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Abstract We consider the convex quadratic linearly constrained problem
with bounded variables and with huge and dense Hessian matrix that arises
in many applications such as the training problem of bias support vector ma-
chines. We propose a decomposition algorithmic scheme suitable to parallel im-
plementations and we prove global convergence under suitable conditions. Fo-
cusing on support vector machines training, we outline how these assumptions
can be satisfied in practice and we suggest various specific implementations.
Extensions of the theoretical results to general linearly constrained problem
are provided. We included numerical results on support vector machines with
the aim of showing the viability and the effectiveness of the proposed scheme.
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1 Introduction

We consider the problem
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min
x

f(x)

yTx = b (1)

l ≤ x ≤ u,

where f(·) is a convex quadratic function of the type 1
2x

TQx + cTx, x ∈ R
n,

c ∈ R
n, y ∈ R

n, l ≤ u ∈ R
n, b ∈ R.

Large-scale instances of problems of type (1) arise naturally in many real-
world applications such as portfolio selection, traffic equilibrium and multicom-
modity network flow problems (see e.g. [6],[16],[17]). A widely used instance
of (1) is the dual formulation of the so called ”bias” Support Vector Machine
(SVM) training problem, a well-known machine learning technique seeking
for a separating surface for classification, that allows an offset in the separat-
ing surface. Specifically, in the bias SVM case: y ∈ {−1, 1}n, b = 0, l = 0,
u = Ce, where e ∈ R

n is a vector of all ones, and C is a positive constant;
furthermore in the quadratic function f , c = −e; and the Hessian matrix Q
is a positive semidefinite large and dense matrix. Entries of Q are defined by
Qrq = yryqK(zr, zq), r, q = 1, 2, . . . , n, where K : Rm × R

m → R is a given
kernel function [33] and (zr, yr) are elements of a training set of n input-target
pairs

D = {(zr, yr), r = 1, . . . , n, zr ∈ R
m, yr ∈ {−1, 1}}.

Hence the SVM problem is

min
x

f(x) :=
1

2
xTQx− eTx

yTx = 0 (2)

0 ≤ x ≤ Ce,

In recent years SVMs have been applied to big or huge datasets, mainly
related to web-oriented applications. This implies that the Hessian matrix
Q is so big that it cannot be entirely stored in memory so that traditional
optimization algorithms cannot be used to efficiently solve problem (2). To
overcome this difficulty, many decomposition algorithms have been proposed
in the literature for SVM to solve the linearly constrained quadratic problem
(2). The equality constraint in (2) represents the main difficulty in the def-
inition of convergent decomposition algorithms. All decomposition methods
essentially require the solution of a sequence of smaller problems in which
only a subset of the variables (the working set) is updated, but they can dif-
fer both in the selection rule of the working set and in the updating rule of
the working variables. Proving convergence of decomposition algorithms when
changing one of these two crucial aspects is not straightforward and indeed
it has motivated a large amount of papers in the literature. In particular the
decomposition strategies for the problem of type (2) can be mainly divided
into SMO (Sequential Minimal Optimization) and non-SMO methods.
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Parallel Decomposition Methods for Linearly Constrained Problems 3

SMO methods update exactly two variables at each iteration. Convergence
properties of SMO-type methods can be proved only under suitable selection
rules of the two variables. A well known selection rule that guarantees con-
vergence is the Most Violating Pair (MVP) [5,20] which is implemented e.g.
in LIBSVM [4]. Other convergent SMO-type methods use different working
set selection rules such as the second order rule used in LASVM [11,12] and
LIBSVM [10] and the cyclic rule used in [24]. Since the function is quadratic,
SMO-type methods analytically compute the optimal stepsize along the se-
lected search direction. The use of larger working sets (non-SMO methods) re-
quires to define both the selection rules and the inexact line searches along the
feasible directions (or, equivalently, the inexact solution of the subproblems)
like in SVMlight [15] and others [13,19,24,25,27,36]. However all previously
mentioned decomposition methods for solving (2) are intrinsically sequential,
and developing a convergent parallel version of any of them is not straightfor-
ward at all.

To reduce the big amount of time needed for computing a solution of prob-
lem (2), many parallel algorithms have been proposed. Some of these parallel
approaches consist in distributing among the available processors the most ex-
pensive tasks, such as subproblems solving and gradient updating, see [38,39].
Another way to fruitfully exploit parallelism is based on splitting the train-
ing data into subsets and distributing them among the processors [3,14,37,
40]. While achieving a good reduction of the training time with respect to
sequential methods, these methods may lack convergence properties or may
require strong assumptions to prove them. Actually, combining the decompo-
sition rules for the selection of the working sets with parallelism makes the
proof of convergence a very difficult task, see [23]. This is mainly due to the
nonseparability of the objective function and of the feasible set of problem (2).

It is worth to mention that, in the field of SVMs, a recent trend has been
toward the unbiased SVM dual problem (see e.g. LIBLINEAR [9], SAGA [7],
SDCA [31,32], Mini-batch primal dual [35], Pegasos [30] and others [22,34]).
The interest toward unbiased SVMs is due to the fact that, in spite of solv-
ing a simpler formulation, unbiased SVMs may produce similar generalization
performance than bias ones. Moreover, from the optimization point of view,
the unbias version leads to a dual formulation without the linear non separable
equality constraint. On the other hand, it is well-known that in certain cases,
for example when the distribution of the data in the two classes is uneven (see
[30]), the bias plays a crucial role concerning the generalization performance.
Recently a new provably convergent method has been proposed in [26] that,
iteratively adjusting the offset values, computes a solution of the bias problem
(2) by solving a sequence of dual formulations that do not include the difficult
equality constraint and, then, can be solved in parallel. Even if this method
solves the more general bias version, it requires multiple parallel optimizations
in order to solve any single SVM training. Thus it can be inefficient in cases
in which the offset must be updated many times.

In this work we propose a new class of convergent decomposition algorithms
for the bias problem (2) that easily allows efficient parallel implementations.
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4 A. Manno, L. Palagi, S. Sagratella

We first consider the quadratic case (2), for which we introduce a general fully
parallelizable decomposition scheme. We prove its convergence under suitable
assumptions and we show how to practically satisfy them. The main idea
underneath the convergence proof is to use as merit function a sufficient “pre-
dicted movement” rather than a more classical sufficient “predicted objective
descent”. The convergence analysis partially exploits the results in [8,36]. A
specific implementation is tested on some datasets with the sole aim of showing
the effectiveness of the proposed parallel strategy.

In the last part of the paper, we focus on the more general case of a problem
with multiple equality constraints

min
x

f(x)

Ax = b (3)

l ≤ x ≤ u,

where f(·) is a generic continuously differentiable and convex function, x ∈ R
n,

A ∈ R
m×n, b ∈ R

m, l ≤ u ∈ R
n (possibly with −∞ or ∞ components). This

formulation includes all instances of convex optimization over polyhedra.

The paper is organized as follows: from Section 2 to Section 7 we consider
the specific SVM formulation (2); in particular in Section 2 we introduce some
preliminary results and in Section 3 we present the general parallel algorithmic
scheme. We analyze its convergence properties in Sections 4, 5 and 6; in Section
7 we discuss about some possible practical implementations and we show some
exemplifying numerical tests. Finally, in Section 8 we extend the theoretical
results to the general case (3).

Notation In the following we use this notation. Vectors are boldface. Given a
vector x ∈ R

n and a subset of indices P ⊆ {1, . . . , n}, we denote by xP ∈ R
|P |

the subvector made up of all components xr with r ∈ P , and by x−P ∈
R

n−|P | the subvector made up of all components xr with r 6∈ P . With ‖ · ‖ we
indicate the euclidean norm, whereas the zero norm of a vector ‖x‖0 denotes
the number of nonzero components of the vector. Furthermore, given a square
n × n matrix Q, we denote by Q∗r the r−th column of the matrix. Given
two subsets of indices Pr, Pq ⊆ {1, . . . , n}, we write QPrPq

to indicate the
|Pr| × |Pq| submatrix of Q with row indices in block Pr and column indices in

block Pq. We denote by λQ
min and λQ

max the minimum and maximum eigenvalues
of Q respectively. We also use the notation Q � / ≻ 0 to denote that Q is
positive semidefinite/definite. We denote the r−th component of the gradient

of a function f as ∇f(x)r = ∂f(x)
∂xr

and as ∇P f(x) ∈ R
|P | the subvector of the

gradient made up of all components ∂f(x)
∂xr

with r ∈ P . We denote by F the
feasible sets of both problems (2) and (3).
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Parallel Decomposition Methods for Linearly Constrained Problems 5

2 Optimality Conditions and Preliminary Results

Let us consider a solution x∗ of problem (2). Since all the constraints are
linear and the objective function is convex, necessary and sufficient conditions
for optimality are the Karush-Kuhn-Tucker (KKT) conditions stating that
there exists a scalar s such that for all indices r ∈ {1, . . . , n}:

∇f(x∗)r + syr ≥ 0 if x∗
r = 0

∇f(x∗)r + syr ≤ 0 if x∗
r = C (4)

∇f(x∗)r + syr = 0 if 0 < x∗
r < C.

It is well known (see e.g.[15]) that the KKT conditions can be written in a
more compact form by introducing the following sets

Iup(x) := {r ∈ {1, . . . , n} : xr < C, yr = 1, or xr > 0, yr = −1},

Ilow(x) := {r ∈ {1, . . . , n} : xr < C, yr = −1, or xr > 0, yr = 1}.
Assuming that Iup(x

∗) 6= ∅ and Ilow(x
∗) 6= ∅, then we can rewrite (4) as

m(x∗) = max
r∈Iup(x∗)

−∇f(x∗)ryr ≤ min
r∈Ilow(x∗)

−∇f(x∗)ryr = M(x∗). (5)

By the convexity of problem (2), we can say that x∗ is optimal if and only if
either Iup(x

∗) = ∅ or Ilow(x
∗) = ∅ or condition (5) holds.

Such a form of the KKT conditions is the basis of most efficient sequential
decomposition algorithms for the solution of problem (2). In decomposition
algorithms the sequence {xk} is obtained by changing at each iteration k only
a subset of the variables, let’s say xPk

with Pk ⊂ {1, . . . , n}, while the other
x−Pk

remain unchanged. Thus the sequence takes the form

xk+1 = xk + αkdk,

where dk is a sparse feasible descent direction such that ‖dk‖0 = |Pk| with
|Pk| << n and αk represents a stepsize along this direction. Whatever the
feasible direction dk is, since the objective function is quadratic and convex,
the choice of the stepsize can be performed by using an exact minimization of
the objective function along dk. Indeed, let β̄ > 0 be the largest feasible step
at xk ∈ F along the descent direction dk then

αk := min

{
−∇f(xk)Tdk

dkT
Qdk

, β̄

}
. (6)

Sequential decomposition methods differ in the choice of the direction dk, or
equivalently in the choice of the so called working set Pk.

SMO-type methods use feasible descent directions dk with ‖dk‖0 = 2 which
is the minimal possible cardinality due to the equality constraint. At a feasible
point x ∈ F a feasible direction with two nonzero components d(ij) is given
by
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6 A. Manno, L. Palagi, S. Sagratella

d(ij)r :=





yr if r = i

−yr if r = j

0 otherwise

, r = 1, . . . , n, (7)

for any pair (i, j) ∈ Iup(x) × Ilow(x) (recalling yi ∈ {−1, 1}). We say that
a pair (i, j) ∈ Iup(x) × Ilow(x) is a violating pair at x if it satisfies also the
descent condition ∇f(x)Td(ij) < 0.

The exact optimal stepsize α ≥ 0 along such a direction d(ij) can be
efficiently computed by noting that in (6) we have

β̄ = min {βi, βj} , (8)

where

βh :=

{
xh if d

(ij)
h < 0

C − xh if d
(ij)
h > 0.

(9)

Thus we get the value of the optimal stepsize α along a direction d(ij) as

α := min

{
− ∇fiyi −∇fjyj
Qii +Qjj − 2yiyjQij

, β̄

}
. (10)

Among such minimal descent directions, i.e. violating pairs, a crucial role is
played by the so called Most Violating Pair (MVP) direction (see e.g. [5]). To
be more specific, given a feasible point x, let us define the sets

IMV P
up (x) :=

{
i ∈ Iup(x) : i ∈ argmaxh∈Iup(x) −∇f(x)hyh

}
,

IMV P
low (x) :=

{
j ∈ Ilow(x) : j ∈ argminh∈Ilow(x) −∇f(x)hyh

}
.

(11)

If x is not a solution of problem (2), then (iMVP, jMVP) ∈ IMV P
up (x)× IMV P

low (x) is
a pair, possibly not unique, that violates the KKT conditions at most and it
is said a Most Violating Pair (MVP). In the sequel, for the sake of notational
simplicity, we assume that, for every feasible x, the MVP is unique as this
makes no difference in our analysis.

The direction dMVP ∈ R
n corresponding to the pair (iMVP, jMVP) ∈ IMV P

up (x)×
IMV P
low (x) is, among all the feasible descent directions with only two nonzero
components, the steepest descent one at x. Most of the convergent decompo-
sition methods for problem (2), both SMO and non-SMO, embed the MVP
selection rule in the scheme usually using the value of the objective function
obtained by the MVP strategy as a reference value to decide how to perform
the next iteration. In our scheme we adopt the MVP rule in a complete dif-
ferent way. To this aim we introduce the definition of “Most Violating step”
(MVP step). Let xMVP = x + αMVPdMVP with αMVP obtained by an exact line
search as in (10) with i = iMVP, j = jMVP.
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Parallel Decomposition Methods for Linearly Constrained Problems 7

Definition 1 (Most Violating Step ) At any feasibile point x ∈ F , the
Most Violating Step (MVP Step) SMVP is defined as:

SMVP(x) := ‖xMVP − x‖ = |αMVP|‖dMVP‖. (12)

In particular, since yi ∈ {−1, 1} we have that SMVP(x) = |αMVP|
√
2.

We can state an optimality condition using the definition of MVP step.

Proposition 1 A point x∗ ∈ F is optimal for problem (2) if and only if either
Iup(x

∗) = ∅ or Ilow(x
∗) = ∅ or SMVP(x

∗) = 0.

Proof As said above x∗ is optimal for problem (2) if and only if either Iup(x
∗) =

∅ or Ilow(x
∗) = ∅ or condition (5) holds. Therefore we only have to show that,

whenever Iup(x
∗) 6= ∅ and Ilow(x

∗) 6= ∅, the following holds:

SMVP(x
∗) = 0 ⇔ m(x∗) ≤ M(x∗).

Since Iup(x
∗) 6= ∅ and Ilow(x

∗) 6= ∅, we can compute a pair (i∗MVP, j
∗
MVP) ∈

IMV P
up (x∗)× IMV P

low (x∗) and d∗
MVP = d(i∗MVP,j

∗
MVP) as in (7). The condition m(x∗) ≤

M(x∗) is equivalent to inequality ∇f(x∗)Td∗
MVP ≥ 0. By noting that d∗

MVP is a
feasible direction at x∗, then from (8) we have β̄ > 0. Therefore by (10) we
can conclude that ∇f(x∗)Td∗

MVP ≥ 0 if and only if α∗
MVP = 0 and, in turn, if and

only if SMVP(x
∗) = 0, so that the proof is complete. ⊓⊔

3 A Parallel Decomposition Model

In this section we introduce the parallel decomposition scheme for finding a
solution of problem (2). The theoretical properties and implementation de-
tails are discussed in the next sections. The algorithm fits in a decomposition
framework where, as usual, the solution of problem (2) is obtained by a se-
quence of solutions of smaller problems in which only subsets of the variables
are changed. To fix notation, let xk ∈ F and consider a subset Pi ⊂ {1, . . . , n},
so that xk can be partitioned as xk := (xk

Pi
,xk

−Pi
). Any subproblem consisting

in minimizing the objective function with respect to xPi
with x−Pi

fixed to
the current value xk

−Pi
is:

min
xPi

∈Fk
Pi

fPi
(xPi

,xk
−Pi

) +
τki
2
‖xPi

− xk
Pi
‖2, (13)

where fPi
denotes the function f restricted to the variables xPi

when x−Pi

are fixed to the current value. A proximal point term with τki ≥ 0 has been
added [27] and the feasible set is

Fk
Pi

:= {xPi
∈ R

|Pi| : yT

Pi
xPi

= yT

Pi
xk
Pi
, 0 ≤ xPi

≤ CePi
}.

Problem (13) is still quadratic and convex with Hessian matrix QPiPi
+ τki IPi

symmetric and positive semidefinite, and linear term given by ℓkPi
+ τki x

k
Pi
,

where
ℓkPi

=
∑

Pj∈P,j 6=i

QPiPj
xk
Pj

− ePi
.
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8 A. Manno, L. Palagi, S. Sagratella

We denote x̂k
Pi

as a solution of problem (13), which is unique either if τki > 0
or if QPiPi

is positive definite.
The parallel scheme that we are going to define is not based on splitting

the data set or on parallelizing the linear algebra, but on defining a bunch
of subproblems to be solved by means of parallel and independent processes.
Unlike sequential decomposition methods, the search direction dk is obtained
by summing up smaller directions obtained by solving in parallel this bunch
of subproblems of type (13).

Let us define a partition P = {P1, P2, . . . , PN} of the set of all indices
{1, . . . , n}. By definition we have that Pi ∩Pj = ∅ and ∪iPi = {1, . . . , n}. The
basic idea underlying the definition of the parallel decomposition algorithm is
summarized in the following scheme.

Algorithm 1 Parallel Decomposition Model

Initialization Choose x0 ∈ F and set k = 0.
Do while xk is not optimal for problem (2).

S.1 (Partition definition)
Set Pk = {P1, P2, . . . , PNk} and set τki ≥ 0 for all i =
1, . . . , Nk.

S.2 (Blocks selection)
Choose a subset of blocks J k ⊆ Pk.

S.3 (Parallel computation)
For all Pi ∈ J k compute in parallel an optimal solution x̂k

Pi

of problem (13).
S.4 (Direction) Set dk ∈ R

n block-wise as

dk
Pi

=

{
x̂k
Pi

− xk
Pi

if Pi ∈ J k,

0 otherwise.
(14)

S.5 (Stepsize) Choose a suitable stepsize αk > 0.
S.6 (Update) Set xk+1 = xk + αkdk and k = k + 1.

End While
Return xk.

We first show that the search direction defined in (14) ia a feasible and descent
direction.

Theorem 1 Let xk ∈ F and assume that either QPiPi
≻ 0 for all Pi ∈ J k or

τki ≥ τ > 0 for all k.
Then the direction defined by (14) is feasible and satisfies

∇f(xk)Tdk ≤ −ρ‖dk‖2 (15)

with ρ = minPi∈J k(τki + λ
QPiPi

min ) > 0.
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Parallel Decomposition Methods for Linearly Constrained Problems 9

Proof Note that x̂k
Pi

satisfies the optimality condition

[
∇Pi

fPi
(x̂k

Pi
,xk

−Pi
) + τki (x̂

k
Pi

− xk
Pi
)
]T

dPi
≥ 0 (16)

for any feasible direction dPi
at x̂k

Pi
. The direction dk is partitioned into the

blocks dk
Pi

= x̂k
Pi

− xk
Pi

for Pi ∈ J k and dk
Pi

= 0k
Pi

for Pi /∈ J k.

To prove that dk belongs to the feasible cone at xk ∈ F

{d ∈ R
n : yTd = 0, di ≥ 0, ∀ i : xk

i = 0, and di ≤ 0, ∀ i : xk
i = C, }.

Indeed we get

yTdk =
∑

Pi∈J k

yPi

T
(
x̂k
Pi

− xk
Pi

)
= 0,

from the fact that yPi

T x̂k
Pi

= yPi

Txk
Pi
. Furthermore, by the feasibility of x̂k

j ,
it holds that

dkj = x̂k
j − xk

j =

{
x̂k
j − 0 ≥ 0 when xk

j = 0

x̂k
j − C ≤ 0 when xk

j = C
for all j ∈ Pi ∈ J k,

and, therefore, dk is feasibile at xk.

Now consider

∇f(xk)Tdk =
∑

Pi∈J k

∇Pi
fPi

(xk)Tdk
Pi
.

Note that the direction −dk
Pi

is a feasible direction at x̂k
Pi

for all Pi ∈ J k.
Hence by substituting into (16) we can write

∇Pi
fPi

(x̂k
Pi
,xk

−Pi
)Tdk

Pi
≤ −τki ‖dk

Pi
‖2 (17)

and it holds that

∇Pi
fPi

(xk)Tdk
Pi

=

−
(
∇Pi

fPi
(x̂k

Pi
,xk

−Pi
)−∇Pi

fPi
(xk)

)T

dk
Pi

+∇Pi
fPi

(x̂k
Pi
,xk

−Pi
)Tdk

Pi

(17)

≤
−dk

Pi

T

QPiPi
dk
Pi

− τki ‖dk
Pi
‖2 ≤

−λ
QPiPi

min ‖dk
Pi
‖2 − τki ‖dk

Pi
‖2.

Being ρ = minPi∈J k(τki + λ
QPiPi

min ) > 0, we have

∇Pi
fPi

(xk
Pi
,xk

−Pi
)Tdk

Pi
≤ −ρ‖dk

Pi
‖2. (18)

and the result follows. ⊓⊔
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10 A. Manno, L. Palagi, S. Sagratella

The scheme above encompasses different possible algorithms depending on
the choice of the partition Pk at S.1, the blocks selection J k at S.2 and the
stepsize rule at S.5.

At S.1 a partition Pk of {1, . . . , n} is defined. We point out that both
the number Nk of the blocks and their composition in Pk can vary from
one iteration to another. For notational simplicity we omit the dependency
of the blocks P1, P2, . . . , PNk on the iteration k. As usual in decomposition
algorithms, a correct choice of the partition is crucial for proving the global
convergence of the method. We discuss this issue in Section 5.

The size of the blocks is a key factor for computational performances.
Mainly we can consider two opposite strategies: a SMO-type method that uses
blocks of dimension |Ph| = 2 or higher dimensional blocks |Ph| > 2. In SMO-
type methods we can take advantage of the fact that, for each block h, the
subproblem (13) can be solved analytically. On the other hand in order to get
fast convergence, the simultaneous optimization of a great number of SMO-
blocks may be needed. This choice could be well suited for an architecture
composed of a great amount of simple processing units, like that of the recent
Graphic Processing Units (GPUs). Using higher dimensional blocks may be a
suitable choice whenever a few powerful processing units are available. Since
the subproblem (13) is still convex quadratic over a simple polyhedron, all the
exact or approximate methods can be applied for its solution, even sequential
decomposition methods if the blocks are large enough.

Once we have determined a blocks partition of the whole set of variables,
only a subset of the resulting subproblems may, in general, be involved in
the optimization process. Indeed, we may further restrict the blocks used to
update the current iterate by selecting at S.2 a subset J k of the blocks in
Pk. These blocks are the only ones used at S.3 to compute a search direction
dk according to (14). The selection of blocks makes the algorithmic scheme
more flexible since one can set the overall computational burden. The main
computational burden is due to the gradient update which may be needed both
for checking optimality of the current point xk and, as explained in the next
sections, for ensuring the convergence (blocks selection). It is well known that,
for large scale problems, the gradient update is a big effort due to expensive
kernel evaluations. Indeed at each iteration, it requires the computation of the
columns of Q related to those variables that are chosen to be in the selected
blocks J k using the following iterative updating rule

∇f(xk+1) = ∇f(xk) + αk
∑

Pi∈J k

∑

h∈Pi

Q∗hd
k
h. (19)

Hence the choice of J k may take into account both the decrease of the ob-
jective function and the computational effort for updating the gradient. A
minimal threshold on the percentage of objective function decrease associated
to each block, with respect to the cumulative decrease of every block, could
be a possible discriminant for a block selection rule in order to avoid useless
computations.
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Parallel Decomposition Methods for Linearly Constrained Problems 11

At S.3 we obtain an optimal solution x̂k
Pi

of problem (13) for each Pi ∈ J k.
The computational burden of this step consists in

– computing the vector ℓkPi
to construct the objective function of (13) for all

blocks Pi ∈ J k,
– solving the |J k| subproblems.

These |J k| convex quadratic problems can be distributed to different processes
in order to be solved in a parallel fashion.

At S.4 the algorithm computes the search direction dk.
At S.5 the algorithm computes the stepsize αk.
We show in the next section (Theorems 2, 3 and 4) that, in order to have

convergence of the algorithm, αk can be computed according to a simple dimin-
ishing stepsize rule or a linesearch procedure (including the exact minimization
rule). We remark that the use of a diminishing stepsize rule as theoretical tool
to prove convergence is widely employed in recent algorithms for Machine
Learning. See e.g. the comprehensive surveys on optimization methods [2] and
the papers [8,29].

4 Theoretical Analysis

We analyse the theoretical properties of Algorithm 1. We first show in this
section that under suitable assumptions the sequence {xk} produced by the
algorithm satisfies

lim
k→∞

SMVP(x
k) = 0. (20)

However this is not enough to guarantee the asymptotic convergence of {xk}
to a solution of problem (2). This is due to the implicit discontinuous nature
of the indices sets Iup and Ilow that enters in the definition of SMVP(x

k). We
discuss these aspects in Section 6.

We introduce the definition of descent block and of descent iteration that
play a fundamental role in the convergence analysis.

Definition 2 (Descent block) Given ǫ > 0. At a feasible point xk, we say
that the block of variables Pi ⊆ {1, . . . , n} is a descent block if it satisfies

‖x̂k
Pi

− xk
Pi
‖ ≥ ǫSMVP(x

k), (21)

where x̂k
Pi

is the optimal solution of the corresponding problem (13) and

SMVP(x
k) is defined in (12).

Definition 3 (Descent iteration) An iteration k of Algorithm 1 is said a
descent iteration if the set J k, selected at S.2, contains at least one descent
block Pi at x

k.

Under the assumption that at least one descent block is selected for opti-
mization at S.2 of the parallel algorithmic model, we will prove that by using
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12 A. Manno, L. Palagi, S. Sagratella

a suitable αk at S.5 the sequence {xk} produced by the algorithm satisfies
(20), i.e.

lim
k→∞

SMVP(x
k) = 0.

In the next section, we prove that this assumption is easy to achieve.
We first consider the case when the stepsize αk is determined by a standard

Armjio linesearch procedure along the direction dk.

Theorem 2 Let {xk} be the sequence generated by Algorithm 1 where αk ≤ 1
at S.5 satisfies the following Armjio condition

f(xk + αkdk) ≤ f(xk) + θαk∇f(xk)Tdk, (22)

with θ ∈ (0, 1). Assume that for all k

(i) there exists an integer k̃, with k ≤ k̃ ≤ L + k for a finite L ≥ 0, such
that k̃ is a descent iteration;

(ii) either QPiPi
≻ 0, or τki ≥ τ > 0, for all Pi ∈ J k.

If Algorithm 1 does not terminate in a finite number of iterations to a solution
of problem (2), then {xk} admits a limit point satisfying (20).

Proof Let us assume that an infinite sequence {xk} is generated. Since αk ≤ 1,
from Theorem 1 we know that {xk} is a feasible sequence and that (18) holds.
From conditions (22) and (18) we can write

f(xk+1)− f(xk) ≤ −αkθρ‖dk‖2. (23)

Therefore the sequence {f(xk)} is decreasing and bounded below, so that it
converges and we get

lim
k→∞

(f(xk+1)− f(xk)) = 0. (24)

Let x̄ be a limit point of {xk}, at least one of such points exists being F
compact. Since, by the compactness of F and by the continuity of f , −∞ <
f(x̄)− f(x0) for all x0 ∈ F , then, by (23) and (24), we can write

∞∑

k=0

αk‖dk‖2 < +∞. (25)

By condition (i) we can define an infinite subsequence {xk}
K̃

made up of only
descent iterations. Then, by (25), it follows that

∞∑

k=0,k∈K̃

αk‖dk‖2 < +∞. (26)

By standard arguments we know that a stepsize satisfying the Armijo rule
(22) produces at each iteration an αk > 0 (see [1]) such that

∞∑

k=0,k∈K̃

αk = +∞. (27)
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Parallel Decomposition Methods for Linearly Constrained Problems 13

By (26) and (27), we obtain

lim inf
k→∞,k∈K̃

‖dk‖ = 0.

Now since each J k with k ∈ K̃ contains a descent block at xk, by (21) we can
conclude that

lim inf
k→∞,k∈K̃

SMVP(x
k) = 0,

and then, since SMVP(x
k) ≥ 0 for all k, we can write

lim inf
k→∞

SMVP(x
k) = 0. (28)

Now suppose by contradiction that lim supk→∞ SMVP(x
k) > 0, then for any

γ > 0 sufficiently small we would have SMVP(x
k) > γ for infinitely many k and

SMVP(x
k) < γ

2 for infinitely many k. Therefore, one can always find an infinite
set of indices, say N , having the following property: for any n ∈ N , there
exists an integer in > n such that SMVP(x

n) < γ
2 and SMVP(x

in) > γ. Then it

is easy to see that xn 6= xin and then
∑in−1

k=n αk‖dk‖ > 0 for all n ∈ N . And
then

lim inf
n∈N ,n→∞

in−1∑

k=n

αk‖dk‖ > 0,

which is in contradiction with (25). Then we finally obtain (20). ⊓⊔
Note that the same result holds if we choose any xk+1 satisfying f(xk+1) ≤
f(xk + αkdk) being αk the Armijo stepsize. In particular xk+1 can be deter-
mined by performing an exact linesearch along dk. Since f is quadratic, an
exact minimization along direction dk can be performed analytically:

αk := max

{
min

{
−∇f(xk)Tdk

dkT
Qdk

, αk

}
, 0

}
, (29)

where

αk := min
i∈{1,...,n}:dk

i
6=0

{
αk
i =

{
xk
i if dk

i < 0
C − xk

i if dk
i > 0

}
.

Note that in this case it is not necessary to impose αk ≤ 1 since the feasibility
is guaranteed by construction.

If n is huge, performing either an exact line search or an Armijo one may
be computationally expensive. We propose to save computations by using a
diminishing stepsize strategy. We give two different convergence results based
on slightly different hypotheses.

Theorem 3 Let {xk} be the sequence generated by Algorithm 1 where at S.5
αk ∈ (0, 1] satisfies the following condition

αk → 0 and

∞∑

k=0

αk = +∞. (30)

Assume that for all k

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 A. Manno, L. Palagi, S. Sagratella

(i) k is a descent iteration;
(ii) either QPiPi

≻ 0, or τki ≥ τ > 0, for all Pi ∈ J k.

If Algorithm 1 does not terminate in a finite number of iterations to a solution
of problem (2), then {xk} admits a limit point satisfying (20).

Proof Assume that an infinite sequence is generated. Since αk ≤ 1, from The-
orem 1 we know that {xk} is a feasible sequence and that (18) holds.

Since f is quadratic, for any k ≥ 0 we can write (Descent Lemma [1]):

f(xk+1)− f(xk) ≤ αk∇f(xk)Tdk +
1

2
(αk)2λQ

max‖dk‖2. (31)

By using (ii) and (18) we can rewrite inequality (31):

f(xk+1)− f(xk) ≤ αk

(
−ρ+

αkλQ
max

2

)
‖dk‖2. (32)

Since, by (30), αk → 0 it follows that there exist ρ̄ > 0 and k̄ sufficiently large
such that for all k ≥ k̄ inequality (32) implies:

f(xk+1)− f(xk) ≤ −αkρ̄‖dk‖2.

Since, as said in the proof of Theorem 2, −∞ < f(x̄) − f(xk̄) for all xk̄ ∈ F
and any limit point x̄ of {xk}, in a similar way we can write

∞∑

k=k̄

αk‖dk‖2 < +∞. (33)

By (30),
∑∞

k=k̄ α
k = +∞, and then we obtain

lim inf
k→∞

‖dk‖ = 0.

Now since each J k contains a descent block at xk, by (21) we can conclude
that

lim inf
k→∞

SMVP(x
k) = 0,

and the thesis follows under the same reasoning of the proof of Theorem 2. ⊓⊔

As stated in Theorem 3, a diminishing stepsize rule requires all iterations to
be descent. In some cases (i.e. when the variables are randomly partitioned),
it could be useful to relax this condition, requiring that only a subsequence of
the iterations are descent, as well as for Theorem 2. This is formalized in the
next theorem where we assume the additional mild hypothesis of monotonicity
of the sequence {αk}.
Theorem 4 Let {xk} be the sequence generated by Algorithm 1 where at S.5
αk ∈ (0, 1] satisfies (30). Assume that for all k

(i) there exists an integer k̃, with k ≤ k̃ ≤ L + k for a finite L ≥ 0, such
that k̃ is a descent iteration;
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Parallel Decomposition Methods for Linearly Constrained Problems 15

(ii) either QPiPi
≻ 0, or τki ≥ τ > 0, for all Pi ∈ J k;

(iii) αk ≥ αk+1.

If Algorithm 1 does not terminate in a finite number of iterations to a solution
of problem (2), then {xk} admits a limit point satisfying (20).

Proof Following the same reasoning of Theorem 3, inequality (33) holds. By
condition (i) we can define an infinite subsequence {k}K̃ containing only de-
scent iterations. Then by (33) it follows that

∞∑

k=k̄,k∈K̃

αk‖dk‖2 < +∞. (34)

We can write the following chain of inequalities

+∞ =
∞∑

k=k̄+1

L−1∑

h=0

αL·k+h ≤ L
∞∑

k=k̄+1

αL·k ≤ L
∞∑

k=k̄,k∈K̃

αk,

where the equality is due to (30), the first inequality holds by (iii) and the
second inequality holds by (i) and (iii). Then the thesis follows from the same
reasoning of the proof of Theorem 2. ⊓⊔

A simple dminishing rule could be αk = 1
kξ , with ξ ∈ (0, 1], but different

choices are also possible. Although preliminary tests showed that the exact
minimization is more effective than any other choice, the diminishing stepsize
strategy, besides being easy to implement, requires much less computations
and this could be of great practical interest for high dimensional instances
(training sets with many samples and many dense features).

5 Construction of the Partitions

To make the results stated in the previous section of practical interest, the
major difficulty is to state conditions that ensure that a descent iteration is
generated according to Definition 3.

We prove that the MVP can be useful to construct a descent iteration. To
this aim we first prove, in the next lemma, that there is a relation between the
steplenght produced optimizing over a generic block Ph and the one produced
optimizing over any violating pair (i, j) belonging to Ph. This result will be
useful in order to practically build a descent block and it is used in Theorem
5.

In this section we use the simplified assumption that any principal subma-
trix of Q of order 2 is positive definite.

Lemma 1 Assume that any principal submatrix Q of order 2 is positive def-
inite. Let xk ∈ F be a feasible point for problem (2) and let (i, j) ∈ Iup(x

k)×
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16 A. Manno, L. Palagi, S. Sagratella

Ilow(x
k) be such that ∇f(xk)Td(ij) < 0 where d(ij) is defined as in (7). Sup-

pose that a block Ph ⊆ {1, . . . , n} exists such that (i, j) ⊆ Ph. Let x
k be the

unique solution of

min
x{i,j}∈F{i,j}

f{i,j}

(
x{i,j},x

k
−{i,j}

)
. (35)

Then there exists a scalar ǭ > 0 such that

‖x̂k
Ph

− xk
Ph

‖ ≥ ǭ‖xk − xk‖, (36)

where x̂k
Ph

is a solution of problem (13).

Proof First we note that
xk = xk + ᾱd(i,j)

with d(i,j) defined in (7) and ᾱ > 0 computed as in (10). For the sake of
notational simplicity, we set d = d(i,j) and dPh

is the corresponding subvector
in R

|Ph|.
Two cases are possible:

(a) x̂k
Ph

+ µdPh
/∈ FPh

for all µ > 0, or

(b) µ > 0 exists such that x̂k
Ph

+µdPh
∈ FPh

, that is dPh
is a feasible direction

at x̂k
Ph

.

(a) By construction it holds that yT

Ph
dPh

= 0. Then it holds that for all µ > 0:

yT

Ph
(x̂k

Ph
+ µdPh

) = yT

Ph
x̂k
Ph

= yT

Ph
xk
Ph

,

where the last equality holds since x̂k
Ph

∈ FPh
. Therefore we can conclude

that for all µ > 0:
x̂k
Ph

+ µdPh
/∈ [0, C]|Ph|,

and then either x̂k
i or x̂k

j must be on a bound. In particular, supposing

,without loss of generality, that i is the component on the bound, if di > 0
then x̂k

i = C and then we can write

0 < ᾱdi = xk
i − xk

i ≤ C − xk
i = x̂k

i − xk
i ;

otherwise di < 0 then x̂k
i = 0 and then

0 > ᾱdi = xk
i − xk

i ≥ 0− xk
i = x̂k

i − xk
i .

In both cases it holds that

|ᾱdi| ≤ |x̂k
i − xk

i |.

Therefore noting that |ᾱdi| = |ᾱ| and that |ᾱ|
√
2 = ‖x̄k − xk‖ we can

conclude that

‖x̂k
Ph

− xk
Ph

‖ ≥ |ᾱ| = 1√
2
‖xk − xk‖.
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Parallel Decomposition Methods for Linearly Constrained Problems 17

(b) Since dPh
is a feasible direction at x̂k

Ph
and since x̂k

Ph
is an optimal solution

of problem (13) at xk, by (16), we can write

[
∇Ph

fPh

(
x̂k
Ph

,xk
−Ph

)
+ τki (x̂

k
Ph

− xk
Ph

)
]T

dPh
≥ 0. (37)

Since xk is a solution of (35), and being −d a feasible direction for (35)
at xk, then, by the minimum principle and since (i, j) ⊆ Ph, we can write

∇Ph
fPh

(
xk
Ph

,xk
−Ph

)T

dPh
≤ 0.

And therefore by (37) we can write

[
∇Ph

fPh

(
x̂k
Ph

,xk
−Ph

)
+ τkh (x̂

k
Ph

− xk
Ph

)
]T

dPh
≥ ∇Ph

fPh

(
xk
Ph

,xk
−Ph

)T

dPh
.

(38)

By assumptions, σ > 0 exists such that

σ‖xk
Ph

− xk
Ph

‖2 ≤ (xk
Ph

− xk
Ph

)TQPhPh
(xk

Ph
− xk

Ph
)

=
[
∇Ph

fPh

(
xk
Ph

,xk
−Ph

)
−∇Ph

fPh

(
xk
Ph

,xk
−Ph

)]T
ᾱdPh

.
(39)

Then combining (38) and (39) we can write

σ‖xk
Ph

− xk
Ph

‖2 ≤ τkh (x̂
k
Ph

− xk
Ph

)T ᾱdPh
+

[
∇Ph

fPh

(
x̂k
Ph

,xk
−Ph

)
−∇Ph

fPh

(
xk
Ph

,xk
−Ph

)]T
ᾱdPh

≤
(τkh + ‖QPhPh

‖)‖x̂k
Ph

− xk
Ph

‖‖ᾱdPh
‖ =

(τkh + λQ
max)‖x̂k

Ph
− xk

Ph
‖‖xk

Ph
− xk

Ph
‖.

Therefore we obtain

‖x̂k
Ph

− xk
Ph

‖ ≥ σ

τkh + λQ
max

‖xk
Ph

− xk
Ph

‖ =
σ

τkh + λQ
max

‖xk − xk‖,

and finally we have the proof.
⊓⊔

Theorem 5 Assume that any principal submatrix of Q of order 2 is posi-
tive definite. Let xk ∈ F be a feasible point for problem (2) and let (i, j) ∈
Iup(x

k)× Ilow(x
k) be such that ∇f(xk)Td(ij) < 0 where d(ij) is defined as in

(7). Suppose that a block Ph ⊆ {1, . . . , n} exists such that (i, j) ⊆ Ph. Let x
k

be the unique solution of problem (35) and suppose that ǫ̃ > 0 exists such that

‖xk − xk‖ ≥ ǫ̃SMVP(x
k). (40)

Then Ph is a descent block.

Proof By Lemma 1 we know that (36) holds. Therefore by combining (36) and
(40) we obtain the proof. ⊓⊔
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18 A. Manno, L. Palagi, S. Sagratella

Theorem 5 shows that we can build a descent block at the cost of computing
a pair that satisfies (40). Clearly the MVP does it, but it is easy to see that
any pair that “sufficiently” violates KKT conditions can be used as well.

Now we give a further theoretical result which guarantees that at each
iteration of Algorithm 1 at least one descent block can be built.

Theorem 6 Let xk be a feasible, but not optimal, point for problem (2) then
at least one descent block Ph ⊆ {1, . . . , n} exists.

Proof By Proposition 1, if xk is not optimal then Iup(x
k) 6= ∅, Ilow(xk) 6= ∅

and SMVP(x
k) > 0. Therefore any Ph ⊇ (iMVP, jMVP) is a descent block. ⊓⊔

6 Global Convergence

So far we have proved that, under some suitable conditions, Algorithm 1 either
converges in a finite number of iterations to a solution of problem (2) or the
produced sequence {xk} satisfies (20). However the fact that SMVP(x

k) goes to
zero is not enough to guarantee the asymptotic convergence of Algorithm 1
to a solution of problem (2). This is due to the discontinuous nature of the
indices sets Iup and Ilow that enters in the definition of SMVP(x

k). Actually,
this is a well known theoretical issue in decomposition methods for the SVM
training problem. Indeed, even in the case when the algorithm were proved
to asymptotically converge to an optimal solution, the validity of a stopping
criterion based on the KKT conditions (5) must be verified [21]. A possible
way to sorting out these theoretical issues is to use some theoretical tricks. For
example by properly inserting some standard MVP iterations in the produced
sequence {xk} [25] or by dealing with ǫ−solutions [18]. All these theoretical
efforts can be encompassed in a realistic numerical setting. Indeed all the pa-
pers discussing about decomposition methods rely on the fact that the indices
sets Iup and Ilow can be computed in exact arithmetic. In practice what it can
actually be computed are the following ǫ−perturbations of the sets Iup and
Ilow

Iǫup(x) := {r ⊆ {1, . . . , n} : xr ≤ C − ǫ, yr = 1, or xr ≥ ǫ, yr = −1},

Iǫlow(x) := {r ⊆ {1, . . . , n} : xr ≤ C − ǫ, yr = −1, or xr ≥ ǫ, yr = 1},
with ǫ > 0. Consequently we can define at a feasible point x the following
quantities

mǫ(x) = max
r∈Iǫ

up(x)
−∇f(x)ryr, M ǫ(x) = min

r∈Iǫ
low

(x)
−∇f(x)ryr.

and the corresponding sets Iǫ,MV P
up (x) and Iǫ,MV P

low (x) obtained by using the
ǫ−perturbations of sets Iup and Ilow in (11).

As a matter-of-fact an effective optimality condition which can be used is

mǫ(xk) ≤ M ǫ(xk) + η, (41)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Parallel Decomposition Methods for Linearly Constrained Problems 19

where η > 0 is a given tolerance. Note that any asymptotically convergent
decomposition algorithm can actually converge only to a point satisfying (41),
rather than (5).

It is easy to see that Iǫup(x) ⊆ Iup(x) and Iǫlow(x) ⊆ Ilow(x) for all ǫ > 0.
Furthemore in [28], it has been proved the following result.

Proposition 2 Let {xk} be a sequence of feasible points converging to a point
x ∈ F . Then, there exists a scalar ǭ > 0 (depending only on x) such that for
every ǫ ∈ (0, ǭ] there exists an index k̄ = kǫ for which

Iǫup(x
k) ≡ Iup(x

k) and Iǫlow(x
k) ≡ Ilow(x

k) for all k ≥ k̄.

This proposition allows to state that for k sufficiently large and ǫ sufficiently
small using the index sets Iǫup(x) and Iǫlow(x) is equivalent to using the exact
ones Iup and Ilow and we have that

mǫ(x) = m(x) and M ǫ(x) = M(x),

so that, for any ǫ ∈ (0, ǭ] and k ≥ k̄, (41) reduces to the concept of η-optimal
solution introduced in [18]. However, this is not true either when x is far from
a solution or when we set an ǫ that is not small enough, being ǭ unknown.
Reducing ǫ to the machine precision ǫmach is the best that we can do in a
numerical implementation, so that one can argue that for ǫ = ǫmach if Iǫup(x) =
∅ or Iǫlow(x) = ∅, a solution has been reached within the possible tolerance.

Given a point xk ∈ F , we consider the MVP ǫ−step Sǫ
MVP(x

k) obtained by
using Iǫup(x

k) and Iǫlow(x
k) instead of Iup(x

k) and Ilow(x
k) in the defintion

(12). As a consequence of the definition itself, for any MVP ǫ−direction dk
MVP,ǫ

we get that the feasible ǫ−stepsize β̄k
ǫ defined as in (8) remains bounded from

zero by ǫ.
It is easy to see that all results stated so far for Algorithm 1 are still valid

if we consider the ǫ−definition Sǫ
MVP(x

k) rather than SMVP(x
k). Furthemore we

have the following result, that fills the gap of convergence.

Theorem 7 Let ǫ > 0 and η > 0 be given. Let {xk} be a sequence of feasible
points such that Iǫup(x

k) 6= ∅, Iǫlow(xk) 6= ∅ and

lim
k→∞

Sǫ
MVP

(xk) = 0.

Then k̄ > 0 exists such that, for all k ≥ k̄, xk satisfies (41).

Proof By definition of Sǫ
MVP(x

k) we get

0 = lim
k→∞

Sǫ
MVP(x

k) =
√
2 lim
k→∞

|αk
MVP,ǫ|. (42)

Since by construction β̄k
ǫ ≥ ǫ, by (6) we get that (42) implies that k̄ > 0 exists

such that, for all k ≥ k̄, we have −∇f(xk)Tdk
MVP,ǫ ≤ η, which implies (41). ⊓⊔
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20 A. Manno, L. Palagi, S. Sagratella

7 Practical Algorithmic Realizations

Algorithm 1 includes a vast amount of specific strategies that may vary ac-
cording to different implementation choices. Various alternatives may be re-
lated to the blocks dimension, the blocks composition, the blocks selection,
the way to enforce the convergence conditions and the methods used to solve
the subproblems. Different algorithms can be designed exploiting these de-
grees of freedom. In this section we propose a possible implementable scheme
of Algorithm 1 and we apply it to some SVM training problems. We included
some numerical results on a small benchmark for SVMs training with the sole
aim of showing the viability and the effectiveness of the proposed scheme. We
choose a SMO-type parallel scheme derived from Algorithm 1, that we called
PARSMO, for which we developed two Matlab prototypes that differ in the
block selection. Actually we do not realize a truly parallel implementation,
but we simply realize sequential prototypes with the aim of highlighting the
benefits of simultaneously moving along multiple SMO directions. Of course
this gives only a flavour of the actual CPU-time saving of a parallel imple-
mentation because communication time among processor must be taken into
account. Indeed, being a SMO-type implementation, the computational effort
of each processor is very light and the communications must be very fast thus
being suitable for a multicore environment. In order to enforce convergence,
following Theorem 6, we include an MVP pair among the blocks selected at
each iteration.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Parallel Decomposition Methods for Linearly Constrained Problems 21

The PARSMO scheme is reported in Algorithm 2.

Algorithm 2 PARSMO

Initialization Set x0 = 0, ∇f0 = −e, q ≥ 1, ǫ > 0, η > 0 and
k = 0.
Select

(i1, j1) ∈ Iǫ,MV P
up (xk)× Iǫ,MV P

low (xk).

Do while
(
−∇fk

i1
yi1 +∇fk

j1
yj1 ≥ η

)

S.1 (Blocks definition)

Choose (q − 1) pairs {(i2, j2), (i3, j3), . . . , (iq, iq)}.
Set J k = {(i1, j1), (i2, j2), . . . , (iq, iq)}.

S.2 (Parallel computation)

For each pair (ih, jh) ∈ J k compute in parallel:
1. kernel columns Q∗ih and Q∗jh (if not available in the

cache),
2. thd

(ihjh) with d(ihjh) defined as in (7) and th as in (10).

S.3 (Direction) dk =
∑

(ih,jh)∈J k

thd
(ihjh)

S.4 (Stepsize) Compute the steplenght αk as in (29).
S.5 (Update)

Set xk+1 = xk + αkdk.

Set ∇fk+1 = ∇fk + αk

q∑

h=1

th
(
dkihQ∗ih + dkjhQ∗jh

)
.

Set k = k + 1.
Select

(i1, j1) ∈ Iǫ,MV P
up (xk)× Iǫ,MV P

low (xk).

End While
Return xk.

Let us analyse the PARSMO scheme into details. The starting feasible point
x0 is set, as usual in SVM training, equal to the null vector. In this case, the
gradient ∇f0 is readily obtained as ∇f0 = −e. PARSMO algorithm selects
at each iteration the ǫ-MVP (i1, j1) ∈ Iǫ,MV P

up (xk) × Iǫ,MV P
low (xk), using the

ǫ−perturbations of the sets Iup and Ilow in (11), and further (q−1) pairs, that
all together made up the set of blocks J k.

The search direction dk at S.3 is the sum of all the SMO steps related
to the pairs in J k obtained by analytically computing by (10) the optimal
stepsise th, along the directions d(ihjh) for h = 1, . . . , q corresponding to the q
subproblems of type (13). It has ‖dk‖0 = 2q with q ≥ 1 which depends on the
number of parallel/distibuted processes that we want to activate.

Finally at S.4 the steplenght αk that exactly minimizes the objective func-
tion along dk is obtained by (29); note that this step requires no further kernel
evaluations. The same holds for the gradient updated by the rule (19).
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22 A. Manno, L. Palagi, S. Sagratella

In PARSMO it remains to specify how to select the q − 1 pairs form-
ing J k. We propose two different choices that allow to use different caching
strategies. Indeed, the most expensive computational burden is due to kernel
columns computation, and caching is a well known strategy to save computa-
tions in SVMs decompostion algorithms. The two Matlab implementations of
PARSMO use the cache in two opposite ways.

PARSMOlight: the q − 1 pairs are selected by choosing those pairs that ǫ-

most violate the first order optimality condition, similar to the SVMlight

algorithm [15];
PARSMOcache: the q− 1 pairs are selected following the same SVMlight rule,
but restricted to the index sets C ∩ Iǫup(x

k)× C ∩ Iǫlow(x
k), where C is the

index set of the kernel columns available in the cache.

To be more precise, in PARSMOlight we select the q pairs (ih, jh) ∈ Iǫup(x
k)×

Iǫlow(x
k) sequentially so that

−yi1∇f(xk)i1 ≥ −yi2∇f(xk)i2 ≥ · · · ≥ −yiq∇f(xk)iq ,

and
−yj1∇f(αk)j1 ≤ −yj2∇f(xk)j2 ≤ · · · ≤ −yjq∇f(xk)jq .

In this case, although we can use a standard caching strategy, we cannot con-
trol the number of kernel columns evaluations at each iteration that in the
worst case can be up to 2q. The computation of the kernel columns Q∗ih and
Q∗jh , ∀h ∈ {1, . . . , q}, can be performed in parallel by the processors empow-
ered to solve the subproblems. In this case the number of kernel evaluations
per iteration would be of course greater than those of a standard MVP, but
the overall number of iterations may decrease. Thus we keep the advantages
of performing simple analytic optimizations, as in SMO methods, whilst mov-
ing 2q components at a time, as in SVMlight. We note that reconstruction of
the overall gradient ∇fk+1 can be parallelized among the q processors and
requires a synchronization step to take into account the stepsize αk. Thus the
CPU-time needed is essentially equivalent to a gradient update of a single
SMO step. In this approach the transmission time among the processors may
be quite significant and this strictly depends on the parallel architecture.

In algorithm PARSMOcache, in addition to an ǫ-MVP (i1, j1) ∈ Iǫ,MV P
up (xk)

×Iǫ,MV P
low (xk), the q− 1 pairs are selected exclusively among the indices of the

columns currently available in the cache. Being C the index set of the kernel
columns available in the cache the q−1 pairs (ih, jh) in J k are selected follow-
ing the rule described above for PARSMOlight, but restricted to the index sets
C ∩Iǫup(x

k)×C∩Iǫlow(x
k). In this case the number of kernel evaluations per it-

eration is at most two as in a standard MVP implementation. The rationale of
this version is to improve the performances of a classical MVP algorithm by us-
ing simultaneous multiple SMO optimizations without increasing the amount
of kernel evaluations.

In order to have a flavour of the potentiality of these two parallelizable
strategies, we performed some simple Matlab experiments for the two versions
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Parallel Decomposition Methods for Linearly Constrained Problems 23

PARSMOlight and PARSMOcache. Both PARSMOlight and PARSMOcache

make use of a standard caching strategy, see [4]. All experiments have been
carried out on a 64-bit intel-Core i7 CPU 870 2.93Ghz × 8, with a cache
memory of 500 columns.

We perform experiments simulating q = 1, 2, 4 and 8 parallel processes. The
case with q = 1 corresponds to a classical MVP algorithm with a standard use
of caching strategy which is exactly the rule implemented in LIBSVM 2.7 [4].

We report this case to compare the performance with a standard sequential
MVP implementation in order to analyze possible advantages of the PARSMO
scheme. It is worth noting that to preserve the good numerical behavior of
PARSMOlight and PARSMOcache, the use of the “gathering” steplenght αk is
necessary. In fact, further tests not reported here showed that, by removing the
use of αk, oscillatory and divergence phenomena may occur when using mul-
tiple parallel processes. This enforces the practical relevance of our theoretical
analysis.

We tested both PARSMOlight and PARSMOcache on six benchmark prob-
lems available at the LIBSVM site http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/, using a standard setting for the parameters (C = 1,
gaussian parameter γ = 1/#features), see Table 1.

name #features #training data kernel type
a9a 123 32561 gaussian
gisette scale 5000 6000 linear
cod-rna 8 59535 gaussian
real-sim 20958 72309 linear
rcv1 47236 20242 linear
w8a 300 49749 linear

Table 1 Training problems description.

To evaluate the behavior of the algorithms we report the “relative error”
(RE)

RE =
|f∗ − f |
|f∗| ,

where f∗ is the (known) optimal value of the objective function.
In particular, as regards PARSMOlight, we plot the RE versus

i) the number of iterations (see Figure 1);
ii) the number of kernel evaluations per process, which is obtained by dividing
the total number of kernel evaluations by the number of parallel processes
involved (see Figure 2). We put in the picture also the performance of the
LIBSVM 3.22 which implements a second order selection rule [10] with
q = 1.

Our results show that the larger q is, the steeper the RE decrease is. This
emphasizes the positive effect of moving along multiple SMO directions at a
time. In particular q = 8 turns out to be always the best one among all the
versions including the second order LIBSVM 3.22.
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24 A. Manno, L. Palagi, S. Sagratella

As regards PARSMOcache, we note that, except for the MVP pair which can
require the computation of the kernel columns Q∗i1 and Q∗j1 , each SMO pro-
cess computes only the analytical solution of the two-dimensional subproblem,
since kernel columns are already available in the cache. Thus, PARSMOcache

may produce a CPU-time saving even by running the algorithm in a sequential
fashion. In order to show the efficiency of its steps, in Figure 3 we plot RE
versus the CPU-time consumed. In this case we do not report the compari-
son with the LIBSVM software because our code is in Matlab and the time
comparison with a C++ implementation is not fair.

PARSMOcache with q > 1 seems to be faster than a classical MVP algo-
rithm. This is due to the use of multiple search directions without suffering
from an increase of time consuming kernel evaluations or from the need of
iterative solutions of larger quadratic subproblems. It is important to outline
that PARSMOcache achieves its good performances by combining a convergent
parallel structure with an efficient sequential implementation, and it seems to
be useful also in a single-core environment.
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q = 1 q = 2 q = 4 q = 8

Fig. 1 PARSMOlight: Relative Error versus iterations.
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q = 1 q = 2 q = 4 q = 8 LIBSVM 3.22

Fig. 2 PARSMOlight: Relative Error versus kernel evaluations per process.
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q = 1 q = 2 q = 4 q = 8

Fig. 3 PARSMOcache: Relative Error versus (sequential) CPU-time.
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8 The General problem

In this section we consider the general formulation (3) where f is a twice
continuously differentiable convex function and the feasible set is defined as

F = {x ∈ R
n : Ax = b, l ≤ x ≤ u}.

We want to give an hint of how the approach for convex quadratic problems
with one single equality constraint can be extended to problems with a general
convex objective function and multiple equality constraints. Indeed, up to
authors’ knowledge, the study of convergent parallel decomposition methods
for these general problems with multiple constraints is still at its early stages,
see e.g. [29, Section IV].

To guarantee that the solution set S̃ = argmin{f(x) x ∈ F} of problem
(3) is nonempty, we introduce the following assumption.

Assumption 1 The feasible set F is nonempty and bounded.

Following the notation of the preceding section, given a subset Pi ⊂ {1, . . . , n},
and fixing x−Pi

to the current value xk
−Pi

, we define the reduced feasible set
as

Fk
Pi

:= {xPi
∈ R

|Pi| : APi
xPi

= APi
xk
Pi
, lPi

≤ xPi
≤ uPi

}
where APi

is the m× |Pi| submatrix of A with column indices in Pi.
The problem of minimizing over xPi

is then given by (13) with the corre-
sponding Fk

Pi
.

We can consider again Algorithm 1. The following theorem generalizes
Theorem 1.

Theorem 8 Let xk ∈ F . Assume that, for all Pi ∈ J k, either ∇Pi
f(·,xk

−Pi
)

is strongly monotone with modulus σk
i , or τki > 0.

Then the direction dk defined by (14) is feasible and satisfies

∇f(xk)Tdk ≤ −ρ‖dk‖2 (43)

with ρ = minPi∈J k(τki + σk
i ) > 0.

Proof The direction dk is clearly feasible at xk since it belongs to the cone

{d ∈ R
n : Ad = 0, di ≥ 0, ∀ i : xk

i = li, and di ≤ 0, ∀ i : xk
i = ui}.

Note that x̂k
Pi

satisfies the optimality condition (16), for any feasible di-

rection dPi
at x̂k

Pi
, and note that the direction −dk

Pi
is a feasible direction at

x̂k
Pi

for all Pi ∈ J k. Hence (17) holds and we can write

∇Pi
f(xk)Tdk

Pi
=

−
(
∇Pi

f(x̂k
Pi
,xk

−Pi
)−∇Pi

f(xk)
)T

dk
Pi

+∇Pi
f(x̂k

Pi
,xk

−Pi
)Tdk

Pi
≤

−(σk
i + τki )‖dk

Pi
‖2.

The thesis holds readily. ⊓⊔
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The definition of descent block must be modified because we do not have
anymore a reference point such as xk

MVP to compare with. In this more general
setting we use as optimality measure the distance of the feasible point xk from
the solution set S̃ of problem (3), namely

dist(xk, S̃) := min
x∈S̃

∥∥x− xk
∥∥ .

Definition 4 (Descent block) Given ǫ > 0. At a feasible point xk, we say
that the block of variables Pi ⊆ {1, . . . , n} is a descent block if it satisfies

‖x̂k
Pi

− xk
Pi
‖ ≥ ǫ dist(xk, S̃), (44)

where x̂k
Pi

is the optimal solution of the corresponding problem (13) and S̃ is
the solution set of problem (3).

Accordingly, we have the definition of descent iteration as given in (3).
Similarly to what done in the previous sections, we will prove that by using

a suitable αk at S.5 the sequence {xk} produced by the algorithm satisfies

lim
k→∞

dist(xk, S̃) = 0. (45)

The proof of the following theorem can be directly obtained by those of The-
orems 2, 3, and 4, and then it is omitted.

Theorem 9 Let {xk} be the sequence generated by Algorithm 1, and assume
that conditions of Theorem 8 are satisfied. Let αk ∈ (0, 1] at S.5, and assume
that one of the following conditions holds:

(i) either the Armijo condition (22) or the monotone diminishing rule (30)
with αk ≥ αk+1 ∀ k holds, and for all k there exists an integer k̃, with
k ≤ k̃ ≤ L+ k for a finite L ≥ 0, such that k̃ is a descent iteration;

(ii) the diminishing rule (30) holds, and k is a descent iteration for all k.

Then either Algorithm 1 terminates in a finite number of iterations to a solu-
tion x̄ ∈ S̃ or {xk} admits a limit point and it satisfies (45), and thus it is in

S̃.

Now the open problems are two: (i) how to check if a block is descent, and (ii)
how to generate a descent block.

We give a simple sufficient condition to check if Pi is a descent block.
First of all, by exploiting the boundedness of F , we can define the maximum
distance in F : ϕ := maxx,y∈F ‖x − y‖ ≤ √

n ‖u − l‖∞, which is a bounded
measure. Then, for a given ǫ > 0 sufficiently small (e.g. ǫ << 1

ϕ
), and since

ϕ ≥ dist(xk, S̃), the sufficient condition is

‖x̂k
Pi

− xk
Pi
‖ ≥ ǫϕ.

On the other hand, to define a simple procedure that generates descent blocks
one can certainly exploit the specific structure of the problem instance. How-
ever, in general, the pseudo randomic selection of all possible partitions is a
simple effective strategy well suited for huge data applications.
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