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INTRODUCTION 

1. OXIDATIVE BURST AND THE ROLE OF 

FLAVONOIDS 
 

Oxidative burst (OB) can be used as a reliable measure of the innate immune response of a host, 

which constitutes the first line of defense against invading pathogens. An increased OB is a 

common feature during sepsis [Martins PS et al.], bacterial acute exacerbation of chronic 

obstructive pulmonary disease [Vaitkus M et al.] and in children with the periodic fever, aphthous 

stomatitis, pharyngitis, and cervical adenitis syndrome [Sundqvist M et al.]. On the other hand, the 

evaluation of OB is particularly relevant in conditions associated with an increased risk of infection 

such as X-linked chronic granulomatous disease [Yamada M et al.], autoimmune neutropenia 

[Macey MG et al.], human immunodeficiency virus type 1 (HIV-1) infection [Shalekoff S et al.], as 

well as in preeclamptic neutropenic neonates [Ahmad M et al.]. The OB of leukocytes has been also 

studied in autoimmune diseases [Ferretti G et al.], inflammatory condition [Bertelli R et al.] and 

cancer [Mikirova NA et al.]. Recently, interest has grown on the modulation of OB in healthy 

subjects, due to the involvement of leukocytes-induced oxidation of low density lipoprotein (LDL) 

in the pathologic process of atherosclerosis: Oxidative burst is an innate immune response to 

infection, the latter being associated also with marked changes in lipid and lipoprotein metabolism, 

aimed to neutralize endotoxin toxic effects. On the other hand, lipid overload may increase 

lipopolysaccharide circulating levels and oxidative stress. Whilst these changes may be beneficial 

from the perspective of host defense, if they become chronic, they likely increase the risk of 

atherosclerosis. In particular, oxidation of lipoproteins, resulting from an imbalance of the pro- and 

anti-oxidant equilibrium, is involved in the pathologic process of atherosclerosis, changing cellular 

functions. Lipid oxidation, induced by leukocytes derived reactive oxygen species, can amplify 

foam cell formation through oxidized LDL (oxLDL) formation and uptake [Peluso I, Morabito G et 

al.]. In this context, human studies provide strong evidence that adherence to a dietary regime high 

in polyphenol-rich foods induces an increase of the plasma antioxidant defences: dietary 

intervention studies have shown that consumption of plant foods is able to modulate plasma Non-

Enzymatic Antioxidant Capacity (NEAC) in human subjects. However, mainly due to the wide 

number of phytochemicals potentially involved, the identification of the exogenous molecules able 

to tune antioxidant defences is far to be obtained. In recent years, epidemiological and experimental 

evidence has mounted on previously unrecognized properties of a large group of phytochemicals, 

such as PolyPhenols (PP) [Serafini M et al. 2011]. Besides, flavonoids, the most common group of 

plant polyphenols present in fruits, vegetables and beverages derived from plants, have been also 

suggested as anti-inflammatory and immune-modulating compounds: the antiinflammatory actions 

of flavonoids in vitro or in cellular models involve the inhibition of the synthesis and activities of 

different pro-inflammatory mediators such as eicosanoids, cytokines, adhesion molecules and C-

reactive protein. Molecular activities of flavonoids include inhibition of transcription factors such as 

NF-kB and activating protein-1 (AP-1), as well as activation of nuclear factor-erythroid 2-related 

factor 2 (Nrf2) [Serafini M et al. 2010]. However, in vitro and in vivo findings concerning the 

effects of these bioactive compounds on OB are conflicting [Peluso I, Miglio C et al.]. Granulocytes 

have been used in a variety of detection methods developed to measure OB [Freitas M et al.]. In this 

context, flow cytometry represents an interesting methodologic approach to assess the functional 

status of leukocytes and has provided many new insights into the relationships among cell surface 

features and intracellular processes, such as cytokine and reactive oxygen species (ROS) production 

[Elbim C et al.]: Flow cytometric analysis provides a rapid screen for abnormalities of 
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polymorphonuclear neutrophil (PMN) function and reflect their behavior in vivo more accurately. 

PMN are key components of the first line of defense against bacterial and fungal pathogens. They 

contribute to the early innate response by rapidly migrating to inflamed tissues, where their 

activation triggers microbicidal mechanisms such as the release of proteolytic enzymes and 

antimicrobial peptides as well as rapid production of ROS in what is called the OB. ROS are 

essential for bacterial killing and also potentiate inflammatory reactions [Babior BM.]. PMNs are 

usually short-lived cells, which die spontaneously by necrosis or apoptosis. Apoptotic PMNs are 

recognized and phagocytosed by macrophages, a process that is essential to resolve inflammation 

[Greenberg S et al.]. In fact, this phagocytic removal of intact, apoptotic neutrophils prevents them 

from releasing their cytotoxic content into the extracellular environment, which would occur if the 

cells died by necrosis. Fine tuning of PMN responses to inflammatory stimuli is necessary for 

appropriate functional activity. In this context, the major advantage of flow cytometry (FCM) is that 

the majority of neutrophil functions can be measured in whole blood, which reduces artifactual 

changes in function caused by purification procedures [Macey MG et al.]. Elbim C. et al. 

demonstrated the utility of whole-blood analysis using FCM for a better understanding of PMN 

functionality, i.e., tuning PMN responses to inflammatory stimuli. Finally, FCM permits a 

simultaneous analysis of phenotypic, functional and morphometric parameters assessing whole-

blood PMN apoptosis, in particular in response to Toll-like receptor agonists and during simian 

immunodeficiency virus infection [Elbim C et al.]. In particular, the intracellular dihydrorhodamine 

123 (DHR123) is one of the major probes used to evaluate the OB of leukocytes: so, a laser dye for 

ROS production studies is dihydrorhodamine 123 [Bitzinger DI et al.]. DHR123 freely enters the 

cell membrane, and after oxidation by ROS to rhodamine 123, it emits a bright fluorescent signal. 

Since rhodamine 123 is known to bind to cellular and mitochondrial membranes, the fluorescent 

signal is mainly localized inside the cell. DHR123 is specifically responsive to hydrogen peroxide 

(H2O2) accumulation [Walrand S et al.]. It has been known for over ten years that its oxidized 

derivate rhodamine 123 (Rho123) is extruded by the multidrug resistance transport proteins (MDR) 

[Nelson EJ et al.]. Therefore, also other fluorescent intracellular probes could be substrate of the 

MDR, due to their molecular mass and structure [Kimura Y et al.]. In humans, common metabolism 

and MDR-mediated transport of flavonoids and xenobiotics may raise concern about bioavailability 

and absorption of therapeutic drugs [Cermak R.]: polyphenols are substrates of enzymes like 

cytochrome P450 enzymes and phase II conjugation enzymes, as well as of drug transporters 

involved in drug excretion. Thus, they share the same metabolic pathways with many therapeutic 

drugs. A number of studies have demonstrated inhibition of various cytochrome P450 

monooxygenases and drug transporters by flavonoids. Flavonoid-induced effects on drug 

bioavailability were also shown. 

On the other hand, the effects of flavonoid ingestion on xenobiotic transporters expression and 

activity can contribute to the extrusion of undesired molecules such as carcinogens [Brand W et al.]: 

the transcellular transport of ingested food ingredients across the intestinal epithelial barrier is an 

important factor determining bioavailability upon oral intake. This transcellular transport of many 

chemicals, food ingredients, drugs or toxic compounds over the intestinal epithelium can be highly 

dependent on the activity of membrane bound ATP binding cassette (ABC) transport proteins, able 

to export the compounds from the intestinal cells; the flavonoid-mediated interactions at the level of 

the intestinal ABC transport proteins may be an important mechanism for unexpected food-drug, 

food-toxin or food-food interactions. Therefore, flavonoids could modulate the MDR mediated 

transport of fluorescent probes. Moreover, flavonoids could interfere also with intracellular esterase 

activity needed for the staining of fluorescent probes [Li P et al.], and their antioxidant properties in 

humans [Serafini M et al. 2011] could inhibit the oxidation of probes without affecting the OB of 

leukocytes. In this context, an unexplored topic is the interaction of flavonoids with fluorescent 

intracellular probes and the methodological implications in the evaluation of OB by flow cytometry. 
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Therefore, we aimed to point out this aspect in this review article, particularly relevant in nutritional 

intervention studies. 

 

1.1. FLAVONOIDS BIOAVILABILITY AND INTERACTION WITH 

TRANSPORTERS 

Flavonoids are a wide group of almost 5,000 secondary plant metabolites, sharing a common carbon 

skeleton of two benzene rings, joined by a 3-carbon bridge [ Peluso I, Manafikhi H, Reggi R, 

Palmery M. 2014]. The distribution in food, the structural differences and the metabolism of 

flavonoids have been previously reviewed by several authors [Del Rio D et al.]: Flavonoids are 

polyphenolic compounds comprising 15 carbons with two aromatic rings connected by a three-

carbon bridge (Fig. 1.1). The main subclasses of these C6–C3–C6 compounds are the flavones, 

flavonols, flavan-3-ols, isoflavones, flavanones, and anthocyanidins. Other flavonoid groups that 

are more minor dietary components are the chalcones, dihydrochalcones, dihydroflavonols, flavan-

3,4-diols, coumarins, and aurones. The basic flavonoid skeleton can have numerous substituents. 

The majority of flavonoids occur naturally as glycosides rather than aglycones. 

 

 

Figure 1.1 Structure of the flavonoid skeleton.  [Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges 

G, Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects 

against chronic diseases. Antioxid Redox Signal 2013;18:1818-1892] 

After the acute ingestion, absorption of some, but by no means all, components into the circulatory 

system occurs in the small intestine. Typically, the absorption of flavonoid glycosides, as illustrated 

in Figure 1.2, is associated with cleavage and release of the aglycone as a result of the action of 

lactase phloridzin hydrolase (LPH) in the brush border of the small intestine epithelial cells. LPH 

exhibits broad substrate specificity for flavonoid-O-b-D-glucosides, and the released aglycone may 
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then enter the epithelial cells by passive diffusion as a result of its increased lipophilicity and its 

proximity to the cellular membrane [Day AJ et al.]. An alternative hydrolytic step is mediated by a 

cytosolic b-glucosidase (CBG) within the epithelial cells. For CBG-catalyzed hydrolysis to occur, 

the polar glucosides must be transported into the epithelial cells, possibly with the involvement of 

the active sodium-dependent glucose transporter 1 (SGLT1) [Gee JM et al.]. Thus, there are two 

possible routes by which the glycoside conjugates are hydrolyzed, and the resultant aglycones 

appear in the epithelial cells, namely LPH/diffusion and transport/CBG (Fig. 1.2). However, an 

investigation in which SGLT1 was expressed in Xenopus laevis oocytes has shown that at least in 

this model system, SLGT1 does not transport flavonoids, and that glycosylated flavonoids and some 

aglycones have the capability to inhibit the glucose transporter [Del Rio D et al.]. Using Caco-2 

cells, Johnson et al. [Johnson K et al.] found that glucose uptake into cells under sodium-dependent 

conditions was inhibited by flavonoid glycosides and non-glycosylated polyphenols, whereas 

aglycones and phenolic acids were without effect. Before passage into the blood stream, the 

aglycones undergo some degree of phase II metabolism forming sulfate, glucuronide, and/or 

methylated metabolites through the respective action of sulfotransferases (SULT), uridine-5'-

diphosphate glucuronosyltransferases (UGT), and catechol-O-methyltransferases (COMTs). There 

is also efflux of some of the metabolites back into the lumen of the small intestine, and this is 

thought to involve members of the adenosine triphosphate-binding cassette (ABC) family of 

transporters, including multidrug resistance protein (MRP) and P-glycoprotein (Pgp) (Fig. 1.2). 

MRP-3 and the glucose transporter GLUT2 have also been implicated in the efflux of metabolites 

from the basolateral membrane of the enterocytes. Once in the portal bloodstream, metabolites 

rapidly reach the liver, where they can be subjected to further phase II metabolism, and 

enterohepatic recirculation may result in some recycling back to the small intestine through bile 

excretion [Del Rio D et al.]. 

 

 
 

Figure 1.2 Proposed mechanisms for the absorption and metabolism of (poly)phenolic compounds in the small 

intestine. CBG, cytosolic bglucosidase; COMT, catechol-O-methyl transferase; GLUT2, glucose transporter; LPH, 

lactase phloridzin hydrolase; MRP1-2–3, multidrug-resistant proteins; PP, (poly)phenol aglycone; PP-gly, (poly)phenol 

glycoside, PP-met, polyphenol sulfate/glucuronide/methyl metabolites; SGLT1, sodiumdependent glucose transporter; 
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SULT, sulfotransferase; UGT, uridine-5’-diphosphate glucuronosyltransferase [Del Rio D, Rodriguez-Mateos A, 

Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, 

and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013;18:1818-1892] 

 

Table 1.1 describes the main dietary sources and the circulating concentrations in humans of the six 

major subclasses of flavonoids. Although data on bioavailability indicate a limited absorption of 

flavonoids, great metabolic variability among different compounds has been observed, depending 

upon chemical structures [Simons AL et al.]. Their metabolism generally starts in the lumen of the 

small intestine, but evidence suggests that absorption at gastric level for the aglycone forms is also 

possible [Crespy V et al.]. Metabolic activities have been observed also in the oral cavity, such as 

degalloylation of flavanol gallate esters previous to absorption through the oral mucosa [Spencer JP. 

2003]. 

 

Subclass: Food or beverage content 

(mg/100 g or 100 ml): 

Plasma 

levels: 

Plasma 

metabolite 

levels: 

Flavonols: isorhamnetin, 

kaempferol, morin, myricetin, 

rutin, quercetin 

Spinach, Yellow and red 

onions 

10−7 to 

10−6 M 

10−8 to 10−7 M 

Flavanones: hesperetin, naringenin Citrus and grape juices 10−8 to 

10−6 M 

n.d. to 10−7 M 

Flavanols: catechins, procyanidins Black and green tea, Dark 

chocolate and cocoa (1,500–

3,400) 

10−8 to 

10−7 M 

10−8 to 10−4 M 

Isoflavones: daidzein, genistein Soy products (200-400) 10−8 to 

10−6 M 

10−8 to 10−7 M 

Anthocyanins: cyaniding, 

pelargonidin 

Black grape and strawberry, 

Black berry fruits (595–

1,316) 

10−9 to 

10−8 M 

n.d. to 10−7 M 

 

Table 1.1 Food content and bioavilability of flavonoids. [Peluso I, Manafikhi H, Reggi R, Palmery M. Interference of 

flavonoids with fluorescent intracellular probes: methodological implications in the evaluation of the oxidative burst by 

flow cytometry. Cytometry A. 2014 Aug;85(8):663-77. doi: 10.1002/cyto.a.22490. Epub 2014 May 28. Review. 

PubMed PMID: 24889089] 

Once absorbed, flavonoids are targeted to as xenobiotics and metabolized by Phase I [(cytochrome 

P450 (CYP450)] and phase II (conjugation) drug metabolism enzymes so as to be eliminated. 

Metabolism of flavonoids by CYP450 isoemzimes, such as CYP1, CYP2, and CYP3, has been 

reported [Del Rio D et al.]. Besides, flavonoids undergo an extensive phase II metabolism during 

transfer from the intestinal lumen to the circulatory stream, resulting in sulfate, glucuronide and/or 

methylated conjugates [Spencer JP et al. 1999]. Phase II metabolism enzymes, comprising SULT, 

UGT and COMT, operate conjugation of flavonoids [O’Leary KA et al.]. 
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Figure 1.3 Proposed mechanism of quercetin-7-glucuronide uptake and metabolism in mammalian liver. 

Quercetin-7-glucuronide enters into the hepatocyte by an unidentified transporter. Metabolism of the glucuronide 

involves deglucuronidation by β-glucuronidase, methylation by the enzyme COMT, possible re-glucuronidation by the 

enzyme UGT and sulfation by sulfotransferase (ST). Quercetin (derived from deglucuronidation of quercetin-7-

glucuronide) can be additionally glucuronidated at different positions but this reaction was only seen for quercetin 

glucuronides when they were incubated with a COMT inhibitor in HepG2 cells. A comparable metabolic pathway for 

quercetin-3-glucuronide is also proposed [O’Leary KA, Day AJ, Needs PW, Mellon FA, O’Brien NM, Williamson G. 

Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human beta-

glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid 

metabolism. Biochem Pharmacol 2003;65:479-491] 

Figure 1.3 illustrates the possible reactions of quercetin-7-glucuronide that could occur in vivo, 

illustrating a route for deconjugation by β-glucuronidase, methylation, glucuronidation and 

sulfation. O’Leary KA et al. proposed that β-glucuronidase present in liver cells will hydrolyse the 

quercetin glucuronide to the free aglycone and that this deglucuronidation reaction does not occur 

extracellularly. Under some conditions, quercetin-7-glucuronide can be deglucuronidated and may 

be re-glucuronidated at the 4′-position, and this reaction also occurs with quercetin. Methylation is 

likely to be in the 3′- or 4′-position in the liver, with the position of sulfation in the 3′-position for 

quercetin. So, O’Leary KA et al. concluded that β-glucuronidase present in human liver cells is 

capable of hydrolysing quercetin glucuronides that enter the liver cell [O’Leary KA et al.]. 
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It has been observed that, while sulfation mainly occurs in the liver, glucuronides and methylated 

conjugates are primarily generated in the enterocytes, prior to further conjugation in the hepatocytes 

[Manach C et al.]. 

Not all the flavonoids and related compounds are absorbed in the small intestine, but some of them 

reach the large intestine, where undergo metabolism by the colonic micro-flora, including 

hydrolysis, dehydroxylation, demethylation, ring cleavage, decarboxylation and deconjugation 

[Stockley C et al.]. Microbial metabolism includes also the breakdown of the flavonoid backbone to 

form simple phenolic acids and hydroxycinnamates, which can be absorbed in the circulatory 

system [Spencer JP. 2003]. Once in the blood stream, flavonoid metabolites circulate bound to 

proteins, in particular to albumin, possibly affecting the rate of clearance of metabolites and their 

delivery to cells and tissues [Manach C et al.]. Most of the absorbed metabolites are subject to 

urinary excretion, but it is possible that part of them is recycled back into the small intestine through 

the enterohepatic transport. It is believed that extensively conjugated metabolites are eliminated 

through the bile, while the smaller ones are preferentially eliminated in urine [D’Archivio M et al.]. 

Flavonoids interact with transporters of the phase III drug detoxifing system, mainly Pgp 

[Passamonti S et al.], the MRP [Nait Chabane M et al.], the Breast Cancer Resistance Protein 

(BCRP) [Brand W et al.], but also with the Organic Anion-Transporters (OAT) [Nait Chabane M et 

al.] and the monocarboxylate transporter 1 (MCT-1) [Shim CK et al.]. These transporters are 

characterized by low substrate specificity and have been suggested to be responsible for the 

extrusion of flavonoids [Nait Chabane M et al.], glucosides [Walgren RA et al.] and glucuronidate- 

and sulfateconjugates [O’Leary KA et al.]. 

However, the efflux and influx of flavonoids, mediated by these transporters, depend on the 

polyphenols’ structure. In Caco-2 cells, MRP2 was involved in the efflux of epicatechin gallate 

[Vaidyanathan JB et al.], naringenin, quercetin [Nait Chabane M et al.], and quercetin 40-beta-

glucoside [Walgren RA et al.]. Naringenin, together with its glycosidic forms, is a flavanone 

abundant in grapefruit and orange; and it was secreted via Pgp and absorbed by MRP1, whereas 

quercetin was not a MRP1 and Pgp substrate but was absorbed by the OAT-B [Nait Chabane M et 

al.]. Inter-individual variations in bioavailability have been observed, probably due to drug 

metabolism/transport systems genetic polymorphisms [Ingelman-Sundberg M et al.], but also 

differences in the colonic micro-flora could affect flavonoids metabolism [Setchell KD et al.]. 

On the other hand, the effects of flavonoids on drug metabolism/transport system cause various 

food-drug interactions [Brand W et al.]. 

Transporter-mediated active efflux of cytotoxic agents is one of the best characterized mechanisms 

by which cancer cells develop MDR. Pgp, MRP1 and BCRP have been shown to confer resistance 

to a number of anti-cancer agents. However, potent and nontoxic inhibitors remain to be identified 

for clinical use in MDR reversal. Quercetin being a class of integral flavonoids in our common diet 

should have the advantage of low toxicity: infact has been suggested as a potential chemosensitizer, 

due to its MDR modulating properties [Chen C et al.]. In particular, aglycone flavonoids reduced 

the permeability of cyclosporine to a greater extent than glycosylated flavonoids across Caco-2 and 

MDCKII-MDR1 cells: in the study of Rodriguez-Proteau R et al., the hypothesis tested was that 

specific flavonoids such as epicatechin gallate, epigallocatechin gallate, genistein, genistin, 

naringenin, naringin, quercetin and xanthohumol will modulate cellular uptake and permeability of 

multidrug-resistant substrates, cyclosporin A (CSA) and digoxin, across Caco-2 and MDCKII-

MDR1 cell transport models. 3H-CSA/3H-digoxin transport and uptake experiments were 

performed with and without co-exposure of the flavonoids. Aglycone flavonoids reduced the 

permeability of CSA to a greater extent than glycosylated flavonoids with 30 mM xanthohumol 

producing the greatest effect (7.2x10–6 to 6.6x10–7 and 17.9x10–6 to 4.02x10–6 cm s–1 in Caco-2 and 

MDCKII-MDR1 cells, respectively); while no measurable effects were seen with digoxin. 

Xanthohumol significantly demonstrated: 

(1) saturable efflux 
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(2) increased uptake of 3H-digoxin 

(3) decreased uptake of 3H-CSA in the Caco-2 cells [Rodriguez-Proteau R et al.]. 

It has been proposed that quercetin effects on oral bioavailability of cyclosporine are due to its 

intestinal glucuronidate- and sulphate-conjugates [Hsiu SL et al.]. 

In rats, administration of epigallocatechin-3-gallate [Li C et al.], naringin [Ali MM et al.] and 

quercetin [Choi JS et al.] increased the bioavailability of various drugs, due to the inhibition of Pgp. 

On the other hand, the OAT-mediated transport of atorvastatin was efficiently inhibited by apigenin 

(IC(50) for OAT1A2: 9.3 μM, OATPB1: 13.9 μM), kaempferol (IC(50) for OAT1A2: 37.3 μM, 

OAT2B1: 20.7 μM) and quercetin (IC(50) for OAT1A2: 13.5 μM, OAT2B1: 14.1 μM) [Mandery K 

et al.]. To the contrary, Wang et al. reported that rutin, but not its aglicone quercetin, stimulated the 

uptake of [3H]-dehydroepiandrosterone sulfate (DHEAS) in OATP1B1-expressing HeLa cells, 

while genistein, but not its glycoside genistin, inhibited DHEAS uptake [Wang X et al.]. 

These conflicting results could be due to the differential interactions with the cytosolic and the 

transmembrane domains of MDR. It has been suggested that flavonoids interact with the substrate-

binding sites and with the nucleotide-binding domains of the transporters [Conseil G et al.]. 

Furthermore, in plasma membrane vesicles prepared from the MRP-overexpressing cell line 

GLC4/ADR, genistein and kaempferol stimulated the ATPase activity of the transporters 

[Hooijberg JH et al.]. 

Finally, in addition to being substrates of phase I, phase II, and phase III drug metabolism/transport 

systems, flavonoids are also able to modulate their expression through: 

- the activation protein-1 (AP-1) [Bark & Choi] 

- the nuclear factor kB (NF-kB) [Zhou S et al.] 

- the NF-E2 related factor 2 (Nrf2) [Maher et al.] 

- the aryl hydrocarbon receptor (AhR) [Ramadass et al.] 

- the pregnane X receptor (PXR) [Dong et al.]. 

Therefore, they could also self-regulate their own and drugs bioavailability after long-term 

consumption. 

 

1.2. MEASUREMENT OF REACTIVE SPECIES IN LEUKOCYTES AND 

PLATELETS BY FLOW CYTOMETRY 

Oxidative stress is the result of the imbalance between ROS formation and enzymatic and non-

enzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease 

status and of the health-enhancing effects of antioxidants. 

Marrocco et al. aim to discuss the major methodological bias of methods used for the evaluation of 

oxidative stress in humans [Marrocco I et al.]. There is a lack of consensus concerning the 

validation, standardization, and reproducibility of methods for the measurement of the following: 

 

(1) ROS in leukocytes and platelets by flow cytometry 

(2) markers based on ROS-induced modifications of lipids, DNA, and proteins 

(3) enzymatic players of redox status 

(4) total antioxidant capacity of human body fluids. 

 

It has been suggested that the bias of each method could be overcome by using indexes of oxidative 

stress that include more than one marker. However, the choice of the markers considered in the 

global index should be dictated by the aim of the study and its design, as well as by the clinical 

relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative 

stress in humans must come from a critical analysis of the markers that should give an overall index 

of redox status in particular conditions. 
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In humans, under physiological conditions, ROS and Reactive nitrogen species (RNS) generated by 

leukocytes, through NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS), have a 

role in the innate immune response to infection [El-Benna J et al.]. 

Polymorphonuclear neutrophils comprise more than 60% of the circulating white blood cells in 

humans. They have a central role in innate immunity and they regulate adaptive immunity. Their 

vital importance in host defense against bacteria and fungi has been known for decades as several 

functional defects result in life-threatening infections. When neutrophils encounter the pathogen, 

they first recognize evolutionary conserved motifs or ‘pathogen associated molecular patterns’ 

(PAMP), found in a wide range of microbes, through cell surface pattern recognition receptors 

(PRR), such as Toll-like receptors (TLR). Neutrophils then firmly bind to the pathogen and engulf 

it; binding and engulfment of the pathogen are promoted by opsonins bound to the pathogens, such 

as immunoglobulins G (IgG) and the C3b and C3bi proteins, resulting from antibody production 

and activation of the complement system respectively. Following recognition, the plasma 

membrane surrounds the pathogen to enclose it within a phagosome. Phagocytosis triggers the 

activation program of the neutrophils, leading to the intra-phagosomal release of antibacterial 

peptides, proteases, myeloperoxidase, and superoxide anion (O2
-•), which is produced via the 

activation of the NADPH oxidase. Superoxide anion is the initiating ‘spark’ leading to the 

generation of ROS, i.e., hydrogen peroxide (H2O2), hydroxyl radical (OH• ) and hypochlorous acid 

(HOCl), all contributing to the death and destruction of the bacteria within the phagosome (Fig. 

1.4). ROS production by the phagocytes was first referred as the ‘respiratory burst’ or ‘oxidative 

burst’ due to the rapid and cyanide-insensitive increase in oxygen uptake, increase in glucose 

consumption, and immediate ROS release. The enzyme system dedicated to O2
-• production, i.e., the 

phagocyte NADPH oxidase, a member of the NOX family of proteins also referred as NOX2, is 

composed of six proteins, two transmembrane proteins (p22phox and gp91phox) that form the 

flavocytochrome b558, and four soluble proteins (p47phox, p67phox, and p40phox and the small 

G-proteins, Rac1/2). The membrane and cytosolic components of the NOX2 are segregated in 

resting cells but assemble at the membrane upon activation (Fig. 1.4 Left). 

 

 

 
 

Figure 1.4 The active NADPH oxidase complex and ROS generation. 

(Left) The active NADPH oxidase is composed of the membrane-bound flavocytochrome b558 (gp91phox/NOX2 and 

p22phox), which binds several cytosolic proteins (p67phox, p47phox, p40phox, Rac2). (P) denotes phosphorylation. 

The activated NADPH oxidase uses cytosolic NADPH to transfer electrons (e-) via FAD onto oxygen to form 

superoxide anion (O2
-•); (Right) ROS produced by the active NADPH oxidase complex: Superoxide anion produced by 

the NADPH oxidase can react with protons to generate hydrogen peroxide (H2O2), which is used by the 

myeloperoxidase enzyme (MPO) to produce hypochlorous acid (HOCl). Superoxide can react with H2O2 to produce 

hydroxyl radical (OH•). This reaction can occur in the presence of H2O2 and metals such as Fe2+ or Cu2+. phox, 

phagocyte oxidase; ROS, reactive oxygen species. 

[El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PM. Priming of the neutrophil 

respiratory burst: role in host defense and inflammation. Immunol Rev. 2016 Sep;273(1):180-93. doi: 

10.1111/imr.12447.] 
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However, ROS and RNS can induce lipid peroxidation of polyunsaturated fatty acids (PUFA), 

which propagate via peroxyl radicals (ROO•) within the membrane, as well as in the LDL [A. 

Negre-Salvayre et al.]. Lipids, cholesterol, PUFA are a main target of oxidative attack and this leads 

to the formation and  the  accumulation  of  lipid  oxidation  products,  in  particular  oxysterols,  

hydroperoxides  and  endoperoxides.  

In the context of metabolic syndrome and chronic inflammation, the oxLDL activate leukocytes 

and/or platelets to produce ROS and RNS [Peluso I, Morabito G et al]. Lipid oxidation, induced by 

leukocytes derived reactive oxygen species, can amplify foam cell formation through oxLDL 

formation and uptake. The main enzymes, operating during oxidative burst, involved in LDL 

oxidation are NADPH oxidase and myeloperoxidase. In vitro studies have shown that oxLDL are 

able to induce many proatherogenic processes, including modulation of oxidative burst. OxLDL 

may also induce maturation of dendritic cells and regulate the shift from classical (M1) to 

alternative (M2) macrophage activation and from T helper 1 to T helper 2 response, suggesting that 

these could act as a bridge between innate and adaptative immunity, both involved in plaque 

development. 

The direct quantification of ROS/RNS is a valuable and promising biomarker that can reflect the 

disease process. However, given the short half-life of these species, their measurement in biological 

systems is a complex task. Approaches include electron spin resonance, fluorescence magnetic 

resonance, and mass spectrometry techniques [C. C. Winterbourn], but their use has been limited to 

cell cultures and other in vitro applications. 

The strategy for detecting reactive oxidants differs depending on whether they are inside or outside 

the cell. Intracellular detection normally involves flow cytometry or fluorescence microscopy, 

whereas released oxidants can be monitored in real time by fluorescence or UV/visible 

spectrophotometry, or by sampling the medium at intervals, for example by HPLC or mass 

spectrometry. Although some of the complications with probes are the same in each case, 

extracellular detection is more straightforward as conditions are much more amenable to 

manipulation to optimise detection. 

Although free radicals’ production can be measured by spectrophotometric or luminescence 

methods, all extracellular free radicals’ measurements are deeply affected by cell count and 

viability. On the other hand, flow cytometry is one of the most powerful tools for single-cell 

analysis of the immune system and it is routinely used in the diagnosis and progression evaluation 

of blood cancers and human immunodeficiency virus (HIV) infection [Marrocco I et al.]. 

In addition to the role of oxidative burst evaluation by flow cytometry in the diagnosis of chronic 

granulomatous disease, this instrumentation has been used for many years to evaluate oxidative 

burst in many conditions, such as autoimmune neutropenia and asymptomatic HIV+ individuals. 

Many fluorescent probes for the detection of reactive species have been developed in the last years, 

with a different degree of specificity and sensitivity [Gomes A et al.]. 

The scientific research in the field of ROS associated biological functions and/or deleterious effects 

is continuously requiring new sensitive and specific tools in order to enable a deeper insight on its 

action mechanisms. However, reactive species present some characteristics that make them difficult 

to detect, namely their very short lifetime and the variety of antioxidants existing in vivo, capable of 

capturing these reactive species. It is, therefore, essential to develop methodologies capable of 

overcoming this type of obstacles. Fluorescent probes are excellent sensors of ROS due to their high 

sensitivity, simplicity in data collection, and high spatial resolution in microscopic imaging 

techniques. 

The fluorescent probes used for the detection of reactive species in blood cells via flow cytometry 

are summarized in Table 1.2 [Marrocco I et al.]. 
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Probe (localization) ROS/RNS Fluorescence Leukocytes Platelets Limitations and 

confoundings 

DCFH-DA (intracellular) HO• 

ONOO− 

ROO• 

NO2
• 

Indirect 

H2O2 

↑ green (DCF) Yes Yes - Hemolysis 

- Self-propagation of 

DCF radicals 

- MDR substrates or 

inducers 

- Esterase inhibitors 

- Plasma esterase in 

whole blood or PRP 

- EDTA and citrate 

- Antioxidants 

AF-2 DA/DAF-FM DA 

(intracellular) 

NO• ↑ green (DAF-

Ts) 

Yes No - MDR substrates or 

inducers 

- Esterase inhibitors 

- Plasma esterase in 

whole blood 

DHR123 (intracellular) HClO 

H2O2 

ONOO− 

↑ green (Rho123) Yes No - Self-propagation of 

DHR radicals 

- MDR substrates or 

inducers 

- Antioxidants 

HE (intracellular) O2
•− ↑ red (ethidium) Yes No - Intercalating agents 

C11-

BODIPY581/591 (membrane) 

HO• 

ROO• 

Shift from red to 

green 

Yes Yes - Hemolysis 

- Antioxidants 

 

Table 1.2 Fluorescent probes used for the measurements of reactive oxygen and nitrogen species by flow 

cytometry. 

C11-BODIPY581/591: 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid; DAF-2 

DA: 4,5-diaminofluorescein diacetate; DAF-FM DA: 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate; DAF-

Ts: triazolofluoresceins; DCF: 2′,7′-dichlorofluorescein; DCFH-DA: dihydrochlorofluorescein diacetate; DHR123: 

dihydrorhodamine 123; EDTA: ethylenediaminetetraacetic acid, H2O2: hydrogen peroxide; HClO: hypochlorous acid; 

HE: hydroethidine; MDR: multidrug resistance; NO•: nitrogen monoxide; NO2
•: nitrogen dioxide; O2

•−: superoxide 

radical; HO•: hydroxyl radical; ONOO−: peroxynitrite; PRP: platelet-rich plasma; Rho123: rhodamine 123; ROO•: 

peroxyl radicals [Marrocco I, Altieri F, Peluso I. Measurement and Clinical Significance of Biomarkers of Oxidative 

Stress in Humans. Oxid Med Cell Longev. 2017;2017:6501046. doi: 10.1155/2017/6501046.]. 

 

For instance, intracellularly converted diacetate derivatives of probes such as 

dihydrochlorofluorescein diacetate (DCFH-DA), 4,5-diaminofluorescein diacetate (DAF-2 DA), and 

4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FMDA) have widely been used 

for ROS/RNS detection. Once taken up by cells, these probes are hydrolyzed by intracellular 

esterases, generating the non fluorescent and membrane-impermeable DCFH, DAF-2, or DAF-FM. 

Subsequent oxidation by ROS/RNS results in the formation of the fluorescent 2′,7′-

dichlorofluorescein (DCF) and triazolofluoresceins (DAF-Ts), respectively. DCFH, the more 

commonly used probe, does not directly react with H2O2 to form the fluorescent product. DCFH can 

be instead oxidized to DCF by several one-electron-oxidizing species including HO• radicals, 

products formed from peroxidase or heme proteins reacting with H2O2, HClO, and nitrogen dioxide 

(NO2
-•) generated by myeloperoxidase and peroxynitrite decomposition. DCFH oxidation can also 

be promoted by Fe2+ in the presence of O2 or H2O2. The 1electron oxidation of DCFH generates 

the DCF semiquinone anion radical (DCF-•) (Fig. 1.5). This intermediate can rapidly react with O2 

to form O2
-•, which in turn can dismutate yielding additional H2O2 and establishing a redox-cycling 

mechanism that leads to an artificial amplification of the fluorescence signal [Kalyanaraman B et 

al.]. 
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While DCFH is used in both platelets and leukocytes, dihydrorhodamine 123 (DHR123) and 

hydroethidine (HE) are used only in the evaluation of the oxidative burst by polymorphonuclear 

leukocytes (PMN) (Table 1.2). DHR123 is an uncharged nonfluorescent probe that passively 

diffuses across cell membranes and is converted upon oxidation to the fluorescent membrane-

impermeant rhodamine 123 (Rho123), which predominantly localizes in the mitochondria [Freitas 

M et al.]. Dihydrorhodamine 123 (DHR), a structural analog of 2’,7’-dichlorodihydrofluorescein 

diacetate (DCFH-DA), was introduced in the late 1980s. This probe is lipophilic, enabling it to 

readily permeate cell membranes. Upon oxidation to fluorescent rhodamine 123 (λexcitation = 505 nm; 

λemission = 529 nm), one of the two equivalent amino groups tautomerizes to a charged imino, 

effectively trapping rhodamine 123 within cells [Freitas M et al.]. 

HE passively diffuses into cells and is preferentially oxidized by O2
-• to ethidium, which results in 

intercalation in DNA and consequently a significant enhancement of its red fluorescence intensity. 

HE is a cell permeable compound, capable to diffuse into the neutrophils. Inside the cell it is readily 

oxidized by O2
-• to form ethidium cation (E+), a highly fluorescent compound (λexcitation = 520 nm; 

λemission = 610 nm). The produced E+ is trapped in the nucleus by intercalation into DNA, which 

results in an increase of cellular red fluorescence. Due to its DNA intercalation property, E+ is also 

used in techniques to differentiate necrotic from apoptotic cell death [Freitas M et al.]. 

C11-BODIPY581/591 is an oxidation-sensitive fluorescent fatty acid analogue that shifts its 

fluorescence from red to green when challenged with oxidizing species. C11-BODIPY581/591 is 

sensitive to a variety of oxidizing species [Drummen GP et al.]. The 4,4-difluoro-5-(4-phenyl-1,3-

butadienyl)-4-bora3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY581/591) probe is the only 

lipophilic probe used to evaluate ROS in leukocytes and platelets. C11BODIPY581/591 is a 

derivatized 11-carbon fatty acid in which the boron dipyrromethene difluoride (BODIPY) core is 

Figure 1.5 Oxidative 

reactions mediated by the 

dichlorodihydrofluorescein 

radical (DCF-•) in the 

presence of oxygen, heme 

proteins, and glutathione. 

[Kalyanaraman B, Darley-

Usmar V, Davies KJ, 

Dennery PA, Forman HJ, 

Grisham MB, Mann GE, 

Moore K, Roberts LJ 2nd, 

Ischiropoulos H. Measuring 

reactive oxygen and 

nitrogen species with 

fluorescent probes: 

challenges and limitations. 

Free Radic Biol Med. 2012 

Jan 1;52(1):1-6.] 
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substituted by a phenyl group via a conjugated diene [Marrocco I et al.]. This conjugated diene 

interconnection is oxidation sensitive, and when oxidized by HO• or ROO•, disruption and 

shortening of the conjugated electron resonance structures between the phenyl group and the 

BODIPY core shifts C11-BODIPY581/591’s fluorescence from red to green. Conversely, ONOO− 

induces not only oxidation but also nitration of BODIPY, reducing red fluorescence but not 

necessarily increasing green fluorescence. Although excimers of the oxidized form are red 

fluorescent, labelling conditions up to 30 μM provides sufficient staining of the plasma and 

organelle membranes well below the range in which self-quenching or excimer formation occurs 

[Drummen GP et al.]. Therefore, excimers do not interfere with the fluorescence of BODIPY and 

the measured red signal depends only on the reduced form of the probe. Furthermore, neither C11-

BODIPY581/591 nor its oxidation products are able to spontaneously leak from the lipid bilayer and 

the ratio of oxidized to nonoxidized C11-BODIPY581/591 can be used to normalize probe 

incorporation in cells of different size (lymphocytes, monocytes, and granulocytes) [Peluso I et al. 

The effect of sample storage on the Peroxidation of Leukocytes Index Ratio (PLIR) measure]. 

Only hemolysis and antioxidants, in particular the end-product of purine metabolism, uric acid 

(UA), could bias the measurement of ROS generation. On the contrary, when analyzing the results 

of intracellular probes, many factors must be taken into account (Table1.2). Ethidium displacement 

by molecules, such as chemotherapeutics or flavonoids, could decrease the ethidium fluorescence 

signal, making the interpretation of data difficult. Artefactual amplification of the fluorescence 

intensity has been suggested to occur via intermediate radicals for both DCF and DHR, whereas the 

presence of quenching and reducing antioxidants could either decrease or increase the oxidation of 

probes without affecting ROS production. Heme proteins and reduced iron (Fe2+) have been shown 

to oxidize DCFH, and the suitability of DCFHDA for measuring intracellular ROS is increasingly 

being questioned [Kalyanaraman B et al.]. There are numerous examples in the literature that 

support the role of oxidant-induced iron signaling in DCFH oxidation. The limitations and caveats 

associated with DCF assay apply to DHR assay as well. The roles of •NO2 and O2•− or iron in 

intracellular DHR oxidation should be independently confirmed with appropriate inhibitors (e.g., L-

NAME, PEG–SOD, desferrioxamine). Thus, DHR can be used only as a nonspecific indicator of 

intracellular ONOO− and HOCl formation [Wardman P.]. 

The combination of fluorescently labeled antibodies against targets such as the pan-leukocyte 

marker CD45 and the platelet marker CD61 and/or physical properties such as size (FS: forward 

scatter) and internal complexity (SS: side scatter) can identify different leukocyte populations and 

platelets (Figure 1.6) [Peluso I. et al. The effect of sample storage on the Peroxidation of 

Leukocytes Index Ratio (PLIR) measure]. 

In activated samples, platelet microparticles, platelet aggregates, and leukocyte-platelet aggregates 

are formed (Figure 1.6). In particular, platelet activation in whole blood induces the formation of 

platelet conjugates with granulocytes or monocytes and leukocyte aggregates with platelets are 

more prone to apoptosis after in vitro activation (Figure 1.6) [Marrocco I et al.]. 

Regarding the normalization strategies, stimulation indexes calculated from the mean intensity 

fluorescence (MIF) values and expressed as fold change relative to unstimulated samples have been 

suggested for evaluating the production of ROS in both granulocytes and platelets [N. Carrim et 

al.]. However, these methods do not take into account probe leakage nor autofluorescence 

differences. While it is well known that autofluorescence generates false-positive monocytes [Li F 

et al.], this aspect is neglected in platelet assays. 

Despite controversy regarding the relationship between CVD and platelet size, measured as mean 

platelet volume (MPV) or FS, it is well known that FS increases after platelet activation and that 

large and small platelet subpopulations have different auto fluorescence profiles [Frojmovic M et 

al.] (Figure 1.6). Consequently, differences in autofluorescence in unstimulated and stimulated 

samples imply that stimulation indexes do not necessarily measure ROS production. Therefore, it 

must always be taken into account that the fluorescence signals and not the radicals are measured 
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and that the oxidation of the probe is not always related to ROS production. Overall, the reviewed 

potential bias and confounding factors suggest that accurate gating and normalization strategies 

must be applied in order to avoid misinterpretation of the results [Marrocco I et al.]. 

 

 
 

Figure 1.6 Gating strategies in the measure of free-radical production by flow cytometry. Different leukocytes 

populations (lymphocytes: L, monocytes: M, and granulocytes: G) in whole blood can be identified by CD45 (b) in the 

live gate assigned in the forward scatter (FS) and side scatter (SS) dot plot (a) by excluding dead cells and debris. Red 

blood cells (RBC) can be excluded as CD45 negative (b). Platelets (Pt) can be identified by CD61 in platelet-rich 

plasma (PRP) (c). In activated samples, platelet microparticles (c) and leukocyte-platelet aggregates (b: Pt-G and Pt-M) 

are formed and Pt-G are more prone to apoptosis (G-A). After platelet activation, FS increases due to platelet 

aggregation inducing an increase in autofluorescence (d). [Marrocco I, Altieri F, Peluso I. Measurement and Clinical 

Significance of Biomarkers of Oxidative Stress in Humans. Oxid Med Cell Longev. 2017;2017:6501046. doi: 

10.1155/2017/6501046] 

 

1.3. EFFECTS OF FLAVONOIDS ON OXIDATIVE BURST 

1.3.1. IN VITRO EVIDENCES 

Flavonoids have been suggested to modulate the activity of different cell types involved in both 

innate and acquired immunity [Peluso I, Miglio C et al.]. 

Interesting results were obtained when studies involving healthy subjects, healthy subjects with risk 

factors or subjects affected by diseases were considered separately as described in Figure 1.7. While 

no great difference was observed for what concern the effect on interleukin-6 (IL-6) between the 

two groups, the effect on tumor necrosis factor-α (TNF-α) resulted to be completely different in 

relation to subject’s health status. None of the intervention studies (0/21) conducted in healthy 

subjects was effective in reducing levels of TNF-α after ingestion of flavonoid-rich foods or 
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supplements (Figure 1.7). On the other hand, in cases of subjects characterized by risk factors for 

cardiovascular diseases (CVD), flavonoids decreased TNF-α in almost 30% of the interventions 

(5/17) (Figure 1.7) [Peluso I, Miglio C et al]. The effect is more pronounced if we restrict the field 

to patient affected by different diseases: despite the scarce number of available studies, the 60% of 

the interventions (4/7) were effective in reducing TNF-α values after supplementation with either a 

papaya preparation [Marotta, F. et al.], soy products [Azadbakht L. et al.], green tea extracts [Hsu, 

S. P. et al.], and 1 year adherence to Mediterranean diet [Marfella R et al.] (Figure 1.7). 

 

 
 

Figure 1.7 Dietary interventions trials with flavonoid-rich foods or quercetin and TNF-α levels in healthy 

subjects (n = 21), subjects characterized by risk factors for CVD (n = 17) and subjects with disease (n = 7).  

Data are expressed as percentage (%) of successful studies. 

[Peluso I, Miglio C, Morabito G, Ioannone F, Serafini M. Flavonoids and immune function in human: A systematic 

review. Crit Rev Food Sci Nutr] 

 

The molecular mechanisms involved in the anti-inflammatory activities of flavonoids include: the 

induction of Nrf2, the inhibition of NF-kB and AP-1 and the modulation of the protein kinase C 

(PKC) and of the mitogen activate protein kinase (MAPK) [Serafini et al 2010]. These pathways are 

involved in the regulation of the oxidative modification of LDL by the OB of leukocytes [Peluso I, 

Morabito G, Urban L et al.].  

In vitro evidence using fluorescent probes, suggested that flavonoids suppress ROS production in 

macrophage and granulocytes [Sanbongi C et al.], with IC50 values ranging between 1025 M and 

1024 M depending on the polyphenol structure: Sanbongi C et al. studied the effects of antioxidants 

from chocolate, cacao liquor polyphenol (CLP), on human immune functions in vitro. CLP is an 

enriched polyphenol fraction purified from cacao liquor that is a major component of chocolate. It 

has been shown that polyphenols have antioxidant activity, and reactive oxygen species (ROS) are 

involved in immune responses. CLP inhibited both hydrogen peroxide and superoxide anion, 

typical ROS, production by phorbol myristate acetate-activated granulocytes. CLP also inhibited 

menadione-induced production of both hydrogen peroxide and superoxide anion in normal human 

peripheral blood lymphocytes (PBL). In a review Ciz et al. concluded that the effects of flavonoids 

on the OB of neutrophils are complex, and that there are several sites of action depending upon the 

flavonoid structure and subcellular distribution. Schematic diagram showing the possible 

mechanisms underlying the inhibition of ROS production by neutrophils using flavonoids is shown 

in Figure 1.8. 
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Figure 1.8 Schematic diagram showing the possible mechanisms underlying the inhibition of ROS production by 

neutrophils using flavonoids. The signaling molecules generally employed in mediating the activation of 

phospholipase D (PLD) are shown (some additional signaling molecules in these pathways are omitted). Blunt lines 

indicate the possible sites of the action of flavonoids (the blockade of PKC, Arf, and RhoA, as well as the scavenging of 

ROS generated by neutrophils) [Ciz M, Denev P, Kratchanova M, Vasicek O, Ambrozova G, Lojek A. Flavonoids 

inhibit the respiratory burst of neutrophils in mammals. Oxid Med Cell Longev 2012;2012:181295] 

 

Besides, Ciz M. et al.  pointed out that many of the in vitro studies did not take bioavailability and 

metabolism factors into consideration, and that the effects reported in those studies did not 

necessarily occur in vivo. However, in vitro data indicated that flavonoids metabolites are more 

potent inhibitors of OB than parental compounds. In human neutrophils, the metabolite quercetin 3-

glucuronide, but not quercetin itself, caused a significant reduction (35%) in the N-formyl-

methionyl-leucylphenylalanine (fMLP)-evoked calcium influx [Suri S et al.], the first signal after 

cell activation. In RAW cells the IC50 values of nitrite release were 1.25 mM and 1.25 μM for 

morin and morin sulfates/glucuronides, respectively [Fang SH et al.]. Furthermore, the microbial 

metabolite 3,4-dihydroxyphenylacetic acid, from quercetin glycosides, at 1 μM showed, with 

luminolchemiluminescence assay, an inhibition (84%) of ROS production by polymorphonuclear 

leucocytes [Merfort I et al.]. However, recently results suggest that naringenin and its phase II 

metabolites are able to perturb macrophage gene expression in directions that are not always 

consistent with antiinflammatory effects [Dall’asta M et al.]. Flavanones represent one of the six 

main sub-groups of flavonoids and occur as hydroxyl, glycosylated, and O-methylated derivatives, 

in high amounts especially in citrus fruits. The main exponents of this class are hesperetin and 

naringenin, the latter being abundant, in particular, in grapefruit and orange juice, together with its 

glycosidic forms [Perez-Jimenez J et al.]. Dall’asta M. et al. evaluated the effect of naringenin, 

naringenin-40-O-glucuronide and naringenin-7O-glucuronide (600 nM) on the expression of 

specific genes in human classical (M1) and alternatively (M2) polarised macrophages. Naringenin-

40-glucuronide was able to increase tumor necrosis factor alpha (TNF-a) expression in M1 

macrophages and, similar to the aglycone, to reduce its downregulation in M2 cells. On the other 

hand, naringenin and naringenin-40-glucuronide increased Nrf2 expression in M1 and M2 

macrophages, whereas a reduction of Nrf2 expression was found in M1 cells treated with 

naringenin-7glucuronide. The latter metabolite and naringenin both increased the expression of the 

ATP-binding cassette human transporter 1. Therefore, the modulating effects of flavonoids and 
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metabolites on inflammatory cytokines and transporters could affect the evaluation of OB after 

flavonoid consumption in humans [Dall’asta M et al.]. 

 

1.3.2. HUMAN INTERVENTION TRIALS 

Of the reviewed human intervention trials, eight studies measured ex vivo OB after flavonoid 

consumption by fluorescence experiments, among which five used DHR123, two HE, and one DCF 

(Table 1.3) [ Peluso I, Manafikhi H, Reggi R, Palmery M. 2014]. Between the different flavonoids, 

the flavonol quercetin is the one with the largest information available and four out of five studies 

reported also data on bioavailability. However, the absorption of quercetin in the mainstream was 

not related to any effect on OB (Table 1.3). A supplementation of 3 or 12 weeks with quercetin at 

500 or 1,000 mg/ day did not affect ex vivo OB of granulocyte, using HE or DHR123 as probe. 

These effects were consistent with other immunological or inflammatory markers, such as 

phagocytosis, NK activity, lymphocyte proliferation, plasma levels of MPO, interleukin (IL)-6 and 

TNF-a (Table 1.3) [ Peluso I, Manafikhi H, Reggi R, Palmery M. 2014]. 

Accordingly, in a meta-analysis Peluso I. et al. concluded that studies did not reveal any significant 

effect for quercetin on TNF-α and IL-6 plasma levels, while other sources such as red wine and tea 

extracts significantly reduced inflammatory cytokines [Peluso I et al. Effect of flavonoids on 

circulating levels of TNFa and IL-6 in humans: a systematic review and meta-analysis]. Red wine 

(RW) consumption is considered to be protective against diseases associated with oxidative stress. 

This effect seems to be caused by the antioxidant polyphenols (PP) contained in RW, in particular 

flavonoids that are present at concentrations from 750 to 1060 mg/l [Covas et al.]. On the other 

hand, alcohol consumption is associated with oxidative stress, in particular with liver oxidative 

damage [Lieber CS].  

 

Study (Ref.) subjects Treatment Effect (method) Other markers 

Castilla et al., 2008; 

hemodialysis patients 

14 days red grape juice; 

(100 ml; 640 mg 

polyphenols) 

↓ Neutrophils (DHR123, 

whole blood); ↓ neutrophils 

(DCFH, isolated neutrophils) 

↓ LDLox; ↔ CRP 

Ellinger et al., 2008; 

Healthy subjects 

a) 42 Days dealcoholized 

red wine (175 ml; 272 mg 

polyphenols) 

b) 42 Days red wine (200 

ml; 293 mg polyphenols) 

c) Bolus dealcoholized 

red wine (175 ml; 272 mg 

polyphenols) 

d) bolus red wine (200 

ml; 293 mg polyphenols) 

a) ↔ Granulocytes; monocytes 

(DHR123, whole blood) 

b) ↔ Granulocytes; ↓ 

monocytes (DHR123, whole 

blood) 

c) ↔ Granulocytes; ↑ 

monocytes (DHR123, whole 

blood) 

d) ↔ Granulocytes; ↑ 

monocytes (DHR123, whole 

blood) 

a) ↔ Phagocytosis 

b) ↔ Phagocytosis 

c) ↔ Phagocytosis 

d) ↓ Granulocytes 

phagocytosis; ↑ monocytes 

phagocytosis 

Heinz et al., 2010; 

healthy subjects 

84 days quercetin; (500–

1,000 mg) 

↔ Granulocytes (HE, whole 

blood) 

↑ Plasma quercetin; ↔ 

Phagocytosis, NK activity, 

IL-6, TNF-α 

Henson et al., 2008; 

healthy subjects 

21 Days quercetin (1,000 

mg) 

↔ Granulocytes (DHR123, 

whole blood) 

↔ Plasma myeloperoxidase 

Konrad et al., 2011; 

healthy subjects 

Bolus quercetin (1,000 

mg) + epigallocatechin 3-

gallate (120 mg) + 

isoquercetin (400 mg) 

↔ Granulocyte; ↔ monocytes 

(HE, whole blood) 

↑ Plasma quercetin; ↔ 

phagocytosis, CRP, IL-1β, 

TNFα 

Nieman et al., 2007; 

Healthy subjects 

21 Days quercetin (1,000 

mg) 

↔ Granulocytes; (DHR123, 

whole blood) 

↑ Plasma quercetin; ↔ NK 

activity, lymphocyte 

proliferation, plasma 

myeloperoxidase 
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Nieman et al., 2009; 

Healthy subjects 

14 Days quercetin (1,000 

mg) +epigallocatechin 3-

gallate (120 mg) + 

isoquercetin (400 mg) 

↑ Granulocyte (DHR123, 

whole blood) 

↑ Plasma quercetin; ↔ 

plasma myeloperoxidase, 

TNF-α; ↓ IL-6, CRP 

Perche et al., 2014; 

Healthy subjects 

4 Weeks orange juice 

(500 ml; 292 mg 

hesperidin) 

↔ Neutrophils (DHR123, 

white blood cells after 

ammonium chloride 

hemolysis) 

↔ NK activity, IL-2 and IL-

4 

 

Table 1.3 Effect of flavonoids on oxidative burst in humans. ↑, Increase; ↓, decrease; ↔, no change; DHR123, 

dihydrorhodamine 123; DCFH, dihydrochlorofluorescein; HE, hydroethidine; CRP, C reactive protein; IL, interleukin; 

LDLox, oxidized low density lipoprotein cholesterol (LDL); NK, natural killer cells; TNF-α, tumor necrosis factor 

alpha.[Peluso I, Manafikhi H, Reggi R, Palmery M. Interference of flavonoids with fluorescent intracellular probes: 

methodological implications in the evaluation of the oxidative burst by flow cytometry. Cytometry A. 2014 

Aug;85(8):663-77. doi: 10.1002/cyto.a.22490.] 

We aimed to review the available evidence that have investigated the effects of RW on the 

postprandial-induced metabolic and oxidative stress in humans [Peluso I, Manafikhi H, Reggi R, 

Palmery M. 2015]. This review includes a description of the findings of the effects of RW, RW-PP, 

and Ethanol (EtOH) on postprandial metabolic and oxidative stress. The reviewed results suggest 

that RW, but not dealcoholized red wine (DRW), increased Triglycerides (TG) and UA. The latter 

contributes to the antioxidant effect of RW. In fact, NEAC increased in 80 % of the interventions 

with RW and in 66.6 % of the studies that investigated the effect of RW-PP. Therefore, despite the 

improvement in NEAC and lipoperoxidation markers after RW consumption with meal, the 

influence of confounding factors such as UA should be taken into account. The increase in UA and 

lipemia induced by EtOH could induce liver damage. 

A decrease in inflammatory markers and an improvement of OB of granulocyte was observed, after 

3 days of heavy exertion in trained cyclists, when quercetin was administered with the tea flavanol 

epigallocatechin 3-gallate, for 2 weeks before and 1 week after exercise [Nieman DC et al. 2009]. 

Surprisingly the post exercise-induced decrease in OB was unaffected after bolus consumption of 

the same supplement [Konrad M et al.]. Konrad et al. suggested that flavonoids may require a week 

or longer to be incorporated into tissues and influence the post-exercise inflammation. However, it 

must be taken into account that these studies used two different fluorescence probe and supplement 

increased DHR123 fluorescence in granulocytes after long-term intervention [Nieman DC et al. 

2009] but not HE fluorescence after bolus consumption [Konrad M et al.]. Therefore, considering 

that flavonoids long term exposure could modulate the expression of transporters, the increase in 

DHR123 could be due to a major intracellular retention of the probe. Plasma levels of total 

quercetin (aglicone and metabolites) after each intervention ranged from 300 μg/l to 700 μg/l (10-7 

M to 10-6 M) after long-term consumption [Nieman DC et al. 2009] and were about 6,300 μg/l (10-5 

M) after bolus ingestion [Konrad M et al.]. Opposite effects have been observed after acute or 

chronic intervention also by Ellinger et al.: chronic (14 days) intake of red wine (200 ml), 

containing flavanols (26.5 mg of catechin and 14.4 mg of epicatechin) and anthocyanins (8.5 mg of 

malvidin and 1.0 mg of peonidin), but not of 175 ml of dealcoholized red wine (10.8 mg of 

catechin, 8.4 mg of epicatechin, 4.7 mg of malvidin, and 0.5 mg of peonidin), reduced the OB of 

monocytes. On the contrary after bolus consumption both red wine and dealcoholized red wine 

increased the OB of monocytes. These finding are in contrast with the results of Ghanim et al. who 

observed, using luminol method, that orange juice intake prevents the highfat-high-carbohydrate 

meal-induced ROS production in both mononuclear and polymorphonuclear cells. Citrus and grape 

juices are rich in flavanones such as hesperidin and naringenin (Table 1.1). Therefore, the 

differential effect on acute postprandial or exercise induced stress, could be due to the different 

flavonoid composition. In hemodialysis patients’ consumption of red grape juice (50 ml twice/day) 
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for two weeks decreased the ex vivo OB of neutrophils with both DHR123 in whole blood and 

DCFH in isolated neutrophils [Castilla P et al.]. However, this study has been conducted not on 

healthy subject and it is well known that inflammatory states increased Pgp expression in peripheral 

blood mononuclear cells (PBMC) [Liptrott NJ et al.]. Accordingly, in a recent work Perche et al., 

using DHR123 assay, did not observe changes of OB in healthy subjects after 4 weeks of orange 

juice consumption. Finally, also biomolecules involved in metabolism (CYP450) of flavonoids are 

characterized by high interindividual variability and influenced by inflammatory state [Liptrott NJ 

et al.], suggesting that it is difficult to compare data from healthy and disease subjects. 
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AIMS 

 
This PhD thesis has been conducted in the context of a project aimed to evaluate the possible use of 

the PLIR, a test that measures both the resistance of leukocytes to an exogenous oxidative stress 

and the leukocytes functional capacity of oxidative burst upon activation,  as redox marker in 

humans.  

The clinical relevance of a biomarker must be critically evaluated before the use in large trials. For 

the above reason we have planned pilot studies. 

In order to evaluate the redox status in particular conditions (smoking habit, disease states), ex vivo 

free-radical production and oxidative stress in body fluids are measured. These methods are used 

also in human intervention studies to associate the levels of ingested antioxidants (by foods or 

supplements) with improvement of the body antioxidant status. Despite the fact that it has been 

suggested that nutraceuticals are capable of improving health, significant methodological bias must 

be taken into account in the interpretation of data from the measurement of reactive species in 

leukocytes and platelets by flow cytometry, from the evaluation of markers based on ROS-induced 

modifications, from the assay of the enzymatic players of redox status, and from the measurement 

of the total antioxidant capacity of human body fluids. 

It has been suggested that the bias of each method could be overcome by the evaluation of oxidative 

stress by using more than one criterion and indexes of redox status have been proposed [Marrocco 

et al. 2017]. The OXY-SCORE was computed by subtracting the protection score (GSH, alpha- and 

gamma-tocopherol levels, and antioxidant capacity) from the damage score (plasma free and total 

malondialdehyde, GSSG/GSH ratio, and urine F2-IsoPs). In some diseases, the choice of the 

markers that must be considered in the global index should dictate the clinical relevance in the 

subjects selected. In patients with chronic venous insufficiency (CVI) was used for OXyVen index 

calculation the normalized and standardized plasma parameters which showed a significant 

statistical difference between CVI patients and controls (SH, MDA-bound protein, protein 

carbonyls, and CAT activity).  

However, the major bias of these index is the use of markers that do not have at the moment normal 

values. The oxidative-INDEX was calculated by subtracting the OXY (the antioxidant capacity 

measured with the OXY adsorbent test) standardized variable from the ROM (the reactive oxygen 

metabolites measured with the d-ROM) standardized variable. Although normal values have been 

proposed for these variables, the OXY adsorbent test quantifies the ability of the plasma non-

enzymatic antioxidant compounds to cope with the in vitro oxidant action of hypochlorous acid 

(HOCl; an oxidant endogenously produced). This type of approach does not consider the 

important role of free radicals in the innate response and in the resistance to infection, that 

declines in some conditions, such as overtraining. Within the total antioxidant capacity assays 

the FRAP, exploits the same principle of biological antioxidant potential (BAP) (i. e. the 

reduction of ferric to ferrous ions), matches the antioxidant capacity to the reducing ability. It is 

well known that reduced iron is critical in the onset of oxidative stress due to the Fenton 

reaction, that generates the hydroxyl radical initiator of lipid peroxidation. Furthermore, the 

antioxidant capacity is strongly influenced by UA. The latter is a well known pathogenic factor 

when at high concentrations. 

In a previous postprandial study we observed that a functional food covered by dark chocolate and 

containing glucomannan, inulin, fructooligosaccharides, and Bacillus coagulans strain 

GanedenBC30 significantly improved postprandial metabolic stress (insulin, glucose, and 

triglycerides), reduced the postprandial increase of UA, and improved PLIR of lymphocytes, but not 

of monocytes and granulocytes. We suggested that, although PLIR is a functional index that is 

independent of baseline levels of oxidation, measuring the ratio between the resistance to 
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exogenous and the resistance to endogenous ROS injury, this ratio calculation could mask the effect 

of foods that inhibit both the exogenous ROS injury and the oxidative burst. 

From that the aims of this thesis were: 

1. Evaluate the relationships between PLIR and FRAP, its major endogenous determinant UA and 

FRAP-UA, by using a GTE due to its reported UA-lowering and potential pro-oxidant effects. 

2. Study the relationships between PLIR and a mathematical index that considers health-related 

habits and UA plasma levels. 
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2. AIM 1:  

THE PEROXIDATION OF LEUKOCYTES INDEX 

RATIO REVEALS THE PROOXIDANT EFFECT OF 

GREEN TEA EXTRACT 
 

2.1. INTRODUCTION 

The Supplement Information Expert Committee (DSI EC) indicated that consumption of green tea 

extract (GTE) could induce liver damage [Sarma D. N. et al.,]. Infact, there are an increasing 

number of case reports of hepatotoxicity in humans associated within take of green tea (GT) dietary 

supplements. 

In a research, nineteen cases of hepatotoxicity related to the consumption of herbal products 

containing green tea were identified. The hepatic reactions involved mostly females (16/19 = 84 %), 

between 24 and 63 years old; males (3/19 = 16 %) were between 16 and 76 years old [G. Mazzanti 

et al.]. In this study the authors concluded that use of green tea infusion can be considered as safe 

when consumed as a beverage in normal quantity (1–2 cups/day), provided that quality concerns 

and other risk factors do not exist; nevertheless, an idiosyncratic reaction remains always possible. 

Furthermore, use of multicomponent preparations appears much more dangerous with respect to 

green tea alone. In the following, a panel of rather distinct Dietary Supplement preparations 

associated with liver injury are described (Table 2.1) [F. Stickel et al.]. 

 

Dietary 

supplement 

Indication for use Liver lesion Toxicity mechanisms 

Herbalife® Various (weight loss, 

nutritional support, ‘well-

being’) 

Variable (acute and chronic 

hepatitis, cholestasis, 

cirrhosis, hepatic failure) 

Unknown; autoimmunity? Bacterial 

contamination? 

Camellia sinensis 

(green tea) 
Weight loss Acute epatiti Oxidative stress from (−)-

epigallocatechin gallate? 
LipoKinetix® Weight loss Acute epatiti Uncoupling of respiratory chain? 
Hydroxycut Weight loss Acute and/or cholestatic 

hepatitis, liver failure 
Unknown 

Senna (Cassia 

angustifolia) 
Constipation Variable (acute hepatitis, 

granulomatous hepatitis, 

cirrhosis) 

Drug idiosyncrasy (CYP2D6 

variation)?; uncoupling of respiratory 

chain? 
Noni juice (Morinda 

citrifolia) 
‘Immunostimulation’, health 

tonic 
Acute hepatitis, hepatic failure Unknown; drug-induced autoimmunity? 

Ma huang (Ephedra 

sinica) 
Weight loss Acute hepatitis, hepatic failure Unknown; drug-induced autoimmunity? 

Oxidative stress? 
Germander (Teucrium 

chamaedrys) 
Weight loss Acute, and fulminant 

hepatitis, chronic hepatitis 

with fibrosis/cirrosi 

Hepatocyte apoptosis from toxic 

neoclerodane diterpenoids 

‘Onshidou-Genbi-

Kounou’, ‘Chaso’ 

(Japanese herbals) 

Weight loss Acute hepatitis, hepatic failure Hepatocyte apoptosis due to N-nitroso-

fenfluramine 

Vitamin A Disease prevention, immune 

function 
Disease prevention, immune 

function 
Fibrosis from HSC/MFB activation; 

formation of toxic polar retinoid 

metabolites with concomitant alcohol 

consumption 
Anabolic steroids Muscle build-up Cholestasis, benign/malignant 

liver tumour 
Dysfunction of biliary transporter 
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Table 2.1 Nutritional supplements associated with liver injury (n>1 case). HSC, hepatic stellate cells; MFB, portal 

myofibroblasts. [F. Stickel, K. Kessebohm, R.Weimann and H. K. Seitz,“Review of liver injury associated with dietary 

supplements,” Liver International, vol. 31, no. 5, pp. 595–605, 2011] 

 

As herbal products continue to be used widely around the World, herbal hepatotoxicity will 

continue to be observed. Such events are not necessarily unique to herbal medications as they can 

be seen with prescription medications such as antibiotics, anticonvulsants, etc. It is therefore 

imperative that the recognition and reporting of herbal hepatotoxicity be held to the same standards 

as prescription medications. The diagnosis of herbal hepatotoxicity depends on a proper knowledge 

of the available literature on hepatotoxicity with the spectrum of herbal preparations ingested and 

also on a heightened awareness for such hepatotoxic events. Other herb–drug interactions that may 

result in hepatotoxicity or significantly affect practice are summarised in Table 2.2 [C. 

Bunchorntavakul and K. R. Reddy]. 

 

Medications Herbs Interactions and potential consequences 

Warfarin and aspirin Danshen (S. miltiorrhiza) Increased INR → bleeding risk 

Dong quai (A. sinensis) Increased INR → bleeding risk  

Garlic Increased INR → bleeding risk  

Papaya Increased INR → bleeding risk  

Tamarind Increased aspirin level → bleeding risk  

Feverfew Platelet dysfunction → bleeding risk  

Gingko biloba Platelet dysfunction → bleeding risk  

Ginseng Decreased INR → clotting risk  

St. John's wort Decreased INR → clotting risk  

Devil's claw (H. 

cumbens) 

Purpura  

CYP34A drugs Pyrrolizidines CYP3A4 induction → hepatotoxicity 

Germander CYP3A4 induction → hepatotoxicity  

Cyclosporine St. John's wort CYP3A4 induction → rejection risk 

Grape fruit juice CYP3A4 induction → rejection risk  

Methotrexate St. John's wort Increased methotrexate level and toxicity 

Echinacea Increased hepatotoxicity ?  

Prednisolone Ginseng Possible additive effect 

Glycyrrhizin (licorice 

root) 

Reduced clearance → hypokalemia  

Sho-saiko-to Altered clearance → low prednisolone level  

Protease inhibitors St. John's wort CYP3A4 induction → suboptimal antiviral 

activity 

Garlic CYP3A4 induction → suboptimal antiviral 

activity 

 

Spironolactone Glycyrrhizin (licorice root) Mineralocorticoid → low spironolactone 

level 

Benzodiazepines Kava Increased sedative effects 

 

Table 2.2 Herb–drug interactions relevant to hepatology. CYP, cytochrome P450; INR, international ratio. [C. 

Bunchorntavakul and K. R. Reddy, “Review article: herbal and dietary supplement hepatotoxicity,” Alimentary 

Pharmacology and Therapeutics, vol. 37, no. 1, pp. 3–17, 2013]. 

Adverse effects of Camellia sinensis seem to be modulated by various factors and, in particular, by 

the chemical composition and the type of herbal preparation. In fact, all preparations differ in their 

chemical composition, as follows: 
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(1) powdered leaves contain all the tea active components; 

(2) infusions and aqueous extracts contain mostly hydrophilic compounds; 

(3) hydroalcoholic extracts contain both hydrophilic and lipophilic components. 

 

The components most frequently indicated as responsible for hepatotoxicity are catechins and their 

gallic esters. In particular, the role of EGCG (epigallocatechin-3-gallate) seems predominant, as 

shown also in experimental in vitro and in vivo assays; this conclusion could also be supported by 

its high concentration in green tea extracts. The association seems further confirmed by the lack of 

known adverse effects of fermented tea (black tea), in which the content of EGCG is significantly 

reduced [C. Di Lorenzo et al.]. Despite these apparently reassuring findings, it is important to direct 

the attention of clinicians to the possibility of rare but severe adverse effects from botanical 

preparations or ingredients of food supplements or traditional medicines. For example, the severe 

hepatotoxicity of Camellia sinensis (green tea) was unknown before the product Exolise, containing 

a hydroalcoholic extract, was marketed and which was found to be responsible for a number of 

cases of acute hepatitis in France and Belgium. Although very rare (considering the large number of 

green tea consumers in the world), the severity of these reactions needs information and vigilance 

[Sharma T et al.]. However, there are also cases reporting hepatotoxicity after GT infusion. 

In particular, a case has been reported with features mimicking autoimmune hepatitis, with 

abnormal liver histology and elevated levels of aspartate aminotransferase, alanine 

aminotransferase, alkalinephosphatase, gammaglutamyl-transferaseandbilirubin, associated with 

hypergammaglobulinemia, and the transient presence of anti-smooth-muscle antibodies (ASMA) 

and anti-neutrophil cytoplasmic antibodies (ANCA) [S. Vanstraelen et al.]. GT withdrawal resulted 

in a slow and continuous improvement with a complete resolution after 7 months. Furthermore, the 

Food and Drug Administration (FDA) and the European Food Safety Administration (EFSA) have 

denied the proposed health claims for GT and decreased risk of non-communicable diseases [J. T. 

Dwyerand J. Peterson,]. In particular, despite GT increased plasma non-enzymatic antioxidant 

capacity (NEAC), the EFSA denied claims related to tea and protection of DNA and lipids from 

oxidative damage. The FDA denied proposed health claims for green tea and decreased risk of 

cardiovascular disease, gastric cancer, colorectal cancer, and esophageal, pancreatic, and other 

cancers. For green tea and cancer, the FDA concluded that it was highly unlikely that green tea 

decreased breast and prostate cancer risks. Similarly, EFSA concluded that the substantiation for the 

health claims related to tea did not suffice in several recent submissions the agency received [J. T. 

Dwyerand J. Peterson]. 

GT contains several flavonoids with antioxidant properties, in particular the flavanol monomers 

known as catechins, where epigallocatechin-3-gallate (EGCG) is the most effective antioxidant 

compound [J. D. Lambert et al.]. Green tea, which represents 20% of world consumption, is 

characterized by the presence of large amounts of flavan-3-ols also known as catechins (Fig. 2.1). 
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Figure 2.1 Structures of the major tea polyphenols - J. D. Lambert and R. J. Elias, “The antioxidant and pro-oxidant 

activities of green tea polyphenols: a role in cancer prevention,” Archives of Biochemistry and Biophysics, vol. 501, no. 

1, pp. 65–72, 2010 

 

Tea polyphenols are strong radical scavengers and metal chelators in model chemical systems, and 

these effects correlate with the presence of the dihydroxy and trihydroxy groups [Higdon JV, Frei 

B]. Research examining more direct measures of oxidative stress offers some support for the idea 

that tea catechins function as antioxidants in vivo. In humans, modest acute increases in plasma 

antioxidant capacity have been demonstrated consistently with an increased consumption of green 

tea, black tea, and green tea catechins. Studies in animal models have been more consistent in 

demonstrating an increase in the resistance of lipoproteins to ex vivo oxidation than studies in 

humans, as have studies of biomarkers of lipid peroxidation in vivo. Although a number of studies 

have examined the effect of high levels of tea or tea polyphenol consumption on the ex vivo 

oxidation of LDL isolated from plasma, few have examined ex vivo oxidation of plasma, a setting 

in which watersoluble green tea catechins may provide more protection from oxidation. An 

increasing number of studies have also demonstrated these antioxidative effects in vivo. For 

example, treatment of 24 month old rats with 100 mg/kg, i.g. EGCG decreased the hepatic levels of 

lipid peroxides (50% decrease) and protein carbonyls (39% decrease) [Senthil Kumaran V et al.]. 

EGCG treatment also increased the hepatic levels of both small moecule antioxidants and 

antioxidant enzymes compared to control rats. A second study by the same group found similar 

results using a much lower dose of EGCG (2 mg/kg, i.g.) over a relatively long period of time (30 

d) [Srividhya R et al.]. However, tea catechins could have also prooxidant activity: Studies using 

higher doses of EGCG also show that pro-oxidant effects may play a role in the potential toxic 

effects of EGCG that have been reported in vivo. For example, Galati et al., have reported that 

treatment of freshly isolated mouse hepatocytes with 200 μM EGCG resulted in time and dose-

dependent cytotoxicity that correlated with the production of ROS as measured by oxidation of 

dichlorofluorescin [Galati G et al.]. Inclusion of GSH, catalase, or ascorbic acid reduced levels of 

ROS and EGCG-mediated cytoxicity. Following treatment of CF-1 mice with 400 mg/kg, i.p. 

EGCG, EGCG-2′-cysteine and EGCG-2″-cysteine could be detected in the urine. These metabolites 

are hypothesized to arise from the reaction of EGCG quinone intermediates with the thiol moiety of 

cysteine and suggests that at high doses EGCG may have pro-oxidant effects in vivo (Fig. 2.2). 
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Figure 2.2 Oxidative reaction between EGCG, superoxide, and ferric iron resulting in the production of 

oxidative stress, EGCG dimers, and EGCG-cysteine conjugates (EGCG-SR). PhO = semiquinone radical. [J. D. 

Lambert and R. J. Elias, “The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer 

prevention,” Archives of Biochemistry and Biophysics, vol. 501, no. 1, pp. 65–72, 2010] 

 

Lambert JD et al. has reported that treatment of mice with high oral doses of EGCG result in the 

dosedependent hepatotoxicity [Lambert JD et al.]. These hepatotoxic effects were correlated with 

increased hepatic lipid peroxidation and expression of hepatic metallothionein I/II and hepatic 

levels of γH2A.X. These biomarkers all suggest the pro-oxidant effects of EGCG may underlie the 

hepatotoxicity of EGCG in mice. 

Besides, some of the protective effects of EGCG have been ascribed to its capability to reduce 

excessive UA level [T. Yokozawa et al.]. In particular, flavanols of Camellia sinensis is modulate 

both xanthine oxidase and urate transport [I. Peluso et al., Green tea and bone marrow 

transplantation: from antioxidant activity to enzymatic and multidrug-resistance modulation]. 

Among all tea polyphenols, EGCG, a flavonoid of the flavanols subgroup, has been found to be 

responsible for much of the antioxidant activity of GT. However, recently data suggest that some 

effects of EGCG are not imputable to its antioxidant activity). Besides, antioxidant defenses of the 

body are composed of molecular and enzymatic players; the latter supply protection at the cellular 

level, together with glutathione (GSH), and include superoxide dismutase (SOD), catalase (CAT), 

glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-Transferase (GST), 

whereas in plasma non-enzymatic antioxidants play the major role. Plasma Non-Enzymatic 

Antioxidant Capacity (NEAC) is due to endogenous UA, bilirubin and thiols, as well as to dietary-

derived molecules such as vitamin E, ascorbic acid, carotenoids, and polyphenols. Some of the 

protective effects of EGCG have been ascribed to its capability to reduce high UA level. 

NEAC assays evaluate both endogenous and exogenous antioxidants, thus if tea affects the levels of 

endogenous antioxidants it could have both direct and indirect effects on NEAC. In particular, the 

inhibitory effects of EGCG on XO could decrease UA circulating levels (Figure 2.3). 
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Figure 2.3 Potential molecular mechanisms involved in the modulation by EGCG of redox pathway and 

metabolism/transport system [I. Peluso, M. Palmery, and A. Vitalone, “Green tea and bone marrow transplantation: 

from antioxidant activity to enzymatic and multidrug-resistance modulation,” Critical Reviews in Food Science and 

Nutrition, vol. 56, no. 14, pp. 2251–2260, 2016] 

 

UA is the major plasma antioxidant and contributes to plasma non-enzymatic antioxidant capacity 

[Serafini M. et al. 2011]: In terms of the participation of individual components to the network, 

calculated on the basis of the single individual concentration and respective stoichiometric 

coefficient, the main contributor to NEAC is UA (40-55 %), followed by thiol groups (10-24 %), 

ascorbic acid (8-15 %) and vitamin E (less than 10 %). 

The peroxidation of leukocytes index ratio (PLIR) measures the resistance of leukocytes to 

exogenous oxidative stress and their functional capacity of oxidative burst upon activation [I. 

Peluso et al., The effect of sample storage on the peroxidation of leukocytes index ratio (PLIR) 

measure]. Therefore, we performed a pilot study in order to evaluate the effect of a single dose of a 

GTE supplement on the PLIR, in relation to plasma UA and ferric reducing antioxidant potential 

(FRAP) [I. F. F. Benzie et al.], as well as the sample size to reach statistical significance. 

The FRAP assay gives fast, reproducible results with plasma, with single antioxidants in pure 

solution and with mixtures of antioxidants in aqueous solution and added to plasma. 
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2.2. MATERIAL AND METHODS 

2.2.1. SUBJECTS AND TREATMENT 

Participants (6 men and 4 women, 19–35 years old) to the study, who volunteered in response to 

advertisements, were healthy, nonsmokers and weretakingnosupplements. For two days prior to 

each feeding study the subjects followed a low antioxidant diet (washout) by avoiding all freshfruit, 

vegetables, tea, coffee, cocoa, fruitjuices and wine. On the day of the study, after an overnight fast, 

venous blood samples were collected (in EDTA-tubes) before (T0), 30 minutes (T0.5), and 3 hours 

(T3) after a single dose of two capsules of a GTE (200mg × 2), commercially available in Italy 

(cod. 1820, REGISTRO INTEGRATORI https://www.salute.gov.it/imgs/C 17 pagineAree 3668 

listaFile itemName 1 file.pdf). 

2.2.2. PLASMA URIC ACID AND TAC 

The plasma was separated by centrifugation at 1300×g at 4 °C for 15 minutes and stored at -80 °C. 

Plasma levels of UA were quantified using colorimetric kits (Sentinel CH. SpA, Italy). 

Plasma TAC was measured with the FRAP assay [I. F. F. Benzie and J. J. Strain]. 

We calculated also the uric acid-independent FRAP (FRAP-UA) as previously described [I. Peluso 

et al. 2013], applying the formula:  

FRAP-UA = FRAPM−2UA M. (1) 

 

2.2.3. PLIR METHOD 

After red blood cells’ lysis and 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diazas- 

indacene-3-undecanoic acid (C11-BODIPY, Invitrogen, final concentration 1 μM) staining, 

leukocytes were treated as previously described [I. Peluso, H. Manafikhi, R. Reggi, Y. Longhitano, 

C. Zanza, and M. Palmery, 2016”] with phorbol 12-myristate 13-acetate (PMA, Sigma, final 

concentration 1 μg/mL), 2,2’-azobis(2-methylpropionamidine) dihydrochloride (AAPH, Sigma, 

final concentration 10mM), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, 

Sigma, final concentration 10 μM), PMA 1 μg/mL + Trolox 10 μM, or AAPH 10mM + Trolox 10 

μM. 

After 30 minutes at 37 °C cells were stored in ice, to stop reactions, and rapidly analyzed on an 

Accuri C6 BD cytometer. 

Data acquired on the Accuri C6 was exported in FCS format and analyzed by FCS express software 

(De Novo Software) to calculate the ratio of oxidation of the probe C11-BODIPY (FL1/FL2). 

PLIR was calculated as previously described [I. Peluso, H. Manafikhi, R. Reggi, Y. Longhitano, C. 

Zanza, and M. Palmery,2016], applying the formula: 

PLIR = (ratio AAPH × ratio PMA Trolox) / (ratio AAPH Trolox × ratio PMA). (2) 

 

2.2.4. STATISTICS 

Statistical analysis, carried out with Friedman RM ANOVA on Ranks, revealed a normal 

distribution for all markers (Normality Test Shapiro-Wilk and Equal variance test passed). 

Therefore, statistical analysis was carried out with repeated measures analysis of variance (RM 

ANOVA), with time or treatment as within-subjects factors. Student-Newman-Keuls post hoc 

analysis (all pairwise multiple comparison procedure) was used to isolate differences between 

groups. Spearman correlation was used to evaluate relationships between variables. All statistical 

evaluations were performed using the SigmaStat and SigmaPlot software (Jandel Scientific, Inc.). 
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2.3. RESULTS 

2.3.1. PLASMA URIC ACID AND TAC 

RM ANOVA, with time as within-subjects factor, followed by Student-Newman-Keuls post hoc 

analysis (all pairwise multiple comparison procedure), revealed that GTE consumption did not 

affect FRAP values, whereas 3 hours (T3) after treatment both a nonsignificant decrease in UA and 

a significant increase in FRAP-UA were found (Table 2.3). From the difference of means and the 

standard deviations (power0.8; alpha0.05) we calculated a sample size (to reach statistical 

significance) of 106 for UA. 

 
 

Table 2.3 Effect of GTE consumption on plasma antioxidant markers and PLIR. Plasma antioxidant markers in 

samples collected from 10 healthy subjects before (T0), 0.5 (T0.5), and 3 hours (T3) after the consumption of a single 

dose of two capsules of a green tea extract (GTE) supplement (200 mg × 2). UA: uric acid, FRAP: ferric reducing 

antioxidant potential, FRAP-UA: uric acid-independent FRAP, PLIR: peroxidation of leukocytes index ratio, L: 

lymphocytes, M: monocytes, and G: granulocytes. RM ANOVA, with time as within-subjects factor, followed by 

Student-Newman-Keuls post hoc analysis: T3 versus T0: *p<0.05. [Peluso I, Manafikhi H, Raguzzini A, Longhitano Y, 

Reggi R, Zanza C, Palmery M. The Peroxidation of Leukocytes Index Ratio Reveals the Prooxidant Effect of Green Tea 

Extract. Oxid Med Cell Longev. 2016;2016:9139731. doi: 10.1155/2016/9139731.] 

 

2.3.2. PLIR METHOD 

Treatment with GTE significantly increased PLIR of monocytes and granulocytes at T3, whereas a 

nonsignificant increase was observed for PLIR of lymphocytes (Table 2.3). 

We calculated a sample size (to reach statistical significance) of 80 for PLIR of lymphocytes. 

Pearson Product Moment Correlation revealed an inverse correlation of UA with PLIR L (CC = 

−0.383, p = 0.0368), PLIR M (CC = −0.474, p = 0.008), and PLIR G (CC = −0.545, p = 0.001) and 

a direct correlation of FRAP-UA with PLIR L (CC = 0.451, p = 0.012), PLIR M (CC = 0.398, p = 

0.029), and PLIR G (CC = 0.434, p = 0.016). 

 

2.3.3. RATIO OF OXIDATION OF THE PROBE C11-BODIPY 

Typical overlay dot plots of the four treatments used for PLIR calculation and ratio of fluorescence 

(FL1/FL2) on single cells, before GTE consumption and 3 hours after, are presented in Figures 2.4 

and 2.5, respectively. Trolox inhibited the peroxidation of C11-BODIPY in leukocytes exposed to 
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AAPH free radicals generating system, but not the PMA-induced oxidation in monocytes and 

granulocytes, both at T3 and at T0 (Figure 2.4). Considering the major components of PLIR 

affected by treatment, compared to baseline, the AAPH-induced (exogenous) oxidation appeared 

greater, whereas the PMA induced oxidative burst appeared lower (Figure 2.4). 

Despite the differences of ratio PMA and ratio AAPH between times did not reach significance, the 

statistical significance between ratio AAPH and ratio PMA was different at baseline and at T3 on 

granulocytes and monocytes (Figure 2.5). We calculated a sample size (to reach statistical 

significance between times) of 17 and 33 for ratio AAPH and of 21 and 51 for ratio PMA, for 

granulocytes and monocytes, respectively. Ratio PMA was not related to neither UA nor FRAP-

UA, whereas ratio AAPH was inversely correlated with UA on all cells (L: CC = −0.477, p = 0.007; 

M: CC = −0.514, p = 0.003; G: CC = −0.511, p = 0.003), but not with FRAP-UA. 
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Figure 2.4 Typical overlay dot plots of ratio (ratio of oxidation of the probe C11-BODIPY: FL1/FL2) versus side 

scatter (SSC): before (T0) and 3 hours (T3) in leukocytes collected after a single dose of two capsules of a green 

tea extract (GTE) supplement (200 mg × 2). L: lymphocytes, M: monocytes, and G: granulocytes. Unstimulated 

samples (black) and leukocytes treated with 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH, 10 mM, 

red), AAPH (10 mM) + 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, 10 μM, yellow), phorbol 12-

myristate 13-acetate (PMA, 1 μg/mL, blue), or PMA (1 μg/mL) + Trolox (green). [Peluso I, Manafikhi H, Raguzzini A, 

Longhitano Y, Reggi R, Zanza C, Palmery M. The Peroxidation of Leukocytes Index Ratio Reveals the Prooxidant 

Effect of Green Tea Extract. Oxid Med Cell Longev. 2016;2016:9139731. doi: 10.1155/2016/9139731.] 

 

 

Figure 2.5 Ratio (ratio of oxidation of the probe C11-BODIPY: FL1/FL2) of monocytes (a) and granulocytes (b), 

in samples collected from 10 healthy subjects before (T0) and 3 hours (T3) after the consumption of a single dose 

of two capsules of a green tea extract (GTE) supplement (200 mg × 2). Cells unstimulated (UNST) or treated with 

phorbol 12-myristate 13-acetate (PMA, 1 μg/mL), 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH, 

10 mM), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, 10 μM), Trolox + PMA, or Trolox + 

AAPH. Two-way (2W) RM ANOVA, with time and treatment as within-subjects factors, followed by Student-

Newman-Keuls post hoc analysis: AAPH versus PMA within time: **p<0.01, ***p<0.001. [Peluso I, Manafikhi H, 

Raguzzini A, Longhitano Y, Reggi R, Zanza C, Palmery M. The Peroxidation of Leukocytes Index Ratio Reveals the 

Prooxidant Effect of Green Tea Extract. Oxid Med Cell Longev. 2016;2016:9139731. doi: 10.1155/2016/9139731.] 
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2.4. DISCUSSION  

2.4.1. EFFECT OF GTE ON PLASMA ANTIOXIDANTS 

Previous studies reported decreased, increased, or unchanged UA and NEAC levels after bolus 

consumption of EGCG or GTE. The purpose of E. J´owko et al. was to evaluate the effect of acute 

ingestion of green tea polyphenols (GTP) on blood markers of oxidative stress and muscle damage 

in soccer players exposed to intense exercise. This randomized, double-blinded study was 

conducted on 16 players during a general preparation period, when all athletes participated in a 

strength-training program focused on the development of strength endurance. After ingestion of a 

single dose of GTP (640 mg) or placebo, all athletes performed an intense muscle-endurance test 

consisting of 3 sets of 2 strength exercises (bench press, back squat) performed to exhaustion, with 

a load at 60% 1-repetition maximum and 1-min rests between sets. Blood samples were collected 

preexercise, 5 minutes after the muscle-endurance test, and after 24 hr of recovery. Blood plasma 

was analyzed for the concentrations of thiobarbituric acid–reacting substances (TBARS), UA, total 

catechins, total antioxidant status (TAS), and activity of creatine kinase (CK); at the same time, 

erythrocytes were assayed for the activity of superoxide dismutase (SOD). E. J´owko et al.  found 

that in both groups, plasma TBARS, UA, and TAS increased significantly postexercise and 

remained elevated after a 24-hr recovery period. SOD activity in erythrocytes did not change 

significantly in response to the muscle-endurance test, whereas in both groups plasma CK activity 

increased significantly after 24 hr of recovery. Acute intake of GTP cased a slight but significant 

increase in total plasma catechins. However, GTP was found not to exert a significant effect on 

measured parameters. So, acute ingestion of GTP (640 mg) does not attenuate exercise-induced 

oxidative stress and muscle damage. 

A. Rabovsky et al.  in their method includes 3 steps: 

(1) enzymatic removal of UA 

(2) ex vivo free radical oxidation of plasma by the addition of a free-radical generator such as SIN-1 

or AAPH 

(3) measurement of a marker of lipid peroxidation, 8-isoprostanes. 

It has been shown in an in vitro experiment that the addition of various antioxidants to plasma 

significantly reduced the amount of free radical induced 8-isoprostanes. In a human single dose 

supplementation clinical study with vitamin C, vitamin E, and grape seed and green tea extracts (on 

separate days) 8-isoprostane formation was also significantly reduced compared to no 

supplementation (74.2 to 53.8 ± 5.1pg/ml for vitamin C). 

So A. Rabovsky et al. concluded that the reduction in 8-isoprostane formation demonstrates that the 

total amount of antioxidant protection in the plasma can be increased with supplementation of 

antioxidants and this new method can effectively measure the plasma antioxidant reserve (PAR) in 

healthy subjects. 

In a thirth study [M. Kimura et al.] the purpose was to investigate the effects of single/double or 

repeated intake of a normal amount of tea catechin on plasma catechin concentrations and 

antioxidant activity in young women. First, after an overnight fast, five healthy subjects were given 

water or single/double dose(s) of tea polyphenol extract (164 mg tea catechins containing 61% 

epigallocatechin gallate in 190 ml water). Blood samples were taken before and 30, 60 and 180 min 

after the ingestion. Second, 16 healthy subjects ingested the tea polyphenol extract three times a day 

at mealtimes for 7 days followed by withdrawal of tea polyphenol extract for 7 days. Blood samples 

were taken before and after ingestion, and 7 days after the withdrawal of tea catechin. Subjects were 

prohibited from drinking any beverages containing polyphenols or antioxidant supplements during 

the study period. Catechin and other antioxidant concentrations in the plasma were measured, and 

changes in antioxidant activity were evaluated by ferric reducing ability of plasma assay. So, a 

single/double ingestion of tea polyphenol extract did not cause an increase in the antioxidant 
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activity. There was no also change in antioxidant activity after the ingestion of tea polyphenol 

extract for 7 days. Plasma-free epigallocatechin gallate concentration remained at the pre-study 

level; however, the plasma FRAP value decreased significantly at 7 days after the withdrawal of tea 

polyphenol extract. Decreases in endogenous antioxidants in the plasma, including vitamin C and 

bilirubin, were also observed 7 days after withdrawal of tea polyphenol. The results of this study 

suggest that continuous daily intake of tea catechins affects the concentrations of endogenous 

antioxidants in the plasma and has the potential to maintain total antioxidant activity. 

A human intervention study was performed to evaluate the bioavailability and antioxidant capacity 

of EGCG administered as a single large dose in the form of either purified EGCG or as green tea 

extract (Polyphenon E) [S. M. Henning et al.]. Plasma concentrations of tea polyphenols were 

determined by high-performance liquid chromatography (HPLC) analysis combined with 

coulometric array electrochemical detection (ECD). They found no differences in plasma EGCG 

concentrations and trolox equivalents determined by the trolox equivalent antioxidant capacity 

assay after administration of either form of EGCG. However, they found that the plasma antioxidant 

activity was significantly affected by changes in the plasma urate concentration, which may have 

interfered with the effect of tea polyphenols on the antioxidant activity. In addition, lymphocyte 8-

hydroxydeoxyguanosine to deoxyguanosine (8-OHdG/106dG) ratios were determined by HPLC 

with ECD. The 8-OHdG/106dG ratios did not change significantly during the 24 h following both 

EGCG interventions but correlated significantly within individuals determined during the two 

interventions separated by 1 week. In summary, changes in plasma UA due to dietary intake were 

significantly correlated to the plasma antioxidant activity and exerted a stronger influence on the 

plasma antioxidant activity compared with the EGCG intervention. In future studies of dietary 

effects on the plasma antioxidant capacity, changes in plasma UA will need to be closely 

monitored. 

However, in some studies, EGCG increased in plasma from 30 minutes to 2.6 hours after GTE 

consumption, depending on the dose and on the formulation. 

A randomized, double-blind, placebo-controlled study [U. Ullmann et al.] assessed the safety, 

tolerability and plasma kinetic behaviour of single oral doses of 94% pure crystalline bulk EGCG 

under fasting conditions in 60 healthy male volunteers. In each group of 10 subjects, eight received 

oral EGCG in single doses of 50 mg, 100 mg, 200 mg, 400 mg, 800 mg or 1600 mg, and two 

received placebo. Blood samples were taken at intervals until 26 h later. The area under the 

concentration– time curve from 0 h to infinity, the maximum plasma concentration (Cmax) of 

EGCG, the time taken to reach the maximum concentration (Tmax), and the terminal elimination 

half-life (t1/2z) of EGCG were determined. Safety and tolerability were assessed. In each dosage 

group, the kinetic profile revealed rapid absorption with a one-peak plasma concentration versus 

time course, followed by a multiphasic decrease consisting of a distribution phase and an 

elimination phase. The mean AUC of total EGCG varied between 442 and 10 368 ng·h/ml. The 

according mean Cmax values ranged from 130 to 3392 ng/ml and were observed after 1.3 – 2.2 h. 

The mean t1/2z values were seen between 1.9 and 4.6 h. Single oral doses of EGCG up to 1600 mg 

were safe and very well tolerated.  

In this report of M. J. Lee et al. [M. J. Lee et al.], the pharmacokinetic parameters of EGCG, (-)-

epigallocatechin (EGC), and (-)-epicatechin (EC) were analyzed after administration of a single oral 

dose of green tea or decaffeinated green tea (20 mg tea solids/ kg) or EGCG (2 mg/kg) to eight 

subjects. The plasma and urine levels of total EGCG, EGC, and EC (free plus conjugated forms) 

were quantified by HPLC coupled to an electrochemical detector. The plasma concentration time 

curves of the catechins were fitted in a one compartment model. The maximum plasma 

concentrations of EGCG, EGC, and EC in the three repeated experiments with green tea were 77.9 

± 22.2, 223.4 ± 35.2, and 124.03 ± 7.86 ng/ml, respectively, and the corresponding AUC values 

were 508.2 ± 227, 945.4 ± 438.4, and 529.5 ± 244.4 ng·h·ml¯1 , respectively. The time needed to 

reach the peak concentrations was in the range of 1.3–1.6 h. The elimination half-lives were 3.4 ± 
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0.3, 1.7 ± 0.4, and 2.0 ± 0.4 h, respectively. Considerable interindividual differences and variations 

between repeated experiments in the pharmacokinetic parameters were noted. Significant 

differences in these pharmacokinetic parameters were not observed when EGCG was given in 

decaffeinated green tea or in pure form. In the plasma, EGCG was mostly present in the free form, 

whereas EGC and EC were mostly in the conjugated form. Over 90% of the total urinary EGC and 

EC, almost all in the conjugated forms, were excreted between 0 and 8 h. Substantial amounts of 4-

Omethyl EGC, at levels higher than EGC, were detected in the urine and plasma. The plasma level 

of 4-O-methyl EGC peaked at 1.7 0.5 h with a half life of 4.4 1.1 h. Two ring-fission metabolites, (-

)-5-(3,4,5- trihydroxyphenyl)--valerolactone (M4) and (-)-5-(3,4- dihydroxyphenyl)-valerolactone 

(M6), appeared in significant amounts after 3 h and peaked at 8–15 h in the urine as well as in the 

plasma. 

Chow et al. performed a Phase I pharmacokinetic study to determine the systemic availability of 

green tea catechins after single oral dose administration of EGCG and Polyphenon E (decaffeinated 

green tea catechin mixture). Twenty healthy subjects (five subjects/dose level) were randomly 

assigned to one of the dose levels (200, 400, 600, and 800 mg based on EGCG content). All 

subjects were randomly crossed-over to receive the two catechin formulations at the same dose 

level. Blood and urine samples were collected for up to 24 h after oral administration of the study 

medication. Tea catechin concentrations in plasma and urine samples were determined using high-

performance liquid chromatography with the coulometric electrode array detection system. After 

EGCG versus Polyphenon E administration, the mean area under the plasma concentration-time 

curves (AUC) of unchanged EGCG were 22.5 versus 21.9, 35.4 versus 52.2, 101.9 versus 79.7, and 

167.1 versus 161.4 min·mg/ml at the 200-, 400-, 600-, and 800-mg dose levels, respectively. EGC 

and EC were not detected in plasma after EGCG administration and were present at 

low/undetectable levels after Polyphenon E administration. High concentrations of EGC and EC 

glucuronide/sulfate conjugates were found in plasma and urine samples after Polyphenon E 

administration. There were no significant differences in the pharmacokinetic characteristics of 

EGCG between the two study medications. The AUC and Cmax of EGCG after the 800-mg dose of 

EGCG were found to be significantly higher than those after the 200- and 400-mg dose. The AUC 

and Cmax of EGCG after the 800-mg dose of Polyphenon E were significantly higher than those 

after the three lower doses. We conclude that the two catechin formulations resulted in similar 

plasma EGCG levels. EGC and EC were present in the body after the Polyphenon E administration; 

however, they were present predominantly in conjugated forms. The systemic availability of EGCG 

increased at higher doses, possibly due to saturable presystemic elimination of orally administered 

green tea polyphenols. However, the FRAP value did not increase when free EGCG concentration 

was at its peak [M. Kimura et al.], probably due to the decrease in UA levels observed after GTE 

consumption [S. M. Henning et al.].  

In agreement with these results, in our study GTE consumption did not affect FRAP values whereas 

a non-significant decrease in UA and a significant increase in FRAP-UA were found 3 hours after 

treatment. The increase in FRAP-UA, probably due to the catechins, could counter balance the 

reduction in FRAP induced by the UA decrease. However, the FRAP assay matches the antioxidant 

capacity to the reducing ability [I. F. F. Benzie et al.] and the reduced iron is critical in the onset of 

oxidative stress due to the Fenton reaction that generates the hydroxyl radical initiator of lipid 

peroxidation [S. Knasm¨uller et al.]. Therefore, an increase in the metal reducing power could be 

more likely detrimental than beneficial. 
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2.4.2. EFFECT OF GTE ON AAPH-INDUCED LIPOPEROXIDATION 

The increase in FRAP-UA was temporally associated with an increased oxidation of the fluorescent 

probe C11-BODIPY incorporated into the leukocytes. In this context, the prooxidant effects of tea 

catechins on cells are supported by the molecular mechanisms involved in their induction of 

antioxidant enzymes, through the antioxidant responsive elements (ARE) pathway [J. D. Lambert et 

al.]. In particular, it has been suggested that some derivatives of catechins can oxidize highly 

reactive cysteine thiol groups of Kelch-like ECH-associated protein1 (Keap1), resulting in 

disulphide bond formation and nuclear factor-erythroid2-relatedfactor2(Nrf2) release [H.-K. Na et 

al.]. The redox-sensitive transcription factor Nrf2 plays a key role in regulating induction of phase 

II detoxifying or antioxidant enzymes. Thus, activation of Nrf2 is considered to be an important 

molecular target of many chemopreventive and chemoprotective agents. They proposed 

mechanisms by which EGCG activates Nrf2, leading to up-regulation of ARE-driven antioxidant 

gene expression (Fig. 2.6). It is plausible that reactive forms of EGCG can conjugate with GSH, 

thereby lowering the cellular GSH level which may lead to transient disruption of redox-status with 

concomitant activation of MAPK cascades triggering Nrf2 phosphorylation. Alternatively, some 

electrophilic forms of EGCG may directly interact with cysteine residue present in Keap1, thereby 

inducing Nrf2 dissociation. Likewise, ROS derived as a consequence of auto-oxidation of EGCG 

can oxidize the cysteine thiols of Keap1, which will lead to diminished affinity of Nrf2 for Keap1, 

facilitating the release of Nrf2 for nuclear translocation. 
 

 

 
 

Figure 2.6 EGCG-induced upregulation of antioxidant or detoxifying enzymes via Nrf2-ARE signaling. Nrf2 is a 

transcription factor that regulates expression of many detoxification or antioxidant enzymes. The Kelch-like-ECH-

associated protein 1 (Keap1) is a cytoplasmic repressor of Nrf2 that inhibits translocation of Nrf2 to the nucleus. It is 

plausible that oxidized or other reactive forms of EGCG (EGCG*) can conjugate with GSH thereby lowering the 

cellular GSH level which may lead to disruption of redox-status with subsequent activation of upstream kinases 

including phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC), and MAPKs, such as c-Jun NH2-terminal 

kinase (JNK) and extracellular signal-regulated kinase (ERK), triggering Nrf2 phosphorylation. Alternatively, some 

reactive forms of EGCG (EGCG*) may directly interact with cysteine residues present in Keap1, thereby stimulating 

Nrf2 dissociation. Likewise, ROS produced by auto-oxidation of EGCG may not only stimulate phosphorylation of 

Nrf2 through activation of upstream kinases or oxidize the cysteine thiols of Keap1. Both events can facilitate the 
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nuclear translocation of Nrf2. In the nucleus, Nrf2 associates with small Maf (the term derived from 

MusculoAponeurotic-Fibrosarcoma virus), forming a heterodimer that binds to antioxidant-response element (ARE) or 

electrophile-responsive element (EpRE) to stimulate phase II detoxification or antioxidant enzymes. [H.-K. Na and Y.-

J. Surh, “Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol 

EGCG,” Food and Chemical Toxicology, vol. 46, no. 4, pp. 1271–1278, 20] 

 

However, the ratio AAPH was inversely correlated with UA on all cells, but not with FRAP-UA. In 

agreement with our results the consumption for 112 days of a lutein (12mg/d) plus GTE (200mg/d) 

supplement did not reduce the oxidation of the C11-BODIY incorporated into the lipid 

compartment of plasma [L. Li, C.-Y. O. Chen et al.]. 

Epigallocatechin gallate, a major component of green tea polyphenols, protects against the 

oxidation of fat-soluble antioxidants including lutein. The study of L. Li et al. [L. Li, C.-Y. O. Chen 

et al.] determined the effect of a relatively high but a dietary achievable dose of lutein or lutein plus 

green tea extract on antioxidant status. Healthy subjects (50– 70 years) were randomly assigned to 

one of two groups (n=20 in each group): (1) a lutein (12 mg/day) supplemented group or (2) a lutein 

(12 mg/day) plus green tea extract (200 mg/day) supplemented group. After 2 weeks of run-in 

period consuming less than two servings of lightly colored fruits and vegetables in their diet, each 

group was treated for 112 days while on their customary regular diets. Plasma carotenoids including 

lutein, tocopherols, flavanols and ascorbic acid were analyzed by HPLC-UVD and HPLC-

electrochemical detector systems; total antioxidant capacity by fluorometry; lipid peroxidation by 

malondialdehyde using a HPLC system with a fluorescent detector and by total 

hydroxyoctadecadienoic acids using a GC/MS. Plasma lutein, total carotenoids and ascorbic acid 

concentrations of subjects in either the lutein group or the lutein plus green tea extract group were 

significantly increased (Pb.05) at 4 weeks and throughout the 16-week study period. However, no 

significant changes from baseline in any biomarker of overall antioxidant activity or lipid 

peroxidation of the subjects were seen in either group. Their results indicate that an increase of 

antioxidant concentrations within a range that could readily be achieved in a healthful diet does not 

affect in vivo antioxidant status in normal healthy subjects when sufficient amounts of antioxidants 

already exist. 

 

2.4.3. EFFECT OF GTE ON PMA-INDUCED OXIDATIVE BURST 

We have found a non-significant decrease of PMA-induced lipoperoxidation after GTE 

consumption, contrarily with the increase of the oxidative burst of granulocyte, observed in cyclists 

when quercetin was administered with the tea flavanol epigallocatechin 3-gallate, by using 

dihydrorhodamine 123 (DHR123) as fluorescence probe [D. C. Nieman et al. 2009]. 

D. C. Nieman et al. wanted to test the influence of 1000 mg of quercetin (Q) with or without 120 

mg of epigallocatechin 3-gallate (EGCG), 400 mg of isoquercetin, and 400 mg of eicosapentaenoic 

acid and docosahexaenoic acid (Q–EGCG) on exercise performance, muscle mitochondrial 

biogenesis, and changes in measures of immunity and inflammation before and after a 3-d period of 

heavy exertion. So, trained cyclists (N = 39) were randomized to placebo (P), Q, or Q–EGCG and 

ingested supplements in a double-blinded fashion for 2 weeks before, during, and 1 week after a 3-d 

period in which subjects cycled for 3 h·d¯¹  at ~57% Wmax. Blood, saliva, and muscle biopsy 

samples were collected before and after 2 weeks of supplementation and immediately after the 

exercise bout on the third day. Blood and saliva samples were also collected 14 h after exercise. D. 

C. Nieman et al. Founded that two-week supplementation resulted in a significant increase in 

plasma quercetin for Q and Q–EGCG and granulocyte oxidative burst activity (GOBA) in Q–

EGCG. Immediately after the third exercise bout, significant decreases for C-reactive protein 

(CRP), and plasma interleukin 6 (IL-6) and interleukin 10 (IL-10) were measured in Q–EGCG 
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compared with P. Granulocyte colony-stimulating factor and CRP were reduced in Q–EGCG 14 h 

after exercise. No group differences were measured in muscle messenger RNA expression for 

peroxisome proliferator-activated receptor F coactivator >, citrate synthase, or cytochrome c. In 

conclusion, two-week supplementation with Q–EGCG was effective in augmenting GOBA and in 

countering inflammation after 3 d of heavy exertion in trained cyclists. 

However, the post-exercise induced decrease in oxidative burst was unaffected after bolus 

consumption of the same supplement [M. Konrad et al.], when hydroethidine was used as probe. 

Therefore, our results confirm that the plasma membrane C-11BODIPY is a suitable probe in the 

evaluation of the effects on the oxidative burst of flavonoids, which increase DHR123 accumulation 

[I. Peluso, H. Manafikhi, R. Reggi, and M. Palmery, 2014]. Though the effect of GTE consumption 

on oxidative burst requires more subjects to reach statistical significance, our results are in 

agreement with the reduction of the p22phox subunit of the NADPH oxidase observed in 

hemodialysis patients after 6 months of treatment with GT [U. Vertolli et al.]. 

As green tea is increasingly well recognized for its antioxidant properties, U. Vertolli et al. probed 

the effect of consumption of 1 capsule daily of green tea as a commercially available, decaffeinated 

green tea capsule (1 g, catechin content 68 mg) for 6 months on fibrinogen and inflammation in 

dialysis patients. Chronic hemodialysis patients (N = 25) were recruited and fibrinogen, FDP-D-

dimer, high sensitivity (hs) CRP and the mononuclear cell protein expression of p22phox, were 

assessed before, i.e. baseline and after 6 months of ingestion of 1 green tea capsule per day. After 6 

months of daily green tea capsule ingestion, dialysis patients showed reduced protein expression of 

p22phox (p < 0.0001), reduced hsCPR (p = 0.032) and fibrinogen (p = 0.022) levels and increased 

FDP-D-dimer (p = 0.0019) compared to their values at baseline. These results document lower 

oxidative stress and inflammation with green tea capsule ingestion and suggest a likely positive 

impact of green tea treatment on the atherosclerotic process of ESRD patients under dialysis. 

 

2.4.4. EFFECT OF GTE ON PLIR 

In a postprandial study [I. Peluso, H. Manafikhi, R. Reggi, Y. Longhitano, C. Zanza, and M. 

Palmery 2016] we observed that a functional food covered by dark chocolate and containing 

glucomannan, inulin, fructooligosaccharides, and Bacillus coagulans strain GanedenBC30 

significantly improved postprandial metabolic stress (insulin, glucose, and triglycerides), reduced 

the postprandial increase of UA, and improved PLIR of lymphocytes, but not of monocytes and 

granulocytes. We suggested that, although PLIR is a functional index that is independent of baseline 

levels of oxidation, measuring the ratio between the resistance to exogenous and the resistance to 

endogenous ROS injury, this ratio calculation could mask the effect of foods that inhibit both the 

exogenous ROS injury and the oxidative burst. 

On the contrary, in the present study, treatment with GTE significantly increased PLIR of 

monocytes and granulocytes at T3 after ingestion, whereas a non-significant increase was observed 

for PLIR of lymphocytes. An inverse correlation of UA with PLIR and a direct correlation of 

FRAP-UA with PLIR of all leukocytes were found. Therefore, though some of the protective effects 

of catechins have been ascribed to their capability to reduce excessive UA level [T. Yokozawa et 

al.], in our study the inverse correlation of PLIR with UA levels, in particular with the ratio AAPH 

component of PLIR, confirms that UA is a major circulating antioxidant as suggested by Fabbrini et 

al.. 

These authors evaluated whether alterations in levels of circulating UA, a systemic antioxidant, 

affects the following: 

1) systemic (plasma and saliva) non-enzymatic antioxidant capacity (NEAC); 
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2) markers of systemic (urinary 8-iso-prostaglandin-F2a) and muscle (carbonylated protein content) 

oxidative stress; 

3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-

euglycemic clamp procedure). 

Thirty-one obese subjects (BMI 37.1 6 0.7 kg/m2) with either high serum UA (HUA; 7.1 6 0.4 

mg/dL; n = 15) or normal serum UA (NUA; 4.5 6 0.2 mg/dL; n = 16) levels were studied; 13 

subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a 

recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity 

(40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 

0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of 

systemic and muscle markers of oxidative stress (all P < 0.05) but did not affect insulin sensitivity 

(from 168 6 25% to 156 6 17%, P = NS). 

E. Fabbrini et al. reported that rasburicase treatment, in subjects who had high serum UA 

concentrations, caused a marked decrease in plasma FRAP and a significant increase in urinary 

isoprostanes/creatinine ratio and in skeletal muscle protein carbonylation. On the other hand, though 

the effects of GTE consumption on oxidative burst and AAPH-induced lipoperoxidation require 

more subjects to reach statistical significance, the statistical significance between ratio AAPH and 

ratio PMA was different at baseline and at T3 on granulocytes and monocytes. Therefore, the ratio-

based calculation of the PLIR is able to appreciate differences also with a low number of subjects in 

monocytes and granulocytes. 

Our results suggest that PLIR reveals the prooxidant effect of a green tea extract, a result in 

agreement with the Food and Drug Administration and the European Food Safety Administration 

(EFSA) [Dwyer JT et al.] that denied the proposed health claims and decreased risk of non-

communicable diseases for green tea 

(https://www.fda.gov/food/ingredientspackaginglabeling/labelingnutrition/ucm073207.htm, 

https://www.fda.gov/food/ingredientspackaginglabeling/ labelingnutrition/ucm301644.htm, 

http://onlinelibrary.wiley. com/doi/10.2903/j.efsa.2011.2055/epdf). 

Furthermore, the Supplement Information Expert Committee suggests that consumption of green tea 

extract can induce liver damage [Sarma DN et al.] and EFSA recently launched a public call for 

data to acquire documented information for the risk assessment of green teacatechins 

(http://www.efsa.europa.eu/it/data/call/170410). 

This was followed by publication of adverse event case reports involving green tea products. In 

response, the US Pharmacopeia (USP) Dietary Supplement Information Expert Committee (DSI 

EC) systematically reviewed the safety information for green tea products in order to re-evaluate 

the current safety class to which these products are assigned. DSI EC searched PubMed (January 

1966–June 2007) and EMBASE (January 1988–June 2007) for clinical case reports and animal 

pharmacological or toxicological information. Reports were also obtained from a diverse range of 

other sources, including published reviews, the US FDA MedWatch programme, USP’s 

MEDMARX® adverse event reporting system, the Australian Therapeutic Goods Administration, 

the UK Medicines and Healthcare Products Regulatory Agency, and Health Canada’s Canadian 

Adverse Drug Reaction Monitoring Program. 

In addition, the Committee analysed information concerning historical use, regulatory status, and 

current extent of use of green tea products. A total of 216 case reports on green tea products were 

analysed, including 34 reports concerning liver damage. Twenty-seven reports pertaining to liver 

damage were categorized as possible causality and seven as probable causality. Clinical 

pharmacokinetic and animal toxicological information indicated that consumption of green tea 

http://www.efsa.europa.eu/it/data/call/170410
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concentrated extracts on an empty stomach is more likely to lead to adverse effects than 

consumption in the fed state. Based on this safety review, the DSI EC determined that when 

dietary supplement products containing green tea extracts are used and formulated appropriately 

the Committee is unaware of significant safety issues that would prohibit monograph development, 

provided a caution statement is included in the labelling section. Following this decision, USP’s 

DSI ECs may develop monographs for green tea extracts, and USP may offer its verification 

programmes related to that dietary ingredient [Sarma DN et al.]. 

Green tea catechins have the ability to lower UA levels [Peluso I, Serafini M (2017)], the major 

plasma antioxidant. 
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3. AIM 2:  

RELATIONSHIP BETWEEN THE PEROXIDATION 

OF LEUKOCYTES INDEX RATIO 

AND A FUNCTIONAL MATHEMATICAL INDEX 

INCLUDING URIC ACID LEVELS AND HEALTH-

RELATED HABITS: A PILOT STUDY 
 

3.1. INTRODUCTION 

An inverse correlation of UA with PLIR has been found in healthy subjects [Peluso I, Manafikhi H, 

Raguzzini A, Longhitano Y, Reggi R, Zanza C, Palmery M (2016)] and we previously suggested that 

UA could affect PLIR in two different ways: acting as antioxidant (at physiological concentration) 

on all leukocytes and inducing oxidative burst in reactive oxygen species (ROS)-producing cells (at 

values higher than the saturation concentrations) [Peluso I, Manafikhi H, Reggi R, Longhitano Y, 

Zanza C, Palmery M (2016)]. 

 

3.2. URIC ACID AND OXIDATIVE STRESS 

UA, the end product of purine metabolism in humans produced by hypoxanthine and xanthine 

under the catalysis of xanthine oxidase (XO), is a potent endogenous antioxidant in the extracellular 

environment [Peluso I, Raguzzini A. 2016]. UA is the final product of endogenous and dietary 

purine metabolism. UA is a weak acid with pKa of 5.75 in the blood and 5.25 in the urine [Desideri 

G et al.]. UA was initially considered an inert waste product of purine metabolism able to crystallize 

at high concentrations, causing gouty arthritis and renal stones. Recent scientific evidences 

demonstrated that UA exerts different biological effects, depending on its chemical 

microenvironment, including a protective antioxidant activity as well as a dangerous pro-oxidant 

action. It has been proposed that higher serum levels of urate may be of selective advantage in the 

evolution of hominids because of its antioxidant effects. On the other hand, hyperuricemia is 

associated with multiple diseasesin humans and points to the deleterious effects of high 

concentrations of urate (Figure 3.1) [So A et al.]. 

The relative hyperuricemia in humans has raised questions about its evolutionary advantages, and 

its association with diseases requires understanding how it can become deleterious at high 

concentrations. Initially, UA was considered an inert waste product that crystallizes at high 

concentrations to form renal stones and provoke gouty arthritis. Subsequently, UA was recognized 

to be a powerful antioxidant that scavenges singlet oxygen, oxygen radicals, and peroxynitrite and 

chelates transition metals, to reduce, for instance, iron ion–mediated ascorbic acid oxidation. 
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Figure 3.1 Pathways of urate homeostasis. Summary scheme of the pathways to produce uric acid, to convert it into 

allantoin by the liver enzyme uricase, and to excrete it. The balance between these pathways regulates blood urate 

concentrations, which are higher in humans and apes due to inactivation of the uricase genes. Hyperuricemia can lead to 

gout and possibly to cardiovascular effects, whereas hyperuricosuria may lead to uric acid crystal–induced pathologies. 

[So A, Thorens B. Uric acid transport and disease. J Clin Invest. 2010 Jun;120(6):1791-9.] 

 

Urate thus accounts for approximately half of the antioxidant capacity of human plasma, and its 

antioxidant properties are as powerful as those of ascorbic acid [Ames BN et al.]. As illustrated in 

Figure 3.2A, UA can prevent peroxynitrite-induced protein nitrosation [Whiteman M et al.], lipid 

and protein peroxidation [Muraoka S et al.], and inactivation of tetrahydrobiopterin [Kuzkaya N et 

al.], a cofactor necessary for NOS. UA also protects LDL from Cu2+-mediated oxidation (Figure 

3.2B). Together, these antioxidant actions underlie the protective effects of UA action in 

cardiovascular diseases, aging, and cancer [Ames BN et al.].  

In vitro and cellular studies have nevertheless demonstrated that depending on its chemical 

microenvironment, UA may also be pro-oxidant. For instance, although UA can protect native LDL 

particles against Cu2+-induced oxidation, it also increases the oxidation of already oxidized LDLs, 

which contain lipid peroxidation products [Bagnati M et al.] and this dual role appears to depend on 

the presence of transition metals. As illustrated in Figure 3.2A, when UA is oxidized by 

peroxynitrites, urate radicals are produced that could propagate the pro-oxidant state [Santos CX et 

al.], but in the plasma they are rapidly inactivated by reaction with ascorbic acid. NO, described 

initially as an endothelial cell–derived relaxing factor, is an important regulatory molecule in the 

cardiovascular system, and reduced NO levels are associated with hypertension and insulin 

resistance. Urate can react directly with NO under aerobic conditions to generate an unstable 

nitrosated UA product that can transfer NO to other molecules such as glutathione (Figure 3.2). 

Under anaerobic conditions, urate is converted in the presence of NO into stable 6-aminouracil 
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[Gersch C et al.]. The possibility that increased urate plasma levels can reduce NO bioavailability 

has been tested in rats treated with the uricase inhibitor oxonic acid. The consequent increase in 

plasma UA was indeed associated with a decrease in plasma nitrites/nitrates (NOx). Similarly, 

direct exposure of endothelial cells to UA slightly reduces basal or VEGF-stimulated NO 

production [Khosla UM, et al.]. Thus, UA can dose-dependently reduce NO bioavailability. 

Although a direct chemical reaction of urate with NO could explain the decrease in plasma NOx, 

there is evidence that in vivo urate can decrease NO production by interfering with its biosynthesis. 

For instance, in pulmonary endothelial cells, UA reduces NO production by a mechanism that 

depends on UA increasing the activity of arginase, which diverts l-arginine to urea production 

instead of to NO production by eNOS (Figure 3.2C). Another pro-oxidant action of urate has been 

described during adipogenic differentiation of 3T3-L1 cells (Figure 3.2). When these cells are 

induced to differentiate into adipocytes, addition of UA at physiological concentrations further 

increases ROS production by a mechanism that involves activation of NADPH oxidase. This effect 

in adipocytes may participate in the induction of inflammation and insulin resistance of adipose 

tissue observed in obesity [Hotamisligil GS.]. Together, the available information indicates that UA 

has complex chemical and biological effects and that its pro-oxidant or NO-reducing properties may 

explain the association among hyperuricemia, hypertension, the metabolic syndrome, and 

cardiovascular disease. In addition, when hyperuricemia leads to the formation of microcrystals, it 

leads to joint and renal inflammation. Chronic inflammation leads to bone and cartilage destruction, 

and chronic hyperuricemia and hyperuricosuria in gouty patients are also frequently associated with 

tubulointerstitial fibrosis and glomerulosclerosis, signs of local renal inflammation [Kang DH et 

al.]. 

 
 

 
Figure 3.2 Antioxidant and pro-oxidant effect of uric acid. Antioxidant activities. (A) Peroxynitrites (ONOO–) are 

produced from the reaction of nitric oxide (NO•) with superoxide (O2
-•). Peroxynitrites can induce protein nitrosation 

and lipid and protein peroxidation and block tetrahydrobiopterin (HB4), a cofactor necessary for NOS activity. In the 

absence of HB4, NOS produces ROS. Uric acid (UA) can directly inactivate peroxynitrite by a reaction that generates 

uric acid radicals (UA•); these can be rapidly eliminated by plasma ascorbic acid. (B) Uric acid can also prevent Cu2+-

induced oxidation of LDL, a reaction that may protect against atherosclerosis development. (C) By enhancing arginase 

activity, uric acid diverts l-arginine from NO production to urea production. Uric acid can also directly react with NO to 

generate nitrosated uric acid, and the nitroso group can then be transferred to glutathione (GSH) for transport to another 

recipient molecule. In the presence of oxygen, uric acid reacts with NO to produce the stable species 6- aminouracil. 

Uric acid uptake in adipocytes activates NADPH oxidase and increase production of ROS, which can initiate an 

inflammatory reaction. In vascular smooth muscle cells, uric acid can activate the NF-κB and MAPK pathway and 

increase cyclooxygenase and MCP-1 production. Blue arrows, chemical reactions; green arrows, products from 

enzymatic or signaling pathways; red arrows, activation of enzymatic activities. [So A, Thorens B. Uric acid transport 

and disease. J Clin Invest. 2010 Jun;120(6):1791-9.] 

 

Oxidative stress is associated with the metabolic syndrome, a cluster of cardiovascular risk factors 

including dyslipidemia, abnormal glucose tolerance, hypertension, and obesity [F. Bonomini et al.]. 

Despite the antioxidant effect of UA, hyperuricaemia is associated with obesity and insulin 
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resistance [W. Y. Tae et al.] and has been proposed as a component of the metabolic syndrome [R. 

Kawamoto et al.]. A great number of physiological functions are controlled by redox-responsive 

signalling pathways. These, for example involve: 

(i) redox regulated production of NO 

(ii) ROS production by phagocytic NAD(P)H oxidase (oxidative burst) 

(iii) ROS production by NAD(P)H oxidases in nonphagocytic cells 

(iv) regulation of vascular tone and other regulatory functions of NO• 

(v) ROS production as a sensor for changes of oxygen concentration 

(vi) redox regulation of cell adhesion 

(vii) redox regulation of immune responses 

(viii) ROS-induced apoptosis and other mechanisms. 

Systemic oxidative stress is common in patients with cognitive impairment and markers of lipid 

peroxidation are elevated and total antioxidant capacity is decreased in Alzheimer's disease (AD) 

and mild cognitive impairment (MCI) [Schrag M et al.].  

The effect of UA on oxidative stress depends on its concentration [Palmery M., Reggi R., Peluso I. 

Uric acid and cognition: what is the connection?]. UA at concentrations below the saturation level 

for urate precipitation (6.0 mg/dl) inhibits significantly oxidations caused by the Fenton reaction 

[Waugh WH.] and by the peroxyl radicals [Muraoka S et al.]. In their study, they observed that 

UA efficiently scavenged carbon-centered and peroxyl radicals derived from the hydrophilic free 

radical generator 2,2'-azobis-(2-amidinopropane)-dihydrochloride (AAPH). All damage to 

biological molecules, including protein, DNA and lipids induced by AAPH, was strongly prevented 

by UA. In contrast, alpha-tocopherol had little effect on damage to biological molecules. Lipid 

peroxidation by the lipophilic free radical generator 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN) 

was little inhibited by UA, but not by alpha-tocopherol. Copper-induced lipid peroxidation was 

inhibited by UA and alpha-tocopherol. NADPH- and ADP-Fe(3+)-dependent microsomal lipid 

peroxidation was efficiently inhibited by alpha-tocopherol, but not by UA. On the other hand, UA 

induces the nuclear translocation of the nuclear factor (erythroid- derived 2)-like 2 (Nrf2) protein in 

primary astrocytic cultures [Bakshi R et al.], leading to the transcription of antioxidant genes 

through the antioxidant responsive elements (ARE) (Figure 3.3). 

 

 

 
Figure 3.3 Uric acid and neuroprotection against oxidative stress. [Palmery M., Reggi R., Peluso I. Uric acid and 

cognition: what is the connection? Biomedical Reviews 2016; 27: 51 – 57] 
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Although, low levels of UA are detrimental to the neurons, UA has been identified as an 

endogenous danger signal for immune system [Fang P et al.] (Figure 3.4). 

 

 

 
 

Figure 3.4 UA’s effect is organ-dependent, plasma level dependent and soluble/crystal status dependent. UA-uric 

acid; CNS-central nervous system [Fang P, Li X, Luo JJ, Wang H, Yang XF. A Double-edged Sword: Uric Acid and 

Neurological Disorders. Brain Disord Ther. 2013 Nov 1;2(2):109.] 

 

Although our previous studies (postprandial and GTE) suggest that UA has a key role in PLIR also 

life styles, including dietary habit and physical activity (PA) have a well-known role in the 

development of oxidative stress and immune impairment. In addition to a low PA and a low 

adherence to Mediterranean diet, eating out of home (EOH) is significantly increasing worldwide 

and has been associated with risk of becoming overweight or obese [Nago ES et al.]. In this pilot 

study, we aimed to investigate the relationship between the PLIR and various potential 

determinants, such as UA levels, PA, and dietary habits and the possibility to apply, in humans, the 

functional mathematical index (FMI) previously used as “global quality” index for foods [Finotti E 

et al.]. With the FMI approach, based on the concept of Euclidean distance [Finotti E et al.], it is 

possible to obtain an adimensional index including various health-related aspects having different 

units of measurement, such as serum clinical markers and life style factors. 

 

3.2.1. METHODS 

We selected 19 subjects (12 men and 7 women), who volunteered in response to advertisements at 

“La Sapienza” University of Rome, according to the following criteria: being healthy, being aged 

between 25 and 50 years, and taking no drugs, supplements, probiotics, or functional foods. 

Exclusion criteria include smoking habits and adherence to special diets (vegetarian, vegan). Body 

Mass Index was calculated as weight (in kilograms, Kg) divided by height (in meters’ square,  m²). 

Adherence level to Mediterranean Diet (Ad-MD) and PA were calculated by the MedDietScore 

Software [Panagiotakos DB et al.] and the “Guidelines for Data Processing and Analysis of the 

International Physical Activity Questionnaire” (IPAQ) (https:// 
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www.academia.edu/5346814/Guidelines_for_Data_Processing_and_Analysis_of_the_International

_Physical_ Activity_Questionnaire_IPAQ_Short_and_Long_Forms_ Contents). 

The IPAQ assesses physical activity undertaken across a comprehensive set of domains including:  

a. leisure time physical activity  

b. domestic and gardening (yard) activities  

c. work-related physical activity  

d. transport-related physical activity;  

We used the the IPAQ Scoring Protocol (Short Forms) in order to evaluate the Continuous Score 

expressed as Metabolic Equivalent of Task-min per week: MET level x minutes of activity/day x 

days per week 

Calculation: 

Walking MET-minutes/week = 3.3 * walking minutes * walking days  

Moderate MET-minutes/week = 4.0 * moderate-intensity activity minutes * moderate days 

Vigorous MET-minutes/week = 8.0 * vigorous-intensity activity minutes * vigorous-intensity days 

Total physical activity MET-minutes/week = sum of Walking + Moderate + Vigorous MET-

minutes/week scores. 

There are three levels of physical activity proposed to classify populations:  

1. Low: Total physical activity of < 600 MET-minutes/week.    

2. Moderate: Total physical activity of at least 600 MET-minutes/week (OR 3 or more days of 

vigorous activity of at least 20 minutes per day OR 5 or more days of moderate-intensity activity 

and/or walking of at least 30 minutes per day)  

3. High: 

A separate category labelled ‘high’ can be computed to describe higher levels of PA.  

The two criteria for classification as ‘high’ are:  

a) vigorous-intensity activity on at least 3 days achieving a minimum Total physical activity   

of at least 1500 MET-minutes/week  

OR 

b) 7 or more days of any combination of walking, moderate-intensity or vigorous-intensity activities 

achieving a minimum Total physical activity of at least 3000 MET-minutes/week. 

 

The Mediterranean dietary pattern has become customary to be represented in the form of a 

pyramid, the base of which refers to foods which are suggested to be consumed most frequently and 

the top of the pyramid to those foods consumed rarely. An index (diet score) that estimates the 

adherence level to Mediterranean diet was developed and associated with cardiovascular disease 

risk and biomarkers. Panagiotakos DB et al.  presented a computer program that can easily calculate 

this diet score, as well as its association with cardiovascular disease risk. 

The base of pyramid refers to foods which are suggested to be consumed most frequently and the 

top of the pyramid to those foods consumed rarely. The remaining food patterns occupy 

intermediate positions (Figure 3.5). In particular, this dietary pattern consists of: 

(a) daily consumption of non-refined cereals and products (8 servings/day), vegetables (2–3 

servings/day), fruits (4–6 servings/day), olive oil (in daily cooking as the main added lipid) and 

nonfat or low fat dairy products (1–2 servings/day); 

(b) weekly consumption: of potatoes (4–5 servings/week), fish (4–5 servings/week), olives, beans, 

pulses and nuts (>4 servings/week) and more rare poultry (1–3 servings/week), eggs and sweets (1–

3 servings/week) 

(c) monthly consumption: of red meat and meat products (4–5 servings/month). 

This pattern is also characterized by moderate consumption of wine (1–2 wineglasses/day), which 

usually accompanies meals. In addition, although intake of milk is moderate, the consumption of 

cheese and yogurt is relatively high. White cheese is regularly added to salads and accompanies 

vegetable stews. It has to be noticed that the described dietary pattern is low in saturated fat (≤7–8% 
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of energy), with total fat ranging from <25% to >35% of energy, and ratio of monounsaturated-to-

saturated fats >2. 

 
 

Figure 3.5 The traditional Mediterranean diet pyramid. [Panagiotakos DB, Milias GA, Pitsavos C, Stefanadis C 

(2008) MedDietScore: a computer program that evaluates the adherence to the Mediterranean dietary pattern and its 

relation to cardiovascular disease risk. Comput Methods Progr Biomed 83(1):73–77.] 

 

A software program in Microsoft Visual Basic 6.0 (Service Pack 6) was developed for calculation 

of the proposed Mediterranean diet score (Table 3.1). In the main form (Figure 3.6) the user is 

asked to state the frequency of consumption of every listed food, by clicking with the mouse at the 

respective option button. Every time, that an option button is selected, the respective red circle turns 

to green color indicating that selection has been made. This feature makes it easier to the user to 

find out which food items remain unanswered. When frequency of consumption for all listed foods 

has been selected, the program automatically calculates the diet score (a value from 0 to 55), based 

on the theoretical background described above. Moreover, if we assume that a score equal to 55 

http://www.sciencedirect.com/science/article/pii/S0169260706001052?via%3Dihub#tbl1
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represents 100% adherence to the Mediterranean dietary pattern, then a score equal to k represents 

(k/55) × 100% agreement to this pattern. 

 

 

 

How often do you consume:    Frequency of consumption (servings/month): 
 Never 1-4 5-8 9-12 13-18 >18 

Non-refined cereals (whole grain bread, pasta, rice, etc.) 0 1 2 3 4 5 

Potatoes 0 1 2 3 4 5 

Fruits 0 1 2 3 4 5 

Vegetables 0 1 2 3 4 5 

Legumes 0 1 2 3 4 5 

Fish 0 1 2 3 4 5 

Red meat and products 5 4 3 2 1 0 

Poultry 5 4 3 2 1 0 

Full fat dairy products (cheese, yoghurt, milk) 5 4 3 2 1 0 

       

Use of olive oil in cooking (times/week) Never Rare <1 1-3 3-5 Daily 

 0 1 2 3 4 5 

       

Alcoholic beverages (ml/day, 100 ml = 12 g ethanol) <300 300 400 500 600 >700 or 0 

 5 4 3 2 1 0 

 

Table 3.1 The Mediterranean diet score. [Panagiotakos DB, Milias GA, Pitsavos C, Stefanadis C (2008) 

MedDietScore: a computer program that evaluates the adherence to the Mediterranean dietary pattern and its relation to 

cardiovascular disease risk. Comput Methods Progr Biomed 83(1):73–77.] 
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Figure 3.6 Main form of the program. [Panagiotakos DB, Milias GA, Pitsavos C, Stefanadis C (2008) MedDietScore: 

a computer program that evaluates the adherence to the Mediterranean dietary pattern and its relation to cardiovascular 

disease risk. Comput Methods Progr Biomed 83(1):73–77.] 

 

Besides the calculation of the diet score, the program calculates also an estimation of the 

cardiovascular disease risk based on the values of the score (Figure 3.7). 
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Figure 3.7 Sample of advice given after diet score has been calculated. [Panagiotakos DB, Milias GA, Pitsavos C, 

Stefanadis C (2008) MedDietScore: a computer program that evaluates the adherence to the Mediterranean dietary 

pattern and its relation to cardiovascular disease risk. Comput Methods Progr Biomed 83(1):73–77. 

doi:10.1016/j.cmpb.2006.05.003] 

 

Participants were also asked to indicate their usual weekly frequency (every day, 2–3 times, once, 

or never) of EOH at fast food (EOH-F) or other EOH (EOH-R: restaurant and EOH-B: bar).  

UA and PLIR measurements were performed as previously described, at “La Sapienza” university 

of Rome. In particular, PLIR was calculated applying the previously described: 

PLIR = (RATIO AAPH × RATIO PMA Trolox) / 

(RATIO AAPH Trolox × RATIO PMA). 

PLIR components are described in Table 3.2. The RATIO is the ratio of green (as a result of 

oxidation) to red fluorescence (the fluorescence of the non-oxidized probe) of the lipophilic 4,4-

difluoro-5-(4-phenyl-1,3-butadienyl)4-bora-3a, 4a-diaza-s-indacene-3-undecanoic acid (C11-

BODIPY). 

The RATIO was evaluated in leukocytes treated as previously described with phorbomyristate13-

acetate (PMA), 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH), and/or the standard 

antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). 
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 Mean SD 

PLIR-L components   

RATIO PMA 0.16 0.05 

RATIO AAPH 0.48 0.21 

RATIO Trolox PMA 0.16 0.05 

RATIO Trolox AAPH 0.16 0.08 

PLIR-M components   

RATIO PMA 0.21 0.06 

RATIO AAPH 0.42 0.20 

RATIO Trolox PMA 0.20 0.06 

RATIO Trolox AAPH 0.15 0.06 

PLIR-G components   

RATIO PMA 0.49 0.21 

RATIO AAPH 0.45 0.19 

RATIO Trolox PMA 0.46 0.20 

RATIO Trolox AAPH 0.19 0.08 

FMI components   

BMI (centred: 18.5–24.9 Kg/m2) 23.76 4.11 

Ad-MD (more: 62–100%) 52.53 6.15 

EOH-F (less: 0–2 times/week) 0.74 0.73 

 EOH-R (less: 0–3 times/week) 1.74 1.33 

EOH-B (less: 0–2 times/week) 4.47 3.10 

PA (centred: 600–1499 MET/min/week) 1608.95 914.12 

UA (sex centred: 3.5–7.2 mg/dl M 2.6–6 mg/dl W) M 5.43 0.88 

 W 4.96 0.71 
 

Table 3.2 PLIR and FMI components. AAPH 2,2′-azobis(2-methylpropionamidine) dihydrochloride; Ad-

MD adherence’s level to mediterranean diet; BMI body mass index; EOH eating out of home at fast food (EOH-F), 

at restaurant (EOH-R) and at bar (EOH-B), FMI functional mathematical index, G 

granulocytes; L lymphocytes; M monocytes; PA physical activity; PLIR peroxidation of leukocytes index 

ratio; PMA phorbo-myristate13-acetate; RATIO the ratio of fluorescence of the lipophilic 4,4-difluoro-5-(4-phenyl-1 

,3-butadienyl)-4-bora-3a, 4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY); SD standard deviation; Trolox 6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; UA uric acid. [Peluso I, Reggi R, Yarla NS, Longhitano Y, 

Palmery M. Relationship between the peroxidation of leukocytes index ratio and a functional mathematical index 

including uric acid levels and health-related habits: a pilot study. Eat Weight Disord. 2017 Sep 15. doi: 10.1007/s40519-

017-0441-6. ] 

 

FMI is the square root of a finite sum of quantities, and each one is a function of a specific 

parameter of interest [Finotti E et al.].  

In this study, Finotti E. et al. extended the concept of a FMI for the assessment and prediction of 

food quality and safety of jujube fruit, a medicinal food widely consumed in Asian countries. In this 

study the index has been applied to one field-grown jujube fruit harvested at eight stages of maturity 

and three commercial Korean jujube cultivars. The index allows quantitative evaluation of 

nutritional, health-promoting, and safety aspects based on reported essential amino acid and 

phenolic content and antioxidative and cancer-cell-inhibiting activities of the test substances. 

For example, the FMI values for the antioxidative capacities ranged from 0.36 to 0.87 and for the 

inhibition normal and cancer cells from 0.35 to 0.86, suggesting that consumers have a choice of 
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selecting growth (maturity) stages of jujube fruit with optimum beneficial properties. The use of 

specific performance FMI values seems to be a better tool for predicting relative beneficial and 

adverse effects than prediction on the basis of concentrations of the nutritional and bioactive 

compounds. The FMI approach, that numerically scores compositional, nutritional, and health-

related aspects of food, complements but does not replace standard statistical analysis of the 

original compositional analytical data from which this value is derived.  

FMI values are higher according to the number of parameters differing from the “better condition”. 

Each parameter contributes to the FMI on the basis of its distance from the “optimal” value (zero 

distance is the better condition). All parameters have two extreme acceptable values maximum and 

minimum. The optimum value for each parameter could be the average of the two extreme values 

(“centred” parameter), as well as the minimum (“less” parameter) or maximum (“more” parameter) 

value. In the present study, we have chosen UA, BMI, and PA as “centred” parameters, Ad-MD as 

“more” parameter, and EOH-F, EOH-R and EOH-B as “less” parameters (Table 3.2).  

The FMI concept developed is not based on additive effects of experimental concentrations or 

antioxidative- or bioactivity-related parameters. The FMI concept complements and extends but 

does not replace statistical and other methods used to define quality parameters of food. The FMI 

calculations can be used for any food when all parameters are of the same type (all more, all less, or 

all centered). The mathematical FMI approach buffers (smooths) the interrelated experimentally 

determined concentration values, thus providing a more useful approach to determine and predict 

effects on chemical composition and related nutritional, health, and other quality aspects [Finotti E 

et al.]. Normal values of UA were fixed according to the gender’s ranges and BMI according to the 

normal weigh definition.  

We fixed PA in the range of the moderate PA levels, because it is well known that regular exercise 

and overtraining have opposite effects on oxidative stress and that only moderate PA has favourable 

effects on health [Pingitore A et al.]: although exercise leads to increate oxidative stress, the same 

exercise stimulus appears necessary to allow an up-regulation in endogenous antioxidant defenses 

according to the hormesis theory (Fig. 3.8). 

 

 

 
 

Figure 3.8 Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: 

potential effects of antioxidant dietary strategies in sports. Nutrition 31(7–8):916–922.  
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Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory 

mediators in signaling processes. Oxidative stress reflects an imbalance between production of 

reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to 

cellular and tissue damage of components, and is involved in different physiopathological states, 

including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and 

cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, 

depending on the mode, intensity, and duration of exercise. Regular moderate training appears 

beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative 

stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant 

defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant 

supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative 

stress during training. However, excess of exogenous antioxidants may have detrimental effects on 

health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios 

and proportions, which may act in synergy to optimize the antioxidant effect [Pingitore A et al.]. 

Ad-MD values were fixed according to the advices suggested by the MedDietScore Software. The 

ranges of EOH were defined on the basis of the systematic review by Nago et al. [Nago ES et al.]. It 

has been reported that eating at fast-food outlets (twice a week) is associated with a greater increase 

in body weight and waist circumference over time than eating at restaurants. However, an increased 

risk of obesity has been reported also for EOH breakfast [Nago ES et al.]. 

FMI calculation was performed using the FMI Workbench v1.1.0 software 

(http://sourceforge.net/projects/fmiworkbench). Spearman correlation was used to evaluate 

relationships between variables (Sigma Stat and Sigma plot software, JandelScientific,Inc.). 

 

3.3. RESULTS 

In the subjects participating to our study, Ad-MD, EOHB, and PA were within the parameters 

included in the FMI, whose mean values were more distant from the “optimum” values (Table 3.2 

pag. 51).  

In Table 3.3, age and values of FMI, PLIR of lymphocytes (PLIR-L), monocytes (PLIR-M), and 

granulocytes (PLIR-G) of subjects are reported. 

 

 

Table 3.3  
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Correlation analysis showed that FMI is associated with PLIR-L and age (Table 3.4). The latter was 

positively associated with PA and EOH-B, suggesting that the consciousness of unhealthy dietary 

habit induces a compensatory PA increase to maintain weight.  

With regard to Ad-MD, we did not observe significant relationship with PLIR or major PLIR 

components and only a weak correlation between Ad-MD and the PMA-induced oxidative burst of 

monocytes (RATIO PMA-M) was found (Table 3.8).  

 

 

Table 3.4 Spearman rank-order correlation. 
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3.4.  DISCUSSION 
In this preliminary report, UA levels were positively associated with BMI, but they were inversely 

correlated with the PLIR of PLIR-L and to the AAPH-induced (exogenous) oxidation of monocytes 

and granulocytes, confirming the major role of UA as antioxidant when it is in the normal ranges, as 

previously suggested [see Aim 1 and Peluso I, Manafikhi H, Reggi R, Longhitano Y, Zanza C, 

Palmery M (2016)]. We observed that the weekly frequency of EOH-F was low, probably because 

fast food is generally perceived as unhealthy and consists of energy dense meals that are rich in 

saturated fats (hamburgers, French fries, and sauces). However, pizza and sandwiches, easily 

accessible from bar and closely linked to fast food and street food (SF) [Buscemi S et al.], could 

affect health. In their cross-sectional study, frequent consumers of SF were found to also 

frequently consume pasta/rice, bread, cured meats, eggs, cheese, seeds oil and fried foods, and 

rarely consume vegetables. This dietary pattern is generally considered unhealthy and is almost the 

opposite of a traditional, healthy Mediterranean diet [Kris-Etherton P et al.]. This finding supports 

the hypothesis that SF may be a proxy indicator of other components of an unhealthy lifestyle 

[Malik VS et al.]. They also found that with increased levels of habitual SF consumption, the 

HDL-cholesterol blood concentrations decreased and those of UA rose, two conditions that are 

associated with atherosclerosis and increased cardiovascular risk [Grundy SM et al.]. With regard 

to the weak correlation between Ad-MD and the PMA-induced oxidative burst of monocytes 

(RATIO PMA-M), it must be taken into account that catechins could affect PLIR [see Aim 1] and 

that the consumptions of catechin-rich food and beverage, such as chocolate (0–7 times/week), 

coffee (0–3 times/day), and tea (0–3 times/day), were variable between subjects.However, in the 

absence of recommended dietary allowance (RDA) concerning the consumption of polyphenols, the 

intake of these phytochemicals cannot be included in the FMI. On the other hand, a direct 

relationship was found between PA and PLIR-L. This result is in line with the oxidative stress 

induced by high PA when not accompanied by healthy dietary habits [Pingitore A et al.]. Most 

studies concerning the area of recovery from exercise in athletes focus on the use of nutritional 

supplements rather than on foods [Vassalle C et al.]. The study of the effects of natural food is 

difficult because food products are difficult to group according to the type and content of 

antioxidants. A diet rich in antioxidants may really be a nonpharmacologic and natural opportunity 

to maintain a physiological antioxidant status (Fig. 3.9) [Pingitore A et al.]. 
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Figure 3.9 [Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative 

stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31(7–8):916–922.]. 

The benefit of antioxidant supplementation is controversial. Antioxidant treatment could eliminate 

the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide 

range of diseases. Radak Z et al. suggested that if the antioxidant treatment occurs before the 

physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate 

function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-

shaped dose response curve (Fig. 3.10), antioxidant treatment would have beneficial effects on 

function.  

 

Figure 3.10 Radak Z, Ishihara K, Tekus E, Varga C, Posa A, Balogh L, Boldogh I, Koltai E (2017) Exercise, 

oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol 12:285–290.  

 

The effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive 

response is strongly influenced by exercise intensity. It is further suggested that levels of ROS 

concentration are associated with peak physiological function and can be extended by physical 

fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or 

pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose 

response curve. The middle of the graph Fig. 3.11 [Radak Z et al.] represents the optimal zone of 

the dynamic homeostasis, while the outer line indicates the biological limitations, which cannot be 

reached without risk of death. The line, called functional limitation, shows the capacity of each 

individual and it is a mobile value. The functional/actual limit can be readily altered by exercise 

training. Aging decreases the rate of adaptive response, and the capacity to maintain homeostasis is 

decreasing, as demonstrated by the white arrows. 

http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/oxidative-stress
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Figure 3.11 The hypothetical adaptive range Radak Z, Ishihara K, Tekus E, Varga C, Posa A, Balogh L, Boldogh 

I, Koltai E (2017) Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. 

Redox Biol 12:285–290. 

 

Functional/actual endpoints demark the limits of individual tolerance, which are naturally below 

biological endpoints and are dynamic, variable values. The distance between the optimal zone and 

biological end points represents the zone which can be targeted to induce adaptations to extend 

functional/actual endpoints. In the case of a high degree of adaptation, the distance between the 

biological endpoints and the functional endpoints can be narrowed. In other words, the distance 

between the optimal zone and functional/actual endpoints can be increased (Fig. 3.12).  

 

 

 

Figure 3.12 Supplementation of antioxidants before (-) the ROS levels reach the value associated with peak 

physiological function that can attenuate the beneficial effects of exercise. On the other hand, antioxidant 

treatment, after (+) the period of maximum ROS-associated function can result in decreased appearance of 

fatigue and/or improved function [Radak Z, Ishihara K, Tekus E, Varga C, Posa A, Balogh L, Boldogh I, Koltai E 

(2017) Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol 12:285–

290] 

He F. et al. concluded that, collectively, mixed results from antioxidant intervention studies may be 

interpreted by the variances in participants' baseline redox status, the dose and length of the 

antioxidant supplementation, and the choice of oxidative stress markers. Instead of antioxidant 
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supplements, a balanced diet consisting natural antioxidants from fruits and vegetables is sufficient 

to meet the dietary requirement for physically active individuals [He F et al.]. 

In their review Mason SA et al. [Mason SA et al.] have discussed some potentially important redox 

signalling pathways in skeletal muscle that are involved in acute and chronic adaptive responses to 

contraction and exercise. Furthermore, we have reviewed evidence investigating the impact of 

major exogenous antioxidants on these acute and chronic responses to exercise. The potential 

impact of these antioxidants on exercise responses is summarized in Table 3.5. A bulk of evidence 

suggests that NAC could be ergogenic through its effects on the maintenance of muscle force 

production during sustained fatiguing events. However, potential safety risks with higher intakes 

and a current lack of supportive evidence from studies using performance tests representative of 

typical athletic events currently warrants a conservative approach by athletes. Evidence also shows 

that high dose vitamins C (1 g) and E (≥260 IU) supplementation can impair some of the skeletal 

muscle adaptations to both endurance and resistance exercise training. Thus, while NAC might be 

beneficial acutely in relation to maintenance of redox state and improved muscle contraction force 

during a strenuous performance event, the prolonged supplementation of high doses of vitamins C 

and E during exercise training might promote a less oxidative redox state in muscle, thus facilitating 

hampered adaptive responses. Additional research is required to better establish effects of 

antioxidants such as α-lipoic acid, β-carotene and resveratrol on acute and chronic skeletal muscle 

responses to contraction and exercise. Future research should also focus on establishing a better 

understanding of mechanisms of action of specific antioxidants in vivo. Mason SA et al. feel that 

this is critical to establishing the utility of antioxidant supplementation in athletes, since evidence 

suggests that different antioxidant compounds have different dose-related effects and different 

redox-modulating biological properties that may affect the optimum timing of their use by athletes 

looking to maximize their training and competition performance. 

 
 

Table 3.5 Mason SA, Morrison D, McConell GK, Wadley GD (2016) Muscle redox signalling pathways in 

exercise. Role of antioxidants. Free Radic Biol Med 98:29–45.  

 

Draeger CL et al. included 12 studies published in the last years that addressed the supplementation 

of antioxidant vitamins in trained volunteers (n = 05; Table 3.6) and in volunteers submitted to 
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endurance exercise (n = 07; Table 3.7). There are controversial results about antioxidant 

supplementation during high-intensity exercise 

 
 

Table 3.6 Draeger CL, Naves A, Marques N, Baptistella AB, Carnauba RA, Paschoal V, Nicastro H (2014) 

Controversies of antioxidant vitamins supplementation in exercise: ergogenic or ergolytic effects in humans?. J Int Soc 

Sports Nutr 11(1):4. doi:10.1186/1550-2783-11-4 
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Table 3.7 Draeger CL, Naves A, Marques N, Baptistella AB, Carnauba RA, Paschoal V, Nicastro H (2014) 

Controversies of antioxidant vitamins supplementation in exercise: ergogenic or ergolytic effects in humans?. J Int Soc 

Sports Nutr 11(1):4. doi:10.1186/1550-2783-11-4 

 

The role of appropriate nutrition to counteract the oxidative stress and immune impairment in 

athletes is well known. Nieman DC et al. described [Nieman DC et al. 2017] effective and 

ineffective immunonutrition support strategies for the athlete, with a focus on the benefits of 

carbohydrates and polyphenols as determined from metabolomics-based procedures. Athletes 

experience regular cycles of physiological stress accompanied by transient inflammation, oxidative 

stress, and immune perturbations, and there are increasing data indicating that these are sensitive to 

nutritional influences. The most effective nutritional countermeasures, especially when considered 

from a metabolomics perspective, include acute and chronic increases in dietary carbohydrate and 

polyphenols. Carbohydrate supplementation reduces post-exercise stress hormone levels, 

inflammation, and fatty acid mobilization and oxidation. A series of studies dating back to the mid-

1990s showed that ingestion of carbohydrate supplements (30–60 grams carbohydrate per hour) 

during prolonged, intensive exercise attenuated increases in blood neutrophil and monocyte counts, 

grsanulocyte phagocytosis, stress hormones, and anti-inflammatory cytokines such as IL-6, IL-10, 

and IL-1ra (Figure 3.13) [Nehlsen-Cannarella, S.L et al.]. At the same time, however, null effects of 

carbohydrate ingestion were measured for exercise-induced decrements in natural killer cell lytic 

activity, salivary IgA output, and T lymphocyte proliferative capacity. Thus, carbohydrate ingestion 

emerged as an effective but partial countermeasure to immune dysfunction during recovery from 

heavy exertion [Bermon S et al.]. 

 
 

Figure 3.13 Model linking carbohydrate ingestion with attenuated inflammation and enhanced recovery from metabolic 

perturbation. [Nieman DC, Mitmesser SH (2017) Potential impact of nutrition on immune system recovery from heavy 

exertion: a metabolomics perspective. Nutrients 9(5):E513. doi:10.3390/nu9050513]. 
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Mechanisms through which carbohydrate may exert these impressive countermeasure effects 

include increasing blood glucose and tissue glucose uptake leading to diminished central nervous 

system activation and stress hormone output, inhibiting cytokine mRNA expression, lowering beta-

oxidation of lipid fuels, reducing pro-inflammatory signals, and attenuating IL-6 release from the 

working muscle tissue [Nieman, D.C. 2008]. Exercising with higher blood glucose levels decreases 

hypothalamic-pituitary-adrenal activation, leading to moderated release of adrenocorticotrophic 

hormone and cortisol, growth hormone, and epinephrine (Figure 3.13). Stress hormones have an 

intimate link with genes that control cytokine production, and the function of multiple cell types of 

the immune system. Exercise-carbohydrate interactions, especially during exercise and the early 

post-exercise recovery period, may modulate signal transduction cascades that influence protein 

regulatory systems [Bartlett J.D et al.]. 

Ingestion of fruits high in carbohydrates, polyphenols, and metabolites effectively supports 

performance, with added benefits including enhancement of oxidative and anti-viral capacity 

through fruit metabolites, and increased plasma levels of gut-derived phenolics. Metabolomics and 

lipidomics data indicate that intensive and prolonged exercise is associated with extensive lipid 

mobilization and oxidation, including many components of the linoleic acid conversion pathway 

and related oxidized derivatives called oxylipins. Many of the oxylipins are elevated with increased 

adiposity, and although low in resting athletes, rise to high levels during recovery [Nieman DC, 

Mitmesser SH (2017)]. Certain dietary supplements may boost immune function and reduce 

infection risk in individuals who are subjected to stress [Gleeson M (2016) Immunological aspects 

of sport nutrition]. Although there are many nutritional supplements that are claimed to boost 

immunity (Table 3.8), such claims are often based on very limited and often selective evidence of 

efficacy in animals, in vitro experiments, children, the elderly or clinical patients in severe catabolic 

states and direct evidence for their efficacy for boosting immunity or limiting exercise-induced 

immune depression in athletes is usually lacking. 

In conclusion, it is difficult to make firm judgments about which nutritional supplements are really 

effective in boosting immunity or reducing infection risk in athletes. It is safe to say with reasonable 

confidence that individual amino acids, Echinacea, vitamin E and zinc are unlikely to be of 

significant clinical benefit [Gleeson M 2016]. 

Current recommendations for immuno-nutrition support in athletes include: 

• Overall daily energy intake should match energy needs with >50% coming from 

carbohydrate 

• Ingest 30–60 g of carbohydrate per hour during strenuous training sessions 

• Ingest of adequate amounts of protein (1.2–1.6 g kg −1 per day), which should include 

ingestion of 0.3 g kg−1 in meals following training sessions 

• Ingest adequate amounts of micronutrients (this can be ensured by taking a daily multi-

vitamin/mineral tablet that meets the RDAs 

• Take a daily oral vitamin D3 supplement of 1000 IU at the start of autumn until early spring 

• Take a daily probiotic supplement containing at least 1010 live bacteria 

• Include a variety of fruit and vegetables as part of the normal diet (at least on 5 days per 

week); this can be supplemented with plant polyphenol supplements or beverages (for 

example, green tea and non-alcoholic beer) or concentrated fruit/vegetable extracts 

• Consider taking a daily 10–20 g bovine colostrum powder supplement 

• Consider taking zinc and Kaloba supplements in the days leading up to an important 

competition in case cold symptoms should begin at that important time 

This approach is likely to be of most benefit to those individuals who are particularly prone to 

illness. It is important to remember that nutrition is only one factor with regard to infection risk and 

there are several other strategies listed below that can minimise the risk of developing immune 

function depression or reduce the degree of exposure to pathogens and thus limit infection risk. 

Minimise the chances of developing immunodepression: 
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• Avoid very prolonged training sessions (>2 h), overtraining and chronic fatigue 

• Keep other life stresses to a minimum 

• Get adequate sleep quantity (at least 7 h) and quality 

• Avoid rapid weight loss 

• Avoid binge drinking of alcohol 

• Vaccinate against influenza if competing in the winter 

Minimise the potential for transmission of infectious agents: 

• Avoid sick people and large crowds in enclosed spaces if possible 

• Good personal skin and oral hygiene (wash hands and use antimicrobial gels on hands; 

brush teeth regularly and use an antibacterial mouth rinse) 

• Never share drink bottles, cutlery, towels and so on 

• Avoid putting hands to eyes and nose (a major route of viral self-inoculation) 
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Table 3.8 Nutrition supplements (listed in alphabetical order) that are claimed to boost immunity and reduce URS 

incidence in athletes: proposed mechanisms of action and summary of evidence for efficacy [Gleeson M (2016) 

Immunological aspects of sport nutrition. Immunol Cell Biol. 94(2):117–123.] 
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CONCLUSION 

Our previous postprandial study aimed at evaluating the effect of a functional food, the latter 

reduced the postprandial insulin, glucose, triglycerides, and UA levels and improved PLIR of 

lymphocytes [Peluso I, Manafikhi H, Reggi R, Longhitano Y, Zanza C, Palmery M (2016)]. The 

study also suggested that the reducing effect on UA of cocoa catechins can affect PLIR. From that 

in this Phd thesis, we keep on the evaluation of the possible use of the PLIR as redox marker in 

humans. In the first step we evaluate the relationships between PLIR and FRAP, its major 

endogenous determinant UA and FRAP-UA, by using a GTE due to its reported UA-lowering and 

potential pro-oxidant effects. In our study GTE consumption did not affect FRAP values whereas a 

nonsignificant decrease in UA and a significant increase in FRAP-UA. The latter, probably due to 

the catechins, could counterbalance the reduction in FRAP induced by the UA decrease. However, 

the FRAP assay matches the antioxidant capacity to the reducing ability and the reduced iron is 

critical in the onset of oxidative stress due to the Fenton reaction that generates the hydroxyl radical 

initiator of lipid peroxidation. The direct correlation of FRAP-UA with PLIR suggests that the iron 

reducing power of GTE could be more likely detrimental than beneficial. Our results suggest that 

PLIR, in particular PLIR of granulocytes where the differences between ratio AAPH and ratio PMA 

are more evident, reveals the prooxidant effect of GTE. This result is in agreement with the FDA, 

the EFSA, and the DSI EC conclusions. In this study a single dose of two capsules of a GTE 

(200mg × 2) commercially available in Italy (cod. 1820, REGISTRO INTEGRATORI 

https://www.salute.gov.it/imgs/C 17 pagineAree 3668 listaFile itemName 1 file.pdf) was used 

according to the suggested dose on the product label. Due to the pro-oxidant effect observed, no 

higher doses were used for ethical problem. In agreement it has been recently proposed EGCG UL 

of 300 mg/day based on human intervention data [Yates et al.]. 

Furthermore, the inverse correlation of UA with PLIR confirms the primary role of UA in the 

antioxidant defences. Dietary habit and physical activity are well known factors involved in redox 

balance. From that, in the second step we studied the relationships between PLIR and a 

mathematical index that considers health-related habits and UA plasma levels. 

Indexes of oxidative stress, such as the OXY-SCORE and the oxidative-INDEX, use markers that 

do not have at the moment normal values and consider high antioxidant capacity always beneficial. 

However, the antioxidant capacity is strongly influenced by UA. The latter is a well known 

pathogenic factor when at high concentrations.  

The strength of the present pilot study is that we extend the concept of the FMI, introduced in the 

assessment of foods’ quality [Finotti E et al.] to human investigations. Each parameter contributes 

to the FMI on the basis of its distance from the “optimal” value (zero distance is the better 

condition). All parameters have two extreme acceptable values maximum and minimum. The 

optimum value for each parameter could be the average of the two extreme values (“centred” 

parameter), as well as the minimum (“less” parameter) or maximum (“more” parameter) value. In 

the present study, we have chosen UA, BMI, and PA as “centred” parameters, Ad-MD as “more” 

parameter, and EOH-F, EOH-R and EOH-B as “less” parameters. Normal values of UA were fixed 

according to the gender’s ranges, in order to consider sex differences in the potential dangerous 

effects of hyperuricaemia. Although further studies are needed to evaluate PLIR as redox marker, a 

direct relationship was found between PA and PLIR-L. This result is in line with the oxidative 

stress induced by high PA when not accompanied by healthy dietary habits. On the other hand, the 

FMI calculation can be used for other factors associated with health and PLIR. In a postprandial 

study aimed at evaluating the effect of a functional food, the latter reduced the postprandial insulin, 
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glucose, triglycerides, and UA levels and improved PLIR of lymphocytes [Peluso I, Manafikhi H, 

Reggi R, Longhitano Y, Zanza C, Palmery M (2016)], but we suggested that further studies on 

subjects who are at risk of cardiovascular diseases are needed to investigate the relationship 

between postprandial dysmetabolism and PLIR of monocytes and granulocytes. Not only clinical 

markers (lipids, glucose, leukocytes count…), but also behavioural, psychological, genetic, and 

epigenetic factors affecting health could be included in the FMI in the future and could be 

considered as possible determinants of PLIR. 

In conclusion, although further studies are needed to evaluate PLIR as redox marker, we suggest 

that FMI could be used as global index that integrate clinical parameters, as well as life style, 

genetic, and epigenetic factors to evaluate the overall effects of the many determinants of health. 
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LIST OF ABBREVIATION 
 

AAPH: 2,2’-azobis(2-methylpropionamidine) dihydrochloride 

ABC: ATP binding cassette 

AD: Alzheimer's disease 

Ad-MD: Adherence level to Mediterranean Diet 

AhR: aryl hydrocarbon receptor 

AP-1: activation protein-1 

ARE: antioxidant responsive elements 

AUC: plasma concentration-time curves 

BCRP: Breast Cancer Resistance Protein 

BODIPY: boron dipyrromethene difluoride 

CAT: catalase 

CBG: cytosolic b-glucosidase 

CK: creatine kinase 

CLP: cacao liquor polyphenol 

Cmax: plasma concentration 

COMT: catechol-O-methyltransferases 

CSA: cyclosporin A 

CVD: cardiovascular diseases 

CYP450: cytochrome P450 

DAF-2 DA: 4,5-diaminofluorescein diacetate 

DAF-FMDA: 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate 

DCF: 2′,7′-dichlorofluorescein 

DCFH-DA: dihydrochlorofluorescein diacetate 

DHEAS: [3H]-dehydroepiandrosterone sulfate 

DHR123: dihydrorhodamine 123 

DRW: dealcoholized red wine 

DSI EC: Dietary Supplement Information Expert Committee 

E+: ethidium cation 
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EC: (-)-epicatechin 

ECD: electrochemical detection 

EFSA: European Food Safety Administration 

EGC: (-)-epigallocatechin 

EGCG: epigallocatechin-3-gallate 

EOH: eating out of home 

EtOH: Ethanol 

FCM: flow cytometry 

FDA: Food and Drug Administration 

FMI: functional mathematical index 

FRAP: ferric reducing antioxidant potential 

GPX: glutathione peroxidase 

GSH: glutathione 

GSR: glutathione reductase 

GST: glutathione S-Transferase 

GT: green tea 

GTE: green tea extract 

GTP: green tea polyphenols 

H2O2: hydrogen peroxide 

HE: hydroethidine 

HIV: human immunodeficiency virus 

HIV-1: human immunodeficiency virus type 1 

HOCl: hypochlorous acid 

HPLC: high-performance liquid chromatography 

IgG: immunoglobulins G 

IL-6: interleukin-6 

iNOS: inducible nitric oxide synthase 

Keap1: Kelch-like ECH-associated protein1 

LDL: low density lipoprotein 

LPH: lactase phloridzin hydrolase 
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MAPK: mitogen activate protein kinase 

MCI: mild cognitive impairment 

MCT-1: monocarboxylate transporter 1 

MDR: multidrug resistance transport proteins 

MPO: myeloperoxidase enzyme 

MRP: Multidrug Resistance associated Proteins 

NASH: non-alcoholic steatohepatitis 

NEAC: Non Enzymatic Antioxidant Capacity 

NF-kB: nuclear factor kB 

NOX: NADPH oxidase 

NOx: nitrites/nitrates 

Nrf2: NF-E2 related factor 2 

O2
-•: superoxide anion 

OAT: Organic Anion-Transporters 

OB: Oxidative burst 

OH•: hydroxyl radical 

oxLDL: oxidized low density lipoproteins 

P: placebo 

PA: physical activity 

PAMP: pathogen associated molecular patterns 

Pgp: P-glycoprotein 

PKC: protein kinase C 

PLIR: peroxidation of leukocytes index ratio 

PMA: phorbol 12-myristate 13-acetate 

PMN: polymorphonuclear neutrophil 

PMNs: polymorphonuclear neutrophils 

PP: PolyPhenols 

PRR: pattern recognition receptors 

PUFA: polyunsaturated fatty acids 

PXR: pregnane X receptor 
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Q: quercetin 

Rho123: rhodamine 123 

RNS: reactive nitrogen species 

ROO•: peroxyl radicals 

ROS: reactive oxygen species 

RW: Red wine 

SGLT1: sodium-dependent glucose transporter 1 

SOD: superoxide dismutase 

SULT: sulfotransferases 

TAS: total antioxidant status 

TBARS: acid–reacting substances 

TG: Triglycerides 

TLR: Toll-like receptors 

Tmax: time taken to reach the maximum concentration 

TNF-α: tumor necrosis factor-α 

Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid 

UA: uric acid 

UGT: uridine-5'-diphosphate glucuronosyltransferases 

XO: xanthine oxidase 
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