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Signaling of the epithelial splicing variant of the fibroblast growth factor 

receptor 2 (FGFR2b) induces both autophagy and phagocytosis in human 

keratinocytes. In this work I investigated, in our cell model of HaCaT 

keratinocytes, if the two processes might be related and the possible involvement 

of PLCγ signaling in the autophagy triggered by FGFR2b activation. Using 

fluorescence and electron microscopy we demonstrated that the FGFR2b-induced 

phagocytosis and autophagy involve converging autophagosomal and 

phagosomal compartments. Moreover, the forced expression of FGFR2b signaling 

mutants and the use of specific inhibitors of FGFR2b substrates showed that the 

receptor-triggered autophagy requires PLCγ signaling, which in turn activates 

JNK1 via PKCδ. Finally we found that, in primary human keratinocytes derived 

from light or dark pigmented skin and expressing different levels of FGFR2b, the 

rate of phagocytosis and autophagy and the convergence of the two intracellular 

pathways depend on the level of receptor expression. These results suggest that 

FGFR2b signaling would control in vivo the number of melanosomes in 

keratinocytes, determining skin pigmentation. 

Since the early oncoprotein E5 of the human papillomavirus type 16 (16E5) is 

able to down-regulate FGFR2b expression and since it has been recently proposed 

a possible role of the entire “early protein pool” of HPV16 in inhibiting the 

autophagic process in epithelial cells, I also proposed to investigate the possible 

impairment of FGFR2b-induced autophagy in keratinocytes expressing 16E5. The 

results showed that the presence of 16E5 strongly inhibited the autophagic 

process, while forced expression and activation of FGFR2b counteracted this 

effect, demonstrating that the viral protein and the receptor exert opposite and 

interplaying roles not only on epithelial differentiation, but also in the control of 

autophagy. In W12 cells, silencing of the 16E5 gene in the context of the viral full 

length genome confirmed its role on autophagy inhibition. Finally, molecular 

approaches showed that the viral protein interferes with the transcriptional 

regulation of autophagy also through the impairment of p53 function, indicating 

that 16E5 uses parallel mechanisms for autophagy impairment. Overall our results 

further support the hypothesis that a transcriptional crosstalk among 16E5 and 
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FGFR2b might be the crucial molecular driver of epithelial deregulation during 

early steps of HPV infection and transformation.  
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Autophagy 
 

Autophagy is a lysosomal degradative pathway conserved from yeast to 

mammalians, used by the cells to eliminate or recycle cytoplasmic components, 

such as damaged organelles, membranes and molecules, to maintain cellular 

homeostasis or to adapt the cells to stress conditions (Feng et al., 2014). There are 

three forms of autophagy: macroautophagy, microautophagy and chaperone-

mediated autophagy. In macroautophagy substrates are sequestered in a double-

membrane structure called autophagosome. This organelle then fuses with 

lysosome promoting the degradation of its inner membrane and the engulfed 

material by lysosomal enzymes (Mizushima et al., 2011). The second type of 

autophagy is chaperone-mediated autophagy (CMA). In this pathway cytosolic 

proteins, marked by a pentapeptide motif with a consensus sequence similar to 

KFERQ, are recognized and selectively translocated to the lysosomal membrane 

by the chaperon protein Hsc70, which promotes the translocation into the 

lysosomal lumen through the binding to LAMP-2A. Finally, the third type is 

microautophagy, in which part of the cytoplasm is engulfed by direct invagination 

of the lysosomal membrane (Ravikumar et al., 2010; Mizushima et al., 2011). 

Macroautophagy, commonly called autophagy, is the most extensively 

studied membrane pathway, which is present at basal level and plays an 

important role in maintaining cellular homeostasis. However, this process can be 

up-regulated as a citoprotective response by several stimuli such as nutrient 

starvation (glucose or amino-acid withdrawal), hypoxia, oxidative stress, 

pathogen infection, radiation and anticancer drug treatment (Yang and Klionsky, 

2010).  Macroautophagy can be also a selective process to target specific damaged 

organelles, such as mitochondria (mitophagy) and peroxisomes (pexophagy) 

(Deffieu et al., J Biol Chem 2009; Dunn et al., Autophagy 2005), or invasive 

pathogens (xenophagy) (Levine et al., Nature 2011) to the lysosomal compartment  

(Figure 1).  
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The autophagic machinery 
 

The autophagic machinery consists of about 40 autophagy-related genes 

(ATGs) first identified in yeast. Many of these genes have orthologs in 

mammalians, although they present important differences in biology and 

architecture, and they have been defined as the core autophagy genes, mainly 

involved in autophagosome biogenesis (Lamb et al., 2013; Bento et al., 2016).  

The process which leads to the formation of a mature autophagosome can be 

divided in three step: the initiation, which consists in the transmission of the 

signal to the membrane source involved in the nucleation of the isolation 

membrane, with consequent recruitment of the initiating complexes; the 

nucleation, that leads to the formation of the isolation membrane from the 

membrane source; the expansion, where the isolation membrane expands until 

close completely, forming the autophagosome (Mizushima et al., 2011; Lamb et al., 

2013; Feng et al., 2014).  

The first complex involved in the stage of initiation is the ULK1/2.  ULK1/2 

is formed by UNC51 like Ser/Thr kinases ULK1/2, ATG13, FAK family kinase-

interacting protein of 200 kDa (FIP200) and ATG101. ULK1/2 interact with 

ATG13, which directly binds FIP200 leading to its interaction with the ULKs 

(Hosokawa et al., 2009; Jung et al., 2009). The ULK1/2 complex can be 

activated/phosphorylated (Ser317 and Ser777) by an AMP-activated protein 

kinase (AMPK)-dependent (autophagy induced by glucose starvation) or AMPK-

independent (autophagy induced by amino acid starvation) pathway (see below). 

Under fed conditions the ULK1/2 complex is inhibited by the binding with 

mTORC1, the key upstream negative regulator of autophagy, which 

phosphorylates/inactivate ULK1/2 (Ser757). On the contrary, upon nutrient 

starvation mTORC1 is released from the complex with consequent ULK1/2 

activation (Kim et al., 2011). 

Another important complex required for the initiation step of autophagosome 

formation is the class III phosphatidylinositol (PI) 3-kinase (PI3K) complex (also 

known as the Beclin 1 complex), which consists of vacuolar protein sorting 34 

(Vps34, also known as the PI3K catalytic subunit 3), p150, Beclin 1 and ATG14 

subunits and it is necessary for the generation of phosphatidylinositol 3-phosphate 
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(PI3P) (Mizushima et al., 2011). Beclin 1 is a key protein of the PI3K complex since 

it interacts with Vps34 and enhances its activity. Many other proteins can interact 

with Beclin 1 and positively regulate autophagy, such as AMBRA1, Bif-1 and 

vacuole membrane protein 1 (VMP1), while BCL-2 inhibits autophagy by 

sequestering Beclin 1 from the PI3K complex (Funderburk et al., 2010). 

During the nucleation step the activated ULK1/2 and the PI3K complexes 

are recruited to the membrane site of autophagosome initiation. Here the ULK1/2 

complex can phosphorylate different proteins at Ser and Thr residues, among 

which Beclin 1 and its interacting protein AMBRA1, which in turn enhance the 

activity of the PI3K complex (Di Bartolomeo et al., 2010; Russell et al., 2013). The 

PI3K complex generates a pool of PI3P in the membrane, necessary for the 

recruitment of other ATG proteins or autophagy-specific PtdIns(3)P effectors, such 

as double FYVE-containing protein 1 (DFCP1) and WD-repeat domain 

phosphoinositide-interacting (WIPI) proteins.  

In the last stage of autophagosome formation, the elongation, two 

ubiquitin-like proteins are involved in the autophagosome membrane expansion 

and closure: ATG12 and LC3. ATG12 is conjugated to ATG5 through a mechanism 

that requires ATG7, an E1-like enzyme, and ATG10, an E2-like enzyme 

(Mizushima et al., 1998). The ATG12-ATG5 complex then interacts with ATG16L1, 

forming the ATG12-ATG5-ATG16L1 complex, which is recruited to the outer side 

of the isolation membrane.  In parallel cytosolic LC3 is cleaved in the C-terminal 

by the cysteine protease ATG4, leaving a glycine residue, which is following 

activated by ATG7. Finally, the E2-like enzyme ATG3 and the ATG12-ATG5-

ATG16L1 complex promote	 the conjugation of LC3 to the 

phosphatidylethanolamine (PE), generating lipidated LC3 (LC3-II), which 

associates to the autophagosomal membrane (Kabeya et al., 2004; Sakoh-

Nakatogawa et al., 2013). ATG12-ATG5-ATG16L1 complex is released upon the 

autophagosome closure (Mizushima et al. 2001), while the LC3-II localized in the 

inner membrane of the autophagosome is retained (Kabeya et al., 2004). Recent 

evidences have shown also a role for actin filaments in autophagosome shaping. 

During the nucleation step, the actin-capping protein (CapZ) binds to PI3P and 

stimulates actin polymerization and branching, in the inner face of the isolation 

membrane (Aguilera et al., 2012; Mi et al., 2015). These evidences strongly suggest 
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a new important role for actin in the autophagosome biogenesis.  

 

 

Sources of autophagosome membranes 
 

 Even if a role for various organelles has been proposed as the membrane source 

of autophagosomes, such as the endoplasmic reticulum (ER), the Golgi complex, 

mitochondria, endosomes and plasma membrane (Figure 1), the origin of the 

autophagosomal membrane remains still unclear. Among the different possible 

membrane sources, the ER seems to be the best candidate, while the other 

organelles may contribute to the autophagosomal membrane expansion during 

the elongation step (Lamb et al., 2013; Ktistakis and Tooze, 2016; Bento et al., 

2016).  

            The autophagosome originates from a preexisting membrane called 

isolation membrane, which appears to emerge from an omega-shaped subdomain 

of the ER (the omegasome) (Hayashi-Nishino et al., 2009).  The ULK1/2 and the 

PI3K complexes are recruited in the omegasome, sustaining the expansion of the 

isolation membrane, until it reaches a sufficient size to allow ULK1/2 complex 

dissociation (Lamb et al., 2013). During the nucleation step the interaction between 

Beclin 1, a member of the PI3K complex, and the vacuole membrane protein 1 

(VMP1), which is a multispanning transmembrane protein localized in the ER and 

in the Golgi, is required at the level of the omegasome (Molejon et al., 2013). In 

addition, during this stage the PtdIns(3)P-binding protein DFCP1 is mobilized 

from the Golgi to ER and partially co-localizes with the autophagic markers LC3 

and ATG5 (Axe et al., 2008), while the PtdIns(3)P effector WIPI localizes in the 

omegasome and is required for the recruitment of the ATG12-ATG5-ATG16L1 

complex binding ATG16L1 (Dooley et al., 2014), which then conjugates LC3-PE to 

the autophagosome membrane (see above).  

Others membrane sources seem to be required for autophagosome 

formation like mitochondria and particularly the outer membrane of these 

organelles. In fact, during serum-starved induced autophagy ATG5 and LC3 

colocalize with mitochondria, and their membranes seem to be in contact with the 

autophagosome membranes (Hailey et al., 2010).  
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Moreover, another theory about the autophagosome biogenesis proposes 

the ER-mitochondria contact site as a candidate in this process, since ATG14 and 

ATG5 were found localized in this site (Hamasaki et al., 2013).  

The Golgi complex and endosomes also can participate to autophagosome 

expansion, possibly providing ATG9-positive vesicle. ATG9 is a transmembrane 

protein, which resides on the trans-Golgi network (TGN) and in the endosomal 

compartments but is mainly localized in endosomes during nutrient deprivation. 

The ULK complex regulates its distribution and the vesicles containing ATG9 

participate to the expansion of the isolation membrane (Orsi et al., 2012; Puri et al., 

2014). In addition, the recycling endosomes represent an alternative source for 

autophagosome formation, as suggested by the evidence of direct interaction 

between the PX-BAR protein SNX18 and ATG16L1 and LC3 at the level of the 

recycling endosome membranes (Knaevelsrud et al., 2013).   

Moreover, the ER-Golgi intermediate compartment (ERGIC) is gaining an 

emerging role as a membrane source for autophagosome, indicated by the serum 

deprivation–induced budding of LC3-II positive vesicles from this compartment, 

which contribute to the expansion of the autophagosomal isolation membrane (Ge 

et al., 2013; Ge et al., 2014).  

The plasma membrane can also contribute to autophagosome formation 

since some clathrin-coated vesicles (CCV) derived from this compartment are 

ATG16L1-positive and subsequently acquire LC3 and reach the omegasome 

(Ravikumar et al., 2010; Moreau et al., 2011). 

 

 

Noncanonical autophagy 
 

Many studies have revealed the presence of a noncanonical autophagy. This 

definition includes an autophagosome formation in which some key ATG proteins 

and/or complexes are lost or alternative processes in which ATG proteins are 

recruited to single membrane structures involved in either lysosomal degradation 

or nondegradative functions (Juenemann and Reits, 2012; Ktistakis and Tooze, 

2016). The ATG5/Atg7-independent pathway, possibly involved in the 

elimination of mitochondria in reticulocytes, was first discovered in mouse 
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embryonic fibroblasts (MEF) and consists in autophagic vesicle formation in 

response to autophagic stimuli, which requires ULK1/2 and Beclin 1 complexes 

recruitment, but not the LC3 lipidation/association (Nishida et al., 2009; Honda et 

al., 2014). Moreover, a noncanonical autophagy requiring ATG7 activity for LC3-I 

lipidation, but not Beclin 1 and Vps34 activation, has been described in 

mammalian neurons treated with the neurotoxic agent 1-metil-4-

phenylpyridinium  (Zhu et al., 2007).  

Very recently, increased evidences have proposed that some ATG proteins 

could be recruited to the surface of different single membrane compartments to 

promote their convergence to lysosomes (Pimentel-Muin ̃os and Boada-Romero, 

2014; Ktistakis and Tooze, 2016). This is the case of the LC3-associated 

phagocytosis (LAP), occurring in macrophages after toll-like receptor activation, 

in which Beclin 1 and LC3 are recruited on the phagosome membranes to facilitate 

their fusion with lysosomes (Sanjuan et al., 2007). In alternative, the recruitment of 

autophagic proteins on the membrane of compartments different from 

autophagosomes can be required to also promote nondegradative functions 

(Pimentel-Muin ̃os and Boada-Romero, 2014). This is the case of some stable LC3-

II-positive phagosomes, compartments that promote the survival and replication 

of pathogens, such as bacteria, rather than induce their degradation (Figure 2). 

According to this more general role for the autophagic machinery in the 

regulation of nondegradative processes, it has been proposed for various ATG 

proteins also a role in the secretion pathways (Pimentel-Muin ̃os and Boada-

Romero, 2014). For instance, in melanocytes the autophagosomal markers ATG5 

and LC3 appear localized on the single membrane of melanosomes, possibly 

promoting their maturation and secretion (Ganesan et al., 2008). A similar 

mechanism appears to be also involved in the secretion of IL1B (Dupont et al., 

2011), or in that of the secretory granules in PC12 cell line (Figure 2) (Ishibashi et 

al., 2012). These last recent findings sustain the importance of the autophagic 

machinery in nondegradative biological functions.  
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Intracellular signaling pathways involved in autophagy  
 
 

Various signaling pathways can control the autophagic process and the 

main activated upon several autophagic stimuli, like serum deprivation, hypoxia 

or stress conditions, is the mTOR pathway (Ravikumar et al., 2010; Russel et al., 

2014). mTOR (mammalian target of rapamycin)  is a serine/threonine kinase, 

which can form two different complexes, mTORC1 and mTORC2, among which 

only the mTORC1 complex is involved in autophagy regulation (Jewell et al., 

2013). mTORC1 complex consists of five subunits: TOR, RAPTOR (regulatory-

associated protein of mTOR), mLST8 (mammalian lethal with SEC13 protein), 

DEPTOR (DEP domain-containing mTOR-interacting protein) and PRAS40 (40 

kDa Pro-rich AKT substrate) (Laplante  et al., 2012). Under nutrient-rich 

conditions mTORC1 is active and associated to lysosomes. In these conditions, the 

Ragulator complex, which acts as a guanine nucleotide exchange factor (GEF), 

activates and recruits the RAG GTPases on the lysosomal surface (Sancak et al., 

2010), which in turn binds the mTORC1 complex at the lysosomal membrane (Kim 

et al., 2008; Sancak et al., 2008). Here mTORC1 is activated by the small GTPase 

Rheb (Garami et al., 2003; Inoki et al., 2003; Tee et al., 2003). During growth factors 

stimulation, the main pathway involved in Rheb-mediated activation of mTORC1 

is the PI3K/AKT pathway, (Inok et al., 2002; Potter et al., 2002). Thus, mTORC1 

activation under fed conditions and growth factor stimulation acts as a powerful 

inhibitor of the autophagic process. In fact, active mTORC1 is able to inhibit the 

two autophagic complexes involved in autophagy initiation, ULK1/2 complex 

and PI3K complex (Russel et al., 2014). In fact, mTORC1 inhibits the PI3K complex 

inducing ATG14 phosphorylation (Yuan et al., 2013) and it can directly 

phosphorylate ATG13 and ULK1 in Ser757 inhibiting their kinase activity. Under 

nutrient starvation or treatment with the mTOR inhibitor, rapamycin, mTORC1 is 

released from ULK1/2 complex leading to its activation and autophagy initiation 

(Ganley et al., 2009; Hosokawa et al., 2009; Jung et al., 2009).  

 Another way to inhibit mTORC1 and induce the autophagic process is via 

AMPK. AMPK is a serine/threonine kinase, which is activated by AMP or ADP 

and therefore by low ATP levels. In these conditions AMPK inhibits mTORC1 by 

the activation of TSC, a complex involved in the release of mTORC1 from 
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lysosomes and consequently in its inhibition. AMPK can also directly inhibit 

mTORC1 via its phosphorylation (Gwinn et al., 2008). Alternatively, AMPK can 

directly activate ULK1, inducing its phosphorylation on Ser317 and Ser777 (Kim et 

al., 2011; Bach et al., 2011), or Vps34, through Beclin 1 phosphorylation on Ser91 

and Ser94 (Kim et al., 2013). 

Other kinases can regulate autophagy, such as the mitogen-activated 

protein kinase (MAPK)/extra-cellular signal-regulated kinase (ERK) pathway. In 

fact, this pathway is activated during starvation-induced autophagy and its 

inhibition, through the use of a MEK1/2 inhibitor, affects autophagy in the HT-29 

cell line (Ogier-Denis et al., 2000). Upon serum deprivation AMPK induces a 

transient activation/phosphorylation of MAPK/ERK pathway, which promotes 

increased expression of Beclin 1, mTORC1 disassembly and consequently 

autophagy as cytoprotective mechanism. However, sustained MEK/ERK 

activation leads to a destructive autophagy, which results in cell death (Wang et 

al., 2009).  

Serum deprivation also activates autophagy via c-Jun N-terminal protein 

kinase 1 (JNK1), which phosphorylates BCL-2 and allows the release of Beclin 1 

from the autophagic inhibitor complex BCL-2/Beclin 1 (Wei et al., 2008).  

 

 

Fibroblast growth factor receptors: receptor-mediated signaling pathways 
involved in the regulation of autophagy 

 
The fibroblast growth factor receptors (FGFRs) are receptor tyrosine kinases 

(RTKs) belonging to a family composed by four highly conserved transmembrane 

tyrosine kinase receptors (FGFR1, FGFR2, FGFR3 and FGFR4) encoded by four 

different genes. FGFRs are activated by fibroblast growth factor (FGF) family 

members, which is composed by 18 members clustered in five paracrine 

subfamilies and one endocrine subfamily. FGFRs are expressed on different 

tissues and regulate many key cellular physiological processes, such as 

proliferation, differentiation, migration and survival (Turner and Grose, 2010; 

Goetz and Mohammadi, 2013). FGFRs consist of an extracellular domain, a single-

pass transmembrane domain and an intracellular tyrosine kinase domain (Figure 
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3). The extracellular domain is composed by three immunoglobulin (Ig) like 

domains (I-III), an “acid box” between domains I and II characterized by an acidic, 

serine-rich region and a conserved positively charged binding site for heparin 

(Schlessinger et al., 2000). The first Ig-like domain, together with the acid box, 

seem to be involved in receptor autoinhibition (Olsen et al., 2004), while the 

second and third Ig-like domains form the binding site for FGF ligands 

(Mohammadi et al., 2005). The ligand binding specificity by FGFR1, FGFR2 and 

FGFR3 is determined by the alternative splicing of the third Ig-like domain of 

these receptors, which generates FGFRb and FGFRc isoforms (Figure 3). In 

particular, for FGFR2 the N-terminal portion of the Ig-III domain is encoded by 

the exon 7 (exon IIIa), while the C-terminal portion is encoded alternatively by 

exon 8 (exon IIIb), and 9 (exon IIIc), which determines respectively FGFR2IIIb and 

FGFR2IIIc isoforms with different ligand-binding specificities; in fact, while 

FGFR2IIIb specifically binds FGF7/KGF (Rubin et al., 1989) and FGF10 (Igarashi et 

al., 1998), FGFR2IIIc binds FGF2 (Yayon et al., 1992) (Figure 4). The alternative 

splicing also determines the tissue specificity of the FGFRs; in fact the FGFR2IIIb 

isoform is exclusively expressed in epithelial cells, while the FGFR2IIIc isoform is 

expressed exclusively in mesenchymal cells (Miki et al., 1992; Orr-Urtreger et al., 

1993). FGFs binding to FGFRs induces receptor dimerization and the juxtaposition 

of the two intracellular kinase domains of the two receptors inducing the 

phosphorylation of each other (Goetz and Mohammadi, 2013). However, FGF-

FGFR binding requires the presence of a cofactor, heparan sulphate proteoglycan 

(HPSG), which is present in the cell plasma membrane and stabilizes the 

interaction between FGF and FGFR enhancing resistance to proteolysis and 

forming a dimeric 2:2:2 FGF-FGFR-HSPG ternary complex on the cell surface 

(Schlessinger et al., 2000).  

 

FGF/FGFR interaction induces receptor dimerization, which leads to a 

conformational change in receptor structure inducing the activation of the 

intracellular kinase domain, which in turn triggers the intermolecular 

transphosphorylation of the tyrosine kinase domain and the carboxy-terminal tail 

(Turner and Grose, 2010; Brooks et al., 2012). Several tyrosine residues of the 

receptor can be autophosphorylated and for FGFR1 have been identified seven 
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residues (Y463, Y583, Y585, Y653, Y654, Y730, and Y766) (Lew et al., 2009). Once 

phosphorylated these residues act as docking sites for adaptor proteins, which are 

recruited and phosphorylated by FGFRs leading to activation of several signaling 

pathways (Figure 5) (Turner and Grose, 2010). The main downstream substrates of 

FGFRs are the FGFR substrate 2 (FRS2) and the phospholipase Cγ (PLCγ). FRS2 

family is composed by two members, FRS2α and FRS2β (Gotoh et al., 2008), which 

both contain a consensus myristylation sequence at the N-terminus for binding to 

lipids in the plasma membrane (Gotoh et al., 2008) and a phosphotyrosine binding 

(PTB) domain and multiple tyrosine phosphorylation sites at the C-terminus, 

which need to bind RTKs. FRS2 proteins can bind a limited specie of RTKs, such 

as neurotrophin receptors, RET and ALK, but in particular FGFRs and FRS2α acts 

as the major mediator of intracellular signaling via FGFRs. The PTB domains of 

FRS2 proteins bind constitutively to unphosphorylated peptides at the 

juxtamembrane domain of the FGFR. The activation of FGFRs induces FRS2 

phosphorylation on several sites creating docking sites for additional adaptor 

proteins. In fact, FRS2α contains four tyrosine phosphorylation sites that bind the 

adaptor protein growth-factor-receptor-bound protein 2 (Grb2) and two binding 

sites for the SH2-containing tyrosine phosphatase protein (Shp2). Grb2 can bind 

many proteins via two SH3 domains, such as Gab1, SOS and Cbl. The recruitment 

of Gab1 by Grb2 forms a ternary complex with FRS2α, which in turn induces the 

recruitment of PI-3 kinase and the activation of PI3K/AKT pathway (Figure 5) 

(Altomare et al., 2005). Sos is a guanine nucleotide exchange factor (GEF), which 

can activate Ras; therefore the recruitment of Grb2-Sos on FGFR induced by FRS2α 

activation triggers Ras/mitogen-activated protein kinase (MAP kinase) pathway 

activation (Figure 5) (Eswarakumar et al., 2005). The binding of Shp2 to FRS2α 

induces tyrosine phosphorylation of Shp2, which in turn induces a strong 

activation of ERK, a component of MAP kinases family, in response to FGF 

stimulation (Hadari et al., 1998). The activation of ERK induced by growth factors 

can be transient or sustained (Marshall 1995). In the transient phase, the growth 

factors-induced activation of ERK picks within 5 minutes and returns to basal 

levels within 1 hour while in the sustained phase is maintained for several hours 

and reduces gradually. FRS2α activation induced by FGF stimulation can triggers 

both transient and sustained activation of ERK by either its shp2-binding and 
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Grb2-binding sites even if they induce a strong and moderate activation of ERK 

respectively (Hadari et al., 2001). Another important signaling activated by 

FGF/FGFR binding, independent from FRS2, is the PLCγ pathway (Figure 5). This 

phospholipase binds through its Src homology 2 (SH2) domain to a 

phosphotyrosine residue in the C-terminal receptor tail, inducing PLCγ 

phosphorylation and activation. Particularly, it has been demonstrated that the 

tyrosine 766 residue in the C-terminal of FGFR1 is required for PLCγ protein 

binding (Mohammadi et al., 1991), which corresponds to tyrosine 769 in FGFR2b 

(Ceridono et al., 2005; Cha et al., 2009). PLCγ activation induces 

phosphatidylinositol-4,5-biphosphate (PIP2) hydrolysis in phosphatidylinositol-

3,4,5-triphosphate (PIP3) and diacylglycerol (DAG), that in turn activates the 

members of the serine-threonine kinases family protein kinase C (PKC), which 

contribute to MAPK pathway activation by phosphorylating Raf (Brooks et al., 

2012) . In addition, several other pathways can be activated by FGFRs, such as 

signal transducer and activator of transcription (STAT) signaling, ribosomal 

protein S6 kinase 2 (RSK2), the p38 MAPK and Jun N-terminal kinase pathways 

(Touat et al., 2015), which can be activated downstream RAS by the MAPKKs, 

MKK4 and MKK7 (Katz et al., 2007) but also via PKCδ (Liu et al., 2006; Chen et al., 

2008). 

FGFR signaling is regulated by several factors that exert negative feedback 

control on many elements of the FGFR cascade. In fact, after receptor activation it 

is internalized and degraded or recycled through a Cbl-mediated 

monoubiquitylation. Cbl is an E3 ubiquitin ligase, which forms a ternary complex 

with FRS2α and Grb2, inducing ubiquitination and degradation of FRS2α and the 

sorting of the receptor to the endocytic lysosomal degradative pathway (Turner 

and Grose, 2010). The MAPK signaling, in particular ERK1 and ERK2, can 

phosphorylate FRS2 on many serine/threonine residues blocking Grb2 

recruitment. In addition, the downstream signaling of FGFR can be attenuated by 

several negative regulators, such as the MAPK phosphatase 1 and 3 (MKP1 and 

MKP3), that dephosphorylate ERK1 and ERK2, Sprouty (SPRY) proteins, that 

compete for Grb2 biding with Sos preventing RAS activation or directly bind RAF 

blocking MAPK signaling, the Similar Expression to FGF (SEF) family members, 

which can interact with FGFRs and compete for substrate binding or cause 
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receptor dephosphorylation and FGFRL1 that modulates ligand binding (Figure 5) 

(Turner and Grose, 2010).  

 

Several growth factors/receptor tyrosine kinases (RTKs) signaling pathways, 

including those activated by FGF/FGFRs can exert a regulatory control on the 

autophagic process. In particular, insulin-like growth factor-1 (IGF1) (Sobolewska 

et al., 2009) as well as platelet-derived growth factor (PDGF)  (Takeuchi et al., 

2004), negatively regulate autophagy through the activation of the 

PI3K/AKT/mTOR pathway. More recently it has been described that PDGF is 

able to induce autophagy in vascular smooth muscle cells (VSMCs) via a 

PI3K/AKT/mTOR-independent pathway (Salabei et al., 2013). In addition, an 

inhibitor role on autophagy through a canonical mTOR-dependent mechanism 

has been demonstrated also for the epidermal growth factor (EGF) (Sobolewska et 

al., 2009). More recently an additional mTOR-independent inhibitory mechanism 

on autophagy, which directly involves Beclin 1 phosphorylation/inhibition, has 

been described for EGF/EGFR (Wei et al., 2013). More interestingly, a recent study 

demonstrated that the inactive form of EGFR is able to trigger autophagy, through 

a mTORC1-independent mechanism; this inactive receptor interacts with Rubicon, 

a Beclin 1 inhibitor, inducing Beclin 1 release from Beclin 1/Rubicon complex and 

its consequent activation (Tan et al., 2015).   

Several evidences have proposed contrasting roles for FGFRs on autophagy 

regulation. In fact, previously studies have demonstrated that in mouse fibroblasts 

the fibroblast growth factor 2 (FGF2)-mediated activation of the fibroblast growth 

factor receptor 1/2 (FGFR1/2) inhibits autophagy, and in particular the 

autophagosome assembly, through the activation of the PI3K/AKT/mTOR 

pathway (Lin et al., 2011). This inhibitory role exerted by FGF2 is required to 

prevent premature differentiation of cardiac progenitor cells (Zhang et al., 2012), 

as well as to induce a protective effect in myocardial ischemia/reperfusion (Wang 

et al., 2015) or to maintain the proliferative potential of the mesenchymal stem 

cells (Eom et al., 2014). Recently it has been also demonstrated that FGF2-mediated 

activation of FGFR3 inhibits autophagy in chondrocytes inducing a decrease 

protein expression of the ATG12-ATG5 complex, which in turn induces a 

suppression of the cartilage development. This phenomenon plays a key role in 



	 17	

achondroplasia pathogenesis (Wang et al., 2015). Interestingly in the same context 

of chondrocytes it has been very recently shown that FGF18-induced activation of 

FGFR4 triggers autophagy via a JNK1-mediated, mTOR-independent pathway, 

which is required for bone growth (Cinque et al., 2015).  

Finally, our previous studies have demonstrated that the activation of 

FGFR2b by FGF7 induces autophagy in human keratinocytes through a PI3K-

AKT-mTOR-independent signaling, which is required to stimulate the 

autophagosome assembly (Belleudi et al., 2014). However, the molecular 

mechanism involved in FGFR2b-triggered autophagy is still to be elucidated (see 

below). 

 

 

The fibroblast growth factor receptor 2b and its signaling in the control of 
autophagy in human keratinocytes 

 
The epithelial splicing transcript variant of the fibroblast growth factor 

receptor 2 (FGFR2b/KGFR) can be activated by the stimulation with the specific 

paracrine ligand FGF7 (see above), which is secreted by dermal fibroblasts. 

FGFR2b expression and signaling regulate different processes, including cell 

migration (Ceccarelli et al., 2007; Belleudi et al., 2011), differentiation (Belleudi et 

al., 2011; Purpura et al., 2013) and phagocytosis (Cardinali et al., 2005; Cardinali et 

al., 2008; Belleudi et al., 2011) in human keratinocytes.  

The possible role of FGFR2b in the regulation of epidermal differentiation 

has been suggested in the past by several evidences. In fact, it has been observed 

that FGFR2b is mainly expressed in the spinous suprabasal layer of epidermis (La 

Rochelle et al., 1995; Marchese et al., 1995) and this receptor is up-regulated in the 

suprabasal keratinocytes compared to the basal cells (Marchese et al., 1997; 

Capone et al., 2000). More recently it has been demonstrated that FGFR2b induces 

early differentiation in keratinocytes during the switch from basal undifferentiated 

to suprabasal differentiating cells (Belleudi et al., 2011). The ligand-dependent 

activation and signaling of FGFR2b are required for the receptor ability to induce 

the early differentiation and using specific inhibitors of FGFR2b substrates, we 

demonstrated that the PI3K/AKT signaling pathway is the main involved in the 
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regulation of this process (Belleudi et al., 2011). The key role of FGFR2b in the 

regulation of early steps of keratinocyte differentiation has been also 

demonstrated by the evidence that the oncoprotein E5 of the human 

papillomavirus type 16 (HPV16) is able to impair this process (Purpura et al., 

2013) also through a transcriptional and post-translational down-regulation of 

FGFR2b (Belleudi et al., 2011; Purpura et al., 2013).  

Another important process regulated by FGFR2b is the phagocytosis, a key 

process used by the cells for the ingestion of particles larger than 0.5 µm into 

single membrane compartments called phagosomes (Freeman and Grinstein, 

2014). Phagocytosis particularly occurs in professional phagocytes, such as 

macrophages, dendritic cells and neutrophils (Freeman and Grinstein, 2014), but it 

can be triggered also in other cell types and, in particular, in epidermal 

keratinocytes this process is used for melanosome uptake. Melanosomes are large 

(0.5 µm) lysosomal-related organelles containing synthesized melanin, which are 

released by the neighboring melanocytes and are engulfed by keratinocytes to 

regulate photoprotection and pigmentation (Boissy et al., 2003; Van Den Bossche 

et al., 2006; Wasmeier et al., 2008). It has been previously demonstrated that FGF7-

induced FGFR2b activation induces phagocytosis and consequently melanosome 

uptake in human keratinocytes (Cardinali et al., 2005; Cardinali et al., 2008; 

Belleudi et al., 2011). In addition, using a FGFR2b signaling mutant in which the 

tyrosine 769 required for PLCγ  binding and activation (Ceridono et al., 2005; Cha 

et al., 2009) has been substituted by phenylalanine (Y769F) (Ceridoni et al., 2005), 

we demonstrated that	PLCγ-mediated signaling is required for FGFR2b-triggered 

phagocytosis.  

Even more recently a role of FGFR2b and its FGF7-induced signaling in the 

control of autophagy in human keratinocytes has been highlighted by us. Unlike 

other growth factors and similarly to FGF18 in chondrocytes, FGF7 and 

consequently its receptor activation triggers autophagy in human keratinocytes 

(Belleudi et al., 2014). In particular, using the inhibitor of endoplasmic reticulum 

(ER) Ca2+-ATPase pump family thapsigargin (Thastrup et al., 1990) to block the 

fusion between autophagosomes and lysosomes, we demonstrated that FGF7 

triggers the early step of the autophagic process inducing the formation of new 

autophagosomes. In addition, we also found that FGF7 is also able to accelerate 
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the autophagosome fusion with lysosomes, protecting cells from their potentially 

dangerous accumulation and clustering in the cytosol (Belleudi et al., 2014). This 

last evidence is consistent with the well-known survival role of FGF7 in epithelial 

cells (Panos et al., 1995; Decraene et al., 2004; Lotti et al., 2007) and it is in 

agreement with recent evidences proposing a role for autophagy in contributing to 

skin pigmentation by regulating melanosome degradation in keratinocytes 

(Murase et al., 2013). The autophagic activity and consequently the melanosome 

degradation appeared to be higher in keratinocytes derived from light skin 

compared to those detected in keratinocytes from dark skin (Murase et al., 2013).  

More interestingly we found an important link between autophagy and 

epidermal commitment to differentiation, demonstrating that FGF7-triggered 

autophagy is required for FGFR2b-induced early differentiation (Belleudi et al., 

2014). The involvement of autophagy in cell differentiation may be explained by 

the fact that this degradative pathway could play a key role in mediating rapid 

proteins and organelles turnover which might be required for the rapid change of 

cell phenotype during differentiation (Cecconi et al., 2008; Di Bartolomeo et al., 

2010). The differentiation program is essential to maintain tissue homeostasis and 

to promote keratinocyte regeneration through terminal differentiation, which 

involves cell organelle clearance, mediated in part by lysosomal degradation (Li et 

al., 2016). Starting from this hypothesis, a close interplay between differentiation 

and autophagy has been proposed in many cell types, including keratinocytes 

(Haruna et al., 2008; Aymard et al., 2011; Chatterjea et al., 2011; Moriyama et al., 

2014 ; Belleudi et al., 2014, Chikh et al., 2014; Akinduro et al., 2016). In fact, 

autophagy seems to be required for epidermal terminal differentiation, as shown 

by the higher concentration of the autophagic marker LC3 in the granular layer 

(Haruna et al., 2008; Moriyama et al., 2014, Akinduro et al., 2016). However, other 

evidences indicated a role for this process even in the early stages of keratinocyte 

differentiation. In fact, the expression of LC3 is evident already in the suprabasal 

layer of the epidermis (Haruna et al., 2008) and it increases in parallel with the 

early differentiation markers keratin 1 (K1) and keratin 10 (K10) (Haruna et al., 

2008; Belleudi et al., 2014; Chikh et al., 2014). In addition, K1 and K10 expression is 

repressed by the inhibition of autophagy in differentiating keratinocytes (Belleudi 

et al., 2014; Chikh et al., 2014). In addition, the autophagic markers, ATG5-ATG12 



	 20	

and Beclin 1, are expressed at high levels in the basal layer (Akinduro et al., 2016). 

Moreover, BCL2 and the adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a 

pro-apoptotic BH3-only protein, is able to promote keratinocyte differentiation 

inducing autophagy (Moriyama et al., 2014), while the expression of the protein 

iASPP, a p53 inhibitor, delays keratinocyte differentiation through the inhibition 

of autophagy (Chikh et al., 2014). iASPP is involved in a double positive loop with 

transcription factor ΔNp63α, which is expressed in the basal cells of stratified 

epithelia such as human epidermis (Candi et al., 2008) and it is required for 

keratinocytes differentiation (Truong et al., 2006; Candi et al., 2008).  Therefore, the 

positive loop between iASPP and ΔNp63α plays a crucial role in epidermal 

homeostasis, and iASPP down-regulation is a key event determining autophagy 

induction, ΔNp63α repression and consequently induction of differentiation 

(Chikh et al., 2011; Chikh et al., 2014). 

Autophagy is not only a degradative pathway correlated to cell 

differentiation, but it is also an interplaying process with phagocytosis at least in 

macrophages. In fact, it has been demonstrated that autophagy induction 

promotes the engulfment of phagosomes containing bacteria in autophagosomes 

to allow pathogen elimination (Gutierrez et al., 2004; Xu et al., 2007). Conversely, 

other studies have proposed that autophagy induction can lead to a down-

modulation of the phagocytosis of yeast particles in murine macrophages (Lima et 

al., 2011) while its inhibition can enhance this process (Bonilla et al., 2013). 

Moreover, TLR signaling can induce the recruitment of some autophagic 

components, such as LC3 or Beclin 1, on the single membrane pathogen-

containing phagosomes, without the formation of conventional autophagosome, 

in the process called LAP (LC3-associated phagocytosis) (Sanjuan et al., 2007). 

However, there are not evidences of a correlation between autophagy and 

phagocytosis in keratinocytes. Therefore, considering that these two processes are 

both regulated by FGF7-mediated activation of FGFR2b in keratinocytes, we 

proposed to investigate the existence of a possible interplay between FGF7-

induced autophagy and phagocytosis. In addition, since it has been demonstrated 

that FGFR2b-induced phagocytosis required PLCγ downstream signaling 

(Belleudi et al., 2011), while receptor-mediated autophagy is a PI3K-AKT-mTOR-

independent process (Belleudi et al., 2014) whose specific signaling pathway 
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involved remains to be elucidated, we also proposed to investigate the role of 

PLCγ signaling in FGF7-induced autophagy.  
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Cells and treatments 
	

The human keratinocyte cell line HaCaT was cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum 

(FBS) plus antibiotics. HaCaT cells stably transfected with the construct pMSG 

16E5 (HaCaT pMSG E5) or with the empty vector (HaCaT pMSG) were cultured 

as reported above and were treated with 1 µM dexamethasone (Dex) for 12 h and 

24 h to induce 16E5 expression. The human cervical keratinocyte cell line W12 

initiated from a low-grade cervical lesion (Stanley et al., 1989), which retains ~100 

to 200 copies of the HPV16 episomes per cell (Pett et al., 2004; Stanley et al., 2009; 

Gray et al., 2010), was cultured as previously described (Stanley et al., 1989) and 

used at the passage 6 (W12p6). Primary cultures of human keratinocytes derived 

from healthy skin (HKs) were obtained from patients attending the Dermatology 

Unit of the Sant’Andrea Hospital of Rome; all patients were extensively informed 

and their consent for the investigation was given and collected in written form in 

accordance with guidelines approved by the management of the Sant’Andrea 

Hospital. Primary keratinocytes were maintained in Medium 154-CF (Cascade 

Biologics, Portland, OR, USA) supplemented with Human Keratinocyte Growth 

Supplement (HKGS, Cascade Biologics) plus antibiotics and Ca2+ 0,03 mM 

(CascadeBiologics Inc.). 

Cells were transiently transfected or cotransfected with pCI-neo expression 

vector containing 16E5-HA (HaCaT E5, HKs E5), human FGFR2b WT (HaCaT 

FGFR2b WT), a kinase negative mutant FGFR2b Y656F/ Y657F (HaCaT FGFR2b 

kin-), a signaling mutant FGFR2b Y769F (HaCaT FGFR2b Y769F), the empty vector 

(HaCaT pCI-neo, HKs pCI-neo), with the pEGFP-C2 expression vector containing 

LC3 (engineered by Dr. Fimia, National Institute for Infectious Diseases IRCCS ‘L. 

Spallanzani’, Rome, Italy; and kindly provided by Prof. Francesco Cecconi, Tor 

Vergata University of Rome, Italy) (HaCaT EGFP-LC3, HKs EGFP-LC3, W12 

EGFP-LC3) or with the pDest-mCherry-EGFP tandem expression vector 

containing LC3 (HaCaT mCherry-EGFP-LC3). For all transfections jetPEITM DNA 

Transfection Reagent (Polyplus-transfection, New York, NY, USA) or Fugene HD 

(Promega, Madison, WI, USA) were used according to manufacturer’s 

instructions. 
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For RNA interference and FGFR2b or 16E5 silencing, HaCaT cells were 

transfected with Bek small interfering RNA (Bek siRNA) (Santa Cruz 

Biotechnology Inc., Santa Cruz, CA, USA) or with unrelated siRNA as a control, 

while W12p6 cells were transfected with the E5 siRNA sequence (5′-

TGGTATTACTATTGTGGATAA-3′) (Oh et al., 2009) or the control sequence (5′-

AATTCTCCGAACGTGTCACGT-3′) (Oh et al., 2009) (Qiagen, Valencia, CA, 

USA), using Lipofectamine 2000 Transfection Reagent (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer’s protocol. 

For growth factor stimulation, cells were serum starved or incubated with 

FGF7 (Upstate Biotechnology, Lake Placid, NY, USA) 100 ng/ml for 24 h at 37°C. 

To inhibit AKT or ERK or JNK or PKCδ, cells were respectively incubated with the 

specific AKT inhibitor 1L-6-hydroxy-methyl-chiro- inositol 2-(R)-2-O-methyl-3-O-

octadecylcarbonate (1 µM; Calbiochem, San Diego, CA) or with the specific 

MEK1/2 inhibitor PD0325901 (1 µM; Sigma-Aldrich Inc., Saint Louis, MO, USA) or 

with the specific JNK inhibitor SP600125 (50 µM, Sigma) or with the specific PKCδ 

inhibitor rottlerin (0.5 µM; Calbiochem) for 1 h at 37 °C before treatment with 

FGF7 in the presence of each inhibitor. 

To irreversibly block the fusion between autophagosomes and lysosomes, 

HaCaT cells were incubated with bafilomycin A1 (20 nM; Sigma) for 3 h at 37 °C 

after treatment with FGF7 in the presence of the inhibitor. 

To inhibit the autophagic degradation, cells were incubated with 20 µM 

leupeptin (Sigma) for 24 h. 

To analyze the uptake of beads in keratinocytes, HKs and HaCaT cells were 

incubated with fluorescent microspheres 0.5 µm (red) in diameter (FluoSpheres 

Fluorescent Microspheres, Molecular Probes, Eugene, OR, USA) at the 

concentration of 72 x 107 particles/ml for 4 hours. To evaluate the effects of 

FGFR2b activation on the phagocytic ability, the uptake was performed in the 

presence of FGF7 100 ng/ml (Upstate Biotechnology)  

 

Immunofluorescence   
	

Cells, grown on coverslips and incubated as above, were fixed with 4% 

paraformaldehyde in PBS for 30 minutes at 25°C followed by treatment with 0.1 M 
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glycine for 20 minutes at 25°C and with 0.1% Triton X-100 for additional 5 minutes 

at 25°C to allow permeabilization. Cells were then incubated for 1h at 25°C with 

the following primary antibodies: rabbit polyclonal anti-Bek (1:50 in PBS; C-17, 

Santa Cruz Biotechnology), mouse monoclonal anti-HA (1:50 in PBS; Covance, 

Berkeley, CA, USA). The primary antibodies were visualized, after appropriate 

washing with PBS, using goat anti-rabbit IgG-Texas Red (1:200 in PBS; Jackson 

Immunoresearch Laboratories, 111-075-144), goat anti-mouse IgG-Texas Red 

(1:200 in PBS; Jackson Immunoresearch Laboratories) for 30 minutes at 25°C. 

Nuclei were stained with DAPI (1:1000 in PBS; Sigma). Coverslips were finally 

mounted with mowiol for observation.  

Fluorescence signals were analyzed by scanning cells in a series of 0.5 mm 

sequential sections with an ApoTome System (Zeiss, Oberkochen, Germany); 

image analysis was then performed by the Axiovision software (Zeiss) and 3D 

reconstruction of a selection of three central optical sections was shown in each 

figure. Quantitative analysis of EGFP-LC3-positive dots per cell was performed 

analyzing 100 cells for each sample in 5 different microscopy fields from 3 

different experiments. Quantitative analysis of the bead uptake was performed by 

counting the number of internalized beads in 100 cells for each condition, 

randomly taken from 10 microscopic fields in 3 different experiments. 

Quantitative analysis of the extent of colocalization of beads with EGFP-LC3 was 

performed by the analysis of 100 cells for each sample in 5 different fields 

randomly taken from 3 independent experiments and using the KS300 3.0 Image 

Processing System (Zeiss). Results have been expressed as mean values ± standard 

errors (SE). p values were calculated using Student’s t test and significance level 

has been defined as p < 0.05. 

 

Western blot analysis 
	

Cells were lysed in a buffer containing 50 mM HEPES pH 7.5, 150 mM 

NaCl, 1% glycerol, 1% Triton X-100, 1.5 mM MgCl2, 5 mM EGTA, supplemented 

with protease inhibitors (10 µg/ml aprotinin, 1mM PMSF, 10µg/ml leupeptin), 

and phosphatase inhibitors (1mM sodium orthovanadate, 20 mM sodium 

pyrophosphate, 0.5 M NaF). A range between 50 and 20 µg of total protein were 
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resolved under reducing conditions by 8 or 12% SDS-PAGE and transferred to 

reinforced nitrocellulose (BA-S 83, Schleider and Schuell, Keene, NH, USA). The 

membranes were blocked with 5% nonfat dry milk in PBS 0.1% Tween 20 or with 

3% BSA in PBS 0.1%Tween 20, and incubated with anti-Bek (C-17, Santa Cruz 

Biotechnology Inc.) polyclonal antibodies, anti-LC3 (MBL, Woburn, MA, USA) 

polyclonal antibodies, anti-SQSTM1 (BD Bioscience, San Jose ̀, CA, USA) 

monoclonal antibody, anti-HA (Covance) monoclonal antibody, anti-P-p44/42 

MAPK (P-ERK1/2) (Thr202/Tyr204, Cell Signaling Technology, Beverly, MA) 

polyclonal antibodies, anti-p-AKT (Ser 473, Cell Signaling) polyclonal antibodies, 

anti p-JNK (G9, Cell Signaling) monoclonal antibody, anti p-PKCδ (Tyr-155, Santa 

Cruz Biotechnology) polyclonal antibodies followed by enhanced 

chemiluminescence detection (ECL; Amersham, Alington Heights, IL). The 

membranes were rehydrated by being washed in PBS-Tween 20, stripped with 100 

mM mercaptoethanol and 2% SDS for 30 min at 55°C, and probed again with anti-

AKT (H-136, Santa Cruz Biotechnology Inc.) polyclonal antibodies, anti-p44/42 

MAPK (ERK1/2) (137F5, Cell Signaling) polyclonal antibodies, anti-JNK (Cell 

Signaling) polyclonal antibodies, anti-PKCδ (C-20, Santa Cruz Biotechnology) 

polyclonal antibodies, anti-β-actin (Sigma) monoclonal antibody or anti-α-Tubulin 

(Cell Signaling) polyclonal antibodies to estimate the protein equal loading. 

Densitometric analysis was performed using Quantity One Program (Bio-

Rad Laboratoires, Hercules, CA). Briefly, the signal intensity for each band was 

calculated and the background subtracted from experimental values. The resulting 

values from three different experiments were then normalized and expressed as 

fold increase respect to the control value.  

 

 

Transmission electron microscopy 
	

HaCaT cells stimulated with FGF7 for 24 h and treated with red fluorescent 

beads for the last 4 h as above or HaCaT pMSG E5 and HaCaT pMSG cells treated 

with Dex and stimulated with FGF7 for 24 h as above were washed three times in 

PBS and fixed with 2% glutaraldehyde (Electron Microscopy Science, 16300) in 

PBS for 2 h at 4°C. Samples were postfixed with 1% osmium tetroxide in veronal 
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acetate buffer (pH 7.4) for 1 h at 25 °C, stained with uranyl acetate (5 mg/ml) for 1 

h at 25°C, dehydrated in acetone and embedded in Epon 812 (EMbed 812, Electron 

Microscopy Science). Ultrathin sections were examined unstained or poststained 

with uranyl acetate and lead hydroxide, under a Morgagni 268D transmission 

electron microscope (FEI, Hillsboro) equipped with a Mega View II charge-

coupled device camera (SIS, Soft Imaging System GmbH) and analyzed with 

AnalySIS software (SIS).  

	

Primers 
	

Oligonucleotide primers for target genes and for the housekeeping gene 

were chosen with the assistance of the Oligo 5.0 computer program (National 

Biosciences, Plymouth, MN, USA) and purchased from Invitrogen. The following 

primers were used: for HPV 16E5 target gene 5′-CGCTGCTT TTGTCTGTGTCT-

3′(sense), 5′-GCGTGCATGTGTATGTATTAAAAA-3′(antisense); for BECN1 target 

gene 5′-GGATGGTGTCTCTCGCAGAT-3′(sense), 5′-TTGGCACTTTCTGTGG 

ACAT-3′(antisense); for ATG5 target gene 5′-

CAACTTGTTTCACGCTATATCAGG-3′(sense), 5′-

CACTTTGTCAGTTACCAACGTCA-3′(antisense); for ATG7 target gene 5′-

CCGTGGAATTGATGGTATCTG-3′(sense), 5′-TCATCCGATCGTCACTGCT- 

3′(antisense); for MAP1LC3B target gene 5′-CGCACCTTCGAACAAAGAG-

3′(sense), 5′-CTCACCCTTGTATCGTTCTATTATCA-3′ (antisense); for ULK1 

target gene 5′-CAGACGACTTCGTCATGGTC-3′(sense), 5′-

AGCTCCCACTGCACATCAG-3′(antisense); for ULK2 target gene 5′-

TTTAAATACAGAACGACCAATGGA-3′(sense),5′-

GGAGGTGCCAGAACACCA-3′(antisense); for ATG4a target gene 5′-

CCGTCCGTAGTCAAGT TGC-3′(sense), 5′-TCTGATCTTCATACTTGGATAAAA 

CTG-3′ (antisense); for p21 target gene: 5′-TCACTGTCTTGTACCCTTGTGC-

3′(sense), 5′-GGC GTTTGGAGTGGTAGAAA-3′(antisense); for 14–3-3 sigma target 

gene: 5′-GACACAGAGTCCGGCATTG–3′(sense), 5′-

ATGGCTCTGGGGACACAC- 3′(antisense); for the housekeeping 18S rRNA gene: 

5′-AACCAACCCGGTCAGCCCCT-3′(sense), 5′-TTCGAATGGGTCGTCGCCGC-

3′(antisense). For each primer pair, we performed no-template control and no- 
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reverse-transcriptase control (RT negative) assays, which produced negligible 

signals. 

 

RNA extraction and cDNA synthesis 
	

RNA was extracted using the TRIzol method (Invitrogen, Carlsbad, CA) 

according to manufacturer’s instructions and eluted with 0,1% 

diethylpyrocarbonate (DEPC)-treated water. Each sample was treated with 

DNAase I (Invitrogen). Total RNA concentration was quantitated by 

spectrophotometry. 1 µg of total RNA was used to reverse transcription using 

iScriptTM cDNA synthesis kit (Bio-Rad Laboratories) according to manufacturer’s 

instructions. 

 

PCR amplification and real-time quantitation 
	

Real-time PCR was performed using the iCycler Real-Time Detection 

System (iQ5 Bio-Rad) with optimized PCR conditions. The reaction was carried 

out in 96-well plate using iQ SYBR Green Supermix (Bio-Rad) adding forward and 

reverse primers for each gene and 1µl of diluted template cDNA to a final reaction 

volume of 15 µl. All assays included a negative control and were replicated three 

times. The thermal cycling programme was performed as follows: an initial 

denaturation step at 95°C for 3 minutes, followed by 45 cycles at 95°C for 10 

seconds and 60°C for 30 seconds. Real-time quantitation was performed with the 

help of the iCycler IQ optical system software version 3.0a (BioRad), according to 

the manufacturer’s manual. The relative expression of the housekeeping gene was 

used for standardizing the reaction. The comparative threshold cycle (Ct) method 

was applied to calculate the fold changes of expression compared to control cells 

Results are reported as mean ± standard deviation (SD) from three different 

experiments in triplicate.  
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FGFR2b-mediated phagocytosis and autophagy are convergent intracellular 
membrane pathways regulated by PLCγ  signaling.  

 

It has been recently demonstrated that FGFR2b expression and signaling 

trigger both autophagy (Belleudi et al., 2014) and phagocytosis (Cardinali et al., 

2005; Belleudi et al., 2011) in human keratinocytes. To assess the existence of a 

possible coordination between FGF7-induced autophagy and phagocytosis and to 

ascertain whether these processes could involve converging autophagosomal and 

phagosomal compartments, we took advantage of the use of an in vitro model of 

bead uptake widely used to study the phagocytic capacity of epidermal 

keratinocytes (Wolff et al., 1972; Virador et al., 1992; Desjardins et al., 2003). The 

ability of the human keratinocyte HaCaT cell line, spontaneously immortalized 

from a primary culture of keratinocytes (Boukamp et al., 1988), to either engulf 

and to sort the engulfed beads to the degradation also via autophagy was 

analyzed in response to FGF7. To this aim HaCaT cells were transiently 

transfected with pEGFP-C2-LC3 construct and stimulated with FGF7 for 24 h. For 

the last 4 h of the treatment cells were also incubated with inert latex red 

fluorescent beads 0.5 mm in diameter. Concentrations of both FGF7 and bead, as 

well as the times of treatments, were selected based on our published results 

(Cardinali et al., 2005; Cardinali et al., 2008; Belleudi et al., 2011). Cells were fixed, 

permeabilized and nuclei were stained with DAPI. Quantitative fluorescence 

analysis performed as reported in Materials and Methods, showed that, as 

expected, the treatment with FGF7 increased bead uptake (Cardinali et al., 2005; 

Belleudi et al., 2011) (Figure 6A) as well as the amount of EGFP-LC3 positive dots 

per cell (Belleudi et al., 2014) (Figure 6A). In addition, only a part of internalized 

fluorescent beads (18%) appeared to colocalize with LC3 (Figure 6A). This not so 

tight colocalization and the presence of distal formation of autophagosomes (LC3-

positive dots which did not colocalize with beads) strongly indicated that LC3 

associates with canonical new-formed autophagic vesicles and not directly with 

the membrane of all the nascent phagosomes, as occurs during the LC3-associated 

phagocytosis (LAP). This is in agreement with previous findings demonstrating 

that inert beads fail to activate LAP in macrophages (Martinez et al., 2015). In 

order to unequivocally demonstrate that these LC3 positive dots containing beads 
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may correspond to autophagosomal structures, electron microscopy studies were 

performed in HaCaT cells stimulated with beads in presence of FGF7 as above. 

Ultrastructural examination revealed the presence of single (Figure 6B, asterisks, i, 

ii, iii) and clustered beads (Figure 6B, asterisks, iv) in either single-membrane 

(Figure 6B, arrows, ii) and double-membrane (Figure 6B, arrowheads, ii, iii, iv) 

vacuoles corresponding to phagosomes and autophagosomes, respectively. 

Several clustered beads are also visible in vacuoles ultrastructurally recognizable 

as lysosomes (data not shown), confirming that, independently from the chosen 

pathway, the final fate for the engulfed beads is the accumulation in the 

degradative compartment. These results clearly suggest that, in response to FGF7, 

part of the phagosomes containing the engulfed beads are isolated in new-forming 

autophagosomes, that possibly mediate their targeting to lysosomes.  

Since PLCγ activation/phosphorylation is required for FGFR2b-mediated 

phagocytosis (Belleudi et al., 2011), to investigate the role of this signaling in 

FGF7-induced autophagy we transiently transfected HaCaT cells with a FGFR2b 

signaling mutant in which the tyrosine 769, required for PLCγ  binding and 

activation (Ceridono et al., 2005; Cha et al., 2009) has been substituted by 

phenylalanine (Y769F) (Ceridono et al., 2005). The transfection with FGFR2b wild 

type (HaCaT FGFR2b WT), with a Y656F/Y657F FGFR2b kinase dead mutant 

(HaCaT FGFR2b kin-) (Belleudi et al., 2006) or with pCI-neo empty vector (HaCaT 

pCI-neo) was used as control. After transfection, cells were serum-starved and 

stimulated with FGF7 for 24 h and the amount of the widely accepted marker for 

autophagosomes (Kabeya et al., 2000; Wu et al., 2006), the 16-kDa membrane-

associated microtubule associated protein 1 light chain 3-II (LC3-II) was analyzed 

by western blot. To focus the attention on the possible impact of PLCγ signaling 

shut-down exclusively on the assembly step of the autophagosomes, their 

degradation was selectively blocked stimulating cells with FGF7 in the presence of 

bafilomycin A1, an inhibitor of the vacuolar type H+-ATPase (v-ATPase) able to 

block the fusion of autophagosomes with lysosomes (Juhász et al., 2012). We 

selected this drug for the interference of the autophagosome-to-lysosome fusion 

because, differently from other agents, including monensin or chloroquine, 

bafilomycin does not activate LC3 association with single intracellular membrane, 
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such as endosomes or lysosomes (Florey et al., 2015). The results surprisingly 

showed that, in a similar manner to what observed in cells overexpressing 

FGFR2b kin- (Figure 7A), in cells overexpressing FGFR2b Y769F the amount of 

LC3-II level was not affected by FGF7 stimulation (Figure 7A), suggesting that 

PLCγ signaling downstream FGFR2b is indispensable for FGF7-induced 

autophagosome assembly. In agreement with our previous evidences (Belleudi et 

al., 2014) the increase of LC3-II levels after serum deficiency was further increased 

in response to FGF7 in pCI-neo cells (Figure 7A) and appeared more pronounced 

in FGFR2b WT cells (Figure 7A). The impact of PLCγ signaling in the induction of 

autophagy was also investigated by fluorescence approaches. To quantify the 

autophagosome number in cells forced to overexpress the different forms of 

FGFR2b, HaCaT cells were alternatively co-transfected with pEGFP-C2-LC3 

construct and pCI-neo empty vector, FGFR2b WT, FGFR2b kin- or the FGFR2b 

Y769F. Cells were then treated with FGF7 as above, fixed, permeabilized and 

nuclei were stained with DAPI. Quantitative immunofluorescence analysis 

performed using anti-FGFR2b polyclonal antibody, to visualize transfected 

FGFR2b WT or mutants, showed that, similarly to FGFR2b kin-, FGFR2b Y769F 

overexpression induced a drastic reduction of the number of LC3-positive dots 

compared to that observed in HaCaT EGFP-LC3/pCI-neo and in HaCaT EGFP-

LC3/FGFR2b WT cells (Figure 7B) or in HaCaT EGFP-LC3/FGFR2b Y769F and in 

EGFP-LC3/FGFR2b kin- surrounding cells not showing detectable receptor mutant 

overexpression (Figure 7B, arrowheads). On the other hand, differently from the 

kinase dead mutant (Figure 7B), both FGFR2b WT and FGFR2b Y769F signals 

appeared concentrated in intracellular dots (Figure 7B) confirming that PLCγ 

signaling is not required for ligand-dependent receptor internalization (Ceridono 

et al., 2005). Overall our evidences strongly suggest that the specific signaling 

downstream PLCγ is indispensable for FGF7-induced autophagy and that its shut-

down results in a significant inhibition of the process. 
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FGFR2b-induced autophagy requires PLCγ-mediated phosphorylation/ 
activation of JNK.  

 

Autophagy can be controlled by several mTOR-dependent or mTOR-

independent signaling pathways (Yang et al., 2010; Russell et al., 2014). While it 

has been demonstrated that FGF2 negatively impacts on autophagy through the 

activation of AKT/mTOR signaling (Lin et al., 2011; Zhang et al., 2012), it has been 

recently demonstrated that FGF7 increases autophagy through a not yet identified 

PI3K/AKT/mTOR-independent pathway (Belleudi et al., 2014). Therefore, we 

focused our attention on the JNK1-mediated signaling pathway, which is mTOR-

independent (Russel et al., 2014) and it has been recently identified as mainly 

involved in FGFR4-mediated autophagy in osteoclasts (Cinque et al., 2015). In 

order to assess the possible impact of the JNK1 pathway in FGF7-mediated 

autophagy, and to establish if and how PLCγ is involved in the activation of the 

JNK1 pathway, we compared the levels of phosphorylation/activation of this 

kinase and of other important FGFR2b signaling substrates involved in the control 

of autophagy, such as ERK1/2, in HaCaT pCI-neo, HaCaT FGFR2b WT cells and 

HaCaT FGFR2b Y769F cells. AKT phosphorylation was checked to further confirm 

the independence of FGF7-mediated autophagy from the canonical 

PI3K/AKT/mTOR regulating pathway. Western blot analysis showed that upon 

FGF7 stimulation all the checked substrates appeared phosphorylated in HaCaT 

pCI-neo and HaCaT FGFR2b WT cultures, indicating that in these cells all the 

signaling pathways downstream FGFR2b are activated (Figure 8A). In contrast, in 

HaCaT FGFR2b Y769F cells ERK1/2 and AKT appeared normally phosphorylated, 

while JNK1 phosphorylation was significantly reduced (Figure 8A). These 

evidences indicated that PLCγ recruitment to FGFR2b and its consequent 

phosphorylation are required for an efficient activation of the JNK1-mediated 

signaling pathway.  JNK1 pathway is canonically activated by several MAP3 

kinases, which in turn activate MKK4 and MKK7 that induce JNK 

phosphorylation (Katz et al., 2007). However, it has been recently demonstrated 

that PKCδ is the upstream substrate mainly responsible for the activation of the 

JNK1 pathway, during hypoxia-mediated autophagy (Chen et al., 2008; Chen et 

al., 2009). PKCδ is a direct substrate of PLCγ (Steinberg, 2008) activated by FGFRs, 
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including FGFR2 (Kim et al., 2003). In order to establish the relevance of PKCδ 

activation in the triggering of FGF7-mediated autophagy, we compared its 

phosphorylation levels in cells alternatively overexpressing FGFR2b or FGFR2b 

Y769F or pCI-neo as control. Western blot analysis clearly demonstrated that, in 

agreement with the observed attenuation of JNK1 phosphorylation, a 

corresponding reduction of PKCδ phosphorylation was detectable in cells 

overexpressing FGFR2b Y769F (Figure 8B). These findings strongly suggest that in 

FGFR2b Y769F cells the observed block of FGF7-induced autophagy is due to the 

inhibition of PLCγ−mediated signaling, which is accompanied by PKCδ 

inactivation and possibly consequent JNK1 pathway shut-down.  

To ascertain the relevance of JNK1 repression for the block of FGF7-induced 

autophagy observed in cells expressing FGFR2b PLCγ signaling mutant, we 

estimated the impact of specific kinase inhibitors on LC3-II levels in either HaCaT 

pCI-neo and in HaCaT FGFR2b WT. For JNK1, we used the same JNK inhibitor 

(SP600125) used to interfere with FGF18/FGFR4-triggered autophagy (Cinque et 

al., 2015), while the impairment of ERK1/2 signaling was obtained using the 

inhibitor of the upstream substrates MEK1/2, which efficiently blocks this 

pathway during ligand-mediated activation of FGFRs (Nakanishi et al., 2015). The 

effect of the AKT inhibitor previously used by us (Belleudi et al., 2011; Belleudi et 

al., 2014) was checked again to further confirm that the canonical 

PI3K/AKT/mTOR pathway could not affect the FGF7-mediated autophagy. 

Western blot analysis performed using antibodies directed against the 

phosphorylated forms of each substrate confirmed that all the inhibitors were 

highly specific (Figure 9). Results obtained in both HaCaT FGFR2b WT and 

HaCaT pCI-neo cells showed that only the JNK1 inhibitor was able to interfere 

with increase of LC3-II induced by FGF7 (Figure 10C), while both AKT and 

MEK1/2 inhibitors were ineffective (Figure 10A and B). The impairment induced 

by JNK1 inhibitor on FGF7-induced LC3 increase was comparable to that observed 

in cells expressing the PLCγ-mediated signaling mutant FGFR2b Y769F (Figure 

7A), strongly suggesting that in FGFR2b Y769F-expressing cells the observed 

attenuation of JNK1 signaling is responsible for the repression of FGF7-triggered 

autophagy. Since we have postulated that PKCδ could be possibly the substrate 
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downstream PLCγ acting upstream JNK1, we also analyzed the effect of the direct 

inhibition of PKCδ on autophagy. We found that in cells stimulated with FGF7, 

the treatment with the PKCδ inhibitor resulted in reduction of 

phosphorylation/activation of PKCδ (Figure 9) and in a repressive effect on LC3-II 

levels (Figure 10D) that was comparable to that found upon JNK1 inhibition 

(Figure 10C) or PLCγ signaling shut-down in FGFR2b Y769F expressing cells 

(Figure 7A). Overall our results suggest that the PLCγ signaling pathway is the 

main responsible for the triggering of FGFR2b-induced autophagy. The use of 

specific inhibitors confirmed that the autophagic process controlled by FGFR2b is 

PI3K/AKT/mTOR independent and requires the activation of JNK1, which 

possibly occurs via PKCδ activation. 

 

 

FGFR2b enhances FGF7-mediated autophagy, phagocytosis and their 
convergence in light skin primary HKs.  

 

It has been previously demonstrated that FGFR2b-induced PLCγ signaling 

is required for FGF7-stimulated phagocytosis and consequent melanosome uptake 

in keratinocytes (Belleudi et al., 2011); here we demonstrated that the same 

signaling pathway is involved in FGFR2b-mediated autophagy in these cells and 

that FGF7-mediated phagocytosis and autophagy are converging pathways to 

possibly ensure melanosome degradation. In agreement with this possibility, in 

HKs from light skin, where FGFR2b-mediated uptake of the melanosomes is 

higher than in HKs from dark skin as a consequence of an higher expression of 

FGFR2b (Cardinali et al., 2008), the reduced number of intracellular melanosomes 

was the consequence of an accelerated ability to degrade them by autophagy 

(Murase et al., 2013). In a recent work we also speculated that in light skin HKs 

FGFR2b, in virtues of its ability to accelerate the autophagosome turnover, could 

be responsible for melanosome removal via autophagy (Belleudi et al., 2014). On 

the base of this hypothesis we wondered if FGFR2b could be involved not only in 

the regulation of both phagocytosis and autophagy, but also in the fine control of 

their balance. To ascertain it, we used again the in vitro model of bead uptake and 

we compared the ability of HKs from light and dark skin to either engulf and to 
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sort the engulfed beads to the degradation via autophagy in response to FGF7. To 

this aim, light and dark keratinocytes were transiently transfected with pEGFP-

C2-LC3 construct and treated with FGF7 and with inert latex red fluorescent beads 

as above. Quantitative fluorescence analysis performed as reported in Materials 

and Methods, confirmed that, as expected (Cardinali et al., 2008) and consistently 

with the increased expression of FGFR2b (Figure 11), the treatment with FGF7 

increased the bead uptake more in light skin keratinocytes than dark skin ones 

(Figure 12). In addition, in light skin HKs, FGF7 stimulation significantly 

increased the amount of EGFP-LC3 positive dots per cell more that in dark ones 

and only a part of beads (26%) colocalized with them (Figure 12). In the complex 

the results indicate that, in light skin HKs, but not in the dark ones, the uptake of 

beads and their confluence in nascent autophagosomes for sorting to degradation 

are both enhanced by FGF7 stimulation.  

 

 

Impairment of FGFR2b-induced autophagy in HPV16E5 expressing 
keratinocytes 

  

It has been demonstrated that FGFR2b expression can be down-regulated, 

both transcriptionally and post translationally, by the early protein E5 of the 

human papillomavirus type 16 (HPV16) (Belleudi et al., 2011; Purpura et al., 2013), 

which represents a major risk factor for cervical cancer development and 

progression (zur Hausen, 2002; Moody and Laimnins, 2010). The E5 protein is a 

small, weakly oncogenic protein, which cooperates with the two oncogenes of 

HPV16, E6 and E7, promoting epithelial transformation and cervical 

carcinogenesis (Moody and Laimins, 2010; Venuti et al., 2011; DiMaio and petti, 

2013). The oncogenic activity of the E5 protein is also related to its ability to 

interfere with the expression signaling and trafficking of different receptor 

tyrosine kinases (RTKs) (Belleudi et al, 2011; reviewed in DiMaio and Petti, 2013). 

Consistently with the widely described correlation between autophagy and 

oncogenic virus infection (Mack and Munger, 2012; Silva and Jung, 2013), recent 

evidences have proposed the existence of an interplay between autophagy and 

HPV16 infection. In fact, autophagy seems to be induced after HPV16 infection in 
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host epithelial cells while the inhibition of this process enhances the viral 

infectivity (Griffin et al., 2013). Interestingly, another study has demonstrated that 

the depletion of all the HPV16 early proteins leads to a strong increase of 

autophagy in infected cervical keratinocytes (Hanning et al., 2013), suggesting for 

the entire “early protein group” of HPV16 an inhibitor role on autophagy. 

Nevertheless, the single contribution of each of the early proteins and the 

molecular mechanisms involved remain to be clarified. Starting from the 

observation that E5 protein of HPV16 (16E5) down-regulates the expression of 

FGFR2b (Belleudi et al., 2011; Purpura et al., 2013), which is able to induce 

autophagy in human keratinocytes (Belleudi et al., 2014),	 we investigated the 

effects of 16E5 ectopic expression on FGF7-induced autophagy in human 

keratinocytes.  

 To this aim, HaCaT cells were transiently transfected with pCI-neo E5-HA 

expression vector (Ashrafi et al., 2005) (HaCaT E5) or with the empty vector alone 

(HaCaT pCI-neo). The expected high expression of 16E5 mRNA transcript levels 

in HaCaT E5 (Purpura et al., 2013) was first confirmed by real-time relative RT-

PCR and normalized with respect to the levels of the viral protein transcript in the 

HPV16-positive cervical epithelial cell line W12 (Stanley et al., 1989) at the passage 

6 (W12p6) (Figure 13A). Then, to investigate the possible effects of 16E5 expression 

on FGF7-induced autophagy, HaCaT pCI-neo and HaCaT E5 cells were serum-

starved in the presence or absence of FGF7 for 24 h. Both the growth factor 

concentration and the single time point of treatment have been previously selected 

as optimal experimental conditions for an efficient autophagic induction in HaCaT 

cells (Belleudi et al., 2014). The amount of LC3-II was monitored by western blot 

analysis. The results showed that, after FGF7 stimulation, the increase of the 16 

kDa band corresponding to LC3-II marker, evident in HaCaT pCI-neo cells (Figure 

13B), appeared significantly reduced in HaCaT E5 cells (Figure 13B), indicating 

that the FGF7-induced autophagosome formation was counteracted by the 

presence of 16E5. 

To more carefully investigate the effect of 16E5 expression on the 

autophagic flux, the levels of the well-known autophagy substrate SQSTM1/p62 

(sequestosome 1) were estimated by western blot analysis. The evident decrease of 

the 62 kDa band corresponding to SQSTM1, observed in HaCaT pCI-neo cells 
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upon FGF7 stimulation, appeared significantly recovered in HaCaT E5 cells 

(Figure 13C), indicating that the SQSTM1 degradation was prevented in 16E5-

expressing cells. Moreover, the accumulation of this autophagic substrate seems to 

indicate that the viral protein acts by inhibiting the formation of new 

autophagosomes, rather than by accelerating their turnover. 

The interference of 16E5 expression on the enhanced autophagy was also 

investigated by the widely accepted fluorescence approach. To directly quantify 

the autophagosome number in cells ectopically expressing 16E5 and to easily 

compare it with cells which did not express the viral protein, HaCaT cells were 

transiently cotransfected with pEGFP-C2-LC3 construct and pCI-neo E5-HA 

(HaCaT EGFP-LC3/E5) or pCI-neo empty vector (HaCaT EGFP-LC3) as a control. 

Cells were then treated with FGF7 as above, fixed, permeabilized and nuclei were 

stained with DAPI. Quantitative immunofluorescence analysis was performed 

using anti-HA monoclonal antibody to visualize the viral protein. Results clearly 

showed that, upon FGF7 treatment, a significant increase of the LC3-positive dots 

per cell, corresponding to the assembled autophagosomes, was evident in HaCaT 

EGFP-LC3 cells (Figure 13D, middle panels, arrows) or in HaCaT EGFP-LC3/E5 

cells not showing 16E5 expression (Figure 13D, lower panels, arrows), while this 

increase appeared significantly abolished in HaCaT EGFP-LC3/E5 cells highly 

expressing 16E5 (Figure 13D, lower panels, arrowhead). Interestingly, in these 

latter cells, the number of LC3 positive dots was even lower than that observed in 

serum-starved control cells (Figure 13D, upper panels). Since serum starvation is 

per se an autophagic stimulus, these results suggest that 16E5 might play a more 

general role, independent on FGF7, in autophagy impairment. 

 

To clarify whether the inhibition of FGF7-dependent autophagy induced by 

16E5 is directly related to its previously reported ability to down-regulate FGFR2b 

expression and signaling (Belleudi et al., 2011; Purpura et al., 2013), we first 

compared the effects of 16E5 expression to those induced by FGFR2b depletion. 

HaCaT cells were singly transfected with 16E5 cDNA or with a small interfering 

RNA for FGFR2/Bek (HaCaT FGFR2b siRNA) or an unrelated siRNA (HaCaT 

control siRNA) as control and then stimulated with FGF7 as above. In addition, in 

order to assess whether the possible effects induced by FGFR2b depletion can be 
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counteracted by its simultaneous forced expression, cells were also doubly 

transfected with FGFR2b siRNA and pCI-neo vector containing human FGFR2b 

WT (HaCaT FGFR2b WT cDNA/FGFR2b siRNA). Western blot analysis showed 

that both 16E5-transfected and FGFR2b-depleted cells not only displayed receptor 

down-regulation as expected (Purpura et al., 2013), but also a significant decrease 

of LC3-II levels as well as a block of SQSTM1 degradation in response to FGF7 

(Figure 14A). Moreover, the inhibitory effects on autophagy induced by FGFR2b 

depletion was reverted by the simultaneous overexpression of the receptor (Figure 

14A). Thus, 16E5 expression and FGFR2b silencing appeared to affect the 

autophagic process in a similar manner. To further demonstrate the receptor 

involvement on the 16E5 effect on autophagy, we performed FGFR2b forced 

overexpression in the presence of the viral protein: to this aim, cells were 

transiently cotransfected with 16E5 (HaCaT E5) and FGFR2b WT (HaCaT 

E5/FGFR2b WT) or the kinase negative mutant FGFR2bY656F/Y657F (HaCaT E5/ 

FGFR2b kin-). After transfection, cells were stimulated with FGF7 as above. 

Western blot analysis clearly showed that the 16E5-induced decrease of LC3-II 

levels as well as SQSTM1 accumulation was reverted by the expression of FGFR2b 

WT, but not by that of FGFR2b kin- (Figure 14B). Therefore, FGFR2b forced 

expression and receptor activation are sufficient to counteract the inhibitory effect 

of 16E5 on the autophagy upon growth factor treatment. These results 

demonstrate that, although the molecular mechanisms remain to be clarified, 16E5 

appears to impact the pro-autophagic FGFR2b pathway through the down-

regulation of the receptor. 

To deeper investigate the possibility that 16E5 might play a more general 

role in autophagy impairment, the possible effects of its ectopic expression were 

analyzed in cells subjected to serum starvation, an autophagic stimulus in which 

the contribution of FGFR2b signaling is completely excluded. HaCaT pCI-neo and 

HaCaT E5 cells were kept in complete medium or serum-starved for the two time 

points (24 h and 48 h) previously selected as optimal conditions for an efficient 

induction of autophagy in HaCaT cells (Belleudi et al., 2014). Western blot analysis 

performed as above showed that in HaCaT E5 cells the progressive increase of 

LC3-II marker was significantly affected (Figure 15A), while the SQSTM1 

degradation was totally abolished (Figure 15B). The interference of 16E5 
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expression was also investigated by immunofluorescence as above. The results 

showed that the significant increase of the LC3-positive dots induced by 24 h of 

serum starvation, evident in HaCaT EGFP-LC3 (Figure 15C, arrow), was 

completely blocked in HaCaT EGFP-LC3/E5 (Figure 15C, arrowheads), 

unequivocally demonstrating that the presence of the viral protein prevents the 

increase of autophagosomes in response to serum deprivation. Thus, 

independently from the stimulus that triggers the process, 16E5 appears to 

generally interfere with autophagy. 

In order to confirm that 16E5 is able to impact the autophagy on-rate, rather 

than the autophagy off-rate, as already indicated above by SQSTM1 monitoring, 

immunofluorescence experiments were performed doubly transfecting HaCaT 

cells with 16E5 and a pDest-mCherry-EGFP-LC3 tandem construct (Pankiv et al., 

2007). In fact, mCherry-EGFP-LC3 is an autophagic flux sensor, since EGFP 

fluorescence is quenched in acidic environments, whereas mCherry is an acidic-

stable fluorescent tag: the nascent autophagosomes are both red and green 

(yellow) labeled, whereas the acidic autolysosomes appear red, as a consequence 

of the EGFP quenching. Quantitative immunofluorescence analysis performed 

upon either serum deprivation and FGF7 stimulation showed that 16E5 expression 

led to a significant decrease in the number of yellow dots per cells corresponding 

to newly assembled autophagosomes (Figure 16A), while the quantity of red dots 

corresponding to autophagosomes flowed in the lysosomes was not affected 

(Figure 16A). The inhibitory effect of 16E5 on autophagosome formation was 

further confirmed monitoring the LC3-II levels in presence or absence of the well 

known lysosomal protease inhibitor leupeptin (LEU, Figure 16B), which inhibits 

the vacuolar type H+-ATPase (v-ATPase) complex necessary for lysosomal 

acidification (Juha ́sz et al., 2012). Western blot analysis performed upon serum 

deprivation or FGF7 stimulation showed that 16E5 expression significantly 

decreases LC3-II levels also in the presence of the inhibitor of the autophagic flux 

(Figure 16B), confirming that, independently from the stimulus that triggers 

autophagy, 16E5 exerts an inhibitory role in the autophagosome assembly. 

In order to define whether the effect of 16E5 on autophagy could be dose-

dependent, we took advantage of the use of HaCaT cells stably transfected with 

the construct pMSG 16E5 (HaCaT pMSG E5) (Oelze et al., 1995), in which the 
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expression of the viral protein can be progressively induced, in a time-dependent 

manner, by treatment with dexamethasone (Dex). The HaCaT pMSG cells were 

used as negative control. Cells were left untreated (0 h) or treated with Dex for 12 

h or 24 h, and the increasing 16E5 mRNA transcript levels were quantitated by 

real-time relative RT-PCR. The mRNA amounts were normalized respect to the 

levels expressed in W12p6 cells. The results clearly indicated that in HaCaT pMSG 

E5 cells, which expressed very low levels of 16E5 mRNA also in absence of Dex 

treatment (Oelze et al., 2015; Muto et al., 2011; French et al., 2013), the increasing 

levels of 16E5 mRNA after Dex stimulation remain lower than those observed in 

the endogenous model of W12p6 cells (Figure 17A). To first analyse the impact of 

the progressive expression of 16E5 on basal autophagy, cells were kept in 

complete medium and treated with Dex as above. Western blot analysis showed 

that in HaCaT pMSG E5 cells the low expression of LC3-II protein was decreased 

already after 12 h of Dex treatment and no further decrease was observed after 24 

h (Figure 17B, left panel). Interestingly, no changes on LC3-II amounts were 

induced by Dex in control cells (Figure 17B, left panel), demonstrating that the 

inhibitory effect observed in HaCaT pMSG E5 cells can be specifically ascribed to 

16E5 expression. In addition, these results indicate that the observed inhibition of 

autophagy does not occur only when the viral protein is overexpressed. 

Then, our attention was shifted from the basal to induced-autophagy. 

Western blot analysis showed that the evident increase of LC3-II levels induced by 

both serum starvation (Figure 17B, middle panel) and FGF7 stimulation (Figure 

17B, right panel) appeared completely abolished upon Dex treatment in HaCaT 

pMSG E5 cells; again, no effects were found in control cells, confirming the 

exclusive role of 16E5. Interestingly, in absence of Dex treatment, the increase of 

LC3-II protein caused by FGF7 appeared significantly lower in HaCaT pMSG E5 

than in control cells (Figure 17B, right panel), implying that the low levels of 16E5 

expressed by these cells in Dex-untreated conditions (see Figure 17A) were 

sufficient to interfere with the enhancement of autophagy induced by FGF7 

(Figure 17B, right panel). The ability of 16E5 to inhibit autophagy was also 

analyzed in detail by transmission electron microscopy (TEM). The ultrastructural 

observations revealed that the double-membrane autophagic vacuoles (Figure 

17C, asterisks), varying in shapes and frequently tightly apposed to endoplasmic 
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reticulum cisternae, were numerous in HaCaT pMSG cells treated with FGF7 in 

the presence of Dex (Figure 17C, left and middle panels) and drastically reduced 

in HaCaT pMSG E5 subjected to the same treatment (Figure 17C, right panel). 

Thus, the ultrastructural analysis unequivocally demonstrated that the 16E5-

induced impairment of autophagy shown by biochemical or immunofluorescence 

approaches corresponds to a real reduction in the number of double-membrane 

vacuolar structures morphologically identifiable as autophagosomes. 

To verify whether the viral protein exerts the inhibitory effect on autophagy 

also in the presence of the HPV16 full-length genome, as it occurs in the context of 

cervical carcinogenesis, we used the well established in vitro model of cervical 

W12p6 cells, containing episomal HPV16. Western blot analysis clearly showed 

that no detectable changes in LC3-II marker levels could be found in these cells 

upon starvation or FGF7 treatment (Figure 18A). Fluorescence approaches were 

also performed using W12p6 cells transiently transfected with pEGFP-C2-LC3 

(W12p6 EGFP-LC3). HaCaT cells or primary cultures of normal human 

keratinocytes (HKs) transiently transfected with EGFP-LC3 (HaCaT EGFP-LC3 

and HKs EGFP-LC3) were used as controls. The results clearly demonstrated that, 

differently from control cells (Figure 18B), W12p6 EGFP-LC3 cells did not show 

any increase in the number of LC3-positive dots per cell after serum starvation 

and/or FGF7 stimulation (Figure 18B). 

In order to investigate whether the lack of responsiveness to the autophagic 

stimuli detected in the endogenous context of W12p6 cells may be due to 16E5 

expression, the effect of specific depletion of the viral protein was analyzed by 

siRNA transfection. We first confirmed the efficient depletion of the 16E5 protein 

in E5 siRNA-transfected cells performing experiments on HaCaT cells 

cotransfected with E5-HA cDNA and E5 siRNA in which the efficiency of 16E5 

silencing was verified through western blot analysis using anti-HA monoclonal 

antibody (Figure 19). Then, W12p6 cells were transfected with the specific 16E5 

siRNA or with an unrelated siRNA as control and the autophagic process was 

stimulated by serum starvation or FGF7 treatment as above. Western blot analysis 

clearly showed that both the autophagic stimuli significantly increased the LC3-II 

levels only in 16E5-depleted cells (Figure 18C). Consistent with the biochemical 

results, fluorescence approaches revealed that a significant increase of LC3-
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positive dots was evident in 16E5-depleted W12 cells upon serum deprivation and 

FGF7 stimulation (Figure 18D), while no increase was found in control siRNA-

transfected cells (Figure 18D). These results strongly indicated that in W12p6 cells, 

which are the most representative model of cervical cancerogenesis, the observed 

unresponsiveness to autophagic stimuli could be specifically ascribed to 16E5 

expression. 

 

 

16E5 interferes with the transcriptional regulation of autophagy through the 
impairment of p53 function  

	
Since it has been demonstrated that 16E5 is able to affect the expression of 

several host genes (Kivi et al., 2008; Greco et al., 2011) and growing evidences 

indicate that autophagy is not only post-translationally regulated, but also 

transcriptionally controlled (Kusama et al., 2009; Rouschop et al., 2010; 

Kenzelmann Broz et al., 2013), here we investigated whether 16E5 might interfere 

with autophagy by affecting the autophagic gene expression. To this aim, the 

mRNA transcript levels of different crucial autophagic genes acting at different 

steps of the process (BECN1, ATG5 and LC3) were estimated by real-time relative 

RT-PCR in HaCaT E5 cells and normalized respect to the levels detected in HaCaT 

pCI-neo cells. In cells kept in complete medium, BECN1 and ATG5, but not LC3 or 

ATG7, appeared down-regulated by 16E5 expression (Figure 20A, upper panels). 

Moreover, when autophagy is stimulated by serum starvation or FGF7 treatment, 

a drastic significant decreased expression of all genes examined, except BECN1 in 

serum-deprived cells, was evident (Figure 20A, lower panels). Thus, 16E5 down- 

regulates autophagy gene expression when the process is induced as well as under 

basal conditions. Interestingly, in agreement with our previous biochemical 

observations (Belleudi et al., 2014), FGF7 stimulation slightly but significantly 

increased the expression of BECN1 and LC3, while that of ATG5 seemed 

unaffected (Figure 20A, lower panels) indicating that FGF7/FGFR2b signaling 

plays a role in the transcriptional control of autophagy. The p53 protein has been 

recently identified as a possible transcriptional inductor of the autophagic 

program (Kenzelmann Broz et al., 2013) and several autophagy genes are found to 
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be positively regulated by p53 also in HaCaT cells (Martynova et al., 2012), 

although these cells are known to express mutant p53 alleles (Martynova et al., 

2012). Therefore, in order to assess whether 16E5 might negatively affect the 

transcriptional program of autophagy also interfering with the expression of a set 

of p53-regulated autophagy core machinery genes (ULK1, ULK2, ATG4a, ATG7) 

(Kenzelmann Broz et al., 2013), we analyzed their transcript levels as above. Real-

time relative RT-PCR showed that all the p53-regulated genes, with the only 

exclusion of ULK2, were significantly down-regulated by 16E5 expression upon 

either serum starvation or FGF7 stimulation (Figure 20B). Thus, during induced-

autophagy, the viral protein is able to repress the expression of several autophagic 

genes, some of which are specific targets of p53. In addition, since no changes in 

the mRNA levels of the examined p53-target genes were observed upon FGF7 

treatment (Figure 20B), these results show that the FGFR2b transcriptional 

regulation of autophagy is p53-independent. In order to verify if 16E5 could 

interfere with the transcriptional regulation of autophagy inducing impairment of 

p53 function, the expression of two well established p53 downstream target genes, 

such as p21 and 14–3-3σ, was analyzed in HaCaT E5 and HaCaT pCI-neo cells 

upon serum starvation or FGF7 stimulation. RT-PCR analysis showed in 16E5-

expressing cells a significant decrease of p53 target gene expression (Figure 20B, 

lower panels), suggesting that 16E5 could be able to transcriptionally impair 

autophagy also interfering with p53 function. In contrast, consistent with the 

results described above, the stimulation with FGF7 was able to induce no 

significant changes of p21 or 14–3-3σ expression (Figure 20B, lower panels), 

further confirming that the induction of autophagy by FGF7 does not involve the 

p53 regulation. In order to verify if the ability of 16E5 to transcriptionally regulate 

autophagy is a general phenomenon, we examined the expression of the 

autophagic genes in primary human keratinocytes transiently transfected with 

16E5 (HKs E5) or with the pCI-neo empty vector (HKs pCI-neo) as control. The 

results showed that, also in primary cultures, the expression of 16E5 appeared to 

down-regulate most of the p53-independent (Figure 21A) and p53-regulated 

(Figure 21B) autophagy genes, as well as that of the main p53-target gene p21 

(Figure 8b). Consistently with the results obtained in HaCaT cells, also in HKs 

pCI-neo the stimulation with FGF7 significantly increased the expression of 
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BECN1, ATG5 and LC3, while p53-target genes appeared unaffected (Figure 21A 

and B), confirming that FGF7 appears to exert a transcriptional control only on the 

p53-independent autophagy genes. To assess whether the repression of the 

autophagic gene transcription induced by 16E5 could be observed in the presence 

of HPV16 full-length genome and to analyze whether this effect could be directly 

due to the E5 viral protein expression, all the previously examined genes were re-

analyzed in W12p6 cells transfected with a specific E5 siRNA or with un unrelated 

siRNA. The mRNA levels of the different genes in HKs were used as normalizers. 

Real-time relative RT-PCR showed that the very low levels of most of the genes in 

W12p6 control siRNA cells (Figure 21C and D) were recovered upon 16E5 

depletion (Figure 21C and D). These results strongly suggested that the decreased 

expression of both p53-regulated and p53-independent autophagic genes observed 

in W12 cells compared to HKs can be directly ascribed to 16E5 expression. 
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In the first part of this work I investigate the crosstalk between autophagy 

and phagocytosis in human keratinocytes and the possible involvement of 

FGFR2b-induced PLCγ signaling in the induction of the FGF7-mediated 

autophagic process. The interplay between autophagy and phagocytosis is widely 

accepted to occur in the context of macrophages (Gutierrez et al., 2004; Sanjuan et 

al., 2007; Xu et al., 2007; Lima et al., 2011; Bonilla et al., 2013); however, a similar 

crosstalk has not been already described in other cell types. In this work, not only 

we confirmed our previous results showing that FGF7 stimulation is able to 

trigger either phagocytosis (Belleudi et al., 2011) and autophagy (Belleudi et al., 

2014) in both HaCaT keratinocyte cell line and in primary HKs, but interestingly 

we found that the activation and signaling of FGFR2b are able to drive 

phagosomes and autophagosomes to converge. This phenomenon might be 

explained as an additional strategy of this type of cells to more efficiently redirect 

the engulfed material toward a lysosomal degradative fate. 

It has been reported that, in addition to the conventional autophagy, several 

non-canonical autophagic mechanisms can be activated and, in particular, a direct 

recruitment of Beclin 1 and LC3 to the phagosomal membranes has been described 

as LAP (LC3-associated phagocytosis) in murine macrophages during 

phagocytosis (Sanjuan et al., 2007). However, our findings strongly indicate that, 

in our cell model, the autophagic process involves a canonical pathway to isolate 

the newly formed phagosomes. In fact, our fluorescence results, showing a not 

complete colocalization between the internalized beads and the LC3-positive dots 

upon FGF7 stimulation, appears to exclude the involvement of a non-canonical 

autophagy, such as LAP. In addition, our ultrastructural analysis showed that part 

of the engulfed beads were included in double membrane organelles 

morphologically corresponding to canonical autophagosomes, suggesting that 

some of the autophagosomal structures might close around the phagosomes 

containing the beads. Although this canonical intracellular membrane pathway 

may represent the main mechanism involved in such convergence of the two 

processes, several single membrane organelles containing beads were also visible: 

therefore, we may speculate that, as previously described in macrophages during 

bacterial clearance (Levine et al., 2011), also in keratinocytes other mechanisms, 

including the fusion between the phagosomal membrane and the outer membrane 
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of autophagosomes, can not be excluded.  

The ability of FGFR2b to regulate the phagocytic process appears to be 

functionally linked to the control of the melanosome uptake by recipient 

keratinocytes for skin pigmentation (Cardinali et al., 2005; Belleudi et al., 2011). In 

fact, this ability is more efficient in HKs from light skin, that are known to express 

more FGFR2b compared to those from dark skin (Cardinali et al., 2008). In the 

other hands, a recent study highlighted the crucial role of the autophagic process 

in melanosome degradation in the context of human keratinocytes (Murase et al., 

2013). Our present results, indicating a key role of FGFR2b not only in the 

induction of both autophagy and phagocytosis, but also in the regulation of their 

convergence, encouraged us to envisage a new scenario in which FGFR2b would 

differently control autophagy, and possibly melanosome turnover, in light and 

dark skin. This hypothesis appears to be confirmed by our fluorescence results 

showing that autophagy and phagocytosis may converge only in HKs from light 

skin. Taken together our results indicate that, particularly in light skin, FGFR2b 

signaling could be crucial in determining melanosome intracellular amount and 

consequently skin pigmentation through a fine modulation of the interplay 

between phagocytosis and autophagy. Our speculations are consistent with those 

of Li and coworkers (Li et al., 2016), which hypothesized that the UVB-induced 

persistence of melanosomes, especially in HKs from light skin, can be due to the 

inhibition of autophagy consequent to UVB-mediated internalization and 

degradation of FGFR2b (Marchese et al., 2003; Belleudi et al., 2006). These authors 

also proposed that the modulation of FGF7-induced autophagy might be a useful 

strategy for treating skin pigmentation disorders (Li et al., 2016).  

 While in our previous work (Belleudi et al., 2011) it has been demonstrated 

that, in human keratinocytes, the FGFR2b-induced phagocytosis occurs via PLCγ 

signaling, suggesting that diacylglycerol formation and consequent cortical actin 

reorganization could be required, the molecular pathways responsible for FGF7-

induced autophagy remain to be clarified. It is well-known that the autophagic 

process can be regulated by either mTOR-dependent and mTOR-independent 

molecular mechanisms (Yang et al., 2010; Russell et al., 2014) and it has been 

previously demonstrated that FGF7-mediated autophagy is a PI3K/AKT/mTOR-

independent process (Belleudi et al., 2014). Therefore, in this work we further 
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progress on the identification of the molecular mechanisms underlying FGF7-

mediated autophagy, identifying PLCγ as a crucial player acting downstream 

FGFR2b. Using biochemical and immunofluorescence approaches we assessed the 

key role of the tyrosine 769 residue in FGFR2b, responsible for the 

activation/recruitment of PLCγ, not only in the receptor-mediated phagocytosis as 

previously shown (Belleudi et al., 2011), but also in the induction of autophagy. In 

fact, the point mutation of this receptor site (Y769F), which generates a PLCγ 

signaling dead mutant (FGFR2b Y769F), resulted in the impairment of the 

autophagosome formation following FGF7 stimulation. Thus, PLCγ signaling 

appears to be the main pathway involved in the regulation of both FGFR2b-

mediated phagocytosis and autophagy (Figure 22). 

Then, in order to identify the molecular machinery acting downstream PLCγ, 

we focused our attention on JNK1, a RTK substrate able to activate an mTOR-

independent autophagic pathway (Russell et al., 2014) and recently identified as 

the main player involved in FGFR4-mediated autophagy (Cinque et al., 2015). We 

found that, upon FGF7 stimulation, the phosphorylation/activation of JNK1 is 

strongly attenuated in cells overexpressing the FGFR2b Y769F mutant. Moreover, 

only the inhibition of JNK1, but not that of other FGFR2b substrates, such as 

MEK1/2 or AKT, was able to affect FGF7-mediated autophagy. These findings 

demonstrated that, consistently with what has been reported for FGFR4 in 

osteoclasts (Cinque et al., 2015), FGFR2b-mediated autophagy in keratinocytes is 

induced via the activation of JNK1 signaling. Taking advantage of the use of a 

specific inhibitor, we finally identified the PLCγ substrate PKCδ (Steinberg, 

Physiol Rev, 2008) as the molecular player directly involved in JNK1 activation 

and consequently in FGF7-induced autophagy. These results are consistent with 

previous findings indicating PKCδ as crucial activator of JNK1 during autophagy 

induced by hypoxia (Chen et al., 2008; Chen et al., 2009). 

Overall the data collected in the first part of this work strongly suggest that 

PLCγ is the FGFR2b substrate, which acts as an upstream regulator of both 

phagocytosis and autophagy in HKs. While the PLCγ-mediated  formation of 

diacylglycerol and consequent cortical actin reorganization might be responsible 

for the triggering of phagocytosis, PKCδ/JNK1 signaling would be the main 
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PLCγ downstream pathway required for the induction of FGF7-mediated 

autophagy (Figure 22).  

 

In the second part of this work, I focused my attention on the possible 

impairment of the autophagic response in keratinocytes expressing the 

oncoprotein 16E5.  

The interference of the host cell autophagic response is a general strategy 

used by viruses during the early steps of infection in order to ensure their 

intracellular survival and subsequent replication (Silva et al., 2013). In the case of 

human papillomavirus 16 (HPV16), a role in inhibiting the host cell autophagy has 

been proposed for the entire “early protein group” (Hanning et al., 2013), but 

neither the single contribution of the viral oncogenic proteins, nor the molecular 

mechanisms involved in such inhibition, have been investigated. Starting from our 

recent results dealing with the ability of FGF7/FGFR2b signaling in promoting 

autophagy (Belleudi et al., 2014) and with the capacity of HPV16 E5 to down-

regulate the receptor expression for perturbation of epithelial homeostasis and 

differentiation (Belleudi et al., 2011; Purpura et al., 2013), we speculated that 16E5 

might be the HPV16 early product major candidate for the role of interference 

with the autophagic process, possibly occurring through FGFR2b down-

modulation. Consistent with this hypothesis we demonstrated, using biochemical 

and immunofluorence approaches, that the ectopic expression of 16E5 efficiently 

counteracts FGF7-mediated autophagy. In fact, the inhibitory effects induced by 

the viral protein were comparable to those observed under receptor depletion and 

the forced receptor overexpression and the triggering of its signaling was able to 

contrast the repressive function of 16E5 on the autophagic process. These results 

suggest that 16E5 and FGFR2b would exert opposite and interplaying roles not 

only on epithelial differentiation, as recently proposed (Purpura et al., 2013), but 

also on the control of autophagy 

Interestingly, taking advantage of the use of serum starvation as autophagic 

stimulus in which the contribution of FGFR2b signaling was excluded, we 

provided the first evidence that 16E5 affects autophagy also through 

transcriptional regulation. In fact, our molecular analysis showed that 16E5 is able 

to repress most of the autophagy core machinery genes, some of which are direct 
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targets of p53, one of the main transcriptional inductor of the autophagic program 

(Kenzelmann Broz et al., 2013). However, differently from the 16E6 oncoprotein, 

whose crucial role as p53 down-regulator has been proposed (Scheffner et al., 

1990), only a modest ability to repress p53 expression has been ascribed to 16E5 

(Greco et al., 2011). Therefore, it is possible that, in the case of 16E5 expression, p53 

would be mainly functionally-regulated, rather than transcriptionally-regulated. 

To investigate such possibility we decided to analyze also the expression of the 

general p53-target genes p21 and 14–3-3σ, in order to monitor p53 function in our 

cell model (Martynova et al., 2012). In agreement with the hypothesis of a 

functional regulation of p53, we found that, when 16E5 is expressed and 

autophagy is induced by serum starvation or FGF7 stimulation a significant 

decrease in p53-target gene transcription was observed, indicating functional 

repression of p53. These results provide new elements to assume that the negative 

impact of 16E5 on autophagy might be also due to the ability of the viral protein to 

induce a functional inhibition of p53 activity, which in turn results in down-

regulation of autophagy genes. Moreover, the observed repressing effect on 

autophagy genes, which are not directly regulated by p53, suggests that 16E5 may 

in parallel interfere with other autophagy transcriptional regulators still unknown. 

It has been reported that autophagy is linked to epithelial cell differentiation 

(Haruna et al., 2008; Aymard et al., 2011; Chatterjea et al., 2011; Moriyama et al., 

2014 ; Belleudi et al., 2014, Chikh et al., 2014; Akinduro et al., 2016) and it has been 

recently proposed the existence of a direct interplay between the two processes in 

human keratinocytes demonstrating that the induction of autophagy in response 

to FGFR2b activation is necessary for the triggering of early differentiation 

(Belleudi et al., 2014). Accordingly with the knowledge that 16E5 acts during HPV 

infection perturbing keratinocyte differentiation (Fehrmann et al., 2003; Barbaresi 

et al., 2010) and that this occurs through FGFR2b down-modulation (Purpura et 

al., 2013), our present study shows that a finely controlled impairment of the 

autophagic process, also through FGFR2b down-regulation, could be one of the 

molecular mechanisms used by 16E5 to inhibit and delay epithelial cell 

differentiation for maintenance of an undifferentiated status indispensable for 

virus replication. 
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On the other hand, a close interplay between p53 activity and epidermal cell 

differentiation has been also proposed: in fact, in suprabasal differentiating 

keratinocytes, p53 is activated by the dramatic decrease of its functional repressor 

ΔNp63α (Westfall et al., 2003) and several keratinocyte differentiation-specific 

markers, including Notch1, Hsp70 and keratin 14, are finely regulated by the 

∆Np63α/p53 inverse functional cooperation (Agoff et al., 1993; Wu et al., 2005; 

Nguyen et al., 2006; Yugawa et al., 2007; Cai et al., 2012). Moreover, it has been 

observed that p53 activity promotes differentiation in HaCaT cells (Paramio et al., 

2000). Based on these evidences, our results may indicate that 16E5 is able to 

utilize parallel and not interconnected mechanisms, involving both FGFR2b 

down-regulation and functional repression of p53, for the impairment of both  

autophagy and differentiation. Since we demonstrated here that also the 

autophagy induced by FGF7 signaling appears to be transcriptionally controlled, 

although in a p53-independent manner, the data obtained in the second part of 

this work allow us to conclude that a transcriptional crosstalk among 16E5 and 

FGFR2b is the crucial molecular driver of epithelial deregulation during early 

steps of HPV infection and transformation. 

 

 
	
	
	
	
	
	
	
	
	
	
	
 
 
 
 
 

 
 
 



	 53	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1

Nature Reviews | Molecular Cell Biology

Plasma membrane

Autolysosome

Degradation

Autophagosome
Isolation
membrane

Lysosome

Early
endosome

Golgi

Recycling
endosome

Nucleus

ER

Late endosome

MVB

Mitochondrion

MAM

Osmium
The transition metal compound 
osmium tetroxide (OsO4) is 
widely used as a fixative and to 
stain lipids to provide contrast 
in transmission electron 
micrographs.

mammalian cells and recognized the contribution of the 
lysosome to it (for a review, see REF. 11). By the 1970s, 
the improvements in transmission electron micro-
scopy and the development of cytochemical techniques 
enabled the concept of autophagy to be firmly estab-
lished. In parallel, starting in the 1960s, the origin of 
the autophagosome membrane was being investigated 
and debated. Interestingly, the ER was the first source 
identified12. Subsequently, a discrete membrane called 
a phagophore, with unique morphological properties, 
was identified as the potential initiating membrane of 
the autophagosome13. This membrane appeared unex-
pectedly in electron microscopy images as a double-
membrane cisterna, often as a curved, cup-shaped 
structure with a translucent lumen that stained heavily 
with osmium, thus giving it a darker appearance than 
other cellular membranes14. The osmophilic properties 
of the phagophore suggested that its lipid and protein 

composition is unique and distinct from other cellular 
membranes, and data obtained using freeze-fracture 
techniques have shown that it contains low levels of pro-
tein15. Although the initial electron microscopy studies 
suggested the phagophore, now also called the isola-
tion membrane, was derived from the ER or the GERL 
(Golgi–ER–lysosome), some evidence implied that it 
was assembled de novo16. The current consensus is that 
it arises from a subdomain of the ER (see below).

Biochemical approaches developed over the subse-
quent decades provided data that are the foundation for 
our current understanding of the molecular control of 
autophagy. The discovery of the pathway in yeast from 
electron microscopy analysis17 and the identification of 
the first yeast ATG (autophagy-related) genes18,19 trans-
formed the autophagy field. The molecular analyses of 
autophagy began in earnest in yeast and soon followed 
in mammalian cells. The first link between autophagy 

Figure 1 | Overview of the autophagic pathway and organelles that might contribute to autophagosome 
biogenesis. Whereas organelles in the biosynthetic and secretory pathways are always present in the cell, the 
autophagosome forms quickly and disappears, and its formation can be increased by signals that activate autophagy. 
Thus, the origin and source of the autophagosomal membrane is a major question in the field. Various organelles, 
KPENWFKPI�VJG�GPFQRNCUOKE�TGVKEWNWO�
'4���OKVQEJQPFTKC��OKVQEJQPFTKC�CUUQEKCVGF�OGODTCPGU�
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plasma membrane and recycling endosomes have been implicated in autophagosome formation (that is, in the nucleation 
of the isolation membrane (originally termed the phagophore)) and in the subsequent growth of the membrane. A fully 
formed autophagosome fuses with a lysosome to create an autolysosome, in which the material sequestered by the 
autophagosome is degraded and released into the cytoplasm for use in cellular processes, including protein biosynthesis 
and energy production. Autophagy is a cell survival pathway that is required to keep cells healthy by degrading damaged 
organelles and eliminating invading pathogens, but it has also been shown to be dysregulated in a number of human 
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Figure 1. Overview of the autophagic pathway and organelles that might 

contribute to autophagosome. Macroautophagy is mediated by a double-

membrane organelle called autophagosome, by which a portion of the cytoplasm 

is enclosed. The outer membrane of the autophagosome then fuses with the 

lysosome, which allows lysosomal enzymes to degrade the sequestered 

cytoplasmic materials in autolysosomes and release the degradation products into 

the cytoplasm for use in cellular processes, including protein biosynthesis and 

energy production. Whereas organelles in the biosynthetic and secretory 

pathways are always present in the cell, the autophagosome forms quickly and 

disappears, and its formation can be increased by signals that activate autophagy. 

Thus, the origin and source of the autophagosomal membrane is a major question 

in the field. Various organelles, including the endoplasmic reticulum (ER), 

mitochondria, mitochondria-associated membranes (MAMs), the Golgi, the 

plasma membrane and recycling endosomes have been implicated in 

autophagosome formation (that is, in the nucleation of the isolation membrane) 

and in the subsequent growth of the membrane. Autophagy is a cell survival 

pathway that is required to keep cells healthy by degrading damaged organelles 

and eliminating invading pathogens, but it has also been shown to be 

dysregulated in a number of human disease, (for example, Crohn’s disease, cancer 

and neurodegeneration), which makes it a potential target for future therapeutic 

intervention. MVB, multivesicular body. 
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However, while autophagic targeting of conventional 
cytoplasmic substrates needs formation of a membranous 
compartment that isolates the doomed item, autophagy against 
the contents of a vesicular structure could conceivably spare 
cargo isolation and rely only on LC3 labeling of an already 
existing vesicle. In fact, some recently described examples support 
this novel idea (Fig. 2B). In the following we review the new 
developments on this topic.

Phagosomes containing stimulated TLR2 (toll-like receptor 
2) become rapidly decorated with BECN1 to promote LC3 

labeling of this nonautophagic single-membrane compartment, 
a process that promotes more efficient acquisition of lysosomal 
features.33 This phenomenon has been called LC3-associated 
phagocytosis (LAP) and it has since been observed in different 
settings, including engulfment of dead cells,79 phagocytosis of 
Burkholderia pseudomallei,80 stimulation of phagosomal Fcγ-
receptors,81 efficient formation of phagosomal IRF7 (interferon 
regulatory factor 7)-signaling compartments in response to TLR9 
stimulation by DNA immune complexes,82 circadian degradation 
of phagocytosed photoreceptors by retinal pigment epithelial 

Figure  2. Scheme of the different modalities of autophagy involving membrane compartments and their functional consequences (bottom).  
(A) Regular, single-membrane vesicles are targeted by conventional autophagy to produce multimembrane vacuoles that fuse with lysosomes for 
degradation of their contents. (B) Regular, single-membrane vesicles become directly labeled with LC3-II and eventually fuse with lysosomes for deg-
radation. (C) Regular, single-membrane vesicles are targeted by conventional autophagy producing multimembrane vacuoles with nondegradative 
functions. (D) Regular, single-membrane vesicles or other membranous structures become directly labeled with LC3-II for a variety of nondegradative 
functions. (V, vesicle; MMs, multiple membranes; SM, single membrane; L, lysosome).

(modified from Pimentel-Muiños and  Boada-Romero, 2014)
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Figure 2. Scheme of the different modalities of autophagy involving membrane 

compartments. (A) Regular, single-membrane vesicles are targeted by 

conventional autophagy to produce multimembrane vacuoles that fuse with 

lysosomes for degradation of their contents. (B) Regular, single-membrane vesicles 

become directly labeled with LC3-II and eventually fuse with lysosomes for 

degradation. (C) Regular, single-membrane vesicles are targeted by conventional 

autophagy producing multimembrane vacuoles with nondegradative functions. 

(D) Regular, single-membrane vesicles or other membranous structures become 

directly labeled with LC3-II for a variety of nondegradative functions. (V, vesicle; 

MMs, multiple membranes; SM, single membrane; L, lysosome).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3
signal peptide found within the extracellular ligand bind-
ing-domain is cleaved off upon insertion into the endo-

plasmic reticulum, and FGFR5 is occasionally shed from

the plasma membrane and is found in a secreted, soluble
form [1]. FGFR5 binds to certain FGFs, as do the con-

ventional FGFRs, but it does not bind to FGF1, which is

also recognized by all of the other FGFRs [1].

Alternative splicing of FGFRs

Despite the general characteristics shared among the family

members of FGFRs, an array of isoforms exist within each
family member (Fig. 2). Structural diversity observed

across the isoforms of FGFRs, is largely attributed to the

alternative splicing of endogenous mRNA sequence. These
isoforms include the secreted form of FGFRs that lack the

hydrophobic membrane-spanning region and the entire

cytoplasmic catalytic domain [7, 8], FGFRs with an

extracellular domain composed of either two or three Ig-

like domains [7, 9–11], and FGFRs devoid of the acid box
[12].

One of the most important mechanisms that determine

the ligand-binding specificity of FGFRs is by alternate
exon usage of the IgIII (D3) domain to produce three

possible IgIII domains isoforms, designated IgIIIa, IgIIIb

and IgIIIc. IgIIIa is encoded entirely by exon 7 alone while
IgIIIb and IgIIIc are derived from alternative splicing of

exon 7/8 and exon 7/9, respectively (Fig. 2) [13–16]. The

IgIIIb and IgIIIc splice variants are commonly observed in
FGFR1, FGFR2 and FGFR3 gene [13, 17]. The FGFR4

gene is unique as only IgIIIc variants are present [18].
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Fig. 1 The basic structure of a FGFR. The FGFRs are phylogenet-
ically closely related to the VEGFRs and PDGFRs, consist of three
extracellular immunoglobulin (Ig) domains (D1-D3), a single trans-
membrane helix, an intracellular split tyrosine kinase domain (TK1
and TK2) and an acidic box. D2 and D3 form the ligand-binding
pocket and have distinct domains that bind both FGFs and heparan
sulfate proteoglycans (HSPGs). Acidic box is required for binding of
bivalent cations for optimal interaction between FGFRs and HSPGs

Fig. 2 FGFR splice variants. The FGFRs isoforms are generated
mainly by alternative splicing of the Ig III domain (D3). The D3 could
be encoded by an invariant exon 7 (red) to produce FGFR-IIIa isofom
or spliced to either exon 8 (green) or 9 (yellow) to generate the FGFR-
IIIb or FGFR-IIIc isoforms, respectively. Epithelial tissues predom-
inantly express the IIIb isoform and mesenchymal tissues express IIIc.
FGFR4 is expressed as a single isoform that is paralogous to FGFR-
IIIc. Hatched box represents a truncated carboxyl terminal. Clear box
indicates a deletion of an exon
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FGFR4 is expressed as a single isoform that is paralogous to FGFR-
IIIc. Hatched box represents a truncated carboxyl terminal. Clear box
indicates a deletion of an exon

1448 Apoptosis (2013) 18:1447–1468
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Figure 3. The basic structure of FGFR and splice variants. The FGFRs are 

phylogenetically closely related to the VEGFRs and PDGFRs, consist of three 

extracellular immunoglobulin (Ig) domains (D1-D3), a single transmembrane 

helix, an intracellular split tyrosine kinase domain (TK1 and TK2) and an acidic 

box. D2 and D3 form the ligand-binding pocket and have distinct domains that 

bind both FGFs and heparan sulfate proteoglycans (HSPGs). Acidic box is 

required for binding of bivalent cations for optimal interaction between FGFRs 

and HSPGs. The FGFRs isoforms are generated mainly by alternative splicing of 

the Ig III domain (D3). The D3 could be encoded by an invariant exon 7 (red) to 

produce FGFR-IIIa isofom or spliced to either exon 8 (green) or 9 (yellow) to 

generate the FGFR-IIIb or FGFR-IIIc isoforms, respectively. Epithelial tissues 

predominantly express the IIIb isoform and mesenchymal tissues express IIIc. 

FGFR4 is expressed as a single isoform that is paralogous to FGFR-IIIc. Hatched 

box represents a truncated carboxyl terminal. Clear box indicates a deletion of an 

exon.  
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paracrine secretion of FGF7 by fibroblasts may 
also contribute to cellular proliferation in vivo63. 
Interestingly, in some gastric cancer cell lines amplifica-
tion of FGFR2 is accompanied by deletion of the most 
C-terminal coding exon64. This results in the expres-
sion of a C-terminally truncated receptor, which can 
also be generated by aberrant splicing in cell lines that 
lack the C-terminal deletion. This C-terminal FGFR2 
truncation interferes with receptor internalization65, 
therefore preventing a potential mechanism of signalling 
attenuation and contributing to constitutive activation 
of the receptor.

Amplification of the chromosomal region 8p11–12, the 
genomic location of FGFR1, is one of the most common 
focal amplifications in breast cancer66–68, and occurs in 
approximately 10% of breast cancers, predominantly 
in oestrogen receptor (ER)-positive cancers66. FGFR1 
amplifications have also been reported in oral squamous 
carcinoma69 and are found at a low incidence in ovarian 
cancer70, bladder cancer71 and rhabodomyosarcoma72 
(TABLE 1). In contrast to FGFR2 amplifications, overexpres-
sion of wild-type FGFR1 occurs in cancer; it is unclear 
whether the higher levels of FGFR1 lead to tumours that 
aberrantly respond to paracrine FGF ligands, such as 
FGF2, or whether at higher levels of FGFR1 expression 
ligand-independent signalling occurs. It is also important 
to note that the 8p11–12 region is gene dense and it is not 
universally accepted that FGFR1 is the causative oncogene 
in this amplified region in breast cancer73,74. FGFR1 might 
also be important in breast cancers that lack FGFR1 ampli-
fications, and one study suggested that an FGFR inhibi-
tor blocked the proliferation of non-amplified cancer cell 
lines by downregulating D-type cyclins75.

Chromosomal translocations in haematological malig-
nancies. Some of the strongest evidence linking FGF 
signalling to oncogenesis has come from the study of 
haematological malignancies, in which translocations 
involving the FGFRs have been identified. Several 
FGFR intragenic translocations have been identified, 
which typically result in a fusion protein comprising the 
N terminus of a transcription factor fused to an FGFR 
kinase domain. This leads to constitutive FGFR dimeri-
zation and activation76–78 (TABLE 1). A different translo-
cation is found in multiple myeloma: 15% of multiple 
myelomas harbour a t(4;14) translocation that links 
FGFR3 at 4p16.3 to the immunoglobulin heavy chain 
IGH locus at 14q32 (REFS 79,80). These translocations 
are intergenic, with the breakpoints occurring ~70 kb 
upstream of FGFR3, and bring FGFR3 under the con-
trol of the highly active IGH promoter. It is important to 
note that the translocations involving FGFR3 in multi-
ple myeloma also involve the adjacent multiple myeloma 
SET domain-containing (MMSET) gene, and the relative 
contributions of FGFR3 and MMSET to oncogenesis are 
subject to ongoing debate81. However, the importance 
of FGFR3 overexpression and mutation in haemato-
logical malignancy has been modelled using transgenic 
mice82 (BOX 3), and t(4;14) myeloma cell lines are highly  
sensitive to FGFR3 targeting83,84.

FGFR3 translocation in multiple myeloma is asso-
ciated with a poor prognosis and is rarely found in  
monoclonal gammopathy of uncertain significance, a precur-
sor condition of multiple myeloma, which suggests that 
FGFR3 translocations promote a rapid conversion to full 
multiple myeloma85. The ultimate effect of the translo-
cation is to overexpress FGFR3 out of context, which 
might result in aberrant ligand-dependent signalling86 
(with hypersensitivity to ligands by swamping negative 
feedback and receptor internalization and degradation 
pathways) or ligand-independent signalling. In a small 
proportion of t(4;14) multiple myeloma, FGFR3 is also 
mutated (~5% translocated cases)87, presumably further 

Figure 1 | FGFR structure and control of ligand specificity. a | The basic structure of 
the fibroblast growth factor (FGF) –FGF receptor (FGFR) complex comprises two receptor 
molecules, two FGFs and one heparan sulphate proteoglycan (HSPG) chain. The FGF 
signalling pathway comprises 4 highly conserved transmembrane receptors and 18 FGF 
ligands (BOX 1). FGFs bind with low affinity to cell surface HSPGs (purple) and with high 
affinity to specific FGFRs. The FGFRs, which are phylogenetically closely related to the 
vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor 
receptors (PDGFRs), consist of three extracellular immunoglobulin (Ig) domains, a single 
transmembrane helix and an intracellular split tyrosine kinase (TK) domain. The second 
and third Ig domains form the ligand-binding pocket and have distinct domains that bind 
both FGFs and HSPGs. b | Ligand-binding specificity is generated by alternative splicing of 
the Ig III domain. The first half of Ig III is encoded by an invariant exon (IIIa), which is spliced 
to either exon IIIb or IIIc, both of which splice to the exon that encodes the 
transmembrane (TM) region. Epithelial tissues predominantly express the IIIb isoform and 
mesenchymal tissues express IIIc. FGFR4 is expressed as a single isoform that is paralogous 
to FGFR-IIIc. c | Examples of the extent to which ligand specificity can differ between 
FGFR-IIIb and FGFR-IIIc isoforms, illustrated with the differing ligand specificty of FGFR2 
isoforms. The FGFR2-IIIb ligands are shown in blue and the FGFR2-IIIc ligands are shown in 
brown. For example, FGF7 and FGF10 bind specifically to FGFR2-IIIb and have essentially 
no binding to FGFR2-IIIc7. The mechanisms controlling splice isoform choice are 
becoming clearer and defined control elements have been identified in the introns 
surrounding alternatively spliced exons177–179.
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Figure 4.  FGFR2IIIb and FGFR2IIIb isoforms structure. Examples of the extent to 

which ligand specificity can differ between FGFRIIIb and FGFRIIIc isoforms, 

illustrated with the differing ligand specificty of FGFR2 isoforms. The FGFR2IIIb 

ligands are shown in blue and the FGFR2-IIIc ligands are shown in brown. For 

example, FGF7 and FGF10 bind specifically to FGFR2-IIIb and have essentially no 

binding to FGFR2IIIc. 

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 5

FGFR5 isoforms lacking the sequences that encode for

either the first Ig domain or the first Ig domain plus the
acidic box were also identified, but the properties of these

isoforms are not known and no tissue-specific expression

has yet been reported [1].

Activation and signaling of FGFR

FGFR signaling is primarily triggered by the binding of the
receptors to FGF ligands (Table 1), and the subsequent

formation of various complexes to initiate downstream

signal transduction including activation of PLCc, MAPK,
AKT, and STAT cascade (Fig. 3) [19].

The phosphotyrosine residues in the carboxy-terminal

regions of FGFR confer selective and strong binding to Src

homolog 2 (SH2) domain-containing molecules, such as

phospholipase Cc (PLCc) [20, 21]. This interaction results
in the hydrolysis of phosphatidylinositol 4,5-biphosphate

(PIP2) to generate two effectors, inositol 1,4,5-triphosphate

(IP3) and diacylglycerol (DAG) [22]. Accumulation of IP3
further stimulates calcium release from internal stores,

whereas DAG mediates the activation of protein kinase C

(PKC) and other downstream targets such as the Ras/MEK/
MAPK pathway (Fig. 3) [22].

One of the many adaptor proteins which facilitates
signal transduction from FGFRs is the v-crk sarcoma virus

CT10 oncogene homolog (avian) (Crk). Upon exposure to

growth factors, the juxtamembrane tyrosine residue 463 of
FGFR1 is phosphorylated, followed by the transient

phosphorylation of Crk to mediate the co-complexing of

FGFR1 and Crk [23]. Crk has been reported to associate
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Fig. 3 FGFR signaling pathway. FGFs induce FGFR-mediated
signaling pathway by interacting with specific FGFRs and HSPGs.
The macromolecular interactions mediate FGFRs dimerization or
oligomerization and activate multiple signal transduction pathways,

including those involving FRS2, RAS, p38 MAPKs, ERKs, JNKs,
Src, PLCc, Crk, PKC and PI3K. These pathways are negatively
regulated in part by the activities of DUSPs, SPRY, SEF and CBL
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Figure 5. FGFR signaling pathway. FGFs induce FGFR-mediated signaling 

pathway by interacting with specific FGFRs and HSPGs. The macromolecular 

interactions mediate FGFRs dimerization or oligomerization and activate multiple 

signal transduction pathways, including those involving FRS2, RAS, p38 MAPKs, 

ERKs, JNKs, Src, PLCγ, Crk, PKC and PI3K. These pathways are negatively 

regulated in part by the activities of DUSPs, SPRY, SEF and CBL.  
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Figure 6. Presence of internalized beads in autophagosomes after FGF7 

stimulation. (A) HaCaT cells transiently transfected with pEGFP-C2-LC3 construct 

were serum starved or stimulated with FGF7 for 24 h and with inert latex red 

fluorescent beads 0.5 µm in diameter for the last 4 h. Cell nuclei were stained with 

DAPI. Quantitative fluorescence analysis shows that an increase of either the 

number of EGFP-LC3 positive dots per cell and fluorescent bead uptake, as well as 

a partial colocalization between LC3 and fluorescent beads are detectable only 

upon FGF7 stimulation. The quantitative analysis was performed as described in 

Materials and Methods and results are expressed as mean values ± standard errors 

(SE).  Student t test was performed and significance levels have been defined as p 

< 0.05: *p < 0.001 vs the corresponding FGF7-unstimulated cells, **p < 0.001 vs the 

corresponding serum-cultured cells, ***p < 0.01 vs the corresponding FGF7-

unstimulated cells, NS vs the corresponding serum-cultured cells. Bar: 10 µm. (B) 

Ultrastructural analysis of HaCaT cells stimulated with FGF7 in presence of beads 

as described above.  Single (asterisks, i, ii, iii) and clustered beads (asterisks, iv) 

were visible in either single-membrane (arrows, ii) or double-membrane vacuoles 

(arrowheads, ii, iii, iv) corresponding to phagosomes and autophagosomes 

respectively. AV, autophagic vacuole; ER, endoplasmic reticulum; Ly, lysosome; 

M, mitochondrion; Nu, nucleus; PH, phagosome; PM, plasma membrane. Bar: 0.25 

µm.  
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Figure 7. PLCγ signaling is required for FGF7-induced autophagy. (A) HaCaT cells 

were transiently transfected with the FGFR2b WT or with the Y769F FGFR2b 

mutant. The transfection with the kinase negative Y656F/Y657F FGFR2b or with 

pCI-neo empty vector was performed as control. Upon transfection, cells were 

serum-starved and stimulated with FGF7 in the presence of bafilomycin A1 for the 

last 3 h. Western blot analysis shows that FGFR2b Y769F expression, as well as 

FGFR2b kin- expression, inhibits the increase of LC3-II levels induced by FGF7 in 

pCI-neo cells and even more in FGFR2b WT cells. The equal loading was assessed 

using anti-ACTB antibody. For the densitometric analysis, the values from 3 

independent experiments were normalized, expressed as fold increase and 

reported in graph as mean values ± standard deviation (SD). Student t test was 

performed and significance levels have been defined as p < 0.05: *p < 0.05 vs the 

corresponding serum-cultured cells, **p < 0.05 vs the corresponding FGF7-

unstimulated cells, NS vs the corresponding FGF7-unstimulated cells.  (B) HaCaT 

cells were transiently cotransfected with pEGFP-C2-LC3 construct and with the 

FGFR2b WT, with the Y769F FGFR2b mutant, with the kinase negative 

Y656F/Y657F FGFR2b or with pCI-neo empty vector and stimulated with FGF7 as 

above. Immunofluorescence was performed using anti-FGFR2b polyclonal 

antibodies to visualize transfected FGFR2b WT or mutants. Upon FGF7 treatment 

the number of LC3-positive dots per cell is reduced in HaCaT EGFP-LC3/FGFR2b 

Y769F cells, as well as in HaCaT EGFP-LC3/FGFR2b kin- cells, compared to the 

surrounding cells not showing detectable receptor mutant overexpression 

(arrowheads), or to HaCaT EGFP-LC3/pCI-neo and HaCaT EGFP-LC3/FGFR2b 

WT cells.  Differently from the kinase negative dead mutant, both FGFR2b WT 

and FGFR2b Y769F signals appear internalized upon FGF7 stimulation. The 

quantitative analysis and Student t test were performed as above: *p < 0.05 vs 

HaCaT pCI-neo, **p < 0.001 vs HaCaT FGFR2b WT cells. Bar: 10 µm. 

 

 

 
 

 

 



Figure 8 
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Figure 8.  The inhibition of PLCγ signaling is accompanied by JNK pathway shut-

down and PKCδ inactivation. (A, B) HaCaT pCI-neo, HaCaT FGFR2b WT and 

HaCaT FGFR2b Y769F cells were serum starved or stimulated with FGF7 as above. 

Western blot analysis shows that the phosphorylation of both JNK1 (A) and 

PKCδ (B) in response to FGF7 stimulation appears attenuated only in HaCaT 

FGFR2b Y769F cells, while AKT and ERK1/2 substrates (A) are highly 

phosphorylated in all cells. The equal loading was assessed using anti-AKT, anti-

ERK1/2, anti-JNK1/2 and anti-PKCδ antibodies. The densitometric analysis and 

Student t test were performed as reported above: (A) *p < 0.05 vs the 

corresponding FGF7-unstimulated cells; **p < 0.01 vs the corresponding FGF7-

unstimulated cells. (B) *p < 0.05 vs the corresponding FGF7-unstimulated cells; NS 

vs the corresponding FGF7-unstimulated cells.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



Figure 9
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Figure 9. HaCaT pCI-neo and HaCaT FGFR2b WT cells were serum starved or 

stimulated with FGF7 in presence or not of the indicated substrate inhibitors as 

reported in Materials and Methods. Western blot analysis performed using 

antibodies directed against the phosphorylated forms of each substrate confirms 

that all the inhibitors were highly specific.  

The equal loading was assessed with anti-AKT, anti-ERK1/2, anti-JNK1/2 and 

anti-PKCδ antibodies. The densitometric analysis was performed as reported 

above  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 10
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Figure 10. The inhibition of either JNK1 or PKCδ substrates blocks FGFR2b-

induced autophagy. (A, B, C, D) HaCaT pCI-neo and HaCaT FGFR2b WT were 

serum starved or stimulated with FGF7 in presence or not of the indicated 

substrate inhibitors as reported in Materials and Methods. Western blot analysis 

shows that either AKT inhibitor (A) or MEK1/2 inhibitor (B) do not affect the 

increase of LC3-II levels induced by FGF7, while JNK inhibitor (C) and PKCδ 

inhibitor (D) attenuate it. The equal loading was assessed with anti-ACTB 

antibody. The densitometric analysis and Student t test were performed as 

reported above: (A) *p < 0.05 vs the corresponding FGF7-unstimulated cells; **p < 

0.05 vs the corresponding FGF7-stimulated cells; ***p < 0.01 vs the corresponding 

FGF7-unstimulated cells; NS vs HaCaT pCI-neo cells. (B) *p < 0.05 vs the 

corresponding FGF7-unstimulated cells; **p < 0,01 vs HaCaT pCI-neo cells; ***p < 

0.01 vs the corresponding FGF7-unstimulated cells; NS vs the corresponding 

MEK1/2 inhibitor-untreated cells. (C) *p < 0.05 vs the corresponding FGF7-

unstimulated cells; **p < 0.01 vs the corresponding FGF7-stimulated cells; ***p < 

0.01 vs HaCaT pCI-neo cells; **** p < 0.01 vs the corresponding FGF7-unstimulated 

cells; NS vs the corresponding JNK inhibitor-untreated cells. (D) *p < 0.05 vs the 

corresponding FGF7-unstimulated cells; **p < 0.05 vs the corresponding FGF7-

stimulated cells; ***p < 0.01 vs HaCaT pCI-neo cells; NS vs the corresponding 

PKCδ inhibitor-untreated cells.  
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Figure 11. HKs from light skin and from dark skin were grown in complete 

medium. Western blot analysis performed using anti FGFR2 polyclonal antibodies 

shows that light skin HKs have higher expression of FGFR2b than dark skin 

HKs. The equal loading was assessed with anti-ACTB antibody. The densitometric 

analysis was performed as reported above.  
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Figure 12. FGF7-induced phagocytosis and autophagy are convergent pathways 

only in light skin HKs. HKs from light skin and from dark skin were transiently 

transfected with pEGFP-C2-LC3 construct and serum starved or stimulated with 

FGF7 in the presence of fluorescent beads as reported in figure 6. Quantitative 

fluorescence analysis shows that the increase of the bead uptake and the number 

of LC3-positive dots per cell upon FGF7 stimulation is more evident in light skin 

HKs than in dark ones. A partial colocalization between fluorescent beads and 

LC3 signal (26%) is detected only in light skin HKs. The quantitative analysis and 

Student t test were performed as above: *p < 0.01 vs the corresponding FGF7-

unstimulated cells; **p < 0.05 vs the corresponding FGF7-unstimulated cells; NS vs 

the corresponding serum-cultured cells; •p < 0.01 vs the corresponding serum-

cultured cells; ••p < 0.01 vs the corresponding FGF7-unstimulated cells; •••p < 

0.05 vs the corresponding FGF7-unstimulated cells; ^ p < 0.05 vs the 

corresponding FGF7-unstimulated cells; NS vs the corrisponding FGF7-

unstimulated cells. Bar: 10 µm.   
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Figure 13. 16E5 inhibits FGF7-induced autophagy. (A) HaCaT cells were 

transiently transfected with pCI-neo E5-HA expression vector (HaCaT E5) or with 

the empty vector alone (HaCaT pCI-neo). The 16E5 mRNA transcripts, quantitated 

by real-time relative RT-PCR and normalized with respect to those detected in the 

HPV16-positive cervical epithelial cell line W12 at the passage 6 (W12p6), are 

highly expressed only in HaCaT E5 cells. (B, C) HaCaT E5 and HaCaT pCI-neo 

cells were serum-starved in the presence or absence of FGF7 100 ng/ml for 24 h. 

Western blot analysis shows that, upon FGF7 stimulation, the LC3-II band is 

reduced (B), while the SQSTM1 band is enhanced (C), in HaCaT E5 cells compared 

to HaCaT pCI-neo cells. The equal loading was assessed using anti-β actin 

antibody. The densitometric analysis and Student t test were performed as 

reported above: (B, C) *p < 0.05 vs the corrisponding unstimulated cells, **p < 0.05 

vs the corresponding HaCaT pCI-neo cells. (D) HaCaT cells were transiently 

cotransfected with pEGFP-C2-LC3 construct and pCI-neo E5-HA (HaCaT EGFP-

LC3/E5) or pCI-neo empty vector (HaCaT EGFP-LC3) before stimulation with 

FGF7 as above. Immunofluorescence was performed using anti-HA monoclonal 

antibody (red), to visualize 16E5, and cell nuclei were stained with DAPI. Upon 

FGF7 treatment, the number of LC3-positive dots per cell is increased in HaCaT 

EGFP-LC3 cells and in HaCaT EGFP-LC3/E5 cells not showing 16E5 staining 

(arrows), but is reduced in HaCaT EGFP-LC3/E5 cells strongly labeled for 16E5 

(arrowhead) if compared to serum-starved HaCaT EGFP-LC3 cells The 

quantitative analysis and Student t test were performed as above: *p < 0.001 vs the 

corresponding serum starved-cells, **p < 0.001 vs the corresponding HaCaT EGFP-

LC3 cells. Bar: 10 µm.  
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Figure 14. The inhibitory effect of 16E5 on FGF7-triggered autophagy depends on 

FGFR2b expression and signaling. (A) HaCaT cells were transfected with 16E5 

cDNA (HaCaT E5), with a small interfering RNA for FGFR2/Bek (HaCaT FGFR2b 

siRNA) or with an unrelated siRNA (HaCaT control siRNA) as control. 

Alternatively cells were cotransfected with FGFR2b WT cDNA and with FGFR2b 

siRNA. Cells were then stimulated with FGF7 as above. Western blot analysis 

shows that, upon FGF7 stimulation, both FGFR2b and LC3-II bands are reduced, 

while the SQSTM1 band is increased either in 16E5-transfected and FGFR2b-

depleted cells. (B) Cells were transiently transfected with 16E5 (HaCaT E5) or 

cotransfected with 16E5 and pCI-neo vector containing human FGFR2b WT 

(HaCaT E5/FGFR2b WT) or the kinase negative mutant FGFR2b Y656F/Y657F 

(HaCaT E5/FGFR2b kin-) and stimulated with FGF7 as above. Western blot 

analysis shows that the decrease of LC3-II as well as the increase of SQSTM1 

induced by 16E5 expression is counteracted only by FGFR2b WT overexpression. 

The densitometric analysis and Student t test were performed as reported above: 

(A) ^, ^^^, ***p < 0.05 and *p < 0.01 vs the corrisponding HaCaT control siRNA 

cells, ^^p < 0.05 and **p < 0.01 vs the corrisponding HaCaT FGFR2b siRNA cells; 

(B) *, ^p < 0.05 vs HaCaT E5 cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 15

A B

ACTIN

+ 
24 h

HaCaT pCI-neo

cell lysate

48 h

FBS - - 

**p<0,05 vs the corresponding HaCaT pCI-neo cells 

*p<0,01 vs the corresponding HaCaT pCI-neo cells

L
C

3
-I

I/
L
C

3
-I

 r
a
ti
o

L
C

3
-I

I 
fo

ld
 i
n
c
re

a
s
e

*

0

1

2

3

4

5

6

*

0

1

2

3

4

5

6

*

**

LC3 
I

II

*, ** p<0,05 vs the corresponding HaCaT pCI-neo cells 

S
Q

S
T

M
1
 f
o
ld

 i
n
c
re

a
s
e

**
*

0

0.2

0.4

0.6

0.8

1

1.2

SQSTM1

ACTIN

HaCaT E5

24 h 48 h

- - + 
24 h

HaCaT pCI-neo

cell lysate

FBS - - 

HaCaT E5

24 h 48 h

- - 
48 h

C
E5
DAPI

-FBS 24h

+FBS

-FBS 24h

H
aC

aT
 E

G
F

P
-L

C
3

HaC
aT

 E
G

FP
-L

C3

HaC
aT

 E
G

FP
-L

C3/
 E

5*p<0,005 vs the corresponding serum cultured-cells 

**p<0,005 vs the corresponding HaCaT pCI-neo cells

E
G

F
P

-L
C

3
 d

o
ts

/c
e
ll

**

*

0

5

10

15

20

25

E
G

F
P

-L
C

3
 d

o
ts

/c
e
ll

*p<0,001 vs the corresponding serum cultured-cells 

**p<0,001 vs the corresponding HaCaT pCI-neo cells

0

5

10

15

20

25

**

*

+ - FBS - 

EGFP-LC3
DAPI

H
aC

aT
 E

G
F

P
-L

C
3/

E
5



	 68	

Figure 15. 16E5 inhibits also the serum starvation-induced autophagy. (A, B) 

HaCaT pCI-neo and HaCaT E5 cells were kept in complete medium or serum-

starved for 24 h or 48 h. Western blot analysis shows that in HaCaT E5 cells the 

serum deprivation-induced progressive increase of LC3-II band is reduced, while 

the decrease of SQSTM1 is blocked. The densitometric analysis and Student t test 

were performed as above: (A) *p < 0.01 vs the corresponding HaCaT pCI-neo cells, 

**p < 0.05 vs the corresponding HaCaT pCI-neo cells; (B) *, **p < 0.05 vs the 

corresponding HaCaT pCI-neo cells. (C) Immunofluorescence analysis performed 

in HaCaT EGFP-LC3 and HaCaT EGFP-LC3/E5 cells serum-starved as above 

shows no increase in LC3-positive dots in cells expressing 16E5 (arrowheads) 

compared to HaCaT EGFP-LC3 (arrow). The quantitative analysis and Student t 

test were performed as above: *p < 0.005 vs the corresponding serum cultured-

cells, **p < 0.005 vs the corresponding HaCaT EGFP-LC3 cells. Bar: 10 µm.  
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Figure 16. 16E5 inhibits autophagosome assembly. (A) HaCaT mCherry-EGFP-

LC3 and HaCaT mCherry-EGFP-LC3/E5 cells were serum-starved or treated with 

FGF7 as above. Immunofluorescence analysis shows that in E5 expressing cells the 

number of yellow dots corresponding to newly assembled autophagosomes is 

decreased, while the red dots corresponding to autolysosomes are not increased 

compared to control cells. The quantitative analysis and Student t test were 

performed as above: *p < 0.05, **p < 0.01 vs the corresponding HaCaT mCherry-

EGFP-LC3 cells. Bar: 10 µm (B) HaCaT pCIneo and HaCaT pCI-neo/E5 cells were 

serum-starved or treated with FGF7 in the presence or absence of leupeptin (LEU) 

as reported in Materials and Methods. Western blot shows that in 16E5 expressing 

cells the LC3-II levels are significantly reduced also in the presence of the inhibitor 

of the lysosomal degradation. The densitometric analysis and Student t test were 

performed as reported above: * and **p < 0.05 vs the corresponding HaCaT pCI-

neo cells, *** and ****p < 0.01 vs the corresponding HaCaT pCI-neo cells.  
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Figure 17. Impairment of autophagy in cells stably expressing 16E5. (A) HaCaT 

pMSG and HaCaT pMSG E5 cells were left untreated (0 h) or treated with Dex for 

12 h or 24 h. The 16E5 the increasing mRNA transcript levels were quantitated by 

real-time relative RT-PCR and normalized with respect to those detected in W12p6 

cells. (B) Cells were kept in complete medium or either serum-starved or 

stimulated with FGF7 for 24 h in presence or absence of Dex induction. Western 

blot analysis shows that in serum-kept cells (left panel) the very weak band 

corresponding to LC3-II is decreased at 12 h and 24 h of Dex treatment in HaCaT 

pMSG E5 cells, while no changes in the band intensity are observed in HaCaT 

pMSG cells. Upon serum starvation (middle panel) or FGF7 stimulation (right 

panel) the evident increase of LC3-II band is abolished by Dex treatment only in 

HaCaT pMSG E5 cells, but not in control cells. In absence of Dex treatment, the 

increase of LC3-II protein induced FGF7 is lower in HaCaT pMSG E5 than in 

control cells. The densitometric analysis and Student t test were performed as 

above: *, **p < 0.05 vs the corresponding Dex-untreated cells, • p < 0.05 vs the 

corresponding serum-cultured cells, •• NS vs the corresponding Dex-untreated 

cells, ••• NS vs the corresponding HaCaT pMSG cells, ••••, ••••• p < 0.05 vs 

the corresponding Dex-untreated cells, ^, ^^p < 0.05 vs the corresponding FGF7- 

unstimulated cells, ♦♦♦NS vs the corresponding Dex-untreated cells, ^^^p < 0.01 

vs the corresponding FGF7-unstimulated cells, ^^^^p < 0.05 vs the corresponding 

Dex-untreated cells, ^^^^^p < 0.01 vs the corresponding Dex-untreated cells, ♦♦♦p 

< 0.05 vs the corresponding HaCaT pMSG cells. (C) Ultrastructural analysis of 

HaCaT pMSG and HaCaT pMSG E5 cells stimulated with FGF7 for 24 h in 

presence of Dex: the number of double-membrane autophagic vacuoles (asterisks) 

is lower in HaCaT pMSG E5 (right panel) compared to HaCaT pMSG cells (left 

and middle panels). ER, endoplasmic reticulum; M, mitochondrion; NM, nuclear 

membrane; PM, plasma membrane; G, Golgi complex. Bars: 0.5 µm.  
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Figure 18. The unresponsiveness of W12p6 cells to autophagic stimuli depends on 

16E5 expresssion. (A) Cells were kept in complete medium or serum-starved in 

the presence or absence of FGF7 for 24 h. Western blot shows no changes in the 

levels of LC3-II marker in W12p6 cells upon both serum deprivation or FGF7 

stimulation. (B) W12p6 cells were transfected with EGFP-LC3 and treated as 

above. Fluorescence analysis shows an increase in the number of LC3-positive 

dots per cell after serum starvation and/or FGF7 stimulation in HaCaT EGFP-LC3 

and HKs EGFP-LC3 control cells, but not in W12p6 EGFP-LC3 cells. The 

quantitative analysis and Student t test were performed as above: *p < 0.05 vs the 

corresponding EGFP-LC3 HaCaT cells; **, ***p > 0.001 vs the corresponding EGFP-

LC3 HaCaT cells or vs the corresponding EGFP-LC3 HKs. (c) W12p6 cells were 

transfected with E5 siRNA or with an unrelated siRNA as control and treated as 

above. The LC3-II levels are progressively increased by serum deprivation and by 

FGF7 in W12p6 E5 siRNA, while no changes are observed in W12p6 control 

siRNA. The densitometric analysis and Student t test were performed as above: 

NS vs the corresponding serum-cultured cells; *, **p < 0.05 vs the corresponding 

W12p6 control siRNA cells. (D) W12p6 cells were cotransfected with EGFP-LC3 

and with E5 siRNA or with a control siRNA and treated as above. Fluorescence 

approaches show a significant increase of LC3-positive dots in 16E5-depleted W12 

cells upon serum deprivation and even more upon FGF7 stimulation. No increase 

is found in control siRNA-transfected cells. *, **p < 0.001 vs the corresponding 

control siRNA. Bars 10 µm. 
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Figure 19. E5 siRNA induce an efficient depletion of 16E5 protein in transiently 

transfected HaCaT E5 cells. HaCaT cells were doubly transfected with pCI-neo E5-

HA cDNA and E5 siRNA or control unrelated siRNA. Western blot analysis using 

anti-HA monoclonal antibody shows that the band at the molecular weight 

corresponding to 16E5 protein is decreased in HaCaT E5 cDNA/E5siRNA as 

expected. 
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Figure 20. 16E5 expression down-modulates the autophagy gene expression in 

HaCaT cells. (A, B) HaCaT pCI-neo and HaCaT E5 cells were kept in complete 

medium or serum-starved or stimulated with FGF7 as above. Real-time relative 

RT-PCR of key regulatory autophagy genes (A) or p53-target autophagic (ULK1, 

ULK2, ATG4a, ATG7) or autophagy-independent (p21, 14–3-3-σ) genes (B). 

Results are expressed as mean ± standard error (SE) from three different 

experiments in triplicate. Student t test was performed and significance levels 

have been defined as p < 0.05: (A) *p < 0.05 and **p < 0.01 vs the corresponding 

HaCaT pCI-neo cells, NS vs the corresponding HaCaT pCI-neo cells, ^p < 0.05 vs 

the corresponding FGF7-unstimulated cells. (B) *, **, ^, ^^p < 0.05 vs the 

corresponding HaCaT pCI-neo cells, NS vs the corresponding FGF7-unstimulated 

cells. 
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Figure 21. 16E5 depletion in the W12p6 cervical carcinogenesis model restores the 

autophagic gene expression. (A,B) HKs pCI-neo and HKs E5 cells were kept in 

complete medium or serum-starved or stimulated with FGF7 as above. Real-time 

relative RT-PCR of key regulatory autophagy genes (A) or p53-target genes (B). (C, 

D) W12p6 control siRNA and W12p6 E5 siRNA cells and HKs were treated as 

above. Real-time relative RT-PCR of key regulatory autophagy genes (C) or p53-

target genes (D). Results are expressed as mean ± standard error (SE). Student t 

test was performed and significance levels have been defined as above: (A) *p < 

0.05 and **** and ^^p < 0.005 vs the corresponding FGF7-unstimulated cells, **p < 

0.05, ^p < 0.005 and ***, *****, ^^^p < 0.001 vs the corresponding HKs pCI-neo 

cells, NS vs the corresponding HKs pCI-neo cells; (B) *, **, ***, ^^p < 0.05 and ^p < 

0.001 vs the corresponding HKs pCI-neo cells, NS vs the corresponding HKs pCI-

neo cells; (C) *, **p < 0.001 and ***, ****p < 0.05 vs the corresponding W12p6 

control siRNA, NS vs the corresponding W12p6 control siRNA; (D) *, **, ***, ^^p < 

0.05 and ****, *****, ^p < 0.005 vs the corresponding W12p6 control siRNA. 
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Figure 22. Schematic drawing of the proposed role of FGFR2b and its PLCγ 

signaling in the regulation of autophagy and phagocytosis interplay. FGF7-

mediated FGFR2b activation induces phosphorylation of the Y769 residue, which 

is required for activation and recruitment of PLCγ to the receptor. PLCγ signaling 

in turn induces both phagocytosis through diacylglycerol (DAG) formation and 

autophagy through JNK1 activation via PKCδ. The two membrane pathways 

partially converge toward lysosomal degradation.  

 

  



	 76	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
  
  



	 77	

Agoff SN, Hou J, Linzer DI, Wu B. (1993). Regulation of the human hsp70 

promoter by p53. Science 259: 84–87. 

 

Aguilera MO, Berón W, Colombo MI. (2012). The actin cytoskeleton participates in 

the early events of autophagosome formation upon starvation induced autophagy. 

Autophagy 	8: 1590-1603. 

 

Akinduro O, Sully K, Patel A, Robinson DJ, Chikh A, McPhail G, Braun KM, 

Philpott MP, Harwood CA, Byrne C, O'Shaughnessy RF, Bergamaschi D4. (2016). 

Constitutive autophagy and nucleophagy during epidermal differentiation. J 

Invest Dermatol. 136: 1460-1470. 

 

Altomare DA, Testa JR. (2005). Perturbations of the AKT signaling pathway in 

human cancer. Oncogene 24: 7455–7464. 

 

Ashra  GH, Haghshenas MR, Marchetti B, O’Brien PM, Campo MS. (2005). E5 

protein of human papillomavirus type 16 selectively downregulates surface HLA 

class I. Int J Cancer 113: 276–283. 

 

Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, 

Griffiths G, Ktistakis NT. (2008). Autophagosome formation from membrane 

compartments enriched in phosphatidylinositol 3-phosphate and dynamically 

connected to the endoplasmic reticulum. J. Cell Biol. 182: 685–701. 

 

Aymard E, Barruche V, Naves T, Bordes S, Closs B, Verdier M, Ratinaud MH. 

(2011). Autophagy in human keratinocytes: an early step of the differentiation? 

Exp Dermatol. 20: 263-268. 

 

Bach M, Larance M, James DE, Ramm G. (2011). The serine/threonine kinase 

ULK1 is a target of multiple phosphorylation events. Biochem J  440: 283-291. 

 

Barbaresi S, Cortese MS, Quinn J, Ashra GH, Graham SV, Campo MS. (2010). 

Effects of human papillomavirus type16E5 deletion mutants on epithelial 



	 78	

morphology: functional characterization of each transmembrane domain. J Gen 

Virol. 91: 521–530. 

 

Belleudi F, Leone L, Aimati L, Stirparo MG, Cardinali G, Marchese C, Frati L, 

Picardo M, Torrisi MR. (2006). Endocytic pathways and biological effects induced 

by UVB-dependent or ligand-dependent activation of the keratinocyte growth 

factor receptor. FASEB J 20: 395-397. 

 

Belleudi F, Leone L, Purpura V, Cannella F, Scrofani C, Torrisi MR. (2011). HPV16 

E5 affects the KGFR/FGFR2b- mediated epithelial growth through alteration of 

the recep- tor expression, signaling and endocytic traffic. Oncogene 30: 4963–4976. 

 

Belleudi F, Purpura V, Caputo S, Torrisi MR. (2014). FGF7/KGF regulates 

autophagy in keratinocytes: A novel dual role in the induction of both assembly 

and turnover of autophagosomes. Autophagy 10: 803-821. 

 

Belleudi F, Purpura V, Scrofani C, Persechino F, Leone L, Torrisi MR. (2011). 

Expression and signaling of the tyrosine kinase FGFR2b/KGFR regulates 

phagocytosis and melanosome uptake in human keratinocytes. FASEB J 25: 170-

181. 

 

Belleudi F, Purpura V, Torrisi MR. (2011). The receptor tyrosine kinase 

FGFR2b/KGFR controls early differentiation of human keratinocytes. PLoS One 6: 

e24194. 

 

Belleudi F, Scrofani C, Torrisi MR, Mancini P. (2011). Polarized endocytosis of the 

keratinocyte growth factor receptor in migrating cells: role of SRC-signaling and 

cortactin. PLoS One 6: e29159. 

 

Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, 

Rubinsztein DC. (2016). Mammalian Autophagy: How Does It Work?	Annu Rev 

Biochem. 85: 685-713. 



	 79	

Boissy RE. (2003) Melanosome transfer to and translocation in the keratinocytes. 

Exp Dermatol 12: 5-12. 

 

Bonilla DL, Bhattacharya A, Sha Y, Xu Y, Xiang Q, Kan A, Jagannath C, Komatsu 

M, Eissa NT. (2013). Autophagy regulates phagocytosis by modulating the 

expression of scavenger receptors. Immunity 39: 537-547. 

 

Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. 

(1988). Normal keratinization in a spontaneously immortalized aneuploid human 

keratinocyte cell line. J Cell Biol. 106: 761-771. 

 

Brooks AN, Kilgour E, Smith PD. (2012). Molecular pathways: fibroblast growth 

factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res. 18: 1855-

1862. 

 

Cai BH, Hsu PC, Hsin IL, Chao CF, Lu MH, Lin HC, Chiou SH, Tao PL, Chen JY. 

(2012). p53 acts as a co-repressor to regulate keratin 14 expression during 

epidermal cell differ- entiation. PLoS One 7: e41742. 

 

Candi E, Cipollone R, Rivetti di Val Cervo P, Gonfloni S, Melino G, Knight R. 

(2008). p63 in epithelial development. Cell Mol Life Sci. 65: 3126–3133. 

 

Capone A, Visco V, Belleudi F, Marchese C, Cardinali G, Bellocci M, Picardo M, 

Frati L. and Torrisi MR. (2000). Up-modulation of the expression of functional 

keratinocyte growth factor receptors induced by high cell density in the human 

keratinocyte HaCaT cell line. Cell Growth Differ.  11: 607-614. 

 

Cardinali G, Bolasco G, Aspite N, Lucania G, Lotti LV, Torrisi MR, Picardo M. 

(2008). Melanosome transfer promoted by keratinocyte growth factor in light and 

dark skin-derived keratinocytes. J Invest Dermatol 128: 558-567. 

 



	 80	

Cardinali G, Ceccarelli S, Kovacs D, Aspite N, Lotti LV, Torrisi MR, Picardo M. 

(2005). Keratinocyte growth factor promotes melanosome transfer to 

keratinocytes. J Invest Dermatol 125: 1190-1199. 

 

Ceccarelli S., Cardinali G., Aspite N., Picardo M., Marchese C., Torrisi, MR, 

Mancini P. (2007) Cortactin involvement in the keratinocyte growth factor and 

fibroblast growth factor 10 promotion of migration and cortical actin assembly in 

human keratinocytes. Exp. Cell Res. 313: 1758-1777. 

 

Cecconi F, Levine B. (2008). The role of autophagy in mammalian development: 

cell makeover rather than cell death. Dev Cell 15: 344-357. 

  

Ceridono M, Belleudi F, Ceccarelli S, Torrisi MR. (2005). Tyrosine 769 of the 

keratinocyte growth factor receptor is required for receptor signaling but not 

endocytosis. Biochem Biophys Res Commun.  327: 523-532. 

 

Cha JY, Maddileti S, Mitin N, Harden TK, Der CJ. (2009). Aberrant receptor 

internalization and enhanced FRS2-dependent signaling contribute to the 

transforming activity of the fibroblast growth factor receptor 2 IIIb C3 isoform. J 

Biol Chem. 284: 6227-40.  

 

Chatterjea SM, Resing KA, Old W, Nirunsuksiri W, Fleckman P. (2011). 

Optimization of Filaggrin Expression and Processing in Cultured Rat 

Keratinocytes. J Dermatol Sci. 61: 51-59. 

 

Chen JL, Lin HH, Kim KJ, Lin A, Forman HJ, Ann DK. (2008). Novel roles for 

protein kinase Cdelta-dependent signaling pathways in acute hypoxic stress-

induced autophagy. J Biol Chem. 283: 34432-34444.  

 

Chen JL, Lin HH, Kim KJ, Lin A, Ou JH, Ann DK. (2009). PKC delta signaling: a 

dual role in regulating hypoxic stress-induced autophagy and apoptosis. 

Autophagy 5: 244-246. 



	 81	

Chikh A, Matin RN, Senatore V, Hufbauer M, Lavery D, Raimondi C, Ostano P, 

Mello-Grand M, Ghimenti C, Bahta A, Khalaf S, Akgül B, Braun KM, Chiorino G, 

Philpott MP, Harwood CA, Bergamaschi D. (2011). iASPP/p63 autoregulatory 

feedback loop is required for the homeostasis of stratified epithelia. EMBO J. 30: 

4261-4273. 

 

Chikh A, Sanzà P, Raimondi C, Akinduro O, Warnes G, Chiorino G, Byrne C, 

Harwood CA, Bergamaschi D. (2014). iASPP is a novel autophagy inhibitor in 

keratinocytes. J Cell Sci. 127: 3079-3093. 

 

Cinque L, Forrester A, Bartolomeo R, Svelto M, Venditti R, Montefusco S, 

Polishchuk E, Nusco E, Rossi A, Medina DL, Polishchuk R, De Matteis MA, 

Settembre C. (2015). FGF signalling regulates bone growth through autophagy. 

Nature 528: 272-275. 

 

Decraene D, Van Laethem A, Agostinis P, De Peuter L, Degreef H, Bouillon R, 

Garmyn M. (2004). AKT status controls susceptibility of malignant keratinocytes 

to the early-activated and UVB- induced apoptotic pathway. J Invest Dermatol. 123: 

207-212. 

 

Deffieu M, Bhatia-Kissova I, Salin B, Galinier A, Manon S, Camougrand N. (2009). 

Glutathione participates in the regulation of mitophagy in yeast. J Biol Chem. 284: 

14828-14837. 

 

Desjardins M, Griffiths G. (2003). Phagocytosis: latex leads the way. Curr Opin Cell 

Biol 15: 498–503. 

 

Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini 

V, Matteoni S, Fuoco C, Giunta L, D'Amelio M, Nardacci R, Romagnoli A, 

Piacentini M, Cecconi F, Fimia GM. (2010). The dynamic interaction of AMBRA1 

with the dynein motor complex regulates mammalian autophagy. J Cell Biol. 191: 

155-168. 



	 82	

Di Bartolomeo S, Nazio F, Cecconi F. (2010). The role of autophagy during 

development in higher eukaryotes. Traffic 11: 1280-1289. 

 

DiMaio, Petti. (2012). The E5 proteins. Virology. 445: 99–114. 

 

Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. (2014). WIPI2 

links LC3 conjugation with PI3P, autophagosome formation, and pathogen 

clearance by recruiting Atg12-5-16L1. Mol. Cell. 55:.238–252. 

 

Dunn WA Jr, Cregg JM, Kiel JAKW, van der Klei IJ, Oku M, Sakai Y, Sibirny AA, 

Stasyk OV, Veenhuis M. (2005). Pexophagy: the selective autophagy of 

peroxisomes. Autophagy 1: 75- 83. 

 

Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. (2011). 

Autophagy-based unconventional secretory pathway for extracellular delivery of 

IL-1β. EMBO J 30: 4701-4711. 

 

Eom YW, Oh JE, Lee JI, Baik SK, Rhee KJ, Shin HC, Kim YM, Ahn CM, Kong JH, 

Kim HS, Shim KY. (2014). The role of growth factors in maintenance of stemness 

in bone marrow-derived mesenchymal stem cells.	Biochem Biophys Res Commun. 

445: 16-22. 

 

Eswarakumar VP, Lax I, Schlessinger J. (2005). Cellular signaling by fibroblast 

growth factor receptors. Cytokine Growth Factor Rev. 16: 139–149. 

 

Fehrmann F, Laimins LA. (2003). Human papillomaviruses: targeting 

differentiating epithelial cells for malignant transforma- tion. Oncogene. 22: 5201–

5207. 

 

Feng Y, He D, Yao Z, Klionsky D. (2014). The machinery of macroautophagy. Cell 

Res. 24: 24-41. 

 



	 83	

Florey O, Gammoh N, Kim SE, Jiang X, Overholtzer M. (2015). V-ATPase and 

osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy 11: 88–99. 

 

Freeman SA, Grinstein S. (2014). Phagocytosis: receptors, signal integration, and 

the cytoskeleton. Immunol Rev. 262: 193-215. 

 

French D, Belleudi F, Mauro MV, Mazzetta F, Raffa S, Fabiano V, Frega A, Torrisi 

MR. (2013). Expression of HPV16 E5 down-modulates the TGFbeta signaling 

pathway. Mol Cancer 12: 38. 

 

Funderburk SF, Wang QJ, Yue Z. (2010). The Beclin 1-VPS34 complex–at the 

crossroads of autophagy and beyond. Trends Cell Biol. 20: 355–362. 

 

Ganesan AK, Ho H, Bodemann B, Petersen S, Aruri J, Koshy S, Richardson Z, Le 

LQ, Krasieva T, Roth MG, Farmer P, White MA. (2008). Genome-wide siRNA-

based functional genomics of pigmentation identifies novel genes and pathways 

that impact melanogenesis in human cells. PLoS Genet 4: e1000298. 

 

Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. (2009). 

ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for 

autophagy. J Biol Chem. 284: 12297- 12305. 

 

Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma 

SC, Hafen E, Bos JL, Thomas G. (2003). Insulin activation of Rheb, a mediator of 

mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11: 1457-1466. 

 

Ge L, Melville D, Zhang M, Schekman R. (2013). The ER-Golgi intermediate 

compartment is a key membrane source for the LC3 lipidation step of 

autophagosome biogenesis. eLife 2: e00947. 

 

Ge L, Zhang M, Schekman R. (2014). Phosphatidylinositol 3-kinase and COPII 

generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. 

eLife  3: e04135. 



	 84	

Goetz R, Mohammadi M. (2013). Exploring mechanisms of FGF signalling through 

the lens of structural biology. Nat Rev Mol Cell Biol. 14: 166-180. 

 

Gotoh N. (2008). Regulation of growth factor signaling by FRS2 family 

docking/scaffold adaptor proteins.	Cancer Sci. 99: 1319-1325. 

 

Gray E, Pett MR, Ward D, Winder DM, Stanley MA, Roberts I, Scarpini CG, 

Coleman N. (2010). In vitro progression of human papillomavirus 16 episome-

associated cervical neoplasia displays fundamental similarities to integrant- 

associated carcinogenesis. Cancer Res. 70: 4081–4091.  

 

Greco D, Kivi N, Qian K, Leivonen SK, Auvinen P, Auvinen E. (2011). Human 

Papillomavirus 16 E5 Modulates the Expression of Host MicroRNAs. PLoS One 6: 

e21646. 

 

Griffin LM, Cicchini L, Pyeon D. (2013). Human papillomavirus infection is 

inhibited by host autophagy in primary human keratinocytes. Virology 437: 12–19. 

 

Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. (2004). 

Autophagy is a defense mechanism inhibiting BCG and Mycobacterium 

tuberculosis survival in infected macrophages. Cell 119: 753-766. 

 

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk 

BE, Shaw RJ. (2008). AMPK phosphorylation of raptor mediates a metabolic 

checkpoint. Mol Cell 30: 214-226. 

 

Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J. (2001) Critical role for the 

docking-protein FRS2 alpha in FGF receptor-mediated signal trasduction 

pathways. Proc natl Acad Sci USA 98: 8578-8583. 

 

Hadari YR, Kouhara H, Lax I, Schlessinger J. (1998). Binding of Shp2 tyrosine 

phosphataseto FRS2 is essential for fibroblast growth factor-induced PC12 cell 

differentiation. Mol Cell Biol.  18: 3966-3973. 



	 85	

Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, 

Lippincott-Schwartz J. (2010). Mitochondria supply membranes for 

autophagosome biogenesis during starvation. Cell 141: 656–667. 

 

Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, 

Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T. (2013). 

Autophagosomes form at ER- mitochondria contact sites. Nature 495: 389–393. 

 

Hanning JE, Saini HK, Murray MJ, Caffarel MM, van Dongen S, Ward D, Barker 

EM, Scarpini CG, Groves IJ, Stanley MA, Enright AJ, Pett MR, Coleman N. (2013). 

Depletion of HPV16 early genes induces autophagy and senescence in a cervical 

carcinogenesis model, regardless of viral physical state. J Pathol. 231: 354–366. 

 

Haruna K, Suga Y, Muramatsu S, Taneda K, Mizuno Y, Ikeda S, Ueno T, 

Kominami E, Tanida I, Tanida I, Hanada K. (2008). Differentiation-specific 

expression and localization of an autophagosomal marker protein (LC3) in human 

epidermal keratinocytes. J Dermatol Sci. 52: 213-215. 

 

Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. 

(2009). A subdomain of the endoplasmic reticulum forms a cradle for 

autophagosome formation. Nat. Cell Biol. 11: 1433–1437. 

 

Honda S, Arakawa S, Nishida Y, Yamaguchi H, Ishii E, Shimizu S. (2014). Ulk1-

mediated Atg5-independent macroautophagy mediates elimination of 

mitochondria from embryonic reticulocytes. Nat. Commun. 5: 4004. 

 

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, 

Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N. (2009). 

Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 com- plex 

required for autophagy. Mol Biol Cell 20: 1981- 1991. 

 

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, 

Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N. (2009). 



	 86	

Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex 

required for autophagy. Mol Biol Cell 20: 1981-1991. 

 

Igarashi M, Finch PW, Aaronson SA. (1998). Characterization of recombinant 

human fibroblast growth factor (FGF)-10 reveals functional similarities with 

keratinocyte growth factor (FGF)-7. J. Biol. Chem. 273: 13230-13235. 

 

Inok K, Li Y, Zhu T, Wu J, Guan KL. (2002). TSC2 is phosphorylated and inhibited 

by AKT and suppresses mTOR signalling. Nat Cell Biol. 4: 648-657. 

 

Inoki K, Li Y, Xu T, Guan KL. (2003). Rheb GTPase is a direct target of TSC2 GAP 

activity and regulates mTOR signaling. Genes Dev. 17: 1829-1834. 

 

Ishibashi K, Uemura T, Waguri S, Fukuda M. (2012). Atg16L1, an essential factor 

for canonical autophagy, participates in hormone secretion from PC12 cells 

independently of autophagic activity. Mol Biol Cell 23: 3193-3202. 

 

Jewell JL, Russell RC, Guan KL. (2013). Amino acid signalling up-stream of mTOR. 

Nat Rev Mol Cell Biol. 14: 133-139. 

 

Juenemann K, Reits EA. (2012).Alternative Macroautophagic Pathways. Int J Cell 

Biol. 2012: 189794. 

 

Juhász G. (2012). Interpretation of bafilomycin, pH neutralizing or protease 

inhibitor treatments in autophagic flux experiments. Autophagy 8: 1875–1876. 

 

Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. (2009). 

ULK-Atg13-FIP200 com- plexes mediate mTOR signaling to the autophagy 

machinery. Mol Biol Cell 20: 1992-2003. 

 

Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. (2009). 

ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy 

machinery. Mol Biol Cell 20: 1992-2003. 



	 87	

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, 

Ohsumi Y, Yoshimori T. (2000). LC3, a mammalian homologue of yeast Apg8p, is 

localized in autophagosome membranes after processing. EMBO J 19: 5720-5728. 

 

Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, 

Yoshimori T. (2004). LC3, GABARAP and GATE16 localize to autophagosomal 

membrane depending on form-II formation. J Cell Sci. 117: 2805- 2812. 

 

Katz M, Amit I, Yarden Y. (2007). Regulation of MAPKs by growth factors and 

receptor tyrosine kinases. Biochim Biophys Acta 1773: 1161-1176. 

 

Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, 

Sidow A, Attardi LD. (2013). Global genomic pro ling reveals an extensive p53-

regulated autophagy program contributing to key p53 responses. Genes Dev.  27: 

1016–1031. 

 

Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. (2008). Regulation of 

TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 10: 935-945. 

 

Kim HJ, Kim JH, Bae SC, Choi JY, Kim HJ, Ryoo HM. (2003). The protein kinase C 

pathway plays a central role in the fibroblast growth factor-stimulated expression 

and transactivation activity of Runx2. J Biol Chem. 278: 319-326. 

 

Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL. 

(2013). Differential regulation of distinct Vps34 complexes by AMPK in nutrient 

stress and autophagy. Cell 152: 290-303. 

 

Kim J, Kundu,M, Viollet B, Guan KL. (2011). AMPK and mTOR regulate 

autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13: 132-141. 

 

Kivi N, Greco D, Auvinen P, Auvinen E. (2008). Genes involved in cell adhesion, 

cell motility and mitogenic signaling are altered due to HPV 16 E5 protein 

expression. Oncogene 27: 2532–2541. 



	 88	

Knaevelsrud H, Carlsson SR, Simonsen A. (2013). SNX18 tubulates recycling 

endosomes for autophagosome biogenesis. Autophagy 9: 1639–1641. 

 

Ktistakis NT, Tooze SA. (2016). Digesting the Expanding Mechanisms of 

Autophagy. Trends Cell Biol. 26: 624-635. 

 

Kusama Y, Sato K, Kimura N, Mitamura J, Ohdaira H, Yoshida K. (2009). 

Comprehensive analysis of expression pattern and promoter regulation of human 

autophagy-related genes. Apoptosis 14: 1165–1175. 

 

La Rochelle WJ, Dirsch OR, Finch PW, Cheon HG, May M, Marchese C, Pierce JH, 

Aaronson SA. (1995). Specific receptor detection by a functional keratinocyte 

growth factor-immunoglobulmn chimera. J. Cell. Biol. 129: 357-366. 

 

Lamb CA, Yoshimori T, Tooze SA. (2013). The autophagosome: origins unknown, 

biogenesis complex. Nat Rev Mol Cell Biol. 14: 759-774. 

 

Laplante M, Sabatini DM. (2012). mTOR signaling in growth control and disease. 

Cell 149: 274-293. 

 

Levine B, Mizushima N, Virgin HW. (2011). Autophagy in immunity and 

inflammation. Nature 469: 323-335. 

 

Lew ED. Furdui CM, Anderson KS, Schlessinger J. (2009) The precise sequence of 

FGF receptor autophosphorylation is kinetically driven and is disrupted by 

oncogenic mutations. Sci Signal. 2(58). 

 

Li L, Chen X, Gu H. (2016). The signaling involving in autophagy machinery in 

keratinocytes and therapeutic approaches for skin diseases. Oncotarget [Epub 

ahead of print]. 

 



	 89	

Lima JG, de Freitas Vinhas C, Gomes IN, Azevedo CM, dos Santos RR, Vannier-

Santos MA, Veras PS. (2011). Phagocytosis is inhibited by autophagic induction in 

murine macrophages. Biochem Biophys Res Commun. 405:  604-609. 

 

Lin X, Zhang Y, Liu L, McKeehan WL, Shen Y, Song S, Wang F. (2011). FRS2α is 

essential for the fibroblast growth factor to regulate the mTOR pathway and 

autophagy in mouse embryonic fibroblasts. Int J Biol Sci. 7: 1114-1121. 

 

Liu J, Yang D, Minemoto Y, Leitges M, Rosner MR, Lin A. (2006). NF-kappaB is 

required for UV-induced JNK activation via induction of PKCdelta. Mol Cell 21: 

467-480. 

 

Lotti LV, Rotolo S, Francescangeli F, Frati L, Torrisi MR, Marchese C. (2007). AKT 

and MAPK signaling in KGF- treated and UVB-exposed human epidermal cells. J 

Cell Physiol. 212: 633-642.  

 

Mack H.I.D., Munger K. (2012). Modulation of autophagy-like processes by tumor 

viruses. Cells 1: 204–247. 

 

Marchese C, Chedid M, Dirsch OR, Csaky KG, Santanelli F, Latini C, LaRochelle 

WJ, Torrisi MR, Aaronson SA. (1995) Modulation of keratinocyte growth factor 

and its receptor in reepithelializing human skin. J Exp. Med. 82: 1369-1376. 

 

Marchese C, Sorice M, De Stefano C, Frati L, and Torrisi MR. (1997). Modulation of 

keratinocyte growth factor receptor expression in human cultured keratinocytes. 

Cell Growth Differ. 8: 989-997. 

 

Marshall CJ. (1995). Specificity of receptor tyrosine kinase signaling: transient 

versus sustained extracellular signal-regulated kinase activation. Cell  80: 179-185. 

 

Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, Gingras S, Orchard R, 

Guan JL, Tan H, Peng J, Kanneganti TD, Virgin HW, Green DR. (2015). Molecular 



	 90	

characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, 

NOX2 and autophagy proteins. Nat Cell Biol. 17: 893-906. 

 

Martynova E, Pozzi S, Basile V, Dol ni D, Zambelli F, Imbriano C, Pavesi G, 

Mantovani R. (2012). Gain-of-function p53 mutants have widespread genomic 

locations partially over- lapping with p63. Oncotarget 3: 132–143. 

 

Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, Ma M, Su Q, Luo S, Shi J, Xu J, 

Guo Q, Gao N, Sun Y, Chen Z, Yu L. (2015). CapZ regulates autophagosomal 

membrane shaping by promoting actin assembly inside the isolation membrane. 

Nat Cell Biol. 17: 1112-1123. 

 

Miki T, Bottaro DP, Fleming TP, Smith CL, Burgess WH, Chan AML, Aaronson 

SA. (1992). Determination of ligand binding specificity by alternative splicing: two 

distinct growth factor receptors encoded by single gene. Proc. Natl. Acad. Sci. USA 

89: 246-250. 

 

Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, 

Ohsumi M, Ohsumi Y. (1998). A protein conjugation system essential for 

autophagy. Nature 395: 395–398. 

 

Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, 

Tokuhisa T, Ohsumi Y, Yoshimori T. (2001). Dissection of autophagosome 

formation using Apg5-de cient mouse em- bryonic stem cells. J Cell Biol- 152: 657-

668. 

 

Mizushima N, Yoshimori T, Ohsumi Y. (2011). The Role of Atg Proteins in 

Autophagosome Formation. Annu Rev Cell Dev Biol. 27: 107-132. 

 

Mohammadi M, Honegger AM, Rotin D, Fisher R, Bellot F, Li W, Dionne CA, Jaye 

M, Rubinstein M, Schlessinger J. (1991). A tyrosine-phosphorylated carboxy-

terminal peptide of the fibro- blast growth factor receptor (Flg) is a binding site for 

the SH2 domain of phospholipase C-c. Mol. Cell. Biol. 11: 5068– 5078. 



	 91	

Mohammadi M, Olsen S.K, Ibrahimi OA. (2005). Structural basis for fibroblast 

growth factor receptor activation. Cytokine Growth Factor Rev. 16: 107–137. 

 

Molejon MI., Ropolo A, Re AL, Boggio V, Vaccaro MI. (2013). The VMP1–Beclin 1 

interaction regulates autophagy induction. Sci. Rep. 3: 1055. 

 

Moody CA, Laimnins LA. (2010). Human papillomavirus oncop- roteins: 

pathways to transformation. Nat Rev Cancer 10: 550–560. 

 

Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. (2011). 

Autophagosome precursor maturation requires homotypic fusion. Cell 146: 303–

317. 

 

Moriyama M, Moriyama H, Uda J, Matsuyama A, Osawa M, Hayakawa T. (2014). 

BNIP3 Plays Crucial Roles in the Differentiation and Maintenance of Epidermal 

Keratinocytes. J Invest Dermatol. 134: 1627-1635. 

 

Murase D, Hachiya A, Takano K, Hicks R, Visscher MO, Kitahara T, Hase T, 

Takema Y, Yoshimori T. (2013). Autophagy has a significant role in determining 

skin color by regulating melanosome degradation in keratinocytes. J Invest 

Dermatol. 133: 2416-2424. 

 

Muto V, Stellacci E, Lamberti AG, Perrotti E, Carrabba A, Matera G, Sgarbanti M, 

Battistini A, Liberto MC, Foca ̀ A. (2011). Human papillomavirus type 16 E5 protein 

induces expression of beta interferon through interferon regu- latory factor 1 in 

human keratinocytes. J Virol. 85: 5070–5080. 

 

Nakanishi Y, Mizuno H, Sase H, Fujii T, Sakata K, Akiyama N, Aoki Y, Aoki M, 

Ishii N. (2015). ERK signal suppression and sensitivity to CH5183284/Debio 1347, 

a selective FGFR inhibitor. Mol Cancer Ther. 14: 2831-2839. 

 

Nguyen BC, Lefort K, Mandinova A, Antonini D, Devgan V, Della Gatta G, Koster 

MI, Zhang Z, Wang J, Tommasi di Vignano A, Kitajewski J, Chiorino G, Roop DR, 



	 92	

Missero C, Dotto GP. (2006). Cross-regulation between Notch and p63 in 

keratinocyte commitment to differentiation. Genes Dev. 20: 1028–1042. 

 

Nishida Y,	Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu 

M, Otsu K, Tsujimoto Y, Shimizu S. (2009). Discovery of Atg5/Atg7-independent 

alternative macroautophagy. Nature 461: 654–658. 

 

Oelze I, Kartenbeck J, Crusius K, Alonso A. (1995). Human papillomavirus type 16 

E5 protein affects cell-cell communication in an epithelial cell line. J Virol. 69: 

4489–4494. 

 

Ogier-Denis E, Pattingre S, El Benna J, Codogno P. (2000). Erk1/2-dependent 

phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating 

activity and autophagy in human colon cancer cells. J Biol Chem. 275: 39090–39095. 

 

Oh JM, Kim SH, Lee YI, Seo M, Kim SY, Song YS, Kim WH, Juhnn YS. (2009) 

Human papillomavirus E5 protein induces expression of the EP4 subtype of 

prostaglandin E2 receptor in cyclic AMP response element-dependent pathways 

in cervical cancer cells. Carcinogenesis 30: 141–149. 

 

Olsen SK, Ibrahimi OA, Raucci A, Zhang F, Eliseenkova AV, Yayon A, Basilico C, 

Linhardt RJ, Schlessinger J, Mohammadi M. (2004). Insights into the molecular 

basis for fibroblast growth factor receptor autoinhibition and ligand-binding 

promiscuity. Proc. Natl. Acad. Sci. U.S.A. 101: 935–940. 

 

Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, Givol D, 

Lonai P. (1993) Developmental localization of the splicing alternatives of fibroblast 

growth factor receptor-2 (FGFR2). Dev. Biol. 158: 475-486. 

 

Orsi A,	Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA. 

(2012). Dynamic and transient interactions of Atg9 with autophagosomes, but not 

membrane integration, is required for autophagy. Mol. Biol. Cell 23: 1860–1873. 



	 93	

Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, 

Bjorkoy G, Johansen T. (2007). p62/ SQSTM1 binds directly to Atg8/LC3 to 

facilitate degra- dation of ubiquitinated protein aggregates by autophagy. J Biol 

Chem. 282: 24131–24145. 

 

Panos RJ, Bak PM, Simonet WS, Rubin JS, Smith LJ. (1995). Intratracheal 

instillation of keratinocyte growth factor decreases hyperoxia-induced mortality in 

rats. J Clin Invest. 96: 2026-2033. 

 

Paramio JM, Segrelles C, Lain S, Gomez-Casero E, Lane DP, Lane EB, Jorcano JL. 

(2000). p53 is phosphorylated at the carboxyl terminus and promotes the 

differentiation of human HaCaT keratinocytes. Mol Carcinog. 29: 251–262. 

 

Pett MR, Alazawi WOF, Roberts I, Dowen S, Smith DI, Stanley MA, Coleman N. 

(2004). Acquisition of high-level chromosomal instability is associated with 

integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res. 

64: 1359–1368. 

 

Pimentel-Muiños FX, Boada-Romero E. (2014) Selective autophagy against 

membranous compartments: Canonical and unconventional purposes and 

mechanisms.	Autophagy 10: 397-407. 

 

Potter CJ, Pedraza LG, Xu T. (2002). AKT regulates growth by directly 

phosphorylating Tsc2. Nat Cell Biol. 4: 658-665. 

 

Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. (2014). ATG16L1 meets 

ATG9 in recycling endo- somes: additional roles for the plasma membrane and 

endocytosis in autophagosome biogenesis. Autophagy 10: 182–184. 

 

Purpura V, Belleudi F, Caputo S, Torrisi MR. (2013). HPV16 E5 and 

KGFR/FGFR2b interplay in differentiating epithelial cells. Oncotarget 4: 192-205. 



	 94	

Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. (2010). Plasma 

membrane contributes to the formation of pre-autophagosomal structures. Nat. 

Cell Biol. 12: 747–757. 

 

Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-

Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey 

DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, 

Winslow AR, Rubinsztein DC. (2010). Regulation of Mammalian Autophagy in 

Physiology and Pathophysiology.	Physiol Rev. 90: 1383-1435. 

 

Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, 

Keulers T, Mujcic H, Landuyt W, Voncken JW, Lambin P, van der Kogel AJ, 

Koritzinsky M, Wouters BG. (2010). The unfolded protein response protects 

human tumor cells during hypoxia through regulation of the autophagy genes 

MAP1LC3B and ATG5. J Clin Invest. 120: 127–141. 

 

Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA. (1989). 

Purification and characterization of newly identified growth factor specific for 

epithelial cells. Proc. Natl. Acad. Sci. USA 86: 802-806. 

 

Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, 

Dillin A, Guan KL. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 

and activating VPS34 lipid kinase. Nat Cell Biol. 15: 741-750. 

 

Russell RC, Yuan HX, Guan KL. (2014). Autophagy regulation by nutrient 

signaling. Cell Res. 24: 42-57. 

 

Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H,Ishii J, Noda NN, Inagaki F, 

Nakatogawa H, Ohsumi Y.(2013). Atg12-Atg5 conjugate enhances E2 activity of 

Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 20: 433–439. 

 



	 95	

Salabei JK, Cummins TD, Singh M, Jones SP, Bhatnagar A, Hill BG. (2013). PDGF-

mediated autophagy regulates vascular smooth muscle cell phenotype and 

resistance to oxidative stress. Biochem J. 451: 375-388. 

 

Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. (2010). 

Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary 

for its activation by amino acids. Cell 141: 290-303. 

 

Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, 

Sabatini DM. (2008). The Rag GTPases bind raptor and mediate amino acid 

signaling to mTORC1. Science 320: 1496-1501. 

 

Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, 

Tanaka K, Cleveland JL, Withoff S, Green DR. (2007). Toll-like receptor signalling 

in macrophages links the autophagy pathway to phagocytosis. Nature 450: 1253-7. 

 

Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. (1990). The E6 

oncoprotein encoded by human papillomavirus types 16 and 18 promotes the 

degradation of p53. Cell 63: 1129–1136. 

 

Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, 

Linhardt RJ, Mohammadi M. (2000) Chrystal structure of a ternary FGF-FGFR-

heparin complex reveals a dual role for heparin in FGFR binding and 

dimerization. Mol.Cell. 6: 743-750. 

 

Silva LM, Jung JU. (2013). Modulation of the autophagy pathway by human tumor 

viruses. Semin Cancer Biol. 23: 323–328. 

 

Sobolewska A, Gajewska M, Zarzy ska J, Gajkowska B, Motyl T. (2009). IGF-I, 

EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via 

the mTOR pathway. Eur J Cell Biol. 88: 117-130.  

 



	 96	

Stanley MA, Browne HM, Appleby M, Minson AC. (1989). Properties of a non-

tumorigenic human cervical keratinocyte cell line. Int J Cancer 43: 672–676. 

 

Steinberg SF. (2008). Structural basis of protein kinase C isoform function. Physiol 

Rev. 88: 1341-1378. 

 

Takeuchi H, Kanzawa T, Kondo Y, Kondo S. (2004). Inhibition of platelet-derived 

growth factor signalling induces autophagy in malignant glioma cells. Br J Cancer 

90: 1069-1075.  

 

Tan X, Thapa N, Sun Y, Anderson RA. (2015). A kinase-independent role for EGF 

receptor in autophagy initiation. Cell 160: 145-160. 

 

Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. (2003). Tuberous sclerosis 

complex gene products, Tuberin and Hamartin, control mTOR signaling by acting 

as a GTPase-activating protein complex toward Rheb. Curr Biol. 13: 1259-1268. 

 

Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP. (1990). Thapsigargin, 

a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the 

endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A 87: 2466- 2470. 

 

Truong AB, Kretz M, Ridky TW, Kimmel R, Khavari PA. (2006). p63 regulates 

proliferation and differentiation of developmentally mature keratinocytes. Genes 

Dev. 20: 3185–3197. 

 

Turner N, Grose R. (2010). Fibroblast growth factor signalling: from development 

to cancer. Nat. Rev. Cancer  10: 116-129. 

 

Van Den Bossche K, Naeyaert JM, Lambert J. (2006) The Quest for the mechanism 

of melanin transfer. Traffic 7: 1-10. 

 



	 97	

Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, Borzacchiello G. 

(2011). Papillomavirus E5: the smallest oncoprotein with many functions. Mol 

Cancer 10: 140. 

 

Virador VM, Muller J, Wu X, Abdel-Malek ZA, Yu ZX, Ferrans VJ, Kobayashi N, 

Wakamatsu K, Ito S, Hammer JA, Hearing VJ. (2002). Influence of alpha-

melanocyte-stimulating hormone and of ultraviolet radiation on the transfer of 

melanosomes to keratinocytes. FASEB J 16: 105–107. 

 

Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, Denmark T. (2009). 

A non-canonical MEK/ERK signaling pathway regulates autophagy via 

regulating Beclin 1. J Biol Chem. 284: 21412– 21424. 

 

Wang X, Qi H, Wang Q, Zhu Y, Wang X, Jin M, Tan Q, Huang Q, Xu W, Li X, 

Kuang L, Tang Y, Du X, Chen D, Chen L. (2015). FGFR3/fibroblast growth factor 

receptor 3 inhibits autophagy through decreasing the ATG12–ATG5 conjugate, 

leading to the delay of cartilage development in achondroplasia. Autophagy 11: 

1998-2013. 

 

Wang ZG, Wang Y, Huang Y, Lu Q, Zheng L, Hu D, Feng WK, Liu YL, Ji KT, 

Zhang HY, Fu XB, Li XK, Chu MP, Xiao J. (2015). bFGF regulates autophagy and 

ubiquitinated protein accumulation induced by myocardial ischemia/ reperfusion 

via the activation of the PI3K/ AKT/mTOR pathway.	Sci Rep. 5: 9287. 

 

Wasmeier C, Hume AN, Bolasco G, Seabra MC. (2008) Melanosomes at a glance. J. 

Cell Sci. 121: 3995-3999. 

 

Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. (2008). JNK1-mediated 

phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30: 678-

688. 

 

Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, 

Christudass CS, Veltri RW, Grishin NV, Peyton M, Minna J, Bhagat G, Levine B. 



	 98	

(2013). EGFR-Mediated Beclin 1 phosphorylation in autophagy suppression, 

tumor progression, and tumor chemoresistance. Cell 154: 1269-1284. 

 

Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA. (2003). The DeltaNp63 alpha 

phosphoprotein binds the p21 and 14–3-3 sigma promoters in vivo and has 

transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived 

mutations. Mol Cell Biol. 23: 2264–2276. 

 

Wolff K, Konrad K. (1972). Phagocytosis of latex beads by epidermal keratinocytes 

in vivo. J Ultrastruct Res 39: 262–280. 

 

Wu G, Osada M, Guo Z, Fomenkov A, Begum S, Zhao M, Upadhyay S, Xing M, 

Wu F, Moon C, Westra WH, Koch WM, Mantovani R, Califano JA, Ratovitski E, 

Sidransky D, Trink B. (2005). DeltaNp63alpha up-regulates the Hsp70 gene in 

human cancer. Cancer Res. 65: 758–766. 

 

Wu J, Dang Y, Su W, Liu C, Ma H, Shan Y, Pei Y, Wan B, Guo J, Yu L. (2006). 

Molecular cloning and characterization of rat LC3A and LC3B--two novel markers 

of autophagosome. Biochem Biophys Res Commun 339: 437-442. 

 

Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT. (2007). 

Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. 

Immunity 27: 135-144.  

 

Yang Z and Klionsky DJ. (2010). Mammalian autophagy: core molecular 

machinery and signaling regulation. Curr Opin Cell Biol. 22: 124-131.  

 

Yayon A, Zimmer Y, Shen GH, Avivi A, Yarden Y, Givol D. (1992). A confined 

variable region confers ligand specificity on fibroblast growth factor receptors: 

implications for the origin of the immunoglobulin fold. EMBO J. 11: 1885-1890. 

 

Yuan HX, Russell RC, Guan KL. (2013). Regulation of PIK3C3/ VPS34 complexes 

by MTOR in nutrient stress-induced autophagy. Autophagy 9: 1983-1995. 



	 99	

Yugawa T, Handa K, Narisawa-Saito M, Ohno S, Fujita M, Kiyono T. (2007). 

Regulation of Notch1 gene expression by p53 in epithelial cells. Mol Cell Biol. 27: 

3732–3742. 

 

Zhang J, Liu J, Huang Y, Chang JY, Liu L, McKeehan WL, Martin JF, Wang F. 

(2012). FRS2α-mediated FGF signals suppress premature differentiation of cardiac 

stem cells through regulating autophagy activity. Circ Res. 110: e29-39.  

 

Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT. (2007). Regulation 

of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-

phenylpyridi- nium-induced cell death. Am. J. Pathol. 170: 75–86. 

 

zur Hausen H. (2002). Papillomaviruses and cancer: from basic studies to clinical 

application. Nat Rev Cancer. 2: 342–350. 

 


