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Synonyms18

Variational approach to damage and fracture me-19

chanics; Variational formulation of damage and20

fracture mechanics21

Definitions22

Damage is defined as the loss of material stiffness23

under loading conditions. This process is in-24

trinsically irreversible and, therefore, dissipative.25

When the stiffness vanishes, fracture is achieved.26

In order to derive governing equations, varia- 27

tional methods have been employed. Standard 28

variational methods for non-dissipative systems 29

are here formulated in order to contemplate dissi- 30

pative systems as the ones considered in contin- 31

uum damage mechanics. 32

Principle of Least Action for 33

Dissipative Systems 34

Variational principles and calculus of variations 35

have always been important tools for formulat- 36

ing mathematical models of physical phenomena 37

(dell’Isola and Placidi 2011). Indeed, they are 38

the main tool for the axiomatization of physical 39

theories because they provide an efficient and 40

elegant way to formulate and solve mathematical 41

problems which are of interest for scientists and 42

engineers. If the action functional is well be- 43

having, variational principles always give rise to 44

intrinsically well-posed mathematical problems, 45

allowing also to find straightforwardly boundary 46

conditions that guarantee uniqueness of the so- 47

lution (dell’Isola et al. 2015b, 2016; Carcaterra 48

et al. 2015). Thus, in order to formulate the 49

governing equations of nonstandard models, it is 50

natural to use a variational procedure. 51

However, it is often argued that dissipation 52

cannot be handled by means of a least action 53

principle. Indeed, it is usually pointed out that a 54

limit of the modeling procedure based on varia- 55

tional principles consists in their impossibility of 56

encompassing nonconservative phenomena. First 57
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of all, this is not exactly true, as it is possible58

to find some action functionals for a large class59

of dissipative systems. This would be enough to60

contradict the thesis for that variational principles61

can be used only for non-dissipative systems.62

Another possibility to answer to this criti-63

cism is to assume a slightly different point of64

view, usually attributed to Hamilton and Rayleigh65

(dell’Isola et al. 2009). Once the quantities which66

expend power on the considered velocity fields67

are known in terms of the postulated action,68

a suitable positive definite Rayleigh dissipation69

function is introduced that is related to the first70

variation of the action functional.71

In continuum damage mechanics, see, e.g.,72

Chaboche (1988), Misra and Singh (2013,73

2015), and Poorsolhjouy and Misra (2016),74

the point of view is different. This is due to75

the monolateral behavior of damage kinematic76

descriptors. In general, in order to find a77

mathematical model for a class of natural78

phenomena by the use of variational principles,79

the first ingredient is to establish the right80

kinematics, i.e., the kinematic descriptors81

modeling the state of the considered physical82

systems. The second ingredient is to establish83

the set of admissible motions for the system84

under description, i.e., to the correct model85

for the admissible evolution of the system. In86

standard continuum mechanics, the kinematics87

is given by a single placement function � that is88

defined on the reference configuration B and on89

a given time interval I . The simplest way to treat90

continuum damage mechanics is to complement91

such a function with a scalar function !, defined92

on the same reference configuration B and on93

the same interval of time I .94

The set of kinematic descriptors, therefore,95

does not contain, as usual, the placement field96

� D � .X; t/ only, but it also contains the damage97

field ! D ! .X; t/, see Fig. 1. Thus, the strain98

energy density reads as99

E .u; !/ ; (1)

where E is the total deformation energy func-100

tional. The damage state of a material point X101

is therefore characterized, at time t , by a scalar102

internal variable !, that is assumed to be within103

Variational Methods in Continuum Damage and
Fracture Mechanics, Fig. 1 Basic kinematics in damage
mechanics. For each point of the domain, and therefore
for each point of the reference configuration B and of the
time interval I , the kinematic is defined by the placement
function � and by a scalar function !. � is the placement
of each point of the reference domain and ! is the state
of damage. Herein, ! is assumed to be within the range
Œ0; 1� and the cases ! D 0 and ! D 1 correspond,
respectively, to the undamaged state and to failure

the range Œ0; 1�. The cases ! D 0 and ! D 1 104

are customarily taken to correspond, respectively, 105

to the undamaged state and to failure (Cuomo 106

et al. 2014). Fracture is clearly assumed to be 107

initiated at those points where ! D 1 (Anderson 108

2017). The material is generally assumed to be 109

not self-healing, and, hence, ! is assumed to be 110

a non-decreasing function of time. This implies 111

that the transition from undamaged to damaged 112

states is irreversible and, roughly speaking, the 113

total deformation energy is dissipated as far as the 114

damage increases its value. Thus, if the damage 115

! is assumed to be one of the fundamental kine- 116

matic descriptors of the system (first ingredient), 117

the set of its admissible motions (second ingre- 118

dient) is intrinsically nonstandard. Keeping this 119

in mind, the principle of least action should be 120

generalized for those dissipative systems which 121

possess kinematic descriptors with monolateral 122

constraints. First of all, the variation ıE of the to- 123

tal deformation energy functional E represented 124

not only as a function of the kinematic descriptors 125

� and ! but also of their admissible variations ı� 126

and ı!, i.e.: 127

ıE .�; !; ı�; ı!/ D A.�; !/ı�C B.�; !/ı!;
(2)
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where it is made explicit that ıE is, by definition,128

linear with respect to both ı� and ı!.129

For standard, bilateral, admissible motion, the130

principle of least action is expressed by impos-131

ing that the variation (2) is zero for any bilat-132

eral, admissible motion. This is made explicit in133

Fig. 2a, where a bilateral admissible variation of134

the solution, i.e., of the minimum of the repre-135

sented graphic, gives that the correct minimum136

condition is a null variation of the functional to be137

minimized. In the case of monolateral admissible138

motion, the principle of least action must be139

made explicit differently. In Fig. 2b it is clear,140

in fact, that monolateral admissible motions do141

not necessarily imply that the variation of the142

functional to be minimized must always be as-143

sumed to vanish. In this case, it is better to assume144

that any admissible variation ıE .�; !; ı�; ı!/145

is always greater than (better not lower than)146

the variation ıE .u; !; Pu; P!/ that is calculated in147

correspondence of the solution of the problem.148

Thus, from a mathematical point of view, the149

principle of least action is expressed by assuming150

that151

ıE .u; !; Pu; P!/ � ıE .u; !; �; ˇ/ ;

8�; 8ˇ � 0; (3)

where � and ˇ are compatible virtual velocities152

starting from the configuration � and !, and dots153

represent derivation with respect to time. Thus, P�154

and P! are, respectively, the standard velocity field155

and the rate of damage that are calculated on the156

basis of the solutions � .X; t/ and ! .X; t/ of the157

problem.158

As commented in Marigo (1989), inequal-159

ity (3) says that the true energy release rate160

(i.e., �ıE .u; !; Pu; P!/) is not smaller than any161

possible one (i.e., �ıE .u; !; �; ˇ/). It consti-162

tutes, therefore, a kind of principle of maxi-163

mum energy release rate. It is worth to be noted164

that such a principle was shown also by Hill in165

1948 (Hill 1948), see also Maier (1970), in order166

to express a variational principle of maximum167

plastic work. Among others, it is worth to be168

mentioned the contributions due to Bourdin et al.169

(2008), Fleck and Willis (2009), Kuczma and170

Whiteman (1995), Rokoš et al. (2016), and Reddy171

(2011a,b).172

Reduction to the Standard 173

Variational Principle 174

In this section it is verified that the variational 175

principle expressed in (3) reduces to the usual 176

one, i.e., to ıE D 0, for arbitrary variations ı�, 177

when no variation ı is considered (ı! D 0). 178

Namely, it is checked that 179

ıE .u; !; ıu; 0/ D 0; 8ıu: (4)

Let the virtual velocity field � be � D PuC� , with 180

arbitrary � , and the other virtual velocity ˇ to be 181

ˇ D P! in (3). Since ˇ is an arbitrary positive 182

field, the choice ˇ D P! is admissible because 183

also P! is a nonnegative (nonarbitrary!) field. This 184

yields 185

ıE .u; !; Pu; P!/ � ıE .u; !; PuC �; P!/ : (5)

Let now the virtual velocity field � be � D Pu�� , 186

with the same field � of (5), and again ˇ D P! 187

in (3). We get 188

ıE .u; !; Pu; P!/ � ıE .u; !; Pu � �; P!/ : (6)

Since the first variation of a functional is linear 189

with respect to the admissible variations, see the 190

representation (2), inequality (5) implies 191

ıE .u; !; �; 0/ � 0 (7)

and inequality (6) implies 192

ıE .u; !; �; 0/ � 0: (8)

Combining (7) and (8) 193

ıE .u; !; N�; 0/ D 0; 8� (9)

is obtained, which has the same desired form 194

as (4). This is a very important result. It tells 195

that the principle of least action in the form of 196

the variational inequality (3) is a generalization 197

of the same principle that is generally expressed 198

as in (9), for the case of monolateral kinematic 199

descriptors. 200
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Variational Methods in Continuum Damage and
Fracture Mechanics, Fig. 2 (a) Bilateral admissible mo-
tions imply that the minimum condition is expressed by
assuming that the first variation of the functional to be

minimized vanishes. (b) Monolateral admissible motions
do not necessarily imply that the minimum condition
is expressed by assuming that the first variation of the
functional to be minimized vanishes

The Derivations of KKT Conditions201

The formulation (3) of the principle of least ac-202

tion does not only give back the standard formu-203

lation (9), but it also furnishes further conditions,204

the so-called KKT conditions. In the previous205

section, we have exploited the cases with the206

virtual velocity � D Pu ˙ � . It is clear that for207

monolateral admissible virtual velocities, this is208

not immediately generalizable because the con-209

dition ˇ � 0 must always be satisfied. To do this,210

the choice � D Pu and ˇ D 0 is firstly used in (3).211

It yields212

ıE .u; !; Pu; P!/ � ıE .u; !; Pu; 0/ : (10)

A second choice � D Pu and ˇ D P2! has been213

made in (3). It yields214

ıE .u; !; Pu; P!/ � ıE .u; !; Pu; 2 P!/ : (11)

Since the first variation of a functional is linear215

with respect to virtual variations, see the repre-216

sentation (2), the inequality (10) implies217

ıE .u; !; 0; P!/ � 0; (12)

and the inequality (11) implies218

ıE .u; !; 0; P!/ � 0: (13)

Combining (12) and (13)219

ıE .u; !; 0; P!/ D 0 (14)

is obtained, which is an integral form of the 220

KKT conditions. A suitable localization of (14) 221

gives the KKT conditions in their standard form. 222

However, it is worth to be noted that the for- 223

mulation (14) is different with respect to that 224

represented in (9). In fact, (9) is valid for any 225

admissible virtual velocity � , while (14) is valid 226

only for one single rate of damage P!. Such a 227

localization can be achieved, therefore, only after 228

a further exploitation of the principle of least 229

action. Thus, the choice � D Pu in (3) implies 230

ıE .u; !; Pu; P!/ � ıE .u; !; Pu; ˇ/ 8ˇ � 0: (15)

By the linear representation in (2), it is easily 231

shown that 232

ıE .u; !; 0; ˇ/ � ıE .u; !; 0; P!/ 8ˇ � 0: (16)

Reminding (14) and (16) reads as 233

ıE .u; !; 0; ˇ/ � 0 8ˇ � 0: (17)

The integral form (17) is now suitable for lo- 234

calization purposes because of the arbitrariness 235

of the virtual velocity ˇ. Thus, the so-called 236

Karush-Kuhn-Tucker (KKT) conditions for dam- 237

age mechanics have been derived simply from 238

the principle of least action in the form of the 239

variational inequality stated in (3). 240
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In order to get governing equations with this241

method, this variational principle is generally242

presented as in Placidi (2015, 2016) in the next243

section.244

The Definition of the Total245

Deformation Energy Functional in246

Nonlocal Continuum Mechanics247

The total deformation energy functional E is248

the state function of the problem. It is generally249

decomposed into an elastic part Ee:250

Ee D E int
e � E ext

e ; (18)

that is decomposed into an internal part E int
e :251

E int
e D

Z
B
U; (19)

due to the material, and an external part E ext
e , due252

to the interaction with the external world, and a253

dissipation Ed part:254

Ed D

Z
B

w.!/; (20)

where U is the density of the internal energy and255

w is the density of the dissipation energy.256

Localizations of the deformation process are257

always preferential from an energetic viewpoint.258

Accordingly one must introduce some character-259

istic lengths in order to penalize the deformations260

that are too localized. This leads to the concept of261

nonlocal damage models. The nonlocal approach,262

for controlling the size of the localization zone,263

implies nonlocal terms either in the internal part264

of the total deformation energy functional or in265

the dissipated part.266

Usually, the nonlocal terms are given by the267

dependence of the density of the total deforma-268

tion energy functional upon not only the damage269

! but also upon the first gradient of it, i.e., of270

r!. From this point of view, it is worth to be271

noted, among others, the contributions of the272

group of Marigo (Marigo 1989; Pham et al. 2011;273

Bourdin et al. 2008; Amor et al. 2009; Pham274

and Marigo 2010a,b), Perego (Comi and Perego 275

1995) and Miehe (Miehe et al. 2016). A fully 276

nonlocal approach (i.e., an integral procedure 277

which is based on integration of the state vari- 278

ables over a typical domain whose size is related 279

to the characteristic length of the localization) is 280

due to the group of Bažant (Pijaudier-Cabot and 281

Bažant 1987; Bažant and Jirásek 2002; Bazant 282

and Pijaudier-Cabot 1988). As commented in 283

dell’Isola et al. (2015a), it is possible to trace 284

back such a fully nonlocal approach to the pio- 285

neering ideas of G. Piola (dell’Isola et al. 2014) 286

that were also exploited in Silling (2000). A 287

micromorphic approach is used by the group of 288

Forest (Forest 2009; Aslan et al. 2011; Dillard 289

et al. 2006). Strain gradient formulation is also 290

used in the literature (Yang and Misra 2012; 291

Yang et al. 2011; Peerlings et al. 2001). In the 292

next section, a strain gradient formulation for 293

damage continuum 1D bodies will be shown as an 294

example of damage continuum mechanics with 295

the variational approach that is here illustrated. 296

The first variational formulation of this kind for 297

strain gradient materials has been presented in 298

Placidi (2015, 2016), from where the notation of 299

the next section has been taken. 300

Damage Strain Gradient Formulation 301

for the 1D Case 302

As an example, we consider, in the reference 303

configuration, a body that it is modeled as a 304

one-dimensional straight line of length L, with 305

an abscissa X 2 Œ0; L�. Let us further assume 306

the quasi-static approximation. Thus, the inertia, 307

i.e., the kinetic energy, is neglected. Since we 308

deal with infinitesimal deformations, the total 309

deformation energy functional E will be now 310

expressed in terms of the displacement field 311

u .X; t/ D � .X; t/�X and not of the placement 312

� .X; t/. 313

An explicit form for the second gradient case 314

of the total deformation energy functional is, 315

therefore, 316
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E .u .X; t/ ; ! .X; t//

D
R L
0

�
K0.X/!.X; t/C

1
2
K.X/!.X; t/2

�
dX

C
R L
0

h
1
2
C .X;! .X; t// Œu0 .X; t/�2 C 1

2
P .! .X// Œu00 .X; t/�2

i
dX

�
R L
0
Œb� .X/u.X; t/C bm.X/u0.X; t/� dX

��0 u.0; t/ � �L u.L; t/ �m0 u0.0; t/ �mL u0.L; t/;

(21)

where K .X/ is the resistance to damage that is317

assumed to be independent of damage, K0.X/318

is another independent damage constitutive field319

that will be interpreted as the initial damage320

threshold, C .X;! .X; t// is the standard stiff-321

ness (that is assumed to depend on damage),322

and P .! .X; t// is the second gradient stiffness323

(that is also assumed to depend on damage).324

b� .X/ and bm.X/ are the distributed external325

actions that expend work, respectively, on the326

displacement and on the gradient of the displace-327

ment. b� .X/ is also called the distributed external328

force and bm.X/ the distributed external double329

force. �0, �L, m0, and mL are the concentrated330

331

external actions on the boundaries, X D 0 and 332

X D L, of the domain Œ0; L�: �0 and �L are the 333

concentrated external actions that make work on 334

the displacement, respectively, on the left- and on 335

the right-hand side of the one-dimensional body 336

(also called external forces at the boundaries), 337

and m0 and mL are the concentrated external 338

actions that make work on the gradient of the 339

displacement, respectively, on the left- and on the 340

right-hand side of the one-dimensional body (also 341

called external double forces at the boundaries). 342

An explicit form of the standard elastic formu- 343

lation (9) for the strain gradient case expressed 344

in (21) is 345

R L
0 Œıu

�
� .� �m0 � bm/

0
� b�

�
dX C Œıu .� � bm �m0/C ıu0m�

XDL
XD0

��0ıu.0; t/ � �Lıu.L; t/ �m0ıu0.0; t/ �mLıu0.L; t/; 8ıu
(22)

where integration by parts has been performed346

and where the contact force � and the contact347

double force m are involved in the following348

form:349

� D C .X; ˛ .X; t// u0 .X; t/ ;

m D P .˛ .X; t// u00 .X; t/ : (23)

The integral form (22) is suitable for the follow-350

ing localization:351

�
� �m0 � bm

�0
C b� D 0: (24)

Insertion of (23) into (24) gives the standard352

partial differential equation (PDE) for a second353

gradient 1D continuum:354

�
Cu0 �

�
P u00

�0
� bm

�0
C b� D 0;

8X 2 Œ0; L� : (25)

Besides, the following duality conditions are de- 355

rived from (22), i.e.: 356

ıu.L/
h
Cu0 �

�
P u00

�0
� bm

i
XDL

D �L; (26)

ıu.0/
h
Cu0 �

�
P u00

�0
� bm

i
XD0
D ��0; (27)

ıu0.L/P u00.L/ D mL; (28)

ıu0.0/P u00.0/ D �m0; (29)

where the boundary conditions (BCs) can be 357

derived from the explicit form of the constraints, 358

which are assumed to be expressed in terms of the 359

displacement field. 360



UNCORRECTED
PROOF

Variational Methods in Continuum Damage and Fracture Mechanics 7

V

The integral form (14), with the total defor-361

mation energy functional (21), has the following362

explicit form:363

R L
0 P!

h
K0 .X/CK .X/!.X; t/C

1
2
@C.X;!/
@!

Œu0 .X; t/�2 C 1
2
@P.!/
@!

Œu00 .X; t/�2
i
dX D 0: (30)

The global form of the KKT (17) has the follow-364

ing other form:365

R L
0 ˇ

h
K0 .X/CK .X/!.X; t/C

1
2
@C.X;!/
@!

Œu0 .x; t/�2 C 1
2
@P.!/
@!

Œu00 .X; t/�2
i
dX � 0; 8ˇ � 0:

(31)

In order to localize (31), let ˝� .X/ � R be a366

family, parameterized over � 2 RC, of bounded367

neighborhoods of X 2 Œ0; L�, such that their368

diameters are diam ˝� .X/ D � . Besides, let369

ˇ� W Œ0; L� ! RC be a family of functions,370

parameterized over � 2 RC, defined as371

ˇ� .X/ D

�
0 if X … ˝� .X/
1 if X 2 ˝� .X/:

(32)

Clearly, for each � 2 RC, ˇ� defined in (32) 372

fulfills the positive definiteness required to ˇ 373

in (31). Hence, (31), with the specification of ˇ 374

as in (32), yields 375

R L
0 ˇ�

h
K0 .X/CK .X/!.X; t/C

1
2
@C.X;!/
@!

Œu0 .X; t/�2 C 1
2
@P.!/
@!

Œu00 .X; t/�2
i
dX D 0; � 2 RC:

(33)

and, letting � ! 0C, we finally get, 8X 2 Œ0; L�376

K0 .X/CK .X/!.X; t/C
1

2

@C .X; !/

@!

�
u0 .X; t/

�2
C
1

2

@P .!/

@!

�
u00 .X; t/

�2
� 0: (34)

Since by hypothesis we have P! � 0, keeping377

in mind (34), in order to fulfill the relation (30)378

we have that, 8X 2 Œ0; L�,379

K0 .X/CK .X/!.X; t/C
1

2

@C .X; !/

@!

�
u0 .X; t/

�2
C
1

2

@P .!/

@!

�
u00 .X; t/

�2
D 0; (35)
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and/or380

P! D 0; 8X 2 Œ0; L�: (36)

The combination of (35) and (36) gives,381

8X 2 Œ0; L�, the desired localform of the382

so-called Karush-Kuhn-Tucker (KKT) conditions 383

for damage mechanics 384

P!

	
K0 .X/CK .X/!.X; t/C

1

2

@C .X; !/

@!

�
u0 .X; t/

�2
C
1

2

@P .!/

@!

�
u00 .X; t/

�2

D 0 (37)

that has been derived simply from the variational385

inequality given in (3).386

According to previous results in the literature,387

see, e.g., Yang and Misra (2012), the stiffness388

C .X;! .X; t// is generally assumed to decrease389

with damage growth. The most simple relation of390

this kind that fulfills this condition is the linear391

one, i.e.:392

C .X;! .X; t// D C0.X/ .1 � !.X; t// : (38)

Besides, also the most simple constitutive relation 393

for the second gradient stiffnessP .! .X; t// is of 394

linear type: 395

P .! .X; t// D P0 .1 � n!.X; t// ; (39)

where, on the one hand, n D 1 indicates that P D 396

0 at the failure condition ! D 1 and, on the other 397

hand, n D �1, as proposed in Placidi (2015), 398

indicates that the micro-structure represented by 399

second gradient terms in (21) is enlarged by the 400

presence of damage. By insertion of (38) and (39) 401

into (37), 402

P!

	
K0 .X/CK .X/!.X; t/ �

1

2
C0.X/

�
u0 .X; t/

�2
�
1

2
nP0

�
u00 .X; t/

�2

D 0: (40)

AssumingK.X/ > 0, (40) is rewritten in another403

form:404

P! .!.X; t/ � !T .X; t// D 0: (41)

where the damage threshold !T .X; t/ has been 405

defined as follows: 406

!T .X; t/ D �
K0 .X/

K .X/
C

C0.X/

2K .X/

�
u0 .X; t/

�2
C

nP0

2K .X/

�
u00 .X; t/

�2
: (42)

Equation (42) is of interest. It gives an analyti-407

cal expression of the damage evolution that has408

been derived from the variational inequality (3).409

Because of the local form (41) of the KKT410

conditions, the damage field !.X; t/ is given411

by its threshold in (42) only if the condition412

P! � 0 is satisfied. Otherwise, the (41) implies413

P! D 0. It is worth to be noted that if an initial414

undamaged condition, i.e., !.X; 0/ D 0, with415

no displacement field in an unstressed reference416

configuration, i.e., u.X; 0/ D 0 8X , is selected,417

then, since K0 .X/ > 0 and K .X/ > 0, the418

threshold !T .X; 0/, from (42), is negative. Thus, 419

in order to fulfill condition (41), the rate of 420

damage, and therefore also damage, must be zero 421

before time t D t�, when the condition 422

!T .X; t
�/ D 0 (43)

is satisfied. This means that damage starts to in- 423

crease its value from the condition ! D 0 only if 424

the displacement field guarantees the occurrence 425

of (43), i.e., 426
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V

K0 .X/ D
1

2
C0.X/

�
u0
�
X; t�

��2

C nP0
1

2

�
u00 .X; t/

�2
: (44)

Such a condition gives a clear interpretation of427

the constitutive function K0.X/.428AU2
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