
Advances in large scale unconstrained optimization:
novel preconditioning strategies for Nonlinear
Conjugate Gradient methods and new
developments in Newton-Krylov methods

PhD in Automatica, Bioengineering and Operations Research

Curriculum in Operations Research – XXX Course

Candidate

Andrea Caliciotti
ID number 1310655

Thesis Advisors

Prof. Giovanni Fasano
Prof. Massimo Roma

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Automatica, Bioengineering and Operations Research

January 30, 2018

Thesis defended on 19 February 2018
in front of a Board of Examiners composed by:

Prof. Raffaele Pesenti (chairman)
Prof. Costanzo Manes
Prof. Mauro Ursino

Advances in large scale unconstrained optimization: novel preconditioning strate-
gies for Nonlinear Conjugate Gradient methods and new developments in
Newton-Krylov methods
Ph.D. thesis. Sapienza – University of Rome
ISBN: 000000000-0
© 2018 Andrea Caliciotti. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: January 30, 2018

Author’s email: andrea.caliciotti@uniroma1.it

mailto:andrea.caliciotti@uniroma1.it

i

Acknowledgements

I owe my deepest gratitude to my Supervisors, Professor Giovanni Fasano and
Professor Massimo Roma for the useful and interesting things they taught me during
my PhD program, for their tireless guidance and patience, and for their meaningful
assistance. Without these “ingredients”, PhD program would have been hardly
completed.
I am deeply grateful to Professor Mehiddin Al-Baali and to Professor Stephen G.
Nash with whom we (my Supervisors and I) have cooperated.
I want to express my gratitude to the revisors of this PhD Thesis, Professor Gerardo
Toraldo and Professor Luca Zanni.
I would like to thank my parents, Libera Di Bari and Piero Caliciotti, and my
brother Valerio for their moral and material assistance. Special mention goes to my
grandfather Giuseppe Di Bari, passed away recently, who would be proud of what I
have done.
Finally, I would also like to thank myself for not giving up, keeping my way, in my
PhD program.

i

Common Notations

• x ∈ Rn is the column vector of the unknowns

• xk ∈ Rn is k-th vector of the sequence {xk}

• I ∈ Rn×n is the identity matrix of size n

• ek ∈ Rn is the k-th column of I

• f : Rn −→ R is a real valued function over Rn

• f(xk) = fk is the value of f at xk

• ∇f ∈ Rn is the gradient of f

• ∇f(xk) = g(xk) = gk is the gradient of f at xk

• ∇2f ∈ Rn×n is the Hessian matrix of f

• ∇2f(xk) is the Hessian matrix of f at xk

• ‖x‖ is the Euclidean norm of x

• ‖x‖∞ is the infinity norm of x

• ‖A‖F is the Frobenius norm of A, with A ∈ Rn×n

• A � 0 indicates that matrix A ∈ Rn×n is positive definite

• A � 0 indicates that matrix A ∈ Rn×n is positive semidefinite

• ‖x‖A, with A � 0, is the A-norm of x, i.e. ‖x‖A = (xTAx)
1
2

• λM (A) is the largest eigenvalue of the matrix A ∈ Rn×n

• λm(A) is the smallest eigenvalue of the matrix A ∈ Rn×n

• κ(A) is the condition number of the matrix A ∈ Rn×n

•
⊕

indicates the direct sum of matrices.

i

List of Figures

3.1 Comparison among OUR PREC (solid line), PREC-LBFGS (dashed
line) and UNPREC (dotted line), in terms of number of iterations. . 67

3.2 Comparison among OUR PREC (solid line), PREC-LBFGS (dashed
line) and UNPREC (dotted line), in terms of number of function
evaluations. 68

3.3 Comparison between our proposal in (3.55) (namely PREC-NEW,
solid line) and the proposal of preconditioner in Section 3.3.4 (namely
PREC, dotted line), in terms of number of iterations. 79

3.4 Comparison between our proposal in (3.55) (namely PREC-NEW,
solid line) and the proposal of preconditioner in Section 3.3.4 (namely
PREC, dotted line), in terms of number of function evaluations. . . . 80

4.1 Comparison among different choices of ηk in (4.2), setting σ = 0.8 in
(4.4). Profile in terms of number of iterations. 87

4.2 Comparison among different choices of ηk in (4.2), setting σ = 0.8 in
(4.4). Detailed profile in terms of number of iterations. 87

4.3 Comparison among different choices of ηk in (4.2), setting σ = 0.8 in
(4.4). Profile in terms of number of function evaluations. 88

4.4 Comparison among different choices of ηk in (4.2), setting σ = 0.8 in
(4.4). Detailed profile in terms of number of function evaluations. . . 88

4.5 Comparison among different choices of σ in (4.4), setting ηk = 4 in
(4.2). Profile in terms of number of iterations. 89

4.6 Comparison among different choices of σ in (4.4), setting ηk = 4 in
(4.2). Detailed profile in terms of number of iterations. 89

4.7 Comparison among different choices of σ in (4.4), setting ηk = 4 in
(4.2). Profile in terms of number of function evaluations. 90

4.8 Comparison among different choices of σ in (4.4), setting ηk = 4 in
(4.2). Detailed profile in terms of number of function evaluations. . . 90

4.9 Comparison between unmodified preconditioned PR damped according
to (4.2) and the standard preconditioned PR (undamped). Profile in
terms of number of iterations. 91

4.10 Comparison between unmodified preconditioned PR damped according
to (4.2) and the standard preconditioned PR (undamped). Detailed
profile in terms of number of iterations. 91

ii List of Figures

4.11 Comparison between unmodified preconditioned PR damped according
to (4.2) and the standard preconditioned PR (undamped). Profile in
terms of number of function evaluations. 92

4.12 Comparison between unmodified preconditioned PR damped according
to (4.2) and the standard preconditioned PR (undamped). Detailed
profile in terms of number of function evaluations. 92

4.13 Comparison between unmodified preconditioned PR damped according
to (4.9) and the standard preconditioned PR (undamped). Profile in
terms of number of iterations. 93

4.14 Comparison between unmodified preconditioned PR damped according
to (4.9) and the standard preconditioned PR (undamped). Detailed
profile in terms of number of iterations. 93

4.15 Comparison between unmodified preconditioned PR damped according
to (4.9) and the standard preconditioned PR (undamped). Profile in
terms of number of function evaluations. 94

4.16 Comparison between unmodified preconditioned PR damped according
to (4.9) and the standard preconditioned PR (undamped). Detailed
profile in terms of number of function evaluations. 94

4.17 Comparison between unmodified preconditioned PR damped accord-
ing to (4.2) and the preconditioned PR (undamped) according to
Section 3.3.5. Profile in terms of number of iterations. 95

4.18 Comparison between unmodified preconditioned PR damped accord-
ing to (4.2) and the preconditioned PR (undamped) according to
Section 3.3.5. Detailed profile in terms of number of iterations. . . . 96

4.19 Comparison between unmodified preconditioned PR damped accord-
ing to (4.2) and the preconditioned PR (undamped) according to
Section 3.3.5. Profile in terms of number of function evaluations. . . 96

4.20 Comparison between unmodified preconditioned PR damped according
to (4.2) and the preconditioned PR (undamped) according to Sec-
tion 3.3.5. Detailed profile in terms of number of function evaluations. 97

4.21 Comparison between unmodified preconditioned PR damped accord-
ing to (4.9) and the preconditioned PR (undamped) according to
Section 3.3.5. Profile in terms of number of iterations. 97

4.22 Comparison between unmodified preconditioned PR damped accord-
ing to (4.9) and the preconditioned PR (undamped) according to
Section 3.3.5. Detailed profile in terms of number of iterations. . . . 98

4.23 Comparison between unmodified preconditioned PR damped accord-
ing to (4.9) and the preconditioned PR (undamped) according to
Section 3.3.5. Profile in terms of number of function evaluations. . . 98

4.24 Comparison between unmodified preconditioned PR damped according
to (4.9) and the preconditioned PR (undamped) according to Sec-
tion 3.3.5. Detailed profile in terms of number of function evaluations. 99

4.25 Comparison between the adoption of the two damped strategies in
(4.2) and in (4.9). Profile in terms of number of iterations. 99

4.26 Comparison between the adoption of the two damped strategies in
(4.2) and in (4.9). Detailed profile in terms of number of iterations. . 100

List of Figures iii

4.27 Comparison between the adoption of the two damped strategies in
(4.2) and in (4.9). Profile in terms of number of function evaluations. 100

4.28 Comparison between the adoption of the two damped strategies in
(4.2) and in (4.9). Detailed profile in terms of number of function
evaluations. 101

4.29 Comparison among L-BFGS (dotted line), our first damped strategy
in (4.2) (solid line) and the Unpreconditioned NCG method (dashed
line). Profile in terms of number of iterations. 102

4.30 Comparison among L-BFGS (dotted line), our first damped strategy
in (4.2) (solid line) and the Unpreconditioned NCG method (dashed
line). Profile in terms of number of function evaluations. 102

4.31 The complete sequences of steplengths generated by the linesearch
procedure, when coupled to L-BFGS (filled circles) and to our first
damped strategy in (4.2) (empty squares). 104

5.1 Comparison between the use β̂PRk in (5.21) (setting ŷk = ŷ
(1)
k) and

βPRk in (2.12), in both preconditioned and unpreconditioned cases.
Profile in terms of number of iterations. 118

5.2 Comparison between the use β̂PRk in (5.21) (setting ŷk = ŷ
(1)
k) and

βPRk in (2.12), in both preconditioned and unpreconditioned cases.
Detailed profile in terms of number of iterations. 118

5.3 Comparison between the use β̂PRk in (5.21) (setting ŷk = ŷ
(1)
k) and

βPRk in (2.12), in both preconditioned and unpreconditioned cases.
Profile in terms of number of function evaluations. 119

5.4 Comparison between the use β̂PRk in (5.21) (setting ŷk = ŷ
(1)
k) and

βPRk in (2.12), in both preconditioned and unpreconditioned cases.
Detailed profile in terms of number of function evaluations. 119

6.1 Unpreconditioned Newton-Krylov method using (2.75) with ATC-
true: the choice of Ck in (6.3) (solid line) vs. the choice of Ck in (6.4)
(dashed line), in terms of CG inner iterations. 128

6.2 Unpreconditioned Newton-Krylov method using (2.75) with ATC-
true: the choice of Ck in (6.3) (solid line) vs. the choice of Ck in (6.4)
(dashed line), in terms of number of function evaluations. 129

6.3 Unpreconditioned Newton-Krylov method using (2.75) with ATC-
true: the choice of Ck in (6.3) (solid line) vs. the choice of Ck in (6.4)
(dashed line), in terms of CPU time. 129

6.4 Unpreconditioned Newton-Krylov method using (2.75): comparison
ATC-true vs. ATC-false, in terms of CG inner iterations. 130

6.5 Unpreconditioned Newton-Krylov method using (2.75): comparison
ATC-true vs. ATC-false, in terms of CPU time. 131

6.6 Preconditioned Newton-Krylov method using (2.75): comparison
ATC-true vs. ATC-false, in terms of CG inner iterations. 131

6.7 Preconditioned Newton-Krylov method using (2.75): comparison
ATC-true vs. ATC-false, in terms of CPU time. 132

6.8 Unpreconditioned Newton-Krylov method: comparison between (2.75)
with ATC-true and (2.77), in terms of CPU time. 133

iv List of Figures

6.9 Preconditioned Newton-Krylov method: comparison between (2.75)
with ATC-true and (2.77), in terms of CPU time. 133

6.10 Comparison between our Preconditioned Newton-Krylov method with
(2.75), ATC-true and TRON with standard stopping criterion (6.2), in
terms of number of function evaluations. Abscissa axis is in logarithmic
scale. 136

6.11 Comparison between our Preconditioned Newton-Krylov method with
(2.75), ATC-true and TRON with standard stopping criterion (6.2), in
terms of number of CG inner iterations. Abscissa axis is in logarithmic
scale. 137

6.12 Comparison between our Preconditioned Newton-Krylov method with
(2.75), ATC-true and TRON with standard stopping criterion (6.2),
in terms of CPU time. Abscissa axis is in logarithmic scale. 137

i

List of Tables

4.1 Detailed results for those problems where our first damped strategy
in (4.2) compares favourably vs. L-BFGS. 103

6.1 Detailed results obtained by TRON and by our preconditioned Newton-
Krlov method. Note that (∗) indicates test problems where the algo-
rithms converge towards different stationary points. 135

i

Contents

Abstract 1

Motivations 3

1 Iterative Methods for solving Symmetric Linear Systems 7
1.1 Krylov subspace methods . 7

1.1.1 The Conjugate Gradient (CG) method 9
1.1.2 The Lanczos process . 12

1.1.2.1 Lanczos process for positive definite systems 13
1.1.2.2 Lanczos process for indefinite systems 14

1.1.3 Relationship between Lanczos process and CG method 14
1.1.4 Decomposition of tridiagonal matrix Tk 15

1.1.4.1 Decomposition for positive definite systems 15
1.1.4.2 Decomposition for indefinite systems 16

1.2 Preconditioning . 20
1.2.1 Preconditioned Conjugate Gradient method 21

1.3 Conclusions . 24

2 Methods for Large Scale Unconstrained Optimization 25
2.1 Introduction to Large Scale Unconstrained Optimization 25

2.1.1 Nonlinear Conjugate Gradient (NCG) method 26
2.1.1.1 Preconditioned Nonlinear Conjugate Gradient method 29

2.1.2 Quasi-Newton methods . 31
2.1.2.1 Damped Quasi-Newton methods 36
2.1.2.2 Quasi-Newton methods for Large Scale Optimization 38

2.1.2.2.1 Memoryless Quasi-Newton methods 39
2.1.2.2.2 Limited Memory BFGS (L-BFGS) 39

2.1.3 Inexact Newton methods . 40
2.1.3.1 Newton-Krylov method 41

2.1.3.1.1 Common truncation criteria 42
2.2 Conclusions . 44

3 Preconditioners based on quasi-Newton updates for NCGmethods 45
3.1 Introduction . 45
3.2 Preliminaries . 46
3.3 Guidelines for new Symmetric Rank-2 updates 48

3.3.1 A new Symmetric Rank-2 update 49

ii Contents

3.3.2 A Generalized Symmetric Rank-2 update 53
3.3.3 A Symmetric Rank-2 update based on modified weak secant

equation . 56
3.3.4 A preconditioner using a BFGS-like quasi-Newton update . . 60

3.3.4.1 Numerical experience 65
3.3.5 A Symmetric Rank-2 update based on modified secant equations 67

3.3.5.1 Issues on ill-conditioning 76
3.3.5.2 Numerical experience 78

3.4 Conclusions . 79

4 Damped techniques for NCG methods 81
4.1 Introduction . 81
4.2 Novel damped strategies for NCG preconditioning 82

4.2.1 Our first proposal . 83
4.2.2 Our second proposal . 84

4.3 Numerical experience . 85
4.4 Conclusions . 105

5 Global convergence for Preconditioned Polak-Ribière method 107
5.1 Global convergence for an effective PNCG method 107
5.2 Convergence properties for preconditioned damped Polak-Ribière

(D-PR-PNCG) method . 114
5.2.1 Numerical experience . 117

5.3 Conclusions . 120

6 An adaptive truncation criterion for Newton-Krylov methods 121
6.1 Introduction . 121
6.2 Motivation for the Truncation Rule 122
6.3 A novel Adaptive Truncation Criterion 124
6.4 Numerical experience . 126

6.4.1 Guidelines for the choice of Ck in ATC scheme 127
6.4.2 Numerical comparisons among different schemes 130
6.4.3 Comparison with trust region approach 132

6.5 Conclusions . 136

7 Approximate Inverse Preconditioners for Indefinite Linear Sys-
tems 139
7.1 Introduction . 139
7.2 Preliminaries . 140
7.3 Our class of preconditioners AINVK 141

Conclusions 145

Bibliography 147

1

Abstract

In this thesis we propose new iteratively constructed preconditioners, to be paired
with Conjugate Gradient-type algorithms, in order to efficiently solve large scale
unconstrained optimization problems. On this guideline, the central thread of this
thesis is the use of conjugate directions given by Conjugate Gradient or SYMMBK
algorithms.

To this aim, in Chapter 1 we recall some results about iterative methods for
solving linear systems. In particular, we introduce both the Conjugate Gradient
method and the Lanczos process. Finally, the idea of preconditioning is given and the
well known Preconditioned Conjugate Gradient method is provided. In Chapter 2 we
deal with large scale unconstrained optimization problems, recalling the Nonlinear
Conjugate Gradient (NCG) method and its preconditioned version, the quasi-Newton
methods, including the damped techniques, and finally the linesearch-based Inexact
Newton methods.

The main contribution in this thesis is given by Chapters 3-7. In particular,
Chapter 3 provides new preconditioners to be used within the NCG method. This
class of preconditioners draws inspiration from quasi-Newton updates, in order to
obtain a good approximation of the inverse of the Hessian matrix. On detail, at
the current iteration of the NCG we consider some preconditioners based on new
low-rank quasi-Newton symmetric updating formulae, obtained as by-product of
the NCG method at the previous steps. In particular, we propose five classes of
preconditioners: in the first three classes the major drawback is that preconditioner
might not be positive definite. In the fourth class, a preconditoner that is positive
definite and satisfies the secant equation at the current iteration is given. Finally, in
the last class, a preconditoner that is positive definite and satisfies the modified secant
equation at each iteration is provided. However, in general, the search direction pk
we compute at iteration k of NCG could be not well scaled, which may introduce
some ill-conditioning when applying Preconditioned Nonlinear Conjugate Gradient
(PNCG). In order to reduce the scaling problem, in Chapter 4 we focus on the use
of damped techniques within NCG methods. Damped techniques were introduced
by Powell and recently reproposed by Al-Baali, in the framework of quasi-Newton
methods. New damped techniques are proposed and are embedded within a class
of preconditioners described in Chapter 3 (see Section 3.3.4). In Chapter 5, by
referring to the Polak-Ribière (PR) method, we firstly give theoretical results on
the global convergence for an effective PNCG algorithm. Secondly, we investigate
the use of a damped vector in the definition of the scalar βk, hence affecting the
definition of the search direction and producing a modified NCG/PNCG method.
On this purpose, we prove that some global convergence properties still hold for

2 Contents

the modified damped Polak-Ribière (D-PR-PNCG) method, while substantially
preserving numerical performance. In Chapters 6-7 we focus on linesearch-based
Newton-Krylov methods for solving large scale unconstrained optimization problems.
In particular, in Chapter 6 we try to improve the efficiency of Newton-Krylov methods
by proposing an adaptive truncation rule, for deciding the maximum number of inner
iterations allowed at each outer iteration. The adaptive truncation rule is tested
both within the unpreconditioned and the preconditioned framework proposed in
[48]. Finally, Chapter 7 represents a work in progress: on detail, starting from [48]
we deal with a class of preconditioners specifically suited for large indefinite linear
systems, and may be obtained as by-product of Krylov subspace solvers, as well as
by applying L-BFGS updates. In particular, in Chapter 7, only some preliminaries
and the structure of our class of preconditioners, namely AINVK, are provided. At
the end, conclusions are given.

The material presented in this work has led to the following publications:

• A. Caliciotti, G. Fasano and M. Roma, Preconditioning strategies for nonlinear
conjugate gradient methods, based on quasi-Newton updates, The American
Institute of Physics (AIP) Conference Proceedings, vol. 1776, pp.
0900071-0900074, 2016.

• A. Caliciotti, G. Fasano and M. Roma, Novel preconditioners based on quasi-
Newton updates for nonlinear conjugate gradient methods, Optimization
Letters, vol. 11, pp. 835-853, 2017.

• M. Al-Baali, A. Caliciotti, G. Fasano and M. Roma, Exploiting damped tech-
niques for nonlinear conjugate gradient methods, Mathematical Methods
of Operations Research, vol. 86, pp. 501-522, 2017.

• A. Caliciotti, G. Fasano and M. Roma, Preconditioned nonlinear conjugate
gradient methods based on a modified secant equation, Applied Mathematics
and Computation, vol. 318, pp. 196-214, 2018.

• A. Caliciotti, G. Fasano, S. G. Nash and M. Roma, An adaptive truncation cri-
terion, for linesearch-based truncated Newton methods in large scale nonconvex
optimization, Operations Research Letters, vol. 46, pp. 7-12, 2018.

• A. Caliciotti, G. Fasano, S. G. Nash and M. Roma, Data and performance
profiles applying an adaptive truncation criterion, within linesearch-based
truncated Newton methods, in large scale nonconvex optimization, Data in
Brief, vol. 17, pp. 246-255, 2018.

• M. Al-Baali, A. Caliciotti, G. Fasano and M. Roma, Quasi-Newton based precon-
ditioning and damped quasi-Newton schemes, for nonlinear conjugate gradient
methods, Accepted for Publication on Springer Proceedings (PROMS),
2018.

3

Motivations

A general symmetric linear system can be written in the form

Ax = b,

where

• A ∈ Rn×n is a nonsingular symmetric (dense) matrix;

• b ∈ Rn is a vector of the constant terms.

In literature, the solution of linear systems is typically pursued by adopting one of
the following two approaches:

• Direct methods;

• Iterative methods.

Direct methods are based on the idea to solve the problem by a finite sequence of
operations. In the case of absence of rounding errors, direct methods provide an
exact solution. Iterative methods generate a sequence of improving approximate
solutions according to a suitable rule in which the k-th approximation is derived
from the previous ones. When n is large, due to the storage of full matrix and the
use of factorization techniques, direct methods are very expensive. On this guideline
iterative methods might be used rather than direct methods.

Given the linear system and an initial approximation x1 ∈ Rn, iterative methods
try to produce a sequence {xk}, k = 1, 2, ..., such that, under suitable hypotheses,
{xk} converges in some sense to the solution of the linear system. Since xk is an
approximation of the solution x∗ = A−1b, iterative methods may exhibit truncation
errors (in addition to rounding errors). This issue highlights that a stopping criterion
is needed.

However, in some applications, iterative methods often fail to converge “quickly”
and preconditioning is necessary, though not always sufficient, to attain convergence
in a reasonable amount of time (see e.g. [19]). It is widely recognized that precondi-
tioning is among the critical ingredients in the development of efficient solvers for
challenging problems in scientific computation involving symmetric linear systems,
and that the importance of preconditioning is destined to increase even further. In
particular, in [19], the author proposes a detailed overview of preconditioning strate-
gies for large linear systems, mainly focusing on incomplete factorization techniques
(ILU) and sparse approximate inverses (SPAI).

4 Contents

Briefly speaking, the term preconditioning refers to transforming the linear
system Ax = b into another system with “more favorable” properties for iterative
solution. A preconditioner is a matrix that affects such a transformation. Other
details about preconditioning will be described in Section 1.2.

In large number of real world applications, preconditioning techniques have been
successfully applied. Some examples are:

• electromagnetism (see e.g. [1], [12]);

• geophysics (see e.g. [27], [28], [44]);

• hydrodynamics (see e.g. [47], [76], [80]);

• meteorology (see e.g. [57], [59], [64], [107], [110]);

• structural mechanics (see e.g. [21], [58], [70], [73], [81], [82]).

The use of preconditioning techniques can be also applied for parallel computation.
For example, in [75] the authors adopt a parallel computation technique for rigid-
viscoplastic approach, in order to increase the computational efficiency. On detail, the
domain decomposition algorithm and Preconditioned Conjugate Gradient (described
in Section 1.2.1) iterative solver is used for parallel computation, proposing a new
block Jacobi preconditioner. Another example can be seen in [73]: in this paper the
authors present a parallel preconditioned iterative solver for large sparse symmetric
positive definite linear systems. The preconditioner is constructed as a proper
combination of advanced preconditioning strategies. In particular, it can be formally
seen as being of domain decomposition type with algebraically constructed overlap.
Similar to the classical domain decomposition technique, inexact subdomain solvers
are used, based on incomplete Cholesky factorization.

Very interesting is the use of preconditioners for the numerical solution of the
Helmholtz equation for two-dimensional (see [44]) and three-dimensional ([27], [28])
applications in geophysics. The solution of heterogeneous Helmholtz problems is
recognized as of high interest in many application fields.

Solution of linear systems of equations arising in the discretization of the in-
compressible Navier-Stokes equations remains an active area of research. On this
guidelines, good preconditioning techniques for flow computations attracted much
attention (see [47], [76], [80]).

The literature on preconditioning is extremely rich: in particular, many sug-
gestions have been made concerning either purely algebraic or application-based
preconditioners able to exploit the structure of the matrix. A novel approach, known
as limited memory preconditioner, markedly differs from purely preconditioning,
in the sense that a strategy to update a given preconditioner exploiting existing
information is proposed. This existing information can be for instance the knowledge
of matrix-vector products or an approximate invariant subspace. Borrowing idea
from numerical optimization literature, update strategies have been provided in the
context of the solution of nonlinear equations with quasi-Newton based methods
(see Section 2.1.2). When the coefficient matrices are symmetric positive definite,
in [83] the authors have proposed a preconditioner to be used in combination with
the conjugate gradient method (see Section 1.1.1), which has the form of a limited

Contents 5

memory quasi-Newton matrix (see, e.g., [86] and [96] for earlier attempts). In [60]
the authors Gratton, Sartenaer and Tshimanga have similarly defined a class of
limited memory preconditioners based on limited memory quasi-Newton formulas,
that ensures good spectral properties of the preconditioned matrix. These precondi-
tioners require a small number k of linearly independent vectors. This family can
be seen as a block variant of the BFGS updating formula (see Section 2.1.2) for
quadratic problems. An extension of this class of limited memory preconditioners
for the solution of sequences of linear systems with symmetric indefinite matrices
has been provided in [58].

In this thesis, we propose novel general-purpose preconditioners iteratively con-
structed to be used within Conjugate Gradient-type algorithms, in order to efficiently
solve large scale unconstrained optimization problems: on this guideline our precon-
ditioners are matrix-free.

Future work will be to apply our preconditioners to solve real problems, in order
to further confirm the effectiveness of our proposals.

7

Chapter 1

Iterative Methods for solving
Symmetric Linear Systems

In this chapter we recall some relevant results about iterative methods for solving
linear systems. In Section 1.1 we recall the most commonly used class of iterative
methods for solving large linear systems, the Krylov subspace methods. Finally, in
Section 1.2 we introduce preconditioning and one of its applications. Most of the
material of this chapter is taken from [23], [36], [54], [63], [95], [108].

1.1 Krylov subspace methods
The basic idea of iterative methods is replacing original system

Ax = b (1.1)

by one that can be easily solved. Starting from (1.1) we try to solve an easier system

Kx1 = b, (1.2)

where K ∈ Rn×n and x1 ∈ Rn are an approximation of A and x∗ (the solution of
(1.1)), respectively. At any step, considering the correction z ∈ Rn, we want that

A(x1 + z) = b. (1.3)

This leads to a new system
Az = b−Ax1. (1.4)

Solving (1.4) for z through the modified system, we obtain the vector z1 such that

Kz1 = b−Ax1. (1.5)

The solution x2 = x1 + z1 is considered to some extent a better approximation of x∗.
Moreover, at the general i-th step, from (1.1)-(1.5) it follows that:

xi+1 = xi + zi = xi +K−1(b−Axi) = xi + b̄− Āxi, (1.6)

where b̄ = K−1b and Ā = K−1A. Obviously, we will never compute K−1, and
writing b̄ = K−1b we intend the vector b̄ such that Kb̄ = b (similarly for Ā = K−1A).

8 1. Iterative Methods for solving Symmetric Linear Systems

In order to simplify (1.6), we consider K = I which yields for (1.6) the well known
Richardson iteration:

xi+1 = xi + zi = xi + b−Axi = b+ (I −A)xi = xi + ri, (1.7)

where ri = b−Axi is the residual.
From now on, in order to reduce the complexity of the formalae, we can assume

without loss of generality x1 = 0.
On this guideline, our aim is to identify a particular subspace on which, at

each iteration, the approximate solutions of (1.1) are sought. Iterating the basic
Richardson iteration (1.7) we note that (x1 = 0)

xi+1 = x1 + r1 + r2 + . . .+ ri = r1 + r2 + . . .+ ri =
i∑

j=1
(I −A)jr1 (1.8)

that is
xi+1 ∈ span

{
r1, Ar1, A

2r1, . . . , A
ir1
}
. (1.9)

Definition 1.1.1. Given a nonzero vector v ∈ Rn and a symmetric matrix A ∈
Rn×n,

Km(A, v) = span
{
v,Av,A2v, . . . , Am−1v

}
(1.10)

is called the m-dimensional Krylov subspace.

Krylov subspace is a particular subspace of Rn given by all linear combinations
of vectors v,Av,A2v, . . . , Am−1v.

In this regard, setting m = i+ 1 and v = r1 we can state that

xi+1 ∈ Ki+1(A, r1). (1.11)

Since optimality usually refers to some sort of projection, Krylov methods are
also called Krylov projection methods: in fact, they seek an approximate solution
xi+1 of the linear system in (1.1) that belongs to Ki+1(A, r1). Krylov subspace
methods can be divided into four different classes: each class is characterized by
an appropriate criterion to determine xi+1. On this guideline, we report the four
Krylov methods approaches (see [108]):

• the Ritz-Galerkin approach: its aim is to find xi+1 such that the residual
ri+1 is orthogonal to the current Krylov subspace, that is ri+1 = b−Axi+1 ⊥
Ki+1(A, r1);

• the Minimum Norm Residual approach: its aim is to find xi+1 such that
‖b−Axi+1‖ is minimized over Ki+1(A, r1);

• the Petrov-Galerkin approach: its aim is to find xi+1 such that the residual
ri+1 = b − Axi+1 is orthogonal to some other suitable (i + 1)-dimensional
subspace;

• the Minimum Norm Error approach: its aim is to find xi+1 ∈ ATKi+1(AT , r1)
such that the error Euclidean norm ‖xi+1 − x‖2 is minimized, where x ∈
Ki+1(A, r1).

1.1 Krylov subspace methods 9

In this work we focus on Ritz-Galerkin approach, recalling the two well known
and most common methods:

• Conjugate Gradient (CG) method;

• Lanczos process.

1.1.1 The Conjugate Gradient (CG) method

In this section we are going to recall the CG method (see [69]) along with some
theoretical properties. We will carry on our analysis with reference to the problem
of minimizing a convex quadratic function. Consider the unconstrained optimization
problem

min
x∈Rn

%(x) (1.12)

where:
• % : Rn −→ R is the convex quadratic function, that is %(x) = 1

2x
TAx− bTx;

• A ∈ Rn×n is a nonsingular symmetric matrix;

• b ∈ Rn is the column vector of constant values;
As well known, %(x) has a minimum point if and only if both A � 0 and there exists
at least a point x∗ such that:

∇%(x∗) = Ax∗ − b = 0. (1.13)

We note that if A � 0, %(x) is strictly convex and has a unique global minimum
point x∗ = A−1b, that is the solution of linear system (1.1). CG method has been
introduced as iterative method to solve linear system in (1.1): obviously, solving (1.1)
with A � 0 is equivalent to the problem of minimizing a strictly convex quadratic
function.

The main feature of CG method is to easily generate a set of vectors with a
property known as conjugacy.
Definition 1.1.2. Given a symmetric matrix A ∈ Rn×n, two nonzero vectors
pi, pj ∈ Rn are said to be conjugate with respect to A if

pTi Apj = 0. (1.14)

Since we study the problem of minimizing quadratic functions, hereafter we
consider matrix A symmetric and at least positive semidefinite. Furthermore, if
A = I, Definition 1.1.2 yields the definition of the orthogonal vectors pi, pj . It is
immediate to prove that any set of nonzero vectors conjugate with respect to matrix
A is also linearly independent (see [63]):
Proposition 1.1.3. Let us consider a symmetric and positive definite matrix A ∈
Rn×n. Let {p1, p2, . . . , pk} be a set of nonzero conjugate vectors with respect to A.
Then, {p1, p2, . . . , pk} are linearly independent.

We can now introduce the CG scheme. In particular CG method, starting from an
arbitrary initial point x1 ∈ Rn, generates the sequence of iterates xk+1 = xk + αkpk,
where pk ∈ Rn is the search direction and αk ∈ R is a positive steplength obtained
by an exact linesearch procedure.

10 1. Iterative Methods for solving Symmetric Linear Systems

CG algorithm

Data: x1 ∈ Rn;

Set k = 1, g1 = Ax1 − b and p1 = −g1;

While gk 6= 0

αk = ‖gk‖2

pTkApk
(1.15)

xk+1 = xk + αkpk

gk+1 = gk + αkApk

βk+1 = ‖gk+1‖2

‖gk‖2
(1.16)

pk+1 = −gk+1 + βk+1pk

k = k + 1

End While

More interesting is that CG method can be viewed as an iterative method in
which in a finite number of iterations the residual rk = b−Axk = −gk annihilates.

Now we recall an important result for the CG (see [95]).

Proposition 1.1.4. Suppose that iterate xk generated by CG scheme does not
coincide with the solution point x∗ of (1.1). Then, the following properties hold:

rTk ri = 0, i = 1, 2, . . . , k − 1, (1.17)

gTk gi = 0, i = 1, 2, . . . , k − 1, (1.18)

span {r1, r2, . . . , rk} = span
{
r1, Ar1, . . . , A

k−1r1
}
, (1.19)

span {p1, p2, . . . , pk} = span
{
r1, Ar1, . . . , A

k−1r1
}
, (1.20)

pTkApi = 0, i = 1, 2, . . . , k − 1. (1.21)

The sequence {xk} converges to x∗ in at most n steps and there exists m ≤ n − 1
such that gm+1 = 0.

Proposition 1.1.4 ensures that the CG method:

• generates a set of linearly independent directions {p1, p2, . . . , pk} and residuals
{r1, r2, . . . , rk} that form an orthogonal basis for a Krylov subspace;

• determines in a finite number of steps the minimum point of strictly convex
quadratic functions or equivalently solves linear system (1.1), with A � 0, in
at most n steps.

1.1 Krylov subspace methods 11

Furthermore, a particular result is reported (see [63]).

Proposition 1.1.5. Suppose that matrix A has (n-k) eigenvalues in the range [a, c]
and k eigenvalues greater than c. Then iterate xk+1 generated by CG method is such
that

‖xk+1 − x?‖2A ≤
(
c− a
c+ a

)2
‖x1 − x?‖2A. (1.22)

This result shows that the effectiveness of CG methods depends directly on the
eigenvalue distribution of A. In fact, we note that the smaller the range [a, c] the
better the approximation of optimal solution is obtained in few iterations.

Another convergence scheme for CG is based on Euclidean condition number of
A, that is

κ(A) = ‖A‖2‖A−1‖2 = λn
λ1
, (1.23)

where λ1 and λn are respectively the smallest and the largest eigenvalue of A.
On this guideline, a convergence result provided by Luenberger (see [79]) is given.

Proposition 1.1.6. If κ(A) is the condition number of matrix A, then at the k-th
iteration of CG algorithm we have

‖xk+1 − x?‖A ≤ 2
(√

κ(A)− 1√
κ(A) + 1

)k
‖x1 − x?‖A. (1.24)

This result gives a large overestimate of the error xk+1 − x?, but it can be useful
in those cases where the only information we have about A is the estimation of the
extreme eigenvalues λ1 and λn. As immediate consequence of Proposition 1.1.5 and
Proposition 1.1.6, we report the following result (see [63]).

Corollary 1.1.7. Suppose that matrix A has k distinct eigenvalues. Then CG
methods will terminate in at most k iterations.

As we have seen above, CG method can be used for solving linear system (1.1)
with matrix A positive definite. If matrix A is indefinite, the algorithm could break
down because pTkApk (see (1.15)) might be nearly zero. A first attempt to try to use
CG method also in the indefinite nonsingular case consists to solve the equivalent
system A2x = Ab of (1.1): in fact, we note that A2 is positive definite. Nevertheless,
this approach presents two disadvantages:

• the new system will be strongly ill-conditioned, being κ(A2) = [κ(A)]2;

• at each iteration two matrix-vector products are needed.

On this guideline, in order to cope also with indefinite linear systems, we
introduce the well known Lanczos process: first when A is positive definite, then in
the indefinite case.

12 1. Iterative Methods for solving Symmetric Linear Systems

1.1.2 The Lanczos process

Lanczos process is a particular technique to estimate a good approximation of
extreme eigenvalues of a matrix. This method is very useful in case of large scale
problems. Given a nonsingular symmetric matrix A ∈ Rn×n, Lanczos process
generates a sequence of symmetric tridiagonal matrices Tk ∈ Rk×k (with k ≤ n) such
that their extreme eigenvalues converge monotonically to the extreme eigenvalues of
A. From a theoretical point of view, Lanczos process is conceived as a method for
tridiagonalizing the matrix A.

Hence, the Lanczos process is also an efficient tool to determine a good approxi-
mation of the solution of the large scale linear system (see (1.1)).

Given a symmetric matrix A (not necessarily definite positive), we report the
well know Lanczos scheme.

Lanczos algorithm

Data: x1 ∈ Rn;

Set k = 1, u1 = r1 = b−Ax1 = −g1, q1 = u1
‖u1‖ , δ1 = qT1 Aq1 and u2 = Aq1 − δ1q1;

For j = 2, . . . , k − 1
γj = ‖uj‖

qj = uj
γj

δj = qTj Aqj

uj+1 = Aqj − δjqj − γjqj−1

End For
γk = ‖uk‖

qk = uk
γk

δk = qTk Aqk

After k iterations, Lanczos process generates:

• k vectors q1, . . . , qk, named Lanczos vectors;

• k scalars δ1, . . . , δk;

• k − 1 scalars γ2, . . . , γk.

Defining Q ∈ Rn×k a matrix whose columns are the Lanczos vectors, that is

Qk =
[
q1

...
... qk

]
(1.25)

1.1 Krylov subspace methods 13

and the symmetric tridiagonal matrix Tk ∈ Rk×k

Tk =


δ1 γ2
γ2 δ2 ·

· · ·
· δk−1 γk

γk δk

 , (1.26)

we can report the following result (see [36]).

Proposition 1.1.8. Let be given a nonsingular symmetric matrix A ∈ Rn×n and
let k ≤ n. According to the Lanczos algorithm, we obtain:

AQk = QkTk + γk+1qk+1e
T
k , (1.27)

QTkAQk = Tk, (1.28)

QTkQk = I, (1.29)

QTk qk+1 = 0, (1.30)

span {q1, q2, . . . , qk} = span
{
r1, Ar1, . . . , A

kr1
}
, (1.31)

Hence, the Lanczos process converges in at most n steps.

1.1.2.1 Lanczos process for positive definite systems

In this section our aim is to show how the Lanczos process can be used to solve linear
systems in (1.1) with A positive definite. As already mentioned, Lanczos process
generates a sequence of orthonormal vectors {qi}(the Lanczos vectors), i = 1, . . . , k,
which form a basis for the Krylov subspace Kk(A, r1).

If A is positive definite, solving Ax = b is equivalent to find a minimum point of
the quadratic function %(x) = 1

2x
TAx− bTx over Rn, being x? = A−1b the unique

minimum point of %. On this guideline, an approximate minimum point of % can
be viewed as an approximate solution of linear system Ax = b. A particular way
to produce a sequence {xk} that converges to x? consists to generate a sequence
of orthonormal vectors. To do this, we can use the Lanczos vectors and define a
minimum point xk of % over the subspace span {q1, q2, . . . , qk}. Roughly speaking,
by the Lanczos process at step k we try to seek a minimum point in a particular
subspace (instead of Rn). Since xk ∈ x1 + span {q1, q2, . . . , qk}, it results (x1 = 0)

xk = x1 +Qkyk = Qkyk, (1.32)

where Qk is the matrix in (1.25) and yk ∈ Rk is a suitable vector. Considering (1.32),
the quadratic function in (1.12) can be rewritten as

%(yk) = 1
2y

T
k (QTkAQk)yk − bT (Qkyk). (1.33)

The problem of finding minimum points of % over the subspace span {q1, . . . , qk}
consists to determine y?k such that

∇%(yk) = QTkAQky
?
k −QTk b = 0. (1.34)

14 1. Iterative Methods for solving Symmetric Linear Systems

The espression in (1.34) is equivalent to solve the system

QTkAQkyk = QTk b. (1.35)

Considering that QTkAQk = Tk (see (1.28)), the linear system Ax = b in (1.1) can
be transformed in

Tkyk = QTk b
xk = Qkyk.

(1.36)

Firstly, we calculate y?k from Tkyk = QTk b, then we obtain x?k = Qky
?
k that is an

approximate solution of the original linear system in (1.1). Obviously we note that
if γk = 0 for a certain k, the Lanczos process is arrested and the corresponding xk is
the solution of the linear system Axk = b.

1.1.2.2 Lanczos process for indefinite systems

After studying Lanczos process applied to solve linear systems in (1.1) with A
positive definite, we consider the indefinite case. As already stated, one of the
advantages of using Lanczos process in place of CG algorithm is that the first one
does not break down in the indefinite case. An efficient strategy to use Lanczos
process for solving linear systems where A is indefinite (similarly when A is positive
definite) is the following. Starting from vector q1, without loss of generality, we
define q1 = b

‖b‖ . Therefore, considering (1.30), the expression Tkyk = QTk b in (1.36)
becomes Tkyk = ‖b‖e1. Thus, we can reformulate the system in (1.30) as follows:

Tkyk = ‖b‖e1
xk = Qkyk.

(1.37)

From a theoretical point of view, using Lanczos procedure to solve linear systems
in (1.1), both in case of A positive definite and in case of A indefinite, is relatively
easy.

1.1.3 Relationship between Lanczos process and CG method

In this section we recall the relationship between Lanczos process and CG method in
the positive definite case. As we have seen, CG method computes an orthogonal basis
{r1, r2, . . . , rk} for the Krylov subspace Kk(A, r1). The Lanczos process generates
an orthonormal basis {q1, q2, . . . , qk} for the same Krylov subspace Kk(A, r1).

As long as the CG method does not break down (see [36]),

Tk =



1
α1

√
β1
|α1|√

β1
|α1|

1
α2

+ β1
α1
·

· · ·

· 1
αk−1

+ βk−2
αk−2

√
βk−1
|αk−1|√

βk−1
|αk−1|

1
αk

+ βk−1
αk−1


, (1.38)

and thus the Lanczos tridiagonal matrix Tk is obtained as a trivial by-product of
the CG parameters αk in (1.15) and βk in (1.16).

1.1 Krylov subspace methods 15

Collating the Lanczos tridiagonal matrix Tk in (1.26) with the tridiagonal matrix
in (1.38) we get, for j = 1, . . . , k − 1, the following relations:

δ1 = 1
α1

(1.39)

δj+1 = 1
αj+1

+ βj
αj

(1.40)

γj+1 =
√
βj
|αj |

. (1.41)

In order to complete the relationship between CG and Lanczos process, in the
positive definite case, we report the following result in (see [36]).
Proposition 1.1.9. Let be given a nonsingular positive definite symmetric matrix
A ∈ Rn×n. Suppose that both CG and Lanczos algorithms adopt the same starting
vector. Then the solution xk obtain by Lanczos procedure coincides with the solution
xk obtained by CG algorithm.

The latter result is very important because we can ensure that, from a theoretical
point of view, in the positive definite case, Lanczos process and CG method are
equivalent. Finally, an application of this relationship can be viewed in [55].

1.1.4 Decomposition of tridiagonal matrix Tk

Lanczos process is a powerful method for solving linear systems in (1.1). Unlike CG
method, Lanczos algorithm does not break down if the matrix A is indefinite. On
the other hand, Lanczos scheme needs to decompose the tridiagonal matrix Tk.

1.1.4.1 Decomposition for positive definite systems

In this paragraph, we study how to factorize efficiently the tridiagonal matrix Tk
in case of matrix A positive definite. It is well known that if A � 0, using (1.28),
matrix Tk is positive definite (see [54]). To decompose the matrix Tk we can use the
banded version of Cholesky factorization (see [54])

Tk = LkDkL
T
k , (1.42)

where Lk ∈ Rk×k is a unit lower bidiagonal matrix and Dk ∈ Rk×k is a diagonal
matrix. Denoting

Lk =


1
µ2 1

· ·
µk−1 1

µk 1

 (1.43)

and

Dk =


d1

d2
·
dk−1

dk

 (1.44)

16 1. Iterative Methods for solving Symmetric Linear Systems

we get, for j = 1, . . . , k − 1, the following relations with the matrix Tk (see (1.26)
and (1.38)):

d1 = 1
α1

= δ1,

dj+1 = 1
αj+1

= δj+1,

µj+1 = −αj+1

√
βj+1
|αj+1|

= γj+1.

(1.45)

In order to compute xk in (1.37), we introduce the n× k matrix Ck =
[
c1

...
... ck

]
and the vector ρ(k) = (ρ1, . . . , ρk)T such that

CkL
T
k = Qk (1.46)

ρ(k) = LTk yk. (1.47)

Hence, (1.37) can be rewritten as follows:

LkDkρ
(k) = ‖b‖e1

CkL
T
k = Qk

xk = Ckρ
(k).

(1.48)

After some computations, from the equations (1.48), we obtain the following recursive
formulae to calculate xk within the Lanczos algorithm:

ck = qk − ck−1µk−1 (1.49)

ρk = −µk−1dk−1ρk−1
dk

(1.50)

xk = xk−1 + ρkck. (1.51)

1.1.4.2 Decomposition for indefinite systems

When the matrix A is indefinite, the Cholesky factorization in (1.42) may not exist.
In this section we present the SYMMBK algorithm (see [34]) for the indefinite
systems, based on the Bunch and Kaufman decomposition of Tk.

First of all, to describe the SYMMBK scheme, we must recall the Bunch and
Kaufman decomposition. Suppose that for any k > 0, Tk and Tk+1 in (1.37) are
both singular. Consider the generic tridiagonal matrix Uk, that is

Uk =


a1 b1
c1 a2 b2

· · ·
ck−2 ak−1 bk−1

ck−1 ak

 , (1.52)

1.1 Krylov subspace methods 17

it is well known that the determinant of matrix Uk can be computed using the
following iterative formula:

det(Uk) = ak det(Uk−1)− ck−1bk−1 det(Uk−2). (1.53)

Applying this fact to Tk, we get that Tk+j , for all j > 1, will be singular. Obviously,
this is not possible since Tn is similar to A which is nonsingular. Hence, if Tk+1 is
singular, then both Tk and Tk+2 are nonsingular. On the basis of these considerations,
suppose that we are computing the Cholesky decomposition for the tridiagonal
matrices Tj , for j ≤ k. Consider the following matrix Tk+1, that is

Tk+1 =



δ1 γ2
γ2 δ2 ·

· · ·
· δk−1 γk

γk δk
0


, (1.54)

where the (k+1)-th pivot element is zero. In this case, Tk+1 is singular and Cholesky
decomposition breaks down. However, if we consider the tridiagonal nonsingular
matrix Tk+2

Tk+2 =



δ1 γ2
γ2 δ2 ·

· · ·
· δk−1 γk

γk δk
0 γk+2

γk+2 δk+2


(1.55)

and we take a 2 × 2 pivot instead of a single element, we can consider the 2 × 2
diagonal block (

0 γk+2
γk+2 δk+2

)
. (1.56)

Since the determinant of (1.56) is −γ2
k+2 6= 0, the decomposition of Tk+2 in (1.55)

depends directly on that of Tk in (1.26), in order to skip the singularity of Tk+1 in
(1.54). On this guideline we can introduce the Bunch and Kaufman Decomposition

Tk = SkBkS
T
k , (1.57)

where Bk is a block diagonal matrix with 1× 1 or 2× 2 diagonal blocks, and Sk is
a unit lower triangular matrix such that its non-zeroes are restricted to the three
main diagonals with Sj+1,j = 0 if and only if Bj+1,j 6= 0. The Bunch and Kaufman
scheme in (1.57) decomposes the matrix Tk in (1.26) by generating a sequence of
tridiagonal matrices Tj , with j ≤ k. Given a scalar η ∈ (0, 1), the choice of 1 × 1
pivot or 2× 2 pivot for Bj,j is based on the following rule:

18 1. Iterative Methods for solving Symmetric Linear Systems

• if |δ1| ≥ η|γ2|2, then δ1 is used as a 1 × 1 pivot to generate Tk−1 and Tk =
SkBkS

T
k (see (1.57)) is equal to

Tk =


1 0 . . . 0
S2,1

0 I
...
0




δ1 0 . . . 0
0
0 Tk−1
...
0




1 S2,1 0 . . . 0
0
0 I
...
0

 (1.58)

• if |δ1| < η|γ2|2, then (
δ1 γ2
γ2 δ2

)
(1.59)

is used as a 2 × 2 pivot to generate Tk−2 and Tk = SkBkS
T
k (see (1.57)) is

equal to

Tk =



1 0 0 . . . 0
0 1 0 . . . 0
S3,1 S3,2

0 0 I
...

...
0 0





δ1 γ2 0 . . . 0
γ2 δ2 0 . . . 0
0 0
0 0 Tk−2
...

...
0 0





1 0 S3,1 0 . . . 0
0 1 S3,2 0 . . . 0
0 0
0 0
...

... I
0 0


(1.60)

In order to determinate the elements of the matrix Sk in (1.57),

• if we compute Tk in (1.58) and we compare it with Tk in (1.26), we get

δ1S2,1 = γ2, (1.61)

that is
S2,1 = γ2

δ1
; (1.62)

• if we compute Tk in (1.60) and we compare it with Tk in (1.26), we get
S3,1δ1 + S3,2γ2 = 0

S3,1γ2 + S3,2δ2 = γ3,
(1.63)

that is 
S3,1 = − γ3γ2

δ1δ2 − γ2
2

S3,2 = γ3δ1
δ1δ2 − γ2

2
.

(1.64)

1.1 Krylov subspace methods 19

From now on, we describe a particular scheme, called SYMMBK, that uses the
Bunch and Kaufman factorization in (1.57) to compute xk from (1.37). We introduce

the n× k matrix Wk =
[
w1

...
... wk

]
and the vector ζ(k) = (ζ1, . . . , ζk)T such that

WkS
T
k = Qk (1.65)

ζ(k) = STk yk. (1.66)

By (1.57), (1.65) and (1.66), the equations in (1.37) can be rewritten as follows:

SkBkζ
(k) = ‖b‖e1

WkS
T
k = Qk

xk = Wkζ
(k).

(1.67)

On this guideline, to compute xk, we must analyze both 1× 1 and 2× 2 pivoting
steps. If the pivot chosen is 1× 1, SkBkζ(k) = ‖b‖e1 in (1.67) is equivalent to


0

Sk−1 0
...
0

0 . . . 0 s1 s2 1




0

Bk−3 0

b1 b3
...

b2 b4 0
0 . . . 0 0 0 δk




ζ1
ζ2
...

ζk−1
ζk

 =


‖b‖
0
...
0
0

 , (1.68)

where s1, s2, b1, b2, b3, b4 and δk are computed from the last iteration. In particular,
if the last pivot was 1× 1, then s1 = b2 = b3 = 0. From (1.68) we have

0
Sk−1Bk−1 0

...
0

0 . . . 0 (s1b1 + s2b2) (s1b3 + s2b4) δk




ζ1
ζ2
...

ζk−1
ζk

 =


‖b‖
0
...
0
0

 (1.69)

where

Bk−1 =

 Bk−3
b1 b3
b2 b4

 . (1.70)

After some computations, from equations in (1.67), we obtain the following recursive
formulae to calculate xk within the Lanczos algorithm:

wk = qk − s1wk−2 − s2wk−1 (1.71)

ζk = −(s1b1 + s2b2)ζk−2 + (s1b3 + s2b4)ζk−1
δk

(1.72)

xk = xk−1 + ζkwk. (1.73)

20 1. Iterative Methods for solving Symmetric Linear Systems

Similarly to the first case, if the pivot chosen is now 2 × 2, SkBkζ(k) = ‖b‖e1 in

(1.67) is equivalent to

0 0
0 0

Sk−2
...

...
0 0

0 . . . 0 s1 s2 1 0
0 . . . 0 0 0 0 1





0 0
Bk−4 0 0

b1 b3
...

...
b2 b4 0 0

0 . . . 0 0 0 δk−1 γk
0 . . . 0 0 0 γk δk





ζ1
ζ2
...

ζk−2
ζk−1
ζk


=



‖b‖
0
...
0
0
0


,(1.74)

where s1, s2, b1, b2, b3, b4, δk−1, γk and δk are computed from the last two iterations.
In particular, if the last pivot was 1× 1, then s1 = b2 = b3 = 0. By multiplying in
(1.74) we have

0 0
0 0

Sk−2Bk−2
...

...
0 0

0 . . . 0 (s1b1 + s2b2) (s1b3 + s2b4) δk−1 γk
0 . . . 0 0 0 γk δk





ζ1
ζ2
...

ζk−2
ζk−1
ζk


=



‖b‖
0
...
0
0
0


,(1.75)

where now

Bk−2 =

 Bk−4
b1 b3
b2 b4

 . (1.76)

After some computations, from equations in (1.67), we obtain the following recursive
formulae to calculate xk within the Lanczos algorithm:

wk−1 = qk−1 − s1wk−3 − s2wk−2

wk = qk

(1.77)

ζk−1 = −δk
(s1b1 + s2b2)ζk−3 + (s1b3 + s2b4)ζk−2

δk−1δk − γ2
k

ζk = γk
(s1b1 + s2b2)ζk−3 + (s1b3 + s2b4)ζk−2

δk−1δk − γ2
k

(1.78)

xk = xk−2 + ζk−1wk−1 + ζkwk. (1.79)

1.2 Preconditioning
Up to now we have seen Krylov methods to solve symmetric linear systems: in
particular we focused on CG and Lanczos process. Since CG algorithm may break
down in the indefinite case, we investigated the relationship between CG and Lanczos
scheme only in the positive definite systems.

1.2 Preconditioning 21

In this section we recall a particular technique, known as Preconditioning (see
e.g. [19], [61], [63], [95], [106]), to improve the efficiency when solving linear system
in (1.1) by iterative methods. As already mentioned, the convergence rate of CG
method (see Proposition 1.1.5, Proposition 1.1.6 and Corollary 1.1.7) depends on
the eigenvalues of the matrix A in (1.1): on this guideline, linear system in (1.1) can
be transformed so that the properties of the matrix A may be controlled.

Considering that A in (1.1) is symmetric, if we introduce a nonsingular symmetric
matrix M ∈ Rn×n, the following preconditioned system

MAx = Mb, (1.80)

gets the same solutions of (1.1). Observe that if we solve (1.80) iteratively, the
convergence will not depend on the structural properties of A, but on those of MA.
A good choice of preconditioner enables to solve the preconditioned system in (1.80)
much more rapidly than the unpreconditioned system in (1.1). In particular, when
dealing with preconditioners, we have two extreme cases:

• ifM = A−1, the use of preconditioner is as hard as solving the unpreconditioned
problem (1.1), and there is no gain to improve efficiency;

• if M = I, the use of preconditioner is trivially irrelevant when solving (1.80).

Preconditioners in-between these two extremes can be considered and, an iterative
method for (1.80) might converge more quickly than an iterative method for (1.1).
The main drawback is how to define that preconditioner M . For example, we might
claim the eigenvalues of MA to be close to 1 and ‖MA− I‖ small. A general rule
to build good preconditioners is the following given by [106]: “A preconditioner M
is good if MA is not too far from normal and its eigenvalues are clustered”.

1.2.1 Preconditioned Conjugate Gradient method

In this section we recall preconditioning the CG method. Starting from CG scheme,
we define its improved version known as Preconditioned Conjugate Gradient method
(PCG).

In order to apply preconditioning techniques to CG method, hereafter we recall
the mathematical ideas which lead to PCG scheme. Let us consider the following
preconditioned system in (1.80), that is

MAx = Mb.

A possible choice of preconditioner might correspond to set M close to the inverse of
matrix A, such that the eigenvalues of MA could be clustered about the number 1.
However, we cannot use this strategy on CG method because we are not guaranteed
about the symmetry and positive definiteness of matrix MA, even if M � 0. To
overcame this drawback, we consider a symmetric and positive definite matrix
Z ∈ Rn×n such that A = Z2 (if and only if A � 0). On this guideline, (1.1) can be
rewritten the system as follows:

ZZx = b. (1.81)

22 1. Iterative Methods for solving Symmetric Linear Systems

Setting x = Py, where P ∈ Rn×n is a symmetric and nonsingular matrix and y ∈ Rn,
we get

PZZPy = Pb, (1.82)

that is
PAPy = Pb. (1.83)

Note that PAP is a symmetric and positive definite matrix and, in case P ≈ Z−1,
then PAP is close to the identity matrix. Now we apply CG method to the system
in (1.83) to calculate the solution y∗ and therefore, to obtain the solution given
by the original system x∗ = Py∗. On this guideline we can define a PCG method
considering linear system in (1.83), without explicity evaluating PAP matrix and
updating iteratively the current iterate xk in (1.1). Applying CG method to (1.83),
we get at each iteration k ≥ 1:

yk+1 = yk + αkp̃k, (1.84)

where
αk = g̃Tk g̃k

p̃Tk PAP p̃k
(1.85)

and
g̃k = PAPyk − Pb = P (APyk − b). (1.86)

Consider xk = Pyk, pk = P p̃k and setting M = P 2 we obtain:

xk+1 = xk + αkpk (1.87)

g̃k = P (Axk − b) = Pgk (1.88)

αk = gTk PPgk
pTkApk

= gTkMgk
pTkApk

. (1.89)

Furthermore,
p̃1 = −g̃1, (1.90)

p̃k = −g̃k + βkp̃k−1, k ≥ 2, (1.91)

where
βk = ‖g̃k‖2

‖g̃k−1‖2
= gTk PPgk
gTk−1PPgk−1

= gTkMgk
gTk−1Mgk−1

. (1.92)

Using (1.90) and (1.91) we get:

p0 = −P g̃1 = −PPg1 = −Mg1, (1.93)

pk = −gk + βkpk−1, k ≥ 2, (1.94)

On the basis of these considerations, we can describe the PCG algorithm for Ax = b
in (1.1).

1.2 Preconditioning 23

PCG algorithm

Data: x1 ∈ Rn, M ∈ Rn×n is a symmetric and positive definite matrix;

Set k = 1, g1 = Ax1 − b and p1 = −Mg1;

While gk 6= 0

αk = gTkMgk
pTkApk

xk+1 = xk + αkpk

gk+1 = gk + αkApk

βk+1 =
gTk+1Mgk+1

gTkMgk

pk+1 = −Mgk+1 + βk+1pk

k = k + 1

End While

We note that if M = I, then PCG coincides with CG method. Some theoretical
properties of CG method can be generalized in case of PCG method. In particular,
the orthogonality property (1.17) in Proposition 1.1.4 becomes

rTkMri = 0, for i = 1, 2, . . . , k − 1. (1.95)

As follows by the PCG scheme, preconditioner M compares only as a product with
the gradient: on this guideline it is not necessary to store the preconditioner M
but only the matrix-vector product. This fact is very important in large scale
setting (that is when n is large). From a computational point of view, the main
difference between the PCG and CG methods is that the first one needs an additional
matrix-vector product (pk = −Mgk).

In its favour, we have two improved convergence results (see [36]) .

Corollary 1.2.1. If κ(MA) is the condition number of matrix MA, then at the
k-th iteration of PCG algorithm we have

‖xk+1 − x?‖A ≤ 2
(√

κ(MA)− 1√
κ(MA) + 1

)k
‖x1 − x?‖A. (1.96)

Corollary 1.2.2. Suppose that matrix MA has k distinct eigenvalues. Then PCG
methods will terminate in at most k iterations.

Thus, it is now the matrix MA that determines the convergence behaviour of
the method. In particular, Corollary 1.2.1 shows that the worst-case convergence

24 1. Iterative Methods for solving Symmetric Linear Systems

rate depends upon the condition number of MA (instead of the condition number
of A as in Proposition 1.1.6), and thus that we should aim to choose M to make
this number as small as possible.

In summary, an iteration of the PCG method is more expensive than CG method,
but a suited choice of preconditioner may reduce the number of iterations required
to achieve a given level of accuracy in the solution. Thus, the overall cost of the
preconditioned method may actually be comparably smaller. The difficulty is, of
course, in finding a preconditioner with the required spectral properties that is also
inexpensive to use. On this guideline, especially when solving difficult large scale and
ill-conditioned problems, building good preconditioners is currently still considered
a challenging research topic.

1.3 Conclusions
In this chapter we focused on the solution of linear systems in large scale setting.
To this aim, we introduced Krylov methods, focusing on CG and Lanczos process.
Finally, preconditioning idea was briefly reported and an accelerate version of CG
method (namely PCG) was presented.

25

Chapter 2

Methods for Large Scale
Unconstrained Optimization

In this chapter we deal with methods for large scale unconstrained optimization. In
particular, we both detail the meaning of large scale optimization problems, and we
introduce some methods commonly used to solve them. Most of the material of this
chapter is taken from [23], [63], [95].

2.1 Introduction to Large Scale Unconstrained Opti-
mization

To introduce a large scale unconstrained optimization problem, we consider the
problem of finding a local minimizer of a real valued objective function f over the
space Rn, i.e. to solve the problem

min
x∈Rn

f(x), (2.1)

where the dimension n is large. The definition of “large scale” is obviously machine
dependent. Nowadays, an unconstrained optimization problem with more than 103−
104 variables can be considered a large scale problem. A considerably large number
of real world applications can be modeled (or reformulated as) an optimization
problem of the form (2.1), strongly motivating the interest for the solution of such
problems in several contexts. Large scale problems can be solved efficiently only if
the storage and computational costs of the optimization algorithm can be kept at a
tolerable level. In the next sections we recall well known methods for large scale
unconstrained optimization, namely:

• Nonlinear Conjugate Gradient (NCG) method;

• Quasi-Newton methods;

• Inexact Newton methods.

26 2. Methods for Large Scale Unconstrained Optimization

2.1.1 Nonlinear Conjugate Gradient (NCG) method

In Section 1.1.1 we have seen that the CG method can be viewed as a minimization
algorithm for the convex quadratic function f defined by (1.12). Anyhow, it is
natural to ask how we can extend the CG method to minimize general convex
functions, or even a general nonlinear function f . To this aim, recalling the CG
method for quadratic problems, it is necessary:

• defining a search direction pk+1 such that in the coefficient βk+1 the matrix A
does not appear;

• substituting the optimal steplength αk computed by exact linesearch proce-
dures.

As well known the NCG method is a natural extension of the CG method to
general nonconvex functions. In this regard, we remark a noticeable difference
between CG and NCG methods. Whenever the CG method is applied, the Hessian
matrix does not change during the iterations of the algorithm. On the contrary,
when NCG algorithm is applied to a general nonlinear function, the Hessian matrix
(possibly indefinite) changes with the iterations. The latter fact implies that the
mutual conjugacy of the search directions, generated by the NCG scheme, may be
hardly fulfilled.

The NCG methods have been widely studied and are often very efficient when
solving large scale problems. The positive steplength αk is obtained by an appropriate
linesearch. Different values of βk give rise to different algorithms (see [67] for a
survey), endowed with different convergence properties. Among them, the most
common and historically settled schemes are

• βk+1 = ‖gk+1‖2

‖gk‖2
(Fletcher and Reeves (FR) [50]),

• βk+1 = yTk gk+1
‖gk‖2

(Polak and Ribière (PR) [97]),

• βk+1 = yTk gk+1
yTk pk

(Hestenes and Stiefel (HS) [69]).

where yk = gk+1 − gk.
However, more recently several other efficient proposals have been introduced in

the literature, among them we can report, for instance,

• βk+1 =
(
yk − 2pk

‖yk‖2

yTk pk

)T
gk+1
yTk pk

(Hager and Zhang (HZ) [65]),

• βk+1 = ‖gk+1‖2

yTk pk
(Dai and Yuan (DY) [37]).

We recall that, if f is a quadratic function and the linesearch procedure is exact,

yTk gk+1 = ‖gk+1‖2 − gTk gk+1 = ‖gk+1‖2 (by (1.18) in Proposition 1.1.4),

2.1 Introduction to Large Scale Unconstrained Optimization 27

yTk pk = gTk+1pk − gTk pk = ‖gk‖2,

being

gTk+1pk = gTk pk + αkp
T
kApk = gTk pk −

(
gTk pk
pTkApk

)
pTkApk = 0,

gTk pk = −gTk gk + gTk (βkpk−1) = −‖gk‖2 + βkg
T
k pk−1 = −‖gk‖2.

Thus we can observe that in case f is quadratic the different values of βk are
equivalent.

On this guideline, starting from CG scheme in Section 1.1.1, a general NCG
method can be reported as follows.

NCG algorithm

Data: x1 ∈ Rn;

Set k = 1, compute g1 and p1 = −g1;

While gk 6= 0

compute the steplength αk by using a linesearch procedure along pk;

xk+1 = xk + αkpk

compute βk+1;

pk+1 = −gk+1 + βk+1pk (2.2)

k = k + 1

End While

To make the NCG scheme complete, in order to compute αk, we need to perform
a linesearch procedure that identifies an approximate local minimum of the nonlinear
function f along the search direction pk. If αk does not satisfy certain conditions
then the direction pk+1 in (2.2) may be ineffective. Consider the inner product at
both the sides of (2.2) at the k-th iteration, that is pk = −gk + βkpk−1, we get

gTk pk = −‖gk‖2 + βkg
T
k pk−1. (2.3)

In case of exact linesearch, since αk−1 corresponds to compute a stationary point
of the function f along the search direction pk−1, we have gTk pk−1 = 0. On this
guideline, from (2.3), gTk pk < 0; this implies that pk is a descent direction. In case
of inexact linesearch, since the second term in the right hand side of (2.3) could

28 2. Methods for Large Scale Unconstrained Optimization

dominate the first term, we may obtain gTk pk ≥ 0; this implies that pk is not a
descend direction. To overcame this problem, starting from FR algorithm (the first
scheme proposed to calculate the parameter βk) we require the steplength αk to
satisfy the following conditions (namely the strong Wolfe conditions):

f(xk + αkpk) ≤ f(xk) + c1αkg
T
k pk, (2.4)

|g(xk + αkpk)T pk| ≤ c2|gTk pk|, (2.5)

where 0 < c1 < c2 <
1
2 .

In order to give descent conditions on search directions, we report the following
Proposition (see [95]).

Proposition 2.1.1. Consider the NCG algorithm and assume that αk satisfies the
strong Wolfe conditions (2.4)-(2.5) with 0 < c2 <

1
2 . Then, NCG method generates

descent directions pk that satisfy the following inequalities:

− 1
1− c2

≤ gTk pk
‖gk‖2

≤ 2c2 − 1
1− c2

, for all k = 1, 2, . . . (2.6)

By applying Proposition 2.1.1, we can conclude that any linesearch procedure
based on the strong Wolfe conditions (2.4)-(2.5) will ensure that all directions {pk}
are descent directions for the function f .

An important variant of the parameter βk is proposed by Polak and Ribière (PR
algorithm). As already said, in case f is strongly convex quadratic function and the
linesearch is exact, FR and PR formulae for βk coincide. Instead, when applying PR
method to a general nonlinear function with inexact linesearch, the strong Wolfe
conditions do not guarantee that the direction pk is a descent direction. To overcome
this drawback, if we define the parameter β (see [95]) such that

β+
k+1 = max{βk+1, 0}, (2.7)

where βk+1 is given by PR scheme and we obtain a new algorithm to evaluate
β called PR+. On this guideline, if the steplength αk satisfies the strong Wolfe
conditions and β+

k is adopted, then the descent property holds. From a numerical
point of view, PR method tends to be much more robust and efficient than FR
method. An algorithm similar to PR scheme, which is competitive both in terms of
theoretical convergence properties and practical performance, is given by Hestenes
and Stiefel (HS). Other variants of the parameter βk have been proposed in the
literature. In particular, both Hager and Zhang (HZ) (see [65]) and Dai and Yuan
(DY) (see [37]) suggested new choices for βk+1 with appealing theoretical properties
and a good computational behaviour.

Some techniques are investigated in order to improve the efficiency of the NCG
methods. Usually, a quadratic or cubic interpolation along pk is implemented into
the linesearch procedure. Another modification used in NCG scheme is to restart
the iteration every n steps by setting βk = 0, that is pk+n = −gk+n. This technique
is useful to periodically refresh the algorithm, crossing out old information that may
not be beneficial. On this guideline, formula (2.7) can be seen as a restarting strategy
because pk+1 will revert to the steepest descent direction whenever βk (according to
PR scheme) is negative.

2.1 Introduction to Large Scale Unconstrained Optimization 29

Unlike CG algorithm, “NCG methods possess surprising, sometimes bizarre,
convergence properties” (J. Nocedal in [95]). Here below we recall some results for
the FR and PR methods. In order to prove a global convergence for the FR method,
we have to introduce the Zoutendijk’s conditions (see [63]), reported in the following
Proposition.

Proposition 2.1.2. Let f be a continuously differentiable function on Rk and
assume it is bounded below. Let {xk} be an infinite sequence with gk 6= 0. Suppose
there exists µ > 0 such that

f(xk)− f(xk+1) ≥ µ‖gk‖2 cos2 θk, (2.8)

where cos θk = gTk pk
‖gk‖‖pk‖

. Then, if

∞∑
k=1

cos2 θk =∞ (2.9)

it results
lim

k→+∞
inf ‖gk‖ = 0.

Considering Proposition 2.1.1 and Proposition 2.1.2, global convergence results
for FR method can be proved if an exact linesearch is used. Al-Baali in [2] proved
the global convergence of FR method with inexact linesearch. However, as already
said, from a numerical point of view, for general nonconvex functions, the FR
algorithm performs worse than the PR algorithm. Note that if xk+1 ≈ xk, then
we have gk+1 ≈ gk, so that using PR method we obtain βk+1 ≈ 0 and pk+1 =
−gk+1 (conversely, with FR method it is βk+1 ≈ 1). Thus, PR algorithm has a
kind of “automatic restart” along the steepest descent direction −gk+1. Restart
technique is the simplest criterion to guarantee global convergence because we
use the steepest descent direction: nevertheless, numerical experiences show that
globalization techniques based on the modification of βk+1 or the use of appropriate
linesearch procedures are preferable with respect to the restart technique. The
global convergence of the PR method with exact linesearch has been proved in [97]
under strong convexity assumption on f . Grippo & Lucidi in [62] proved the global
convergence of PR method with particular inexact linesearch conditions. Further
references on NCG convergence can be found in [14], [15], [43], [71], [113].

2.1.1.1 Preconditioned Nonlinear Conjugate Gradient method

“A major drawback of NCG methods is that the search directions tend to be poorly
scaled, and the linesearch typically requires several function evaluations to obtain
an acceptable steplength αk” (J. Nocedal in [94]).

On this guideline, a keynote issue for enhancing NCG efficiency is to include a
preconditioning strategy, especially when solving difficult ill-conditioned problems.
In this section first we report the scheme of a general Preconditioned Nonlinear
Conjugate Gradient (PNCG) algorithm (see e.g. [101]), where Mk � 0 denotes the
preconditioner at the k-th iteration.

30 2. Methods for Large Scale Unconstrained Optimization

PNCG algorithm

Data: x1 ∈ Rn, M1 ∈ Rn×n is a symmetric and positive definite matrix;

Set k = 1, compute g1 and p1 = −M1g1;

While gk 6= 0

compute the steplength αk by using a linesearch procedure along pk;

xk+1 = xk + αkpk

compute βk+1;

pk+1 = −Mk+1gk+1 + βk+1pk (2.10)

k = k + 1

End While

By setting Mk = I for any k, the popular (unpreconditioned) NCG method is
trivially obtained. The parameter βk+1 depends on the preconditioner, too, and can
be chosen in a variety of ways. For PNCG algorithm, among the most recurrent
choices of βk+1 from the literature there are the following ones (they all require
Mk � 0 for any k):

βFR
k+1 =

gTk+1Mk+1gk+1

gTkMkgk
, (2.11)

βPR
k+1 = yTkMk+1gk+1

gTkMkgk
, (2.12)

βHS
k+1 = yTkMk+1gk+1

yTk pk
, (2.13)

βHZ
k+1 = yTkMk+1gk+1

pTk yk
−Θk

yTkMk+1yk
pTk yk

pTk gk+1
pTk yk

, (2.14)

where Θk is a suitable parameter.
We recall that to guarantee global convergence, an accurate linesearch technique

is required to determine the steplength αk in a PNCG algorithm. The latter fact
justifies the use of a linesearch procedure, ensuring the strong Wolfe conditions
(2.4)-(2.5). This also guarantees that the condition

sTk yk > 0, for any k (2.15)

holds, where sk = αkpk = xk+1−xk. As we will see, (2.15) is a fundamental relation
to our future purposes.

As already said, preconditioning is applied for increasing the efficiency of the
NCG method.

2.1 Introduction to Large Scale Unconstrained Optimization 31

2.1.2 Quasi-Newton methods

Quasi-Newton methods represent an efficient tool for large scale optimization. With-
out using the second-order derivatives and maintaining superlinear convergence
(under reasonable assumptions), they provide a good approximation of the Newton
method.

Consider the following Taylor series of the convex objective function f(x) at the
current iterate xk:

f(xk + p) = f(xk) +∇f(xk)T p+ 1
2p

T∇2f(xk)p+ γ(xk, p) (2.16)

where lim
p→0

γ(xk, p)
‖p‖2

= 0. If ‖p‖ is small, f(xk + p) in (2.16) can be approximate with
the quadratic function

qk(p) = f(xk) +∇f(xk)T p+ 1
2p

T∇2f(xk)p. (2.17)

Since ∇qk(p) = ∇f(xk) + ∇2f(xk)p and if matrix ∇2f(xk) is positive definite, a
minimum point of qk(p) will given by

pk = −[∇2f(xk)]−1∇f(xk). (2.18)

On this guideline, quasi-Newton methods try to generate the sequence {xk} by
iteratively solving the “modified Newton’s equation”

pk = −[Bk]−1∇f(xk) (2.19)

and computing
xk+1 = xk + sk = xk − αkB−1

k ∇f(xk), (2.20)

where Bk ∈ Rn×n is positive definite and in some sense approximates the Hessian
matrix ∇2f(xk) of the quadratic function qk(p).

Now, the question is this: is it possible to update Bk+1 using the knowledge
gained during the latest step?

Suppose that we have generated a new iterate xk+1 and we want to construct a
new quadratic function

qk+1(p) = f(xk+1) +∇f(xk+1)T p+ 1
2p

TBk+1p. (2.21)

An important idea underlying many quasi-Newton methods is that the gradient of
qk+1 should match the gradient of the objective function f at the latest two iterates
xk and xk+1. On this guideline,

∇qk+1(−αkpk) = ∇f(xk+1)− αkBk+1pk = ∇f(xk), (2.22)

that is
Bk+1αkpk = ∇f(xk+1)−∇f(xk). (2.23)

Recalling that
sk = xk+1 − xk = αkpk (2.24)

32 2. Methods for Large Scale Unconstrained Optimization

and
yk = ∇f(xk+1)−∇f(xk), (2.25)

by (2.23) we obtain the “secant equation”

Bk+1sk = yk. (2.26)

Now we recall an important property to ensure that Bk+1 is positive definite.

Proposition 2.1.3. Let Bk � 0. Then Bk+1 � 0 if and only if sTk yk > 0.

On this guideline, if we consider the iterate xk+1 in (2.20), it can be possible to
give some conditions on αk such that the “curvature condition” in (2.15) is satisfied.
In fact, (2.15) can be written as follows:

pTk∇f(xk+1) > pTk∇f(xk). (2.27)

We note that condition in (2.27) can be satisfied using any linesearch procedure
based on the (strong) Wolfe conditions ((2.4)-(2.5)). When the curvature condition
in (2.27) is satisfied, the secant equation in (2.26) always has a solution Bk+1. To
determine Bk+1 uniquely, we solve the following problem

min
B
‖B −Bk‖F

s.t. B = BT

Bsk = yk.

Up to now, in quasi-Newton methods, an approximation of ∇2f(xk) has been
considered. However, if we focus on the inverse of Bk, denoted by

Hk = B−1
k , (2.28)

we easily get an analogous result obtained by using Bk. On this guideline, a sequence
Hk of approximations of [∇2f(xk)]−1 is generated, with Hk � 0. Starting from the
search direction

pk = −Hk∇f(xk) (2.29)

we compute
xk+1 = xk + sk = xk − αkHk∇f(xk) (2.30)

and the secant equation can be rewritten in this way:

Hk+1yk = sk. (2.31)

According to Proposition 2.1.3, similar conditions on Hk+1 are achieved. Finally,
the condition of closeness to Hk is specified as follows:

min
H
‖H −Hk‖F

s.t. H = HT

Hyk = sk.

In the sequel we recall several updating formulae:

2.1 Introduction to Large Scale Unconstrained Optimization 33

• Symmetric Rank-1 (SR1);

• Symmetric Rank-2 (SR2).

The SR1 updating formulae are chiefly used to solve nonlinear systems and the
SR2 updating formulae are used for unconstrained optimization problems.

The SR1 update has the general form

Bk+1 = Bk + ρkukv
T
k , (2.32)

where ρk ∈ R and uk, vk ∈ Rn. By substituting (2.32) in (2.26), we obtain

Bksk + ρkukv
T
k sk = yk. (2.33)

Assuming
uk = yk −Bksk, (2.34)

ρk = 1
vTk sk

, (2.35)

and considering vk an arbitrary vector such that vTk sk 6= 0, equation (2.33) is satisfied.
Hence, we get

Bk+1 = Bk + (yk −Bksk)vTk
vTk sk

. (2.36)

In particular, setting vk = sk, we obtain the well known “Broyden updating formula”,
that is

Bk+1 = Bk + (yk −Bksk)sTk
sTk sk

. (2.37)

The corresponding update formula for the inverse Hessian approximation Hk is easily
obtained by applying the well known “Sherman-Morrison-Woodbury formula” (see
[63]) into (2.37), that is

Hk+1 = Hk + (sk −Hkyk)sTkHk

sTkHksk
, (2.38)

provided that sTkHksk 6= 0.
As already said SR1 updating formulae are not suitable for unconstrained

optimization problem: in fact, (2.37) neither ensures that Bk+1 is a symmetric
matrix, nor guarantees that −B−1

k ∇f(xk) is a descent direction.
However, setting vk = yk −Bksk and recalling that vTk sk 6= 0, we obtain

Bk+1 = Bk + (yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
. (2.39)

The corresponding update formula for the inverse Hessian approximation Hk is

Hk+1 = Hk + (sk −Hkyk)(sk −Hkyk)T

(sk −Hkyk)T sk
. (2.40)

It can be proved that, in quadratic case, if (sk−Hkyk)T yk 6= 0 holds and if s0, s1, . . .
are linearly indipendent, SR1 method defined in (2.30) determines the minimum point

34 2. Methods for Large Scale Unconstrained Optimization

of the quadratic function f in at most n iterations and the matrix Hn coincides with
the inverse of the Hessian matrix of f . However, in non-quadratic case, (2.40) does
not ensure that the search direction is a descent direction and if (sk −Hkyk)T sk is
too close to zero there may be instability issues. On this guideline, for unconstrained
optimization problem, it is preferable to use SR2 updating formulae.

The SR2 update has the general form

Hk+1 = Hk + akuku
T
k + bkvkv

T
k , (2.41)

where uk, vk ∈ Rn and ak, bk ∈ R. Consider the secant equation (2.31) we obtain

Hkyk + akuku
T
k yk + bkvkv

T
k yk = sk. (2.42)

Assuming
ak = 1

sTk yk
, (2.43)

uk = sk, (2.44)

bk = − 1
yTkHkyk

, (2.45)

vk = Hkyk, (2.46)

equation (2.42) is satisfied. Hence, we get the well known “Davidon-Fletcher-Powell
(DFP) updating formula”, that is

Hk+1 = Hk + sks
T
k

sTk yk
− Hkyky

T
kHk

yTkHkyk
. (2.47)

The corresponding updating formula for the Hessian approximation Bk is

Bk+1 = Bk + (yk −Bksk)yTk + yk(yk −Bksk)T

sTk yk
− sTk (yk −Bksk)ykyTk

(sTk yk)2 . (2.48)

A particular class of updating formulae, which includes (2.47)-(2.48), is called
“Broyden family” that is

Hk+1 = Hk + sks
T
k

sTk yk
− Hkyky

T
kHk

yTkHkyk
+ φvkv

T
k , (2.49)

where φ ≥ 0 and

vk = (yTkHkyk)
1
2

(
sk
sTk yk

− Hkyk
yTkHkyk

)
. (2.50)

We note that setting φ = 0 into (2.49), we get DFP formula in (2.47). Fixing φ = 1
we obtain the well known “Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating
formula”, that is

Hk+1 = Hk +
(

1 + yTkHkyk
sTk yk

)
sks

T
k

sTk yk
− sky

T
kHk +Hkyks

T
k

sTk yk
. (2.51)

2.1 Introduction to Large Scale Unconstrained Optimization 35

The corresponding updating formula for the Hessian approximation Bk is

Bk+1 = Bk + yky
T
k

sTk yk
− Bksks

T
kBk

sTkBksk
, (2.52)

moreover, we get
H

(BFGS)
k+1 = H

(DFP)
k+1 + vkv

T
k , (2.53)

where vk is given by (2.50), and the Broyden family’s matrices can be defined as
follows:

H
(Broyden)
k+1 = (1− φ)H(DFP)

k+1 + φH
(BFGS)
k+1 . (2.54)

On the basis of Proposition 2.1.3, all Broyden family’s updating formulae ensure
that Hk+1 is positive definite as long as sTk yk > 0 and φ ≥ 0.

Numerical experience shows that BFGS updating formula seems to be preferable
than other ones. The BFGS scheme is now reported.

BFGS algorithm

Data: x1 ∈ Rn, H1 � 0;

Set k = 1 and compute ∇f(x1);

While ∇f(xk) 6= 0

pk = −Hk∇f(xk);

compute the steplength αk by using a linesearch procedure,
which ensures the strong Wolfe conditions (2.4)-(2.5)

xk+1 = xk + αkpk; (2.55)

yk = ∇f(xk+1)−∇f(xk); (2.56)

sk = xk+1 − xk;

compute Hk+1 by means of (2.51);

k = k + 1

End While

Although BFGS method is considered very robust in practice, global convergence
results for general nonlinear objective function do not exist. However, under the
following assumptions, global convergence result can be established.

Assumption 2.1.4.

36 2. Methods for Large Scale Unconstrained Optimization

i) Let be given an arbitrary starting point x1 ∈ Rn and an initial Hessian approx-
imation B1 that is symmetric and positive definite.

ii) Let f be a twice continuously differentiable objective function.

iii) The level set L = {x ∈ Rn : f(x) ≤ f(x1)} be convex and assume there exist
positive constants γ and Γ such that

γ‖z‖2 ≤ zT∇2f(x)z ≤ Γ‖z‖2 (2.57)

for all z ∈ Rn and x ∈ L.

On detail, the result is reported.

Proposition 2.1.5. Let Assumption 2.1.4 hold. Then the sequence xk generated by
BFGS scheme converges to the minimizer x∗ of f .

The main drawback of this result is that it can be applied to the entire Broyden
class, except for the DFP method.

Finally we can establish that, under some hypotheses, the rate of convergence
of the iterates generated by BFGS method is superlinear. Consider the following
assumption.

Assumption 2.1.6. The Hessian matrix ∇2f(x) is Lipschitz continuous at x∗. In
particular, there exists L > 0 such that

‖∇2f(x)−∇2f(x∗)‖ ≤ L‖x− x∗‖ for all x near x∗. (2.58)

The result reported shows the superlinear convergence of the BFGS method.

Proposition 2.1.7. Let f be a twice continuously differentiable objective function.
Suppose that the sequence xk generated by BFGS scheme converges to the minimizer
x∗ of f . Let Assumption 2.1.6 hold. If

∞∑
k=1
‖xk − x∗‖ <∞ (2.59)

is satisfied, then xk converges to x∗ at a superlinear rate, that is

lim
k→∞

‖xk+1 − xk‖
‖xk − x∗‖

= 1. (2.60)

2.1.2.1 Damped Quasi-Newton methods

On nonlinear “difficult” problems where the Hessian matrix is possibly highly ill-
conditioned, also quasi-Newton methods may be inefficient. This was already known
since 1986 when Powell in [100] analyzed the performance of the BFGS and DFP
algorithms in the case of a quadratic function of two variables (see also [10]).

To overcome the latter drawback, a technique originated by Powell in [99], and
was reproposed by Al-Baali in [3] for quasi-Newton methods: the so called “damped
technique”. In that paper, Powell deals with SQP Lagrangian BFGS methods for
nonlinearly constrained problems. He proposes a modification of BFGS that, to

2.1 Introduction to Large Scale Unconstrained Optimization 37

some extent, offsets the lack of positive definiteness in the Hessian of the Lagrangian
at the solution. Indeed, due to the presence of negative curvature directions of
the Lagrangian function, using BFGS for approximating the Hessian matrix with a
positive definite matrix, may be seriously inappropriate (see also [95] Section 18.3).
Damped techniques have been recently extended by Al-Baali also to the restricted
Broyden class of quasi-Newton methods for unconstrained optimization problems in
[3]. The author extends the global and superlinear convergence properties that the
Broyden family of methods fulfills for convex functions, to a novel class of methods,
namely the D-Broyden class (see also [7] [8] [9] [10] [11]). The rationale behind
damped techniques is the following.

As already mentioned, in dealing with the BFGS update, a crucial issue in
order to guarantee positive definiteness of the updated Hessian approximation is
the curvature condition in (2.15), that is sTk yk > 0. If f is strongly convex on an
open set containing the level set L, then (2.15) holds for any two points xk and xk+1
belonging to L (see, e.g. [25]). In case of nonconvex functions, as already mentioned,
the satisfaction of condition (2.15) must be ensured by means of the linesearch
procedure used for determining the stepsize αk. Indeed, the satisfaction of (2.15)
can be always obtained by a linesearch procedure if the objective function is bounded
below on L. To this aim the Wolfe conditions (in practice, strong Wolfe conditions
in (2.4)-(2.5)) are usually adopted, which ensure condition (2.15). However, if the
linesearch is not fairly accurate, the value of sTk yk may not be sufficiently positive.
In addition, if only the backtracking linesearch framework is employed, the curvature
condition (2.15) may not hold.

A first possible strategy to cope with this issue is to reinitialize the model Hessian
to the identity matrix or skip the update whenever sTk yk ≤ 0 (see e.g. Section 4.2.2
of [74]). However, this strategy is usually not recommended, due to the loss of
information on the curvature of the function. A more successful strategy is the
damped technique proposed by Powell in [99], in the context of SQP Lagrangian
BFGS method for constrained optimization, for which (2.15) may not hold even when
the Wolfe conditions are employed. To overcome this difficulty, the author proposes
to modify the difference of the gradients vector yk in (2.56) before performing the
update. Let Bk be the available positive definite Hessian approximation at k-th
iteration of the method, the following modified (damped) vector is used:

ŷk = ϕkyk + (1− ϕk)Bksk, (2.61)

where ϕk is chosen in (0, 1] such that sTk ŷk is “sufficiently positive”. Namely, given
σ ∈ (0, 1], the value of ϕk is set as follows:

ϕk =


σsTkBksk

sTkBksk − sTk yk
, if sTk yk < (1− σ)sTkBksk,

1, otherwise,

(2.62)

(see also Section 18.3 in [95]). This choice ensures that sTk ŷk = (1 − σ)sTkBksk is
sufficiently positive, since Bk is imposed to be positive definite at each iteration. In
[99] the value of σ = 0.8 is suggested as a “suitable size” to be used in (2.62) (see
also [95]); the value of σ = 0.9 is sometimes used, too (see e.g. [3] [10]).

38 2. Methods for Large Scale Unconstrained Optimization

To the best of our knowledge, Powell’s damped technique was never applied
to unconstrained optimization problems until Al-Baali used it for improving the
performance of the standard BFGS and DFP methods (see [3] [7] [8] [9] [10] [11]).
In particular, the author extends the damped technique to the Broyden family of
quasi-Newton methods for unconstrained optimization. The choice given in (2.62) is
modified so that the damped vector ŷk replaces yk in the quasi-Newton updating

formulae whenever the ratio sTk yk
sTkBksk

is sufficiently close to zero or negative (like in

the Powell’s strategy). This choice enforces both global and superlinear convergence
properties of the novel class of methods proposed in [3], namely the D-Broyden class.

We note that (2.62) does not modify yk when sTk yk
sTkBksk

is larger than 1. Therefore,

Al-Baali also suggests using the modified damped vector (2.61) when the ratio
sTk yk
sTkBksk

is large enough by extending the above choice as follows:

ϕk =



σsTkBksk
sTkBksk − sTk yk

, if sTk yk < (1− σ)sTkBksk,

σ̂sTkBksk
sTkBksk − sTk yk

, if sTk yk > (1 + σ̂)sTkBksk,

1, otherwise,

(2.63)

where σ̂ ≥ 2. In this work, we consider the value of σ̂ =∞ which reduces the above
choice to (2.62).

2.1.2.2 Quasi-Newton methods for Large Scale Optimization

As we have seen, BFGS method can be described by xk+1 = xk − αkHk∇f(xk) in
(2.30) where the steplength αk is provided by a linesearch procedure that satisfies
the strong Wolfe conditions ((2.4)-(2.5)) and matrix Hk fulfills the secant equation
Hk+1yk = sk in (2.31).

The unique solution Hk+1 for (2.31) is given by

Hk+1 = V T
k HkVk + ρksks

T
k , (2.64)

where
ρk = 1

yTk sk
, (2.65)

Vk = I − ρkyksTk . (2.66)
Since matrixHk in general is dense, storing fully matrix can be considered prohibitive.
To overcame this drawback,

• Memoryless BFGS;

• Limited Memory BFGS (L-BFGS);

have been proposed.

2.1 Introduction to Large Scale Unconstrained Optimization 39

2.1.2.2.1 Memoryless Quasi-Newton methods

The basic idea of these methods is to restart the matrix Hk at each iteration k by
setting Hk = I in (2.64), that is

Hk+1 = V T
k Vk + ρksks

T
k . (2.67)

At each iteration k, Memoryless BFGS algorithms only need to store the pair of
vectors (sk, yk). In order to investigate Memoryless BFGS methods, we remind
that there exists a close connection between Memoryless BFGS methods and NCG
methods. In particular we can see that any quasi-Newton method based on (2.67)
is equivalent to Hestenes and Stiefel (HS) NCG method. On this guideline, using
(2.65)-(2.66), (2.67) can be rewritten as follows:

Hk+1 =
(
I − yks

T
k

yTk sk

)T (
I − yks

T
k

yTk sk

)
+ sks

T
k

yTk sk
. (2.68)

If the linesearch procedure is exact, we get (as already seen above) gTk+1pk = 0: the
search direction for quasi-Newton method at the iteration k + 1 is given by

pk+1 = −Hk+1∇f(xk+1). (2.69)

Using (2.68) in (2.69) we obtain

pk+1 = −
(
I − yks

T
k

yTk sk

)T (
I − yks

T
k

yTk sk

)
∇f(xk+1)− sks

T
k

yTk sk
∇f(xk+1). (2.70)

Recalling that gTk+1pk = 0, we have

pk+1 = −∇f(xk+1) + sky
T
k

yTk sk
∇f(xk+1). (2.71)

From (2.24)-(2.25), (2.71) can be transformed as follows:

pk+1 = −∇f(xk+1) + ∇f(xk+1)T (∇f(xk+1)−∇f(xk))
pTk (∇f(xk+1)−∇f(xk))

pk = −∇f(xk+1) + βk+1pk

(2.72)
where βk+1 is given by Hestenes and Stiefel (HS) algorithm. We note that (2.72)
is the search direction computed by HS method and is equivalent to the search
direction (2.69) computed by Memoryless BFGS method.

2.1.2.2.2 Limited Memory BFGS (L-BFGS)

Limited Memory quasi-Newton methods are useful for solving large problems whose
Hessian matrices cannot be computed at a reasonable cost or are not sparse. As
already mentioned (see (2.29)), when using quasi-Newton methods we generate a
search direction of the form pk = −Hk∇f(xk), where Hk is an approximation of
the inverse of the Hessian matrix ∇2f(xk). Instead of storing full dense n × n

40 2. Methods for Large Scale Unconstrained Optimization

approximations, Limited Memory quasi-Newton methods only save a few vectors of
length n, which allow to represent the approximations {Hk} implicitly.

Among the quasi-Newton schemes, the L-BFGS method is usually considered one
of the most efficient [78, 93]. It is well suited for large scale problems because the
amount of storage it requires is limited and controlled by the user. This method is
based on the construction of the approximation of the inverse of the Hessian matrix,
by exploiting curvature information gained only from the most recent iterations.
Specifically, consider (2.64), (2.65) and (2.66), the inverse of the Hessian matrix is
updated by L-BFGS at the k-th iteration as

Hk+1 = V T
k HkVk + ρksks

T
k . (2.73)

Observe that rearranging the expression of Hk we can also iteratively obtain relation

Hk = (V T
k−1 · · ·V T

k−m)H0
k(Vk−m · · ·Vk−1)

+ ρk−m(V T
k−1 · · ·V T

k−m+1)sk−msTk−m(Vk−m+1 · · ·Vk−1)
+ ρk−m+1(V T

k−1 · · ·V T
k−m+2)sk−m+1s

T
k−m+1(Vk−m+2 · · ·Vk−1)

+ · · ·
+ ρk−1sk−1s

T
k−1,

where m is the memory of the method and H0
k is an initial approximation of the

inverse of the Hessian matrix (see [78], [93], [95]).

The well known reasons for the success of the L-BFGS method can be summarized
in the following two points: firstly, even when m is small, Hk+1 proves to be an
effective approximation of the inverse of the Hessian matrix. Secondly Hk+1 is the
unique (positive definite) matrix which solves the subproblem

min
H
‖H −Hk‖F

s.t. H = HT

Hyk = sk.

in Section 2.1.2.
The strategy of keeping the m most recent pairs {(si, yi)} works well in practice.

Moreover, during its first m− 1 iterations, L-BFGS algorithm is equivalent to the
BFGS algorithm in Section 2.1.2 if L-BFGS chooses H0

k = H1 at each iteration.
However, as well known L-BFGS method presents some drawbacks, including the
slow convergence on ill-conditioned problems, namely when the eigenvalues of the
Hessian matrix are very spread. On certain applications, the NCG methods are
competitive with L-BFGS method.

2.1.3 Inexact Newton methods

Another effective approach to large scale unconstrained optimization is represented
by inexact Newton methods. As well known, Newton’s method requires to compute
pk in (2.18), which is equivalent to solving Newton’s equation

∇2f(xk)p = −∇f(xk). (2.74)

2.1 Introduction to Large Scale Unconstrained Optimization 41

The basic idea of inexact Newton method is the following: as long as the iterate
xk is still far from the stationary point x∗, an accurate solution of (2.74) may be
useless. In addition, in order to preserve the global convergence of Newton’s method,
a suitable choice of αk must be computed. On this guideline inexact Newton method
tries to obtain approximation of pk that is inexpensive to calculate and is a good
search direction. In the following section we show that inexact Newton strategies
can be incorporated in practical linesearch implementation of Newton’s method (also
in trust region implementation, too), maintaining good local and global convergence
properties.

2.1.3.1 Newton-Krylov method

Newton-Krylov methods are widely used for solving large scale problems. They are
so called because a Krylov subspace method is usually employed, for approximately
solving the Newton equation at each iteration. A general description of the Newton-
Krylov methods can be found in the survey paper [88]. It is well known that, given
an initial guess x1 of a local minimizer of problem (2.1), a Newton-Krylov method is
based on two nested loops: the outer iterations which represent the actual steps of the
method, where the current estimate of the solution is updated; the inner iterations
which carry out an iterative algorithm for computing, at each outer iteration k,
a search direction pk by approximately solving the Newton equation (2.74). The
iterative algorithm used for solving (2.74) is actually “truncated”, i.e. terminated
before the exact solution is obtained. This strategy is based on the fact that, since
the benefits of using a Newton direction are local, i.e. in the neighborhood of a
stationary point, an accurate solution of (2.74) may be unjustified when xk is far from
a local optimizer. As matter of fact, in this case, a much simpler search direction can
often perform comparably well. Instead, more accuracy is required when the iterates
approach a local minimizer. A good trade-off between the accuracy in solving the
Newton equation (2.74) and the computational effort employed per outer iteration
is a key point, for the overall efficiency of a Newton-Krylov method. Indeed, there
might be significant advantages to terminating the inner iterations early, when we
are still far from a solution and the problem has significant nonlinearities. On the
contrary, when close to a solution, there may be disadvantages to early terminating,
inasmuch as the corresponding search direction pk might be poor.

Since the early papers [39], [40] where Newton-Krylov methods were introduced,
the importance of an efficient truncation criterion for the inner iterations was pointed
out. The stopping rule proposed therein is based on controlling the magnitude of
the residual. Under suitable assumptions, this allows to guarantee local convergence
and a good convergence rate. Another truncation rule has been proposed in [90].
It is based on a comparison between the reduction of the quadratic model of the
objective function, at the current iteration, and the average reduction per iteration
of the model.

In this section we recall only a linesearch approach: observe that the trust region
approach will not be investigated in this work. In large scale context, iterative
methods like the CG algorithm can be used to compute the inner iterations: in case
of the Hessian matrix in (2.74) is indefinite, Lanczos algorithm may successfully be
used as alternative to the CG method.

42 2. Methods for Large Scale Unconstrained Optimization

2.1.3.1.1 Common truncation criteria

In order to briefly recall the truncation criteria commonly used in the literature, we
denote by pk an approximate solution of (2.74), and by rk = ∇2f(xk)pk −∇f(xk)
the corresponding residual.

A natural stopping criterion for the inner iterations is the residual-based criterion,
proposed in the seminal papers [39] and [40]. Indeed, the authors propose to terminate
the inner iterations whenever the residual rk is sufficiently small, namely

‖rk‖
‖∇f(xk)‖

≤ ηk, (2.75)

for a specified value of ηk. It is well known that criterion (2.75) is scale invariant
and that the choice of the forcing sequence {ηk} is crucial for controlling the
convergence rate of the algorithm. A widely used choice proposed in [40] is ηk =
min{1/k, ‖∇f(xk)‖r}, with 0 < r ≤ 1. Other forcing sequences have been proposed
later in [45] and [46]. The possibility to easily control the rate of convergence of
the algorithm, by means of suitable choices of the sequence {ηk}, is a key point for
this criterion. On the other hand, some drawbacks deriving from the adoption of
this rule are well known. Indeed, at the j-th inner iteration of the Krylov subspace
method adopted for solving the Newton equation (2.74), a stationary point of the
quadratic model

qk(pk) = 1
2p

T
k∇2f(xk)pk +∇f(xk)T pk (2.76)

over the Krylov subspace

Kj(∇2f(xk),∇f(xk))

is sought. In the case of positive definite Hessian ∇2f(xk), the quadratic model
(2.76) has a global minimizer which exactly solves the Newton equation (2.74). Of
course, this case corresponds to a null residual. Conversely, whenever an approximate
solution is sought, monitoring the magnitude of the residual might be, as discussed
in [90], misleading. Indeed, the actual decrease of the objective function values can
be alternatively predicted by means of the quadratic model decrease; however, the
magnitude of the residual rk and the quadratic model qk(pk) could be significantly
different. Moreover, the rounding error in computing ‖rk‖ could be relevant since rk
is usually computed by recurrence. In addition, whenever a CG method is used in
the inner iterations and Hk is positive definite, the quadratic model monotonically
decreases as the inner iterations progress, while the sequence {‖rk‖} is not monotone
(unlike, for instance, using MINRES (see [54])).

These remarks induced the authors to propose in [90] also a truncation rule based
on the decrease of the quadratic model, rather than considering only the residual.
Namely, the truncation criterion proposed is the following: the inner iterations are
terminated if, for a specified value of ηk ∈ (0, 1),

qk(pj)− qk(pj−1)
qk(pj)
j

≤ ηk, (2.77)

2.1 Introduction to Large Scale Unconstrained Optimization 43

where pj denotes the approximate solution of (2.74) at the j-th inner iteration. This
criterion is then based on the comparison between the reduction of the quadratic
model qk(pj) − qk(pj−1), and the average reduction per iteration qk(pj)/j. The
criterion (2.77) is often considered preferable to (2.75), since it gains information
directly from the values of the quadratic model. Moreover, in [48] it was extended
to possibly consider also an indefinite Hessian matrix ∇2f(xk), providing some
theoretical results, too.

However, in the framework of Newton-Krylov methods, in unconstrained as
well as in constrained optimization, some codes currently available on the web
and commonly used by the optimizers community still adopt the residual-based
truncation criterion (2.75), both within linesearch-based and trust region-based
codes (see e.g. [35], [77], [85] - page 9, [103], [104], [72], [112] and URL https://neos-
guide.org/content/truncated-newton-methods).This might be due also to the fact that,
as well known, the adoption of (2.75) ensures theoretical superlinear convergence.
Conversely, the criterion based on the quadratic model reduction (2.77), with the
suggested value of ηk = 0.5 (constant), guarantees only the theoretical linear rate of
convergence [90], even if it works very efficiently in practice.

In the following, the standard linesearch-based Newton-Krylov method is re-
ported.

Linesearch-based Newton-Krylov algorithm

Data: x1 ∈ Rn;

Set k = 1 and compute ∇f(x1);

Set ηk ∈ [0, 1) for any k, with {ηk} → 0;

OUTER ITERATIONS

For k = 1, . . .

if ‖∇f(xk)‖ is small then STOP;

INNER ITERATIONS
compute pk which approximately solves ∇2f(xk)p = −∇f(xk)
and satisfies the truncation rule (see (2.75) and (2.77));

compute the steplength αk by using a linesearch procedure;
xk+1 = xk + αkpk

End For

44 2. Methods for Large Scale Unconstrained Optimization

2.2 Conclusions
In this chapter we have focused on methods for solving large scale unconstrained
optimization problems. First of all we started with NCG methods and their precon-
ditioned versions: however, the search direction pk could be not well scaled. Later on
we introduced quasi-Newton methods and their main schemes, like L-BFGS: these
methods are fairly robust, inexpensive, and easy to implement, but they do not
converge rapidly. Finally, inexact Newton methods have been described. They have
attractive global convergence properties and may be superlinearly convergent for
suitable choices of parameters.

45

Chapter 3

Preconditioners based on
quasi-Newton updates for NCG
methods

In order to solve large scale unconstrained problems, in this chapter we propose
new preconditioners to be used within the NCG method. The rationale behind this
proposal draws inspiration from quasi-Newton updates, and its aim is to possibly
approximate in some sense the inverse of the Hessian matrix. In particular, at
the current iteration of the NCG we consider some preconditioners based on new
low-rank quasi-Newton symmetric updating formulae, obtained as by-product of the
NCG method at the previous steps. Observe that the main focus of this study is not
to define a challenging algorithm for large scale unconstrained optimization, but it
aims at introducing a preconditioning strategy and showing its effectiveness. Most
of the material of this chapter is contained in [5], [31], [32], [33].

3.1 Introduction

In this chapter we consider the large scale unconstrained optimization problem

min
x∈Rn

f(x), (3.1)

where f : Rn −→ R is a real valued function and the dimension n is large. It is
assumed that f is a twice continuously differentiable function and that for a given
x1 ∈ Rn the level set L1 = {x ∈ Rn : f(x) ≤ f(x1)} is compact.

In the case we consider the minimization of a convex quadratic function, then
the NCG and the BFGS quasi-Newton method show a well studied correspondence
of the search directions they respectively generate [92]. This spots some light on the
relation between the latter two classes of methods, and we want to partially exploit
benefits from possibly coupling their respective underlying ideas.

On this purpose let us first consider the PNCG method. We recall (see Sec-
tion 2.1.1.1) essentially three choices at current step k strongly determine both
the effectiveness and the efficiency of the overall method. In particular, the first
choice refers to the linesearch procedure, which selects the steplength αk > 0 used to

46 3. Preconditioners based on quasi-Newton updates for NCG methods

compute the next iterate xk+1, being

xk+1 = xk + αkpk.

Then, the second choice refers to the selection of the parameter βk+1, which deter-
mines the next search direction as

pk+1 = −gk+1 + βk+1pk.

Finally, a proper choice Mk+1 ∈ Rn×n for a preconditioner may also be part of the
computation of pk+1, as in

pk+1 = −Mk+1gk+1 + βk+1pk.

The latter three choices are not independent, inasmuch as for instance an improper
preconditioner risks to possibly destroy both convergence properties and numerical
performance of the PNCG. This observation imposes some care before adopting a
preconditioner, in order to first verify that it complies with the requirements claimed
by the convergence analysis.

Observe that addressing good preconditioners for NCG methods still remains an
intriguing research issue, in particular when the solution of large scale problems is
sought and no structure of the problem is known in advance [20, 38, 67, 101, 111].
Similarly, matrix-free preconditioning for linear systems or sequences of linear systems
is currently an appealing research topic, too (see e.g. [17, 18, 48, 49]). On this
guideline, this study is devoted to investigate ideas from quasi-Newton updates, in
order to build possible preconditioners for NCG. In particular, we are interested
both to obtain a numerically efficient preconditioner, and to analyze its theoretical
properties. The preconditioners we propose are iteratively constructed and partially
recover the structure of quasi-Newton updates. To sum up, we definitely remark
that our preconditioners are designed for the PNCG and

• do not rely on the structure of the minimization problem in hand;

• are matrix-free, hence they are naturally conceived for large scale problems;

• are built drawing inspiration from quasi-Newton schemes;

• convey information from previous iterations of the PNCG.

Finally, for the sake of completeness we urge to recall that the idea of using a
quasi-Newton update as a possible preconditioner, within NCG algorithms, is not
new; examples of such an approach can be found for instance in [13, 26, 83].

3.2 Preliminaries
Consider the general scheme of a PNCG algorithm in Section 2.1.1.1. As already
observed the steplength αk+1 and the parameter βk+1 can be chosen in a variety of
ways, in order to ensure convergence properties or to improve the overall efficiency
(see e.g. [65, 67]). Here we neither intend to propose a novel choice of βk+1,
nor we want to consider any specific linesearch procedure to compute αk+1 for

3.2 Preliminaries 47

PNCG algorithm. To this regards, Wolfe conditions are well-suited for our purposes,
inasmuch as they easily guarantee that the curvature condition (2.15)

sTk yk > 0

is fulfilled for any k.
As already said, preconditioning is usually applied for increasing the efficiency

of the NCG method. In this regard, in this study we exploit some matrix updates
and their capability to possibly mimic quasi-Newton schemes, in order to generate a
‘reasonable’ approximation of the inverse Hessian matrix and use it as a preconditioner
within a PNCG framework. Among well known reasons for the success of the L-BFGS
method we find that Hk+1 is the positive definite matrix ‘as close as possible’ (in
the sense of Frobenius norm) to the matrix Hk, and satisfying the secant equation

Hk+1yk = sk.

Now, we explicitly focus on the case where f(x) is quadratic, i.e. f(x) = 1/2xTAx−
bTx, with A ∈ Rn×n positive definite and b ∈ Rn. The latter case is particularly
appealing to our purposes, since it allows to exploit the strong relation between
BFGS and the conjugacy of search directions with respect to matrix A [92]. Indeed,
the BFGS update (2.67) is explicitly given by

Hk =
(
I −

yk−1s
T
k−1

yTk−1sk−1

)T
Hk−1

(
I −

yk−1s
T
k−1

yTk−1sk−1

)
+
sk−1s

T
k−1

yTk−1sk−1
, (3.2)

and recalling the expression of f(x), along with relation yk = Ask, (2.66) can be
reformulated as

Vk = I − Asks
T
k

sTkAsk
, (3.3)

where the vectors {p1, . . . , pk} are mutually conjugate with respect to A. Then,
using BFGS recursion (3.2), we can write

Hk = V T
k−1Hk−1Vk−1 +

sk−1s
T
k−1

yTk−1sk−1

= V T
k−1(V T

k−2Hk−2Vk−2)Vk−1 + V T
k−1

sk−2s
T
k−2

yTk−2sk−2
Vk−1 +

sk−1s
T
k−1

yTk−1sk−1
. (3.4)

Finally, the conjugacy among vectors {p1, . . . , pk} with respect to A implies that for
any k

V T
k sk−1 =

(
I − Asks

T
k

sTkAsk

)T
sk−1 = sk−1,

and again recalling that yk = Ask, relation (3.4) yields

Hk = V T
k−1V

T
k−2 · · ·V T

1 H
0
kV1 · · ·Vk−2Vk−1 +

k−1∑
i=1

sis
T
i

sTi Asi
. (3.5)

48 3. Preconditioners based on quasi-Newton updates for NCG methods

Formula (3.5) can be used to potentially generate preconditioners for the PNCG, by
looking at the rightmost contribution

k−1∑
i=1

sis
T
i

sTi Asi
, (3.6)

whose range is exactly span {s1, . . . , sk−1}.Indeed, we can draw our inspiration from
(3.5) and [48], where a new preconditioner for Newton-Krylov methods is described.
In particular, in [48] the set of directions generated by a Krylov subspace method is
used to provide an approximate inverse preconditioner, for the solution of Newton’s
systems. On this guideline, observe that when f(x) is quadratic, with A positive
definite, the CG method may generate n conjugate directions {pj} (see e.g. [54])
such that

A−1 =
n∑
j=1

pjp
T
j

pTj Apj
. (3.7)

This implies that the rightmost contribution in (3.5) might be viewed and used as an
approximate inverse of the Hessian matrix A. In the following we aim at extending
the latter idea, to the case where f(x) is nonlinear, following similar guidelines.

3.3 Guidelines for new Symmetric Rank-2 updates
In this section we consider new quasi-Newton updating formulae, by considering the
properties of a parameter dependent Symmetric Rank-2 (SR2) update of the inverse
of the Hessian matrix. Suppose that after k iterations of NCG the sequence of
iterates {x1, . . . , xk+1} is generated. Then, the idea is that of building a structured
preconditoner Mk+1 which satisfies the secant equation at least at the current
iteration, i.e.

Mk+1yk = sk. (3.8)

Observe that the latter appealing property of the matrix Mk+1 is satisfied by all the
updates of the Broyden class, provided that the linesearch adopted is exact (see e.g.
[95]). We would like to recover the motivation underlying the latter class of updates,
and by using a novel rank-2 updates we would like to define preconditioners for
PNCG.

In a more general framework, similarly to the Broyden class, we address a family
of preconditioners of the form

Mk+1(γk+1) = Mk(γk) + ∆k, ∆k ∈ Rn×n, symmetric, (3.9)

where the sequence {Mk(γk)} depends on the parameters γk ∈ Rp, p ≥ 1, and
provides an approximation of [∇2f(x)]−1 according with (3.7). The new update
Mk+1(γk+1) is claimed to satisfy the following appealing conditions:

(1) Mk+1(γk+1) is well-defined and nonsingular;

(2) Mk+1(γk+1) can be iteratively updated;

(3) Mk+1(γk+1) collects information from the iterations k −m, k −m+ 1, . . . , k,
of an NCG method, being m ≥ 0 integer;

3.3 Guidelines for new Symmetric Rank-2 updates 49

(4) Mk+1(γk+1) satisfies the secant equation at a subset K of iterations, with
K ⊆ {1, 2, . . . , k};

(5) Mk+1(γk+1) “tends to preserve” in some sense the inertia of the inverse Hessian[
∇2f(xk+1)

]−1, in case f(x) is a quadratic function.

Observe that the Symmetric Rank-1 (SR1) quasi-Newton update (see Section 6.2 in
[95]) satisfies properties (2)-(5) but not the property (1), i.e. it might be possibly
not well-defined for a general nonlinear function. The latter result follows from the
fact that SR1 update provides only a rank-1 quasi-Newton update, unlike BFGS
and DFP. On the other hand, while BFGS and DFP quasi-Newton formulae provide
only positive definite updates, the SR1 formula is able to recover the inertia of the
Hessian matrix, by generating possibly indefinite updates. Thus, now we want to
study SR2 quasi-Newton updates, such that at iteration k

• they satisfy (1)-(5);

• at least one of the newest dyads used for the update is provided using informa-
tion from iterations k −m, . . . , k of the NCG method.

In the following sections we introduce some new quasi-Newton updating formulae
in order to build preconditioners for PNCG.

3.3.1 A new Symmetric Rank-2 update

In this section we want to study an SR2 quasi-Newton update, which satisfies (1)-(5)
in Section 3.3 and where one of the two newest dyads of the update is provided by
information from the NCG method. To this aim, assuming that Mk = M(γk) is
given, we consider the relation (3.9) where we set

∆k = γ
(1)
k vkv

T
k + γ

(2)
k

pkp
T
k

yTk pk
, γ

(1)
k , γ

(2)
k ∈ R \ {0}, vk ∈ Rn,

and pk is generated at the k−th iteration of the (unpreconditioned) NCG method.
Thus, we will have the new update

Mk+1 = Mk + γ
(1)
k vkv

T
k + γ

(2)
k

pkp
T
k

yTk pk
, γ

(1)
k , γ

(2)
k ∈ R \ {0}, vk ∈ Rn, (3.10)

and in order to satisfy the secant equation Mk+1yk = sk the following equality must
hold

Mkyk + γ
(1)
k (vTk yk)vk + γ

(2)
k

pkp
T
k

yTk pk
yk = sk,

that is
γ

(1)
k (vTk yk)vk = sk −Mkyk − γ

(2)
k pk. (3.11)

Therefore it results
vk = σk

(
sk −Mkyk − γ

(2)
k pk

)
, (3.12)

for some scalar σk ∈ R. By substituting the expression (3.12) of vk in (3.11) we have

γ
(1)
k σ2

k

[
yTk (sk −Mkyk − γ

(2)
k pk)

]
(sk −Mkyk − γ

(2)
k pk) = sk −Mkyk − γ

(2)
k pk.

50 3. Preconditioners based on quasi-Newton updates for NCG methods

Thus, the following relation among the parameters γ(1)
k , σk and γ(2)

k must hold

γ
(1)
k σ2

k = 1
sTk yk − yTkMkyk − γ

(2)
k pTk yk

. (3.13)

Note that from the arbitrariness of γ(1)
k , without loss of generality, we can set

σk ∈ {−1, 1}.

Now, in the next proposition we first consider the case of quadratic functions,
and prove that the update (3.10) satisfies the secant equation, along all previous
directions.

Proposition 3.3.1. Assume that f is the quadratic function f(x) = 1
2x

TAx +
bTx, where A ∈ Rn×n is symmetric and b ∈ Rn. Suppose that k steps of the
(unpreconditioned) CG are performed, in order to detect the stationary point (if any)
of the function f , and that the vectors p1, . . . , pk are generated. Then, the matrix
Mk+1 in (3.10) satisfies the secant equations

Mk+1yj = sj , j = 1, . . . , k, (3.14)

provided that the nonzero coefficients γ(1)
j , γ(2)

j , j = 1, . . . , k are computed such that

γ
(1)
j = 1

sTj yj − yTj Mjyj − γ(2)
j pTj yj

, j = 1, . . . , k,

γ
(2)
j 6=

sTj yj − yTj Mjyj

pTj yj
, j = 1, . . . , k.

(3.15)

Proof. The proof proceeds by induction. Equations (3.14) hold for k = 1, that is
M2y1 = s1, as long as

s1 =
[
M1 + γ

(1)
1 σ2

1(s1 −M1y1 − γ(2)
1 p1)(s1 −M1y1 − γ(2)

1 p1)T + γ
(2)
1
p1p

T
1

yT1 p1

]
y1,

or equivalently

s1 −M1y1 − γ(2)
1 p1 = γ

(1)
1 (sT1 y1 − yT1 M1y1 − γ(2)

1 pT1 y1)
[
s1 −M1y1 − γ(2)

1 p1
]
,

which is satisfied selecting γ(1)
1 and γ(2)

1 according with (3.15).
Now, suppose that the relations (3.14) hold for the index k − 1. To complete the
induction we need to prove that the relations (3.14) hold for the index k. Firstly,
note that Mk+1yk = sk holds. In fact

sk =
[
Mk + γ

(1)
k σ2

k(sk −Mkyk − γ
(2)
k pk)(sk −Mkyk − γ

(2)
k pk)T + γ

(2)
k

pkp
T
k

yTk pk

]
yk

holds if and only if

sk −Mkyk − γ
(2)
k pk = γ

(1)
k (sTk yk − yTkMkyk − γ

(2)
k pTk yk)(sk −Mkyk − γ

(2)
k pk),

3.3 Guidelines for new Symmetric Rank-2 updates 51

and the latter holds from (3.15) with j = k. Now, we have to prove that (3.14) hold
for any j < k. For j < k we have

Mk+1yj = Mkyj +γ
(1)
k σ2

k(sk−Mkyk−γ
(2)
k pk)(sk−Mkyk−γ

(2)
k pk)T yj +γ

(2)
k

pTk yj
yTk pk

pk,

where Mkyj = sj by the inductive hypothesis. Moreover,

(sk −Mkyk)T yj = sTk yj − yTkMkyj = sTk yj − yTk sj = sTkAsj − (Ask)T sj = 0,

where the third equality holds since yj = Asj , for any j, for the quadratic function
f . Finally,

γ
(2)
k pTk yj = γ

(2)
k pTkAsj = γ

(2)
k αjp

T
kApj = 0,

which follows from the conjugacy of the directions {p1, . . . , pk} generated by the CG.
Thus, (3.14) hold for any j ≤ k and the induction is complete.

As an immediate consequence of the previous proposition, we prove now the
finite termination property for a quadratic function, i.e. after at most n steps, Mn+1
is the inverse of the Hessian of the quadratic function.

Corollary 3.3.2. Assume that f is the quadratic function f(x) = 1
2x

TAx + bTx,
where A ∈ Rn×n is symmetric and b ∈ Rn. Suppose that n steps of the (unprecondi-
tioned) CG are performed, in order to detect the stationary point of the function f ,
and that the vectors p1, . . . , pn are generated. If (3.15) holds, we have Mn+1 = A−1.

Proof. By applying Proposition 3.3.1, we have that (3.14) hold for k = n, i.e.

Mn+1yj = sj , j = 1, . . . , n.

Since f is quadratic then yj = Asj , for any j, i.e.

Mn+1Asj = sj , j = 1, . . . , n.

Now, since sj = αjpj , j = 1, . . . , n, the conjugacy of the vectors {p1, . . . , pn} implies
that Mn+1 = A−1.

We highlight that, whenever k = n, Corollary 3.3.2 justifies the first part of the
statement (5) in Section 3.3. Moreover, later on we show that for k < n, the update
matrix in (3.10) can be suitably modified to provide a preconditioner.

After analyzing the case of f(x) quadratic, we turn now to the general case
of a nonlinear twice continuously differentiable function. In particular, since we
are interested in using the matrix Mk+1 in (3.10) as a preconditioner, we need to
investigate if there exists a suitable setting of the parameters such that Mk+1 is
positive definite, provided that (3.15) are satisfied. In the next proposition we prove
that if the parameter γ(2)

k is below a threshold value, then the matrix Mk+1 is almost
always positive definite.

52 3. Preconditioners based on quasi-Newton updates for NCG methods

Proposition 3.3.3. Let f be a nonlinear twice continuously differentiable function.
Suppose that the (unpreconditioned) NCG method is used to minimize the function
f . Suppose that (3.15) is satisfied and

0 ≤ γ(2)
k <

sTk yk − yTkMkyk
pTk yk

, (3.16)

with
yTk sk + yTkMkyk ≤ 0 or yTk sk − yTkMkyk ≥ 0, (3.17)

where sj = αjpj. Then the matrix Mk+1 in (3.10) is positive definite.

Proof. By substituting (3.12) in (3.10), recalling that σ2
k = 1 we obtain

Mk+1 = Mk + γ
(1)
k

[(
αk − γ

(2)
k

)2
pkp

T
k −

(
αk − γ

(2)
k

) (
(Mkyk) pTk + pk (Mkyk)T

)
+ (Mkyk) (Mkyk)T

]
+ γ

(2)
k

pkp
T
k

yTk pk
.

Hence Mk+1 can be rewritten in the form

(
pk

... Mkyk

)

γ

(1)
k (αk − γ

(2)
k)2 + γ

(2)
k

yTk pk
−γ(1)

k (αk − γ
(2)
k)

−γ(1)
k (αk − γ

(2)
k) γ

(1)
k




pTk

. . .

(Mkyk)T

 .

Therefore Mk+1 is positive definite if and only if the following inequalities hold:

γ
(1)
k (αk − γ

(2)
k)2 + γ

(2)
k

yTk pk
> 0

γ
(1)
k

(
γ

(1)
k (αk − γ

(2)
k)2 + γ

(2)
k

yTk pk

)
− (γ(1)

k)2(αk − γ
(2)
k)2 > 0.

(3.18)

Using the expression of γ(1)
k in (3.13) and recalling that yTk sk > 0 (as a consequence

of the Wolfe conditions), (3.18) are equivalent to

(αk − γ
(2)
k)2yTk pk

(αk − γ
(2)
k)pTk yk − yTkMkyk

+ γ
(2)
k > 0

γ
(2)
k

(αk − γ
(2)
k)pTk yk − yTkMkyk

> 0.

After some computation we obtain that there exist values of the parameter γ(2)
k for

which the latter inequalities admit solutions, with only one exception. In fact, they
are satisfied for any value of γ(2)

k such that

0 ≤ γ(2)
k <

αkp
T
k yk − yTkMkyk

pTk yk

3.3 Guidelines for new Symmetric Rank-2 updates 53

but they do not admit solution in case

αky
T
k pk + yTkMkyk > 0 and αky

T
k pk − yTkMkyk < 0,

i.e. when (3.17) does not hold.

From Proposition 3.3.1 and Corollary 3.3.2, we could use the matrix Mk+1 as an
approximate inverse of ∇2f(x). However, Proposition 3.3.3 evidences that conditions
(3.15) and (3.16) do not suffice to ensure Mk+1 positive definite. In fact, whenever
(3.17) occurs, additional safeguard is needed since Mk+1 is possibly indefinite. Thus,
the definition ofMk+1 should be possibly modified in order to obtain positive definite
updates. On the other hand, the scheme PNCG can be also modified to cope with
the case of Mk+1 indefinite in (2.10). In particular, Step While may be replaced by
the following instructions:

While gk 6= 0

compute the steplength αk by using a linesearch procedure along pk;

xk+1 = xk + αkpk;

if Mk+1gk+1 = 0, then set Mk+1 ← I

compute βk+1;

pk+1 = −Mk+1gk+1 + βk+1pk;

k = k + 1

End While

3.3.2 A Generalized Symmetric Rank-2 update

In the previous section we have introduced a SR2 update as a good approximation
of the inverse of the Hessian matrix to be used as preconditioner; however, the main
drawback is that this preconditioner could be not positive definite. In this section,
similarly to the previous one, we again study a new quasi-Newton updating formula,
by considering the properties of a parameter dependent SR2 update of the inverse
of the Hessian matrix, which is alternative with respect to the expression (3.10). To
this aim, assuming that Mk = M(γk) is given, we consider the relation (3.9) where
now we set

∆k = γ
(1)
k vkv

T
k + γ

(2)
k

pkp
T
k

yTk pk
+ γ

(3)
k (pkvTk + vkp

T
k),

where γ(1)
k , γ

(2)
k , γ

(3)
k ∈ R \ {0}, vk ∈ Rn, and pk is generated at the k−th iteration of

the (unpreconditioned) NCG method. Thus we will have the new update

Mk+1 = Mk + γ
(1)
k vkv

T
k + γ

(2)
k

pkp
T
k

yTk pk
+ γ

(3)
k (pkvTk + vkp

T
k), (3.19)

54 3. Preconditioners based on quasi-Newton updates for NCG methods

for any γ(1)
k , γ

(2)
k , γ

(3)
k ∈ R \ {0}, vk ∈ Rn, where we set

vTk yk = 0, (3.20)

for any k. Thus, in order to satisfy the secant equation Mk+1yk = sk the following
equality must hold(

Mk + γ
(1)
k vkv

T
k + γ

(2)
k

pkp
T
k

yTk pk
+ γ

(3)
k (pkvTk + vkp

T
k)
)
yk = sk,

that is by (3.20)
Mk + γ

(2)
k pk + γ

(3)
k vkp

T
k yk = sk. (3.21)

Therefore, (3.21) is satisfied provided that

vk = sk −Mkyk − γ
(2)
k pk

γ
(3)
k pTk yk

, (3.22)

for some scalar γ(3)
k ∈ R \ {0}. Note that to satisfy also (3.20) it suffices to set

0 = vTk yk =⇒ γ
(2)
k = sTk yk − yTkMkyk

pTk yk
. (3.23)

Now, in the next proposition we first consider the case of quadratic functions,
and prove that the update (3.19) satisfies the secant equation, along all previous
directions.

Proposition 3.3.4. Assume that f is the quadratic function f(x) = 1
2x

TAx +
bTx, where A ∈ Rn×n is symmetric and b ∈ Rn. Suppose that k steps of the
(unpreconditioned) CG are performed, in order to detect the stationary point (if any)
of the function f , and that the vectors p1, . . . , pk are generated. Then, the matrix
Mk+1 in (3.19) satisfies the secant equations

Mk+1yj = sj , j = 1, . . . , k, (3.24)

provided that (3.22) holds with

γ
(2)
j =

sTj yj − yTj Mjyj

pTj yj
6= 0. (3.25)

Proof. The proof proceeds by induction. Equations (3.24) hold for k = 1, that is
M2y1 = s1, as long as

s1 =
[
M1 + γ

(1)
1 v1v

T
1 + γ

(2)
1
p1p

T
1

yT1 p1
+ γ

(3)
1 (p1v

T
1 + v1p

T
1)
]
y1,

or equivalently

s1 −M1y1 − γ(2)
1 p1 = γ

(1)
1 (vT1 y1)v1 + γ

(3)
1 ((vT1 y1)p1 + (pT1 y1)v1),

which is satisfied with (3.25).

3.3 Guidelines for new Symmetric Rank-2 updates 55

Now, suppose that the relations (3.24) hold for the index k − 1. To complete the
induction we need to prove that the relations (3.24) hold for the index k. Firstly,
note that Mk+1yk = sk holds. In fact

sk =
[
Mk + γ

(1)
k vkv

T
k + γ

(2)
k

pkp
T
k

yTk pk
+ γ

(3)
k (pkvTk + vkp

T
k)
]
yk

holds if and only if

sk −Mkyk − γ
(2)
k pk = γ

(1)
k (vTk yk)vk + γ

(3)
k ((vTk yk)pk + (pTk yk)vk),

and the latter holds from (3.25) with j = k. Now, we have to prove that (3.24) hold
for any j < k. For j < k we have

Mk+1yj = Mkyj + γ
(1)
k (vkvTk)yj + γ

(2)
k

(
pkp

T
k

yTk pk

)
yj + γ

(3)
k (pkvTk + vkp

T
k)yj ,

where Mkyj = sj by the inductive hypothesis. Moreover,

pTk yj = pTkAsj = αjp
T
kApj = 0,

which follows from the conjugacy of the directions {p1, . . . , pk} generated by the CG.
Finally, since yj = Asj , for any j, then

sTk yj = αkp
T
k (Asj) = αkαjp

T
kApj = 0,

yTkMkyj = yTk sj = sTkAsj = 0.

Thus, thanks to the previous relations, we have by (3.22)

vTk yj = sTk yj − yTkMkyj − γ
(2)
k pTk yj

γ
(3)
k pTk yk

= 0.

Thus, (3.24) hold for any j ≤ k and the induction is complete.

After analyzing the case of f(x) quadratic, we turn now to the general case
of a nonlinear twice continuously differentiable function. In particular, since we
are interested in using the matrix Mk+1 in (3.19) as a preconditioner, we need to
investigate if there exists a suitable setting of the parameters such that Mk+1 is
positive definite, provided that (3.25) are satisfied. In the next proposition we
investigate values of the parameters γ(1)

k , γ(2)
k and γ(3)

k such that the matrix Mk+1
in (3.19) is positive definite.

Proposition 3.3.5. Let f be a nonlinear twice continuously differentiable function.
Suppose that the (unpreconditioned) NCG method is used to minimize the function
f . Suppose that (3.25) is satisfied and

γ
(2)
j > 0, j = 1, . . . , k,

γ
(1)
j γ

(2)
j > (γ(3)

j)2(yTj pj), j = 1, . . . , k.
(3.26)

Then, if M1 � 0 the matrix Mk+1 in (3.19) is positive definite.

56 3. Preconditioners based on quasi-Newton updates for NCG methods

Proof. From (3.19), we have

Mk+1 = Mk + ∆k

where
∆k = γ

(1)
k vkv

T
k + γ

(2)
k

pkp
T
k

yTk pk
+ γ

(3)
k (pkvTk + vkp

T
k).

Hence ∆k can be rewritten in the form

(
pk

... vk

)

γ

(2)
k

yTk pk
γ

(3)
k

γ
(3)
k γ

(1)
k




pTk

. . .

vTk

 .

Therefore Mk+1 is positive definite if Mk � 0 and the following inequalities hold:

γ
(2)
k

yTk pk
> 0

γ
(1)
k

(
γ

(2)
k

yTk pk

)
− (γ(3)

k)2 > 0.
(3.27)

Recalling that yTk sk > 0 (as a consequence of the Wolfe conditions), (3.27) are
equivalent to

γ
(2)
k > 0

γ
(1)
k γ

(2)
k > (γ(3)

k)2(yTk pk).

Note that, by considering (3.26), thanks to the first inequalities we have that
γ

(2)
k is greater than zero. From the second inequalities we have again that γ(1)

k is
greater than zero and γ(3)

k must be non-zero.
From the previous Proposition 3.3.5, we could use the matrix Mk+1 as an

approximate inverse of ∇2f(x), in a preconditioning framework, provided that
Mk+1 � 0. Observe that a consideration similar to the one in the end of Section 3.3.1
holds, so that the Step While in PNCG scheme might be suitably modified.

3.3.3 A Symmetric Rank-2 update based on modified weak secant
equation

In the previous section we have introduced a novel SR2 update. From Proposi-
tion 3.3.5 we have simple conditions to ensure that our preconditioner is positive
definite. However, considering the expression of γ(2)

k in (3.23), we can see that the
first inequalities in (3.26) could be not satisfied and, for this reason, the precondi-
tioner could be not again positive definite (as in Section 3.3.1). On this guidelines,

3.3 Guidelines for new Symmetric Rank-2 updates 57

in this section we study a quasi-Newton updating formula, by considering the prop-
erties of a parameter dependent SR1 update of the inverse of the Hessian matrix.
Our quasi-Newton update Mk+1, which approximates [∇2f(x)]−1 in some senses,
draws its inspiration from the weak secant equation (see e.g. Dennis-Wolkowicz [41]).
However, reasoning as in Sections 3.3.1-3.3.2, after some computation we soon realize
that it might be difficult to iteratively assess a positive definite preconditioner, which
satisfies the weak secant equations at the previous iterates. Thus, we can consider
the following modified weak secant equations

yTj Mk+1yj = δjy
T
j sj , for all j ≤ k. (3.28)

Observe that the latter appealing properties (as well as the secant equations (3.8))
are again satisfied by all the updates of the Broyden class, for any j ≥ 1, provided
that the linesearch adopted is exact (see e.g. [95]). We would like to recover the
motivation underlying the latter class of updates, and by using rank-1 updates we
would like to define a preconditioner for PNCG.

On this guideline, in order to build an approximate inverse of the Hessian matrix,
drawing inspiration from (3.9), we consider the update

Mk+1(γk+1) = δkMk(γk) + ∆k, ∆k ∈ Rn×n, symmetric, δk > 0, (3.29)

where the sequence {M(γk)} depends on the parameter γk and provides our quasi-
Newton updates of [∇2f(x)]−1.

Assuming that Mk = M(γk) is given, we consider the relation (3.29) where now
we set

∆k = γ
(1)
k

pkp
T
k

yTk pk
, γ

(1)
k ∈ R \ {0},

and pk is generated at the k−th iteration of the (unpreconditioned) NCG method.
Thus, we will have the new update

Mk+1 = δkMk + γ
(1)
k

pkp
T
k

yTk pk
, γ

(1)
k ∈ R \ {0}, δk > 0, (3.30)

and in order to satisfy the modified weak secant equation yTkMk+1yk = δky
T
k sk the

following equality must hold

yTk

(
δkMkyk + γ

(1)
k

pkp
T
k

yTk pk

)
yk = δky

T
k sk,

that is
δky

T
kMkyk + γ

(1)
k yTk pk = δky

T
k sk. (3.31)

The latter relation is satisfied by taking

γ
(1)
k = δk(yTk sk − yTkMkyk)

yTk pk
(3.32)

for any δk > 0.
Now, in the next proposition we first consider the case of quadratic functions,

and prove that the update (3.30) satisfies the modified weak secant equation, along
all previous directions.

58 3. Preconditioners based on quasi-Newton updates for NCG methods

Proposition 3.3.6. Assume that f is the quadratic function f(x) = 1
2x

TAx +
bTx, where A ∈ Rn×n is symmetric and b ∈ Rn. Suppose that k steps of the
(unpreconditioned) CG are performed, in order to detect the stationary point (if any)
of the function f , and that the vectors p1, . . . , pk are generated. Then, the matrix
Mk+1 in (3.30) satisfies the secant equations

yTj Mk+1yj = δjs
T
j yj , j = 1, . . . , k, (3.33)

provided that the nonzero coefficients γ(1)
j , j = 1, . . . , k are computed, for any δj > 0,

such that
γ

(1)
j =

δj(yTj sj − yTj Mjyj)
yTj pj

, j = 1, . . . , k. (3.34)

Proof. The proof proceeds by induction. Equations (3.33) hold for k = 1, that is
yT1 M2y1 = δ1y

T
1 s1, as long as

δ1y
T
1 s1 = yT1

(
δ1M1 + γ

(1)
1
p1p

T
1

yT1 p1

)
y1,

or equivalently
δ1y

T
1 s1 = δ1y

T
1 M1y1 + γ

(1)
1 yT1 p1,

which is satisfied selecting γ(1)
1 and δ1 according with (3.34).

Now, suppose that the relations (3.33) hold for the index k − 1. To complete the
induction we need to prove that the relations (3.33) hold for the index k. Firstly,
note that yTkMk+1yk = δky

T
k sk holds. In fact

δky
T
k sk = yTk

(
δkMk + γ

(1)
k

pkp
T
k

yTk pk

)
yk

holds if and only if
δky

T
k sk = δky

T
kMkyk + γ

(1)
k yTk pk,

and the latter holds from (3.34) with j = k. Now, we have to prove that (3.33) hold
for any j < k. For j < k we have

yTj Mk+1yj = δjy
T
j Mkyj + yTj

(
γ

(1)
k

pkp
T
k

yTk pk

)
yj ,

where δjyTj Mkyj = δjy
T
j sj by the inductive hypothesis. Finally,

yTj (γ(1)
k pkp

T
k)yj = γ

(1)
k (Asj)T (pkpTk)Asj = γ

(1)
k α2

jp
T
j A(pkpTk)Apj = 0,

which follows from the conjugacy of the directions {p1, . . . , pk} generated by the CG.
Thus, (3.33) hold for any j ≤ k and the induction is complete.

From (3.34) we know that, for any δk > 0, we must have γ(1)
k = δk(yTk sk − yTkMkyk)

yTk pk
.

From a numerical point of view, yTk sk − yTkMkyk could be negative; in this case we

3.3 Guidelines for new Symmetric Rank-2 updates 59

have the matrix ∆k negative definite. In the next proposition we prove that if the
parameter yTk sk − yTkMkyk is negative, we can set the parameter δk such that the
matrix Mk+1 is positive definite. From (3.30) Mk+1 can be rewritten in the form

Mk+1 = δkMk + ∆k, (3.35)

where
∆k = γ

(1)
k

pkp
T
k

yTk pk
. (3.36)

So, the matrix (3.36) is negative semidefinite if and only if the scalar γ
(1)
k

yTk pk
is negative;

that is γ(1)
k < 0 (by definition yTk pk is positive). Since yTk pk > 0 and δk > 0, γ(1)

k is
negative if and only if yTk sk − yTkMkyk < 0, with yTk sk > 0 and yTkMkyk > 0.

Proposition 3.3.7. Let f be a nonlinear twice continuously differentiable function.
Suppose that the (unpreconditioned) NCG method is used to minimize the function f .
Suppose that (3.34) is satisfied, there exits a sequence of positive values {λ̂k} such
that if M1 � 0 with

λm(M1) ≥ λ̂1 > 0,

and the sequence {δk} in (3.35) satisfies
δk > 0 if λm(∆k) ≥ 0,

δk ≥
λ̂k+1 − λm(∆k)

λm(Hk)
if λm(∆k) < 0,

(3.37)

the matrix Mk+1 in (3.30) is positive definite, for any k ≥ 1, with

λm(Mk+1) ≥ λ̂k+1.

Proof. We prove the result by complete induction. Since by hypothesis λm(M1) ≥
λ̂1 > 0, then a sufficient condition to have λm(M2) ≥ λ̂2 > 0 is that ω1 ≥ 0, so that
λm(M2) ≥ δ1λ̂1 = λ̂2 for any δ1 > 0. On the other hand, if ω1 < 0 then we can set
λ̂2 such that

λm(M2) def= λm(δ1M1 + ∆1) ≥ δ1λm(M1) + λm(∆1) ≥ λ̂2 > 0,

which is satisfied provided that

δ1 ≥
λ̂2 − λm(∆1)
λm(M1) .

Now assume that by induction λm(Mk) ≥ λ̂k, we want to prove the result for step
k + 1. Then, using

λm(∆k) = min
{
γ

(1)
k

‖pk‖2

yTk pk
, 0
}

and considering the cases γ(1)
k ≤ 0 and γ(1)

k > 0, the choice (3.37) immediately yields
λm(Mk+1) ≥ λ̂k+1.

60 3. Preconditioners based on quasi-Newton updates for NCG methods

From the previous Proposition 3.3.7, we ensure that the matrix Mk+1 is positive
definite. This fills the gap with preconditioners in Sections 3.3.1-3.3.2, where
conditions (3.15), (3.16), (3.26) and (3.23) did not suffice to ensure Mk+1 positive
definite.

3.3.4 A preconditioner using a BFGS-like quasi-Newton update

In the previous section we have introduced a positive definite preconditioner: both
in case of γ(1)

k ≤ 0 and γ
(1)
k > 0, where γ(1)

k is given by (3.32), Proposition 3.3.7
ensures that the matrix Mk+1 is positive definite. However, the main drawback
is that conditions (3.37) may be difficult to guarantee. On this guideline, in this
section we introduce a new class of preconditioners which are iteratively constructed
by using information from NCG iterations, and satisfy the properties (1)-(5) in
Section 3.3. On this purpose, in order to comply with properties (4) and (5), the
preconditioners in our proposal satisfy two prerequisites. First they are conceived
around the rightmost term (3.6) in (3.5), in order to possibly approximate the inverse
Hessian matrix; then, they satisfy the secant equation at the current iterate, and
not necessarily at all the previous iterates. This is a weak theoretical requirement,
with respect to other quasi-Newton updates, however numerical results yet confirm
its efficiency and robustness.

Now, in order to introduce a class of preconditioners for the NCG, suppose we
have performed k iterations of the (unpreconditioned) NCG, so that the directions
p1, . . . , pk are generated. To this aim, assuming that Mk = M(γk) is given, we
consider the relation (3.9) where now we set

Mk = γ
(1)
k Ck

∆k = γ
(2)
k vkv

T
k + γ

(3)
k

k∑
j=k−m

αj
pjp

T
j

pTj ∇2f(xj)pj

with 0 ≤ m ≤ k−1, γ(1)
k > 0, γ(2)

k , γ
(3)
k ≥ 0, Ck ∈ Rn×n is symmetric positive definite

and vk ∈ Rn.
Thus we will have the new update

Mk+1 = γ
(1)
k Ck + γ

(2)
k vkv

T
k + γ

(3)
k

k∑
j=k−m

αj
pjp

T
j

pTj ∇2f(xj)pj
, (3.38)

where 0 ≤ m ≤ k − 1, γ(1)
k > 0, γ(2)

k , γ
(3)
k ≥ 0, Ck ∈ Rn×n is symmetric positive

definite and vk ∈ Rn.
Observe that in the expression of Mk+1 (see (3.38)), γ(2)

k vkv
T
k represents a rank-1

matrix while in view of (3.5)-(3.7), the term

k∑
j=k−m

pjp
T
j

pTj ∇2f(xj)pj
(3.39)

is aimed at building, in some sense, an approximate inverse of the Hessian matrix
on a specific subspace. The next proposition better justifies the last statement.

3.3 Guidelines for new Symmetric Rank-2 updates 61

Proposition 3.3.8. Let f(x) = 1/2xTAx + bTx, with A � 0. Let p1, . . . , pn ∈
Rn \ {0}, with pTi Apj = 0, 1 ≤ i 6= j ≤ n. Then, for any 0 ≤ m ≤ min{n− 1, k− 1}, k∑

j=k−m

pjp
T
j

pTj ∇2f(xj)pj

Av = v, for all v ∈ span{pk−m, . . . , pk}.

Moreover, when m = n− 1 then
k∑

j=k−m

pjp
T
j

pTj ∇2f(xj)pj
= A−1.

Proof. Let v =
∑k
i=k−m µipi, µi ∈ R; then, since ∇2f(x) = A, for any x ∈ Rn, we

have  k∑
j=k−m

pjp
T
j

pTj ∇2f(xj)pj

Av =

 k∑
j=k−m

pjp
T
j

pTj Apj

Av
=

k∑
j=k−m

k∑
i=k−m

µi
pjp

T
j

pTj Apj
Api =

k∑
i=k−m

µipi = v.

In case m = n− 1, since the vectors {pj} are also linearly independent, we directly
obtain the inverse matrix A−1.

Thus, in case f(x) is quadratic, then (3.39) behaves as an inverse of the Hessian
matrix on the subspace spanned by the linearly independent vectors pk−m, . . . , pk.
The integer m can be viewed as a “limited memory” parameter, similarly to the
L-BFGS method. Moreover, we can set the matrix Ck, the vector vk and the
parameters γ(1)

k , γ
(2)
k , γ

(3)
k such that the class of preconditioners {Mk} satisfies, for

any k, the secant equation at the current iterate

Mk+1yk = sk. (3.40)

along with a modified secant equation at some previous iterates, as described in the
next proposition.

Proposition 3.3.9. Let f : Rn → R be twice continuously differentiable. Suppose
that k iterations of NCG are performed, using a strong Wolfe linesearch procedure.
Let Mk+1 ∈ Rn×n be defined as in (3.38), with 0 ≤ m ≤ k−1, γ(1)

k > 0, γ(2)
k , γ

(3)
k ≥ 0.

(i) Let Ck ∈ Rn×n be symmetric positive definite, then there exist values of
γ

(1)
k , γ

(2)
k , γ

(3)
k such that Mk+1 � 0 and (3.40) holds.

(ii) Let Ck ∈ Rn×n be symmetric positive definite and f(x) = 1/2xTAx + bTx.
Then, Mk+1 � 0, (3.40) holds and Mk+1 reduces to

Mk+1 = γ
(1)
k Ck + γ

(2)
k vkv

T
k + γ

(3)
k

k∑
j=k−m

sjs
T
j

yTj sj
, (3.41)

with vk = σk(sk − γ
(1)
k Ckyk − γ

(3)
k sk), σk ∈ {−1,+1}.

62 3. Preconditioners based on quasi-Newton updates for NCG methods

(iii) Let f be the quadratic function f(x) = 1/2xTAx+bTx, with A � 0 and suppose
k ≥ 2 iterations of the NCG algorithm are performed, using an exact linesearch.
Then, there exist values of γ(1)

k , γ
(2)
k , γ

(3)
k , and a positive semidefinite matrix Ck,

such that Mk+1 � 0, (3.40) holds and the following modified secant conditions

Mk+1yi = γ
(3)
k si, i = k −m, . . . , k − 1, (3.42)

are satisfied.

Proof. From (3.38) imposing relation (3.40) we have

γ
(1)
k Ckyk + γ

(2)
k (vTk yk)vk + γ

(3)
k

k∑
j=k−m

αj
pTj yk

pTj ∇2f(xj)pj
pj = sk;

hence, assuming γ(2)
k (vTk yk) 6= 0 (which may be straightforwardly guaranteed by a

suitable choice of γ(1)
k , γ

(2)
k , γ

(3)
k),

vk = σk

sk − γ(1)
k Ckyk − γ

(3)
k

k∑
j=k−m

αj
pTj yk

pTj ∇2f(xj)pj
pj

 , (3.43)

for some σk ∈ R. Replacing (3.43) in (3.40) we obtain the equation

γ
(2)
k σ2

k

sTk yk − γ(1)
k yTk Ckyk − γ

(3)
k

k∑
j=k−m

(pTj yk)2

pTj ∇2f(xj)pj


·

sk − γ(1)
k Ckyk − γ

(3)
k

k∑
j=k−m

pTj yk

pTj ∇2f(xj)pj
pj

 =

sk − γ
(1)
k Ckyk − γ

(3)
k

k∑
j=k−m

pTj yk

pTj ∇2f(xj)pj
pj .

Thus, the following relation among the parameters σk, γ
(1)
k , γ

(2)
k , γ

(3)
k has to be

satisfied
γ

(2)
k σ2

k = 1

sTk yk − γ
(1)
k yTk Ckyk − γ

(3)
k

k∑
j=k−m

(pTj yk)2

pTj ∇2f(xj)pj

, (3.44)

where, without loss of generality, we can set σk ∈ {−1,+1}. Then, we remark
that the condition (3.44) guarantees the matrix Mk+1 in (3.40) to satisfy the secant
equation only at the k-th iteration (even for quadratic functions), and possibly not
at the previous iterates. To complete the proof of item (i), observe that the Wolfe
conditions used in the linesearch procedure for computing the steplength αk ensure
that (2.15) holds, i.e. sTk yk > 0. Thus, for γ(1)

k > 0 and γ(3)
k ≥ 0 sufficiently small in

(3.44) we obtain that γ(2)
k > 0, and the matrix Mk+1 is positive definite. To prove

item (ii), by the Mean Value Theorem we have∫ 1

0
sTj ∇2f [xj + ζ(xj+1 − xj)]sj dζ = sTj yj ,

3.3 Guidelines for new Symmetric Rank-2 updates 63

and using relation sj = αjpj , in case f(x) is a quadratic function, then we have

pTj Apj = pTj ∇2f(xj)pj =
∫ 1

0
pTj ∇2f [xj + ζ(xj+1 − xj)]pj dζ =

pTj yj

αj
, (3.45)

which can be replaced in (3.38) to obtain (3.41). Since the Wolfe conditions are used
in the linesearch procedure, then (2.15) holds, still implying that

k∑
j=k−m

sjs
T
j

yTj sj
� 0.

In addition, since yk = Ask, now the expression of vk in (3.43) reduces to vk =
σk(sk − γ

(1)
k Ckyk − γ

(3)
k sk).

Finally, as regards (iii), let us define

Ck = V T
k V

T
k−1 · · ·V T

k−mVk−m · · ·Vk−1Vk. (3.46)

Even if Ck now is not positive definite, similarly to the proof of (i), we can obtain
(3.43) and (3.44). Now, since yk = Ask, we have Mk+1yk = sk, vk = σk(sk −
γ

(1)
k Ckyk − γ

(3)
k sk) and

γ
(2)
k σ2

k = 1
(1− γ(3)

k)sTk yk − γ
(1)
k yTk Ckyk

. (3.47)

We prove that the matrix Mk+1 (which is now the sum of positive semidefinite
matrices) is positive definite. Indeed, let s1, . . . , sn be n conjugate (hence linearly
independent) directions with respect to matrix A � 0. Then, recalling that the exact
linesearch along with the conjugacy among {sj} yield ∇f(xj+1) = ∇f(xj) + Asj
and

(Asi)T (Asj) = 0, for all |i− j| > 1, (3.48)

by (3.3) and for any γ(1)
k 6= 0, γ(3)

k 6= 0 it resultsγ(1)
k Ck + γ

(3)
k

k∑
j=k−m

sjs
T
j

yTj sj

Asi 6= 0, i = 1, . . . , n.

Indeed, the latter result trivially holds for any i 6= k−m−1; moreover, for i = k−m−1
it also holds, using the relation V T

k−m(Ask−m−1) = Ask−m−1 6= 0. This implies that
the matrix γ(1)

k Ck+γ(3)
k

∑k
j=k−m sjs

T
j /y

T
j sj (and consequentlyMk+1) is nonsingular.

Moreover, since f(x) is quadratic, by (3.41) we obtain for i ∈ {k −m, . . . , k}

Mk+1yi =

γ(1)
k Ck + γ

(2)
k vkv

T
k + γ

(3)
k

k∑
j=k−m

sjs
T
j

yTj sj

 yi
=

[
γ

(1)
k Ck + γ

(2)
k vkv

T
k

]
Asi + γ

(3)
k si.

Now, since vk = σk(sk−γ
(1)
k Ckyk−γ

(3)
k sk), then we obtain for i ∈ {k−m, . . . , k−1}

that vTk Asi = 0. Furthermore, by a direct computation we also have for i ∈
{k −m, . . . , k − 1}

CkAsi = V T
k V

T
k−1 · · ·V T

k−mVk−m · · ·Vk−1VkAsi = 0;

64 3. Preconditioners based on quasi-Newton updates for NCG methods

thus, we finally obtain

Mk+1yi = γ
(1)
k CkAsi + γ

(3)
k si = γ

(3)
k si, i ∈ {k −m, . . . , k − 1}.

In the next proposition we give some properties about the clustering of the eigenvalues
of the preconditioner Mk+1.

Proposition 3.3.10. Let f(x) = 1/2xTAx+ bTx, with A � 0, and suppose k ≥ 2
iterations of the NCG algorithm are performed, using an exact linesearch. Consider
the matrix Ck in (3.46) and Mk+1 in (3.41). Then, Mk+1 has at least n− (m+ 2)
eigenvalues equal to γ(1)

k .

Proof. After some computations, we obtain the relation V T
k−m(Ask−m−1) = Ask−m−1,

and by the hypotheses (see also (3.43)), it results vk = σk(sk − γ
(1)
k Ckyk − γ

(3)
k sk).

Then, recalling (3.48), we have

Mk+1Asi = γ
(1)
k Asi, for i ≤ k −m− 1 and k + 2 ≤ i ≤ n,

so that [k −m− 1] + [n− (k + 2) + 1] = n− (m+ 2) eigenvalues of Mk+1 are equal
to γ(1)

k .

Observe that the different choices for the parameters γ(1)
k and γ(3)

k in (3.44) provide
a different scaling of the matrices Ck and

k∑
j=k−m

pjp
T
j

pTj ∇2f(xj)pj

in the preconditioners.

As regards the specific choice of γ(3)
k , γ(1)

k and Ck in (3.41), observe that by
(3.42), the choice γ(3)

k = 1 and Ck given by (3.46) seems appealing when f(x) is
quadratic. However, with γ(3)

k = 1 in (3.47) γ(2)
k might not be well defined or possibly

negative. Also observe that

rk(Ck) = rk
[
V T
k V

T
k−1 · · ·V T

k−mVk−m · · ·Vk−1Vk
]
≤ n− 1,

so that Ck is consequently singular, and when f(x) is non-quadratic the precondi-
tioner Mk+1 might be singular. To avoid the latter drawback, and possibly reduce
the computational burden, while preserving a certain level of efficiency, an obvious
choice could be γ(3)

k 6= 1 and

Ck = εkI, εk ∈ R.

The parameter εk may be computed as the least squares solution of the equation
(εI)yk − sk = 0, i.e. εk solves

min
ε
‖(εI)yk − sk‖2 .

3.3 Guidelines for new Symmetric Rank-2 updates 65

Hence,

εk = sTk yk
‖yk‖2

so that since sTk yk > 0 by the Wolfe conditions, the matrix

Ck = sTk yk
‖yk‖2

I (3.49)

is positive definite. It is not difficult to verify that the choice (3.49), for Ck, also
satisfies the weak secant equation yTk Ckyk = yTk sk (see [41]), at current iterate xk.

For the sake of clarity we report here the overall resulting expression of our class
of preconditioners (3.38), including the choice (3.49) and σk = 1:

Mk+1 = γ
(1)
k

sTk yk
‖yk‖2

I + γ
(2)
k vkv

T
k + γ

(3)
k

k∑
j=k−m

sjs
T
j

yTj sj
, (3.50)

where

vk = sk − γ
(1)
k

sTk yk
‖yk‖2

yk − γ
(3)
k

k∑
j=k−m

sTj yk

yTj sj
sj , (3.51)

γ
(2)
k = 1

(1− γ(1)
k)sTk yk − γ

(3)
k

k∑
j=k−m

(sTj yk)2

yTj sj

. (3.52)

The reader may conjecture that since Mk+1 merely satisfies, in the convex
quadratic case, the interpolation (say secant) conditions (3.40) and (3.42), then
its theoretical properties with respect to BFGS are definitely poor. This seems
indeed a partially correct conclusion. However, since in practice L-BFGS often
performs better than BFGS, we warn the reader that on nonconvex problems the
good performance of our proposal in Section 3.3.4.1 might not be so surprising. In
fact, likewise L-BFGS we retain information from a limited number of previous
iterates, mainly relying on the role of the rightmost term in (3.50), as detailed in
Proposition 3.3.8.

We conclude this section by highlighting that, interestingly enough, we can also
construct a class of preconditioners based on DFP-like quasi-Newton updates. Indeed,
we can iteratively build the matrices B(γk+1), approximating ∇2f(x) instead of its
inverse. Then, by the Sherman-Morrison-Woodbury formula applied to B(γk+1) we
can compute a class of preconditioners alternative to M(γk+1). However, following
the current literature which privileges the use of BFGS in place of DFP [95], here
we have proposed the class described in (3.50)-(3.52), which performed successfully
in practice.

3.3.4.1 Numerical experience

In order to investigate the reliability of the class of preconditioners we have introduced,
we performed a wide numerical testing using the preconditioners defined in (3.50).

66 3. Preconditioners based on quasi-Newton updates for NCG methods

To this purpose, we embedded the preconditioners (3.50) within the standard CG+
code (see [51]), from the literature, available at J. Nocedal’s web page. As regards
the stopping criterion we adopt the standard one given by (see e.g. [78], [83], [93])

‖gk‖ ≤ 10−5 max {1, ‖xk‖} .

For a fair comparison we used the same linesearch used by default in CG+ code. It
is the Moré-Thuente linesearch [84] with a slight modification (we refer the reader
to [51] for a complete description of the algorithm). In particular, we tested the
standard Polak and Ribière (PR) version of the PNCG method (see [97]). As regards
the test problems, we selected all the large scale unconstrained test problems in the
CUTEst collection [56]. The dimension of the test problems is between n = 1000
and n = 10000 (we considered 112 resulting problems). The parameters of the
preconditioners (3.50) have been chosen as follows:

m = 4, γ
(1)
k =

1
2s

T
k yk

yTk Ckyk +
k∑

j=k−m

(sTj yk)2

sTj yj

, γ
(2)
k = 2

sTk yk
, γ

(3)
k = γ

(1)
k ,

where Ck is given by (3.49), for all k (this choice ensures that, by Wolfe conditions,
the denominator of γ(2)

k in (3.52) is positive). As preliminary investigation, we
considered the results in terms of the number of iterations and the number of
function evaluations, comparing three alternatives:

• Mk+1 in (3.50), namely OUR PREC;

• Mk+1 = I (unpreconditioned case), namely UNPREC;

• Mk+1 coincident with the L-BFGS update Hk+1 in (2.64), using a memory of
m = 4, namely PREC-LBFGS.

The overall comparison is reported by using performance profiles [42]. For a fair
comparison, we have excluded from each profile all the test problems where the three
alternatives do not converge to the same stationary point. Moreover, for k < 4 (i.e.
in the first three PNCG iterations) we have coherently set m = min{4, k}.

We strongly highlight that our proposal (3.50) is built using a dual standpoint
with respect to PREC-LBFGS. Indeed, our proposal starts by first considering the
third matrix in the right hand side of (3.50), in the light of approximating (in the
quadratic case) the inverse of the Hessian matrix, as in (3.7). Then, the other two
matrices, on the right hand side of (3.50), make our proposal Mk+1 nonsingular
and consistent with a current interpolation condition at iterate k. On the contrary,
PREC-LBFGS update starts from imposing multiple interpolation conditions at
previous iterates (i.e. the secant equations). Then, as by-product it also proves to
yield in the quadratic case, after n iterations, the inverse Hessian.

The choice m = 4 was in our experience the best compromise over the chosen test
set. This should not be surprising if compared with the results in [48, 49, 83], where
the best choice for the memory parameter is either m = 7 or m = 8. In fact, in the
latter papers the preconditioner is built using the CG (or L-BFGS for quadratics) in

3.3 Guidelines for new Symmetric Rank-2 updates 67

place of the NCG, which allows to fully exploit the mutual conjugacy among the
search directions. On the contrary, in this work the NCG is unable to guarantee the
latter property, so that the information at iterations k −m− 1, k −m− 2, . . . for
large m risks to be unreliable.

In Figures 3.1-3.2 we report the comparison among the three algorithms. These
profiles show that our proposal definitely outperforms the competitors, both in terms
of number of iterations and number of function evaluations.

Figure 3.1. Comparison among OUR PREC (solid line), PREC-LBFGS (dashed line) and
UNPREC (dotted line), in terms of number of iterations.

Finally, we guess that in place of (3.49), a more sophisticated choice of the
matrix Ck might be conceived, which possibly summarizes more information on the
function at the previous iterates.

3.3.5 A Symmetric Rank-2 update based on modified secant equa-
tions

In the previous section we have introduced new quasi-Newton updates to iteratively
construct a preconditioner for PNCG method such that:

• it is positive definite;

• it satisfies the secant equation at the current iteration.

However, since the search direction we compute does not seem yet well scaled (see
Section 5 in [32]), in this section we propose a novel quasi-Newton updating formula,
by considering the properties of a parameter dependent symmetric rank-2 (SR2)
update of the inverse Hessian matrix, used as a possible preconditioner for the NCG
(see, for example, preconditioner in Section 3.3.4). We claim that our quasi-Newton

68 3. Preconditioners based on quasi-Newton updates for NCG methods

Figure 3.2. Comparison among OUR PREC (solid line), PREC-LBFGS (dashed line) and
UNPREC (dotted line), in terms of number of function evaluations.

update Mk+1, which aims at approximating [∇2f(x)]−1 in some sense, satisfies the
following modified secant equation along all previous directions; namely it results

Mk+1yj = δjsj with


δj > 0, for j < k,

δj = 1, for j = k.
(3.53)

The satisfaction of (3.53) is a distinguishing property of our proposal in this study,
and though (3.53) imposes weaker conditions with respect to the satisfaction of
the secant equation at any step j < k, numerical performance seems to confirm its
effectiveness and efficiency.

On this guideline, in order to build an approximate inverse of the Hessian matrix
and explicitly indicating the parameters it depends on, in place of (3.9) we consider
here the update

Mk+1 = δkMk + ∆k, ∆k ∈ Rn×n symmetric, (3.54)

where the sequence {Mk} explicitly depends on the real parameters δk, γ
(1)
k , γ(2)

k .
Considering the relation (3.54) we set now more explicitly

∆k = γ
(1)
k vkv

T
k + γ

(2)
k

pkp
T
k

yTk pk
, γ

(1)
k , γ

(2)
k ∈ R \ {0}, vk ∈ Rn,

where pk is generated at the k-th iteration of the NCG method. Thus, we have the
novel update

Mk+1 = δkMk + γ
(1)
k vkv

T
k + γ

(2)
k

pkp
T
k

yTk pk
, γ

(1)
k , γ

(2)
k ∈ R \ {0}, vk ∈ Rn. (3.55)

3.3 Guidelines for new Symmetric Rank-2 updates 69

We immediately remark that the main difference between (3.55) and the proposal in
Section 3.3.4 relies on the following fact. In (3.50) the rightmost contribution aims
at possibly computing an approximate inverse Hessian matrix. Then, the coefficients
γ

(1)
k , γ(2)

k and γ(3)
k are set so that Mk+1 fulfills the secant equation. On the contrary,

in (3.55) the rightmost term of Mk+1 plays a role similar to that of the term ρksks
T
k

in (2.64), and thus it does not contain the contribution from any previous step.
In order to comply with (3.53), Mk+1 must satisfy the secant equationMk+1yk =

sk, which implies

δkMkyk + γ
(1)
k (vTk yk)vk + γ

(2)
k

pkp
T
k

yTk pk
yk = sk,

that is
γ

(1)
k (vTk yk)vk = sk − δkMkyk − γ

(2)
k pk. (3.56)

Therefore it results explicitly

vk = σk
(
sk − δkMkyk − γ

(3)
k pk

)
(3.57)

for some scalar σk ∈ R. By replacing the expression (3.57) of vk in (3.56) we have

γ
(1)
k σ2

k

[
yTk (sk − δkMkyk − γ

(2)
k pk)

]
(sk − δkMkyk − γ

(2)
k pk) = sk − δkMkyk − γ

(2)
k pk.

Thus, the following relation among the parameters σk, γ
(1)
k and γ(2)

k must hold

γ
(1)
k σ2

k = 1
sTk yk − δkyTkMkyk − γ

(2)
k pTk yk

. (3.58)

By the arbitrariness of γ(1)
k , without loss of generality, we can set σk ∈ {−1, 1}. Now,

in the next proposition we first consider the case of quadratic functions, and prove
that under mild assumptions the update (3.55) satisfies the modified secant equation
(3.53), along all previous directions.

Proposition 3.3.11. Let f(x) = 1
2x

TAx − bTx, where A ∈ Rn×n is symmetric
and b ∈ Rn. Suppose that k steps of the CG are performed, in order to detect
the stationary point (if any) of the function f , and that the vectors p1, . . . , pk are
generated. Then, the matrix Mk+1 in (3.55) satisfies the modified secant equations
(3.53), that is

Mk+1yj = δjsj with


δj > 0, for j < k,

δj = 1, for j = k.

provided that the nonzero coefficients γ(1)
j , γ(2)

j , j = 1, . . . , k are chosen such that

γ
(1)
j = 1

sTj yj − δjyTj Mjyj − γ(2)
j pTj yj

, j = 1, . . . , k,

γ
(2)
j 6=

sTj yj − δjyTj Mjyj

pTj yj
, j = 1, . . . , k.

(3.59)

70 3. Preconditioners based on quasi-Newton updates for NCG methods

Proof. The proof proceeds by induction. Equations (3.53) hold for k = 1, that is
M2y1 = s1, as long as

s1 =
[
δ1M1 + γ

(1)
1 σ2

1(s1 − δ1M1y1 − γ(2)
1 p1)(s1 − δ1M1y1 − γ(2)

1 p1)T + γ
(2)
1
p1p

T
1

yT1 p1

]
y1,

or equivalently

s1 − δ1M1y1 − γ(2)
1 p1 = γ

(1)
1 (sT1 y1 − δ1y

T
1 M1y1 − γ(2)

1 pT1 y1)
[
s1 − δ1M1y1 − γ(2)

1 p1
]
,

which is satisfied selecting γ(1)
1 and γ(2)

1 according with (3.59).
Now, suppose that the relations (3.53) hold for the index k− 1. To complete the

induction we need to prove that the relations (3.53) hold for the index k. Firstly,
note that Mk+1yk = sk holds. In fact, relation

sk =
[
δkMk + γ

(1)
k σ2

k(sk − δkMkyk − γ
(2)
k pk)(sk − δkMkyk − γ

(2)
k pk)T

]
yk

+
[
γ

(2)
k

pkp
T
k

yTk pk

]
yk,

holds if and only if

sk − δkMkyk − γ
(2)
k pk = γ

(1)
k (sTk yk − δkyTkMkyk − γ

(2)
k pTk yk)(sk − δkMkyk − γ

(2)
k pk),

which is satisfied using (3.59) with j = k. Now, we have to prove that (3.53) hold
for any j < k. For j < k the definition of Mk+1 yields

Mk+1yj = δkMkyj + γ
(1)
k σ2

k(sk − δkMkyk − γ
(2)
k pk)(sk − δkMkyk − γ

(2)
k pk)T yj

+ γ
(2)
k

pTk yj
yTk pk

pk,

whereMkyj = δjsj , j = 1, . . . , k−2, andMkyk−1 = sk−1 by the inductive hypothesis.
Moreover,

(sk − δkMkyk)T yj = sTk yj − δkyTkMkyj =
sTk yj − δkδjyTk sj = sTkAsj − δkδjsTkAsj = 0, j < k − 1,

sTk yk−1 − δkyTk sk−1 = sTkAsk−1 − δk(Ask)T sk−1 = 0, j = k − 1,

where the third equality holds since yj = Asj , for any j ∈ {1, . . . , k − 1}. Moreover,
the fourth equality holds since sj = αjpj , j = 1, . . . , k − 1, and pj are conjugate
directions. Finally,

γ
(2)
k pTk yj = γ

(2)
k pTkAsj = γ

(2)
k αjp

T
kApj = 0,

which again follows from the conjugacy of the directions {p1, . . . , pk}. Thus, (3.53)
hold for any j ≤ k and the induction is complete.

3.3 Guidelines for new Symmetric Rank-2 updates 71

As an immediate consequence of the previous proposition, we give now a finite
termination property for quadratic functions. More specifically, we prove that after
at most n steps, the recursion (3.55) provides the matrix Mn+1, which is, in some
sense, a modified inverse Hessian.

Corollary 3.3.12. Let f(x) = 1
2x

TAx−bTx, where A ∈ Rn×n is symmetric nonsin-
gular and b ∈ Rn. Suppose that n steps of the CG are performed, in order to detect
the stationary point of the function f , and that the vectors p1, . . . , pn are generated.

• If (3.53)-(3.59) hold, we have Mn+1A = (s1 · · · sn)D(s1 · · · sn)−1, with D =
diag{δ1, . . . , δn−1, 1}.

• It results

λm(Mn+1A) = λm(D), λM (Mn+1A) = λM (D). (3.60)

Proof. By Proposition 3.3.11, we have that relations (3.53) hold for k = n, i.e.
Mn+1yj = δjsj , j = 1, . . . , n− 1,

Mn+1yn = sn.

Since f is quadratic then yj = Asj , for any j, i.e.
Mn+1Asj = δjsj , j = 1, . . . , n− 1,

Mn+1Asn = sn.

Now, since sj = αjpj , j = 1, . . . , n, the conjugacy among the vectors {p1, . . . , pn}
implies that

Mn+1A(s1 · · · sn) = (s1 · · · sn)D, (3.61)

where D = diag{δ1, . . . , δn−1, 1}. By (3.61) we have

Mn+1A = (s1 · · · sn)D(s1 · · · sn)−1

and therefore the eigenvalues of Mn+1A coincide with those of D.

We highlight that, whenever k = n, Corollary 3.3.12 justifies item (5) in Sec-
tion 3.3. Moreover, later on in this study we show that for k < n, the update in
(3.55) can be suitably used to provide a preconditioner. The next corollary details
further properties of Mk+1 in (3.55), again when the function f(x) is quadratic, in
the light of possibly approximating the inverse Hessian A−1.

Corollary 3.3.13. Let f(x) = 1
2x

TAx−bTx, where A ∈ Rn×n is symmetric nonsin-
gular and b ∈ Rn. Suppose that n steps of the CG are performed, in order to detect
the stationary point of the function f , and that the vectors p1, . . . , pn are generated.
If relations (3.53)-(3.59) hold for any k = 1, . . . , n, then we have

1)
k∑
j=1

δjsj = (Mk+1A)(xk+1 − x1),

72 3. Preconditioners based on quasi-Newton updates for NCG methods

2) AMk+1

 k∑
j=1

gj+1 − gj
δj

 = gk+1 − g1,

3) in the case k = n then
n∑
j=1

[
(s1 · · · sn)D(s1 · · · sn)−1 − δjI

]
sj = 0,

with D = diag{δ1, . . . , δn−1, 1}.

Proof. By (3.53) and adding with respect to index j we obtain the two relations

Mk+1 [gk+1 − g1] =
k∑
j=1

δjsj (3.62)

Mk+1

 k∑
j=1

gj+1 − gj
δj

 = xk+1 − x1. (3.63)

By (3.62) and recalling that f(x) is quadratic, we have

Mk+1A(xk+1 − x1) =
k∑
j=1

δjsj , (3.64)

which yields 1). By (3.63) we immediately infer 2). Finally, by Corollary 3.3.12

Mn+1A = (s1 · · · sn)D(s1 · · · sn)−1

and using (3.64) with k = n we have

(s1 · · · sn)D(s1 · · · sn)−1
n∑
j=1

sj =
n∑
j=1

δjsj ,

i.e.
n∑
j=1

[
(s1 · · · sn)D(s1 · · · sn)−1 − δjI

]
sj = 0,

which is relation 3).

After analyzing the case of f(x) quadratic, we turn now to the general case of a
nonlinear continuously differentiable function. In particular, since we are interested
in using the matrix Mk+1 in (3.55) as a preconditioner, we need to investigate if
there exists a suitable setting of the parameters δk, γ

(1)
k and γ(2)

k such that Mk+1 is
positive definite, provided that (3.53)-(3.59) are satisfied.

In the next lemma we provide a technical result which will be used to prove the
latter purpose.

Lemma 3.3.14. Let u, v ∈ Rn and a, b, c ∈ R, with u, v linearly independent and
ac− b2 6= 0. Then, the symmetric matrix H ∈ Rn×n given by

H = (v
... u)

(
a b
b c

)
(v

... u)T

3.3 Guidelines for new Symmetric Rank-2 updates 73

has n− 2 eigenvalues equal to 0, and the two real eigenvalues

λn−1 = δ + β −
√

(δ − β)2 + 4αγ
2 , λn = δ + β +

√
(δ − β)2 + 4αγ

2 , (3.65)

where

α = avTu+ b‖u‖2, β = a‖v‖2 + bvTu, γ = b‖v‖2 + cvTu, δ = bvTu+ c‖u‖2.

Proof. First note that since H is symmetric then its n eigenvalues are real. Now, let
{zi}, i = 1, . . . , n, be an independent set of n-real vectors. Let {zi}, i = 1, . . . , n− 2,
be orthogonal to vectors v, u. Then, for any i ∈ {1, . . . , n − 2} the vector zi is
trivially an eigenvector of H, associated with the zero eigenvalue. Thus, the only
two eigenvectors zn−1 and zn of H, associated with the nonzero eigenvalues λn−1
and λn, must satisfy the relation

zn−1, zn ∈ span{v, u}.

Now, using 
zn−1 = µ1,1v + µ1,2u

zn = µ2,1v + µ2,2u,

with µ1,1, µ1,2, µ2,1, µ2,2 ∈ R, and imposing the conditions Hzh = λhzh, for h ∈
{n− 1, n}, we obtain the couple of relations(

avvT + buvT + bvuT + cuuT
)

(µ1,1v + µ1,2u) = λn−1(µ1,1v + µ1,2u)

(
avvT + buvT + bvuT + cuuT

)
(µ2,1v + µ2,2u) = λn(µ2,1v + µ2,2u).

Note that after an easy computation, avTu + b‖u‖2 6= 0 implies that µ1,1 6= 0
(indeed, µ1,1 = 0 yields zn−1 = µ1,2u, but there is no real value for λ such that
Hµ1,2u = λµ1,2u). Thus, since the latter relations must hold for any choice of vectors
v and u, setting σn−1 = µ1,2/µ1,1 in the first of them (a similar analysis holds also
for the second relation), we obtain the couple of equalities[

avTu+ b‖u‖2
]
σn−1 +

[
a‖v‖2 + buT v

]
= λn−1,

[
b‖v‖2 + cuT v

]
+
[
bvTu+ c‖u‖2

]
σn−1 = λn−1σn−1,

or equivalently 
ασn−1 + β = λn−1,

γ + δσn−1 = λn−1σn−1,

which give

σn−1 = (δ − β)±
√

(δ − β)2 + 4αγ
2α

and
λn−1 = ασn−1 + β.

A similar analysis holds for the computation of λn, which completes the proof.

74 3. Preconditioners based on quasi-Newton updates for NCG methods

In order to prove the next result, we highlight that by replacing (3.57) in (3.55),
and recalling that σ2

k = 1, we obtain

Mk+1 = δkMk + γ
(1)
k

[
δ2
k (Mkyk) (Mkyk)T

]
+ γ

(2)
k

pkp
T
k

yTk pk

+γ(1)
k

[(
αk − γ

(2)
k

)2
pkp

T
k − δk

(
αk − γ

(2)
k

) (
(Mkyk) pTk + pk (Mkyk)T

)]
.

Hence, Mk+1 can be rewritten in the form (3.54), that is

Mk+1 = δkMk + ∆k,

with

∆k =
(
pk

... Mkyk

)

γ

(1)
k (αk − γ

(2)
k)2 + γ

(2)
k

yTk pk
−δkγ

(1)
k (αk − γ

(2)
k)

−δkγ
(1)
k (αk − γ

(2)
k) δ2

kγ
(2)
k


 pTk

. . .

(Mkyk)T

 .

Proposition 3.3.15. Let f be a continuously differentiable function. Suppose that
the NCG method is used to minimize the function f . Suppose that (3.53)-(3.59) are
satisfied and let us set the arbitrary sequence of positive values {λ̂k}. If M1 � 0 with

λm(M1) ≥ λ̂1 > 0,

for any k the vectors pk and Mkyk are not parallel, and the sequence {δk} in (3.54)
satisfies 

δk ≥
λ̂k+1

λm(Mk)
if λm(∆k) ≥ 0,

δk ≥
λ̂k+1 − λm(∆k)

λm(Mk)
if λm(∆k) < 0,

(3.66)

then the matrix Mk+1 in (3.55) is positive definite, for any k ≥ 1, with

λm(Mk+1) ≥ λ̂k+1.

Proof. We prove the result by induction. Since by hypothesis λm(M1) ≥ λ̂1 > 0,
then a sufficient condition to have λm(M2) ≥ λ̂2 > 0 is that λm(∆1) ≥ 0, so that
relation λm(M2) ≥ δ1λm(M1) ≥ λ̂2 is fulfilled choosing δ1 ≥ λ̂2/λm(M1). On the
other hand, if λm(∆1) < 0 we can always set λ̂2 such that

λm(M2) = λm(δ1M1 + ∆1) ≥ δ1λm(M1) + λm(∆1) ≥ λ̂2 > 0,

which is satisfied provided that

δ1 ≥
λ̂2 − λm(∆1)
λm(M1) .

3.3 Guidelines for new Symmetric Rank-2 updates 75

Note that by (3.65) of Lemma 3.3.14, regardless of the choice of γ(1)
1 and γ

(2)
1 in

(3.59), the quantity λm(∆1) can be obtained directly as

λm(∆1) = min{λn−1, λn, 0}, (3.67)

where λn−1 and λn are defined in (3.65), setting in Lemma 3.3.14

v = p1, u = M1y1,

a = γ
(1)
1 (α1 − γ(2)

1)2 + γ
(2)
1

yT1 p1
, b = −δ1γ

(1)
1 (α1 − γ(2)

1 , c = δ2
1γ

(1)
1 .

Now assume that by induction λm(Mk) ≥ λ̂k, we want to prove the result for step
k + 1. To this purpose, recalling again that by Lemma 3.3.14 we can compute
similarly to (3.67)

λm(∆k) = min{λn−1, λn, 0},

the choice (3.66) immediately yields λm(Mk+1) ≥ λ̂k+1.

The result in Proposition 3.3.15 gives a characterization of the spectrum ofMk+1,
but possibly it does not indicate a procedure to set the parameters affecting the
formula of Mk+1. Moreover, the hypothesis that for any k the vectors pk and Mkyk
are not parallel may be difficult to be guaranteed. Thus, in order to fill the latter
gap and provide a set of parameters δk, γ

(1)
k and γ(2)

k , such that conditions (3.59)
are satisfied (i.e. equivalently (3.53) hold) and the preconditioner Mk is positive
definite, the following proposition may represent an operative tool. In particular,
observe that unlike Proposition 3.3.15, the next result neither requires to compute
λm(∆k) nor it needs to introduce the sequence {λ̂k}.

Proposition 3.3.16. Let f be a continuously differentiable function. Suppose that
the NCG method is used to minimize the function f . Suppose that at current step k
the linesearch procedure satisfies sTk yk > 0. Moreover, let Mk � 0 in (3.55), and set
εk ∈ (0, 1), with

0 < δk = (1− εk)
sTk yk

yTkMkyk
, (3.68)

0 < γ
(2)
k < εkαk, (3.69)

0 < γ
(1)
k = 1

(εkαk − γ
(2)
k)pTk yk

. (3.70)

Then, conditions (3.53)-(3.59) hold and Mk+1 � 0 in (3.55).

Proof. By (3.68) and recalling that εk ∈ (0, 1), with Mk � 0, we obtain

0 < δk <
sTk yk

yTkMkyk
,

which implies also
sTk yk − δkyTkMkyk > 0. (3.71)

76 3. Preconditioners based on quasi-Newton updates for NCG methods

Now, observe that by the first relation (3.59), γ(1)
k > 0 if and only if sTk yk −

δky
T
kMkyk − γ

(2)
k pTk yk > 0, i.e.

γ
(2)
k <

sTk yk − δkyTkMkyk
pTk yk

,

which can be satisfied using (3.68) as

0 < γ
(2)
k <

sTk yk − δkyTkMkyk
pTk yk

= εkαk.

The latter relation is indeed the condition (3.69), and satisfies also the second relation
(3.59). Finally, by (3.68) the first relation (3.59) is equivalent to

γ
(1)
k = 1

sTk yk − (1− εk)sTk yk − γ
(2)
k pTk yk

= 1
(εkαk − γ

(2)
k)pTk yk

,

with (εkαk − γ
(2)
k)pTk yk > 0. Then, (3.68)-(3.70) yield exactly (3.53) and (3.59),

along with Mk+1 � 0.

3.3.5.1 Issues on ill-conditioning

The previous proposition ensures that properly choosing the parameters δk, γ
(1)
k and

γ
(2)
k the preconditioner Mk+1 is well-posed and positive definite. However, we should

take into account that the search direction pk we compute at iteration k of NCG
could be not well scaled, which may introduce some ill-conditioning when applying
the PNCG. Following the rationale behind the BFGS updates, a possible remedy to
the latter drawback can be represented by reducing the distance between Mk+1 and
Mk, i.e. minimizing the Frobenious norm ‖Mk+1 −Mk‖F . In this regard, as well
known we have

‖Mk+1−Mk‖F =
√
tr[(Mk+1 −Mk)T (Mk+1 −Mk)] =

√
tr[(Mk+1 −Mk)2]. (3.72)

By the properties of the trace of matrices (see e.g. [22]), we have√
tr[(Mk+1 −Mk)2] ≤

√
[tr(Mk+1 −Mk)]2 = |tr(Mk+1 −Mk)|. (3.73)

Thus, a possible upper bound for ‖Mk+1 −Mk‖F is given by

‖Mk+1 −Mk‖F ≤ |tr(Mk+1 −Mk)|. (3.74)

We recall that by Proposition 3.3.16, {γ(1)
k } and {γ

(2)
k } are positive sequences, so

that using (3.55) in (3.74) we have

|tr(Mk+1 −Mk)| =
∣∣∣∣∣δktr(Mk) + γ

(1)
k ‖vk‖

2 + γ
(2)
k

‖pk‖2

yTk pk
− tr(Mk)

∣∣∣∣∣
≤ |δk − 1|tr(Mk) + γ

(1)
k ‖vk‖

2 + γ
(2)
k

‖pk‖2

yTk pk
. (3.75)

From (3.69) and (3.70) we observe that, after setting the arbitrary parameter εk,
then γ

(1)
k still depends on γ

(2)
k . Thus, following the rationale behind the BFGS

update, in the following proposition we investigate possible values for the bound
(3.75) on tr(Mk+1 −Mk), when γ

(2)
k changes.

3.3 Guidelines for new Symmetric Rank-2 updates 77

Proposition 3.3.17. Let f be a continuously differentiable function. Suppose that
the NCG method is used to minimize f . Suppose that at current step k we have
sTk yk > 0, Mk � 0, εk ∈ (0, 1), and let (3.53), (3.59), (3.68)-(3.70) be satisfied.
Consider the function of γ(2)

k

φ(γ(2)
k) = |δk − 1|tr(Mk) + γ

(1)
k ‖vk‖

2 + γ
(2)
k

‖pk‖2

yTk pk
. (3.76)

Then φ(γ(2)
k) is monotone non decreasing with respect to γ(2)

k , and γ(2)
k = 0 minimizes

it.

Proof. After setting εk ∈ (0, 1), by (3.70) we note that γ(1)
k depends on γ(2)

k . Thus,
the function φ(γ(2)

k) in (3.76) uniquely depends on γ(2)
k . Now we have for φ′(γ(2)

k)

φ′(γ(2)
k) = d(γ(1)

k ‖vk‖2)
dγ

(2)
k

+ ‖pk‖
2

yTk pk
= dγ

(1)
k

dγ
(2)
k

‖vk‖2 + γ
(1)
k

d
(
‖vk‖2

)
dγ

(2)
k

+ ‖pk‖
2

yTk pk
. (3.77)

From (3.57) and σk ∈ {−1,+1} we have

‖vk‖2 = ‖pk‖2(γ(2)
k)2 + 2(δkpTkMkyk − αk‖pk‖2)γ(2)

k + ‖sk − δkMkyk‖2, (3.78)

so that, using (3.70) and (3.78) in (3.77) we obtain

φ′(γ(2)
k) = ‖pk‖2(γ(2)

k)2 + 2(δkpTkMkyk − αk‖pk‖2)γ(2)
k + ‖sk − δkMkyk‖2

(εkαk − γ
(2)
k)2pTk yk

+ 2‖pk‖2γ
(2)
k + 2(δkpTkMkyk − αk‖pk‖2)

(εkαk − γ
(2)
k)pTk yk

+ ‖pk‖
2

pTk yk
. (3.79)

Setting for the sake of clarity

A = ‖pk‖2, B = δkp
T
kMkyk−αk‖pk‖2, C = ‖sk−δkMkyk‖2, D = pTk yk,

in (3.79), we obtain after some computation for φ′(γ(2)
k)

φ′(γ(2)
k) = C + 2Bεkαk +Aε2

kα
2
k

D(εkαk − γ
(2)
k)2

. (3.80)

Now, by (3.69) and sTk yk > 0 the quantity D(εkαk − γ
(2)
k)2 is strictly positive, for

any γ(2)
k . Moreover, recalling that sk = αkpk we have

C + 2Bεkαk +Aε2
kα

2
k =

= ‖sk‖2 − 2δksTkMkyk + δ2
k‖Mkyk‖2 + 2(δkpTkMkyk − αk‖pk‖2)αkεk + ‖pk‖2α2

kε
2
k

= ‖sk‖2 − 2δksTkMkyk + δ2
k‖Mkyk‖2 + 2εkδksTkMkyk − 2εk‖sk‖2 + ε2

k‖sk‖2

= (1− εk)2‖sk‖2 − 2(1− εk)δksTkMkyk + δ2
k‖Mkyk‖2. (3.81)

78 3. Preconditioners based on quasi-Newton updates for NCG methods

Now, replacing 1− εk = θ in (3.81), we can introduce the function

ζ(θ) = C + 2Bεkαk +Aε2
kα

2
k = θ2‖sk‖2 − 2θδksTkMkyk + δ2

k‖Mkyk‖2, (3.82)

being after a simple computation ζ(θ) ≥ 0, for any θ ∈ R. Hence, φ′(γ(2)
k) ≥ 0 in

(3.80) and φ(γ(2)
k) in (3.76) is monotone non decreasing. Finally, by (3.69) γ(2)

k = 0
minimizes φ(γ(2)

k).

The latter proposition gives some guidelines for the choice of the parameter εk
in (3.68)-(3.70), indicating that small positive values for εk tend to reduce the value
of γ(2)

k and can possibly control ill-conditioning of the matrix in (3.55).

3.3.5.2 Numerical experience

Here we report the results of an extensive numerical experience, in order to validate
the analysis and the theoretical achievements of the previous sections. We implement
our proposal (3.55) and, analogously to preconditioner in Section 3.3.4, we embed
it in a standard implementation of NCG, namely the code CG+ by Gilbert and
Nocedal [51]. We select the Polak and Ribière method and, as regards the linesearch
procedure, for a fair comparison, we used the default one in CG+ code. As concerns
the parameters of the algorithm we use all the default values of CG+. According
with Proposition 3.3.16, for the parameters affecting our proposal in (3.55) we used
the settings

M1 = I, εk = 1
2 , δk = (1− εk)

sTk yk
yTkMkyk

,

γ
(2)
k = 1

2εkαk, γ
(1)
k = αk

(εkαk − γ
(2)
k)sTk yk

.

In order to limit the computational burden as long as the storage requirement
at iteration k, we preliminarily investigated the possibility to implement the pre-
conditioner in (3.55) neglecting the information at iterations older than iteration
(k−m)-th, playing m the role of a “memory” parameter. The latter choice resembles
the setting of the preconditioner proposed in Section 3.3.4. Not surprisingly, our
numerical experience highlighted that this simplification does not deteriorate the
performance. Indeed, this choice matches the rationale of the L-BFGS method and
a value of m = 4 seems to provide the best compromise.

Analogously to the numerical results in Section 3.3.4 the stopping criterion we
adopt is the standard one given by (see e.g. [78], [83], [93]), that is

‖gk‖ ≤ 10−5 max {1, ‖xk‖} .

As a test set for our numerical experience, we select all the large scale unconstrained
test problems in CUTEst collection [56]. We consider those test problems whose
dimension is in the range n = 1000 and n = 10000, and whenever a variable-
dimension problem is used, two different sizes are included. As in the previous
Section, this sums up to 112 resulting problems. The results are reported in terms of
number of iterations and number of function evaluations. As usual, when comparing

3.4 Conclusions 79

two algorithms we exclude all the test problems where the compared alternatives
do not converge to the same stationary point. In Figures 3.3-3.4 we report the
comparison between the two algorithms.

Figure 3.3. Comparison between our proposal in (3.55) (namely PREC-NEW, solid line)
and the proposal of preconditioner in Section 3.3.4 (namely PREC, dotted line), in terms
of number of iterations.

We can easily observe that our proposal definitely outperforms the one in
Section 3.3.4 (both in terms of iterations and function evaluations). This should
be due to the fact that the preconditioner in (3.55) seems to better exploit the
information collected in the history of the overall algorithm, imposing a modified
quasi-Newton equation. The profiles reveal an appreciable improvement of the
efficiency as long as the robustness.

3.4 Conclusions
In this chapter we have focused on how to improve NCG methods by using precon-
ditioning techniques. In particular we have proposed new preconditioners drawing
inspiration from quasi-Newton updates. In Sections 3.3.1-3.3.3 we have introduced
three classes of quasi-Newton updates. Their drawback is that these preconditioners
could be not positive definite. To overcome this drawback, in Section 3.3.4 we have
proposed new quasi-Newton updates to iteratively construct a preconditioner for
PNCG method such that:

• it is positive definite;

• it satisfies the secant equation at the current iteration.

The results obtained showed that the preconditioners we have proposed are definitely
much efficient and robust in optimization frameworks. However the search direction

80 3. Preconditioners based on quasi-Newton updates for NCG methods

Figure 3.4. Comparison between our proposal in (3.55) (namely PREC-NEW, solid line)
and the proposal of preconditioner in Section 3.3.4 (namely PREC, dotted line), in terms
of number of function evaluations.

we conpute does not seem yet well scaled. On this purpose, in Section 3.3.5 we have
introduced a new preconditioner such that:

• it is positive definite;

• it satisfies the modified secant equation at each iteration.

Numerical results showed an improvement of the preconditioner in Section 3.3.4 but
the search direction possibly needs a better scaling.

81

Chapter 4

Damped techniques for NCG
methods

In this chapter we propose the use of damped techniques within NCG methods.
Damped techniques were introduced by Powell and recently reproposed by Al-Baali
and, to the best of our knowledge, only applied in the framework of quasi-Newton
methods. We extend their use to NCG methods in large scale unconstrained
optimization, aiming at possibly improving the efficiency and the robustness of the
latter methods, especially when solving difficult problems. In this chapter we embed
damped techniques within PNCG method which makes use of preconditioners based
on quasi-Newton updates, proposed in Section 3.3.4. Most of the material of this
chapter is contained in [4], [5].

4.1 Introduction

In this chapter we aim at extending the use of damped techniques to both NCG and
PNCG methods. To this purpose, the following possibilities can be considered:

- Modified methods. In this case a damped technique is only used to modify the
scalar (usually denoted by βk) which characterizes the different NCG methods.
The search direction is therefore modified, hence the necessity to ensure the
global convergence of the resulting novel NCG method, the damped one.

- Preconditioned methods. They are obtained without modifying the original ex-
pression of the scalar βk. Here, the damped techniques are only used for
constructing a preconditioner based on quasi-Newton updates. In this case we
do not obtain a novel NCG algorithm or focus on a particular NCG method.
On the contrary, we have a new methodology for defining preconditioning
strategies, to be possibly used within any NCG method for improving its
performance.

- Modified preconditioned methods. In this case, a damped technique is used both
to modify the scalar βk and to construct a suitable preconditioner for NCG
schemes.

82 4. Damped techniques for NCG methods

We deal with all the three items above, even if the main focus is actually on the
second one. Indeed, we believe that, since damped techniques were conceived in
the framework of quasi-Newton methods, we expect to inherit their good features
when building a preconditioner based on quasi-Newton updates. To this aim, we
introduce two different damping strategies, which seem to be suited for our purposes.
In particular, we focus on Polak and Ribière (PR) method, proving that under
reasonable assumptions, the damped and preconditioned version of this method
(denoted by D-PR-PNCG) to some extent retains the convergence properties of the
(undamped and unpreconditioned) PR method.

We propose to combine damped techniques with preconditioning strategies,
aiming at making the resulting D-PR-PNCG method able to efficiently tackle also
difficult problems. To this aim, in order to perform extensive numerical results,
we consider the class of preconditioners based on quasi-Newton updates, which
has been introduced in Section 3.3.4. The rationale behind the idea of adopting
a damped strategy in defining preconditioners for NCG methods, relies on the
fact that an approximation of the (inverse of the) Hessian matrix by means of a
positive definite matrix is required. Therefore, modifying the quasi-Newton updates
used for building a preconditioner for NCG methods, in order to prevent the lack
of positive definiteness of the Hessian matrix, sounds meaningful. An extensive
numerical experience confirmed this fact, showing the possible fruitful use of the
damped techniques in constructing preconditioners for NCG, based on quasi-Newton
updates. For the sake of completeness, we also report results obtained by using the
modified methods, which do not seem to produce noticeable improvement in terms
of efficiency and robustness.

4.2 Novel damped strategies for NCG preconditioning

In this section we introduce two novel damped strategies, to be considered within
NCG methods, along with an adaptive criterion for deciding if it is worth to replace
the undamped vector with the damped one. In the sequel, whenever we consider
the preconditioned case, we refer to a positive definite preconditioner based on
quasi-Newton updates, which will be denoted by Pk(yk, sk), to evidence the current
pair (yk, sk) used for constructing the quasi-Newton update.

Drawing inspiration from the Al-Baali-Powell proposals briefly described in
Section 2.1.2.1, now we aim at defining modifications of the vector yk which should
lead to obtain more efficient and/or robust NCG methods. Once a damped vector
ŷk is defined, it can be used:

(i) in the definition of βk, replacing yk with ŷk (modified method);

(ii) in the definition of the preconditioner replacing Pk(yk, sk) with Pk(ŷk, sk).

In order to clearly evaluate the effect of the damped techniques, we study the cases
(i) and (ii) separately. Furthermore, we also investigate the joint modification of
both βk and Pk(yk, sk), by means of the damped vector ŷk (modified preconditioned
method). Note that in the unpreconditioned case, a damped strategy obviously may
affect the definition of βk only when yk explicitly appears in the formula of βk.

4.2 Novel damped strategies for NCG preconditioning 83

Broadly speaking, in extending the definition of the damped vector ŷk introduced
in (2.61), that is

ŷk = ϕkyk + (1− ϕk)Bksk,

our aim is to define a vector ŷk as a combination of the original vector yk and an
appropriate vector zk, namely

ŷk = ϕkyk + (1− ϕk)zk, (4.1)

such that sTk ŷk is sufficiently positive for suited values of ϕk ∈ (0, 1]. Of course, a key
point of this approach is an appropriate choice of zk, both in terms of certain gained
information and in terms of a good relative scaling of ŷk. Note that the choice (4.1)
is reduced to (2.61) if zk = Bksk, which cannot be computed explicitly in the NCG
context, being Bk unavailable. In the following, two proposals will be provided.

4.2.1 Our first proposal

In this proposal, we set zk = ηksk, where ηk is a positive scalar, based on approxi-
mating Bk by ηkI. It originates from the idea of using zk = Ak+1yk in (4.1), where
Ak+1 is a positive definitive approximation of the inverse Hessian, satisfying the
modified secant equation

Ak+1yk = ηksk.

Hence, by using the latter equation, we can define the damped formula

ŷ(1)
k = ϕkyk + (1− ϕk)ηksk, (4.2)

which does not require the explicit knowledge of the approximate inverse Ak+1 of
the Hessian matrix. Since (4.2) follows from (2.61) with Bksk replaced by ηksk, we
use the same replacement in (2.62) to obtain the following formula

ϕk =


σηk‖sk‖2

ηk‖sk‖2 − sTk yk
if sTk yk < (1− σ)ηk‖sk‖2

1, otherwise,

(4.3)

where ηk ≥ 1.
Then, in order to set ϕk 6= 1 only whenever sTk yk is sufficiently small, we modify

(4.3) as

ϕk =


σηk‖sk‖2

ηk‖sk‖2 − sTk yk
if sTk yk < (1− σ)‖sk‖2

1, otherwise.

(4.4)

Note that on some iterations, the former formula may modify yk, because the
condition in the former formula, i.e.

sTk yk < (1− σ)ηk‖sk‖2, (4.5)

can be satisfied for sufficiently large values of ηk. For certain choices of ηk, our
numerical experience (which we will describe in Section 4.3) was carried on adopting

84 4. Damped techniques for NCG methods

(4.4), which showed favourable results avoiding the dependence on the product
(1 − σ)ηk. Nevertheless, in our opinion, the numerical impact of (4.5) deserves
further investigations.

We now give an alternative motivation for choice (4.2) which, in practice, repre-
sents a combination of yk and sk with the scalar ηk. Moreover, we can derive the
novel adaptive criterion used in (4.4) starting from a geometric interpretation of the
curvature condition (2.15), that is,

sTk yk > 0.

As already mentioned, (see also [25]) if f is strongly convex, the curvature
condition (2.15) holds. Roughly speaking, f strongly convex means that its curvature
is positive and not too close to zero. Hence, motivated by the former idea of Powell
in [99], we intend to define a criterion based on the (local) strong convexity of the
function for deciding if a damped vector ŷk must be used in place of yk.

It is well known that if f is strongly convex on a convex set S ⊆ Rn, then there
exists θ > 0 such that

[∇f(y)−∇f(x)]T (y − x) ≥ θ‖y − x‖2, (4.6)

for all x and y belonging to S. For θ = 0, we recover the basic inequality characteriz-
ing the convexity, namely the curvature condition, provided by the Wolfe line search
procedure. For θ > 0, we obtain a strong lower bound in (4.6). Hence, given θ > 0,
if we adopt (4.6) as selection criterion, we actually obtain the one used in (4.4) with
θ = 1− σ. Therefore, the rationale behind this criterion is the following: whenever
sTk yk ≥ (1− σ)‖sk‖2 > 0 and hence the curvature is “sufficiently positive”, there is
no need to modify the vector yk; otherwise the damped vector ŷk is considered.

Now, we remark that we are interested in obtaining the vector ŷk such that
sTk ŷk is sufficiently positive, and that an improvement in the curvature condition is
obtained, namely

sTk ŷ
(1)
k ≥ s

T
k yk. (4.7)

Recalling that we are considering in (4.4) the case sTk yk < (1− σ)‖sk‖2, by substi-
tuting the value of ϕk in (4.2), by simple computation we obtain

sTk ŷ
(1)
k = (1− σ)ηk‖sk‖2. (4.8)

Therefore sTk ŷ
(1)
k is sufficiently positive for suited values of the parameters σ and

ηk. Moreover, we can guarantee that ŷ(1)
k satisfies (4.7) by setting ηk > 1 whenever

sTk yk > 0. On the other hand, if sTk yk is negative, (4.7) is trivially satisfied by the
choice ŷ(1)

k .

4.2.2 Our second proposal

In this proposal we set zk = −αkgk in (4.2) to obtain the damped vector

ŷ(2)
k = ϕkyk − (1− ϕk)αkgk (4.9)

4.3 Numerical experience 85

which arises from the following observation: if Bk � 0 is an approximation of the
Hessian and we consider as search direction −B−1

k gk, it immediately follows that
sk = xk+1 − xk = −αkB−1

k gk which implies

Bksk = −αkgk.

This allows us to consider the original damped vector (2.61), without computing
Bk explicitly, i.e. by replacing Bksk with −αkgk, as defined in (4.9). In this case
adapting the Powell’s rule in (2.62) (replacing Bksk with −αkgk), it follows that

ϕk =


σαks

T
k gk

αks
T
k gk + sTk yk

, if sTk yk < −(1− σ)αksTk gk,

1, otherwise.

(4.10)

Substituting the value of ϕk from the first case (i.e. ϕk 6= 1) into (4.9), we obtain

sTk ŷ
(2)
k = −αk(1− σ)sTk gk = −α2

k(1− σ)pTk gk > 0,

where the last inequality follows since pk is a descent direction at xk. Moreover, here
we also have that the final steplength computed by the line search procedure plays a
keynote role. Following guidelines adopted to obtain (4.4), formula (4.10) can be
changed to define

ϕk =


σηkαks

T
k gk

ηkαks
T
k gk + sTk yk

, if sTk yk < −(1− σ)αksTk gk,

1, otherwise,

(4.11)

where ηk ≥ 1. Furthermore, similar formulae with the three cases in (2.63) can be
also defined. Finally, observe that in our first proposal the conditions (4.4)-(4.8)
omit the dependency on any considerations regarding the global convergence of the
final damped techniques. In this regard, a further study on the latter issue (see also
[2], [3], [11]) seems to be necessary, which will be the object of future research.

4.3 Numerical experience

In this section we consider the use of the damped vectors defined in Sections 4.2.1-
4.2.2, for constructing a preconditioner based on quasi-Newton updates. Therefore,
according to the taxonomy in Section 4.1, here we consider unmodified PNCG
methods, where the use of damped techniques only affects the preconditioning
strategies and not the value of βk. Our aim is to perform a numerical assessment
when adopting damped techniques within a PNCG method. On the other hand, note
that as regards the convergence (and the order of convergence) of PNCG methods,
an interesting theoretical result has been proved in [6]. However, it considers the use
of an exact linesearch and a strong assumption on the preconditioner is required,
namely the preconditioner is assumed to be a “strongly consistent approximation” of

86 4. Damped techniques for NCG methods

the Hessian matrix at the solution. Therefore this result risks to be seldom applied
in practice.

The preconditioner we use is the approximate inverse preconditioner belonging
to the class proposed in Section 3.3.4. Since it is iteratively constructed, it is quite
simple to introduce an adaptive rule and to choose, at each iteration k, if it is
convenient to replace yk with a damped vector ŷk. If so, the resulting preconditioner
Pk(ŷk, sk) is then used in place of Pk(yk, sk).

We embedded the latter strategy in the implementation of the PNCG described
in Section 3.3.4. Note that this implementation is based on the standard CG+ code
(see [51]), where the preconditioner reported is included, and the linesearch technique
is the the default one in CG+ code.

In particular, we focused on the unmodified preconditioned Polak and Ribière
method and performed an extensive numerical testing by considering all the large
scale problems available in the CUTEst collection [56], namely 112 problems whose
dimension ranges from 1000 to 10000, analogously to the ones used previously in this
thesis. The stopping criterion is the standard one (see e.g. [83]) which is given by

‖gk‖ ≤ 10−5 max{1, ‖xk‖}.

In the sequel our numerical results are reported by using performance profiles
[42], both in terms of number of iterations and number of function and gradient
evaluations.

We started by considering our first proposal in Section 4.2.1, namely the use of
the damped vector ŷ(1)

k in (4.2) combined with the adaptive rule in (4.4). First of all,
we needed to tune the choice of the two parameters ηk in (4.2) and σ in (4.4). In
Figures 4.1-4.4 we report the results obtained for different choices of ηk ∈ {2, 3, 4, 5}
and by setting σ = 0.8. Conversely, in Figures 4.5-4.8 we report the results obtained
for different choices of σ ∈ {0.8, 0.6, 0.4, 0.2} and by setting ηk = 4. By observing
the profiles, the values ηk = 4 and σ = 0.8 seem to be the best ones, based on our
experiments on the above mentioned set of test problems. These latter have been
used in the sequel of this section as default values of ηk and σ.

Figures 4.9-4.12 report the results of the comparison between the unmodified
preconditioned PR method, whose preconditioner is damped according to the formula
(4.2), and the standard preconditioned PR method. These profiles clearly evidence
the fruitful use of the first damped strategy both in terms of efficiency and in terms
of robustness.

Then we turned to our second proposal in Section 4.2.2, namely the use of the
damped vector ŷ(2)

k in (4.9) combined with the original rule in (2.62) for choosing
ϕk (with Bksk replaced by −αkgk) with σ = 0.8. In the Figures 4.13-4.16 the
comparison between the unmodified preconditioned PR method, whose preconditioner
is damped according to formula (4.9), and the standard preconditioned PR method
is reported. Also in this case the adoption of the damped strategy for computing
the preconditioner is very useful.

Now, since the preconditioner in Section 3.3.5 outperforms the one in Section 3.3.4
(both in terms of iterations and function evaluations), in Figures 4.17-4.20 we report
the results of the comparison between the unmodified preconditioned PR method,
whose preconditioner is damped according to the formula (4.2) in the first proposal

4.3 Numerical experience 87

Figure 4.1. Comparison among different choices of ηk in (4.2), setting σ = 0.8 in (4.4).
Profile in terms of number of iterations.

Figure 4.2. Comparison among different choices of ηk in (4.2), setting σ = 0.8 in (4.4).
Detailed profile in terms of number of iterations.

88 4. Damped techniques for NCG methods

Figure 4.3. Comparison among different choices of ηk in (4.2), setting σ = 0.8 in (4.4).
Profile in terms of number of function evaluations.

Figure 4.4. Comparison among different choices of ηk in (4.2), setting σ = 0.8 in (4.4).
Detailed profile in terms of number of function evaluations.

4.3 Numerical experience 89

Figure 4.5. Comparison among different choices of σ in (4.4), setting ηk = 4 in (4.2).
Profile in terms of number of iterations.

Figure 4.6. Comparison among different choices of σ in (4.4), setting ηk = 4 in (4.2).
Detailed profile in terms of number of iterations.

90 4. Damped techniques for NCG methods

Figure 4.7. Comparison among different choices of σ in (4.4), setting ηk = 4 in (4.2).
Profile in terms of number of function evaluations.

Figure 4.8. Comparison among different choices of σ in (4.4), setting ηk = 4 in (4.2).
Detailed profile in terms of number of function evaluations.

4.3 Numerical experience 91

Figure 4.9. Comparison between unmodified preconditioned PR damped according to
(4.2) and the standard preconditioned PR (undamped). Profile in terms of number of
iterations.

Figure 4.10. Comparison between unmodified preconditioned PR damped according to
(4.2) and the standard preconditioned PR (undamped). Detailed profile in terms of
number of iterations.

92 4. Damped techniques for NCG methods

Figure 4.11. Comparison between unmodified preconditioned PR damped according to
(4.2) and the standard preconditioned PR (undamped). Profile in terms of number of
function evaluations.

Figure 4.12. Comparison between unmodified preconditioned PR damped according to
(4.2) and the standard preconditioned PR (undamped). Detailed profile in terms of
number of function evaluations.

4.3 Numerical experience 93

Figure 4.13. Comparison between unmodified preconditioned PR damped according to
(4.9) and the standard preconditioned PR (undamped). Profile in terms of number of
iterations.

Figure 4.14. Comparison between unmodified preconditioned PR damped according to
(4.9) and the standard preconditioned PR (undamped). Detailed profile in terms of
number of iterations.

94 4. Damped techniques for NCG methods

Figure 4.15. Comparison between unmodified preconditioned PR damped according to
(4.9) and the standard preconditioned PR (undamped). Profile in terms of number of
function evaluations.

Figure 4.16. Comparison between unmodified preconditioned PR damped according to
(4.9) and the standard preconditioned PR (undamped). Detailed profile in terms of
number of function evaluations.

4.3 Numerical experience 95

(see Section 4.2.1), and the preconditioned PR method (according to Section 3.3.5).
These profiles clearly evidence again the fruitful use of the first damped strategy
both in terms of efficiency and in terms of robustness.

Figure 4.17. Comparison between unmodified preconditioned PR damped according to
(4.2) and the preconditioned PR (undamped) according to Section 3.3.5. Profile in terms
of number of iterations.

Then we again turned to our second proposal (see Section 4.2.2), namely the
use of the damped vector ŷ(2)

k in (4.9) combined with the original rule in (2.62) for
choosing ϕk (with Bksk replaced by −αkgk) with σ = 0.8. In the Figures 4.21-
4.24 the comparison between the unmodified preconditioned PR method, whose
preconditioner is damped according to formula (4.9), and the preconditioned PR
method (according to Section 3.3.5). These profiles show that, both considering the
number of iterations and the number of function evaluations, the use of the second
damped strategy seems to be slightly worse in terms of efficiency but slightly better
in terms of robustness.

On this guideline, we compared the two damped strategies proposed in this
Chapter. The results of this comparison are reported in Figures 4.25-4.28. By
observing these profiles, the adoption of the first damped strategy (see Section 4.2.1)
seems to be slightly preferable.

In order to verify the effectiveness of our first proposal in Section 4.2.1, we
perform a comparison between our first damped strategy in (4.2) and the benchmark
algorithm given by the L-BFGS method (see [78], [93]). To this aim, we use the
L-BFGS code available at the J. Nocedal web page. Observe that, as reported in the
L-BFGS code, the linesearch procedure used therein slightly differs from the original
one in [84], as (quoting from the Fortran code) “Moré’s code has been modified so
that at least one new function value is computed during the line search (enforcing at
least one interpolation is not easy, since the code may override an interpolation)”. In
this comparison, we also adopt this modified linesearch procedure within our PNCG

96 4. Damped techniques for NCG methods

Figure 4.18. Comparison between unmodified preconditioned PR damped according to
(4.2) and the preconditioned PR (undamped) according to Section 3.3.5. Detailed profile
in terms of number of iterations.

Figure 4.19. Comparison between unmodified preconditioned PR damped according to
(4.2) and the preconditioned PR (undamped) according to Section 3.3.5. Profile in terms
of number of function evaluations.

4.3 Numerical experience 97

Figure 4.20. Comparison between unmodified preconditioned PR damped according to
(4.2) and the preconditioned PR (undamped) according to Section 3.3.5. Detailed profile
in terms of number of function evaluations.

Figure 4.21. Comparison between unmodified preconditioned PR damped according to
(4.9) and the preconditioned PR (undamped) according to Section 3.3.5. Profile in terms
of number of iterations.

98 4. Damped techniques for NCG methods

Figure 4.22. Comparison between unmodified preconditioned PR damped according to
(4.9) and the preconditioned PR (undamped) according to Section 3.3.5. Detailed profile
in terms of number of iterations.

Figure 4.23. Comparison between unmodified preconditioned PR damped according to
(4.9) and the preconditioned PR (undamped) according to Section 3.3.5. Profile in terms
of number of function evaluations.

4.3 Numerical experience 99

Figure 4.24. Comparison between unmodified preconditioned PR damped according to
(4.9) and the preconditioned PR (undamped) according to Section 3.3.5. Detailed profile
in terms of number of function evaluations.

Figure 4.25. Comparison between the adoption of the two damped strategies in (4.2) and
in (4.9). Profile in terms of number of iterations.

100 4. Damped techniques for NCG methods

Figure 4.26. Comparison between the adoption of the two damped strategies in (4.2) and
in (4.9). Detailed profile in terms of number of iterations.

Figure 4.27. Comparison between the adoption of the two damped strategies in (4.2) and
in (4.9). Profile in terms of number of function evaluations.

4.3 Numerical experience 101

Figure 4.28. Comparison between the adoption of the two damped strategies in (4.2) and
in (4.9). Detailed profile in terms of number of function evaluations.

code, for the sake of correctness.
The results of this comparison, also including the unpreconditioned NCG case,

are reported in Figures 4.29-4.30. The results w.r.t. number of iterations show that,
to some extent, our first damped strategy in (4.2) can be also competitive with
L-BFGS, in terms of efficiency. On the other hand, L-BFGS seems to confirm in
any case its robustness, with respect to both a standard (unpreconditioned) NCG
scheme and a preconditioned scheme including our damped strategy in (4.2). Finally,
on the overall, the results highlight that our first damped strategy in (4.2) provides
a good (say efficient) search direction, but still needs a better scaling. In order to
confirm this trend, we enclose in Table 4.1 the detailed results (number of iterations
(it) and number of function evaluations (nf)) for those problems where our proposal
compares favourably vs. L-BFGS, at least in terms of number of iterations.

Table 4.1 reveals that on several test problems, our approach requires a larger
amount of function evaluations w.r.t. L-BFGS, even in presence of a reduced number
of iterations. This is due to a couple of facts affecting the Moré-Thuente linesearch
procedure [84] used, i.e.:

• the linesearch procedure seems to be well tuned when search directions com-
puted by quasi-Newton methods are adopted, hence the efficiency of L-BFGS;

• observe that, in most of the iterations, the linesearch procedure provides a
unit steplength for L-BFGS, while the choice of the stepsize for PNCG is
distributed on a larger interval. In Figure 4.31 a typical behaviour of the latter
fact is reported (the plot refers to FMINSURF 1024 test problem). This is
also motivated by a different selection of the initial stepsize in the linesearch
procedure. In particular, a unit initial stepsize is used for L-BFGS, while the
Shanno-Phua’s formula (default choice for CG+) is adopted as the initial trial

102 4. Damped techniques for NCG methods

Figure 4.29. Comparison among L-BFGS (dotted line), our first damped strategy in (4.2)
(solid line) and the Unpreconditioned NCG method (dashed line). Profile in terms of
number of iterations.

Figure 4.30. Comparison among L-BFGS (dotted line), our first damped strategy in (4.2)
(solid line) and the Unpreconditioned NCG method (dashed line). Profile in terms of
number of function evaluations.

4.3 Numerical experience 103

Damped PNCG L-BFGS
PROBLEM n it nf it nf
ARWHEAD 1000 4 14 11 13
ARWHEAD 10000 4 13 11 14
BDQRTIC 1000 315 685 - -
BRYBND 10000 24 57 41 50
CRAGGLVY 1000 69 144 69 79
DIXMAANA 1500 8 24 11 13
DIXMAANA 3000 7 22 12 14
DIXMAANB 1500 7 24 11 13
DIXMAANB 3000 9 30 11 13
DIXMAANC 1500 7 26 12 14
DIXMAANC 3000 9 29 2 14
DIXMAAND 1500 8 27 5 17
DIXMAAND 3000 10 32 4 16
DIXMAANF 1500 90 163 181 190
DIXMAANF 3000 126 219 236 241
DIXMAANG 3000 119 214 226 236
DIXMAANH 3000 98 180 223 229
DQDRTIC 10000 12 28 13 21
EDENSCH 1000 23 64 25 29
EDENSCH 10000 20 63 25 31
FLETCBV3 1000 262 297 370 384
FMINSURF 1024 170 280 223 224
FMINSURF 5625 468 673 614 632
GENHUMPS 10000 974 2344 - -
LIARWHD 1000 12 32 20 25
MOREBV 1000 10 18 43 45
MOREBV 10000 2 4 6 8
MSQRTBLS 1024 1499 2649 1811 1874
PENALTY1 10000 18 83 70 84
SCHMVETT 1000 33 66 39 45
SCHMVETT 10000 29 64 34 41
SINQUAD 1000 21 61 26 38
SPARSINE 1000 2592 4583 6029 6307
SPARSQUR 1000 21 64 27 28
SPARSQUR 10000 27 84 34 39
TESTQUAD 1000 2680 4774 4081 4222
TOINTGSS 1000 3 17 14 20
TOINTGSS 10000 4 22 16 23
TQUARTIC 1000 10 32 21 27
VAREIGVL 1000 44 90 171 179
WOODS 1000 26 63 95 125

Table 4.1. Detailed results for those problems where our first damped strategy in (4.2)
compares favourably vs. L-BFGS.

104 4. Damped techniques for NCG methods

step for our first damped strategy in (4.2).

Figure 4.31. The complete sequences of steplengths generated by the linesearch procedure,
when coupled to L-BFGS (filled circles) and to our first damped strategy in (4.2) (empty
squares).

On the base of the above considerations, it might be the case to investigate
modifications to the linesearch procedure, to be paired with our proposal (see for
instance [68]). As regards L-CG_DESCENT, the most recent version available
in the W. Hager’s web page is the L-CG_DESCENT 6.8 code. It is written in C,
uses an hybrid version of βk coefficient and a different linesearch expressly designed
by the authors (see [65]), more efficient and accurate than the Moré-Thuente one.
At present, this possibly makes unfair any comparison between our codes and L-
CG_DESCENT. Anyway, embedding our preconditioner in L-CG_DESCENT 6.8
would be an interesting further numerical experiment.

It is also worth to highlight that from the detailed complete numerical results we
obtained (not all reported in this thesis), as expected the damped strategy occurs in
few cases. In particular, when it takes place it enhances either the robustness or
the efficiency of the algorithm. In other words, in the case of test problems without
“pathologies”, correctly the damped strategy is not invoked by the adaptive rule.

On the overall, the results of the numerical experiences reported indicate that
the use of a damped strategy can definitely improve the performance of the PR
algorithm, at least on the CUTEst problems considered.

4.4 Conclusions 105

4.4 Conclusions
In this chapter we proposed the introduction of damped techniques within the
framework of the NCG methods. We drew our inspiration from the damped quasi-
Newton methods proposed by Al-Baali and Powell. In particular, by referring to
the PR method, we investigated the use of a damped vector in the unmodified
preconditioned NCG method. On this purpose, we used the damped strategy for
constructing a preconditioner based on quasi-Newton updates to be used in the
PNCG method. The results obtained clearly highlighted the potentialities of this
approach.

Of course several other aspects of interest on damped PNCG were not treated in
this study. They range from (but are not limited to) the use of damped techniques
to possibility enhance some global convergence properties of the NCG methods, to
their more sophisticated use in the construction of a preconditioner (for instance,
by introducing a dependence on the iteration k of the parameter σ = σk and a
dependence of σk and ηk on ‖gk‖ or the number of iterations). Considering self-
scaling quasi-Newton methods, it might be also useful to consider the choice of

η̄k = sTkBksk
sTk yk

= −αks
T
k gk

sTk yk
and to use ηk = max(η̄k, 2) in the numerical experiences.

Moreover, the combined use of damped strategies with other linesearch procedures
(different from the standard Wolfe method) is surely of great interest, too. Finally,
adopting the test (4.5) in place of the one in (4.4) can be a possible alternative to
explore, in order to improve performance.

107

Chapter 5

Global convergence for
Preconditioned Polak-Ribière
method

In this chapter we investigate how the use of preconditioning techniques does not
prejudice the global convergence of a particular NCG scheme. In Section 5.1 we
consider a theoretical analysis, where preconditioning is embedded in a strong
convergence framework of an NCG method from the literature. Mild conditions to
be satisfied by the preconditioners are defined, in order to preserve NCG convergence.
In Section 5.2 we study the global convergence of one modified preconditioned method,
the damped Polak-Ribière method (D-PR-PNCG) (see Chapter 4).

On this guideline, we are going to report some theoretical results. Most of the
material of this chapter is contained in [4], [5], [33].

5.1 Global convergence for an effective PNCG method

Several preconditioned NCG schemes were proposed in the literature, with a strong
focus on efficiency (see e.g. [101]). The latter schemes also include algorithms
where the Nonlinear Conjugate Gradient method is often integrated with an ad
hoc preconditioner, and is coupled with a linesearch procedure to compute the
steplength αk. An example of recent methods where this approach was used is given
by CG-DESCENT and L-CG-DESCENT algorithms [65, 66, 68], which include a
proper linesearch procedure, along with a formula for the parameter βk specifically
defined, to ensure both global convergence and efficiency of the overall algorithm.

In this section we aim at using a globally convergent NCG scheme from the
literature, endowed with strong convergence properties, and studying how embedding
a positive definite preconditioner in order to preserve the global convergence. This
approach on one hand provides an overall preconditioned NCG scheme with strong
convergence properties; on the other hand, it gives general clear guidelines to build
fruitful preconditioners.

On this purpose, we selected the NCG scheme in [62], since the authors prove
rather strong and appealing convergence results for it (further results can also be
found in [2] and [6]). We remark that the proposal in [62] (here addressed as PR-

108 5. Global convergence for Preconditioned Polak-Ribière method

NCG since Polak and Ribière method is considered) also adopts a simple linesearch
procedure (which devises results from the literature of derivative-free optimization
methods), whose implementation is, to some extent, simpler than the use of standard
Wolfe conditions. Then, in this section we show how introducing a very general
preconditioner in PR-NCG, still maintaining its global convergence.

In order to prove our theoretical results, we need the following (standard)
assumption.

Assumption 5.1.1 (see also [62]).

a) Given the vector x1 ∈ Rn and the function f ∈ C1(Rn), the level set L1 =
{x ∈ Rn : f(x) ≤ f1} is compact.

b) There exists an open ball Br := {x ∈ Rn : ‖x‖ < r} containing L1 where f(x)
is continuously differentiable and its gradient g(x) is Lipschitz continuous. In
particular, there exists L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖ for all x, y ∈ Br. (5.1)

c) There exist δ1 > 0, δ2 > 0 such that the preconditioner M(x), for any x ∈ Br,
is positive definite with eigenvalues satisfying

0 < δ1 < λm[M(x)] ≤ λM [M(x)] < δ2.

Note that by Assumption 5.1.1 there exists a value Ω (say Ω ≥ 1) such that

‖g(x)‖ ≤ Ω, for all x ∈ L1. (5.2)

Moreover, due to technical reasons we assume that the radius r of Br is large enough
to satisfy relation

r > sup
x∈L1

‖x‖+ ρ2
σ

Ω, (5.3)

where σ ∈ (0, 1) and ρ2 > 0 (being the latter parameters used in the next Algorithm
PR-NCG_M).

Now we report the algorithm PR-NCG_M, which represents our preconditioned
version of the algorithm PR-NCG in [62]. Then, we are going to prove that, under
Assumption 5.1.1, PR-NCG_M maintains the same global convergence properties of
PR-NCG. For the sake of simplicity we indicate M(xk) with Mk, being xk ∈ Br.

5.1 Global convergence for an effective PNCG method 109

PR-NCG_M algorithm

Data: Choose ρ2 > ρ1 > 0, γ > 0, σ ∈ (0, 1). Set k = 1, x1 ∈ Rn.
For any k ≥ 1 choose Mk such that 0 < δ1 < λm(Mk) ≤ λM (Mk) < δ2.

Step 0 : Set p1 = −M1g1.

Step 1 : If gk = 0 STOP.

Step 2 : Set τk = |g
T
k pk|
‖pk‖2

and choose ∆k ∈ [ρ1τk, ρ2τk].

Step 3 : Compute αk = max
{
σj∆k, j = 0, 1, . . .

}
such that the vectors

xk+1 = xk + αkpk and pk+1 = −Mk+1gk+1 + βk+1pk,

with βk+1 = (gk+1 − gk)TMk+1gk+1
gTkMkgk

, satisfy the conditions:

(C1) fk+1 ≤ fk − γα2
k‖pk‖2

(C2) −δ2‖gk+1‖2 ≤ gTk+1pk+1 ≤ −δ1‖gk+1‖2.
Set k = k + 1 and go to Step 1.

Remark 5.1.2. Observe that here the parameters δ1 and δ2 do not have to satisfy
the condition δ1 < 1 < δ2 as in [62]. This additional generality of our proposal relies
on the freedom to choose the preconditioner. In this regard, since δ1 and δ2 are no
more related to the unit value, no significant bound on the condition number of the
preconditioner is imposed (see (c) of Assumption 5.1.1).

Now, we prove first that conditions (C1) and (C2) and the entire Step 3 of
PR-NCG_M are well defined.

Proposition 5.1.3. Suppose that gk 6= 0 and ‖pk‖ < +∞ for all k. Let Assump-
tion 5.1.1 hold. Then, for every k ≥ 1 there exists a finite index jk such that
αk = σjk∆k satisfies conditions (C1) and (C2) at Step 3.

Proof. First observe that as gT1 p1 < 0, using (C2) we have by induction that
gTk pk < 0 for all k. Now, by assuming gTk pk < 0, we prove that the number
αk = ∆kσ

j satisfies conditions (C1) and (C2) for all sufficiently large j.
By contradiction, assume first that there exists an infinite set J of the index j

such that condition (C1) is violated, i.e. for every j ∈ J we have:

f(y(j))− fk
σj∆k

> −γσj∆k‖pk‖2,

where y(j) := xk + σj∆kpk. Then, taking the limit for j ∈ J, j −→ +∞, we
have gTk pk ≥ 0 which contradicts the assumption gTk pk < 0. Suppose now that by

110 5. Global convergence for Preconditioned Polak-Ribière method

contradiction there exists an infinite set, say it again J, such that for j ∈ J condition
(C2) is violated. This implies that by the boundedness of ‖pk‖, for all j ∈ J at least
one of the following conditions holds (the subscript in Mj denotes the fact that the
preconditioner possibly depends on the point y(j)):

g(y(j))T
(
−Mjg(y(j)) + (g(y(j))− gk)TMjg(y(j))

gTkMkgk
pk

)
> −δ1‖g(y(j))‖2,

g(y(j))T
(
−Mjg(y(j)) + (g(y(j))− gk)TMjg(y(j))

gTkMkgk
pk

)
< −δ2‖g(y(j))‖2.

Then, taking limits for j ∈ J, j −→ +∞, we obtain that at least one of the two
inequalities −gTkMkgk ≥ −δ1‖gk‖2 and −gTkMkgk ≤ −δ2‖gk‖2 must be valid. But in
both cases we get a contradiction to the assumptions gk 6= 0 and 0 < δ1 < λm(Mk) ≤
λM (Mk) < δ2.

Therefore, under the assumption gTk pk < 0, we can conclude that Step 3 is well
defined, by taking jk as the largest index for which both conditions (C1) and (C2)
are satisfied, and setting the parameters as αk = σjk∆k.

The main properties of the sequence of iterates produced by Algorithm PR-
NCG_M, which are at the basis of our convergence result, are stated in the next
proposition.

Proposition 5.1.4. Let Assumption 5.1.1 hold. Suppose that gk 6= 0 and ‖pk‖ <∞
for all k ≥ 1. Then we have:

(i) xk ∈ L1 for all k ≥ 1;

(ii) the sequence {fk} has a limit;

(iii) lim
k→+∞

αk‖pk‖ = 0;

(iv) αk‖pk‖2 ≤ ρ2δ2Ω2, for all k ≥ 1;

(v) for every k there exists a positive number θ such that αk ≥ θ
|gTk pk|
‖pk‖2

.

Proof. Condition (C1) at Step 3 implies

fk − fk+1 ≥ γα2
k‖pk‖2. (5.4)

From (5.4) we have xk ∈ L1 for all k, which establishes (i); then (ii) follows from
(5.4) and the compactness of L1. Recalling the expression of αk and taking limits in
(5.4) for j −→ +∞, then (ii) yields (iii). Now, the instructions at Step 2 and Step
3 imply

αk‖pk‖2 ≤ ∆k‖pk‖2 ≤ ρ2|gTk pk| ≤ ρ2δ2‖gk‖2 ≤ ρ2δ2Ω2,

5.1 Global convergence for an effective PNCG method 111

so that we get (iv). In order to establish (v) we distinguish the two cases: αk = ∆k

and αk < ∆k, where ∆k is the scalar defined at Step 2. In the first case, we have
obviously

αk ≥ ρ1
|gTk pk|
‖pk‖2

. (5.5)

Now suppose that αk < ∆k, so that αk
σ violates at least one of the conditions at

Step 3. Recalling (5.3) we have that the point

wk := xk + αk
σ
pk

belongs to the ball Br introduced in Assumption 5.1.1, being∥∥∥∥αkσ pk
∥∥∥∥ ≤ ρ2

|gTk pk|
‖pk‖2

‖pk‖
σ
≤ ρ2

σ
Ω.

If (C1) is violated we can write, using the Mean Value Theorem:

fk + αk
σ
gTk pk + αk

σ

(
g(zk)T pk − gTk pk

)
> fk − γ

(
αk
σ

)2
‖pk‖2, (5.6)

where zk := xk + ηk
αk
σ pk ∈ Br with ηk ∈ (0, 1). Recalling (5.1) and by the Cauchy-

Schwarz inequality, we get

g(zk)T pk − gTk pk ≤ |g(zk)T pk − gTk pk| ≤ ‖g(zk)− gk‖‖pk‖
≤ L‖zk − xk‖‖pk‖ ≤ L

αk
σ
‖pk‖2. (5.7)

Using (5.7) in (5.6) we get

αk
σ
gTk pk +

(
αk
σ

)2
L‖pk‖2 ≥ −γ

(
αk
σ

)2
‖pk‖2,

whence we obtain
αk ≥

σ

L+ γ

|gTk pk|
‖pk‖2

, (5.8)

which proves (v). Now assume that αk
σ violates (C2). Suppose first that the

rightmost inequality does not hold, i.e.

g(wk)T
(
−Mjg(wk) + (g(wk)− gk)TMjg(wk)

gTkMkgk
pk

)
> −δ1‖g(wk)‖2. (5.9)

Recalling (5.1) and by the Cauchy-Schwarz inequality we have

(g(wk)− gk)TMjg(wk) ≤ |(g(wk)− gk)TMjg(wk)| ≤ ‖g(wk)− gk‖‖Mjg(wk)‖
≤ L‖wk − xk‖‖Mjg(wk)‖

≤ L
αk
σ
λM (Mj)‖g(wk)‖‖pk‖. (5.10)

Furthermore we get

g(wk)TMjg(wk) ≥ λm(Mj)‖g(wk)‖2; (5.11)

112 5. Global convergence for Preconditioned Polak-Ribière method

thus, using (5.10) and (5.11) in (5.9) we obtain:

L
αk
σ
λM (Mj)‖g(wk)‖‖pk‖g(wk)T pk > (λm(Mj)− δ1)‖g(wk)‖2gTkMkgk. (5.12)

Again, by the Cauchy-Schwarz inequality we have

‖g(wk)‖‖pk‖g(wk)T pk ≤ ‖g(wk)‖2‖pk‖2 (5.13)

along with
gTkMkgk ≥ λm(Mk)‖gk‖2. (5.14)

Finally, using (5.13) and (5.14) in (5.12) we obtain

L
αk
σ
λM (Mj)‖g(wk)‖2‖pk‖2 > (λm(Mj)− δ1)‖g(wk)‖2λm(Mk)‖gk‖2. (5.15)

Taking the limits for j −→ +∞ and taking into account that the rightmost inequality
(C2) holds at Step k, we get

αk ≥ σ(λm(Mk)− δ1)
LλM (Mk)

λm(Mk)
‖gk‖2

‖pk‖2
≥ σ(λm(Mk)− δ1)

Lδ2
λm(Mk)

‖gk‖2

‖pk‖2

≥ σ(λm(Mk)− δ1)
δ2

2L
λm(Mk)

|gTk pk|
‖pk‖2

, (5.16)

implying (v). Now suppose that (C2) is violated because the leftmost inequality is
not fulfilled, i.e.

g(wk)T
(
−Mjg(wk) + (g(wk)− gk)TMjg(wk)

gTkMkgk
pk

)
< −δ2‖g(wk)‖2. (5.17)

Using a similar reasoning we obtain

αk ≥ σ(δ2 − λM (Mk))
LλM (Mk)

λm(Mk)
‖gk‖2

‖pk‖2
≥ σ(δ2 − λM (Mk))

Lδ2
λm(Mk)

‖gk‖2

‖pk‖2

≥ σ(δ2 − λM (Mk))
δ2

2L
λm(Mk)

|gTk pk|
‖pk‖2

. (5.18)

Thus, from (5.5), (5.8), (5.16) and (5.18) we obtain (v) by taking

θ = min
{
ρ1,

σ

L+ γ
,
σ(λm(Mk)− δ1)

δ2
2L

λm(Mk),
σ(δ2 − λM (Mk))

δ2
2L

λm(Mk)
}
.

Finally, in order to establish the main global convergence properties of Algorithm
PR-NCG_M we can state the following theorem.

Theorem 5.1.5. Let {xk} be the sequence of points generated by Algorithm PR-
NCG_M. Then, either there exists an index ν ≥ 1 such that g(xν) = 0 and the
algorithm terminates, or {xk} is an infinite sequence such that:

5.1 Global convergence for an effective PNCG method 113

(i) lim
k→+∞

‖g(xk)‖ = 0;

(ii) every limit point of {xk} is a stationary point of f .

Proof. Suppose that Algorithm PR-NCG_M does not terminate in a finite number
of iterations and that (i) is false. Then, there exists a subsequence {xk}k∈K ⊆ {xk}
and ε > 0 such that

‖gk−1‖ ≥ ε, for all k ∈ K, (5.19)

and by (iii) of Proposition 5.1.4

lim
k→+∞, k∈K

‖xk − xk−1‖ = 0.

Now, by the instructions of Algorithm PR-NCG_M, using (5.1), (5.2), (5.19) and
(iv) of Proposition 5.1.4 we can write for k ∈ K:

‖pk‖ ≤ ‖Mkgk‖+
(‖gk − gk−1‖‖Mkgk‖
‖gk−1‖‖Mk−1gk−1‖

‖pk−1‖
)

≤ λM (Mk)Ω +
(
L‖xk − xk−1‖λM (Mk)Ω

ε2λm(Mk−1) ‖pk−1‖
)

= λM (Mk)Ω +
(
L‖αk−1pk−1‖λM (Mk)Ω

ε2λm(Mk−1) ‖pk−1‖
)

= λM (Mk)Ω +
(
λM (Mk)ΩLαk−1‖pk−1‖2

ε2λm(Mk−1)

)

≤ λM (Mk)Ω +
(
λM (Mk)
λm(Mk−1)

)(Ω3Lρ2δ2
ε2

)
. (5.20)

Therefore, using (iii) of Proposition 5.1.4 we get

lim
k→+∞, k∈K

αk‖pk‖2 = 0,

and hence by (v) of Proposition 5.1.4 it follows

lim
k→+∞, k∈K

|gTk pk| = 0.

The latter condition implies, by (C2) of Step 3 in algorithm PR-NCG_M

lim
k→+∞, k∈K

‖gk‖ = 0,

so that (iii) of Proposition 5.1.4 and the Lipschitz continuity of g contradict (5.19).
Thus, (i) holds and (ii) follows from the continuity of f(x).

This theorem shows that for the preconditioned version PR-NCG_M the same
global convergence properties of PR-NCG still hold.

114 5. Global convergence for Preconditioned Polak-Ribière method

5.2 Convergence properties for preconditioned damped
Polak-Ribière (D-PR-PNCG) method

As already recalled, in paper [3] the author extends global convergence properties of
the Broyden family of quasi-Newton methods to the damped version of such methods.
In a similar fashion, we aim at proving that some global convergence properties
of NCG methods still hold in the general case corresponding to the damped and
preconditioned version (modified PNCG method). Obviously, results for undamped
and/or unmodified methods are straightforwardly obtained as particular cases.

As first step of the convergence analysis, in this section our preliminary focus is
on the Polak-Ribière (PR) version of the NCG. In particular, we limit our analysis
to consider only the first proposal in (4.2), namely

ŷ(1)
k = ϕkyk + (1− ϕk)ηksk,

Note that in this regard, developing convergence properties with the choice ŷ(2)
k needs

additional analysis, which is not part of this thesis.
Using the damped vector ŷ(1)

k we therefore consider the damped preconditioned
PR method (namely D-PR-PNCG method):

β̂PR
k+1 = (ŷ(1)

k)TMk+1gk+1

g
T

kMkgk
. (5.21)

The resulting D-PR-PNCG method actually is a novel modified NCG method. Hence
the necessity of ensuring its global convergence properties. To this aim, in this section,
using Assumption 5.1.1, we prove that, to some extent, the D-PR-PNCG method
enjoys the same properties as the standard (undamped and unpreconditioned) PR
method (see e.g. [63]). In order to prove our final results, we firstly report a technical
result (see [63] and [98]).

Lemma 5.2.1. Let {ξk} be a sequence of nonnegative real numbers. Let Ω > 0 and
q ∈ (0, 1) and suppose that there exists k1 ≥ 1 such that

ξk ≤ Ω + qξk−1, for any k ≥ k1.

Then,
ξk ≤

Ω
1− q +

(
ξk1 −

Ω
1− q

)
qk−k1 , for any k ≥ k1.

Proof. Starting from relation

ξk ≤ Γ + qξk−1, for any k ≥ k1,

considering k − k1 iterations we have

ξk ≤ Γ

k−k1−1∑
i=0

qi

+ qk−k1ξk1 ,

and since
k−k1−1∑
i=0

qi =
+∞∑
i=0

qi −
+∞∑

i=k−k1

qi

5.2 Convergence properties for preconditioned damped Polak-Ribière
(D-PR-PNCG) method 115

we get

ξk ≤ Γ

+∞∑
i=0

qi −
+∞∑

i=k−k1

qi

+ qk−k1ξk1 .

Recalling that
+∞∑
i=0

qi = 1
1− q

and
+∞∑

i=k−k1

qi = qk−k1
+∞∑
i=0

qi = qk−k1

(1
1− q

)
,

we finally obtain

ξk ≤ Γ
(1

1− q − q
k−k1

(1
1− q

))
+ qk−k1ξk1 = Γ

1− q +
(
ξk1 −

Γ
1− q

)
qk−k1 .

Now, we can introduce the following result.

Theorem 5.2.2. Let {xk} be an infinite sequence (with gk 6= 0) generated by the
D-PR-PNCG method, where the steplength αk > 0 is determined by a linesearch
procedure such that, for all k, the following conditions hold:

(i) xk ∈ L1 for all k;

(ii) lim
k→+∞

|gTk pk|
‖pk‖

= 0;

(iii) lim
k→+∞

αk‖pk‖ = 0.

If Assumption 5.1.1 holds, then

lim inf
k→+∞

‖gk‖ = 0

and hence there exists at least a stationary limit point of {xk}.

Proof. First observe that by the Lipschitz continuity of g(x) and the compactness
of L1, there exists a number Γ > 0 such that

‖g(x)‖ ≤ Γ, for all x ∈ L1. (5.22)

Moreover, from (i) and the compactness of L1, the sequence {xk} admits limit points
in L1. Now, by contradiction, assume that there exist ε > 0 and k̄ such that

‖gk‖ ≥ ε, for all k > k̄. (5.23)

116 5. Global convergence for Preconditioned Polak-Ribière method

By using (5.21)-(5.23) and (i), and recalling that we are considering D-PR-PNCG,
we get for any k ≥ k̄,

‖pk+1‖ = ‖ −Mk+1gk+1 + β̂PR
k+1pk‖

=
∥∥∥∥∥−Mk+1gk+1 + [ϕkyk + (1− ϕk)ηksk]TMk+1gk+1

g
T

kMkgk
pk

∥∥∥∥∥
≤ ‖Mk+1gk+1‖+ ‖ϕkyk + (1− ϕk)ηksk‖‖Mk+1gk+1‖

‖gk‖‖Mkgk‖
‖pk‖

≤ ΓλM (Mk+1) + ΓλM (Mk+1)‖ϕkyk + (1− ϕk)ηksk‖
ε2λm(Mk)

‖pk‖. (5.24)

From (5.24), recalling the Lipschitz continuity of g(x) on L1, we have

‖ϕkyk + (1− ϕk)ηksk‖ = ‖ϕk(gk+1 − gk) + (1− ϕk)ηk(xk+1 − xk)‖
≤ ϕkL‖xk+1 − xk‖+ (1− ϕk)ηk‖xk+1 − xk‖
= ‖αkpk‖(ϕkL+ (1− ϕk)ηk). (5.25)

Hence, by using (5.24) we obtain

‖pk+1‖ ≤ ΓλM (Mk+1) + ΓλM (Mk+1)
(
ϕkL+ (1− ϕk)ηk

ε2λm(Mk)

)
‖αkpk‖‖pk‖. (5.26)

Now, by (iii), given q ∈ (0, 1), we can assume there exists k1 sufficiently large such
that

ΓλM (Mk+1)
(
ϕkL+ (1− ϕk)ηk

ε2λm(Mk)

)
‖αkpk‖ ≤ q < 1, for any k ≥ k1 > k̄. (5.27)

Thus, by (5.26)-(5.27) we get

‖pk+1‖ ≤ ΓλM (Mk+1) + q‖pk‖, for any k ≥ k1,

and by Lemma 5.2.1

‖pk+1‖ ≤
ΓλM (Mk+1)

1− q +
(
‖pk1‖ −

ΓλM (Mk+1)
1− q

)
q(k+1)−k1 , ∀k ≥ k1, (5.28)

showing that ‖pk+1‖ is bounded as ‖pk1‖ is bounded. As a consequence, again from
(iii) we have

lim
k→+∞

αk‖pk‖2 = 0. (5.29)

Furthermore, the boundedness of ‖pk‖ and (ii) yield

lim
k→+∞

|gTk pk| = 0. (5.30)

5.2 Convergence properties for preconditioned damped Polak-Ribière
(D-PR-PNCG) method 117

Since Mk+1gk+1 = β̂PR
k+1pk − pk+1, by (5.26) it results

gTk+1Mk+1gk+1 = gTk+1β̂
PR
k+1pk − gTk+1pk+1 (5.31)

≤ ‖gk+1‖‖β̂PR
k+1pk‖+ |gTk+1pk+1|

≤ αkΓλM (Mk+1)‖gk+1‖‖pk‖(ϕkL+ (1− ϕk)ηk)‖pk‖
‖gk‖‖Mkgk‖

+ |gTk+1pk+1|

≤ αkΓλM (Mk+1)‖gk+1‖‖pk‖2(ϕkL+ (1− ϕk)ηk)
ε2λm(Mk)

+ |gTk+1pk+1|.

By (5.29), (5.30) and the compactness of L1, taking limits in (5.31) as k → +∞, we
obtain

lim
k→+∞

gTk+1Mk+1gk+1 = 0.

Finally, by (c) of Assumption 5.1.1

lim
k→+∞

‖gk‖ = 0

and this contradicts assumption (5.23).

5.2.1 Numerical experience

On the overall, the results of the numerical experiences reported in Chapter 4 indicate
that the use of a damped strategy can definitely improve the performance of the PR
algorithm, at least on the CUTEst problems considered.

So far, the damped strategy was experimented in constructing our quasi-Newton
based preconditioner, which is our main focus. Now, for the sake of completeness,
since the theoretical part in Section 5.2 encompasses the possibility to embed the
damped strategy both in the definition of the scalar βk and in the preconditioner, we
urge to perform numerical testing also on the use of β̂PRk in (5.21). In this regard,
note that the use of damped strategy was conceived in the context of quasi-Newton
updates, and it is not expected to be successfully exploited in the definition of the
scalar βk used in a NCG/PNCG method. In the sequel we report results obtained by
using the damped vector β̂PRk confirming this claim. In particular, we first consider
the unpreconditioned case and compare the behaviour of the unmodified NCG
method with the method which adopts β̂PRk , setting ŷk = ŷ

(1)
k with the default values

of σ = 0.8 and ηk = 4. Then, we perform the same comparing in the preconditioned
case on the usual selection of test problems from CUTEst collection. Figures 5.1-5.4
report the performance profiles in terms of number of iterations and number of
function evaluations corresponding to these comparisons.

As it can be observed from these profiles, the use of the β̂PRk does not yield
a noteworthy improvement neither in terms of iterations or function evaluations.
Nevertheless we also observe that the D-PR-PNCG scheme which also uses β̂PRk
reveals to outperform the standard NCG method. Thus, on the overall, the adoption
of the damped strategy within PNCG methods seems to be definitely promising.

118 5. Global convergence for Preconditioned Polak-Ribière method

Figure 5.1. Comparison between the use β̂P R
k in (5.21) (setting ŷk = ŷ

(1)
k) and βP R

k in
(2.12), in both preconditioned and unpreconditioned cases. Profile in terms of number
of iterations.

Figure 5.2. Comparison between the use β̂P R
k in (5.21) (setting ŷk = ŷ

(1)
k) and βP R

k in
(2.12), in both preconditioned and unpreconditioned cases. Detailed profile in terms of
number of iterations.

5.2 Convergence properties for preconditioned damped Polak-Ribière
(D-PR-PNCG) method 119

Figure 5.3. Comparison between the use β̂P R
k in (5.21) (setting ŷk = ŷ

(1)
k) and βP R

k in
(2.12), in both preconditioned and unpreconditioned cases. Profile in terms of number
of function evaluations.

Figure 5.4. Comparison between the use β̂P R
k in (5.21) (setting ŷk = ŷ

(1)
k) and βP R

k in
(2.12), in both preconditioned and unpreconditioned cases. Detailed profile in terms of
number of function evaluations.

120 5. Global convergence for Preconditioned Polak-Ribière method

5.3 Conclusions
In this chapter we have proposed some conditions in order to preserve the global
convergence of a particular NCG schemes, using preconditioning techniques.

121

Chapter 6

An adaptive truncation criterion
for Newton-Krylov methods

In this chapter we focus on Newton-Krylov methods for large scale unconstrained
optimization problems. In order to increase the efficiency of these methods, the
proper choice of a suitable truncation criterion for the inner iterations, along with the
necessity to handle the indefinite case and the choice of an effective preconditioning
strategy, are three “open questions”, listed in the early survey paper [94]. In
subsequent years, even if the research activity on these topics was greatly developed,
actually no definitive answer has been yet provided.

On this guidelines we focus on the possibility to “enrich” the residual-based
criterion (2.75) by conveying, also in this case, information gained from the behaviour
of the quadratic model. To this aim, we propose an adaptive rule for deciding the
maximum number of inner iterations allowed at each outer iteration. The latter
rule combined with the criterion (2.75) should enhance the overall efficiency of a
truncated Newton method, by possibly avoiding the over-solving phenomenon. A
numerical experience on unconstrained optimization problems highlights a satis-
factory effectiveness and robustness of the adaptive criterion proposed, when a
residual-based truncation criterion is selected. Most of the material of this chapter
is contained in [29], [30].

6.1 Introduction
Let f : Rn −→ R be a twice continuously differentiable function. In the following,
we denote by Hk = ∇2f(xk) the Hessian matrix of the function f at the point xk.

In this chapter, starting from the paper by Nash and Sofer in [90], we propose a
simple adaptive truncation criterion for the inner iterations within a linesearch-based
Newton-Krylov method (see the scheme in Section 2.1.3.1), and analyze its effective-
ness in both the unpreconditioned and the preconditioned case (preconditioner in
[48] will be considered). Our aim is to define an additional rule which enables to
avoid “over-solving” of the Newton equation (2.74), that is

Hkpk = −gk,

in some circumstances. The latter phenomenon occurs whenever unnecessary inner

122 6. An adaptive truncation criterion for Newton-Krylov methods

iterations are performed, so that indulging in solving the Newton equation does not
produce a better search direction. This possibly yields a reduction of the overall
inner iterations, for both convex and nonconvex problems. Our proposal is partially
inspired by trust region approach (see e.g. [36]), and is based on a comparison
between the reduction of the objective function predicted by the quadratic model,
and the actual reduction obtained. In particular, we consider a linesearch-based
Newton-Krylov method where the inner iterations are performed using the CG
algorithm.

6.2 Motivation for the Truncation Rule
Both the stopping criteria (2.75) and (2.77), respectively,

‖rk‖
‖gk‖

≤ ηk

and
qk(pj)− qk(pj−1)

qk(pj)
j

≤ ηk

(see Section 2.1.3.1.1), may not prevent over-solving of the Newton equation. For
the residual-based criterion (2.75), different forcing sequences have been proposed to
stem this phenomenon [46], still guaranteeing a good asymptotic rate of convergence.

As regards the criterion (2.77), it is well-grounded if the quadratic model is
accurate, i.e. if the quadratic model is a good (local) approximation of the objective
function. Conversely, if accuracy is poor, a successful strategy has been proposed in
[91] in the context of Newton-Krylov methods. The strategy is simple and consists
of allowing only one inner iteration if the stepsize determined by the linesearch
procedure in the previous outer iteration is different from one. The rationale behind
this strategy relies on the fact that a stepsize different from one (i.e. the search
direction likely does not resemble the Newton direction) means that the quadratic
model is likely inaccurate. In the context of a block method where each inner
iteration represents a significant computation, this simple rule was appropriate and
effective. When the standard CG method is used as the inner iteration, a more
nuanced strategy is desired.

Additional justification for avoiding over-solving is provided by the computational
results in [89]. This paper compares the performance of a Newton-Krylov method
and a limited-memory BFGS method, and concludes that the Newton-Krylov method
displays superior performance when the quadratic model is a good approximation to
the objective function.

Based on this evidence, we propose an adaptive rule for dynamically setting the
maximum number of inner iterations at each outer iteration of a linesearch-based
Newton-Krylov scheme, possibly allowing the Hessian matrix Hk to be indefinite.
In particular, inspired by trust region methods [36] (and borrowing their terminol-
ogy/notation), at each outer iteration k, our idea is to compare the actual reduction
of the objective function

Aredk = fk − f(xk + sk)

6.2 Motivation for the Truncation Rule 123

with the predicted reduction, i.e. the reduction predicted by the quadratic model

Predk = qk(0)− qk(sk) = −
[1

2s
T
kHksk + gTk sk

]
,

where sk = αkpk and αk is the stepsize computed by the linesearch procedure. Our
truncation criterion will be based on the difference between actual and predicted
reduction, an estimate of the difference between the quadratic model and the objective
function. It is this quantity that was determined in [89] to be significant to the
performance of a Newton-Krylov method.

To provide further insight into this choice, we examine the difference between
Ared and Pred. If they are similar then we will conclude that the quadratic model
is a good approximation to the objective function, and that the inner iteration is
computing an effective search direction. Our focus is on the difference between the
quadratic model and the higher-order terms in the Taylor series approximation to f ,
as motivated by the comments above.

Let us look at these quantities in more detail. Since f ∈ C2(Rn),

Aredk = fk − f(xk + sk) = −sTk gk −
1
2s

T
kH(xk + ξsk)sk,

where 0 ≤ ξ ≤ 1. For Predk we obtain

Predk = fk − [fk + sTk gk + 1
2s

T
kHksk] = −sTk gk −

1
2s

T
kHksk.

Combining these, we have

Aredk − Predk = 1
2s

T
k [Hk −H(xk + ξsk)]sk.

Now, observe that if f(x) is a quadratic function then

Hk = H(xk + ξsk)

yielding
Aredk − Predk = 0.

On the contrary, if f(x) is not quadratic and the quadratic model is not a good
approximation to it, then the difference Aredk − Predk will be large. Similarly, if
‖sk‖ is small, this difference will be small, as we can expect when the Newton-Krylov
algorithm converges. Thus, on balance, we can monitor values of |Aredk − Predk|
to possibly introduce an adaptive truncation criterion.

Our focus on Ared and Pred is reminiscent of trust region methods, but our
approach is distinct. In a trust region method, if there is disagreement between Ared
and Pred then a bound on the norm of the search direction is reduced. In our case
(see the next Section 6.3) we will reduce a bound on the number of inner iterations,
i.e., a bound on the computational effort. As motivated by [89], if the quadratic
model is not a good approximation to the objective function, it is not worthwhile to
use a large number of inner iterations to minimize the quadratic model to compute
a search direction.

124 6. An adaptive truncation criterion for Newton-Krylov methods

There is a relationship between the trust region approach and our approach.
When the CG method is used in the inner iteration, the estimate of the search
direction sk increases monotonically in norm (provided that a suitable norm is
adopted), at each iteration. Hence bounding the norm of sk will limit the number of
inner iterations, and vice versa, but the relationship between the two approaches is
not precise. Even if the bound on sk is small a significant number of CG iterations
might still result.

This is analogous to the relationship between the residual-based stopping criterion
(2.75) and the quadratic-based stopping criterion (2.77). There is a theoretical
relationship between them [87], but the latter is based directly on limiting the
computational effort if it is determined that the inner iteration is not contributing
to the progress of the optimization. As shown in [90], the norm of the residual can
be a poor predictor of the quality of the search direction. It is our hope that we can
reduce the effect of over-solving by focusing directly on the computational effort in
the algorithm.

Our adaptive truncation criterion (see the next Section 6.3) will be based on
|Ared−Pred|. We will be assessing how well the quadratic model approximates the
objective function. This is different than in a traditional trust region method where
it is more common to assess only whether the predicted reduction underestimates
the actual reduction.

6.3 A novel Adaptive Truncation Criterion
The analysis of the previous section can be used for defining an Adaptive Truncation
Criterion (ATC) to be used within a Newton-Krylov scheme. The quantity

ρk =
∣∣∣Aredk − Predk∣∣∣. (6.1)

is at the basis of our adaptive rule. In particular, we adaptively set the maximum
number max_itk+1 of inner iterations allowed at the outer iteration k + 1, on the
basis of the value of ρk.

The Adaptive Truncation Criterion we propose is detailed in the following scheme:

6.3 A novel Adaptive Truncation Criterion 125

ATC scheme

Data: 0 < γ1 < γ2, 0 < σ3 < 1 < σ2 < σ1, 0 < θ2 < θ1 and ` ∈ N, 1 ≤ ` < n.

If ρk ≤ Ckγ1 then (very successful step)
if αk ≥ θ1 then set max_itk+1 = min{n , bσ1max_itkc}

else if ρk ≤ Ckγ2 then (successful step)
if αk ≥ θ2 then set max_itk+1 = min{n , bσ2max_itkc}

else (unsuccessful step)
set max_itk+1 = max{` , bσ3max_itkc}

The maximum number of inner iterations is increased in case of successful steps,
otherwise it is decreased (unsuccessful steps). Note that in the successful steps an
additional check on the stepsize αk is introduced. This is motivated by the fact that
when pk is poor, then ‖sk‖ can actually be very small after the linesearch procedure,
possibly yielding an unexpected successful/very successful step. To prevent the
latter drawback, following the rationale behind the proposal in [91], we verify that
the quality of sk resembles pk, by checking the steplength αk. Whenever the stepsize
is too small, then pk is likely poor and we leave max_itk unchanged.

The quantity Ck is introduced in order to take into account the magnitude of
Aredk and Predk, so that the adopted test is well scaled. A detailed discussion about
possible choices for Ck is reported in Section 6.4. The purpose of the threshold value
` is to guarantee that a certain number `� n of inner iterations is anyhow performed.
This value plays an important role whenever the information collected during the
inner iterations is possibly used to construct preconditioners [48] and [49]. Indeed,
in this case a threshold number of inner iterations might prevent the construction of
an unreliable preconditioner. Of course, other possible preconditioning strategies
might differently affect the choice of parameter `. Observe that, since in ATC we
have ` ≥ 1, and since the first CG iteration produces a search direction proportional
to the negative gradient, the ATC strategy always yields a gradient-related direction,
which guarantees global convergence.

We can summarize the importance of the ATC criterion by observing that it
complies with the following three issues:

1. it aims at extending the strategy in [91] already mentioned;

2. it attempts to partially exploit second order information on the objective
function (including also the indefinite case), by considering in (6.1) a quadratic
model update;

3. considering that we are dealing with large scale problems, it does not require
significant additional computational burden and supplementary storage.

126 6. An adaptive truncation criterion for Newton-Krylov methods

In order to clarify the latter key points, we first observe that the strategy in [91]
substantially uses information from the linesearch procedure, to infer second order
information on the function. Indeed, whenever the stepsize is equal to one, then
the search direction is a Newton-like direction, implying that the local second order
model is a “qualified” approximation of the objective function. In this regard, ρk
should be, to some extent, a measure of this “qualification”. As regards item 2.,
note that ρk includes information on second order derivatives of f , throughout the
computation of the quadratic model. Thus, ρk possibly summarizes some second
order information on f , too. Finally, as concerns item 3., considering the large scale
setting, the computational cost of ATC is definitely negligible.

Note that the early termination of the inner iterations is equivalent to restarting
the iterative method used (say the CG method). In this regard, the use of a
preconditioner (if any) could be helpful in avoiding a possible deterioration in
performance due to this restart. This motivates the fact that in the numerical
experiences we also include the use of a preconditioning strategy, combined with
ATC. The considerations in the current section deserve a more accurate analysis
based on numerical experiences, as reported in the next section.

We conclude this section by observing that, as already said, the rule we proposed
is based on ρk. Since in (6.1) the predicted reduction is based on the quadratic
Taylor series approximation, ρk can be bounded in terms of the third derivatives of
the objective function and the magnitude of the current search direction. As the
algorithm converges, ρk goes to zero, and our adaptive truncation criterion reverts
to a traditional Newton-Krylov method.

6.4 Numerical experience

In order to assess the adaptive criterion proposed, we consider a standard implemen-
tation of a Newton-Krylov method. Namely, we used the linesearch-based truncated
scheme described in Section 2.1.3.1. The CG method is employed in the inner
iterations. The novelty consists in the adoption of the adaptive criterion described
in the previous section, i.e. the maximum number of CG inner iterations allowed per
outer iteration (initialized to n, i.e. max_it1 = n) is adaptively adjusted according
to ATC. As regards the parameters in the ATC scheme, we set γ1 = 10−4, γ2 = 10−2,
σ1 = 2, σ2 = 1.1, σ3 = 0.2, θ1 = 10−2, θ2 = 10−4. This choice is suggested by a
preliminary coarse tuning on the chosen test set. Moreover, since we tested ATC
both within the unpreconditioned and the preconditioned framework proposed in
[48], the value of the parameter ` is set to 7, in order to allow the construction of an
effective preconditioner (see also the discussion about the choice of the parameter
hmax in [48]).

As regards the set of test problems, we selected the same test set already used in
this thesis, i.e. all the unconstrained convex and nonconvex large problems available
in the CUTEst collection [56], and when a problem is of variable dimension, we
considered two different dimensions (usually 1000 and 10000 variables). The resulting
test set consists in 112 problems.

The algorithms were coded in FORTRAN 90 and the GFortran compiler under
Linux Ubuntu 14.04 was used. The stopping criterion for the outer iterations is the

6.4 Numerical experience 127

standard one given by
‖gk‖ ≤ 10−5 max{1, ‖xk‖} (6.2)

(see, e.g. [83]). We state that a failure occurs whenever the latter test is not satisfied
within 100000 outer iterations or if the CPU time exceeds 900 seconds. Moreover, in
comparing different algorithms, we consider only the problems where the algorithms
converge to the same stationary point. Following [24], this is checked by using the
test

|f∗1 − f∗2 | ≤ 10−3 min{|f∗1 |, |f∗2 |}+ 10−6,

being f∗1 , f∗2 the optimal function values obtained by the two algorithms. Finally,
we discarded all the test problems where the compared algorithms required a CPU
time below 0.1 seconds.

As regards the stopping criterion for the CG inner iterations, we tested both
the criteria recalled in Section 2.1.3.1.1: the residual-based criterion (2.75) and the
quadratic model reduction-based criterion (2.77). Since the criterion (2.75) with
ηk = min{1/k, ‖gk‖} proved to yield poorer results in practice, we preferred to report
our results by considering the more reliable residual-based criterion adopted in [48].
This criterion sets

ηk = max
{
‖gk‖, ‖gk‖

1
3
}

min
{
n

1
2

k
, ‖gk‖

}
,

which both takes into account the size (n) of the problem and allows a coarser
solution when far from a stationary point. The criterion (2.77) adopts ηk = 0.5, as
suggested in [90].

We remark that our main goal is to provide an adaptive rule to enhance the
residual-based criterion (2.75). Nevertheless we also coupled ATC with criterion
(2.77), though no significant improvement was expected, since (2.77) already contains
second order information. On the basis of the latter observation, our numerical
experience was designed in order to both assess the improvement of using (2.75)+ATC
w.r.t.(2.75), and the substantial invariance of using (2.77)+ATC w.r.t. (2.77).
However, we will also report (in Section 6.4.3) a comparison between our (linesearch-
based) approach and the trust region approach (namely the use of TRON code [77])
to complete the numerical experiences.

We performed an extensive numerical experimentation and the results consist of
several long tables which can not be reported here in full; thus, in the sequel, the
comparisons are reported by means of performance profiles [42] in terms of number
of function evaluations, number of CG inner iterations and CPU time. Occasionally,
the detailed results on few test problems are reported too, in order to highlight
specific behaviours. Note that in a Newton-Krylov method the number of inner
iterations summarizes the effort to compute the search direction, while the CPU
time is definitely a more complete measure of the overall computational burden.

6.4.1 Guidelines for the choice of Ck in ATC scheme

The quantity Ck in ATC plays the role of a scaling factor with respect to values
of the objective function, which should duly take into account the size of Aredk

128 6. An adaptive truncation criterion for Newton-Krylov methods

and Predk. In particular, among several possibilities we tested the following two
expressions of Ck

Ck = min{1, |f(xk)|} (6.3)
Ck = max{1, |f(xk)|}, (6.4)

whose rationale may be interpreted as follows. The expression (6.3) takes into
account scaling of the function when f(xk) is relatively small (i.e. |f(xk)| ≤ 1). On
the other hand, the expression (6.4) for Ck takes into account scaling when f(xk) is
relatively large. We experiment both the choices on the whole test set and, though
apparently the choice (6.4) might be more intuitive, setting Ck as in (6.3) yields
better numerical results (at least on the test set considered). Note that with the
choice (6.3), whenever |f(xk)| is small, we have Ck close to zero. However, in this
case we expect that also Aredk and Predk are not relatively large. Therefore, if
Ck is close to zero and the test in ATC scheme fails, we expect that Aredk and
Predk differ appreciably, hence the step must be considered unsuccessful. In this
regard, the choice for considering the step successful or unsuccessful is completely
determined by the value of the parameter γ1 and γ2. For sake of brevity, we report
here only the unpreconditioned case in Figures 6.1-6.3. The results concerning the
preconditioned case are very similar.

Figure 6.1. Unpreconditioned Newton-Krylov method using (2.75) with ATC-true: the
choice of Ck in (6.3) (solid line) vs. the choice of Ck in (6.4) (dashed line), in terms of
CG inner iterations.

On the basis of these results, on the test problems where we observe changes
between using (6.3) and (6.4), we note that the choice of Ck as in (6.3) is the best
one. This motives the adoption of Ck = min{1, |f(xk)|} for our numerical experience
reported in the sequel.

6.4 Numerical experience 129

Figure 6.2. Unpreconditioned Newton-Krylov method using (2.75) with ATC-true: the
choice of Ck in (6.3) (solid line) vs. the choice of Ck in (6.4) (dashed line), in terms of
number of function evaluations.

Figure 6.3. Unpreconditioned Newton-Krylov method using (2.75) with ATC-true: the
choice of Ck in (6.3) (solid line) vs. the choice of Ck in (6.4) (dashed line), in terms of
CPU time.

130 6. An adaptive truncation criterion for Newton-Krylov methods

6.4.2 Numerical comparisons among different schemes

In this section we report the main results of the numerical experiences, namely the
use of our adaptive truncation criterion ATC. In particular, our aim is to assess
the improvement of using (2.75)+ATC w.r.t. (2.75) (in the figures, ATC-true vs.
ATC-false). Moreover, we also report results obtained by using (2.77). We first
observe that the adoption of ATC affects the results for several test problems, both
in the unpreconditioned and preconditioned case in [48]. In Figures 6.4 and 6.5 we
considered the ATC rule within the unpreconditioned Newton-Krylov method in
[48], adopting the truncation criterion (2.75), w.r.t. CG inner iterations and CPU
time, respectively. A similar numerical experience is reported in Figures 6.6 and
6.7, including the preconditioning strategy in [48]. By Figures 6.4-6.7, we deduce
that the choice ATC-true outperforms ATC-false both in terms of number of CG
inner iterations and CPU time. This confirms the expectation of our proposal, i.e.,
coupling the rule (2.75) with ATC, in practice enhances first order information with
some second order information, thus improving the overall performance.

Figure 6.4. Unpreconditioned Newton-Krylov method using (2.75): comparison ATC-true
vs. ATC-false, in terms of CG inner iterations.

To complete this numerical experience, in Figure 6.8 and 6.9 a comparison
between the rule (2.75) with ATC-true and (2.77) is detailed, showing that, in
practice, (2.75)+ATC both retains the appealing theoretical convergence properties
of using (2.75) and, to some extent, performs similarly to (2.77). This reveals also
that possibly the residual-based criterion does not include enough information on
the reduction of the quadratic model, and that the joint use with ATC enables the
partial recovery of this information. The latter phenomenon can be interpreted in
the light of the following facts:

• a truncation criterion based on the reduction of the quadratic model (like
(2.77)) already encompasses approximate second order information;

6.4 Numerical experience 131

Figure 6.5. Unpreconditioned Newton-Krylov method using (2.75): comparison ATC-true
vs. ATC-false, in terms of CPU time.

Figure 6.6. Preconditioned Newton-Krylov method using (2.75): comparison ATC-true vs.
ATC-false, in terms of CG inner iterations.

132 6. An adaptive truncation criterion for Newton-Krylov methods

Figure 6.7. Preconditioned Newton-Krylov method using (2.75): comparison ATC-true vs.
ATC-false, in terms of CPU time.

• the preconditioner we adopt is in the class of approximate inverse precondi-
tioners, so that it includes approximate information on the Hessian matrix of
the objective function, suitably collected during the early CG inner iterations;

• the test in the ATC scheme is based on a second order model of the objective
function.

Thus, the approximate second order information in each of the latter three items
has possibly a different source. As a matter of fact, pairing (2.75) with ATC proves
to be successful, while coupling ATC with the first two items risks to spoil the
information on second order derivatives, thus yielding inefficiency.

6.4.3 Comparison with trust region approach

Our ATC rule proposed in this work, to a large extent, draws inspiration from trust
region methods, so that it could be significant to directly compare our (linesearch-
based) approach versus a trust region approach. Humbly speaking, we do not aim at
dealing with the old “quarrel” between trust region and linesearch-based methods.
On the contrary, we only want to assess the behaviour of a Newton-Krylov method
based on our ATC strategy, with respect to a standard trust region code. On
this purpose we consider the TRON code [77] which represents one of the most
commonly used implementation of a trust region Newton-Krylov method, for large
bound-constrained problems (this code is available from Jorge Moré’s web page). In
this algorithm a descent direction for the trust region subproblem is generated, by
means of a preconditioned conjugate gradient method, and the CG iterations are
stopped whenever the trust region is violated, a negative curvature is encountered
or a convergence condition is satisfied. For all the details we refer to [77].

6.4 Numerical experience 133

Figure 6.8. Unpreconditioned Newton-Krylov method: comparison between (2.75) with
ATC-true and (2.77), in terms of CPU time.

Figure 6.9. Preconditioned Newton-Krylov method: comparison between (2.75) with
ATC-true and (2.77), in terms of CPU time.

134 6. An adaptive truncation criterion for Newton-Krylov methods

We compare the results obtained by TRON on the whole test set versus those
obtained by our approach. First, observe that, due to differences among the com-
putational schemes used, the CPU time is likely the most significant indicator to
assess the overall computational burden. Hence, it could be misleading to draw
any conclusions by comparing, for instance, the number of outer iterations/function
evaluations. Moreover, the default stopping criterion used in TRON code in the
unconstrained case is

‖gk‖ ≤ 10−5. (6.5)

As the authors themselves state, the test (6.5) is not scale invariant, and they prefer
to replace (6.5) with ‖gk‖ ≤ 10−5‖g0‖ when solving some specific problems (see (7.2)
in [77]). We run TRON by using all the default parameters of the code and by using
both the original stopping criterion (6.5) and the one in (6.2). Of course, the test
(6.5) is tighter than the test (6.2), so that the use of the stopping criterion (6.2)
enables early stops for TRON code. As consequence, by using (6.2) in place of (6.5),
TRON recovers some failures for CPU time limit or number of function evaluations.

On this guideline, in order to make a fair comparison with our proposal, we
compare the results obtained by our preconditioned Newton-Krylov method and by
TRON, using the same standard stopping criterion (6.2) for both the algorithms.
This comparison is reported in Figures 6.10-6.12, in terms of number of function
evaluations, number of CG inner iterations and CPU time, respectively. These plots
show that our algorithm outperforms TRON in terms of CPU time, even if in terms
of function evaluations and CG inner iterations TRON is more efficient than our
proposal. The reason of this is clearly evidenced by observing some runs of TRON.
Indeed (see also Table 6.1 below), on some large scale problems the Incomplete
Cholesky Factorization (ICF) used by TRON, when computing the step in the trust
region subproblem, is definitely time consuming. This implies that, in solving some
difficult large scale problems, after 900 seconds only one or two outer iterations are
possibly performed.

As regards the robustness, we remark that in order to evidence the comparison
between the algorithms, in Figure 6.10 and Figure 6.11 the abscissa axis ranges in
a large interval. This is due to the fact that TRON is much successful (in terms
of number of function evaluations and CG inner iterations) for small values of the
abscissa parameter, while it tends to lack robustness. In order to better clarify the
latter issue, we report in Table 6.1 the detailed results for all the problems where at
least one of the algorithms fails to converge.

For sake of completeness, in Table 6.1 we report the results obtained by our
preconditioned Newton-Krylov method, including both the choices ATC-true and
ATC-false, and by TRON when using both the original stopping criterion (6.5) and
the standard one (6.2). We first remark that almost all the problems included
in Table 6.1 have a large dimension. Moreover, on problems FLETCBV3 the
algorithms converge towards different points so that the results obtained are not
comparable. On the remaining eight test problems, even if in some cases by using
the stopping criterion (6.2) TRON succeeds to converge (see problems NONCVXUN
and SPARSINE), the CPU time needed is really lengthy. It it worthwhile to observe
how on these problems the use of ATC rule proposed in this study is crucial for
the success of the (linesearch-based) preconditioned Newton-Krylov method. In

6.4 Numerical experience 135

T
RO

N
(w

ith
original

T
RO

N
(w

ith
standard

P
reconditioned

N
ewton-K

rylov
P

reconditioned
N

ewton-K
rylov

stopping
criterion

(6.5))
stopping

criterion
(6.2))

w
ith

AT
C

-true
(using

(6.2))
w

ith
AT

C
-false

(using
(6.2))

P
R

O
B

LE
M

n
it/nf

C
G

-it
tim

e
it/nf

C
G

-it
tim

e
it

nf
C

G
-it

tim
e

it
nf

C
G

-it
tim

e
FLE

T
C

B
V

3
(∗)

1000
>

10
5

-
-

9
8

0.00
9

9
14

0.00
9

9
14

0.00
FLE

T
C

B
V

3
(∗)

10000
>

10
5

-
-

1870
1869

10.68
143

143
227

0.45
136

136
176

0.40
FM

IN
SU

R
F

5625
-

-
>

900
-

-
>

900
157

361
8414

12.51
23

133
16160

23.61
N

O
N

C
V

X
U

N
10000

-
-

>
900

10234
16976

461.02
3072

11940
25843

78.61
-

-
-

>
900

P
E

N
A

LT
Y

1
10000

-
-

>
900

-
-

>
900

64
123

80
0.13

64
123

80
0.11

P
O

W
E

R
10000

-
-

>
900

-
-

>
900

222
816

13343
6.03

118
704

84216
37.38

SIN
Q

U
A

D
10000

25
36

0.19
25

36
0.19

-
-

-
>

900
-

-
-

>
900

SPA
R

SIN
E

10000
-

-
>

900
1999

3026104
864.60

901
2562

84553
144.26

-
-

-
>

900
VA

R
D

IM
10000

-
-

>
900

-
-

>
900

57
340

344
0.25

56
339

387
0.27

VA
R

E
IG

V
L

10000
-

-
>

900
-

-
>

900
21

179
20

0.08
21

179
20

0.08

Table 6.1. Detailed results obtained by TRON and by our preconditioned Newton-Krlov
method. Note that (∗) indicates test problems where the algorithms converge towards
different stationary points.

136 6. An adaptive truncation criterion for Newton-Krylov methods

this regard, by analyzing the complete results, it is possible to note that the latter
situation very often occurs, as already highlighted in previous sections. On problem
SINQUAD, our preconditioned Newton-Krylov methods actually detects the same
stationary point generated by TRON in about half a second, but then the stopping
criterion is not satisfied timely. On the remaining test problems in Table 6.1, TRON
fails to converge and this occurs even if the maximum CPU time allowed would be
greatly increased with respect to 900 seconds.

On summary, Figures 6.10-6.11, along with Table 6.1, reveal that to large extent
our proposal compares favourably with respect to TRON.

Figure 6.10. Comparison between our Preconditioned Newton-Krylov method with (2.75),
ATC-true and TRON with standard stopping criterion (6.2), in terms of number of
function evaluations. Abscissa axis is in logarithmic scale.

6.5 Conclusions

In this chapter we addressed the problem of “over-solving” the Newton equation
within linesearch-based Newton-Krylov methods. In particular, we proposed an
adaptive rule for dynamically setting the maximum number of inner iterations, at
each outer iteration, for possibly nonconvex problems. It can be used jointly with
any truncation criterion (based on the relative residual or on the reduction of the
quadratic model). A significant numerical study has been performed, in order to
assess the effectiveness and the robustness of the joint use of the adaptive rule
and the two most popular truncation criteria. In particular, the adaptive rule has
been experimented in both unpreconditioned and preconditioned frameworks. The
results obtained confirm our guess that, the adaptive rule leads to computational
savings in terms of overall number of inner iterations and CPU time, whenever the
residual-based criterion (2.75) is used. Nevertheless, when (2.77) is coupled with

6.5 Conclusions 137

Figure 6.11. Comparison between our Preconditioned Newton-Krylov method with (2.75),
ATC-true and TRON with standard stopping criterion (6.2), in terms of number of CG
inner iterations. Abscissa axis is in logarithmic scale.

Figure 6.12. Comparison between our Preconditioned Newton-Krylov method with (2.75),
ATC-true and TRON with standard stopping criterion (6.2), in terms of CPU time.
Abscissa axis is in logarithmic scale.

138 6. An adaptive truncation criterion for Newton-Krylov methods

ATC we did not experience evident improvement with respect to the sole use of
(2.77).

The numerical experiences have been completed by a comparison with a precon-
ditioned Newton-Krylov method based on trust region approach, namely with the
TRON code. The results obtained showed that our linesearch-based preconditioned
Newton-Krylov method, which uses the ATC rule proposed in this study, outperforms
TRON in terms of CPU time. On the other hand, the trust region code is definitely
more efficient in terms of number of function evaluations and CG inner iterations,
though a lack of robustness is evidenced.

Overall, even if a careful tuning of the parameters used in the adaptive rule
is certainly still needed, the results obtained definitely agree with those reported
in [90] and [91], from which we have drawn inspiration for this work. Finally, we
assert that the results obtained seem to indicate that the use of the adaptive rule is
promising, particularly in tackling large scale difficult nonconvex problems.

139

Chapter 7

Approximate Inverse
Preconditioners for Indefinite
Linear Systems

In this chapter we introduce a work in progress: in particular we focus on a class
of preconditioners for symmetric linear systems arising from numerical analysis
and nonconvex optimization frameworks. Our aim is to embed the preconditioner
within a linesearch-based Newton-Krylov method (see Section 2.1.3.1), using the
conjugacy of the directions given by CG or SYMMBK algorithms. As well known,
Newton-Krylov method needs to compute, at each outer iteration, a search direction
by approximately solving the Newton equation (2.74). Starting from the class of
preconditioners for symmetric linear systems described in [48] and used in Chapter 6,
our aim is to provide an efficient class of preconditioners for the indefinite case.
These preconditioners are specifically suited for large indefinite linear systems and
may be obtained as by-product of Krylov subspace solvers, as well as by applying
L-BFGS updates. Moreover, this proposal is also suited for the solution of a sequence
of linear systems, say Ax = bi or Aix = bi, where respectively the right-hand side
changes or the system matrix slightly changes, too. Each preconditioner in this class
is identified by setting the values of a pair of parameters and a scaling matrix, which
are user-dependent, and may be chosen according to the structure of the problem in
hand.

7.1 Introduction

We study a class of preconditioners for the solution of the symmetric indefinite linear
system

Ax = b, A ∈ Rn×n, A = AT ,

where n is large and we do not assume any sparsity pattern for the system matrix A.
Here we focus on the use of iterative methods to solve linear systems. Our

iterative methods were introduced in Chapter 1, and are also used to collect sufficient
information on the system matrix, in order to generate the preconditioners. We
propose a general class of preconditioners, which uses information collected by any

140 7. Approximate Inverse Preconditioners for Indefinite Linear Systems

Krylov subspace method or possibly using L-BFGS updates, in order to capture the
structural properties of the system matrix.

The basic idea of our approach draws its inspiration from Approximate Inverse
Preconditioners, which have proved in general to be remarkably robust and efficient
in practice [19, 20]. These methods claim that in principle, an approximate inverse
of A should be computed and used as a preconditioner. Though in practice it might
be difficult to ensure that the approximate inverse is sparse, suitable factorizations
of matrix A can be fruitfully exploited, in order to build the approximate inverse
preconditioner. In particular, a generalization of the Gram-Schmidt process can be
used to provide a tridiagonal factorization of A−1, where the triangular matrices are
in general dense. This is the basic idea of AINV preconditioner (see [19], Section
5.1.2).

Here we apply any Krylov subspace method to generate a tridiagonal factorization
of A−1. The latter is then used to build our preconditioners, namely the AINVK

class, needing to store just a few vectors, without requiring any matrix storage and
any product of matrices. As we collect information from Krylov subspace methods,
we assume that the entries of the system matrix are not stored at once and the
necessary information is gained by simply using a routine, which computes the
product of the system matrix times a vector. Note that, typically, the product of
a matrix times a vector allows fast parallel computing, which is another possible
advantage of our approach, in large scale settings.

AINVK can be naturally extended to the solution of a sequence of large linear
systems. When sequences of systems are tackled, we generate the preconditioner P,
for the solution of the first linear system in the sequence, i.e. Ax = b1 or A1x = b1.
Then, we apply P for solving either Ax = bi or Aix = bi, i = 2, 3, . . . Thus, the cost
of computing P, for i = 1, is repaid by accelerating the solution for i = 2, 3, . . .;
a similar strategy was proposed in [83]. The latter approach might be strongly
advantageous in numerical analysis and optimization frameworks, where the cost
for computing the preconditioner is relatively small, when compared to solving each
linear system in the sequence. Furthermore, when a Krylov subspace method is
adopted to compute the preconditioner, the full storage of system matrix is never
required. On the other hand, the same Krylov subspace method might be used also
to compute the solution of the linear system (see also [102, 105]).

7.2 Preliminaries

In this section we first introduce some preliminaries, then we propose our class of
preconditioners. Consider the indefinite linear system

Ax = b, (7.1)

where A ∈ Rn×n is symmetric and n is large. Assume that a Krylov subspace method
is used for the solution of (7.1), e.g. the Lanczos process (see Section 1.1.2). As well
known, the Lanczos process and the CG method (see Section 1.1.1) are equivalent
as long as A � 0, whereas the CG, though cheaper, in principle may not cope with
the indefinite case.

7.3 Our class of preconditioners AINVK 141

With reference to the definition in [53, 109], we say that a symmetric indefinite
matrix T is factorizable if the diagonal (or 2× 2 block diagonal) matrix D and the
unit lower triangular matrix L exist such that T = LDLT . In the next assumption
we consider that a finite number of steps, say h� n, of the Krylov subspace method
adopted have been performed.

Assumption 7.2.1. [Factorization] Let us consider any Krylov subspace method
to solve the symmetric linear system (7.1). Suppose at step h of the Krylov subspace
method, with h ≤ n − 1, the matrices Rh ∈ Rn×h, Th ∈ Rh×h and the vector
uh+1 ∈ Rn are generated, such that

ARh = RhTh + ρh+1uh+1e
T
h , ρh+1 ∈ R. (7.2)

Suppose that the matrix Th is factorizable, so that there exists the following decom-
position:

Th = LhBhL
T
h , (7.3)

where

Rh = (u1 · · ·uh), uTi uj = 0, ‖ui‖ = 1, 1 ≤ i 6= j ≤ h+ 1,

Th is tridiagonal, irreducible, nonsingular, with eigenvalues not all coincident,

Bh is 1× 1 or 2× 2 block diagonal, Lh is unit lower bidiagonal.

To have a better intuition on the reason for which h steps of almost any Krylov
subspace method satisfy Assumption 7.2.1, we remark that they are essentially all
based on the generation of orthogonal vectors (the Lanczos vectors or the residuals
for CG-based methods), used to transform the system (7.1) into a tridiagonal one.
Then, they substantially differ only in the way the resulting tridiagonal system is
solved by factorization.

In particular, also observe that from (7.2) we have Th = RThARh, so that
whenever A � 0 then Th � 0. The Krylov subspace method adopted may, in general,
perform m ≥ h iterations, generating the orthonormal vectors u1, . . . , um. Then, we
can set Rh = (u`1 , . . . , u`h), where {`1, . . . , `h} ⊆ {1, . . . ,m}, and change relations
(7.2)-(7.3) accordingly; i.e. Assumption 7.2.1 may hold selecting any h out of the m
vectors (among u1, . . . , um) computed by the Krylov subspace method, up to step
m.

Observe also that from Assumption 7.2.1 if ρh+1 6= 0 the subspace span{u1, . . . , uh}
is not invariant under the transformation by matrix A. This implies that here we
consider a more general case with respect to [16].

7.3 Our class of preconditioners AINVK

On the basis of Assumption 7.2.1, we can now define our preconditioners. To this
aim, suppose Th = LhBhL

T
h in (7.3), where Bh =

⊕
1≤j≤m{Ehj }, and where either

Ehj ∈ R or Ehj ∈ R2×2, for any j. Moreover, if Ehj ∈ R2×2 for an index j, assume
that we compute the eigen-decomposition

Ehj = Uhj D
h
j (Uhj)T , (7.4)

142 7. Approximate Inverse Preconditioners for Indefinite Linear Systems

with Dh
j = diag{dj1,h; dj2,h} and (Uhj)TUhj = Uhj (Uhj)T = I2. On the other hand, if

Ehj ∈ R for an index j, for the sake of notation we again assume that (7.4) holds,
setting

Dh
j ≡ dj1,h ≡ Ehj and Uhj = 1.

Then, we have

Bh =
⊕

1≤j≤m

{
Ehj

}
=

⊕
1≤j≤m

Uhj
 dj1,h 0

0 dj2,h

 (Uhj)T


and we define (see also [52]) the matrix

|Bh| =
⊕

1≤j≤m

Uhj
 |dj1,h| 0

0 |dj2,h|

 (Uhj)T

 .
Moreover,

|Bh| =

 ⊕
1≤j≤m

{
Uhj

} ·
 ⊕

1≤j≤m


 |dj1,h| 0

0 |dj2,h|



 ·
 ⊕

1≤j≤m

{
(Uhj)T

}
= Uh ·Dh · (Uh)T ,

where
Uh =

⊕
1≤j≤m

{
Uhj

}
,

Dh =
⊕

1≤j≤m


 |dj1,h| 0

0 |dj2,h|


 ,

and we also define
|Th|

def= Lh|Bh|LTh .

Observe that of course, by the definition of |Bh|, we have |Th| = Th in case Th is
positive definite. Furthermore, it is easily seen that |Th| is positive definite, for
any h, and |Th|−1T 2

h |Th|−1 = Ih whenever Th � 0. As a consequence, we have
Th|Th|−1 = (|Th|−1Th)T = LhÎhL

−1
h , where

Îh = Bh|Bh|−1 (7.5)

is at most 2× 2 block-diagonal with all the eigenvalues in {−1,+1}.
We are now ready to introduce the following class of preconditioners, which

depends on the parameter a and the matrices Wh, D

M]
h(a,Wh, D) def= D

[
In − (Rh | uh+1) (Rh | uh+1)T

]
DT

+ (Rh | Duh+1)
(
|Th(Wh)| aeh
aeTh 1

)−1

(Rh | Duh+1)T , (7.6)

M]
n(a,Wh, D) def= Rn|Tn(Wh)|−1RTn , (7.7)

7.3 Our class of preconditioners AINVK 143

where a ∈ R, Wh ∈ Rn×n is diagonal positive definite and D ∈ Rn×n is nonsingular.
Finally, we also define

|Th(Wh)| = LhUh (WhDh)UTh LTh (7.8)

so that WhDh is diagonal.

In particular our idea is the following:

• as long as matrix A in (7.1) is positive definite, in order to build Th we can
use the CG method (see the relationship between Lanczos process and CG
method in Section 1.1.3);

• if matrix A in (7.1) is indefinite, in order to build Th we can use the SYMMBK
algorithm (see Section 1.1.4.2).

Observe that a theoretical analysis and a full numerical experience are in progress,
in order to show the effectiveness of the class of preconditioners AINVK.

145

Conclusions

In this thesis, in order to solve large scale unconstrained optimization problems, new
preconditioning techniques for NCG methods and new developments in Newton-
Krylov methods have been proposed, using the conjugacy of the directions given
by CG or SYMMBK algorithms. Dealing with large scale problems, we propose
new preconditioners matrix-free iteratively constructed to be used within Conjugate
Gradient-type algorithms.

In particular, in Chapter 1 and Chapter 2 some preliminaries, respectively about
iterative methods for solving linear systems and about some common methods for
large scale unconstrained optimization, have been recalled.

Drawing inspiration from quasi-Newton updates, in order to obtain a good
approximation of the inverse of the Hessian matrix, in Chapter 3 we have introduced
new preconditioners to be used within the NCG method. In Chapter 4 we have
extended the damped techniques to the NCG methods by using a class of precondi-
tioners described in Chapter 3. In Chapter 5 some global convergence properties
have been provided both an effective PNCG algorithm and the D-PR-PNCG method.
In Chapter 6 an adaptive truncation rule for Newton-Krylov methods, both within
the unpreconditioned and the preconditioned framework proposed in [48], has been
provided. Finally, in Chapter 7 we have introduced some preliminaries and the
structure of another class of preconditioners, within Newton-Krylov framework,
specifically suited for large indefinite linear systems.

147

Bibliography

[1] Ahn, C., Chew, W., Zhao, J., and Michielssen, E. Numerical study of
approximate inverse preconditioner for two-dimensional engine inlet problems.
Electromagnetics, 19 (1999), 131.

[2] Al-Baali, M. Descent property and global convergence of the Fletcher-
Reeves method with inexact line search. IMA Journal on Numerical Analysis,
5 (1985), 121.

[3] Al-Baali, M. Damped techniques for enforcing convergence of quasi-Newton
methods. Optimization Methods and Software, 29 (2014), 919.

[4] Al-Baali, M., Caliciotti, A., Fasano, G., and Roma, M. Exploiting
damped techniques for nonlinear conjugate gradient methods. Mathematical
Methods of Operations Research, 86 (2017), 501.

[5] Al-Baali, M., Caliciotti, A., Fasano, G., and Roma, M. Quasi-Newton
based preconditioning and damped quasi-Newton schemes, for nonlinear con-
jugate gradient methods. In Accepted for Publication on Springer Proceedings
(PROMS) (2018).

[6] Al-Baali, M. and Fletcher, R. On the order of convergence of precon-
ditioned nonlinear conjugate gradient methods. SIAM Journal on Scientific
Computing, 17 (1996), 658.

[7] Al-Baali, M. and Grandinetti, L. On practical modifications of the
quasi-Newton BFGS methods. AMO - Advanced Modeling and Optimization,
11 (2009), 63.

[8] Al-Baali, M. and Grandinetti, L. Improved damped quasi-Newton
methods for unconstrained optimization. Pacific Journal of Optimization,
(2015). (To appear).

[9] Al-Baali, M., Grandinetti, L., and Pisacane, O. Damped techniques
for the limited memory BFGS method for large-scale optimization. Journal of
Optimization Theory and Applications, 161 (2014), 688.

[10] Al-Baali, M. and Purnama, A. Numerical experience with damped quasi-
Newton optimization methods when the objective function is quadratic. SQU
Journal for Science, 17 (2012), 1.

148 Bibliography

[11] Al-Baali, M., Spedicato, E., and Maggioni, F. Broyden’s quasi-Newton
methods for a nonlinear system of equations and unconstrained optimization:
a review and open problems. Optimization Methods and Software, 29 (2014),
937.

[12] Alléon, G., Benzi, M., and Giraud, L. Sparse approximate inverse pre-
conditioning for dense linear systems arising in computational electromagnetics.
Numerical Algorithms, 16 (1997), 1.

[13] Andrei, N. Scaled memoryless BFGS preconditioned conjugate gradient
algorithm for unconstrained optimization. Optimization Methods and Software,
22 (2007), 561.

[14] Babaie-Kafaki, S. Two modified scaled nonlinear conjugate gradient methods.
Journal of Computational and Applied Mathematics, 261 (2014), 172.

[15] Babaie-Kafaki, S. and Ghanbari, R. The Dai-Liao nonlinear conju-
gate gradient method with optimal parameter choices. European Journal of
Operational Research, 234 (2014), 625.

[16] Baglama, J., Calvetti, D., Golub, G., and Reichel, L. Adaptively
preconditioned GMRES algorithms. SIAM Journal on Scientific Computing,
20 (1998), 243.

[17] Bellavia, S., Gondzio, J., and Morini, B. A matrix-free preconditioner
for sparse symmetric positive definite systems and least-squares problems.
SIAM Journal on Scientific Computing, 35 (2013), A192.

[18] Bellavia, S., Simone, V. D., Serafino, D. D., and Morini, B. A
preconditioning framework for sequences of diagonally modified linear systems
arising in optimization. SIAM Journal on Numerical Analysis, 50 (2013),
3280.

[19] Benzi, M. Preconditioning techniques for large linear systems: a survey.
Journal of Computational Physics, 182 (2002), 418.

[20] Benzi, M., Cullum, J., and Tuma, M. Robust approximate inverse
preconditioner for the conjugate gradient method. SIAM Journal on Scientific
Computing, 22 (2000), 1318.

[21] Benzi, M., Kouhia, R., and Tuma, M. Stabilized and block approxi-
mate inverse preconditioners for problems in solid and structural mechanics.
Computer methods in applied mechanics and engineering, 190 (2001), 6533.

[22] Bernstein, D. S. Matrix mathematics: Theory, facts, and formulas with
application to linear systems theory. Princeton University Press (2005).

[23] Bertsekas, D. P. Nonlinear programming. Athena scientific Belmont (1999).

[24] Birgin, E. G., Castillo, R., and Martínez, J. M. Numerical comparison
of augmented lagrangian algorithms for nonconvex problems. Computational
Optimization and Applications, 31 (2005), 31.

Bibliography 149

[25] Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge Univer-
sity Press, New York (2004).

[26] Buckley, B. and Lenir, A. QN like variable storage conjugate gradients.
Mathematical Programming, 27 (1983), 155.

[27] Calandra, H., Gratton, S., Lago, R., Pinel, X., and Vasseur, X.
Two-level preconditioned Krylov subspace methods for the solution of three-
dimensional heterogeneous Helmholtz problems in seismics. Numerical Analysis
and Applications, 5 (2012), 175.

[28] Calandra, H., Gratton, S., Pinel, X., and Vasseur, X. An improved
two-grid preconditioner for the solution of three-dimensional Helmholtz prob-
lems in heterogeneous media. Numerical Linear Algebra with Applications, 20
(2013), 663.

[29] Caliciotti, A., Fasano, G., Nash, S. G., and Roma, M. An adaptive
truncation criterion, for linesearch-based truncated Newton methods in large
scale nonconvex optimization. Operations Research Letters, 46 (2018), 7.

[30] Caliciotti, A., Fasano, G., Nash, S. G., and Roma, M. Data and per-
formance profiles applying an adaptive truncation criterion, within linesearch-
based truncated Newton methods, in large scale nonconvex optimization. Data
in Brief, 17 (2018), 246.

[31] Caliciotti, A., Fasano, G., and Roma, M. Preconditioning strategies for
nonlinear conjugate gradient methods, based on quasi-Newton updates. In
The American Institute of Physics (AIP) Conference Proceedings (edited by
Y. Sergeyev, D. Kvasov, F. Dell’Accio, and M. Mukhametzhanov), vol. 1776,
pp. 0900071–0900074 (2016).

[32] Caliciotti, A., Fasano, G., and Roma, M. Novel preconditioners based on
quasi-Newton updates for nonlinear conjugate gradient methods. Optimization
Letters, 11 (2017), 835.

[33] Caliciotti, A., Fasano, G., and Roma, M. Preconditioned nonlinear
conjugate gradient methods based on a modified secant equation. Applied
Mathematics and Computation, 318 (2018), 196.

[34] Chandra, R., Eisenstat, S., and Schultz, M. Conjugate gradient methods
for partial differential equations. Ph.D. thesis, Yale University New Haven,
CT (1978).

[35] Conn, A. R., Gould, N. I. M., and Toint, P. L. LANCELOT: A Fortran
package for large-scale nonlinear optimization (Release A). Springer Verlag,
Heidelberg, Berlin (1992).

[36] Conn, A. R., Gould, N. I. M., and Toint, P. L. Trust-region methods.
MPS-SIAM Series on Optimization, Philadelphia, PA (2000).

150 Bibliography

[37] Dai, Y.-H. and Yuan, Y. A nonlinear conjugate gradient method with a
strong global convergence property. SIAM Journal on Optimization, 10 (1999),
177.

[38] Dassios, I., Fountoulakis, K., and Gondzio, J. A preconditioner for
a primal-dual Newton conjugate gradient method for compressed sensing
problems. SIAM Journal on Scientific Computing, 37 (2015), A2783.

[39] Dembo, R., Eisenstat, S., and Steihaug, T. Inexact Newton methods.
SIAM Journal on Numerical Analysis, 19 (1982), 400.

[40] Dembo, R. and Steihaug, T. Truncated-Newton algorithms for large-scale
unconstrained optimization. Mathematical Programming, 26 (1983), 190.

[41] Dennis, J. E., Jr and Wolkowicz, H. Sizing and least-change secant
methods. SIAM Journal on Numerical Analysis, 30 (1993), 1291.

[42] Dolan, E. D. and Moré, J. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91 (2002), 201.

[43] Dong, X. L., Liu, H., Xu, Y. L., and Yang, X. M. Some nonlinear conju-
gate gradient methods with sufficient descent condition and global convergence.
Optimization Letters, 9 (2015), 1421.

[44] Duff, I., Gratton, S., Pinel, X., and Vasseur, X. Multigrid based
preconditioners for the numerical solution of two-dimensional heterogeneous
problems in geophysics. International Journal of Computer Mathematics, 84
(2007), 1167.

[45] Eisenstat, S. and Walker, H. Globally convergent inexact Newton methods.
SIAM Journal on Optimization, 4 (1994), 393.

[46] Eisenstat, S. and Walker, H. Choosing the forcing term in an inexact
Newton method. SIAM Journal on Scientific and Statistical Computing, 17
(1996), 16.

[47] Esmaily-Moghadam, M., Bazilevs, Y., and Marsden, A. L. A new
preconditioning technique for implicitly coupled multidomain simulations with
applications to hemodynamics. Computational Mechanics, 52 (2013), 1141.

[48] Fasano, G. and Roma, M. Preconditioning Newton-Krylov methods in non-
convex large scale optimization. Computational Optimization and Applications,
56 (2013), 253.

[49] Fasano, G. and Roma, M. A novel class of approximate inverse pre-
conditioners for large scale positive definite linear systems in optimization.
Computational Optimization and Applications, 65 (2016), 399.

[50] Fletcher, R. and Reeves, C. M. Function minimization by conjugate
gradients. The computer journal, 7 (1964), 149.

Bibliography 151

[51] Gilbert, J. and Nocedal, J. Global convergence properties of conjugate
gradient methods for optimization. SIAM Journal on Optimization, 2 (1992),
21.

[52] Gill, P. E., Murray, W., Ponceleon, D. B., and Saunders, M. A.
Preconditioners for indefinite systems arising in optimization. SIAM Journal
on Matrix Analysis and Applications, 13 (1992), 292.

[53] Gill, P. E., Saunders, M. A., and Shinnerl, J. R. On the stability of
Cholesky factorization for symmetric quasidefinite systems. SIAM Journal on
Matrix Analysis and Applications, 17 (1996), 35.

[54] Golub, G. and Van Loan, C. Matrix Computations. The John Hopkins
Press, Baltimore (2012). Fourth edition.

[55] Gould, N. I., Lucidi, S., Roma, M., and Toint, P. L. Solving the trust-
region subproblem using the Lanczos method. SIAM Journal on Optimization,
9 (1999), 504.

[56] Gould, N. I. M., Orban, D., and Toint, P. L. CUTEst: a constrained
and unconstrained testing environment with safe threads. Computational
Optimization and Applications, 60 (2015), 545.

[57] Gratton, S., Laloyaux, P., Sartenaer, A., and Tshimanga, J. A
reduced and limited-memory preconditioned approach for the 4D-Var data-
assimilation problem. Quarterly Journal of the Royal Meteorological Society,
137 (2011), 452.

[58] Gratton, S., Mercier, S., Tardieu, N., and Vasseur, X. Limited
memory preconditioners for symmetric indefinite problems with application to
structural mechanics. Numerical Linear Algebra with Applications, 23 (2016),
865.

[59] Gratton, S. and Tshimanga, J. An observation-space formulation of
variational assimilation using a restricted preconditioned conjugate gradient
algorithm. Quarterly Journal of the Royal Meteorological Society, 135 (2009),
1573.

[60] Grattona, S., Sartenaer, A., and Tshimanga, J. On a class of limited
memory preconditioners for large scale linear systems with multiple right-hand
sides. SIAM Journal on Optimization, 21 (2011), 912.

[61] Greenbaum, A. Iterative methods for solving linear systems. SIAM (1997).

[62] Grippo, L. and Lucidi, S. A globally convergent version of Polak-Ribìere
conjugate gradient method. Mathematical Programming, 78 (1997), 375.

[63] Grippo, L. and Sciandrone, M. Metodi di ottimizzazione non vincolata.
Springer-Verlag Italia, Milan (2011).

152 Bibliography

[64] Gürol, S., Weaver, A., Moore, A., Piacentini, A., Arango, H.,
and Gratton, S. B-preconditioned minimization algorithms for variational
data assimilation with the dual formulation. Quarterly Journal of the Royal
Meteorological Society, 140 (2014), 539.

[65] Hager, W. and Zhang, H. A new conjugate gradient method with guar-
anteed descent and efficient line search. SIAM Journal on Optimization, 16
(2005), 170.

[66] Hager, W. and Zhang, H. Algorithm 851: CG_DESCENT, a conjugate
gradient method with guaranteed descent. ACM Transactions on Mathematical
Software, 32 (2006), 113.

[67] Hager, W. and Zhang, H. A survey of nonlinear conjugate gradient
methods. Pacific Journal of Optimization, 2 (2006), 35.

[68] Hager, W. and Zhang, H. The limited memory conjugate gradient method.
SIAM Journal on Optimization, 23 (2013), 2150.

[69] Hestenes, M. R. and Stiefel, E. Methods of conjugate gradients for solving
linear systems, vol. 49. NBS (1952).

[70] Hladik, I., Reed, M., and Swoboda, G. Robust preconditioners for linear
elasticity FEM analyses. International Journal for Numerical Methods in
Engineering, 40 (1997), 2109.

[71] Huang, H. and Lin, S. A modified Wei-Yao-Liu conjugate gradient method
for unconstrained optimization. Applied Mathematics and Computation, 231
(2014), 179.

[72] Izmailov, A. and Solodov, M. A truncated SQP method based on inexact
interior-point solutions of subproblems. SIAM Journal on Optimization, 20
(2010), 2584.

[73] Kaporin, I. E. and Konshin, I. N. A parallel block overlap preconditioning
with inexact submatrix inversion for linear elasticity problems. Numerical
linear algebra with applications, 9 (2002), 141.

[74] Kelley, C. T. Iterative methods for Optimization. SIAM Frontiers in Applied
Mathematics, Philadelphia, PA (1999).

[75] Kim, S. and Im, Y. Parallel processing of 3D rigid-viscoplastic finite element
analysis using domain decomposition and modified block Jacobi preconditioning
technique. Journal of Materials Processing Technology, 134 (2003), 254.

[76] Konshin, I., Olshanskii, M., and Vassilevski, Y. LU factorizations and
ILU preconditioning for stabilized discretizations of incompressible Navier-
Stokes equations. Numerical Linear Algebra with Applications, 24 (2017).

[77] Lin, C.-J. and Moré, J. Newton’s method for large bound-constrained
optimization problems. SIAM Journal on Optimization, 9 (1999), 1100.

Bibliography 153

[78] Liu, D. and Nocedal, J. On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45 (1989), 503.

[79] Luenberger, D. G. Introduction to linear and nonlinear programming,
vol. 28. Addison-Wesley Reading, MA (1973).

[80] Mack, C. J. and Schmid, P. J. A preconditioned Krylov technique for global
hydrodynamic stability analysis of large-scale compressible flows. Journal of
Computational Physics, 229 (2010), 541.

[81] Menk, A. and Bordas, S. A robust preconditioning technique for the
extended finite element method. International Journal for Numerical Methods
in Engineering, 85 (2011), 1609.

[82] Mercier, S., Gratton, S., Tardieu, N., and Vasseur, X. A new
preconditioner update strategy for the solution of sequences of linear systems
in structural mechanics: application to saddle point problems in elasticity.
Computational Mechanics, 60 (2017), 969.

[83] Morales, J. and Nocedal, J. Automatic preconditioning by limited
memory quasi-Newton updating. SIAM Journal on Optimization, 10 (2000),
1079.

[84] Moré, J. and Thuente, D. Line search algorithms with guaranteed sufficient
decrease. ACM Transactions on Mathematical Software (TOMS), 20 (1994),
286.

[85] Moré, J. and Wright, S. Optimization Software Guide. SIAM - Frontiers
in Applied Mathematics, Philadelphia (1993).

[86] Nash, S. G. Newton-type minimization via the lanczos method. SIAM
Journal on Numerical Analysis, 21 (1984), 770.

[87] Nash, S. G. Truncated-Newton methods for large-scale function minimization.
In Applications of Nonlinear Programming to Optimization and Control (edited
by H. Rauch), pp. 91–100. Pergamon Press, Oxford (1984).

[88] Nash, S. G. A survey of truncated-Newton methods. Journal of Computational
and Applied Mathematics, 124 (2000), 45.

[89] Nash, S. G. and Nocedal, J. A numerical study of the limited memory
BFGS method and the truncated-Newton method for large scale optimization.
SIAM Journal on Optimization, 1 (1991), 358.

[90] Nash, S. G. and Sofer, A. Assessing a search direction within a truncated-
Newton method. Operations Research Letters, 9 (1990), 219.

[91] Nash, S. G. and Sofer, A. A general-purpose parallel algorithm for
unconstrained optimization. SIAM Journal on Optimization, 1 (1991), 530.

[92] Nazareth, L. A relationship between the BFGS and conjugate gradient
algorithms and its implications for new algorithms. SIAM Journal on Numerical
Analysis, 16 (1979), 794.

154 Bibliography

[93] Nocedal, J. Updating Quasi-Newton matrices with limited storage. Mathe-
matics of Computation, 35 (1980), 773.

[94] Nocedal, J. Large scale unconstrained optimization. In The state of the art
in Numerical Analysis (edited by A. Watson and I. Duff), pp. 311–338. Oxford
University Press, Oxford (1997).

[95] Nocedal, J. and Wright, S. Numerical Optimization. Springer-Verlag,
New York (2006). Second edition.

[96] O’Leary, D. P. and Yeremin, A. The linear algebra of block quasi-Newton
algorithms. Linear Algebra and its Applications, 212 (1994), 153.

[97] Polak, E. and Ribiere, G. Note sur la convergence de méthodes de direc-
tions conjuguées. Revue française d’informatique et de recherche opérationnelle,
série rouge, 3 (1969), 35.

[98] Polyak, B. T. Introduction to optimization. translations series in mathemat-
ics and engineering. Optimization Software, (1987).

[99] Powell, M. J. D. Algorithms for nonlinear constraints that use Lagrangian
functions. Mathematical Programming, 14 (1978), 224.

[100] Powell, M. J. D. How bad are the BFGS and DFP methods when the
objective function is quadratic? Mathematical Programming, 34 (1986), 34.

[101] Pytlak, R. Conjugate Gradient Algorithms in Nonconvex Optimization.
Springer, Berlin (2009).

[102] Saad, Y. Iterative Methods for Sparse Linear Systems - Second Edition.
SIAM, Philadelphia, PA (2003).

[103] Schlick, T. and Fogelson, A. TNPACK - A truncated Newton package
for large-scale problems: I. Algorithm and usage. ACM Transaction on
Mathematical Software, 18 (1992), 46.

[104] Schlick, T. and Fogelson, A. TNPACK - A truncated Newton package
for large-scale problems: II. Implementation examples. ACM Transaction on
Mathematical Software, 18 (1992), 71.

[105] Simoncini, V. and Szyld, D. Recent computational developments in
Krylov subspace methods for linear systems. Numerical Linear Algebra with
Applications, 14 (2007), 1.

[106] Trefethen, L. N. and Bau III, D. Numerical linear algebra, vol. 50. SIAM
(1997).

[107] Tshimanga, J., Gratton, S., Weaver, A., and Sartenaer, A. Limited-
memory preconditioners, with application to incremental four-dimensional
variational data assimilation. Quarterly Journal of the Royal Meteorological
Society, 134 (2008), 751.

Bibliography 155

[108] Van der Vorst, H. A. Iterative Krylov methods for large linear systems,
vol. 13. Cambridge University Press (2003).

[109] Vanderbei, R. J. Symmetric quasi-definite matrices. SIAM Journal of
Optimization, 5 (1995), 100.

[110] Veersé, F., Auroux, D., and Fisher, M. Limited-memory BFGS diagonal
preconditioners for a data assimilation problem in meteorology. Optimization
and Engineering, 1 (2000), 323.

[111] Vlček, J. and Lukšan, L. A conjugate directions approach to improve the
limited-memory bfgs method. Applied Mathematics and Computation, 219
(2012), 800.

[112] Xie, D. and Schlick, T. Efficient implementation of the truncated-Newton
algorithm for large-scale chemistry applications. SIAM Journal on Optimiza-
tion, 10 (1999), 132.

[113] Yuan, G., Wei, Z., and Li, G. A modified Polak-Ribière-Polyak conjugate
gradient algorithm for nonsmooth convex programs. Journal of Computational
and Applied Mathematics, 255 (2014), 86.

	Cover
	Acknowledgements
	Common Notations
	List of Figures
	List of Tables
	Contents
	Abstract
	Motivations
	Iterative Methods for solving Symmetric Linear Systems
	Krylov subspace methods
	The Conjugate Gradient (CG) method
	The Lanczos process
	Lanczos process for positive definite systems
	Lanczos process for indefinite systems

	Relationship between Lanczos process and CG method
	Decomposition of tridiagonal matrix Tk
	Decomposition for positive definite systems
	Decomposition for indefinite systems

	Preconditioning
	Preconditioned Conjugate Gradient method

	Conclusions

	Methods for Large Scale Unconstrained Optimization
	Introduction to Large Scale Unconstrained Optimization
	Nonlinear Conjugate Gradient (NCG) method
	Preconditioned Nonlinear Conjugate Gradient method

	Quasi-Newton methods
	Damped Quasi-Newton methods
	Quasi-Newton methods for Large Scale Optimization
	Memoryless Quasi-Newton methods
	Limited Memory BFGS (L-BFGS)

	Inexact Newton methods
	Newton-Krylov method
	Common truncation criteria

	Conclusions

	Preconditioners based on quasi-Newton updates for NCG methods
	Introduction
	Preliminaries
	Guidelines for new Symmetric Rank-2 updates
	A new Symmetric Rank-2 update
	A Generalized Symmetric Rank-2 update
	A Symmetric Rank-2 update based on modified weak secant equation
	A preconditioner using a BFGS-like quasi-Newton update
	Numerical experience

	A Symmetric Rank-2 update based on modified secant equations
	Issues on ill-conditioning
	Numerical experience

	Conclusions

	Damped techniques for NCG methods
	Introduction
	Novel damped strategies for NCG preconditioning
	Our first proposal
	Our second proposal

	Numerical experience
	Conclusions

	Global convergence for Preconditioned Polak-Ribière method
	Global convergence for an effective PNCG method
	Convergence properties for preconditioned damped Polak-Ribière (D-PR-PNCG) method
	Numerical experience

	Conclusions

	An adaptive truncation criterion for Newton-Krylov methods
	Introduction
	Motivation for the Truncation Rule
	A novel Adaptive Truncation Criterion
	Numerical experience
	Guidelines for the choice of Ck in ATC scheme
	Numerical comparisons among different schemes
	Comparison with trust region approach

	Conclusions

	Approximate Inverse Preconditioners for Indefinite Linear Systems
	Introduction
	Preliminaries
	Our class of preconditioners AINVK

	Conclusions
	Bibliography

