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Abstract Attitude stabilization of spacecraft using magnetorqers can be achie-

ved by a proportional-derivative-like control algorithm. The gains of this algo-

rithm are usually determined by using a trial-and-error approach within the

large search space of the possible values of the gains. However, when finding

the gains in this manner, only a small portion of the search space is actually

explored. We propose here an innovative and systematic approach for finding

the gains: they should be those that minimize the settling time of the attitude

error. However, the settling time depends also on initial conditions. Conse-

quently, gains that minimize the settling time for specific initial conditions
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cannot guarantee the minimum settling time under different initial conditions.

Initial conditions are not known in advance. We overcome this obstacle by for-

mulating a min-max problem whose solution provides robust gains, which are

gains that minimize the settling time under the worst initial conditions, thus

producing good average behavior. An additional difficulty is that the settling

time cannot be expressed in analytical form as a function of gains and initial

conditions. Hence, our approach uses some derivative-free optimization algo-

rithms as building blocks. These algorithms work without the need to write

the objective function analytically: they only need to compute it at a number

of points. Results obtained in a case study are very promising.

Keywords Derivative-free Optimization · Spacecraft Attitude Control ·

Robust Optimization · Min-Max Problems · Magnetic Actuators

Mathematics Subject Classification (2000) 90C26 · 90C90 · 93D15

1 Introduction

Spacecraft attitude control is a very important task in astronautics. It can be

obtained by adopting several actuation mechanisms. Among them, magnetor-

quers are widely used for generation of attitude control torques on satellites

flying in low Earth orbits. They consist of planar current-driven coils rigidly

placed on the spacecraft typically along three orthogonal axes. They operate

on the basis of the interaction between the magnetic dipole moment generated

by those coils and the Earth’s magnetic field: the interaction with the Earth’s

field generates a torque that attempts to align the magnetic dipole moment
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in the direction of the field. Magnetorquers have the limitation that control

torque is constrained to belong to a plane orthogonal to the Earth’s magnetic

field, hence a different type of actuator often supports magnetorquers to pro-

vide full three-axis control (see [1, Chapter 7]). Lately, attitude stabilization

using only magnetorquers has been considered as a feasible option especially

for low-cost micro and nano satellites, and for satellites with a failure in the

main attitude control system. In such a scenario, many control laws have been

designed, and a survey of various approaches can be found in [2]; in particular,

Lyapunov-based design has been adopted in [3–5]. The above works propose

feedback control laws that require measures of geomagnetic filed, attitude, and

possibly also attitude-rate. These works present theoretical proofs that atti-

tude stabilization is achieved if the adopted feedback gains are positive and a

scaling gain is positive and sufficiently small. However, they do not give precise

guidelines for determining appropriate numerical values for such parameters,

and they are usually determined by a trial-and-error search, carried on until a

satisfactory performance of the closed-loop system is obtained. Since the feed-

back parameters may range over extensive intervals, the corresponding search

space is numerically large. Such an approach suffers from two main limitations:

(a) it is often very time-consuming; (b) it is not systematic. Hence, even if a

satisfactory solution is obtained, it is unknown whether better solutions could

be obtained by protracting the search, and also the amount of the possible

improvement. This is very inconvenient in practice.
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In this work, we propose an innovative systematic approach for determin-

ing the feedback gains: they should be computed as those that minimize the

settling time of the attitude error. However, the settling time depends not only

on the above gains, but also on a number of other parameters representing the

initial conditions of the spacecraft. Thus, we first consider a particular set

of initial conditions and search for the gains that minimize the settling time,

hereinafter called fixed-conditions optimal gains. Subsequently, we observe that

such gains do not guarantee the minimum settling time under different initial

conditions. Clearly, there exists a large variety of possible initial conditions,

and they are not known a priori. To overcome this issue, we propose to com-

pute the values of the gains that minimize the settling time obtained under

the worst initial conditions, so as to provide averagely good results. We model

this problem as a min-max problem, and we call robust optimal gains the

obtained gains. This problem is quite difficult since the solution of the main

minimization problem (upper-level) needs the solution of a maximization prob-

lem (lower-level) at every evaluation of its objective function. A decomposition

is not possible because the worst initial conditions are not defined in general

but they, in turn, depend on the adopted gains. Many real-world problems

share this structure; for instance engineering design problems, circuit design

problems, and in general the cases when one has to determine a value that

should be “not too bad” under many different conditions or perspectives. For

related work in this area see, e.g., [6,7] and references therein.
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Our problem presents two additional difficulties: 1) settling time cannot

be expressed in analytical form as function of gains and initial conditions,

hence the specification of an explicit optimization model is prevented; 2) set-

tling time is discontinuous with respect to both gains and initial conditions.

Therefore, our approach uses some derivative-free optimization algorithms as

building blocks. These algorithms use no first order information on the objec-

tive function, nor do they need its analytical expression. They only need to

compute the objective function in a number of points by using simulations.

In particular, we use a DIRECT-type global optimization algorithm [8] to

tackle the upper-level problem in the above described min-max framework.

Roughly speaking, this method is a modification of the standard Lipschitzian

approach, that eliminates the need to specify a Lipschitz constant by carrying

out simultaneous searches using all possible constants from zero to infinity.

Convergence to the global minimum of the upper-level problem is guaranteed

by the so-called everywhere dense property, which states that DIRECT is able

to generate a set of points which, in the limit, becomes dense in the feasible

set [8–10]. To tackle the lower-level problem, we use two methods based on

two very different strategies: the mentioned DIRECT algorithm and a more

locally oriented optimization algorithm called SDBOX. The latter was initially

proposed in [11] as a globally convergent algorithm for the minimization of a

continuously differentiable function. However, it can be practically used to op-

timize different types of functions as a good compromise between efficiency and

convergence properties (see also [12]). It is a derivative-free algorithm inspired
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by the strategy underlying gradient-based methods: finding a good feasible de-

scent direction for the objective function, and then performing a sufficiently

large step along such direction. However, this algorithm does not need informa-

tion on the first order derivatives because the good feasible descent direction is

determined by investigating the local behavior of the objective function along

the coordinate directions. To select the starting points, this method allows to

incorporate additional available information on the problem structure, which

in our case comes from the physics of the problem.

In conclusion, the main contributions of this work are: i) the definition

of a new systematic approach for the determination of the feedback gains

for a proportional-derivative (PD)-like control algorithm; ii) the development

of a min-max formulation to find a robust optimal solution to the problem;

iii) a comparison of two derivative-free optimization strategies to tackle sim-

ilar min-max problems. The work is organized as follows: Section 2 defines

the spacecraft model and the control algorithm; Section 3 focuses on the opti-

mization of the feedback gains; Section 4 describes the proposed derivative-free

procedure; Section 5 reports computational results.

2 Spacecraft Model and Control Algorithm

We introduce the following reference frames to describe the attitude dynamics

of an Earth-orbiting rigid spacecraft, and to represent the geomagnetic field.

1. Geocentric Inertial Frame Fi. A commonly used inertial frame for Earth

orbits is the Geocentric Inertial Frame, whose origin is in the Earth’s centre,



A Robust Approach to Optimize Magnetorquer Gains 7

its xi axis is the vernal equinox direction, its zi axis coincides with the

Earth’s axis of rotation and points northward, and its yi axis completes an

orthogonal right-handed frame (see [1, Chapter 2.6.1]).

2. Spacecraft body frame Fb. The origin of this right-handed orthogonal frame

is attached to the spacecraft and coincides with the satellite’s centre of

mass; its axes are chosen so that the (inertial) pointing objective is aligning

Fb with Fi.

We use the following notation: symbol I represents the identity matrix. For

the generic u = [u1 u2 u3]T ∈ R3, u× represents the skew symmetric matrix

u× =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 (1)

so that, for v = [v1 v2 v3]T ∈ R3, multiplication u×v is the cross product u×v.

Since the pointing objective consists in aligning Fb to Fi, the focus will be

on the relative kinematics and dynamics of the satellite with respect to the

inertial frame. Let q = [q1 q2 q3 q4]T = [qTv q4]T with ‖q‖ = 1 be the unit

quaternion representing rotation of Fb with respect to Fi. The corresponding

attitude matrix is given by (see [13, Section 5.4])

C(q) = (q24 − qTv qv)I + 2qvq
T
v − 2q4q

×
v . (2)

The relative attitude kinematics is given by

q̇v = 1
2 (qv × ω + q4ω)

q̇4 = − 1
2q
T
v ω,

(3)
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where ω ∈ R3 is the angular rate of Fb with respect to Fi resolved in Fb (see

[13, Section 5.5.3]). The attitude dynamics in body frame can be expressed by

Jω̇ = −ω×Jω + T, (4)

where J ∈ R3×3 is the spacecraft inertia matrix, and T is the control torque

expressed in Fb (see [13, Section 6.4]). The spacecraft is equipped with three

magnetic coils aligned with the Fb axes which generate the magnetic attitude

control torque

T = mcoils ×Bb = −Bb× mcoils, (5)

where mcoils ∈ R3 is the vector of magnetic dipole moments for the three coils,

and Bb is the geomagnetic field at spacecraft expressed in body frame Fb (see

[13, Section 12.17]). Let Bi be the geomagnetic field at spacecraft expressed

in inertial frame Fi. Note that Bi varies with time at least because of the

spacecraft’s motion along the orbit. Then, Bb(q, t) = C(q)Bi(t), which shows

explicitly the dependence of Bb on both q and t.

The following nonlinear time-varying system is obtained by grouping to-

gether equations (3), (4), (5), where mcoils is the control input

q̇v = 1
2 (qv × ω + q4ω)

q̇4 = − 1
2q
T
v ω

Jω̇ = −ω×Jω −Bb(q, t)× mcoils.

(6)

We now need to characterize the time-dependence of Bb(q, t), which corre-

sponds to characterizing the time-dependence of Bi(t). By adopting the so
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called dipole model of the geomagnetic field (see [14, Appendix H]), and as-

suming that the orbit is circular of radius R, we obtain:

Bi(t) =
µm
R3

[3((m̂i(t))Tr̂i(t))r̂i(t)− m̂i(t)]. (7)

In equation (7), µm is the total dipole strength, ri(t) is the spacecraft’s position

vector resolved in Fi, and r̂i(t) is the vector of the direction cosines of ri(t). The

components of vector m̂i(t) are the direction cosines of the Earth’s magnetic

dipole expressed in Fi, which is set equal to

m̂i(t) =


sin(θm) cos(ωet+ α0)

sin(θm) sin(ωet+ α0)

cos(θm)

 , (8)

where θm is the dipole’s coelevation, ωe = 360.99 deg/day is the Earth’s

average rotation rate, and α0 is the right ascension of the dipole at time t = 0.

We use µm = 7.746 1015 Wb m and θm = 170.0◦ as reported in [15], and we

fix time t = 0 so that α0 = 0.

To characterize the time dependence of Bi(t) in (7), one needs to determine

an expression for ri(t) which is the spacecraft’s position vector resolved in Fi.

Define a coordinate system ap, bp in the orbital plane, whose origin is at

Earth’s centre, and with the ap axis coinciding with the line of nodes. Then,

the position of satellite’s centre of mass is given by

ap(t) = R cos(nt+ ψ)

bp(t) = R sin(nt+ ψ),

(9)

where n is the orbital rate, and ψ is the argument of the spacecraft at time

t = 0. The coordinates of the satellite in inertial frame Fi can be easily ob-
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tained from (9) by using an appropriate rotation matrix, which depends on the

orbit’s inclination incl and on the value Ω of the Right Ascension of the As-

cending Node (RAAN) (see [1, Section 2.6.2]). An explicit expression for Bi(t)

can be obtained by plugging the equations of the latter coordinates into (7).

The control objective is driving the spacecraft so that Fb is aligned with Fi.

From (2), it follows that C(q) = I for q = [qTv q4]T = ±q̄, where q̄ = [0 0 0 1]T.

Thus, the objective is designing control strategies for mcoils so that qv → 0 and

ω → 0. Reference [5] proposes the following stabilizing proportional-derivative

(PD)-like control law, which is a modification of those in [3] and [4]

mcoils = −Bb(q, t)× (ε2kpqv + εkdω). (10)

To present the stabilizing properties of the above feedback, we introduce the

following matrix

Γ i(t) = Bi(t)TBi(t)I −Bi(t)Bi(t)T (11)

along with its average

Γ iav = lim
T→∞

1

T

∫ T

0

Γ i(τ)dτ. (12)

Then, the following stabilization result has been obtained in [5], with condition

Γ iav > 0 always fulfilled except for low inclination orbits.

Theorem 2.1 Consider the magnetically actuated spacecraft described by (6).

Apply the PD-like control law (10) with kp > 0 and kd > 0. If the spacecraft’s

orbit satisfies Γ iav > 0, then there exists ε∗ > 0 such that for any 0 < ε < ε∗,

equilibrium (q, ω) = (q̄, 0) is locally exponentially stable for (6), (10).
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3 Determination of the Optimal Feedback Gains

The previous result does not give specific indications on how to choose the

feedback gains kp and kd, and the scaling factor ε. It only states that kp and

kd have to be > 0, and ε has to be > 0 and smaller than an upper bound

ε∗, whose value is very hard to compute in almost all practical cases. As a

matter of fact, in practical implementations, appropriate values for kp, kd and

ε are mostly determined by a trial-and-error approach that basically works as

follows: a set of significant initial conditions for the spacecraft is considered,

some first-guess positive values are chosen for kp, kd and ε, and simulations

are run. Now, in case the spacecraft’s attitude does not converge to the desired

one, the value of ε is lowered till convergence is achieved. If the corresponding

time behaviors are not satisfactory in terms, for example, of overshoot, speed

of convergence, and control inputs’ amplitudes, then the values of kp and

kd are modified according to the following guidelines used in proportional-

derivative control: kp is raised in order to increase the speed of convergence at

the expense of larger amplitudes of the control inputs; kd is raised in case the

response displays an excessive overshoot. After having modified kp and kd, it

might be necessary and/or appropriate to assign a different value to ε.

The described trial-and-error approach suffers from several limitations.

First, this approach is quite time-consuming. Each simulation may require a

short time, but running a large number of simulations can often become very

demanding. Second, and more important, it is not systematic. Therefore, when

satisfactory values of the gains are finally obtained, it is not known whether ex-
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tending the search could lead to new values of the gains that provide an overall

better performance of the closed-loop system. Moreover, in case one chooses

to extend the search, it is not known how long that should be extended, and

not even the amount of the possible improvements that this additional work

could produce. In any case, unless performing an exhaustive search for all the

possible values of the gains, it can easily happen to neglect values that provide

an overall better performance. On the other hand, an exhaustive search is al-

most always impossible to perform, because the search space is too large to

be explored in reasonable time. Indeed, if each gain ranges from 0 to a value

of the order of 108, which does not appear oversized, then a huge number of

pairs of real values should be explored. Theoretically there are infinitely many,

and even by limiting the exhaustive search to the precision of integer values,

which does not appear excessive, the number of combinations is of the order

of 1016. This implies that, even by running 103 simulations per second, the

total time would be 1013 sec., which is about 300, 000 years.

Consequently, we propose in this work the following new approach to de-

termine the feedback gains. Since the desired attitude is reached when qv = 0,

we define the settling time tsi for each component qi, with i ∈ {1, 2, 3}, as the

time needed for |qi| to become and stay smaller than ν:

tsi := min t s.t. |qi(t)| ≤ ν ∀t ≥ tsi. (13)

Value 0 < ν < 1 depends on how small we wish to keep qi. In this work, we

set ν = 0.05. Then, we define the settling-time ts for the whole quaternion q

as the settling time of the slowest component of qv, thus ts := max
i=1,2,3

tsi.
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Furthermore, rather then expressing feedback (10) by using three parame-

ters kp, kd, and ε, we rewrite it in terms of only two gains κp > 0 and κd > 0:

mcoils = −Bb(q, t)× (κpqv + κdω). (14)

Now, if we set the spacecraft’s initial conditions to specific values, then we can

determine κp and κd so that convergence to the desired attitude is achieved as

soon as possible. This can be expressed as the following optimization problem

min
κp≥0, κd≥0

ts. (15)

Finally, we observe that the solution to problem (15) would produce extremely

large values for κp and κd since, roughly speaking, the larger κp and κd, the

faster the corresponding closed-loop system. However, too large values of the

gains would require the use of magnetic dipole moments probably exceeding

the maximum value that can be physically generated by magnetorquers. Hence,

we consider the saturated version of feedback (14)

mcoils = −m?
coils sat

(
1

m?
coils

Bb(q, t)× (κpqv + κdω)

)
, (16)

in which m?
coils is the saturation limit on each magnetic dipole moment, and

sat : R3 → R3 is the standard saturation function, defined as follows: given

w ∈ R3, the i-th component of sat(w) is equal to wi if |wi| ≤ 1, otherwise it is

either 1 or -1 depending on the sign of wi. Note that, as stated in [5, Remark

5], local exponential stability of equilibrium (q, ω) = (q̄, 0) is guaranteed for

the closed-loop system even when saturated feedback (16) is employed.

After the definition of the optimization problem (15), we need to solve it

numerically. In order to deal with a feasible set that is reasonably bounded and
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not with an infinite search space, we define two upper bounds κ̂p and κ̂d for

the gains κp and κd. These values can usually be determined for the specific

problem, we do this for our case study in Section 5. Thus, the problem becomes

as follows, where the dependence of ts on the initial conditions q0 := q(0),

ω0 := ω(0), and ψ (see (9)) is explicitly indicated,

min
(κp,κd)∈K

ts(κp, κd, q0, ω0, ψ), (17)

and the feasible set is K = {(κp, κd) : 0 ≤ κp ≤ κ̂p, 0 < κd ≤ κ̂d} . Even

though ts obviously depends on κp and κd and on initial conditions, it is prac-

tically impossible to express this relationship in analytical form. In addition, ts

is discontinuous with respect to both κp and κd and initial conditions. Indeed,

it applies for ts the argument presented in [16, p. 233] showing that the set-

tling time of the step response is not continuous with respect to the system’s

parameters. Because of its intrinsic discontinuity, in optimal control it is often

tolerated to replace settling time with more tractable related functions (see

[17, Chapter 7]). However, here we keep the settling time as objective, since it

best represents the value that we aim to minimize.

Thus, for problem (17), it occurs that: i) an analytic expression of the ob-

jective function is not available, and ii) the objective function is not continuous

with respect to the decision variables. Consequently, optimization approaches

that are able to find the minimum of specific classes of functions are not ap-

plicable, and derivative-free optimization is needed.
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3.1 From the Simple Min to the Min-Max Problem

Given specific initial conditions (q0, ω0, ψ), problem (17) can be solved to opti-

mality by using the global optimization derivative-free technique described in

Section 4.1. However, if the initial conditions change, then that solution may

be no longer optimal, as shown in the case study in Section 5.1. Since many dif-

ferent initial conditions may occur in practice, a more robust approach would

consist in finding the optimal solution to problem (17) under the worst initial

condition. Such a worst case optimization is widely used in similar scenarios.

The basic idea is paying something, in terms of objective function values, in

the easy cases, and obtaining in return advantages in the more difficult sit-

uations. However, the worst initial condition is not a priori known, since it

depends on the chosen values of κp and κd. As a result, the problem cannot

be decomposed and should be solved as a whole.

The set of values describing the initial conditions is given by:

S =
{

(q0, ω0, ψ) : ‖q0v‖ ≤ 1, q04 = (1− qT0vq0v)1/2,

|ω01| ≤ ω̂01, |ω02| ≤ ω̂02, |ω03| ≤ ω̂03, 0 ≤ ψ < 2π} .

Note that S permits any possible initial attitude and any possible initial argu-

ment ψ for the spacecraft; it only limits the magnitude of the initial angular

rate. Minimizing ts under the worst initial conditions corresponds to the fol-

lowing min-max problem:

min
(κp,κd)∈K

max
(q0,ω0,ψ)∈S

ts(κp, κd, q0, ω0, ψ). (18)
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To apply the technique described in Section 4.1, we need to convert the feasible

set of each optimization problem into a hyperrectangle. Since S has not that

shape, we express the set ‖q0v‖ ≤ 1 in spherical coordinates (ρ, φ, θ) as follows:

S = {(q0, ω0, ψ) : q01 = ρ sin θ cosφ, q02 = ρ sin θ sinφ, q03 = ρ cos θ,

q40 = (1− qT0vq0v)1/2, 0 ≤ ρ ≤ 1, 0 ≤ φ < 2π, 0 ≤ θ ≤ π,

|ω01| ≤ ω̂01, |ω02| ≤ ω̂02, |ω03| ≤ ω̂03, 0 ≤ ψ < 2π} .

The dependence of ts on q0 can now be expressed as dependence on the vari-

ables (ρ, φ, θ); consequently, after having introduced the hyperrectangle

H = {(ρ, φ, θ, ω0, ψ) : 0 ≤ ρ ≤ 1, 0 ≤ φ < 2π, 0 ≤ θ ≤ π,

|ω01| ≤ ω̂01, |ω02| ≤ ω̂02, |ω03| ≤ ω̂03, 0 ≤ ψ < 2π} ,

the min-max problem (18) can be equivalently reformulated as follows

min
(κp,κd)∈K

max
(ρ,φ,θ,ω0,ψ)∈H

ts(κp, κd, ρ, φ, θ, ω0, ψ). (19)

4 The Derivative-Free Optimization Procedure

We describe in this section the min-max procedure proposed to solve prob-

lem (19). We begin with the description of the derivative-free optimization

algorithms that constitute its building blocks.

4.1 The Global Strategy

A major approach in the optimization of a possibly non-differentiable generic

function is the use of Lipschitzian methods. An obstacle in using these methods
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is the need of specifying the Lipschitz constant, which is a bound on the rate of

change of the function under optimization. However, by suitably dividing the

feasible region into sample intervals (hyperrectangles in our multi-dimensional

case), and by selecting them in a suitably order, the search may be conducted

without knowing the Lipschitz constant. In more detail, our DIRECT-type

algorithm [8] works as follows. The feasible region starts as a single hyperrect-

angle, that is internally normalized to a unit hyperrectangle. At the generic

iteration k, the algorithm partitions the hyperrectangles obtained from the

previous (k − 1)th iteration to form a collection of smaller hyperrectangles

H(k) = {H1, . . . ,Hk}, and evaluates the objective function at their central

points. The choice of the central point is essential for reducing the number

of function evaluations. Potentially optimal hyperrectangles within H(k) are

identified, and only these hyperrectangles are further partitioned and investi-

gated in next (k + 1)th iteration of the algorithm. The algorithm stops when

the size of the hyperrectangles becomes too small, or when it reaches the max-

imum number of iterations. This deterministic algorithm will converge to the

global optimum of the function if the sampling is dense enough; however the

search process may require a large number of function evaluations.

4.2 The Local Strategy

A universally known approach to the optimization of sufficiently regular func-

tions is the use of gradient-based methods, which require the computation of

the first order derivatives of the objective function. However, when no infor-
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mation on the derivatives is available, one may still try to replicate the basic

strategy underlying these methods. Essentially, SDBOX algorithm [11] works

as follows. After the selection of a starting point, we cyclically determine a good

feasible descent direction for the objective function, and then we perform a

sufficiently large step along such direction. The good feasible descent direction

is determined by investigating, at each iteration k, the local behavior of the

objective function at the variation of the i-th variable. Variables are selected

by simply following a cyclic order. If a move of length α along di produces

a feasible point where the function is sufficiently reduced, then a linesearch

technique is performed along di to provide a suitable stepsize αk. Otherwise,

the opposite direction −di is considered, and the same as above is applied.

When both di and −di do not produce a sufficient decrease, the stepsize α

is decreased. The linesearch technique, taken from [11] and derived from [18],

does not require information on the slope of the objective function. Even if

the convergence of the algorithm was proved in [11] for the case of the mini-

mization of a continuously differentiable function, it has been used to optimize

also different types of functions. It is computationally faster than the global

strategy; however a poor choice of the initial point leads to poor solutions.

4.3 The Whole Procedure

To simplify and generalize the description of the proposed robust optimization

approach, that could also be applied to different problems sharing the same

structure, we now rename the set of variables (κp, κd) as x belonging to a
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feasible set Fx = {lbi ≤ xi ≤ ubi, i = 1, . . . , n} ⊂ Rn (in our case Fx = K

and n = 2), and the set of initial conditions (ρ, φ, θ, ω0, ψ) as y belonging

to a feasible set Fy = {lbj ≤ yj ≤ ubj , j = 1, . . . ,m} ⊂ Rm (in our case

Fy = H and m = 7, since ω0 has 3 components). Denote by g(x, y) the function

providing the objective value (in our case ts). Its analytical expression is not

available, but its value can be computed by means of a software simulation.

The upper-lever minimization problem min
x∈Fx

g(x, y) should be solved only

once by means of a global strategy, since we have no elements to suppose

that the solution is in the vicinity of some pre-determinable starting point.

Therefore, we use an external loop that applies the global strategy. This loop

computes, up to a maximum number of function evaluations maxeval ext, the

value of g obtained for certain values of x. Let x̄ be one of them; then, the

corresponding evaluation needs the solution of one lower-lever maximization

problem max
y∈Fy

g(x̄, y). Thus, the lower-lever problem should be solved repeat-

edly up to maxeval ext times, and reducing its computation time to a few

seconds is crucial. In addition to solving it with the global strategy using a

necessarily small maximum number of function evaluations maxeval int (op-

tion 1), we also tackle it with the local strategy, allowing the same number of

function evaluations (option 2). Moreover, we can further favor the solution of

the maximization problem by using any information that happens to be avail-

able in the choice of the starting points. In our case, using the physics of the

problem, we suppose that good solutions are in the vicinity of extremal values

of angular velocity. Hence, we use also the local strategy with multi-start from
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different starting points, still allowing maxeval int total function evaluations

(option 3). The whole procedure is as follows:

Procedure: Solve min-max

Input: A g(x, y) computable by means of a software simulation for xi ∈

[lbi, ubi] with i = 1, ..., n and yj ∈ [lbj , ubj ] with j = 1, ...,m

Output: A robust optimum value x∗ = arg min
x∈Fx

( max
y∈Fy

g(x, y))

External loop:

Solve the upper-level problem min
x∈Fx

f(x), with f(x) = max
y∈Fy

g(x, y)

by using DIRECT for maxeval ext evaluations of f and return x∗

The k-th evaluation works with point x(k)

Internal loop:

Solve the lower-level problem max
y∈Fy

g(x(k), y)

by using:



DIRECT performing maxeval int evaluations of g

SDBOX single start performing maxeval int evaluations of g

SDBOX multistart with s starting points, performing

maxeval int

s
evaluations of g for each of them

5 Results

We apply our approach to solve the case study presented in [5]. The spacecraft’s

inertia matrix is J = diag[27, 17, 25] kg m2; the saturation level for each

magnetic dipole moment is m∗coils = 10 A m2. The inclination of the orbit is
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incl = 87◦, and the orbit’s altitude is 450 km; the corresponding orbital period

is about 5609 s; the value Ω of RAAN is equal to 0. From the previous parame-

ters, an upper bound κ̂p for κp can be determined as follows. For the considered

orbit, it can be shown by simulation that ‖Bi(t)‖ ≥ Bmin = 2.4 × 10−5 T ;

since ‖Bb(q, t)‖ = ‖Bi(t)‖, it follows that ‖Bb(q, t)‖ ≥ Bmin, as well. Assume

that the attitude sensor has a resolution in terms of quaternion’s component

of qs = 0.04. Then, an upper bound for κp can be found by enforcing that

each component of the term Bb(q, t) × κpqv (see (16)) does not exceed the

saturation limit m∗coils = 10 A m2 when Bb(q, t) and qv are orthogonal,

‖Bb(q, t)‖ = Bmin, |qi| = qr for one index i ∈ 1, 2, 3, and qi = 0 for the other

ones. This is achieved if κp is smaller than m∗coils/(Bminqr) = 1.0417 × 108;

thus, we set κ̂p = 108. Assuming that the attitude rate sensor has a resolution

of ωr = 4× 10−4 rad/s, by a parallel argument it follows that an upper bound

for κd is given by m∗coils/(Bminωr) = 1.0417× 109; thus, we set κ̂d = 109.

5.1 Fixed Initial Conditions

Consider an initial state characterized by attitude equal to the target attitude

q0 = q̄ (which corresponds to having ρ = 0 and any value for φ and θ) and by

the following initial angular rate

ω0 = [0.02 0.02 − 0.03]T rad/s. (20)

This state can occur when the spacecraft possesses the desired attitude with

no angular momentum, and an impact with an object (e.g., a piece of debris or
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a tiny meteorite) occurs, leading to an instantaneous change in the spacecraft’s

angular rate. In addition, we choose for ψ a random value over the interval

[0, 2π[ by setting ψ = 0.332 rad.

Gains κp and κd were determined in [5] by trial-and-error and set equal

to κp = 2 × 105 and κd = 3 × 108. The corresponding time behaviors are

reported in Fig. 1, and the settling time turns out to be ts = 4.002 orbital
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Fig. 1 Evolutions from initial state (20) with feedback gains determined by trial-and-error.

periods. Note that the vast majority of gains’ values would result in settling

times larger than 10 orbital periods. On the contrary, using the optimization

approach described in Section 4.1 with 32,821 iterations (corresponding to

251.5 secs. of computation), we obtain the following fixed-conditions optimal

gains:

κp = 205761.316872 κd = 99382716.049383 . (21)
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The corresponding time evolutions are represented in Fig. 2, and the obtained
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Fig. 2 Evolutions from initial state (20) with fixed-conditions optimal feedback gains (21).

optimal settling time is ts = 1.775 orbital periods. Thus, with respect to

the trial-and-error approach, a significant improvement in convergence speed

to the target attitude is achieved. Note that even if the values of the gains

determined by trial-and-error are not very far from the optimal ones, the

reduction of the settling time is quite large.

However, if we consider different initial conditions, the above gains might

be no longer optimal. For example, in the case of initial conditions having the

same attitude q0 = q̄ (i.e., ρ = 0 and any φ and θ), same argument ψ = 0.332

rad, but different initial angular rate

ω0 = [0.1 0.1 0.1]T rad/s, (22)
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the above gains yield a settling time ts = 3.562, and they are no longer optimal,

as shown in Section 5.2. The corresponding time evolutions are in Fig. 3.
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Fig. 3 Evolutions from initial state (22) with feedback gains (21).

Indeed, optimal gains would need to be recomputed for every new initial con-

dition. If we consider the practical variability of the initial conditions, it is

clearly impossible to do so. As explained in Section 3.1, a valid solution con-

sists in finding the values of the gains that provide the best value under the

worst initial condition. The worst initial condition corresponding to gains (21)

is

ρ = 0.5 φ = 0.0 θ = 2.356194490192345 ψ = 1.570796326794897

ω0 = [−0.1 0.1 0.1]T.

(23)

Under condition (23), the above values of κp and κd yield a settling time

ts = 4.338. The corresponding time evolutions are represented in Fig. 4.
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Fig. 4 Evolutions from initial state (23) with feedback gains (21).

5.2 Variable Initial Conditions

We now search for κp and κd using the robust optimization approach. We

allow initial conditions to vary as follows: 0 ≤ ρ ≤ 1, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π,

|ω01| ≤ 0.1, |ω02| ≤ 0.1, |ω03| ≤ 0.1, 0 ≤ ψ ≤ 2π. Since the number of

iterations in the internal loop critically determines the computational burden,

we allowed a maximum of 2,200 function evaluations in each internal loop to

solve the problem in reasonable times. The results of Procedure Solve min-

max with maxeval ext = 10,000 and maxeval int = 2,200 are reported in the

following Table 1.

The starting points used with SDBOX multistart are ρ = 0.5, φ = π, θ = π/2,

ψ = π and all the 8 combinations of extreme angular velocities

[ 0.1 0.1 0.1]T, [ 0.1 0.1 − 0.1]T, . . . , [−0.1 − 0.1 − 0.1]T.
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Table 1 Results of Solve min-max with maxiter ext = 10,000 and maxiter int = 2,200

DIRECT DIRECT DIRECT

+ DIRECT + SDBOX single start + SDBOX multistart

κp 205493.82716049382 203930.04115226338 209581.61865569273

κd 117283950.61728397 154320987.65432101 117283950.61728397

ts 3.359 3.142 3.742

ext eval 10,641 11,127 10,011

time (secs) 172,242.6 57,255.1 89,640.8

From the algorithmic point of view, we observe that: i) in spite of the limited

computations allowed in the internal loop, SDBOX multistart is able to reach

the highest value of the objective ts; ii) DIRECT may perform a number of

function evaluations slightly larger than the limit maxeval ext, because it in-

evitably checks the termination condition only when the whole current set of

candidate hyperrectangles has been examined (see Sect. 4.1); iii) the different

results obtained in the solution of the lower-level problems determine a differ-

ent evolution of the upper-level search. In order to determine which is the best

choice among the 3 points above, we further extend the analysis in Table 2. We

fix parameters κp and κd, and we allow many more function evaluations (eval)

for solving the maximization problem, in order to increase accuracy. This is

done by using: the global strategy; the local multistart strategy (which proved

to overperform the single start one); and an exhaustive grid search (which is

much slower and is used only as reference).
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Table 2 Thorough evaluation of the previously obtained gains.

Gains DIRECT SDBOX multistart Grid search

eval=40,000 eval=40,000 (5,000 × 8) eval=78,125 (57)

κp = 205493.82716049382 3.876 3.872 3.990

κd = 117283950.61728397

κp = 203930.04115226338 4.223 4.149 4.362

κd = 154320987.65432101

κp = 209581.61865569273 3.895 3.744 4.016

κd = 117283950.61728397

We obtain that the first point provides the smallest maximum settling time.

Thus, the robust optimal solution is given by:

κp = 205493.82716049382 κd = 117283950.61728397. (24)

To evaluate the behavior of solution (24), we use it with the three different

initial conditions reported in the previous subsection. If the initial state is

given by (20), then we obtain ts = 1.945 (instead of 1.775). Hence, there is a

modest worsening. Indeed, no improvement was possible since gains (21) are

optimal for state (20). The corresponding time evolutions are in Fig. 5.

If the initial state is given by (22), then we obtain ts = 2.958 (instead of

3.562). Hence, there is an improvement. This could be expected, though not

guaranteed, since gains (21) have a higher worst-case result than gains (24).

The corresponding time evolutions are represented in Fig. 6.
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Fig. 5 Evolutions from initial state (20) with robust optimal feedback gains (24).
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Fig. 6 Evolutions from initial state (22) with robust optimal feedback gains (24).
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Finally, if the initial state is given by (23), then we obtain ts = 3.370 (instead

of 4.338). Hence, there is a substantial improvement. Indeed, this was certain,

since gains (24) have a worst-case result considerably better than gains (21).

The corresponding time evolutions are represented in Fig. 7.

0 1 2 3 4 5 6 7 8 9 10

q
1

-1

0

1

0 1 2 3 4 5 6 7 8 9 10

q
2

-1

0

1

time (orbital period)

0 1 2 3 4 5 6 7 8 9 10

q
3

-1

0

1

Fig. 7 Evolutions from initial state (23) with robust optimal feedback gains (24).

In conclusion, the gains computed with the proposed robust optimization ap-

proach offer improvements in the difficult situations. Moreover, even if they

may be suboptimal in the easier cases, the balance appears beneficial.

6 Conclusions

PD-like feedback control can achieve attitude stabilization of a spacecraft using

only magnetorquers. However, it needs a systematic method for determining
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the PD gains. Here, we formulate this problem as the selection of the gains

that minimize the settling time under the worst initial conditions. This gives

an upper bound on the value of the settling time obtained varying the initial

conditions. This formulation turns out to be a very difficult min-max problem.

Despite this, we propose a solution approach based on the use of derivative-free

optimization algorithms, which is able to work without the need for analyt-

ically expressing the objective function, and which provides robust optimal

solutions in reasonable times. It is shown through a case-study that the PD

gains determined by the proposed method exhibit considerable advantages.
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