i = 1, ..., I; j = 25. (E.389)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(26) : a0,Nu are as follows:

∂N
(i)
1

∂α(26)
=

∂N
(i)
1

∂a0,Nu

≡ ai,26
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a0,Nu

; ` = 1; i = 1, ..., I; j = 26.

(E.390)

where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50), and ∂Nu(Re,α)
∂a0,Nu

was defined

previously in Eq. (E.51).
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(27) : a1,Nu are as follows:

∂N
(i)
1

∂α(27)
=

∂N
(i)
1

∂a1,Nu

≡ ai,27
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a1,Nu

; ` = 1; i = 1, ..., I; j = 27.

(E.391)

where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50), and ∂Nu(Re,α)
∂a1,Nu

was defined

previously in Eq. (E.54).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(28) : a2,Nu are as follows:

∂N
(i)
1

∂α(28)
=

∂N
(i)
1

∂a2,Nu

≡ ai,28
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a2,Nu

; ` = 1; i = 1, ..., I; j = 28.

(E.392)

where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50), and ∂Nu(Re,α)
∂a2,Nu

was defined

previously in Eq. (E.57)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(29) : a3,Nu are as follows:

∂N
(i)
1

∂α(29)
=

∂N
(i)
1

∂a3,Nu

≡ ai,29
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w ,α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]

· ∂M(ma,α)

∂Nu(Re,α)

∂Nu(Re,α)

∂a3,Nu

; ` = 1; i = 1, ..., I; j = 29.

(E.393)

where ∂M(ma,α)
∂Nu(Re,α)

was defined previously in Eq. (E.50), and ∂Nu(Re,α)
∂a3,Nu

was defined

previously in Eq. (E.60).
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(30) : Wdkx are as follows:

∂N
(i)
1

∂α(30)
=

∂N
(i)
1

∂Wdkx

≡ ai,30
1 = 0; ` = 1; i = 1, ..., I; j = 30. (E.394)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(31) : Wdky are as follows:

∂N
(i)
1

∂α(31)
=

∂N
(i)
1

∂Wdky

≡ ai,31
1 = 0; ` = 1; i = 1, ..., I; j = 31. (E.395)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(32) : ∆zdk are as follows:

∂N
(i)
1

∂α(32)
=

∂N
(i)
1

∂∆zdk
≡ ai,32

1 = 0; ` = 1; i = 1, ..., I; j = 32. (E.396)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(33) : ∆zfan are as follows:

∂N
(i)
1

∂α(33)
=

∂N
(i)
1

∂∆zfan
≡ ai,33

1 = 0; ` = 1; i = 1, ..., I; j = 33. (E.397)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(34) : Dfan are as follows:

∂N
(i)
1

∂α(34)
=

∂N
(i)
1

∂Dfan

≡ ai,34
1 = 0; ` = 1; i = 1, ..., I; j = 34, (E.398)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(35) : ∆zfill are as follows:

∂N
(i)
1

∂α(35)
=

∂N
(i)
1

∂∆zfill
≡ ai,35

1 = 0; ` = 1; i = 1, ..., I; j = 35. (E.399)
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The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(36) : ∆zrain are as follows:

∂N
(i)
1

∂α(36)
=

∂N
(i)
1

∂∆zrain
≡ ai,36

1 = 0; ` = 1; i = 1, ..., I; j = 36. (E.400)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(37) : ∆zbs are as follows:

∂N
(i)
1

∂α(37)
=
∂N

(i)
1

∂∆zbs
≡ ai,37

1 = 0; ` = 1; i = 1, ..., I; j = 37. (E.401)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(38) : ∆zde are as follows:

∂N
(i)
1

∂α(38)
=

∂N
(i)
1

∂∆zde
≡ ai,38

1 = 0; ` = 1; i = 1, ..., I; j = 38. (E.402)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(39) : Dh are as follows:

∂N
(i)
1

∂α(39)
=
∂N

(i)
1

∂Dh

≡ ai,39
1 =

1

R

[
P

(i+1)
vs (T

(i+1)
w , α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma, α)

∂Dh

;

` = 1; i = 1, ..., I; j = 39.

(E.403)

where ∂M(ma,α)
∂Dh

was defined previously in Eq. (E.72).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(40) : Afill are as follows:

∂N
(i)
1

∂α(40)
=
∂N

(i)
1

∂Afill
≡ ai,40

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w , α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma, α)

∂Afill
;

` = 1; i = 1, ..., I; j = 40.

(E.404)
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where ∂M(ma,α)
∂Afill

was defined previously in Eq. (E.75).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(41) : Asurf are as follows:

∂N
(i)
1

∂α(41)
=

∂N
(i)
1

∂Asurf
≡ ai,41

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w , α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma, α)

∂Asurf
;

` = 1; i = 1, ..., I; j = 41.

(E.405)

where ∂M(ma,α)
∂Asurf

was defined previously in Eq. (E.78).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(42) : Pr are as follows:

∂N
(i)
1

∂α(42)
=
∂N

(i)
1

∂ Pr
≡ ai,42

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w , α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma, α)

∂ Pr
;

` = 1; i = 1, ..., I; j = 42.

(E.406)

where ∂M(ma,α)
∂ Pr

was defined previously in Eq. (E.81).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(43) : wtsa are as follows:

∂N
(i)
1

∂α(43)
=
∂N

(i)
1

∂wtsa
≡ ai,43

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w , α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma, α)

∂wtsa
;

` = 1; i = 1, ..., I; j = 43.

(E.407)

where ∂M(ma,α)
∂wtsa

was defined in Eq. (E.84).

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(44) : mw,in are as follows:

∂N
(1)
1

∂α(44)
=

∂N
(1)
1

∂mw,in

≡ a1,44
1 = −1; ` = 1; i = 1; j = 44, (E.408)
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∂N
(i)
1

∂α(44)
=

∂N
(i)
1

∂mw,in

≡ ai,44
1 = 0; ` = 1; i = 2, ..., I; j = 44. (E.409)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(45) : Ta,in are as follows:

∂N
(i)
1

∂α(45)
=
∂N

(i)
1

∂Ta,in
≡ ai,45

1 = 0; ` = 1; i = 1, ..., I; j = 45. (E.410)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(46) : ωin are as follows:

∂N
(i)
1

∂α(46)
=
∂N

(i)
1

∂ωin
≡ ai,46

1 = 0; ` = 1; i = 1, ..., I; j = 46. (E.411)

The derivatives of the “liquid continuity equations” [cf. Eqs. (2.38) - (2.40)]

with respect to the parameter α(47) : Sc are as follows:

∂N
(i)
1

∂α(47)
=
∂N

(i)
1

∂Sc
≡ ai,47

1 =
1

R

[
P

(i+1)
vs (T

(i+1)
w , α)

T
(i+1)
w

− ω(i)Patm

(0.622 + ω(i))T
(i)
a

]
∂M(ma, α)

∂Sc
;

` = 1; i = 1, ..., I; j = 47.

(E.412)

where ∂M(ma,α)
∂Sc

was defined previously in Eq. (E.91).
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