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“And how else can it be?
The deeper that sorrow carves into your being, the more joy you can contain. [...]

When you are joyous, look deep into your heart and you shall find it is only that which
has given you sorrow that is giving you joy.”

Kahlil Gibran, On Joy and Sorrow from The Prophet





Acknowledgements

This is the last page I wrote, and the most important. This work would not exist
without those who supported me over the years on the professional or human side,
frequently on both.

First of all, I want to thank my parents and my sister. I would not have made it
through this, and through many other things, without their constant love, presence,
and help.

Just after them I want to acknowledge my academic father, Prof. Franco Mastroddi.
He has been my advisor since my bachelor thesis and has given me many opportunities
to grow as a researcher and as a person. There is no day I do not apply something I
have learned from him.

Many thanks to Prof. Giorgio Riccardi for his unique support during this journey.
I hope to have slightly improved his opinion about engineers. My opinion about
mathematicians improved a little bit.

Spending part of my PhD at the University of Michigan has been an experience so
strong, motivating, and full of consequences that I cannot imagine this thesis, and my
life today, without having made it. I want to deeply thank Prof. Carlos Cesnik for
having given me the opportunity to visit his research group and be involved in such a
challenging project as the X-HALE. To the past and present members of the University
of Michigan’s Active Aeroelasticity and Structures Research Laboratory, thank you
guys. Each of you has taught me something that helped me to improve. Special thanks
to Patricia and Renato, who made Michigan feel like home since my very first day.

I cannot continue without mentioning my colleague and friend Francesco. These
years would not have been the same without the time spent discussing our research,
our difficulties, our achievements. I hope we will continue over the next years, wherever
they will bring us.

The quality of our work is very influenced by the people we have around while
working. Good colleagues, which frequently end up becoming good friends, help to
keep the enthusiasm alive and the motivation strong. I had the privilege to share my
PhD years at Sapienza with many wonderful people. They made my working days



vi

more pleasant and bearable with a smile or some joke, by saying the right word at the
right time, by listening to my concerns, sometimes by doing nothing, just being there.
Tommaso, Francesco, Paolo, Matteo, Dario, Sara, Marco, Francesco, Corinna, Giulia,
Fabio, Antonio, Andrea, thank you.

To conclude my academic thanks, I want to mention, hopefully without forgetting
anyone, the people who supervised parts of this work and the ones who helped me to
improve it in order to reach this final form. Prof. Guido De Matteis, who made me
love flight dynamics so much that this thesis ended up being full of it. My academic
grandfather, Prof. Luigi Morino, for sharing his incredible experience and insights.
Eng. Mauro Linari and Eng. Fausto Di Vincenzo, for making me discover so many
Nastran secrets. Markus Ritter, for the nice collaboration on the X-HALE, which I
hope will continue in future. Dr. Marco Berci, for his help setting up some of the
unsteady aerodynamic validations. Prof. Matteo Bernardini, for his suggestions during
the internal review of my thesis. My external evaluators, Dr. Rafael Palacios and Prof.
Giuseppe Quaranta, for their positive feedback and comments on the work. Finally, I
want to thank my professors, for what they taught me, and the coordinators of my PhD
program over the past three years, Prof. Paolo Gaudenzi and Prof. Mauro Valorani,
for the opportunities that pursuing this degree has given to me.

Last, but not least, I want to thank “the others”, the people who were not directly
involved in this work but nevertheless shared all the ups and downs, the difficulties,
the progresses, constantly supporting me until the end. Leandro, for being still there,
after all this time, whenever I have to climb a new step. Piera and Ilaria, for remaining
a constant presence in my life, despite the distance grows larger, and the time we can
spend together shorter. Maria, Lucia, Alessandra, and Domitilla, who could easily
defend this thesis in my place for all the hours they listened to me talking about it.
My Michigan roommates, Rakhi and Khushbu, the latter also happening to be my
current roommate, for being the closest thing to a family while being so distant from
my actual family. Finally, Rahul, for having started a series of incredible circumstances
that made my Michigan experience definitely richer and more memorable than what I
would have ever imagined.

Thank you all. This milestone is yours, as much as it is mine.

Somewhere in the sky above the Atlatic Ocean, February 11th, 2018.



Abstract

Conventional methodologies for aeroelastic analysis and design are typically based
on linear assumptions and neglect any interaction with flight dynamics. If adequate
for traditional relatively stiff configurations, which experience small deflections under
normal operating load conditions and show high-frequency natural vibration modes,
these methodologies may not be capable of capturing the behavior of next-generation
vehicles. Higher-performance requirements on both transport and unmanned aircraft
are leading to explore innovative, increasingly light and flexible design solutions, which
in turn calls for the development of more advanced models, computational methods,
and software tools appropriate to evaluate the effects of large-amplitude displacements
and couplings between rigid-body and elastic degrees of freedom.

This thesis addresses the modeling of nonlinear aeroelasticity at the two-dimensional
level of a wing cross-section and at the three-dimensional level of a complete aircraft,
for which couplings with the vehicle motion as a whole are also considered.

The first part of the thesis presents a geometrically exact semi-analytical formulation
of the unsteady aerodynamics of a flexible thin airfoil undergoing arbitrary motion
in incompressible potential flow. The proposed model extends traditional closed-
form linearized solutions to the case of large-amplitude displacements and provides a
nonlinear theoretical benchmark for solver validation as well as a low-order simulation
tool to gain physical insight into the aeroelastic behavior of very flexible wings.

The second part of the thesis zooms out to study the fully coupled flight dynam-
ics and aeroelasticity of free-flying flexible aircraft. An integrated formulation of
nonlinear rigid-body motion and linear structural dynamics applicable to complex
configurations described by detailed models is linearized around steady maneuvers and
a computational environment for stability and response studies in presence of inertial
and aerodynamic couplings is implemented using data from commercial finite element
solvers. The prediction capabilities of the developed tool are demonstrated by analyzing
the unique flight dynamic/aeroelastic stability of two existing experimental vehicles:
the University’s of Michigan X-HALE and the Lockheed Martin’s Body Freedom Flutter
research drones. The integrated linearized formulation of rigid-body and structural
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dynamics is next extended by allowing arbitrary static elastic displacements in order
to study small perturbations around trim points at which the structure may experience
a large aeroelastostatic response, as typically occurs for very flexible vehicles. As the
first step to implement the obtained statically-nonlinear dynamically-linear model, a
novel high-fidelity algorithm for trim analysis of very flexible aircraft is formulated,
implemented by coupling off-the-shelf solvers, and validated by analyzing the X-HALE.

The two parts of this work adopt different perspectives: the relative simple descrip-
tion of two-dimensional problems allows to obtain a fully theoretical nonlinear airfoil
model, whereas the complexity of a complete flexible vehicle in free flight motivates to
develop a formulation that can be readily implemented to analyze generic configurations
by exploiting the advanced modeling capabilities of commercially available software
tools. The theoretical and computational points of view adopted in the two parts of the
thesis are not in contrast, but complementary and both necessary to the development
of nonlinear aeroelasticity, as they both played a crucial role in the formulation of
state-of-the-art linear aeroelastic models and analysis methods. Indeed, the common
aim shared by the methodologies presented in this work is to contribute to the under-
standing and simulation of nonlinearities and couplings in aircraft aeroelasticity, in
order to prevent possible negative effects and exploit potential benefits in the design of
high-performance tomorrow’s aircraft.
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Introductory remarks

Since the beginning of the aviation history, aircraft have been characterized by relatively
stiff structures and standard wing-fuselage-tail configurations. Due to moderate
flexibility, operative vehicles typically experience small deflections within the flight
envelope and show high-frequency natural vibration modes, well separated from the
flight dynamic modes. Due to these features, state-of-the-art methodologies for aircraft
aeroelastic analysis and design are based on linear assumptions and neglect couplings
between the vehicle motion as a whole and its aeroelastic response. Moreover, design
of conventional vehicles largely exploits the well-established know-hows and database
resulting from the accumulated experience on the behavior of tube-and-wing layouts.

Higher-performance requirements on future aircraft are nowadays leading to critically
reconsider traditional aeroelastic design procedures [1]. On one side, global aviation is
forecast to grow from 3.5 to 11 billion passenger trips per year by 2050s, which brings
the need to develop more energy efficient and cleaner transport vehicles in order to
meet the expected capacity demand while at the same time reducing environmental
impact [2, 3]. On the other hand, high-altitude long-endurance (HALE) unmanned
systems increasingly used as low-cost alternatives to satellites are required to have
longer times aloft and heavier payload capabilities, which again implies the need to
improve energy efficiency and reduce structural weight.

Due to the above trends, next-generation commercial and unmanned aircraft will
be characterized by lighter structures and higher-aspect-ratio wings, which will make
them much more flexible than today’s vehicles and more likely to experience large
elastic deflections at low frequencies. As a consequence, they may exhibit geometri-
cally nonlinear aeroelastic behavior and couplings between rigid-body and structural
dynamics, which are usually neglected in standard design practice [1]. In addition,
innovative concepts will be increasingly explored to go beyond the limits of traditional
configurations [2], especially in the field of unmanned systems [4]. Unconventional
vehicles may present non-intuitive behaviors and complex couplings between different
disciplines, on which there is limited if any background knowledge, so requiring to
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adopt multidisciplinary approaches based on first principles and high-fidelity modeling
since the early stages of the design cycle.

Methodologies for aircraft aeroelasticity will need to evolve in order to face the novel,
challenging requirements placed on next-generation vehicles. Research efforts over the
next decades will be directed toward developing more advanced models, computational
methods, and software tools appropriate to simulate and evaluate future concepts in
order to make the required technology and performance improvements possible. This
thesis addresses the modeling of nonlinear aeroelasticity in two-dimensional and three-
dimensional problems along with the coupling of aeroelasticity and flight dynamics,
which are among the critical issues to be considered in the design of tomorrow’s aircraft.

Literature review

The present work focuses on two specific aspects within the wider research area on
nonlinear aeroelasticity and integrated modeling of flexible aircraft: the formulation
of a geometrically exact semi-analytical solution for the unsteady aerodynamics of
a deformable thin airfoil and the development of a unique model to study the fully
coupled rigid-body and elastic dynamics of free-flying flexible vehicles described by
detailed models. The point of view of the work thus switches from the two-dimensional
one of a wing typical cross-section, which allows to follow a fully theoretical approach,
to the three-dimensional complexity of a complete aircraft, which requires a modeling
methodology that can be readily implemented for the analysis of generic configurations.
The following literature survey is consistently divided into two parts and reviews
previous contributions relevant to the addressed problems.

Modeling of airfoil unsteady potential aerodynamics

Two-dimensional unsteady airfoil theory has given a major contribution to the de-
velopment of linear aeroelasticity, especially for what concerns the understanding of
fixed-wing flutter [5, 6]. The simplifications resulting from the planar nature of the
problem combined with the standard working hypothesis of incompressible potential
flow and the linear assumptions of small amplitudes and flat wake have allowed to
obtain several closed-form solutions for the unsteady aerodynamic loads due to different
types of airfoil motion. Before advanced computational methodologies become available,
these solutions combined with two- or three-degree-of-freedom structural models con-
stituted the backbone of aeroelastic stability and response prediction. Flutter analysis
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of complete wings was also based on unsteady airfoil theory through the strip-theory
approach, according to which a finite wing span can be modeled by placing multiple
non-interacting cross-sections next to each other.

With the design of more complex configurations characterized by multiple aero-
dynamic members and the development of computational methods to tackle three-
dimensional problems, including compressibility and viscosity effects, the role of
unsteady potential-flow airfoil theory in aircraft aeroelasticity has certainly reduced.
Nevertheless, two-dimensional potential-flow models still provide useful benchmarks to
validate higher-fidelity methodologies and computationally cheap tools to gain physical
insight and perform parametric studies. For this reason, there is ongoing research to
extend the applicability of airfoil theories for incompressible potential flows to nonlinear
aeroelasticity by including effects that may be significant for highly flexible wings. Geo-
metrically nonlinear potential-flow thin airfoil models are also being developed to study
other fluid-structure interaction problems of recent interest like unsteady aerodynamics
of bio-inspired micro aerial vehicles (MAVs) [7], energy harvesting from flow-induced
flutter [8], and fish locomotion [9], which are dominated by the aerodynamic effects of
large amplitudes and free wake.

An historical review of the major contributions to unsteady airfoil theory for
incompressible potential flows over the first half of the past century is reported in
Ref. [6]. Within the framework of the linear theory, these early studies assumed
small displacements and accounted for the unsteady effects of the shed vorticity
with geometrically prescribed continuous flat-wake models. Birnbaum [10, 11] first
computed the unsteady aerodynamic force on an flat-plate airfoil undergoing harmonic
oscillations up to a reduced frequency of 0.12. His work extended previous results valid
for a stationary flat plate based on the Prandtl theory of bound vortices. Wagner [12]
obtained a closed-form solution for the transient lift response on a flat plate in a constant
freestream due to a sudden change in the angle of attack. The solution was given in
the non-dimensional time domain in terms of the so-called Wagner function, which is
an aerodynamic indicial-response function. Using the Wagner method, Glauert [13]
computed the aerodynamic coefficients on an oscillating airfoil up to a reduced frequency
of 0.5, while Küssner [14] extended the method of Birnbaum to generate results up to a
reduced frequency of 1.5. In 1934, Theodorsen [15] obtained a closed-form solution for
the unsteady lift and pitching moment on flat-plate airfoil undergoing small harmonic
plunge and pitch oscillations at an arbitrary reduced frequency. The major contribution
from his work was to give an analytical representation in the non-dimensional frequency
domain of the lift due to the shed wake in terms of the so-called Theodorsen function,
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a combination of Bessel function types. The presence of a trailing-edge flap was also
taken into account. In the same years, Cicala [16] developed a similar theory based
on the acceleration potential. Küssner [17] studied the transient lift response on a
flat-plate airfoil subjected to a vertical gust. Küssner ad Schwartz [18] also developed
a formulation for an oscillating airfoil with a trailing-edge flap. von Kármán and
Burgers [19] investigated the leading-edge suction. Based on their work, Garrick [20]
computed the drag on an oscillating airfoil with a trailing-edge flap, showing that a
propulsive force can be obtained by imposing an harmonic plunge motion. In a later
work, he also proved that the Wagner and Theodorsen functions are related to each
other through Fourier transforms [21]. By coupling the unsteady aerodynamic model
of Ref. [15] with the equations of motion (EOMs) of a flat plate elastically connected to
a rigid support, Theodorsen and Garrick [22] investigated the flutter of a typical wing
cross-section. Their study provided a deep insight into the effects of different design
parameters on the flutter speed, resulting in the set of parametric curves reported in
Refs. [22, 5]. Since then, linear typical-section aeroelastic models have been largely
used as the simplest tool for flutter prediction. Despite advanced analysis techniques
are nowadays used for this purpose, the study of Theodorsen and Garrick still provides
an importance source of reference data on the aeroelastic behavior of fixed wings.

Stemming from the work of Ref. [15], theoretical models were also developed in the
field of rotary-wing vehicles. Isaacs extended the Theodorsen solution to the case of
unsteady freestream velocity [23] and applied the theory to compute the lift on a rotary
wing in forward flight [24]. Greenberg [25] provided an approximation to the Isaacs
solution. However, both Isaacs and Greenberg neglected the aerodynamic influence of
the returning wake that characterizes rotary-wing applications. This problem was later
addressed by Loewy [26], who extended the Theodorsen theory to rotary cross-sections
in hover by substituting the Theodorsen function with the so-called Loewy function,
based on a two-dimensional description of the returning wake modeled by multiple
layers of vorticity below the airfoil.

Since the late 1930s, extensive research has been carried out in order to develop
unsteady airfoil models applicable in the time or Laplace domain and to obtain state-
space forms that could be easily assembled with structural EOMs for time-domain
simulation, stability analysis, and synthesis of control laws. R. T. Jones [27, 28]
developed two-state approximations for the Wagner and Theodorsen functions in,
respectively, the time and frequency domains. W. P. Jones [29] first extended the
validity of the Theodorsen solution to the Laplace domain. The full mathematical rigor
of such generalization was later established by Edwards and al. [30, 31], who addressed



Introductory remarks 5

the problem of time-domain unsteady aerodynamics for airfoils in incompressible and
compressible potential flows. In the same years, different authors formalized rational
function approximation techniques to obtain finite-state representations of frequency-
domain unsteady aerodynamics [32–35]. These methodologies were used to approximate
the Theodorsen and Loewy functions in order to develop state-space aeroelastic models
for fixed and rotary wings. In addition to numerical fitting of frequency-domain
functions, time-domain finite-state models were more recently developed by Peters et
al. [36, 37] from the governing equations of two-dimensional potential-flow unsteady
aerodynamics. In contrast with the aerodynamic states introduced by rational function
approximations, the ones of Refs. [36, 37] have the physical interpretation of coefficients
of a Glauert series expansion of the wake inflow. Aiming to provide an effective
reduced-order model for rotary-wing analyses, the state-space formulation of Ref. [36]
was further refined in Ref. [38] to allow for large frame motions, unsteady freestream
velocity, reverse flow, and small-amplitude cross-section deformation. In addition, the
model was cast in terms of generalized deflections and forces to facilitate the matrix-
form assembly with standard EOMs of structural dynamics. Due to the separation
of the airloads and inflow models, the formulation of Ref. [38] allows for a generic
unsteady wake description, although the presented applications assumed a standard
flat wake. The airload and inflow models were separately developed to allow the
coupling with any desired wake model, from traditional continuous flat-wake analytical
formulations [12, 15] to the three-dimensional free wake of a rotor system computed
via panel methods. Using the airload model of Ref. [38] coupled with rational function
approximations of the Theodorsen [15] and Küssner [17] functions to describe the
inflow, Berci et al. [39] developed a time-domain typical-section model valid for small-
amplitude plunge, pitch, and deformation to investigate the aeroelastic stability and
gust response of compliant airfoils. Walker and Patil [40] developed a deformable
thin airfoil model in the frequency domain using the velocity potential developed via
conformal mapping [49]. The model was validated with the theory of Ref. [38] and
used to investigate flexibility effects on thrust generation.

Advanced computational methods are nowadays available to simulate very complex
three-dimensional flows in linear and nonlinear aeroelastic problems. Nevertheless,
computationally cheaper low-order models are still useful to perform preliminary sim-
ulations and sensitivity analyses. In addition, simplified models may provide deeper
physical insight than high-fidelity fully numerical approaches, which also require to
be preliminarily validated against reference results. However, despite the considerable
amount of literature on closed-form solutions for small disturbances, theoretical model-
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ing of nonlinear aeroelasticity remains a challenge. Within the limit of two-dimensional
potential-flow airfoil theory, three sources of nonlinearity can be identified: aerodynamic
nonlinearities due to large-amplitude motions and free wake, structural nonlinearities
due to, for instance, nonlinear stiffness effects, and nonlinearities due to the freeplay of
trailing-edge flaps. Only the former type of nonlinearity is considered in the present
work, and some recent contributions to its theoretical modeling are reviewed below.

Ramesh et al. [41] proposed an unsteady thin airfoil theory valid for large amplitudes
and nonplanar wake using a vorticity distribution to satisfy the no-penetration condition
on the body boundary and a time-stepping approach based on a discrete-vortex
model [42] to compute the wake downwash. The wake discretization in vortices resulted
in a semi-analytical rather than a fully closed-form solution, namely the aerodynamic
loads were analytically evaluated in space but required a numerical time-marching
scheme. However, this allowed to remove the flat-wake assumption common to all
the linearized airfoil theories. Results for the unsteady lift coefficient on a flat-plate
undergoing imposed large-amplitude maneuvers [43] showed a good correlation with
experiments. The model of Ref. [41] was later extended by including leading-edge vortex
shedding, again described using discrete vortices [44]. Xia and Moseni [45] developed
a semi-analytical formulation for a flat-plate in large-amplitude motion by modeling
the unsteady flow in terms of a complex potential [46] and using a discrete-vortex
method [47, 48] to account for the vorticity shed from the leading and trailing edges.
The derivation was carried out in a non-inertial reference frame fixed with the moving
airfoil and using a stationary (time-independent) conformal map [49] to transform
the body boundary into a circle. Adopting a body-fixed frame allowed to use the
Milne-Thomson circle theorem [46] to develop the complex potential and the Blasius
theorem [50, 46] to evaluate the unsteady aerodynamic force. Indeed, both theorems
can be applied only to stationary bodies. The motion of the flat-plate airfoil was taken
into account by conveniently modifying the relative freestream velocity in order to
include the aerodynamic effects of plunge, surge, and pitch. Wang and Eldredge [51]
proposed a semi-analytical model for a flat-plate airfoil undergoing large-amplitude
maneuvers based on a complex-potential representation of the flow and discrete vortices
of variable circulation shed from the leading and trailing edges. In contrast with
Ref. [45], the derivation was carried out in an inertial reference frame and the airfoil
large-amplitude motion was directly taken into account in the time-dependent map used
to develop the complex potential. Since the Blasius theorem is not applicable to moving
bodies, relations for the unsteady aerodynamic force and moment were obtained from
the linear and angular impulses and, as in Ref. [45], they were analytically evaluated
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(in space) using the residue theorem [49]. Yan et al. [52] developed a semi-analytical
model for a flat-plate undergoing large-amplitude motion in an unsteady freestream.
The formulation was based on a velocity potential developed in a body-fixed frame by
means of a time-independent conformal map. The aerodynamic force and moment were
obtained by analytically integrating the unsteady pressure difference along the chord.
The formulation was reduced to the Theodorsen model under linear assumptions, and
results for the lift coefficient were compared with theory [38] and experiments [41].

The above literature review points out the lack of a general modeling approach
to simultaneously account for large-amplitude rigid-body motion, large-amplitude
deformation, and free wake in a single geometrically exact unsteady airfoil theory. The
model of Ref. [41] considers large-amplitude rigid-body motion and nonplanar wake,
but the vortex-induced velocities are neglected in the wake convection and no airfoil
deformation is taken into account. The formulations of Refs. [45, 51, 52] consider a
fully free wake but are valid only for rigid flat plates, since none of the methodologies is
applicable in presence arbitrary cross-section deformation. Indeed, stationary conformal
maps are used to develop the complex potential of Ref. [45] and the velocity potential
of Ref. [52]. This implies that the no-penetration unsteady boundary condition is
imposed on the flat-plate undeformed configuration in a body-fixed frame, which is
also the configuration considered to evaluate the aerodynamic loads. As a result, the
models of Refs. [45, 52] do not allow body deformation. In addition, they require to
account for the airfoil rigid-body motion through the relative freestream velocity, so
that different noncirculatory effects cannot be clearly separated. In the case of Ref. [52],
the use of a velocity-potential model in combination with a free-wake description results
in non-compact semi-analytical relations for the unsteady aerodynamic loads. The
approach of Ref. [51] allows a simpler and clearer modeling by developing the flow in
the inertial frame and using the complex potential. However, the obtained formulas
for the aerodynamic loads are valid only for flat plates, again preventing the extension
to deformable airfoils. Large frame motions and possible coupling with free wake are
allowed by the model of Peters et al. [38], but body deformation is assumed to remain
small. The models of Refs. [39, 40] are also suitable for compliant airfoils, but they
assume small disturbances and flat wake.

Modeling of coupled flight dynamics and aeroelasticity

Aircraft aeroelasticity addresses the stability and response of flexible vehicles subjected
to steady and unsteady aerodynamics. In the aircraft design and certification process,
aeroelastic analyses are nowadays standardly conducted using mature computational
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techniques [53] based on linear structural modeling via the finite element method (FEM)
and linear unsteady aerodynamic modeling typically via the doublet lattice method
(DLM). These analysis techniques allow to describe the three-dimensional complexity
of realistic configurations, but do not adequately account for interactions between
structural dynamics and the aircraft motion as a whole. This limitation is motivated
by the relative high stiffness of conventional aircraft, which experience moderate
deflections under typical operating load conditions and show high-frequency natural
vibration modes. As a result of these characteristics, mutual interactions between
rigid-body and elastic degrees of freedom (DOFs) are typically negligible for traditional
configurations, which justifies the separation of disciplines conventionally assumed in
state-of-the-art flight dynamic and aeroelastic models. Geometric nonlinearities due to
large displacements and follower loads are also typically negligible, so allowing the use
of linear structural and aerodynamic models.

Despite it is only in recent times that vehicle flexibility has increased up to require
for coupled modeling of rigid-body and elastic motions, the development of integrated
formulations started from the second half of the past century. The contributions
to the existing literature can be classified in different categories depending on the
coupling effects considered and on the body axes chosen to describe the aircraft global
dynamics. Coupling effects between rigid-body and elastic motions may be inertial
or aerodynamic. Inertial coupling is due to the influence of flexibility on the aircraft
angular momentum and to the acceleration loads experienced by the material points of
a flexible structure within a non-inertial body reference frame. Aerodynamic coupling
is due to the contribution of elastic DOFs to the total aerodynamic force and moment,
and to the effects of rigid-body DOFs on the local aerodynamic load distribution.
Concerning the choice of body reference axes, different possibilities have been explored,
as clarified in the following literature review.

Bisplinghoff et al. [5] presented aerodynamically coupled equations of motion (EOMs)
of an unrestrained flexible vehicle in terms of generalized coordinates associated with
linear rigid-body and elastic normal modes. Bisplinghoff and Ashley [54] developed
nonlinear EOMs for the rigid-body DOFs aerodynamically coupled with linear EOMs
for the elastic DOFs. The same set of equations was also obtained by Etkin [55]. The
assumption of large body frame motions and small elastic displacements remained
common to the integrated formulations developed until the 1990s, after which the
coupled modeling of flight dynamics and nonlinear aeroelasticity started to be addressed.

Milne [56] first identified three possible choices of body axes to model an unrestrained
elastic vehicle: attached axes, mean axes, and principal axes. Attached axes have origin
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fixed to an aircraft material point and orientation tangent, normal, and binormal to
a curve of material points passing through the original point. Using attached axes
gives fully coupled EOMs, since the aircraft instantaneous center of mass moves with
respect to any attached-axis frame. Mean axes are introduced as a set of floating axes
such that the linear and angular momenta due to the relative elastic motion identically
vanish [57]. This definition implies that the origin of mean axes identically coincides
with the instantaneous aircraft center of mass, and that the EOMs written by adopting
a mean-axis reference frame are inertially decoupled. However, the orientation of mean
axes is function of the vehicle deformation. Finally, principal axes are such that the
aircraft inertia tensor is identically diagonal.

After the classification provided by Milne [56], several integrated formulations of
flight dynamics and (linear) aeroelasticity were developed by assuming a mean-axis
reference frame. Morino and Noll [58] deduced a flexible-aircraft model in mean
axes from the weak formulation of the Cauchy equation for an unrestrained elastic
continuum. The equations of motion were linearized around level flight and recast in a
state-space form to be assembled with the dynamics of sensors, control logic, actuators,
and unsteady aerodynamics. Canavin and Likins [59] showed that the mean-axis
concept is generally applicable also in presence of large elastic motions. In the case
of small deformations, a simplification to the mean-axis constraints can be obtained
by neglecting higher-order quantities. In the 1970s, a program called FLEXSTAB
based on a mean-axis formulation was developed at the Boeing company to study
the stability of a flexible vehicle [60, 61]. The use of a clamped-axis system was also
explored, and the conclusion that mean axes better describe the characteristics of
free-flying structures was drawn [61]. Letsinger [62] further investigated the use of
mean- versus attached-axis systems, concluding that only for the former the external
moment resultant can be identically equated to the time derivative of the angular
momentum. Based on this conclusion, Rodden and Love [63] developed the EOMs for a
quasi-steady aeroelastic vehicle using restrained flexibility characteristics but correctly
taking into account the relative orientation of mean axes with respect a particular
choice of attached axes. The well-established MSC Nastran solution sequence for static
aeroelasticity is based on the formulation of Ref. [63]. Waszak and Schmidt [64] first
formalized the so-called practical mean-axis (PMA) constraints as an approximation of
the geometrically exact mean-axis constraints that is consistent with the assumption
of small elastic displacements. Since the relative angular momentum due to the
elastic motion is evaluated in undeformed rather than deformed configuration when the
PMA constraints are considered, these can be identically satisfied by representing the
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relative displacement field as a linear combination of the natural vibration modes of
the unrestrained vehicle. In other words, the origin of practical mean axes (PMAs) is
still at the instantaneous vehicle center of mass, as for mean axes, but their orientation
does not change with deformation. As a drawback, despite significant simplifications
with respect to the use of attached axes, assuming a PMA reference frame does not
give an inertially decoupled formulation, since residual inertial coupling terms remain
in the EOMs. However, these terms were neglected in Ref. [64] under the assumption
of collinear elastic displacements and elastic rates, and a time-invariant inertia tensor
was also assumed. With these simplifications, a set of inertially decoupled EOMs
was obtained from the Lagrange equations and coupled with a quasi-steady strip-
theory aerodynamic model to study the impact of flexibility on the pitch-to-elevator
frequency response function. The formulation of Ref. [64] was more recently applied
by Schmidt and Raney to study the handling qualities of a flexible vehicle [65] and to
synthesize control laws for a research drone showing the body-freedom flutter flight
dynamic/aeroelastic instability [66]. Buttrill et al. [67] developed the EOMs of a
flexible vehicle in a PMA reference frame, but in contrast with Ref. [64] the residual
inertial coupling terms were not neglected. The formulation assumed the availablility
of a lumped-mass FEM model of the aircraft, but the rotational DOFs of the FEM
grids were not taken into account. The EOMs presented in Ref. [67] were shown to
reduce to the ones of Ref. [64] under the simplifications of collinearity between elastic
displacements and elastic rates and constant inertia tensor [68].

Meirovitch and Tuzcu [69] criticized the choice of a mean-axis reference frame with
the arguments that: 1) the mean-axis constraints are difficult to enforce; 2) the axes
orientation with respect to the vehicle vary with deformation; 3) the EOMs are still
coupled through aerodynamics; and 4) the mean-axis constraints eliminate 6 elastic
DOFs. These arguments were recently reviewed by Neto et al. [70], showing that the first
two remarks are not appropriate in the framework of small elastic displacements, due
to the possibility to approximate mean axes with PMAs and either neglect the residual
inertial couplings [64–66] or evaluate them from the aircraft FEM model [67]. Morever,
despite rigid-body and elastic DOFs remain coupled through aerodynamics, achieving a
partial or full inertial decoupling is an advantage due to the considerable simplifications
in the EOMs. Finally, the elimination of 6 DOFs is correct, since the displacement-
based stiffness matrix of a free-flying vehicle modeled by N structural DOFs has rank
N − 6. Based on their criticism to mean axes, Meirovitch and Tuzcu [69] proposed
an alternative approach to model unrestrained flexible structures using attached axes
and Lagrange equations in quasi coordinates [71]. The set of EOMs included ordinary
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differential equations for the rigid-body DOFs and partial differential equations for the
elastic DOFs, which were discretized in space for aircraft modeled as systems of flexible
beams. The problem was split into a set of nonlinear equations for flight dynamics
and a set of linear perturbation equations for small disturbances of rigid-body and
elastic DOFs with respect to reference maneuvers. Avanzini et al. [72] presented a
integrated flexible aircraft model based on the attached-axis approach of Ref. [69], but
developed the EOMs using Newton and Lagrange equations. The formulation was
limited to the study of vehicles having flexible half-wings and aft fuselage modeled as
beam-type members, and was completed with quasi-steady aerodynamic strip-theory
to investigate the influence of different couplings on the longitudinal behavior of a
representative flexible transport aircraft.

The interest in modeling the complexity of realistic vehicles without limiting to the
analysis of sets of beam-type members drove the development of integrated formulations
readily applicable to FEM models including any combination of lumped-mass, beam,
shell, and solid elements. Reschke [73] deduced fully coupled EOMs for a flexible
aircraft by choosing a PMA body reference frame and using Lagrange equations in
quasi coordinates. The aircraft was described in terms of a generic lumped-mass FEM
model and, in contrast with Ref. [67], rotational DOFs at the FEM grids were taken
into account to evaluate the inertial coupling terms. A rational function approximation
of DLM unsteady aerodynamics was used to perform time-domain simulations of
aircraft maneuvers and investigate load recovery for flexible vehicles. Baldelli et al. [74]
presented an aerodynamically coupled formulation to study aeroelastic effects on aircraft
flight dynamics. A FEM model of the aircraft was assumed to be available, and a three-
dimensional panel method together with a rational function approximation was used
to model small-disturbance unsteady aerodynamics. The need to improve the standard
finite-state aerodynamic models used in aeroelastic analyses to accurately describe
rigid-body stability was pointed out and corrections were conveniently implemented
together with the modeling of weight and forward-velocity perturbation loads. Recently,
Neto et al. [70] proposed a formulation for the flight dynamics and aeroelasticity of
flexible aircraft using general body axes, which was specialized to three particular
cases: dually-constrained axes, first introduced in their work, attached axes [56], and
PMAs [73], referred to as consistent mean axes.

All the contributions reviewed so far are in the framework of coupled flight dynamics
and linear aeroelasticity, namely they allow for nonlinear motion of the aircraft as
a whole but assume small elastic displacements relative to the body reference frame.
This approach is reasonable to study the coupled rigid-body and elastic behaviors of
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vehicles characterized by close frequencies of flight dynamic and aeroelastic modes
while still having sufficient stiffness such that elastic deflections remain in the limit
of validity of the linear theory [75]. For very flexible vehicles, geometrically nonlinear
effects associated with large static and dynamic displacements may be significant [76],
so requiring nonlinear aeroelastic modeling.

Early work on coupled flight dynamics and nonlinear aeroelasticity was carried out
by van Schoor and von Flotow [77], which considered linearized EOMs around nonlinear
steady states to study flexibility effects on the rigid-body stability of very flexible vehi-
cles. Patil and Hodges [78] developed an integrated reduced-order framework to study
HALE aircraft by coupling the nonlinear EOMs of flight dynamics with a geometrically
exact intrinsic beam formulation [79] and the two-dimensional potential-flow finite-state
unsteady aerodynamic model by Peters et al. [36, 38]. The integrated formulation
resulted in a computational code called NATASHA [78] that was used to study the
flight dynamics of a very flexible flying wing. A standard rigid-body stability analysis
was compared with the one carried out by linearizing the fully coupled EOMs around
nonlinear aeroelastic trim conditions, and a significant change of the flight dynamic
poles due to large static deflections was observed for high-payload configurations. The
results of Ref. [78] pointed out that the effects of large static displacements should be at
least considered when analyzing flexible vehicles. Indeed, integrated linearized models
developed aroung the geometrically nonlinear trim deformed configuration (statically-
nonlinear dynamically-linear models) were found to retain most of the physics of fully
nonlinear models, which however remain necessary in the case of long-term simulations,
large disturbances, or unstable modes [1, 78]. Su and Cesnik [80] presented a complete
framework to study blended-wing-body, single-wing, and joined-wing highly flexible
configurations using a geometrically exact strain-based beam formulation [81] coupled
with two-dimensional finite-state aerodynamics [36, 38] and flight dynamic equations.
The integrated model was implemented in a computational code called the University of
Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) [80], which allows
to perform rigid-body, linear aeroelastic, and nonlinear aeroelastic analyses. A partial
validation of the code was carried out by comparing the outputs from separate modules
with available experimental data or theoretical solutions, but a complete assessment
of the integrated framework could not be performed due to the lack of available data
involving all the couplings. For this reason, the University of Michigan is developing an
highly flexible experimental HALE, the X-HALE [82], as a low-cost platform to collect
flight-test data useful for future validation of coupled flight dynamic/nonlinear aeroe-
lastic formulations and computational tools. Preliminary correlations between flight
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test results and numerical analyses from UM/NAST for the X-HALE Risk Reduction
Vehicle (RRV) were presented in Ref. [83].

The above literature review points out that despite the availability of very powerful
commercial software tools to perform high-fidelity analyses for single disciplines like
flight dynamics, structural dynamics, and steady/unsteady aerodynamics, there is
still a lack of modeling methodologies to effectively and efficiently integrate such
tools in multidisciplinary frameworks for simulation and design of (very) flexible
vehicles. Within the framework of linear elastic theory, the study of coupled flight
dynamics and aeroelasticity is frequently conducted by assuming low-fidelity beam-type
structural models [72], quasi-steady aerodynamics [70, 66], and neglecting some of the
couplings [66, 74]. In addition, available formulations and computational tools for the
coupled flight dynamics and nonlinear aeroelasticity of very flexible aircraft typically
consist of strain-based beam structural models coupled with corrected two-dimensional
potential-flow unsteady aerodynamics [78, 80]. Integrated formulations applicable
to detailed models are usually limited to the case of nonlinear rigid-body motion
coupled with small elastic displacements, so being not appropriate for very flexible
aircraft, and they typically assume a discretized description of the structure from the
outset [73, 70], with drawbacks in terms of compactness and possibility to use different
FEM discretization approaches. Recent works point out efforts aimed to extend
integrated nonlinear flight dynamic/nonlinear aeroelastic models to account for three-
dimensional aerodynamics [84], propose reduced-order formulations to include some
nonlinear effects in coupled flight dynamic/linear aeroelastic simulation frameworks
for complex configurations [85–87], and to develop high-fidelity tools based on off-the-
shelf commercial solvers to perform accurate and efficient nonlinear FSI simulations
of clamped aircraft components like cantilevered wings [88]. Nevertheless, a unified
treatment of these modeling aspects is still a research challenge. The development
and implementation of multidisciplinary formulations and computational tools to
analyze flight dynamics and nonlinear aeroelasticity with high fidelity and feasible
computational burden will play a crucial role in enabling the design of future high-
performance aircraft [2].

Objectives and outline of the thesis

This thesis consists of two parts and presents modeling methodologies for the nonlinear
aeroelasticity of wing cross-sections (Part I, two-dimensional problem) and of complete
aircraft in free flight (Part II, three-dimensional problem). The proposed methodologies
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result from the research carried out by the author during the doctoral studies [89–94]
and aim to contribute to the filling of some of the gaps pointed out by the previous
literature review. The two parts of the thesis adopt different perspectives. The relative
simple description of two-dimensional problems combined with standard working
hypotheses allows to address the nonlinear modeling of wing cross-sections with a
fully theoretical approach. On the other hand, the three-dimensional complexity of a
complete vehicle calls for an integrated flight dynamic/aeroelastic model that can be
readily implemented using outputs from commercial software tools to analyze complex
configurations with high fidelity. Despite different, the theoretical and computational
points of view, and thus the two parts of this work, are not in contrast but both
aimed to increase the the understanding of the behavior of future, increasingly flexible
vehicles. Indeed, analytical and numerical models both played a crucial role to the
development of state-of-the-art aircraft design techniques.

Motivated by the deep insight into aeroelastic phenomena provided by closed-form
linearized typical-section models, the first part of the thesis presents a geometrically
exact semi-analytical formulation of the unsteady aerodynamics of a flexible thin airfoil
in incompressible potential flow [89, 90, 93]. The proposed formulation, developed
Chap. 1, allows for both rigid-body motion and deformation of arbitrary amplitude along
with free wake, which are not simultaneously considered in existing theoretical models.
The formulation does not aim to replace high-fidelity numerical methods, which allow to
simulate very complex three-dimensional flows including compressibility and viscosity
effects. Indeed, the proposed model aims to support high-fidelity computational
approaches by providing a nonlinear theoretical benchmark for code validation and a low-
order simulation tool to identify key parameters and phenomena in nonlinear aeroelastic
problems that may be reasonably addressed using two-dimensional potential-flow
models, at least as first approximation. Possible applications are in the aeroelasticity
of very flexible wings, unsteady aerodynamics of MAVs, energy harvesting through
flow-induced flutter, and fish locomotion.

The general unsteady airfoil theory developed in Chap. 1 is specialized to the
particular case of a flat plate in Chap. 2 and validated against available closed-
form solutions for small disturbances and experimental results for large amplitudes.
The applicability of the flat-plate model in nonlinear aeroelastic simulations is also
demonstrated by studying sudden-start and body-vortex interaction problems. The
formulation is next specialized to a flexible thin airfoil with curvature of constant
sign along the chord in Chap. 3 and validated against panel-method results and the
Peters modified theory of Berci et al [38]. The developed flexible-airfoil model is then
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used to simulate the aerodynamic load on a cantilevered flag subjected to imposed
elastic motion in a steady axial flow. This is a first step toward the formulation of a
geometrically exact aeroelastic model of flag flutter, a possible future development of
the first part of this work.

The second part of the thesis addresses the flight dynamics and aeroelasticity of
complete flexible vehicles in free flight. An integrated formulation of nonlinear rigid-
body motion and linearized structural dynamics valid for generic continuous structures
is presented in Chap. 4 by assuming a PMA body reference frame [91]. Since this
frame coincides with the natural set of computational axes assumed in commercially
available FEM solvers for the linear normal modes analysis of unrestrained structures,
the proposed formulation is readily implemented to analyze complex configurations
described by detailed models using data from off-the-shelf software tools. Compared to
existing integrated formulations, the proposed one does not assume any simplification
in the modeling of inertial and aerodynamic coupling effects and is developed for
generic continuous structures. This results in compact EOMs and allows to use an
arbitrary FEM discretization strategy, although a possible approach is proposed based
on the natural outputs of FEM normal modes analyses. The fully coupled EOMs are
linearized around a generic steady maneuver and recast in state-space form using a
rational function approximation of the perturbation unsteady aerodynamic loads, and
a computational framework for integrated stability and response studies is implemented
using data from commercial solvers [95, 96, 53]. The developed computational tool
is described in Chap. 5 and provides a complete framework for the integrated flight
dynamic/aeroelastic analysis of flexible vehicles described by build-up FEM models
in the limit of validity of the linear elastic theory. The prediction capabilities of
the computational tool are demonstrated by analyzing the coupled stability of two
existing experimental vehicles: the University of Michigan’s X-HALE [82] and the
Lockheed Martin’s Body-Freedom-Flutter (BFF) [75] research drones. Although the X-
HALE Aeroelastic Test Vehicle (ATV) is designed to show highly nonlinear aeroelastic
behavior [82], the preliminary X-HALE RRV configuration analyzed in this work
experiences relatively moderate deflections at typical operating trim conditions [83].
The BFF vehicle is characterized by a strong coupling of rigid-body and elastic DOFs
leading to the body-freedom flutter instability [75, 66], but elastic displacements remain
in the limit of validity of linear aeroelastic theory. Therefore, both configurations are
good test cases for the developed computational tool.

In order to extend the formulation to very flexible vehicles by at least taking
into account the effects of large static elastic displacements, the linearized model of
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Chap. 4 is next extended in Chap. 6 to the case of small perturbations around nonlinear
aeroelastic trim conditions. In contrast with existing integrated formulations of flight
dynamics and nonlinear aeroelasticity, which are typically developed for beam-type
models (for instance, see Refs. [78, 80]), the proposed statically-nonlinear dynamically-
linear description is applicable to very flexible vehicles described by detailed FEM
representations. Its implementation within the developed computational tool for
stability and response, which will be addressed in future works, requires the capability
to compute the nonlinear trim aeroelastostatic response of generic configurations, as
the inertial, modal, and aerodynamic characteristics of statically deformed aircraft are
inherently dependent on the trim point in presence of large static elastic displacements.
Since no commercial solver is so far available for nonlinear aeroelastic trim analysis
of detailed FEM models, a novel computational methodology to trim very flexible
aircraft based on the coupling of off-the-shelf structural and aerodynamic solvers is
proposed in Chap. 7. The validity and computational advantages of the approach
are demonstrated by implementing a nonlinear aeroelastic trim framework based on a
commercial nonlinear FEM solver [97] coupled with a vortex-lattice method (VLM)
code [42], which is validated by comparing results for the X-HALE RRV with available
solutions from other methodologies [92, 94].

The thesis ends with a chapter of concluding remarks on the modeling methodologies
presented in this work and on their possible applications and extensions that could be
the subject of future developments.



Part I

Unsteady aerodynamics of flexible
thin airfoils





Chapter 1

General formulation of airfoil
unsteady aerodynamics

This chapter presents a general theoretical model for the unsteady aerodynamics of a
flexible thin airfoil undergoing rigid-body motion and deformation of arbitrary ampli-
tude in the attached, planar, and irrotational flow of an inviscid and incompressible
fluid. As major novelty, no simplifying assumption is introduced in the model besides
the above working hypotheses on the fluid and flow. Within their limit of validity,
the proposed formulation thus provides a geometrically exact thin airfoil theory that
simultaneously allows for large-amplitude rigid-body motion, large-amplitude deforma-
tion, and free wake. As a result, the proposed model extends traditional closed-form
results for small disturbances [12, 15, 17, 36, 40] and also more recent formulations for
large amplitudes and nonplanar wake [38, 41, 45, 51, 52], which either neglect airfoil
flexibility [45, 51, 41, 52] or assume small cross-section deformations [38]. Possible
applications of the proposed model are as a nonlinear theoretical benchmark for the
assessment of high-fidelity solvers and as a low-order simulation tool to investigate
the aeroelastic behavior of very flexible wings. The proposed model may be also used
to study other fluid-structure interaction problems of recent interest like unsteady
aerodynamics of MAVs or energy harvesting from flow-induced flutter, which may
involve large-amplitude motions, cross-section flexibility, and free wake shedding.

The modeling methodology that is followed in the derivation is based on conformal
mapping [49], a complex-potential description of the velocity field [50, 46], and a
discrete-vortex model of the wake [47, 48]. These theoretical tools enable to significantly
simplify the developments in order to obtain a compact and concise representation
of the unsteady aerodynamic loads even in presence of large amplitudes and free
wake. Modeling two-dimensional potential-flow unsteady aerodynamics using complex
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analysis is a well-established technique that was used by several authors to develop
closed-form linearized solutions for both rigid [15] and deformable [40] airfoils as well as
semi-analytical models of flat plates undergoing large-amplitude maneuvers [45, 52, 51].
This work generalizes the methodology in order to allow for both rigid-body motion
and deformation of arbitrary amplitude along with free wake.

The working hypotheses and key steps of the methodology are briefly outlined in
Sec. 1.1. The proposed formulation is presented in Secs. 1.2, 1.3, and 1.4 by following
the derivation of Refs. [89, 90, 93].

1.1 Theoretical approach

The proposed approach is applicable to model the unsteady aerodynamics of an airfoil
immersed in the attached, planar, and irrotational flow of an inviscid and incompressible
fluid. These working hypotheses allow to develop a theoretical model using analytical
tools from complex analysis [49], and are however reasonable to address several FSI
problems of aeronautical interest, at least in first approximation.

The physical plane (x, y) of the flow is identified with the complex plane of variable
x := x+ iy, where i is the imaginary unit. An auxiliary complex plane of variable ω

is also introduced to simplify the developments. The physical and auxiliary planes will
be hereafter referred to as the x-plane and the ω-plane, respectively.

Under the mentioned working hypotheses on the fluid and flow, the unsteady
velocity field around a deformable airfoil undergoing arbitrary motion in the x-plane
can be described by the complex potential [46]

Φ(x; t) := ϕ(x, y; t) + iψ(x, y; t) (1.1)

where t is time, ϕ the velocity potential, and ψ the stream function. Evaluating the
complex potential in the x-plane [Eq. (1.1)] is a difficult task even for very simple airfoil
shapes, and it is overcome by means of a two-step procedure. Firstly, an appropriate
time-dependent map x = x(ω; t) is introduced to transform the body boundary in
the x-plane into a circle in the ω-plane. Next, the complex potential Φ̃(ω; t) that
describes the velocity field around the circle is developed in the ω-plane to eventually
recover the velocity field in the x-plane by means of a change of variable [46]

u[x(ω; t); t] = ∂ωΦ̃(ω; t)
∂ωx(ω; t) (1.2)
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where u(x; t) := u(x, y; t) − iv(x, y; t) is the conjugate velocity [46].
Once the velocity field around the airfoil is known from Eq. (1.2), the unsteady

pressure distribution on the body boundary can be obtained using Bernoulli theorem.
General analytical formulas for the unsteady aerodynamic force and moment on a
deformable moving body in incompressible potential flow were obtained in Ref. [89]
and are reviewed in Secs. 1.4.2 and 1.4.3.

The main advantage of the modeling methodology outlined in this section is its
applicability to any airfoil shape and motion, provided that an appropriate map x(ω; t)
is introduced to transform the body boundary into a circle. Moreover, describing the
velocity field in terms of a complex potential allows to obtain a concise and compact
theoretical model even in presence of large amplitudes, so providing a physical insight
that is not easily gained from fully numerical high-order models. In addition, the
complex-potential representation in combination with a discrete-vortex method allows
to easily accommodate either flat, frozen, or free wake descriptions with no change in
the formulation.

1.2 Generalized map

The methodology described in Sec. 1.1 was traditionally applied in combination with
stationary (time-independent) maps, in particular the Joukowski conformal map [50, 46]
that transforms a circle of radius b/2 and center at the origin of the ω-plane into
an horizontal zero-thickness flat plate of length ℓ = 2b in the x-plane1. Assuming
small perturbations with respect to the zero-angle-of-attack equilibrium configuration,
the Joukowski map was used to model the small-disturbance unsteady aerodynamics
of flat-plate airfoils undergoing small-amplitude plunge and pitch [15, 5] and, more
recently, also small-amplitude deformation [40]. Introducing a body-fixed reference
frame and an appropriate change of variable, the Joukowski map also allowed to model
rigid flat plates subjected to large-amplitude maneuvers [45, 52], with the rigid-body
motion taken into account by modifying the relative freestream velocity.

In the present work, the methodology outlined in Sec. 1.1 is applied in combination
with a time-dependent map between the x- and ω-planes that instantaneously follows
the boundary of a flexible thin airfoil during its arbitrary motion [90]. The motivation
for using a time-dependent transformation in place of the standard Joukowski map

1In the most general case, the Joukowski map can be used to model a class of different cross-
sections known as Joukowski airfoils by considering appropriate translations of the circle in the
ω-plane. However, only the particular case of a circle having center on the origin, giving a flat-plate
cross-section, has been considered to develop aeroelastic models (e.g., Ref. [15]).
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is that this allows to impose the unsteady boundary condition and evaluate the
aerodynamic loads on the instantaneous airfoil deformed configuration and by taking
into account the geometrically exact cross-section kinematics. As a result, all the
simplifying assumptions introduced in small-disturbance theories can be completely
removed, provided that the working hypotheses on the fluid and flow remains valid.
When only rigid-body motion occurs, using a time-dependent map is still convenient
since it does not require to modify the freestream velocity in order to account for the
cross-section translation and pitch, so leading to a clear separation of the noncirculatory
effects due to the incoming flow and body motion.

The formulation that follows is applicable to a flexible thin (zero-thickness) airfoil
that undergoes arbitrary motion in x-plane. The arbitrariness is in terms of both
amplitude (no small-amplitude assumption) and time dependency (no harmonic motions
only) of rigid-body translation, rigid-body rotation, and cross-section deformation. The
instantaneous configuration of the airfoil boundary is described by the time-dependent
map introduced in Sec. 1.2.1. Inclusion of finite thickness in the airfoil shape is possible
with minor changes in the mapping function and in the methodology, but it is not
addressed in this work. The properties of the assumed map in terms of number and
position of its critical points and branch cuts [49] are discussed Secs. 1.2.2, 1.2.3,
and 1.2.4, and their consequences on the unsteady aerodynamic model are pointed out.

1.2.1 Geometry and kinematics

The present unsteady aerodynamic model is based on the following time-dependent
map from the ω- to the x-plane [90]:

x(ω; t) = h(t) + ℓ χ(t)
4

n∑
k=1

ck(t)
(

ωk + ω−k
)

(1.3)

This is assumed to be smooth in both ω and t, with derivative ∂ωx ≠ 0 at any point
on the unit circle C apart from the points ω = ±1.

The map in Eq. (1.3) verifies the property x(1/ω) = x(ω) and transforms points
on C in the ω-plane into points on the boundary ∂Ωb of a flexible thin airfoil of
undeformed length ℓ. The transformation depends on time in order to account for
the cross-section arbitrary rigid-body motion and deformation in the plane of the
flow. Rigid-body translations are taken into account in Eq. (1.3) by the function
h(t) = hx(t) + ihy(t), which in undeformed configuration gives the position of the
airfoil centroid. The function χ(t) := exp[−iα(t)] describes the cross-section rigid-body
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Fig. 1.1 Generalized map.

rotation by the pitch angle α(t), clockwise-positive with respect to the horizontal axis.
The airfoil instantaneous deformed shape is described by the complex coefficients
ck(t) = c r

k (t) + ic i
k(t) (k = 1, 2, . . . , n), n being the order of the truncated Laurent

series [49] in Eq. (1.3). An example of the mapping from the ω-plane to the x-plane
for a particular choice of the map parameters is illustrated in Fig. 1.1 (n = 3, ℓ = 1,
h = 0.25 − i0.25, α = 10◦, c1 = 1, c2 = i0.075, and c3 = i0.125).

The transformation used in Ref. [89] to model a flat plate in large-amplitude rigid-
body motion is a special case of Eq. (1.3) obtained by taking n = 1 and c1 ≡ 1. A
similar map was also adopted in Ref. [51]. The Joukowski conformal map is also a
special case of Eq. (1.3) that can be recovered by setting n = 1, c1 ≡ 1, h ≡ 0, χ ≡ 1,
c1 ≡ 1, and using the auxiliary variable ζ = ℓ ω/4. If n > 1 Laurent coefficients are
used in Eq. (1.3), the map describes the plane around a flexible thin airfoil subjected
to both rigid-body motion and deformation, with the cross-section deformed shape
showing n− 2 curvature sign changes along the chord. If deformations with respect to
the flat-plate configuration (shown in red in the example of Fig. 1.1) are small, the
quantities c̃1 := c1 − 1 and ck (k = 2, . . . , n) are small compared to 1. If the quantities
h, χ, and ck (k = 1, . . . , n) in Eq. (1.3) do not depend on time, the map describes a
rigid curved airfoil having stationary pitch angle α.

The body boundary ∂Ωb is described by the curve obtained by evaluating the map
in Eq. (1.3) for ω ∈ C, namely by taking ω = exp(iθ) with θ ∈ [0, 2π):

xb(θ; t) := x(eiθ; t) = h(t) + ℓ χ(t)
2

n∑
k=1

ck(t) cos kθ (1.4)
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The upper and lower sides are spanned for θ ∈ [0, π) and θ ∈ [π, 2π), respectively. Only
cosine functions are present in Eq. (1.4) due to the zero-thickness condition. The airfoil
centroid in deformed configuration H is obtained by evaluating Eq. (1.4) for θ = π/2:

H(t) = h(t) + ℓ χ(t)
2

[n/2]∑
j=1

(−1)j c2j(t) (1.5)

One identically has H ≡ h is the case of a flat plate [89].
Assuming the angle θ on C as Lagrangian parameter for ∂Ωb, the velocity ub of a

point on the airfoil boundary is evaluated as

ub(θ; t) := ∂txb(θ; t) = ḣ(t) + ℓ χ(t)
2

n∑
k=1

[ ċk(t) − i α̇(t) ck(t) ] cos kθ (1.6)

Equation (1.6) shows that corresponding points on the upper and lower airfoil sides
have the same velocity, as required for a zero-thickness body.

Note that the angle θ in Eq. (1.4) could more generally be a function of time.
Indeed, a different parametrization of ∂Ωb would add only a tangent contribution to
Eq. (1.6), which would not influence the surrounding flow in an inviscid model.

1.2.2 Critical points

The critical points of the map x(ω; t) are the points of the x-plane obtained by mapping
the zeros of ∂ωx(ω; t) in the ω-plane. The location of these points and their role in
the present unsteady aerodynamic model are discussed below.

The ω-derivative of Eq. (1.3) can be written as ∂ωx = Q2n/ω
n+1 where

Q2n(ω; t) = ℓ χ(t)
4 ωn

n∑
k=1

k ck(t)
(

ωk − ω−k
)

= ℓ χ(t)
4 (ω2 − 1)

n∑
k=1

k ck(t) ωn−k
(

ω2k−2 + ω2k−4 + . . .+ ω2 + 1
) (1.7)

is a polynomial of degree 2n in ω with time-dependent complex coefficients. The zeros
of ∂ωx are the 2n zeros of Q2n, whose position depends only on the instantaneous
airfoil shape described by the Laurent coefficients ck (k = 1, . . . , n).

The second row of Eq. (1.7) shows that the points ω = ±1 on C are zeros of Q2n

for any value of n and for any time, namely for any airfoil described by Eq. (1.3). Since
the latter transforms the points ω = ±1 into the airfoil edges, these are always critical
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points of the map. The derivative ∂ωx is assumed non zero at any point ω ̸= ±1 on C
(see Subsec. 1.2.1), hence the airfoil edges are the only critical points on ∂Ωb.

The first row of Eq. (1.7) and the property x(ω) = x(1/ω) of Eq. (1.3) show that if
a generic point ω ̸= 0 is a zero of Q2n then its reciprocal 1/ω is also a zero. The other
2n− 2 zeros of Q2n are thus n− 1 inside C and n− 1 outside C. The latter, denoted
by Λk(t) (k = 1, 2, . . . , n− 1), are transformed by Eq. (1.3) into n− 1 critical points
Yk(t) := x[Λk(t); t] in the fluid domain. As well known for the Joukowski map, points
inside C are not mapped onto the x-plane. Therefore, the n− 1 zeros of Q2n inside C,
denoted by λk(t) := 1/Λk(t), do not give additional critical points in the fluid domain.

An example of the number and location of the critical points of the map in Eq. (1.3)
is illustrated in Fig. 1.2 for the same parameters as in Fig. 1.1. For n = 3 in Eq. (1.3)
the map has two critical points Y1,2 in the fluid domain in addition to the critical
points at the airfoil edges. Each of the points Y1,2 is on the side of a center of curvature
of the body boundary, but does not coincide with it.

The number and position of the critical points of the map have consequences on
the unsteady aerodynamic model. Indeed, the velocity field around the moving airfoil
is modeled by first developing the complex potential Φ̃(ω; t) in the ω-plane and by
next mapping the ω-plane onto the x-plane by means of Eq. (1.3). This change of
variable implies that the velocity field in the x-plane [Eq. (1.2)] is singular at the
critical points of the map. The leading-edge singularity is allowed, while the trailing-
edge one is removed by imposing a Kutta condition (see Subsec. 1.3.2). However,
additional n− 1 velocity singularities are also present in the fluid domain at the points
Yk(t) = x[Λk(t); t] for n > 1 in Eq. (1.3). These singularities are unphysical and shall
be removed by imposing suitable regularity conditions on the complex potential Φ̃,
in addition to the physical conditions of no-penetration on the body boundary and
recovery of freestream velocity at infinity (see Sec. 1.3).

Note that the velocity field given by Eq. (1.2) is singular only at the airfoil edges
when the map in Eq. (1.3) is specialized to the case of a flat plate (n = 1 and c1 ≡ 1, see
Ref. [89]). In these circumstances, the complex potential Φ̃ is completely determined
by only imposing the no-penetration condition on ∂Ωb and the asymptotic condition
at infinity [89], with no need of additional regularity conditions.

Since the map in Eq. (1.3) has only two critical points at the airfoil edges when
specialized to a flat plate, the points Yk must go to infinity in the x-plane as the body
curvature tends to zero. The points Λk must consistently go to infinity in the ω-plane.
This remark is used in Chap. 2 to recover the flat-plate model of Ref. [89] from the
general formulation presented in this chapter.
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Fig. 1.2 Critical points and branch cuts.

1.2.3 Branch cuts

The branch cuts of the map in Eq. (1.3) are the curves in the x-plane across which
the inverse map exhibits a jump [49]. Each branch cut starts from one of the critical
points and ends at either infinity or another critical point.

The airfoil edges are critical points of the map in Eq. (1.3) for any value of n
and time (see Subsec. 1.2.2). Therefore, the body boundary ∂Ωb is always a branch
cut for the map, as well known in the particular case of a flat-plate airfoil. However,
Eq. (1.3) involves powers of ω and 1/ω higher than the first one for curved airfoils,
which implies the presence of additional n− 1 critical points Yk in the fluid domain.
In these circumstances, n− 1 branch cuts BCk also appear in the x-plane.

The kth branch cut BCk is a curve in the fluid domain that starts from the critical
point Yk and goes to infinity. The corresponding preimage BCPk is an infinite curve
in the ω-plane that passes through the point Λk, which divides it into two parts
BCP±

k . The branch cut positive and negative sides BC±
k are introduced as the left- and

right-hand sides of BCk as moving along the curve from Yk to infinity. The positive
side BC+

k is described by the curve x = x(ω+) with ω+ ∈ BCP+
k , while the negative

side BC−
k by the curve x = x(ω−) with ω− ∈ BCP−

k . The orientation of BC±
k from the

critical point Yk to infinity yields the consistent orientations of the curves BCP±
k .

An example of the location and geometry of the branch cuts of the map in Eq. (1.3)
is illustrated in Fig. 1.2 for the parameters of Fig. 1.2. The role played by the branch
cuts in the present unsteady aerodynamic model is discussed below.
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Fig. 1.3 Map domain and excluded regions.

1.2.4 Inverse function

The properties of the inverse function of Eq. (1.3) are analyzed for a fixed time, so
that time dependencies are omitted for the sake of simplicity.

The inverse function of Eq. (1.3) satisfies the equation of degree 2n

ω2n+cn−1

cn

ωn−1+· · ·+ c1

cn

ωn+1−4 χ (x − h)
ℓ cn

ω+ c1

cn

ωn−1+· · ·+cn−1

cn

ω+1 = 0 (1.8)

having n roots inside C and n roots outside C. When the map in Eq. (1.3) models a flat
plate, its inverse function is given by the unique solution of Eq. (1.8) that transforms
points of the x-plane into points outside C in the ω-plane. However, this property is
verified by n > 1 solutions of Eq. (1.8) when the map describes a curved airfoil (n > 1),
since body curvature is introduced by including powers of ω and 1/ω higher than
the first one in Eq. (1.3). In these circumstances, the region of the ω-plane outside C
can be subdivided in n distinct regions, each one mapped onto a different sheet of a
Riemann surface. The region bounded by C and the n− 1 curves BCPk is the preimage
D of the x-plane through the inverse function of Eq. (1.3). The other n− 1 regions do
not belong to D, so that points in these regions are not mapped onto the x-plane by
means of the map Eq. (1.3). The inverse function of the map shall be thus evaluated
from Eq. (1.8) by considering that for n > 1 the map domain D does not coincide with
the whole region of the ω-plane outside C.

An example for n = 3 in Eq. (1.3) is shown in Fig. 1.3 for the same parameters
of Figs. 1.1 and 1.2. The map domain D is shown in blue (left-hand side plot) and is
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bounded by C and the branch cut preimages BCP1,2. The other regions of the ω-plane
outside C that are mapped onto othet sheets of the Riemann surface using Eq. (1.3)
are shown in light gray and are bounded by the curves BCP1,2 but not by C. Note
that the symmetry of Eq. (1.8), which comes from the property x(ω) = x(1/ω) of
Eq. (1.3), implies that the region inside C is subdivided in other n regions mapped
onto additional n sheets of the Riemann surface.

For any point ω ∈ D, the other points of the ω-plane ω⋆ /∈ D that are mapped by
Eq. (1.3) onto x(ω) but on a different sheet of the Riemann surface are obtained by
solving x(ω) = x(ω⋆) with respect to ω⋆ and neglecting the solution ω⋆ = ω. This
leaves n roots inside C, including 1/ω, and further n− 1 roots outside C. The latter
define n − 1 pseudo-inverse functions ω⋆

k = ω⋆
k(ω) that transform D into the n − 1

regions outside C that are not mapped onto the x-plane (light gray regions in Fig. 1.3).
For any point ω ∈ D the corresponding point ω⋆

k(ω) is thus by definition outside D,
and its reciprocal 1/ω⋆

k(ω) is also outside D since due to the structure of Eq. (1.8) it
is always located inside C. Each function ω⋆

k verifies the relation ω⋆
k(Λk) = Λk and

transforms points ω+ ∈ BCP+
k into points ω− ∈ BCP−

k (and vice versa).

The consequences of the above remarks on the unsteady aerodynamic model are
clarified by means of an example for n = 3 (map parameters of Figs. 1.1, 1.2, and 1.3).
Consider a set of circles Cr in the ω-plane with center at the origin and increasing
radius r > 1. Consider also the image curves obtained in the x-plane by mapping all
the points on the circles by means of Eq. (1.3). For 1 < r ≤ Λ1 := |Λ1| the circles
completely lie inside D and are thus transformed into simple closed curves around the
airfoil boundary as shown in Fig. 1.4a. When r = Λ1 the corresponding circle passes
through Λ1, and its image in the x-plane has a cusp at the critical point Y1 = x(Λ1)
(see Figs. 1.4a and 1.4b). Next, the circles become non-simple self-intersecting curves
in the x-plane for Λ1 < r < Λ2 := |Λ2|. This occurs because some points on the circles
are located outside D, so that they are transformed by Eq. (1.3) into points already
obtained by mapping circles of smaller radius. The self-intersection x± := x(ω±) of
each image curve is on the branch cut BC1, with ω± ∈ BCP±

1 as shown in Fig. 1.4b.
The points ω± are coincident for r = Λ2, otherwise they have the same modulus but
distinct phase (see Fig. 1.4b). The same behavior is observed for r ≥ Λ2 (see Fig. 1.4c),
and the above discussion can be extended to a generic value of n in Eq. (1.3), for which
the map has n− 1 critical points Yk and branch cuts BCk in the fluid domain.

The plot in Fig. 1.4b shows that crossing a branch cuts BCk at a point x± ≠ Yk

corresponds to skipping from the point ω+ ∈ BCP+
k to the distinct point ω− ∈ BCP−

k

in the ω-plane (or vice versa) through the inverse map. This implies that any function
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(a) ρ < Λ2

(b) Zoom of Fig. 1.4a.

(c) ρ > Λ2

Fig. 1.4 Circles in the ω-plane mapped onto the x-plane.
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of ω apart from position [Eq. (1.3)] has jumps across the n − 1 curves BCk once it
is rewritten as function of x using Eq. (1.3). In particular, this behavior affects the
velocity field [Eq. (1.2)] and can be treated as discussed in Subsec. 1.3.3.

1.3 Complex potential

The velocity field around a flexible thin airfoil in the x-plane is modeled by developing
the complex potential Φ̃ in the ω-plane and by next mapping the ω-plane onto the
x-plane using Eq. (1.3). The conjugate velocity is then evaluated using Eq. (1.2).

Following the traditional approach, Φ̃ can be split as

Φ̃(ω; t) = Φ̃(nc)(ω; t) + Φ̃(c)(ω; t) (1.9)

where Φ̃(nc) and Φ̃(c) are the complex potentials of the noncirculatory and circulatory
flows. These are separately developed below.

1.3.1 Noncirculatory flow

The complex potential Φ̃(nc) accounts for the effects of the freestream velocity and
geometrically exact cross-section kinematics, and is developed by imposing that the
resulting conjugate velocity in the x-plane [Eq. (1.2)]: 1) satisfy the no-penetration
unsteady boundary condition on ∂Ωb; 2) satisfy the recovery of the freestrean velocity
at infinity; 3) be regular at the critical points of the map in the fluid domain.

1.3.1.1 Unsteady boundary condition

Evaluating the outer normal vector unit on ∂Ωb as n(θ; t) = −i ∂θxb(θ; t)/|∂θxb(θ; t)|
and using Eqs. (1.4) and (1.6), the normal component of the body velocity ubn :=
ub · n = Re(ub n) is evaluated as

ubn = 1
2|∂θxb|

[ n∑
s=1

ps

(
ω+s − ω−s

)
+

n∑
r,j=1

qr,j

(
ω+r+j + ω−r+j − ω+r−j − ω−r−j

) ]
(1.10)

with time-dependent imaginary coefficients

ps := ℓ

4 s
(

χ ḣ cs − χ ḣ cs

)

qr,j := ℓ2

16 j
[ (

ċrcj − ċrcj

)
+ i α̇

(
crcj + crcj

) ] (1.11)
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that are known function of the instantaneous airfoil shape and geometrically exact
kinematics.

From the structure of Eq. (1.10), the complex potential Φ̃(nc) is assumed as

Φ̃(nc)(ω; t) =
n∑

m = −2n

m ̸= 0

dm(t) ωm (1.12)

The lower bound is assumed as −2n since the normal velocity of the body boundary
in Eq. (1.10) involves powers of ω from −2n up to 2n. The upper bound is chosen
as n as in Eq. (1.3) to ensure the recovery of the freestream velocity at infinity (see
Subsec. 1.3.1.1).

Substituting the derivative of Eq. (1.12) into Eq. (1.2) and writing the map derivative
on the airfoil boundary as ∂ωx = i ω ∂θxb, the normal component of the fluid velocity
un := u · n = Re(u n) is evaluated as

un = 1
2|∂θxb|

n∑
m=−2n

m
(

dm ωm + dm ω−m
)

(1.13)

Equating Eqs. (1.10) and (1.13) gives the 4n conditions

n+ 1 ≤ k1 ≤ 2n k1 d−k1 = +
n∑

m=k1−n

qm,−m+k1

1 ≤ k2 ≤ n k2(dk2 − d−k2) = +pk2 +
k2−1∑
m=1

qm,−m+k2 +
n−k2∑
m=1

qm,+m+k2 −
n∑

m=k2+1
qm,+m−k2

−n ≤ k3 ≤ −1 k3(dk3 − d−k3) = −p−k3 −
−k3−1∑
m=1

qm,−m−k3 −
n+k3∑
m=1

qm,+m−k3 +
n∑

m=−k3+1
qm,+m+k3

−2n ≤ k4 ≤ −n− 1 k4 dk4 = −
n∑

m=−k4−n

qm,−m−k4

(1.14)
that relate 3n unknown coefficients in Eq. (1.12) defining Φ̃(nc) to the known ones in
Eq. (1.11) that describe the instantaneous cross-section shape and arbitrary kinematics.
However, noting that the coefficients in Eq. (1.11) are purely imaginary, one observes
that the the fourth and third sets of conditions in Eq. (1.14) are, respectively, the
conjugates of the first and second ones (k1 = −k4 and k2 = −k3). Therefore, only
2n equations in Eq. (1.14) are independent, and further n relations are necessary to
determine the 3n unknown coefficients in Eq. (1.12).
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1.3.1.2 Asymptotic condition

One further condition is obtained by imposing that the flow velocity in the x-plane due
to the complex potential Φ̃(nc) recover the freestream velocity u∞ = u∞ exp(iβ) far
from the airfoil. This condition directly results in a constraint on Φ̃(nc) only, since the
velocity due to Φ̃(c) goes to zero at infinity. Substituting the ω-derivatives of Eqs. (1.3)
and (1.12) into Eq. (1.2) and imposing u → u∞ for ω → ∞ gives

dn = ℓ χ

4 u∞ cn (1.15)

1.3.1.3 Regularity condition

The last n− 1 conditions are obtained by imposing that the noncirculatory conjugate
velocity in the x-plane be everywhere regular in the fluid domain. Using Eq. (1.12)
into Eq. (1.2), the conjugate velocity due to Φ̃(nc) is written as

u(nc)[x(ω; t); t] = 1
ωn

P 3n(ω; t)
Q2n(ω; t) (1.16)

where
P 3n := ωn+1 ∂ωΦ̃(nc) =

n∑
m=−2n

m dm ωm+2n (1.17)

is a time-dependent polynomial of degree 3n in ω. Equation (1.16) is singular the
airfoil edges and at the n− 1 points Yk(t) = x[Λk(t); t] (see Subsec. 1.2.2). In order
to remove the unphysical singularities at these latter points, the corresponding points
Λk(t) in the ω-plane are imposed to be zeros of the polynomial P 3n(ω; t) with at least
the same multiplicity as for Q2n(ω; t). If the points Λk(t) are all distinct zeros, this
gives n− 1 equations of the form

P 3n[Λk(t); t] ≡ 0 (k = 1, 2, . . . , n− 1) (1.18)

The no-penetration unsteady boundary condition, the recovery of the freestream
velocity at infinity, and the regularity of the velocity field at the n− 1 points Yk form
a system of 3n independent equations [Eqs. (1.14), (1.15), and (1.18)] that gives the
coefficients in Eq. (1.12) as functions of the instantaneous airfoil shape, geometrically
exact body kinematics, and freestream velocity.
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1.3.2 Circulatory flow

Using a discrete-vortex model, the complex potential Φ̃(c) is written as

Φ̃(c)(ω; t) =
N(t)∑
j=1

Γj Φ̃(v)
j (ω; t) + Γb(t) Φ̃(b)(ω; t) (1.19)

where Φ̃(v) and Φ̃(b) are, respectively, the complex potential of a unit-circulation discrete
vortex and of a unit body circulation, N is the total number of vortices shed since the
initial time, Γj is the time-constant circulation of the jth discrete vortex, and Γb the
instantaneous circulation around the airfoil given by Kelvin theorem

Γb(t) = Γb0 −
N(t)∑
j=1

Γj (1.20)

where Γb0 is the initial circulation.
The advantage of using a discrete-vortex model for the shed vorticity is the possibility

to consider either flat, frozen, or free wake by simply changing the convection velocity
of the wake vortices, with no other change in the formulation (see Subsec. 1.3.2.4).
On the other hand, the drawback of discrete-vortex models is the need to numerically
simulate the wake dynamics by means of a time-marching algorithm, since in contrast
with linearized continuous flat-wake models it is not possible to obtain a closed-form
solution in time for the circulatory aerodynamic load.

In order to use Eq. (1.19), appropriate complex potentials Φ̃(v) and Φ̃(b) must be
developed for each particular airfoil shape. The structures these potentials for a flat
plate are well known [46], but they are not valid for the curved airfoils described the
map in Eq. (1.3) with n > 1. Therefore, a general formulation of the circulatory flow
is presented below.

1.3.2.1 Discrete vortex

Consider a discrete vortex of unit circulation placed outside a flexible thin airfoil
described by Eq. (1.3). The vortex is placed at a point xv(t) := x[ωv(t); t] in the
x-plane, which corresponds to the point ωv(t) ∈ D(t) of the ω-plane. The complex
potential Φ̃(v) is developed by imposing that the resulting conjugate velocity in the
x-plane [Eq. (1.2)]: 1) locally behave as 1/{2πi [x−xv]} for x → xv; 2) asymptotically
tend to 1/(2πi x) for x → ∞; 3) be tangent to ∂Ωb; and 4) be regular at the n − 1
points Yk.
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The local behavior (condition 1) can be satisfied by assuming

Φ̃(v)(ω; t) = 1
2πi

{
log[ω − ωv(t)] + log ω − log[ω − 1/ωv(t)]

}
(1.21)

which is the well-known result valid for a flat plate [46]. The complex potential in
Eq. (1.21) satisfies the circle theorem [46], so that it gives tangent velocity on ∂Ωb

(condition 3). However, the ω-derivative of Eq. (1.21) tends to 1/(2πi ω) for ω → ∞,
while from Eq. (1.3) one has ∂ωx → n x/ω for x → ∞. As a result, the conjugate
velocity in the x-plane due to Eq. (1.21) decays as 1/(2πi n x) for x → ∞, which does
not satisfy condition 2 for n > 1 in Eq. (1.3).

In order to verify condition 2 for any n in Eq. (1.3), n− 1 logarithmic terms of the
form log[ω − wk(t)] are added to Eq. (1.21). The additional contributions must be
regular around xv (condition 1) and also give a tangent velocity on the airfoil boundary
(condition 3). These requirements can be satisfied by assuming wk(t) := ω⋆

k[ωv(t); t]
(j = 1, 2, . . . , n − 1) and using the circle theorem [46]. Indeed, the points wk(t)
are by definition outside D(t) due to the properties of the functions ω⋆

k(ω; t) (see
Subsec. 1.2.3). The conjugate of their reciprocals 1/wk(t) are also outside D(t) since
they are located inside C. As a result, the terms log[ω − wk(t)] added to Eq. (1.21)
and those resulting from the latter when the circle theorem is applied do not introduce
unphysical singularities in the flow field. The complex potential in Eq. (1.21) is thus
modified as

Φ̃(v)(ω; t) = 1
2πi

{
log[ω − ωv(t)] + log ω − log[ω − 1/ωv(t)]

}
+

+ 1
2πi

n−1∑
k=1

{
log[ω − wk(t)] + log ω − log[ω − 1/wk(t)]+

+ ak(t)
ω − wk(t) + ak(t)/w2

k(t)
ω − 1/wk(t)

}
(1.22)

which verifies conditions 1, 2, and 3. The regularity of the conjugate velocity in the x-
plane at the n− 1 points Yj (condition 4) is satisfied by imposing that the ω-derivative
of Eq. (1.22) vanish at the points Λj. This gives a system of n − 1 equations in the
unknown coefficients ak and their conjugates ak, which can be analytically solved by
adding the n− 1 conjugate equations.

Note that the complex potential in Eq. (1.22) reduces to the one in Eq. (1.21) as
the body curvature tends to zero, since the terms on the second and third rows tend
to a function of time only (see Chap. 2).
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1.3.2.2 Body circulation

The complex potential Φ̃(b) is developed in the ω-plane by requiring that the resulting
conjugate velocity in the x-plane [Eq. (1.2)]: 1) asymptotically tend to 1/(2πi x) for
x → ∞; 2) be tangent to ∂Ωb; and 3) be regular at the n− 1 points Yk.

From the remarks in Subsec. 1.3.2.1, the following structure is assumed:

Φ̃(b)(ω; t) = 1
2πi

log ω + 1
2πi

n−1∑
k=1

{
log[ω − rk(t) σk(t)] + log ω − log[ω − σk(t)/rk(t)]

}
(1.23)

with rk > 0 and |σk| = 1.
The first contribution in Eq. (1.23) is the well-known complex potential of a unit

circulation around a flat-plate airfoil [89]. Since the conjugate velocity in the x-plane
due to this term alone does not have the required asymptotic behavior for n > 1
in Eq. (1.3), further n− 1 logarithmic contributions of the form log[ω − rk(t) σk(t)]
are also present in Eq. (1.23). The singular points rk σk and the conjugates of their
reciprocals must be located outside D, which can be ensured by choosing σk := Λk/Λk

with rk > Λk. The last two terms in the summation of Eq. (1.23) come from the
circle theorem [46], which is used to ensure tangent velocity on ∂Ωb. The regularity
of the conjugate velocity in the x-plane is satisfied by imposing that the ω-derivative
of Eq. (1.23) vanish at the n− 1 points Λj, which gives a system of n− 1 nonlinear
equations in the distances rk.

Note that the summation in Eq. (1.23) tends to zero with the body curvature,
giving the well-known complex potential of a unit circulation around a flat plate as
particular case (see Chap. 2).

1.3.2.3 Wake shedding

The shedding of discrete vortices from the airfoil trailing edge is modeled using the
fixed-position method [48]. The initial position of the nascent vortex is assumed in the
ω-plane as ωvN+1 := 1+ δ, with 0 < δ ≪ 1 assigned such that the vortex appears in the
x-plane close to the instantaneous position of the airfoil trailing edge. The circulation
of the nascent vortex ΓN+1 is obtained by imposing that the total conjugate velocity
in the ω-plane be zero at the point ω = +1:

∂ωΦ̃(nc)
∣∣∣∣
ω = +1

+ ∂ωΦ̃(c)
∣∣∣∣
ω = +1

+ ΓN+1 ∂ωΦ̃(v)
N+1

∣∣∣∣
ω = +1

= 0 (1.24)
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in order to remove the trailing-edge singularity of Eq. (1.2). In the above equation, the
complex potential of the circulatory flow (second term) includes the N contributions
due to the vortices already shed into the wake and the term due to the consequent
circulation around the body, whereas the contribution due to the nascent vortex is
considered separately (third term).

Note that no Kutta condition is applied at the airfoil leading edge, so that the
velocity field is still singular at that point. This singularity could be eliminated by
shedding a second wake, as frequently done in inviscid models based on discrete-vortex
methods to simulate flow separation at high angle of attack [47, 48, 41, 44, 51]. In
this circumstances, a discrete vortex would be released from each airfoil edge, with
circulations evaluated by solving a two-equation system of Kutta conditions imposed
at the points ω = ±1. The shedding of a second wake from the airfoil leading edge
could be easily included in the present model by modifying only the vortex shedding
procedure, with no other change in the formulation.

1.3.2.4 Wake convection

The preceding formulation for the circulatory flow does not depend on how the discrete
vortices are convected downstream, which only influences the numerical integration
of the wake dynamics. Three convection laws of increasing fidelity can be considered:
free, frozen, or flat wake.

In a free-wake description, each discrete vortex is convected downstream in the
x-plane with the local velocity

ẋvj
(t) = ∂ωΦ̃(ω; t)/∂ωx(ω; t)

∣∣∣∣
ω = ωvj (t)

(1.25)

that includes the effect of the freestream velocity, geometrically exact airfoil kinematics,
circulation around the body, and the vortex-induced contributions (Biot-Savart law).
The free-wake velocity of the jth discrete vortex in the ω-plane is obtained from
Eq. (1.25) as [89]

ω̇vj
(t) = [ẋvj

(t) − ∂tx(ω; t)]/∂ωx(ω; t)
∣∣∣∣
ω = ωvj (t)

(1.26)

The velocity in Eq. (1.25) is singular at the vortex position xvj
and nearly singular

whenever two or more vortices get too close to another one. For time marching,
Eq. (1.25) is practically evaluated by considering a desingularized Biot-Savart kernel [98].
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Further details about the desingularization procedure and its physical meaning are
provided in App. A.1.

The use of a free-wake model implies the computation of the velocity induced by
each discrete vortex on all the other ones, so being computationally expensive for large
simulation times. Whenever free-wake effects are not significant, a computationally
cheaper frozen-wake description may be adopted by assuming ẋvj

≈ u∞. The frozen-
wake description combined with the vortex shedding procedure of Subsec. 1.3.2.3 will
still give a non-planar wake if the body moves, since the discrete vortices are shed from
the instantaneous position of the trailing edge.

A flat-wake model can be used to study small disturbances by assuming ẋvj
≈ u∞

and by modifying the shedding procedure of Subsec. 1.3.2.3 such that the discrete
vortices are shed from the position of the trailing edge in undeformed configuration. The
initial position of the nascent vortex is imposed in the x-plane as xvN+1 := ℓ(1 + δ)/2,
with 0 < δ ≪ 1. The corresponding point in the ω-plane given by the inverse function
of Eq. (1.3) is used to evaluate ΓN+1 by imposing the Kutta condition in Eq. (1.24).

1.3.3 Velocity discontinuities across the branch cuts

In Subsec. 1.2.3 it has been observed that the velocity field given by Eq. (1.2) with
complex potential given by Eq. (1.9) has discontinuities across the branch cuts of the
map located in the fluid domain. Indeed, the jump of the conjugate velocity [Eq. (1.2)]
at a generic point x± = x(ω±) ∈ BCk (k = 1, . . . , n− 1) is written as

u[x(ω+; t); t] − u[x(ω−; t); t] = 1
∂ωx(ω+; t) [∂ωΦ̃(ω+; t) + ∂ωΦ̃(ω−; t)] (1.27)

where the relation ∂ωx(ω+; t) = −∂ωx(ω−; t) valid on BCPk has been used. The
quantity in Eq. (1.27) vanishes at the point Yk due to the imposed regularity conditions
and tends to zero at infinity due to the asymptotic condition (see Subsecs. 1.3.1
and 1.3.2). However, it is not generally zero at other points on BCk, due to the jump
of the inverse map across these curves (see Subsec. 1.2.3).

The velocity discontinuity in Eq. (1.27) can be removed by adding a suitable
sectionally holomorphic function2 in the form of a Cauchy integral [99] to Φ̃ in order
to enforce the continuity of the resulting complex potential across the n − 1 curves
BCk. The standard form of the correction [99] shall be conveniently adapted to the

2A sectionally holomorphic function is function of complex variable that is everywhere analytic in
the complex plane but for a jump discontinuity across a curve.
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present case by imposing that it gives a tangent velocity on ∂Ωb in order to preserve
the no-penetration unsteady boundary condition.

The development of a corrective complex potential is beyond the scope of this
work. Nevertheless, a possible approach to this task is proposed in App. A.3, and its
development and application to complete the proposed formulation could be the subject
of future developments. However, note that the distance between BCk and the airfoil
increases as the body curvature decreases, since the points Yk tend to infinity as the
body reduces to a flat plate (see Subsec. 1.2.2). Since the velocity jump in Eq. (1.27)
tends to zero at both infinity and Yk, its effect in a neighborhood of the airfoil is
expected to be negligible for curvatures of aeronautical interest. In this circumstances,
the complex potential in Eq. (1.9) can be used to evaluate the aerodynamic load
applied to the cross-section, which depend on the flow velocity on the body boundary,
with no need to develop a corrective complex potential to remove the velocity jump in
Eq. (1.27). This above statement is supported in Chap. 3 by numerical examples.

Note that the map in Eq. (1.3) has no branch cuts in the fluid domain when
specialized to a flat plate (n = 1, c1 ≡ 1). As a result, the mapping approach does not
introduce velocity discontinuities in this case.

1.4 Aerodynamic load

In this section, the unsteady aerodynamic load on a flexible thin airfoil undergoing
arbitrary motion in incompressible potential flow is evaluated based on the complex-
potential developed in Sec. 1.3. The unsteady pressure jump on the airfoil boundary
is obtained by means of the Bernoulli theorem in Subsec. 1.4.1. General analytical
formulas for the unsteady aerodynamic force and moment are presented in Subsecs. 1.4.2
and 1.4.3 based on the developments of Ref. [89]. These formulas are obtained by
imposing the no-penetration unsteady boundary condition on a moving airfoil, with no
assumption on the cross-section shape and kinematics. They extend the well-known
theoretical result for stationary bodies given by the unsteady Blasius theorem [46],
which is recovered in Subsec. 1.4.3 for the case of a fixed boundary (ub ≡ 0).

1.4.1 Pressure distribution

The jump of a generic complex function on the airfoil boundary is introduced as

[f ](θ; t) := f(eiθ+ ; t) − f(eiθ− ; t)
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with θ+ := θ ∈ [0;π] (upper side) and θ− := 2π − θ+ (lower side). Hence, Bernoulli
theorem gives [p]/ρ = − ([∂tϕ] + [|u|2]/2), where p is pressure and ρ = ρ∞ the constant
fluid density. The first contribution to the pressure jump is evaluated by rewriting the
time derivative of Φ in terms of the derivatives of Φ̃ as

∂tΦ = ∂tΦ̃ + ∂ωΦ̃ ∂tω = ∂tΦ̃ − ∂ωΦ̃
∂tx

∂ωx
= ∂tΦ̃ − u ub (1.28)

where the relation ∂tω = −∂tx/∂ωx along with Eqs. (1.2) and (1.6) have been used.
Noting that ub achieves the same value at corresponding points on the upper and lower
airfoil sides, the pressure jump divided by ρ is written as

[p]
ρ

= −1
2
{
∂t([Φ̃] + [Φ̃]) − [u] ub − [u] ub + [u u]

}
(1.29)

The time-derivative contributions on the right-hand side of Eq. (1.29) are linear, so
that a separation of different noncirculatory and circulatory effects is possible. The
other terms on the right-hand side of Eq. (1.29) are nonlinear and involve products
between the ω-derivatives of noncirculatory and circulatory contributions in Eq. (1.9)
and products of these derivatives and the velocity of the airfoil boundary given by
Eq. (1.6). The result in Eq. (1.29) remains valid if a corrective complex potential is
added to Φ̃ to remove velocity discontinuities across the curves BCk.

1.4.2 Aerodynamic force

The unsteady aerodynamic force on a moving deformable airfoil of generic shape
subjected to an incompressible potential flow is written using Bernoulli theorem as

F (a) =
∫ L

0
ds (−p) n = −iρ

∫
∂Ωb

dx
(
∂tϕ+ |u|2

2
)

(1.30)

where L is the length of ∂Ωb, s is the arclength, and dx the elementary curve element.
The first contribution in Eq. (1.30) is known as the unsteady term and comes from the
linear time-derivative contribution in the Bernoulli theorem, while the second one is
known as the steady term and is nonlinear. However, both terms are time-dependent
in the case of an unsteady flow. The domain of integration is also time-dependent if
the body moves. No assumption is at this stage made on the airfoil shape, namely its
boundary can be described by different maps than the one in Eq. (1.3).

Equation (1.30) can be analytically evaluated by recasting it as a complex integral
and using the residue theorem [49]. For stationary bodies in incompressible potential
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flow, a complex form of Eq. (1.30) is given by the unsteady Blasius theorem [46]. This
result was extensively applied in combination with mapping functions to obtain the
aerodynamic force on fixed airfoils with different cross-section shapes. The Blasius
theorem is still applicable to airfoils in rigid-body motion, provided that a body-fixed
reference frame is assumed and that the relative velocity field takes into account the
effect of body translations and rotations [45]. However, the Blasius theorem is not
valid for flexible airfoils, since there is no reference frame in which a deformable body
can be treated as stationary.

A general form of Eq. (1.30) rewritten as a complex integral valid for airfoils in
arbitrary motion is obtained below using the Schwarz function [100] S of ∂Ωb. The
motivation for using this function is discussed in Ref. [89] and reviewed in the following.

The velocity field around moving airfoils has a non-zero normal component on ∂Ωb,
due to the no-penetration unsteady boundary condition. This introduces a dependency
on the conjugate position x in the integrand function of Eq. (1.30) rewritten in complex
form. Since the conjugate position x is generally not an analytic function of x, the
unsteady aerodynamic force in Eq. (1.30) recast as a complex integral could not be
analytically evaluated using the residue theorem [49]. The quantity x involved in
the integrand function shall be thus replaced by a function of x that is analytic in
a neighborhood of ∂Ωb. This can be accomplished by considering that x can be
rewritten as an analytic function x(x) on the body boundary ∂Ωb and that the Schwarz
function S of ∂Ωb is defined as the analytic continuation of x = x(x) for x in suitable
neighborhood of ∂Ωb [100].3. The Schwarz function S = S(x) is different from the
conjugate position x for x /∈ ∂Ωb, while S = x for x ∈ ∂Ωb. This property allows to
replace x by S on the airfoil boundary, and to evaluate the conjugate curve element dx
as dx ∂xS. Both quantities are analytic functions of x in a neighborhood of ∂Ωb, so
that they can be used to rewrite the integrand of Eq. (1.30) in a complex form suitable
to apply the residue theorem.

First consider the unsteady term of Eq. (1.30). The time derivative of the velocity
potential can be rewritten in complex form as ∂tϕ = (∂tΦ + ∂tΦ)/2, which combined
with the relation dx = dx ∂xS gives

∫
∂Ωb

dx ∂tϕ = 1
2

∫
∂Ωb

dx ∂tΦ + 1
2

∫
∂Ωb

dx ∂xS ∂tΦ (1.31)

3The size of the neighborhood depends on the position of the singular points of S and thus on the
geometry of ∂Ωb. The simple cases of a circle and an ellipse are discussed in Ref. [89].
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In order to recast the steady term of Eq. (1.30) in complex form, the differential of
the stream function along ∂Ωb is written using the no-penetration unsteady boundary
condition as dψ = ds ∂sψ = ds u · n = ds ub · n = i (ub dx − ub dx)/2. Therefore, the
differential of the complex potential along the body boundary is written as

dΦ = dϕ+ i dψ = dϕ+ 1
2 (ub dx − ub dx) (1.32)

Noting that the differential dϕ is real, so that it coincides with its conjugate, and using
Eq. (1.32) twice the steady term becomes

∫
∂Ωb

dx
|u|2

2 = 1
2

∫
∂Ωb

dΦ ∂xΦ

= 1
2

∫
∂Ωb

dϕ ∂xΦ + 1
4

∫
∂Ωb

(ub dx − ub dx) ∂xΦ

= 1
2

∫
∂Ωb

dx (∂xΦ)2 + 1
2

∫
∂Ωb

dx ∂xS ub ∂xΦ − 1
2

∫
∂Ωb

dx ub ∂xΦ (1.33)

Substituting Eqs. (1.31) and (1.33) into Eq. (1.30), one obtains [89]

F (a) = −iρ

2

 ∫
∂Ωb

dx ∂tΦ+
∫

∂Ωb

dx ∂xS (∂tΦ + ub ∂xΦ)+
∫

∂Ωb

dx ∂xΦ (∂xΦ − ub)
 (1.34)

The integrand functions do not contain any dependency on x, so that Eq. (1.34) can
be analytically evaluated using the residue theorem [49]. If any integral is singular on
∂Ωb, it shall be evaluated by taking its Cauchy principal value.

1.4.3 Aerodynamic moment

The component of the unsteady aerodynamic moment (per unit span length) normal
to the plane of the flow (along the z-axis) evaluated with respect to the pole x0 is

M
(a)
x0 =

∫ L

0
ds (x − x0) × (−p n)

∣∣∣
z

= M
(a)
0 − x0 × F (a)

∣∣∣
z

(1.35)

where the first contribution on the right-hand side is the z-component of the aerody-
namic moment with respect to the origin while the second one is the transport moment
of the aerodynamic force [Eq. (1.34)] with respect to the pole x0.
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In order to recast the first contribution in Eq. (1.35) in complex form, the z-
component of x × n is rewritten as −Re(τ S), so obtaining

M
(a)
0 = −Re

 ∫
∂Ωb

dx S (−p)
 = −ρ Re

∫
∂Ωb

dx S ∂tϕ+ 1
2

∫
∂Ωb

dx S ∂xΦ ∂xΦ

 (1.36)

Note that the arbitrary function of time given by ∂tϕ+|u|2/2+p/ρ in Bernoulli theorem
does not give any contribution, since the integral of S on ∂Ωb is purely imaginary [100].

The unsteady and steady terms in Eq. (1.36) are developed as done for the aerody-
namic force, eventually giving the general complex form [89]

M
(a)
0 = −ρ

2 Re
 ∫

∂Ωb

dx S ∂tΦ+
∫

∂Ωb

dx x ∂xS (∂tΦ+ub ∂xΦ)+
∫

∂Ωb

dx x ∂xΦ (∂xΦ−ub)


(1.37)
where the conjugate operation applied to integrals is dropped since only the real part
is considered.

1.4.4 Recovery of the Blasius theorem

The general complex formulas for the aerodynamic force and moment on moving airfoils
in Eqs. (1.34) and (1.37) reduce to the Blasius theorem [89] for stationary bodies.

Consider the aerodynamic force in Eq. (1.34). One identically has ub ≡ 0 for
fixed airfoils, which eliminates the second term in the integrand functions of the
last two integrals. Moreover, the no-penetration condition becomes the steady one
u · n = 0, which implies that the body boundary is a streamline for the flow. In these
circumstances, the streamfunction is constant for x ∈ ∂Ωb and equal to a function of
time only ψ = ψ0(t), so that the time-derivative of the complex potential is written
on ∂Ωb as ∂tΦ = ∂tϕ+ iψ̇0. The imaginary contribution does not play any role in the
second integral of Eq. (1.34), which is thus identical to the first one. Hence, Eq. (1.34)
reduces to

F (a) = −iρ
∫

∂Ωb

dx ∂tΦ − iρ

2

∫
∂Ωb

dx (∂xΦ)2 (1.38)

This is the well-known unsteady Blasius theorem [46], valid for fixed bodies subjected
to an incompressible unsteady potential flow. Note that Eq. (1.34) does not involve
the Schwarz function anymore.
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Under the additional assumption of stationary flow (∂tΦ ≡ 0), Eq. (1.38) reduces
to the steady Blasius theorem [46]

F (a) = −iρ

2

∫
∂Ωb

dx (∂xΦ)2 (1.39)

The unsteady form of Eq. (1.40) for stationary bodies can be obtained with the
simplifications ub ≡ 0 and ∂tΦ = ∂tϕ+ iψ̇0. However, this still involves the Schwarz
function of ∂Ωb, and an analogous complex form is not found in the literature. An
unsteady formula for the aerodynamic moment on fixed bodies that still involves the
conjugate curve element is reported in Ref. [46], although this cannot be evaluated
using the residue theorem. With the additional assumption of steady flow, Eq. (1.37)
becomes

M
(a)
0 = −ρ

2 Re
 ∫

∂Ωb

dx x (∂xΦ)2

 (1.40)

which is the well-known steady Blasius theorem for the aerodynamic moment [46].





Chapter 2

Flat-plate airfoil model

In this chapter the general formulation of Chap. 1 is specialized to the particular case of
a flat-plate airfoil in arbitrary rigid-body motion. The aerodynamic model is developed
in Sec. 2.1 and coupled with structural EOMs to obtain a free-wake typical-section
aeroelastic model in Sec. 2.2. The aerodynamic and aeroelastic models are validated in
Sec. 2.3. Next, the typical-section model is applied in Sec. 2.4 to perform transient
aeroelastic analyses in order to demonstrate its applicability to problems involving
large-amplitude rigid-body motion and free wake.

2.1 Unsteady aerodynamic model for n = 1

This section shows how the general formulation of Chap. 1 gives as particular case the
geometrically exact flat-plate unsteady aerodynamic model presented in Ref. [89].

2.1.1 Map

In order to model a flat-plate airfoil in arbitrary rigid-body motion, the map in Eq. (1.3)
is specialized by taking n = 1 and c1 ≡ 1, giving

x = H + ℓ χ

4
(

ω + 1
ω

)
ω = 2 χ

ℓ

[
(x − H) +

√
(x − xLE)(x − xTE)

] (2.1)

where time dependencies have been omitted, the identity H ≡ h valid for flat plates
has been used, and the map inverse function has been written in terms of the positions
of the airfoil leading and trailing edges, respectively given by xLE = H − ℓ χ/2 and
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xTE = H + ℓ χ/2. The time and space derivatives of the map and of its inverse
function are

∂ωx = ℓχ

4
ω2 − 1

ω2 ∂tx = Ḣ − i α̇
ℓχ

4
(

ω + 1
ω

)

∂xω = 4 χ

ℓ

ω2

ω2 − 1 ∂tω = i α̇ ω + 2
ℓ

i α̇ℓ ω − 2 Ḣ χ ω2

ω2 − 1

(2.2)

The derivative ∂ωx vanishes only at the points ω = ±1. As a result, the airfoil edges
are the only critical points of the map in Eq. (2.1), and the body boundary is the only
branch cut. Since only the first-order powers of ω and 1/ω are present in the map in
this case, its domain D coincides with the whole region of the ω-plane outside C. Due
to the above properties, the complex potential Φ̃ can be determined with no need to
impose regularity conditions (see Subsec. 1.2.2). Moreover, the velocity field in the
x-plane given by Eq. (1.2) does not experience jumps in the fluid domain, so that no
corrective complex potential is necessary (see Subsec. 1.3.3).

From Eq. (2.1), the flat-plate boundary is described by the curve

xb = H + ℓχ

2 cos θ (2.3)

with θ ∈ [0, 2π). The tangent and normal unit vectors are constant along the upper
and lower airfoil sides and given by τ = ∓χ and n = ±i χ, respectively. The tangent
and normal components of the flat-plate airfoil centroid H and of its velocity Ḣ are
introduced as

Hτ = −Re(χ H) Hn = Im(χ H) Vτ = −Re(χ Ḣ) Vn = Im(χ Ḣ) (2.4)

Using Eq. (2.3) and the Schwarz function of the unit circle 1/ω, the Schwarz
function of the flat plate and its ω-derivative are given by

S = H + ℓ χ

4
(

ω + 1
ω

)
∂ωS = ℓ χ

4
ω2 − 1

ω2 (2.5)

The body boundary velocity ub is evaluated by taking n = 1 and c ≡ 1 in Eq. (1.6).
Using the Schwarz function of the unit circle, its conjugate ub can be rewritten as an
analytic function of ω, giving

ub = Ḣ − i α̇
ℓχ

4
(

ω + 1
ω

)
ub = Ḣ + i α̇

ℓχ

4
(

ω + 1
ω

)
(2.6)
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2.1.2 Complex potential

The complex potential Φ̃(nc) [Eq. (1.12)] is determined by solving a system of 3 equations
obtained by specializing Eqs. (1.14) and (1.15) to the case n = 1 and c1 ≡ 1. Two
equations impose the no-penetration on ∂Ωb, while the third one the recovery of the
freestream velocity at infinity. The regularity of the velocity field in the fluid domain is
identically satisfied by the map [Eq. (2.1)], which has no critical points in the flow field.
The complex potential Φ̃(c) is given by Eq. (1.19). The well-known forms complex
potentials Φ̃(v) and Φ̃(b) valid for flat plates (see Ref. [89]) can be recovered by taking
the limits of the general forms in Eqs. (1.22) and (1.23) for vanishing body curvature
(ck → 0 for k = 2, . . . ,∞).

2.1.2.1 Noncirculatory flow

In the case of a flat-plate airfoil, the complex potential Φ̃(nc) is defined by the three
Laurent coefficients [see Eq. (1.12)] that are evaluated by solving the system formed by
Eq. (1.15) and by the two independent conditions obtained by specializing Eq. (1.14):

d−2 = i α̇
ℓ2

16 d−1 = ℓ χ

4 u∞ − i Vn
ℓ

2 d1 = ℓ χ

4 u∞ (2.7)

Writing Eq. (1.12) for n = 1 and substituting Eq. (2.7), one may write

Φ̃(nc)(ω; t) = Φ̃(∞)(ω; t) + Φ̃(d)(ω; t) (2.8)

with
Φ̃(∞)(ω; t) = ℓ χ(t)

4 u∞(t) ω + ℓ χ(t)
4 u∞(t) 1

ω

Φ̃(d)(ω; t) = −i Vn(t) ℓ2
1
ω

+ i α̇(t) ℓ
2

16
1

ω2

(2.9)

The complex potential Φ̃(∞) describes the velocity field due to the unsteady freestream
and gives a purely tangent velocity on ∂Ωb. The complex potential Φ̃(d) accounts for
the cross-section geometrically exact rigid-body kinematics and give a normal velocity
on ∂Ωb that identically verifies the no-penetration unsteady boundary condition. The
complex potentials in Eq. (2.9) are identical to the ones of Ref. [89] through the change
of variable ζ = R ω.
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2.1.2.2 Circulatory flow

The complex potential of the circulatory flow is given by Eq. (1.19). The particular
forms of the complex potentials Φ̃(v) and Φ̃(b) for a flat-plate airfoil are well-known
in the literature [46] and are recovered from Eqs. (1.22) and (1.23) in the limit of
vanishing body curvature (ck → 0 for k = 2, . . . ,∞).

In the case of a flat plate, the complex potetial Φ̃(v) is written as in Eq. (1.21) [46].
Therefore, the terms in the second and third rows of Eq. (1.22) must tend to a function
of time only as the body curvature tends to zero. This can be proved by first rewriting
the regularity condition ∂ωΦ̃(v) = 0 at the point Λj as

n−1∑
k=1

{ δjk(t)
[δjk(t) − 1]2 bk(t) +

γjk(t)
[Λj(t) − 1/wk(t)]2 bk(t)

}
=

= 1
1 − ωv(t)/Λj(t)

− 1/ωv(t)
Λj(t) − 1/ωv(t) +

n−1∑
k=1

[ δjk(t)
δjk(t) − 1 − 1/wk(t)

Λj(t) − 1/wk(t)
]

where the ratios bk(t) := ak/wk(t), δjk(t) := Λj(t)/wk(t), and γjk(t) := Λj(t)/wk(t)
(j, k = 1, . . ., n− 1) have been introduced. Since the points Λj and wk both tend to
infinity in the limit of vanishing curvature, the ratios δjk and γjk are expected to keep
finite in the same limit, and the former is assumed to be different from 1. In these
circumstances, the second term in the summation on the left-hand side of Eq. (2.10)
and the second and fourth terms on the right-hand side tend to zero. This shows that
the quantities bk remain finite as a curved airfoil tends to a flat plate. Subtracting
log wk(t) in the summation of Eq. (1.22), the last two rows become

n−1∑
k=1

{
log[1 − ω/wk(t)] + log ω − log[ω − 1/wk(t)] − bk(t)

1 − ω/wk(t) + bk(t)
wk(t) ω − 1

}

All the contributions tend to zero for vanishing curvature, apart from the fourth one
that tends to −bk. Therefore, the second and third rows in Eq. (1.22) tend to a function
of time only. Since this can be neglected, Eq. (1.22) reduces to Eq. (1.21).

In the case of a flat plate, the complex potential Φ̃(c) reduces to the first contribution
of Eq. (1.19). Hence, the other terms shall tend to a function of time only as the body
curvature tends to zero. This can be proved by subtracting the quantity log[rk(t)σk(t)]
inside the summation and considering that the distances rk > Λk tend to infinity in the
flat-plate limit. As a result, all the terms in Eq. (1.19) but the first one go to zero with
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the body curvature, and the complex potential of a unit body circulation reduces to

Φ̃(b)(ω) = 1
2πi

log ω (2.10)

Using the above results, one finally has

Φ̃ = +ℓ χ

4 u∞ ω + ℓ χ

4 u∞
1
ω

− i Vn
ℓ

2
1
ω

+ i α̇
ℓ2

16
1

ω2 + (2.11)

+ 1
2πi

N∑
j=1

Γj

[
log(ω − ωvj

) + log ω − log(ω − 1/ωvj
)
]

+ Γb

2πi
log ω

Wake shedding and convection can be modeled as discussed in Subsec. 1.3.2.3 and 1.3.2.4
for any airfoil shape.

2.1.3 Aerodynamic load

The aerodynamic force and moment on a flat-plate airfoil in arbitrary rigid-body
motion are obtained by specializing Eqs. (1.34) and (1.37). This is accomplished by
writing the derivatives of Φ as ∂tΦ = ∂tΦ̃ + ∂ωΦ̃ ∂tω and ∂xΦ = ∂ωΦ̃ ∂xω and using
the relations obtained in Subsecs. 2.1.1 and 2.1.2. The resulting complex integrals
rewritten in the ω-plane can be analytically evaluated as discussed in App. A.4.

2.1.3.1 Aerodynamic force

The unsteady aerodynamic force and moment on a flat-plate airfoil can be recast in a
compact form by introducing the following time-dependent wake coefficient [89]:

a(k) = a(k)
x + ia(k)

y :=
N∑

j=1

Γj

ωk
vj

b∓ = b∓
x + ib∓

y :=
N∑

j=1

Γj

ωvj
± 1

c∓ = c∓
x + ic∓

y :=
N∑

j,k=1

2ΓjΓk

(ωvj
± 1)(ωvk

− 1/ωvj
)

d = dx + idy :=
N∑

j,k=1

2ΓjΓk

ωvj
(ωvk

− 1/ωvj
)

(2.12)

These coefficients depend on time through the number of vortices shed into the flow
field and their position in the ω-plane, which vary as the vortices are convected
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downstream in the x-plane according to a free-, frozen-, of flat-wake convection law
(see Subsec. 1.3.2.4).

The unsteady aerodynamic force on a flat-plate airfoil in arbitrary rigid-body
motion can be concisely written as [89]

F (a) = F (a)
n n + F (a)

τ τ = ρ π
ℓ2

4
[ (

Gn − V̇n

)
n +Gτ τ

]
(2.13)

The normal component in Eq. (2.14) divided by ρ is given by [89]

F (a)
n

ρ
=: π

ℓ2

4
(
Gn − V̇n

)
(2.14)

= +π ℓ
2

4
[
u̇∞ sin(α + β) + (α̇ + β̇)u∞ cos(α + β) − V̇n

]
− ȧ(1)

x

ℓ

2 +

+Γb

[
− u∞ cos(α + β) − Vτ +

b−
y + b+

y

πℓ

]
+ α̇

ℓ

4
(
b−

y + b+
y − 2a(1)

y

)
+

+
(
b−

y − b+
y

) [
Vn − u∞ sin(α + β)

]
+ 1

2πℓ
(

2b−
x b

−
y − 2b+

x b
+
y + c+

y − c−
y

)
The contribution proportional to V̇n gives the so-called apparent mass term, which is
due to the mass of fluid accelerated by the flat plate translational motion. The tangent
component in Eq. (2.14) divided by ρ is [89]

F (a)
τ

ρ
=: π ℓ

4 Gτ = Γ2
b − 2q1Γb + q2

4πℓ (2.15)

with coefficients q1 = −πℓ
[
u∞ sin(α + β) − Vn + α̇ ℓ/4

]
+ 2b+

x and q2 = q2
1 [89].1

2.1.3.2 Aerodynamic moment

From the structure of the map in Eq. (2.1), the unsteady aerodynamic moment achieves
its simplest form when written with respect to the airfoil centroid [89]

M
(a)
H = M

(a)
0 +Hτ F

(a)
n −Hn F

(a)
τ = ρ π

ℓ2

128
(
α̈− M(a)

)
(2.16)

1 Note that the unsteady aerodynamic force on a flat plate should be purely normal in an inviscid
model, while Eq. (1.34) also gives a tangent component. This paradox is well-known in the literature
in relation to the use of the Blasius theorem. However, the tangent component of the aerodynamic
force given by Eq. (1.34) is practically zero when it is evaluated during numerical simulations based
on the present formulation with wake shedding performed according to the fixed-position method [89].
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with [89]

M
(a)
H

ρ
=: π

ℓ4

128
(
α̈− M(a)

)
(2.17)

= +π α̈ ℓ4

128 + π
ℓ2

4
[
Vn − u∞ sin(α + β)

] [
Vτ + u∞ cos(α + β)

]
+

+ ℓ

2
(
a(1)

y − b−
y − b+

y

) [
Vn − u∞ sin(α + β)

]
+

+ ℓ

2
[
Vτ + u∞ cos(α + β)

]
a(1)

x +

− ℓ2

16
(
ȧ(2)

x + 2α̇a(2)
y

)
+
( Γb

2π + α̇
ℓ2

8
) (

b+
y − b−

y

)
+

+ 1
4π

(
− 2b−

x b
−
y − 2b+

x b
+
y + c−

y + c+
y − dy

)
The term proportional to α̈ gives the the so-called added inertia term, which is due to
the inertia of the fluid accelerated by the flat plate rotational motion.

2.2 Aeroelastic model

A flat-plate aeroelastic model that accounts for aerodynamic geometric nonlinearities
due to large amplitudes and free wake is developed by coupling the aerodynamic
force and moment in Eqs. (2.13) and (2.16) with a standard typical-section structural
model [5]. The translation and rotation of the flat-plate airfoil in the x-plane are
restrained by linear and torsional springs that connect the cross-section to a rigid
support, which may represent the bending and torsion elasticity of a wing with span
along the z-axis. The elastic reactions due to the springs are here described by linear
laws, but the model could be easily extended to include structural nonlinearities (e.g.,
cubic stiffness). In the most general case, the springs may be connected to the flat
plate at an arbitrary location along the chord, the cross-section elastic center, which
may not coincide with the mass center. The mass and elastic centers are here assumed
to be both located at the airfoil centroid for the sake of simplicity. The more general
EOMs for a typical section with non-coincident mass and elastic centers are reported
in App. A.4.
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(a) Structural model (b) Aerodynamic model

Fig. 2.1 Typical-section structural and aerodynamic models.

With the above assumptions, the x- and y-components of the elastic force and the
elastic moment applied to the cross-section are written as

F (e)
x = −kx(Hx −Hxe) F (e)

y = −kz(Hy −Hye) M (e) = kα(α− αe) (2.18)

The constants of the linear springs along the x- and y-axes given by kx = m(2πfx)2,
ky = m(2πfy)2, fx and fy being the corresponding bending natural frequencies and
m the cross-section mass per unit span length. The constant of the linear spring is
kα = JE(2πfα)2, fα being the pitch frequency and JE the cross-section moment of
inertia per unit span length with respect to the elastic center (here coincident with the
mass center). The quantities He = Hxe + i Hye and αe are, respectively, the centroid
position and the pitch angle of vanishing elastic reactions, which define the equilibrium
configuration of the typical section in vacuum.

A scheme of the flat-plate aeroelastic model is illustrated in Fig. 2.1. Once the
fluid-to-airfoil mass and inertia ratios are introduced:

σ = 1
m

ρπℓ2

4 µ = 1
JG

ρπℓ4

128 (2.19)

the EOMs for the typical section in Fig. 2.1 are written as

Ḧ = σ [(Gn − V̇n) n +Gτ τ ] + F (e)/m

α̈ = µ (M(a) − α̈) −M (e)/Jα

(2.20)
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The quantity V̇n is evaluated using the first equation in the system (2.20) and the
relation ṅ = −α̇ τ :

V̇n = Ḧ · n − α̇ Ḣ · τ = 1
1 + σ

(
σGn + F (e)

n /m− α̇Vτ

)
(2.21)

and is substituted back into Eq. (2.21) to obtain the following system of explicit
second-order ordinary differential equations:

Ḧ = 1
1 + σ

[
σ(Gn + α̇Vτ ) + F (e)

n /m
]

n +
(
σGτ + F (e)

τ /m
)

τ

α̈ = 1
1 + µ

(
µM(a) −M (e)/Jα

) (2.22)

Combined with the initial conditions H(0) = H0, Ḣ(0) = Ḣ0, α(0) = α0, and
α̇(0) = α̇0, Eq. (2.22) describes the dynamics of the aeroelastic model in Fig. 2.1.

The aeroelastostatic equilibrium configuration is given by the solution of the system

H ′
xe

= Hxe + σu2
∞e

2π2f 2
xℓ

sinα′
e sin[2(α′

e + βe)]

H ′
ye

= Hye + σu2
∞e

2π2f 2
y ℓ

cosα′
e sin[2(α′

e + βe)]

α′
e = αe + 4µu2

∞e

π2f 2
αℓ

2 sin[2(α′
e + βe)]

(2.23)

where the steady-state body circulation −πℓu∞e sin(α′
e + βe) corresponding to the

stationary freestream velocity u∞e = u∞e exp(iβe) has been used. The aeroelastostatic
pitch angle α′

e can be obtained by solving the third equation. Once this is known, the
first two system equations gives the centroid position of aeroelastostatic equilibrium.

2.3 Model validation

The flat-plate aerodynamic and aeroelastic models developed in Sec. 2.1 were validated
in Ref. [89] against closed-form solutions for small disturbances and semi-analytical
results and experiments for imposed large-amplitude maneuvers. The validation studies
are reported below.



54 Flat-plate airfoil model

2.3.1 Small-amplitude motion

The case of small disturbances is first considered due to the availability of several
closed-form results for the unsteady aerodynamic loads on flat-plate airfoils subjected
to different flow and motion regimes. The reference solutions considered in the following
are: 1) the Wagner solution for the transient lift response due to a step change in the
angle of attack in a steady horizontal flow [12]; 2) the Isaacs solution for the periodic
lift response due to a sinusoidally varying horizontal freestream velocity [23]; and 3)
the Theodorsen solution for the lift and pitching moment on a flat plate undergoing
small-amplitude plunge and pitch in a steady horizontal flow [15, 5]. The aeroelastic
model developed in Sec. 2.2 is validated by verifying the flutter speed for a particular
set of typical section parameters against the parametric studies of Theodorsen and
Garrick [22, 5].

2.3.1.1 Wagner solution

The first case study is the transient lift response on a flat plate in a steady horizontal
flow of freestream velocity u∞ due to a step change in the angle of attack from zero
to α0. A closed-form solution to this problem was obtained by Wagner [12] under the
assumptions of continuous flat wake and small angles, for which the lift (component of
the aerodynamic force normal to the freestream velocity) can be confused with the
aerodynamic force (normal to the flat plate). Neglecting the discontinuities in the
pitch rate and acceleration at the initial time, the transient lift response normalized by
the steady-state value is described by the Wagner function, which is an aerodynamic
indicial response function. The latter can be written as

W (τ) = 1
2π

∫ +∞

−∞
dk

C(k)
ik

exp(ikτ) (2.24)

where k := ωℓ/(2u∞) is the reduced frequency, τ := 2tu∞/ℓ the corresponding non-
dimensional time, and C(k) is the Theodorsen function [15]. Equation (2.24) can be
obtained by taking the inverse Fourier transform of the Theodorsen lift [15] specialized
to a step change in the angle of attack.

Finite-state approximations to the Wagner function are reported in the litera-
ture [27] or can be obtained by analytically evaluating Eq. (2.24) using finite-state
approximations of the Theodorsen function (e.g., Ref. [35]). In this work, the exact
Wagner function is considered as the reference. This is numerically evaluated from
Eq. (2.24) by means of an inverse Fast-Fourier Trasform (FFT) algorithm and compared
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(a) α0 = 1◦ (b) α0 = 5◦

(c) α0 = 10◦ (d) α0 = 15◦

Fig. 2.2 Wagner problem: transient response of the aerodynamic force.

with the Wagner function given by the present model:

W (τ) = F (a)
n (τ)

ρπℓu2
∞ sinα0 cosα0

(2.25)

where the denominator is the nonlinear steady-state normal force and the numerator
is its instantaneous unsteady value given by Eq. (2.14). The latter is evaluated
by numerically integrating the free wake dynamics during the transient by means
of a fourth-order Runge-Kutta time-marching scheme with adaptive time step and
regularized Biot-Savart kernel (see also Ref. [89]). Four simulations are carried out for
α0 = 1◦, 5◦, 10◦, 15◦ in order to assess the present model against the Wagner solution
for small angles and discuss the limit of validity of the latter as the angle of attack
increases.

The plots of Fig. 2.2 show that the solution from the present model [Eq. (2.25)]
and the theoretical reference [Eq. (2.24)] practically overlap for all the examined angles
of attack. This provides a first validation of the present formulation and also shows



56 Flat-plate airfoil model

Fig. 2.3 Wagner problem: difference with the Wagner function.

that the Wagner function is remains valid for relatively large angles, as far as it is
interpreted as the normalized response of the total aerodynamic force (normal to the
flat plate) rather than of just the lift component (normal to the freestream velocity).
A very slight difference between the present results and the reference curve is observed
during the early transient phase (see Fig. 2.3), but this rapidly decreases as steady
conditions are reached.

The overall agreement between the present nonlinear results and the Wagner
solution even for relatively large angles can be motivated by observing the wake
configurations illustrated in Figs. 2.4, 2.5 and 2.6. The wake is increasingly non
planar close to the flat plate in the early transient phase for higher values of α0, due
to more significant free-wake effects associated with the starting vortex. However,
the latter is convected downstream approximatively with the freestream velocity and
along a straight horizontal line. Therefore, since most of the wake vorticity content is
associated with the starting vortex, the flat-wake assumption remains globally valid
even if the wake is locally non flat in a neighborhood of the body. No other macroscopic
vortex structure is formed in the wake. As a result, this becomes roughly planar as
steady-state conditions are reached (see Fig. 2.6), so that the difference between the
present nonlinear results and the theoretical reference rapidly goes to zero during the
transient (see Fig. 2.3).
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(a) α0 = 1◦

(b) α0 = 5◦

(c) α0 = 10◦

(d) α0 = 15◦

Fig. 2.4 Wagner problem: wake configurations (2tu∞/ℓ = 16).
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(a) α0 = 1◦

(b) α0 = 5◦

(c) α0 = 10◦

(d) α0 = 15◦

Fig. 2.5 Wagner problem: wake configurations (2tu∞/ℓ = 40).
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(a) α0 = 1◦

(b) α0 = 5◦

(c) α0 = 10◦

(d) α0 = 15◦

Fig. 2.6 Wagner problem: wake configurations (2tu∞/ℓ = 80).
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Fig. 2.7 Isaacs problem: transient response of the aerodynamic force.

2.3.1.2 Isaacs solution

The second case study is the Isaacs problem of the periodic lift response on a flat plate
at non-zero angle of attack due to an horizontal freestream velocity with sinusoidally
varying modulus. The specific test cases is the one reported in Ref. [52] that considers
the time law

u∞(t) = [1 + 0.8 sin(ωt)]u0 = [1 + µφ(t)]u0

with k := ωℓ/(2u0) = 0.2. The flat-plate airfoil is assumed at a steady-state angle
of attack α0 = 5◦. The transient is simulated by integrating the free wake dynamics
as for the Wagner problem and the aerodynamic force is evaluated from Eq. (2.14),
since the tangent component in Eq. (2.15) is practically zero. The obtained time
history normalized by the quasi-steady value ρπℓu2

0 sinα0 cosα0 is compared against
the linearized solutions from Isaacs [23] and Peters [38], Greenberg [25], and the
semi-analytical free-wake results from Yan et al. [52].

The comparison is shown in Fig. 2.7. The present solution is in agreement with all
the available solutions, apart from the one by Greenberg that is approximate.

2.3.1.3 Theodorsen solution

The Wagner and Isaacs problems considered in Subsecs. 2.3.1.1 and 2.3.1.2 address the
unsteady aerodynamics of stationary flat plates. Next, the formulation of Sec. 2.2 is
validated against the Theodorsen solution valid for small-amplitude plunge and pitch,
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steady horizontal flow, and flat wake [15]. The validation is performed analytically by
considering the Theodorsen solution written for discretized wake as the reference (see
Chap. 5, Eqs. (5.271), (5.272), (5.289), and (5.290) of Ref. [5]). Further developed by
assuming continuous wake and harmonic motion, that form yields the well-known one
written in terms of the Theodorsen function [15, 5].

Since the flat-plate airfoil motion is naturally described by the translation of the
cross-section centroid and the rigid-body rotation about the same point in the present
model, the Theodorsen solution in Ref. [5] is written by assuming the centroid as the
reference point. Once the different conventions for positive vertical displacements and
pitching moments are considered, the Theodorsen solution can be written as [5]

L = ρ π
ℓ2

4 (−Ḧy + α̇ u∞) + ρ u∞

N∑
j=1

Γvj

xvj√
x2

vj
− ℓ2/4

My = ρ π
ℓ2

4 (Ḣy u∞ − α u2
∞ + α̈ ℓ2/32) + ρ

ℓ2

8 u∞

N∑
j=1

Γvj

1√
x2

vj
− ℓ2/4

(2.26)

where L is the linearized lift (vertical aerodynamic force) per unit span length, My is
the linearized pitching moment per unit span length with respect to the centroid, and
xvj

is the position of the jth discrete vortex along the x-axis. The noncirculatory terms
in the above solution are obtained by imposing the no-penetration unsteady boundary
condition on the zero-angle-of-attack reference configuration and by assuming linearized
rigid-body kinematics. The circulatory terms are obtained by discretizing the wake in
vortices of constant circulation. The vortices give zero tangent velocity on the airfoil
and are convected downstream with velocity u∞ along a straight horizontal line from
the reference position of the trailing edge to infinity. Both the noncirculatory and
circulatory flows are developed in an auxiliary complex plane related to the physical
plane by the Joukowski map.

In order to analytically demonstrate that the present geometrically exact solution
for the aerodynamic force and moment on a flat plate reduces to the Theodorsen one
in Eq. (2.26) for any small-amplitude plunge and pitch motion, the relations obtained
in Subsecs. 2.1.3.1 and 2.1.3.2 are simplified by assuming: 1) steady horizontal flow,
which implies β = 0 and u̇∞ = β̇ = 0; 2) small disturbances, for which cos(α + β) ≈ 1,
sin(α + β) ≈ α, Vn ≈ Ḣy, V̇n ≈ Ḧy, Vτ ≈ 0, quadratic terms can be neglected, and
Eq. (2.1) reduces to:

x = ℓ

4
(

ω + 1
ω

)
ω = 2

ℓ

(
x +

√
x2 − ℓ2/4

)
(2.27)
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3) flat wake in the x-plane, which combined with Eq. (2.27) implies that the wake
coefficients in Eq. (2.12) are purely real. With these assumptions, the linearized
aerodynamic force (lift) and pitching moment with respect to the cross-section centroid
given by the present formulation are written as

L = ρ π
ℓ2

4 (−Ḧy + α̇ u∞) − ρ u∞ Γb − ρ ȧ(1)
x

ℓ

2

My = ρ π
ℓ2

4 (Ḣy u∞ − α u2
∞ + α̈ ℓ2/32) + ρ u∞ a(1)

x

ℓ

2 − ρ ȧ(2)
x

ℓ2

16

(2.28)

The noncirculatory terms in Eq. (2.28) and Eq. (2.26) are identical. The circulatory
terms cannot still be compared, since Eq. (2.26) involves the discrete-vortex positions
and velocities in the x-plane, while Eq. (2.28) is written in terms of the quantities a(1)

x ,
ȧ(1)

x , and ȧ(2)
x that involve discrete-vortex positions and velocities in the ω-plane.

A change of variable is next performed using Eq. (2.27) and the consequent relations:

ωvxj
= 2
ℓ

(
xvj

+
√
x2

vj
− ℓ2/4

)
ω̇vxj

= u∞
4
ℓ

ω2
vxj

ω2
vxj

− 1 (2.29)

which yield

a(1)
x = +

N∑
j=1

Γvj

ζxj

= +2
ℓ

N∑
j=1

Γvj

(
xvj

−
√
x2

vj
− ℓ2/4

)

ȧ(1)
x = −

N∑
j=1

Γvj

ζ2
vj

ζ̇vj
= −2

ℓ
u∞

N∑
j=1

Γvj

xvj√
x2

vj
− ℓ2/4

− 2
ℓ
u∞ Γb

ȧ(2)
x = −2

N∑
j=1

Γvj

ζ3
vj

ζ̇vj
= +16

ℓ2 u∞

N∑
j=1

Γvj

xvj

√
x2

vj
− ℓ2/4 − x2

vj
+ ℓ2/8√

x2
vj

− ℓ2/4

(2.30)

Substituting Eq. (2.30) into Eq. (2.28) the circulatory terms become

−ρ u∞ Γb − ρ
ℓ

2 ȧ
(1)
x = ρ u∞

N∑
j=1

Γvj

xvj√
x2

vj
− l2/4

+ρ u∞
ℓ

2 a
(1)
x − ρ

ℓ2

16 ȧ
(2)
x = ρ u∞

ℓ2

8

N∑
j=1

Γvj

1√
x2

vj
− ℓ2/4

(2.31)

which are identical to the ones in Eq. (2.26).
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Fig. 2.8 Flutter of a typical section: time histories of Hy and α.

The above validation shows that the present geometrically exact flat-plate unsteady
aerodynamic model is a natural extension of Theodorsen theory for geometrically exact
rigid-body motion and free wake discretized in vortices. Note that the comparison has
been done by considering a form of the Theodorsen solution that does not involve the
assumption of harmonic motion. Therefore, it is valid for any small-amplitude plunge
and pitch.

2.3.1.4 Flutter of a typical section

The last validation for the case of small disturbances consists of verifying the flutter
speed of the aeroelastic model of Sec. 2.2 against the parametric studies of Theodorsen
and Garrick [22, 5]. The characteristic typical-section parameters are the airfoil-to-fluid
mass ratio σ, the airfoil-to-fluid inertia ratio µ, the non-dimensional position of the
airfoil mass and elastic centers, and the bending-to-torsion frequency ratio fy/fα.

The aeroelastic model developed in Sec. 2.2 is numerically implemented by simulta-
neously integrating the flat-plate and wake dynamics with a fourth-order staggered
Runge-Kutta time-marching algorithm with adaptive time step and regularized Biot-
Savart kernel (see also Ref. [89]). The body motion is driven by the elastic reactions
applied by the bending and torsional springs and by the aerodynamic loads [Eq. (2.22)],
which in turn depend on the body motion itself and on its history through the free wake
evolution. The linear stability margin is verified for a set of typical-section parameters
by performing two free response simulations below and above the expected flutter
speed. These are carried out by considering the typical section in the zero-angle-of-
attack equilibrium configuration at the initial time, which is perturbed by applying a
small initial pitch rate. Since the Theodorsen solution does not take into account the
horizontal translation of the airfoil, this is restrained by setting a very high value of



64 Flat-plate airfoil model

the horizontal bending spring. The assumed typical-section parameters are σ = 0.1,
µ = 0.05, (fh/fα)2 = 0.5, with mass and elastic centers of the flat plate both placed at
the centroid (see Sec. 2.2). The non-dimensional flutter speed predicted by Theodorsen
and Garrick [22] is uF/(ℓπfα) = 1.41, as obtained by the curves in Fig. (9.5D) of Ch. 5,
p. 543 of Ref. [5]. The numerical simulations with the present model are performed for
u∞ = 0.98uF and u∞ = 1.02uF . The initial perturbation applied in the two cases is a
non-dimensional initial pitch rate α̇ℓ/(2u∞) = 0.001.

The non-dimensional time-histories of plunge and pitch are illustrated in Fig. 2.7.
The response given by the present model is in agreement with the linear stability
margin, since a decaying oscillation is observed below the expected flutter speed while
the motion amplitude increases above the flutter speed.

2.3.2 Large-amplitude motion

The last validation study is the transient response of the lift coefficient due to a
large-amplitude pitch maneuver for which experimental results are available [41].
The examined maneuver is a pitch-up, hold, pitch-down imposed motion that was
standardized in Ref. [43] as canonical large-amplitude benchmark for the assessment of
low-order models for flapping wings. The imposed pitch time history is

α(τ) = αmax
G(τ)

max[G(τ)] (2.32)

with smoothing function

G(τ) = log cosh[a(τ − τ1)] cosh[a(τ − τ4)]
cosh[a(τ − τ2)] cosh[a(τ − τ3)]

(2.33)

where τ = tu∞/ℓ is the non-dimensional time based on the chord, τ1 and τ2 are
the non-dimensional times of start and end of the pitch-up phase, τ3 and τ4 are the
non-dimensional times of start and end of the pitch-down phase, and the smoothing
parameter a gives the sharpness of the maneuver. The pitch time history for a = 11
and αmax = 25◦ is shown in Fig. 2.9 and is imposed to the flat-plate by considering the
leading-edge, half-chord, and trailing-edge as pivot points. The transient lift coefficient
CL evaluated using the present model is compared with the experimental measurements
and semi-analytical predictions by Ramesh et al. [41] and with the results from the
free-wake semi-analytical model of Yan et al. [52] (available for half-chord pivot only).

The comparisons are illustrated in Fig. 2.10. The solution from the present model
is in good agreement with the experiments during the upstroke and hold phases,
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Fig. 2.9 Canonical pitch-up, hold, pitch-down maneuver: time history of α.

while differences are found in the downstroke. This is justified by considering that
leading-edge vortex shedding occurs in the experiment as the flat plate approaches
the maximum angle of attack, which is not captured by the present model. The
closest agreement with the experimental results is obtained for pivot about the trailing
edge, which is justified by considering that the trailing-edge Kutta condition simulates
particularly well the shedding of vorticity in this case since the trailing edge remains
fixed. The present results also show a better matching of the experiments with respect
to the model by Ramesh [41], which is motivated by considering that the latter accounts
for large amplitudes but neglects the vortex-induced velocities in the nonplanar wake
dynamics. For the case of pivot about the flat-plate center, the present formulation is
also in agreement with the semi-analytical free-wake model by Yan [52].

2.4 Numerical studies

Once validated, the flat-plate airfoil aeroelastic model is used to simulate the aeroelastic
response to: 1) a sudden start of the flow; and 2) the interaction with an isolated
vortex passing by.

The numerical results discussed in this section were presented in Ref. [89] and
are obtained by integrating the flat-plate and wake dynamics with a fourth-order
staggered Runge-Kutta time-marching scheme with adaptive time step and regularized
Biot-Savart kernel. Further details on the numerical procedure can be found in Ref. [89].
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(a) Pivot at leading edge

(b) Pivot at half chord

(c) Pivot at trailing edge

Fig. 2.10 Canonical pitch-up, hold, pitch-down maneuver: transient lift coefficient.
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Test u∞ (m/s) α0 (deg) H ′
xe

(m) H ′
ye

(m) α′
e (deg)

1 10 5 0.7 · 10−4 1.7 · 10−2 5.96
2 10 10 2.7 · 10−4 3.2 · 10−2 11.87
3 15 5 2.7 · 10−4 4.9 · 10−2 7.82

Table 2.1 Sudden-start simulations: test cases.

2.4.1 Aeroelastic simulation of sudden start

The aeroelastic response to a sudden start is simulated by assuming that both the flat
plate and the surrounding fluid are at rest at the initial time. The body is in its elastic
equilibrium configuration, so that the bending and torsional springs do not apply any
load (H0 = He = 0, α0 = αe). The initial circulation is zero (Γb0 = 0). As the
simulation starts, the freestream velocity increases in modulus up to a stationary value
u∞ with a very steep hyperbolic tangent function law that approximates an impulsive
start, while an horizontal direction is kept (β = 0◦). The typical-section parameters
assumed in the simulations are σ = 0.1, µ = 0.05, fx = 12.5 Hz, fy = 2.5 Hz, fα = 5 Hz,
and ℓ = 1 m. The frequency of the horizontal bending spring is much higher that the
other ones to describe the elastic behavior of a wing-like cross-section. As a result, the
horizontal motion is negligible during the numerical simulations. The aerodynamic load
experienced by the flat plate as the flow starts moves the cross-section from the elastic
equilibrium configuration, causing a transient aeroelastic response that eventually ends
when steady-state conditions are reached.

Three sudden-start simulations are carried out by considering different values of α0

and u∞ as summarized in Tab. 2.1, which also shows the corresponding aeroelastostatic
equilibrium quantities given by Eq. 2.23. The transient is simulated using both the
fully nonlinear code based on the geometrically exact formulation developed in Secs. 2.1
and 2.2 and a linearized code (small amplitudes and flat wake).

The normalized time histories of Hy and α− α0 are shown in Fig. 2.11 for α0 = 5◦,
10◦ and u∞ = 10 m/s (Tests 1 and 2), while Fig. 2.12 shows the results for u∞ = 10 m/s,
15 m/s and α0 = 5◦ (Tests 1 and 3). The system stiffness decreases while increasing
either u∞ or α0, leading to larger aeroelastostatic linear and angular displacements (see
Tab. 2.1). An increase in either u∞ or α0 also reduces the aerodynamic damping, causing
larger and longer oscillations during the transients. The solid curves show the nonlinear
results, while the dash-dotted ones the linearized solution. The difference between the
nonlinear and linear results increases with both α0 and u∞ due to the larger-amplitude
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Fig. 2.11 Sudden-start simulations: time histories of Hy and α − α0 (Tests 1 and 2).

Fig. 2.12 Sudden-start simulations: time histories of Hy and of α − α0 (Tests 1 and 3).

transient aeroelastic response. The main difference between nonlinear and linearized
results is in terms of steady-state solution, since the linearized model assumes sinα ≈ α

and cosα ≈ 1. The discrepancy remains relatively slight in the present test cases.
However, it is expected to be highly dependent on both the amplitude and reduced
frequency of the motion, whose combination drives the formation of macroscopic vortex
structures during the free wake evolution.

The normalized time histories of the aerodynamic force and pitching moment
coefficients, denoted by CF and CM , respsectively, are plotted in Figs. 2.13 and 2.14.
Again, the main difference between nonlinear and linearized results is in terms of steady-
state loads, which implies a different aeroelastostatic solutions (see also Figs. 2.11
and 2.12).

The normalized time histories of the center-of-pressure location are shown in
Fig. 2.15 for the sake of completeness. The center of pressure oscillates around the



2.4 Numerical studies 69

Fig. 2.13 Sudden-start simulations: time histories of CF and CM (Tests 1 and 2).

Fig. 2.14 Sudden-start simulations: time histories of CF and CM (Tests 1 and 3).

(a) u∞ = 10 m/s (b) α0 = 5◦

Fig. 2.15 Sudden-start simulations: time histories of the center-of-pressure position (Tests
1–3).
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(a) α0 = 5◦ (b) α0 = 10◦

Fig. 2.16 Sudden-start simulations: wake configurations (2tu∞/ℓ = 14, Tests 1 and 2).

(a) α0 = 5◦ (b) α0 = 10◦

Fig. 2.17 Sudden-start simulations: wake configurations (2tu∞/ℓ = 40, Tests 1 and 2).

quarter chord during the transient to eventually reach that location as steady-state
conditions are reached.

Some wake configurations at different times are shown in Figs. 2.16, 2.17 and 2.18
for α0 = 5◦, 10◦ and u∞ = 10m/s (Tests 1 and 2). Figure 2.16 shows that the steep
gradient in the shed vorticity at the initial time results in a macroscopic starting vortex,
whose strength increases with the initial angle of attack. In contrast with the Wagner
problem, other smaller vortex structures are formed in the wake during the transient
aeroelastic response as shown in Fig. 2.17. This occurs due to changes of sign in the
circulations of the shed vortices as a consequence of the body motion. From Figs. 2.16

(a) α0 = 5◦ (b) α0 = 10◦

Fig. 2.18 Sudden-start simulations: wake configurations (2tu∞/ℓ = 80, Tests 1 and 2).
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Test u∞ (m/s) H ′
ye

(m) α′
e (deg) Γbe (m2/s) Γv0 yv0/ℓ xv0/ℓ

5 2.5 9.0 · 10−4 5.05 −0.69 +Γbe +0.25 −2.5
6 2.5 9.0 · 10−4 5.05 −0.69 −Γbe −0.25 −2.5
7 10 1.7 · 10−2 5.96 −3.26 +Γbe +0.50 −2.5
8 10 1.7 · 10−2 5.96 −3.26 −Γbe −0.50 −2.5

Table 2.2 Body-vortex interaction simulations: test cases.

and 2.17 it can be noted that the wake is not flat during the early transient phase,
while it becomes approximatively planar close to the airfoil as steady-state conditions
are reached (see Fig. 2.18).

2.4.2 Aeroelastic simulation of body-vortex interaction

As further application, the flat-plate aeroelastic model is used to simulate the transient
aeroelastic response due to the perturbation given by an isolated vortex passing by. The
body-vortex interaction simulations are carried out by assuming a constant horizontal
freestream velocity and that the flat-plate is in aeroelastostatic equilibrium at the
initial time, with steady-state body circulation given by Γbe = −πℓu∞ sinα′

e. Two
different values of the freestream velocity are considered, and for each value the
two cases of an isolated vortex passing by above or below the flat plate are studied.
The vortex is inserted into the flow field upstream of the body at an initial location
xv0(0) = xv0(0) + iyv0(0), and it gives a perturbation that moves the flat plate from
the equilibrium configuration. The vortex circulation is assumed as Γv0 = +Γbe

(clockwise) when the vortex initial position is above the x-axis, whereas it is assumed
as Γv0 = −Γbe (counterclockwise) when the vortex is initially placed below the x-axis.
Once the simulation starts, the isolated vortex is convected downstream with its local
velocity. Therefore, the vortex path comes from the nonlinear interaction with the
freestream, body motion, and shed wake, which can be only captured by means of
a free-wake model. The analysis parameters considered for each case study and the
related aeroelastostatic equilibrium quantities are reported in Tab. 2.2. The numerical
results are presented in terms of relative variations in the quantities of interest with
respect to the initial equilibrium values.

Figure 2.19 shows the relative variations in the vertical displacement and angle
of attack. As the vortex approaches the airfoil, the vortex-induced velocity field
perturbs the steady-state pressure distribution on the body boundary. The aeroelastic
equilibrium configuration is consequently lost, and a transient response occurs. The
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(a) vortex up (b) vortex down

(c) vortex up (d) vortex down

Fig. 2.19 Body-vortex interaction simulations: time histories of Hy − H ′
ye

and α − α′
e (Tests

5–8).
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(a) vortex up (b) vortex down

(c) vortex up (d) vortex down

Fig. 2.20 Body-vortex interaction simulations: time histories of CL − CLe and of CD − CDe

(Tests 5–8).

(a) vortex up (b) vortex down

Fig. 2.21 Body-vortex interaction simulations: time histories of CM − CMe (Tests 5–8).
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(a) vortex up (b) vortex down

Fig. 2.22 Body-vortex interaction simulations: time histories of the center-of-pressure
position (Tests 5–8).

(a) vortex up

(b) vortex down

Fig. 2.23 Body-vortex interaction simulations: wake configurations (2tu∞/ℓ = 40, Tests 7
and 8)
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(a) 2tu∞/ℓ = 60, vortex up (b) 2tu∞/ℓ = 40, vortex down

Fig. 2.24 Body-vortex interaction simulations: wake configurations (2tu∞/ℓ = 40, 60, Tests
7 and 8)

vortex circulation is negative (clockwise) in Tests 5 and 7, in which the vortex passes
by above the section, so causing a decrease in the fluid velocity on the upper airfoil
side. The opposite occurs for Tests 6 and 8. Therefore, the flat plate in both cases
is pushed in the opposite direction with respect to the vortex. From Fig. 2.19 it
can be observed that the vortex passage excites the vertical translation and pitch
differently depending on the fly-over time ℓ/u∞, namely the time necessary to travel
from the airfoil leading to the trailing edge with the freestream velocity. In the present
analyses the fly-over times are equal to 0.4 s and 0.1 s for u∞ = 2.5 m/s and 10 m/s,
respectively. For u∞ = 2.5 m/s the fly-over time is equal to the period of the vertical
spring. Therefore, the transient response mainly involves the vertical translation with
no significant change in the angle of attack, due to both the low-frequency perturbation
and the low degree of bending-torsion aeroelastic coupling for coincident cross-section
mass and elastic centers. For u∞ = 10 m/s the fly-over time is half the period of the
torsional spring, so that the perturbation excites both plunge and pitch.

The relative variations in the lift, drag, and moment coefficients are illustrated in
Figs. 2.20 and 2.21. The peak variations occurs at the same non-dimensional time,
which corresponds to the passage of the vortex below the flat plate. The position of
the center of pressure along the chord is plotted in Fig. 2.22. The center of pressure
leaves the quarter-chord point as the perturbation applied by the vortex disturbs the
equilibrium configuration. The original position is recovered at the end of the transient.

Some normalized wake configurations are presented in Figs. 2.23 and 2.24. Fig-
ure 2.23 shows that an asymmetric dipole is formed as the vortex passes by and
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interacts with the wake vorticity. Because of the lack of symmetry, the dipole rotates
clockwise when the vortex has negative circulation (Test 7) and counterclockwise in
the other case (Test 8). A closer view of the dipoles is shown in Fig. 2.24.



Chapter 3

Flexible-airfoil model

In the previous chapter, the general formulation presented in Chap. 1 was specialized
to the particular case of a flat plate and validated with available solutions for small-
and large-amplitude motions. In this chapter, the formulation is specialized to the
simplest deformable cross-section shape that can be modeled using the map in Eq. (1.3),
namely a flexible thin airfoil that for any time has curvature of constant sign along the
chord. The unsteady aerodynamic model is developed in Sec. 3.1 and validated against
the Peters modified theory Berci et al. [39] in Sec. 3.2. The model is next applied in
Sec. 3.3 to simulate the unsteady aerodynamic load on a cantilevered flag subjected to
imposed elastic motion in a steady axial flow. This application is a first step toward
the development of a geometrically exact aeroelastic model of flag flutter, which is a
possible extension of the present work.

3.1 Unsteady aerodynamic model for n = 2

The unsteady aerodynamics around a flexible thin airfoil with curvature of constant
sign along the chord can be modeled by specializing the general formulation of Chap. 1
to the case n = 2. The derivation of the complex potential of the flow for the case
n = 3 (one curvature sign change along the chord) is reported in App. (A.6).

3.1.1 Map

Assuming n = 2, the generalized map in Eq. (1.3) becomes

x = h + ℓ χ

4
[

c1
(

ω + 1
ω

)
+ c2

(
ω2 + 1

ω2

) ]
(3.1)
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Fig. 3.1 Map from the ω-plane to the x-plane for n = 2.

from which the body boundary is described by the curve

xb = h + ℓ χ

2
(

c1 cos θ + c2 cos 2θ
)

(3.2)

The ω-derivative of Eq. (3.1) is

∂ωx = ℓ χ

2
ω2 − 1

ω3 c2
(

ω2 + 1
2

c1

c2
ω + 1

)
= Q4

ω3 (3.3)

and vanishes at four points ωk (k = 1, 2, 3, 4). Two zeros are fixed at the points
ω1,2 = ±1, corresponding to the airfoil edges in the x-plane, while the other two zeros
are time-dependent points in the ω-plane given by

ω3,4 =
−c1 ±

√
c2

1 − 16c2
2

4c2
(3.4)

The point Λ1 is the solution of Eq. (3.4) localed outside C, corresponding to the critical
point Y1 in the x-plane. The point λ1 = 1/Λ1 is located inside C and is not mapped
onto the x-plane.

The map in Eq. (3.1) has one branch cut instantaneously coincident with ∂Ωb and
another one denoted by BC1 in the fluid domain, which goes from the critical point
Y1 to infinity. The preimage BCP1 in the ω-plane passes through the point Λ1. From
Eq. (3.4) it can be observed that Λ1 → ∞ for vanishing body curvature (c2 → 0). As
a result, the critical point Y1 and the associated branch cut BC1 go to infinity in that
limit (see Subsec. 1.2.2 and 1.3.3).
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An example of a curved airfoil shape described by Eq. (3.1) is shown in Fig. (3.1)
(ℓ = 1, h = 0, α = 15◦, c1, and c2 = i0.1). The example also shows the location of
the points Y1, Λ1, and λ1, along with the curves BC1 and BCP1. Note that the map
parameters of Fig. (3.1) are arbitrary and do not verify the condition of constant body
length. This must be also enforced in practical applications of the present geometrically
exact formulation, giving a constraint between the Laurent coefficients c1 and c2 (see
Subsec. 3.3.1).

From Eq. (3.2) and using the Schwarz function of the unit circle, the Schwarz
function of the body boundary and its ω-derivative are written as

S = h + ℓ χ

4
[

c1
(

ω + 1
ω

)
+ c2

(
ω2 + 1

ω2

) ]

∂ωS = ℓ χ

2
ω2 − 1

ω3 c2
(

ω2 + 1
2

c1

c2
ω + 1

) (3.5)

Specializing Eq. (1.6) to n = 2 one also has

ub = ḣ + ℓ χ

4
[ (

ċ1 − i α̇ c1
) (

ω + 1
ω

)
+
(

ċ2 − i α̇ c2
) (

ω2 + 1
ω2

) ]
ub = ḣ + ℓ χ

4
[ (

ċ1 + i α̇ c1
) (

ω + 1
ω

)
+
(

ċ2 + i α̇ c2
) (

ω2 + 1
ω2

) ] (3.6)

3.1.2 Complex potential

The complex potential Φ̃ is obtained by specializing the methodology of Sec. 1.3 to the
case n = 2. Since the map in Eq. (3.1) has one critical point Y1 in the fluid domain,
one regularity condition is placed on Φ̃(nc) and Φ̃(c).

3.1.2.1 Noncirculatory flow

Taking n = 2 Eq. (1.12) becomes

Φ̃(nc) = d2 ω2 + d1 ω + d−1

ω
+ d−2

ω2 + d−3

ω3 + d−4

ω4 (3.7)

where the six unknown coefficients are obtained by solving the system formed by the
four independent relations obtained from Eq. (1.14) specialized to n = 2, Eq. (1.15),
and one equation of the form (1.18) imposed at the point Λ1.
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The following notation is introduced:

i νs(t) := χ(t) ḣ(t) cs(t) − χ(t) ḣ(t) cs(t)

i δrj(t) := ċr(t) cj(t) − ċr(t) cj(t)

σrj(t) := cr(t) cj(t) + cr(t) cj(t)

(3.8)

from which
ps = i

ℓ

4 s νs qr,j = i
ℓ2

16 j (δrj + α̇σrj) (3.9)

Using Eq. (3.9), three conditions given by Eq. (1.14) combined with Eq. (1.15) yield

d−4 = i
ℓ2

32
(
δ22 + α̇σ22

)

d−3 = i
ℓ2

16
( 2

3 δ12 + 1
3 δ21 + α̇σ12

)

d−2 = i
ℓ2

32
(
δ11 + α̇σ11

)
+ i

ℓ

4 ν2 + ℓ χ

4 u∞ c2

d2 = ℓ χ

4 u∞ c2

(3.10)

while the last condition is rewritten as

d1 − d−1 = i
ℓ

4 ν1 + i
ℓ2

16 (2δ12 − δ21 + α̇σ12) := A1 (3.11)

with A1 imaginary.

The regularity condition in Eq. (1.18) written for n = 2 at the point Λ1 gives

Λ1 d1 − λ1 d−1 = −2Λ2
2 d2 + 2λ2

1 d−2 + 3λ3
1 d−3 + 4λ2

1 d−4 (3.12)

which using Eq. (3.11) becomes

Λ1 d1 − λ1 d1 = −λ1 A1 − 2Λ2
2 d2 + 2λ2

1 d−2 + 3λ3
1 d−3 + 4λ4

1 d−4 := B1 (3.13)

Coupling Eq. (3.13) with its conjugate the last two unknown coefficients in Eq. (3.7)
are evaluated as

d1 = λ1 B1 + Λ1 B1

Λ2
1 − λ2

1

d−1 = d1 + A1

(3.14)
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Fig. 3.2 Complex potential of a discrete vortex for n = 2.

where Λ1 := |Λ1| and λ1 = 1/Λ1.
Substituting the coefficients in Eq. (3.14) and (3.10) into Eq. (3.7) the complex

potential Φ̃(nc) can be still split as in Eq. (2.9) with

Φ̃(∞) = +ℓ χ

4 c2 u∞ ω2 + ℓ χ

4 c2 u∞
1

ω2

Φ̃(d) = +d1 ω + d1 + A1

ω
+ i

[ ℓ2

32
(
δ11 + α̇σ11

)
+ ℓ

4 ν2
] 1

ω2

+ i
ℓ2

16
( 2

3 δ12 + 1
3 δ21 + α̇σ12

) 1
ω3 + i

ℓ2

32
(
δ22 + α̇σ22

) 1
ω4

(3.15)

3.1.2.2 Circulatory flow

The complex potential of the circulatory flow is given by Eq. (1.19), with complex
potential Φ̃(v) and Φ̃(b) specialized to n = 2. Wake shedding and convection can be
performed using the methodology described in Subsecs. 1.3.2.3 and 1.3.2.4.

Specializing Eq. (1.22) to n = 2 one has

Φ̃(v) = 1
2πi

[
log(ω − ωv) + log ω − log(ω − 1/ωv)

]
+ (3.16)

1
2πi

[
log(ω − w1) + log ω − log(ω − 1/w1) + a1

ω − w1
+ a1/w

2
1

ω − 1/w1

]

with w1 = ω⋆
1(ω; t). The locations of the points ωv, w1, and 1/w1 for the same map

parameters of Fig. 3.1 and vortex position xv = −0.5 − i0.5 are shown in Fig. 3.2. The
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points w1 and 1/w1 are both outside D, as required so that the terms in the second
row of Eq. (3.16) do not introduce singularities in the x-plane (see Subsec. 1.3.2.1).

The unknown coefficient a1 is obtained by imposing that the ω-derivative of
Eq. (3.16) vanish at ω = Λ1, so that the vortex-induced velocity in the x-plane be
regular at the critical point Y1. For a generic n > 1 in Eq. (1.3), the regularity condition
for Φ̃(v) [Eq. (1.22)] imposed at the point Λj (j = 1, . . . , n− 1) can be recast as

n−1∑
k=1

(
Djk ak + Ejk ak

)
= F j (3.17)

with
Djk := 1

(Λj − wk)2 Ejk := 1/w2
k

(Λj − 1/wk)2 (3.18)

and
F j := 1

Λj − ωv

− λj/ωv

Λj − 1/ωv

+
n−1∑
k=1

( 1
Λj − wk

− λj/wk

Λj − 1/wk

)
(3.19)

Writing Eq. (3.17) for n = 2 and coupling the resulting condition with its conjugate
gives a system of two equations in the unknown quantities a1 and a1, which yields

a1 = D11 F 1 − E11 F 1

D2
11 − E2

11
(3.20)

Specializing Eq. (1.23) to n = 2 one obtains

Φ̃(b) = 1
2πi

[
log(ω − r1σ1) + 2ω + log(ω − σ1/r1)

]
(3.21)

The distance r1 > Λ1 is obtained by imposing that the ω-derivative of Eq. (3.21)
vanish at the point Λ1, so that the circulation-induced velocity field in the x-plane is
regular at the point Y1. For a generic n > 1 the regularity condition imposed at the
point Λj (j = 1, . . . , n− 1) is written as

n−1∑
k=1

( 1
Λj − rk σk

− λj σk/rk

Λj − σk/rk

)
= −λj (3.22)

Once this is specialized to the case n = 2, the solution r1 > Λ1 is

r1 = Λ1 + 1
Λ1

+
(

Λ2
1 − 1 + 1/Λ2

1

)1/2
(3.23)
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Fig. 3.3 Complex potential of the body circulation for n = 2.

The locations of the points r1σ1 and σ1/r1 for the map parameters of Figs. 3.1 and 3.2
are depicted in Fig. 3.3. Both points are outside D, as necessary so that the logarithmic
contributions in Eq. (3.21) do not introduce singularities in the x-plane. The points
r1σ1 and σ1/r1 are by definition on the line that connects the origin with Λ1, which
in the example overlaps the imaginary axis of the ω-plane.

3.1.3 Aerodynamic load

The total complex potential Φ̃ for n = 2 is obtained by specializing Eqs. (1.9), (1.12),
and (1.19) with the preceding relations. The resulting conjugate velocity [Eq. (1.2)] is
regular at the critical point Y1, but has a jump across BC1. Indeed, the map in Eq. (3.1)
involves the powers of ω and 1/ω up to the second order, which implies that its domain
does not include the whole region of the ω-plane outside C (see Subsec. 1.2.4).

Since the point Y1 and the curve BC1 go to infinity for c2 → 0 [see Eq. (3.4)],
the velocity jump across BC1 is expected to be slight for body curvatures of practical
aeronautical interest. Therefore, the complex potential Φ̃ can be used to evaluate the
pressure jump on the airfoil by means of Eq. (1.29) with no need to add a corrective
term. The latter may be necessary for large deformation, and could be developed
by following the methodology proposed in App. A.2. The order of magnitude of
deformation for which the velocity discontinuity across BC1 may be neglected is further
discussed in Subsec. 3.2.1 by means of numerical examples.

The unsteady aerodynamic force and moment on a flexible thin airfoil modeled by
the map in Eq. (3.1) can be analytically evaluated by rewriting Eqs. (1.34) and (1.37)
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in the ω-plane using the relations of Subsecs. 3.1.1 and 3.1.2. Next, the integrals
can be analytically evaluated using the methodology of App. A.4. In the case of
significant discontinuities across BC1, a corrective complex potential should be used
also to evaluate the integrated aerodynamic loads.

3.2 Model validation

The unsteady aerodynamic model for n = 2 is validated against panel-method results
and the Peters modified theory from Berci et al. [39].

3.2.1 Velocity field

A preliminary assessment of the unsteady aerodynamic model for n = 2 is accomplished
by comparing the velocity field around a curved cross-section at fixed times with panel-
method results. Three increasingly deformed airfoil shapes described by the map in
Eq. (3.1) are considered to investigate the order of magnitude of camber for which the
jump across BC1 introduced by the mapping technique can be neglected, at least for
the purpose of evaluating the pressure distribution on the body boundary. The flow
surrounding the airfoil is assumed to be at rest in all the case studies (u∞ = 0) and
the velocity fields due to an imposed normal velocity of the body boundary, a discrete
vortex, and a circulation around the body are separately analyzed. The airfoil shape
is described by Eq. (3.2) with parameters h = 0, α = 15◦, c1 = 1, and three different
values of c2 = i0.05, i0.1, i0.25.

3.2.1.1 Noncirculatory flow

The imposed body boundary velocity is defined by the parameters ḣ = ċ1 = ċ2 =
0.5 + i0.5 and α̇ = 0.5 deg/s, in addition to the map parameters specified above. The
obtained normal velocity distribution is imposed as boundary condition to numerically
evaluate the velocity field around the cross-section by means of a standard panel-method
formulation based on a linear distribution of doublets on the zero-thickness airfoil.
The theoretical solution predicted by present formulation is evaluated by substituting
the ω-derivatives of Eqs. (3.7) and (3.1) evaluated for the assumed body and flow
parameters into Eq. (1.2).

The panel-method (red) and theoretical (blue) solutions are compared in Fig. 3.4.
Figures 3.4a and 3.4b show that the velocity field evaluated using the proposed
formulation practically overlap the panel-method results for curvatures of aeronautical
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(a) c2 = i0.05

(b) c2 = i0.1

(c) c2 = i0.25

Fig. 3.4 Comparison with panel-method results: noncirculatory flow.
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interest, since the branch BC1 is relatively far from the body. A significant velocity jump
across BC1 can be observed for c2 = 0.25 in Fig. 3.4c, locally giving a discontinuous
velocity field, but the influence on the velocity field evaluated on the airfoil boundary
remains moderate even for very large body deformation.

3.2.1.2 Discrete vortex

A point vortex of unit circulation Γv = 1 m2/s is placed at the point xv = −0.5 − i0.5.
The vortex-induced velocity field is numerically computed using a standard panel-
method formulation that considers a linear vorticity distribution on a body boundary
having the zero-thickness airfoil as camberline, very small half-thickness δt = 0.005ℓ,
and rounded edges. The theoretical velocity field given by the present formulation is
computed by inserting the ω-derivatives of Eqs. (3.16) and (3.1) in Eq. (1.2).

The numerical (red) and theoretical (blue) results are compared in Fig. 3.5 and the
conclusions are in line with those for the noncirculatory flow, and for fixed values of c2

the velocity jump across BC1 is smaller than in the previous case. Slight discrepancies
around the airfoil edges are motivated by considering that a finite body thickness is
considered by the panel-method code.

3.2.1.3 Body circulation

A circulation Γb = −1 m2/s around the airfoil is finally considered. The panel-method
results are obtained using the same panel-method code as for the vortex-induced flow.
The theoretical velocity field given by the present formulation is computed using the
ω-derivatives of Eqs. (3.21) and (3.1) in Eq. (1.2).

The comparison of numerical (red) and theoretical (blue) solutions is shown in
Fig. 3.6 and the conclusions are in line with those for the previous cases. Slight
differences around the airfoil edges are again motivated by considering that the panel
code assumes a finite body thickness.

The agreement between theoretical and numerical results achieved in the above
validation studies provides a first assessment of the present formulation for the case
n = 2 in terms of capability to predict the velocity field. Moreover, it confirms that the
velocity jumps across the branch cuts of the map in the fluid domain can be neglected
for airfoil curvatures of aeronautical interest, since the velocity field practically overlap
the panel-method solution. The influence of these jumps remains moderate on the
airfoil boundary even for significant deformations, so that they could be still neglected
for large body curvatures, at least as first approximation, when the interest is in
evaluating the pressure distribution on the cross-section. However, the velocity jumps
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(a) c2 = i0.05

(b) c2 = i0.1

(c) c2 = i0.25

Fig. 3.5 Comparison with panel-method results: circulatory flow due to a discrete vortex.
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(a) c2 = i0.05

(b) c2 = i0.1

(c) c2 = i0.25

Fig. 3.6 Comparison with panel-method results: circulatory flow due to body circulation.
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Fig. 3.7 Validation with the Peters modified theory: imposed motion.

across the curves BCk can be completely removed by adding an appropriate corrective
complex potential to Φ̃, whose development could be the subject of future work.

3.2.2 Pressure distribution

After validating the velocity field, the aerodynamic pressure distribution evaluated
using Eq. (1.27) is compared with results from the Peters modified theory presented
in Ref. [39]. The latter couples the formulation of Peters et al. [38] for the airloads
with a rational function approximation of the Theodorsen function [35] to compute the
wake inflow, and is valid for small deformations and continuous flat wake. Comparing
with this reference is particularly convenient since linearizing Eq. (3.2) and neglecting
horizontal motions gives

xb = xb + iyb ≈ ℓ

2 cos θ + i
[
hy − α

ℓ

2 cos θ + c
(i)
2
ℓ

2 cos 2θ
]

(3.24)

which is equivalent to the Glauert series expansion assumed to describe the airfoil
motion in Ref. [38] truncated up to the second-order term.

In order to focus on the effect of body deformation, the validation with the
aerodynamic model of Ref. [39] is performed for an imposed motion defined by the
time histories h(t) ≡ 0, c1(t) ≡ 1, χ(t) = χ(t) ≡ 1, and c2(t) = im2 sin(2πt/Tm). The
simulation is carried by taking ℓ = 2 m, m2 = 0.05, Tm = 0.2 s, and assuming a steady
horizontal flow of freestream velocity u∞ = 30 m/s in order to have a reduced frequency
k := ωℓ/(2u∞) approximatively equal to 1. Deformed configurations at different times
over a period of oscillation are shown in Fig. 3.7. Lengths are normalized by the half
chord b. Note that the condition of conserved body length is not satisfied by the
imposed motion, as this is never enforced by linear theories.

The unsteady flow around the airfoil subjected to the imposed motion of Fig. 3.7 is
simulated by integrating the free wake dynamics using a fourth-order Runge-Kutta
time-marching algorithm with desingularized Biot-Savart kernel and adaptive time
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(a) t = 0.05 s (b) t = 0.05 s

(c) t = 0.1 s (d) t = 0.1 s

(e) t = 0.15 s (f) t = 0.15 s

(g) t = 0.2 s (h) t = 0.2 s

Fig. 3.8 Validation with the Peters modified theory: aerodynamic load and wake.
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step ∆t. Further details on the numerical procedure are found in Ref. [89]. The time
step for vortex generation ∆tg is fixed and typically larger than ∆t in order to limit
the number of vortices shed into the wake. The distribution of the pressure jump
coefficient defined as ∆Cp := −2[p]/(ρu2

∞) is for any time evaluated by specializing
Eq. (1.29) to the case n = 2 using the relations developed in Sec. 3.1 and by evaluating
the wake contributions based on the free wake evolution during the simulated transient.
In order to approximate the continuous wake description assumed in Ref. [39], three
simulations with decreasing ∆tg = 2 · 10−4, 1 · 10−4, 5 · 10−5 s are performed, but no
simplification is introduced in the wake dynamics.

The results from the present and reference aerodynamic models for t = 0.05, 0.1, 0.15,
0.2 s are compared in Fig. 3.8. Although the wake is nonplanar in the present free
wake simulations, the aerodynamic load on the airfoil practically overlap the reference
solution. Minor differences are found close to the trailing edge, which are motivated
by considering that the velocity field and pressure distribution around that point are
very sensitive to the actual wake geometry and dynamics and to the vortex shedding
frequency 1/∆tg. Indeed, the pressure jump coefficient at the trailing edge given by
the present model tends to zero for ∆tg → 0, namely in the limit of a continuous
wake description, so recovering the reference result. A similar agreement with the
Peters modified theory was also found for Tm = 2, 20, 200 s, corresponding to reduced
frequencies k = 0.1, 0.01, 0.001.

3.3 Cantilevered airfoil in a steady axial flow

The unsteady aerodynamic model for n = 2 is used to simulate the load on a flexible
thin airfoil cantilevered at the leading edge and undergoing imposed motion in a
steady axial flow. As the main advantage of having an analytical formulation in space,
the pressure jump distribution on the body is at any time split into different terms
associated to noncirculatory and circulatory effects, which gives insight into their
relation with the imposed motion and free wake evolution.

This application is a first step toward the development of a geometrically exact
aeroelastic model to study the flow-induced flutter of a flexible flag, which is a possible
future extension of the present work. To this aim, the formulation of Chap. 1 shall be
specialized at least to the case n = 3 to describe one curvature sign change along the
chord and coupled with a consistent beam structural model.
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3.3.1 Conservation of body length

The arbitrary motion of a flexible thin airfoil that for any time does not experience cur-
vature sign changes along the chord is described by Eq. (3.2) with h(t) = hx(t)+ ihy(t),
χ(t) = exp[iα(t)], and Laurent coefficients c1(t) = 1 + c̃1(t) = 1 + c̃1(t) exp[iφ1(t)] =
m1 exp[iφ1(t)] and c2(t) = m2(t) exp[iφ2(t)]. The amplitude of c2 is supposed to be
such that the velocity discontinuity across BC1 can be neglected for the purpose of
evaluating the aerodynamic load (see Subsec. 3.2.1). This assumption could be removed
by adding a corrective complex potential developed using the approach of App. A.2.

The functions h, χ, c1, and c2 that define the imposed airfoil motion must satisfy
specific structural boundary conditions along with the conservation of the body unde-
formed length, as necessary in a geometrically exact model. The airfoil is assumed to
be cantilevered at the leading edge, which for simplicity is fixed at the origin of the
x-plane (xb = 0 for θ = π). Moreover, the cross-section is assumed to be horizontal in
undeformed configuration (χ = χ ≡ 1). Under the above assumptions, Eq. (3.2) gives

h = ℓ

2 (c1 − c2) (3.25)

Assuming the angle θ ∈ (−π,+π] as Lagrangian parameter for the body boundary, the
local tangent unit vector is written as

τ (θ; t) = ∓ c1(t) + 4c2(t) cos θ
|c1(t) + 4c2(t) cos θ| (3.26)

where the minus and plus signs are for the upper (0 ≤ θ ≤ π) and lower (−π < θ ≤ 0)
airfoil sides, respectively. The boundary condition at the leading edge implies τ (π; t) ≡
−1, from which one obtains the relation

c1(t) − 4c2(t) = γ(t) (3.27)

with γ real and positive.
Using Eq. (3.2), the conservation of the airfoil length is written as

ℓ =
∫ π

0
dθ |∂θx| = ℓ

2

∫ π

0
dθ sin θ

[
m2

1 + 8m1m2 cos(ϕ1 − ϕ2) cos θ + 16m2
2 cos2 θ

]1/2

(3.28)
The integral can be evaluated using the change of variable ξ = cos θ and with some
manipulation the result can be recast as a nonlinear real equation f(γ,m2, φ2) = 0 (see
App. A.5). Once the time history c2(t) is assigned, this equation can be numerically
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Fig. 3.9 Cantilevered airfoil in a steady axial flow: imposed motion.

solved for any time to obtain γ(t). The time histories c1(t) and h(t) can be next
obtained from Eqs. (3.27) and (3.25). The instantaneous deformed configuration of
the airfoil boundary is obtained by substituting the time-histories h(t), c1(t), and c2(t)
into Eq. (3.2). The time-derivative ċ2(t) is known from the imposed time-law c2(t),
so that the functions ċ1(t) and ḣ(t) can be evaluated using the time-derivatives of
Eqs. (3.27) and (3.25).

3.3.2 Numerical study

The unsteady aerodynamics of a flexible thin airfoil cantilevered at the leading edge
and subjected to the imposed motion obtained in Subsec. 3.3.1 is simulated for ℓ = 1
m and steady horizontal flow of freestream velocity u∞ = 3 m/s. The motion is
assigned in terms of the modulus and phase of c2(t), given by the time histories
m2(t) = m20 + ∆m2 cos(2πt/Tm) and φ2(t) = φ20 + ∆φ2 sin(2πt/Tφ) with parameters
m20 = 0.06, ∆m2 = 0.04, φ20 = 0◦, ∆φ2 = 20◦, and Tm = Tφ = 1 s to have a reduced
frequency approximatively equal to 1. The quantities c1 and h are for any time
obtained as discussed in Subsec. 3.3.1 to verify the boundary condition and preserve
the body length. Deformed configurations at different times over a period of oscillation
are shown in Fig. 3.9. The body maximum deflection over length is 10%, for which the
velocity jumps across BC1 can be neglected.

The unsteady aerodynamic load on the flexible airfoil due to the imposed motion is
obtained by integrating the free wake dynamics with the same numerical procedure used
for the validation against the Peters modified theory. The pressure jump coefficient at
different times during the motion is evaluated by specializing Eq. (1.29) to the case
n = 2 and plotted against the arclength s in Figs. 3.10 and 3.11, which also show the
airfoil deformed configurations and related wake geometries. The linear time derivative
term in the pressure jump is split in three contributions due to the noncirculatory
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flow, body circulation, and wake, while the quadratic contributions are considered all
together.

The pressure jump coefficient at different times during the second period of oscilla-
tion is plotted against the arclength s in Figs. 3.10 and 3.11. The figures also show the
airfoil deformed configurations and the wake geometry. The linear time derivative term
in the pressure jump [Eq. (1.29)] is split in three contributions due to the noncirculatory
flow, body circulation, and wake, while the quadratic contributions are considered all
together. The capability to distinguish different effects in the aerodynamic load on the
airfoil is the main advantage of the present theoretical formulation over fully numerical
models.

The time-derivative term due to the body circulation remains small during the
motion. Indeed, the quantity ∂tΦ̃

(c) is only due to the motion of the singularity r1σ1

in the ω-plane, since the effect of varying circulation around the airfoil is taken into
account in the wake term. Therefore, the time-derivative ∂tΦ(c) is small compared
to the other contributions. The time-derivative term due to the wake changes sign
depending on the sign of the shed vorticity and increases toward the trailing edge.
The time-derivative term due to the noncirculatory flow increases in modulus with the
body acceleration and goes to zero at both the airfoil edges, whereas the quadratic
term has peaks at that points. The total ∆Cp approximatively follows the sum of
the time-derivative term due to the noncirculatory flow and the quadratic term. The
time-derivative term due to the wake influences the distribution close to the trailing
edge, in particular causing the pressure difference not to be exactly zero at that point.
This behavior was also observed in the validation studies of Sec. 3.2.2 and is due to
the fact that discrete-vortex models describe a continuous wake shedding only in the
limit ∆tg → 0.

The wake configurations in the plots on the right-hand side of Figs. 3.10 and 3.11
show that a starting vortex appears at the beginning of the transient due to the zero
initial circulation around the body. Since the vorticity shed into the wake changes
sign during the oscillation, the wake organizes in other macroscopic dipole-type vortex
structures. The dipoles are convected downstream approximatively with the freestream
velocity and do not a show significant global rotation about any of the two poles,
showing that the latter are characterized by roughly equal and opposite vorticity
contents.
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(a) t = 1.125 s (b) t = 1.125 s

(c) t = 1.25 s (d) t = 1.25 s

(e) t = 1.375 s (f) t = 1.375 s

(g) t = 1.5 s (h) t = 1.5 s

Fig. 3.10 Cantilevered airfoil in a steady axial flow: aerodynamic load and wake.
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(a) t = 1.625 s (b) t = 1.625 s

(c) t = 1.75 s (d) t = 1.75 s

(e) t = 1.875 s (f) t = 1.875 s

(g) t = 2 s (h) t = 2 s

Fig. 3.11 Cantilevered airfoil in a steady axial flow: aerodynamic load and wake.
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3.4 Concluding remarks on Part I

The first three chapters of the thesis addressed the development of a geometrically
exact semi-analytical model of the unsteady aerodynamics of a flexible thin airfoil
and its validation against theoretical and experimental results available for particular
cases. The general formulation was specialized to obtain large-amplitude models of a
flat plate and of a flexible thin airfoil with time-dependent curvature instantaneously
having constant sign along the chord. Despite the work focused on the development
and assessment of the theoretical methodology rather than on obtaining numerical
results for specific problems, examples of possible applications of the proposed model
in unsteady aerodynamic and aeroelastic analyses were provided and discussed.

The developed formulation is valid for zero-thickness airfoils immersed in the
attached, planar, and irrotational flow of an inviscid and incompressible fluid. Airfoil
thickness could be included in the theory by conveniently modifying the map assumed
in the derivation (for instance, by translating the circle in the ω-plane), but the
formulation is not applicable in presence of significant viscosity and compressibility
effects. However, the working hypotheses assumed in the developments are appropriate
to gain insight into several aeroelastic phenomena of aeronautical interest, as pointed out
by the large literature on two-dimensional airfoil theories for incompressible potential
flows reviewed in the introduction. On the other hand, the assumed hypotheses are
crucial to obtain a geometrically exact theoretical solution for the aerodynamic load
on the airfoil based on analytical tools from complex analysis. The capability of giving
theoretical relations to quantify the unsteady aerodynamic effects of large-amplitude
rigid-body motion, large-amplitude deformation, and free wake on compliant airfoils
is the main advantage of the proposed model over advanced numerical approaches
nowadays available to simulate very complex three-dimensional flows.





Part II

Coupled flight dynamics and
aeroelasticity





Chapter 4

Integrated formulation of flight
dynamics and aeroelasticity

The second part of the thesis addresses the study of complete elastic vehicles in free
flight. As structure flexibility increases, this problem requires to develop a unique
model that simultaneously includes rigid-body and elastic DOFs in order to capture the
mutual couplings arising in presence of narrow frequency-domain separation between
flight dynamic and aeroelastic modes.

In this chapter, the integrated modeling of flight dynamics and aeroelasticity
is addressed by presenting a fully coupled formulation valid for generic continuous
structures. The formulation was first proposed in Ref. [91] as a revised development of
one presented in Ref. [58]. The aircraft motion as a whole is identified with the nonlinear
rigid-body motion of a set of body axes that verify the PMA constraints [64], which
coincide with the default reference axes assumed in commercially available FEM solvers
for the linear normal modes analysis of unrestrained structures. Elastic displacements
with respect to the PMA frame are assumed to remain small and represented as a
linear combination of the natural modes of the unrestrained undeformed vehicle. The
assumption of small elastic displacements is partially removed in Chap. 6 by allowing
for the large aeroelastostatic deflections experienced by very flexible aircraft at typical
operating trim conditions.

The fully coupled EOMs are obtained in Sec. 4.1 and linearized around steady
maneuvers in Sec. 4.2. The linearized EOMs are recast in state-space form to provide
a framework to study the integrated stability and response of flexible vehicles in which
all the interactions between rigid-body motion, structural dynamics, and finite-state
unsteady aerodynamics are taken into account. As the main advantage, the choice
of a set of practical-mean axes (PMAs) as the body reference axes allows to readily
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Fig. 4.1 Reference frames to describe free-flying flexible vehicles.

implement the state-space model using outputs from commercially available solvers
standardly used at industrial level in structural and aeroelastic design. As a result,
the proposed formulation is applicable to aircraft configurations described by models
of any fidelity, from simplified systems of one-dimensional beam-type structures to
three-dimensional detailed representations.

4.1 Nonlinear equations of motion

The fully coupled EOMs of a free-flying elastic vehicle described by assuming a PMA
body reference frame are obtained from the weak formulation of Cauchy equation written
for a generic unrestrained continuum [58]. A reduced set of coefficients to describe the
inertial coupling terms is introduced and evaluated for complex configurations based
on the outputs of a FEM linear normal modes analysis performed on the unrestrained
undeformed structure.

4.1.1 Kinematics

The general motion of an unrestrained flexible vehicle can be decomposed in a rigid-
body component associated with the nonlinear motion of an appropriate body reference
frame and an elastic component describing the aircraft deformation within that frame.
The vehicle motion as a whole (rigid-body component) is here identified with the motion
of a set of practical mean axes (PMAs) of unit vectors ek (k = 1, 2, 3) with respect to
the inertial axes of unit vectors ik (k = 1, 2, 3). From the PMA constraints [64], the
PMA frame has origin at the instantaneous aircraft center of mass and orientation
fixed to the undeformed configuration (see Fig. 4.1).
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The position of a generic material point P in the inertial frame is

x = xG + z + uE (4.1)

where xG = xGi1 + yGi2 + zGi3 is the instantaneous position of the center of mass (origin
of the PMA frame), z = z1e1 + z2e2 + z3e3 is the relative position of P in the PMA
frame in undeformed configuration, and

uE =
∞∑

n=1
qnφE

n (4.2)

is the elastic displacement. This is written as a linear combination of the elastic
modes of the unrestrained undeformed structure φE

n with coefficients given by the
corresponding generalized coordinates qn. For guidance and control studies, the modal
representation of Eq. (4.2) may include both global elastic mode shapes involving
the whole structure and local modes that describe angular displacements of control
surfaces [102].

Using Eqs. (4.1) and (4.2) and introducing the relative position of P in the PMA
frame in deformed configuration

r = z + uE (4.3)

the absolute velocity and acceleration of P are written as

v = vG + ω × r + vE a = v̇G + ω̇ × r + ω × (ω × r) + 2ω × vE + aE (4.4)

where vG = ue1 + ve2 + we3 is the velocity of the center of mass, ω = pe1 + qe2 + re3

is the angular velocity of the PMA frame with respect to the inertial frame, and

vE =
∞∑

n=1
q̇nφE

n aE =
∞∑

n=1
q̈nφE

n (4.5)

are the relative velocity and acceleration due to the elastic motion, respectively.

Note that substituting Eq. (4.2) into the PMA constraints formalized in Ref. [64]∫∫∫
V
ρvEdV = 0

∫∫∫
V
ρz × vEdV = 0 (4.6)

gives ∫∫∫
V
ρφE

ndV = 0
∫∫∫

V
ρz × φE

ndV = 0 (4.7)
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The conditions in Eq. (4.7) are identically satisfied for any n = 1, . . . ,∞. Indeed, they
are consequences of the orthogonality conditions between the rigid-body and elastic
modes of an unrestrained undeformed continuum, with the rigid-body modes chosen so
that the associated generalized coordinates are unit translations and rotations with
respect to the PMAs (see App. B.1).

4.1.2 Inertial coupling

Inertial coupling between rigid-body and elastic DOFs completely vanishes in mean
axes [56]. In contrast, residual terms remain in the EOMs when a PMA body reference
frame is assumed, since the second PMA constraint in Eq. (4.6) is an approximation of
the corresponding nonlinear one valid for mean axes [64]∫∫∫

V
ρr × vEdV = 0 (4.8)

Within the limit of validity of linear elastic theory, the second condition in Eq. (4.6)
and Eq. (4.8) are frequently confused with each other, which allows to still obtain
inertially decoupled EOMs using a PMA frame [64–66]. As done in [67, 73], the
residual inertial coupling terms in the EOMs are here fully retained, and a set of
inertial coupling vectors and tensors to describe these terms for generic continuous
structures is introduced below.

Defining the integral operator [91]

⟨a ⊗ b⟩ :=
∫∫∫

V
ρ [(a · b) I − a ⊗ b ] dV (4.9)

the aircraft inertia tensor in deformed configuration is written as

J = ⟨r ⊗ r⟩ = J0 + 2
∞∑

n=1
Jnqn +

∞∑
n,m=1

Jnmqnqm (4.10)

where J0 := ⟨z ⊗ z⟩ is the inertia tensor in undeformed configuration and

Jn := 1
2
[
⟨z ⊗ φE

n⟩ + ⟨φE
n ⊗ z⟩

]
Jnm := 1

2
[
⟨φE

n ⊗ φE
m⟩ + ⟨φE

m ⊗ φE
n⟩
]

(4.11)

are first- and second-order coupling tensors. The sensitivity of J to the nth generalized
coordinate is described by the symmetric tensor

Yn := sym ⟨r ⊗ φE
n⟩ = 1

2
∂J
∂qn

= Jn +
∞∑

m=1
Jnmqm (4.12)
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Using Eqs. (4.10) and (4.12) and introducing the inertial coupling vectors

bnm :=
∫∫∫

V
ρφE

n × φE
m dV = −bmn (4.13)

the angular momentum of an unrestrained flexible aircraft is written as

hG =
∫∫∫

V
ρr × (ω × r) dV +

∫∫∫
V
ρuE × vE dV = Jω +

∞∑
n,m=1

bnmqnq̇m (4.14)

The first contribution is the angular momentum due to the motion of the deformed
vehicle as a whole, while the second term is due to the relative velocity of vehicle
material points within the PMA frame.

4.1.3 Fully coupled equations

The fully coupled EOMs of an unrestrained flexible aircraft are obtained from the weak
formulation (virtual work principle) of the Cauchy equation [58]∫∫∫

V
ρa · δx dV =

∫∫∫
V
ρf · δx dV + ⃝

∫∫
S

t · δx dS −
∫∫∫

V
T : δE dV (4.15)

where V is the aircraft material volume, S is the aircraft material surface, f and t are
respectively the forces per unit volume and area acting on the vehicle, T is the stress
tensor, δE is the virtual strain increment tensor, and

δx = δxG + δθ × r +
∞∑

n=1
δqnφE

n (4.16)

is the virtual displacement of a generic unrestrained continuum [58], δxG = δxGi1 +
δyGi2 + δzGi3, δθ = δθ1e1 + δθ2e2 + δθ3e3, and δqn being virtual translations, rotations,
and variations of the generalized coordinates, respectively.

The arbitrariness of the virtual displacement in Eq. (4.16) and the PMA constraints
in Eq. (4.7) give the following:

1) Translational equations:
m

dvG

dt = fT (4.17)

2) Rotational equations:
dhG

dt = mG (4.18)
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3) Elastic equations:

mnq̈n − dω

dt ·
∞∑

m=1
bnmqm − ω · Ynω − 2ω ·

∞∑
m=1

bnmq̇m + knqn = fn (4.19)

where m is the total mass, fT = Xe1 +Y e2 +Ze3 and mG = Le1 +Me2 +Ne3 the force
and moment resultants, respectively, mn the generalized mass of the nth elastic mode,
kn its generalized stiffness, and fn the associated generalized force. The derivation of
Eqs. (4.17), (4.18), and (4.19) from Eq. (4.15) is reported in App. B.2.

Inertial coupling between the rigid-body and elastic DOFs occurs through the
dependency of the aircraft angular momentum in Eq. (4.18) on structural displacements
and through the centrifugal, Coriolis, and angular acceleration terms in Eqs. (4.19).
Aerodynamic coupling also arises through the right-hand sides of Eqs. (4.17), (4.18),
and (4.19). Equations (4.17), (4.18), and (4.19) were obtained in Ref. [67] from the
Lagrange equations, and they reduce to the EOMs of Ref. [64] by neglecting the inertial
coupling terms (see Ref. [68]).

4.1.4 FEM discretization of the inertial coupling coefficients

A methodology to evaluate the inertial coupling coefficients [Eqs. (4.17), (4.18),
and (4.19)] for aircraft described in terms of a generic FEM model is presented
below [91]. The approach is based on the identification of the PMA frame with the
default computational axes used by off-the-shelf FEM solvers for the linear normal
modes analysis of unrestrained structures, and it is thus applicable to FEM models
consisting of any combination of one-, two-, and three-dimensional elements. A local
rigid-body description of the continuum as a collection of elementary volumes asso-
ciated with the FEM grids is assumed, and both translational and rotational nodal
DOFs are considered to allow for the presence of lumped masses with mass offsets
and concentrated inertias. It is worth to note that the particular approach followed to
evaluate the inertial coupling coefficients does not alter the EOMs, which are developed
for generic continuous structures. Therefore, alternative FEM discretization procedures
could be used with no modification in the formulation.

Consider an unrestrained aircraft described by a FEM model of Ng grids, each
associated with an elementary volume Vi (i = 1, . . . , Ng) having center of mass at the
point of undeformed position zi in the PMA. The centers of mass of the FEM volumes
are allowed to have an offset from FEM grids, and concentrated inertial properties
can be also defined. The position of a generic material point P that belong to the ith
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volume is written in the PMAs as z = zi + ζ, with ζ ∈ Vi. The mass mi and inertia
tensor J0i

of the ith volume with respect to zi are introduced as

mi :=
∫∫∫

Vi

ρdV J0i
:= ⟨ζ ⊗ ζ⟩i =

∫∫∫
Vi

ρ [(ζ · ζ) I − ζ ⊗ ζ ] dV (4.20)

Since Vi is assumed to be rigid, the displacement field associated with the nth elastic
mode is written for z ∈ Vi as

φE
n(z) = φE

ni
+ ϕE

ni
× ζ (4.21)

where φE
ni

:= φE
n(zi) and ϕE

ni
:= ϕE

n(zi) are the nth modal displacement and rotation
at the point zi.

Using the above FEM description within Vi, the aircraft inertia tensor in undeformed
configuration is evaluated as

J0 ≃
Ng∑
i=1

⟨(zi + ζ) ⊗ (zi + ζ)⟩i

=
Ng∑
i=1

∫∫∫
Vi

ρ [(zi · zi) I − zi ⊗ zi ] dV +
Ng∑
i=1

∫∫∫
Vi

ρ [(ζ · ζ) I − ζ ⊗ ζ ] dV

=
Ng∑
i=1

{mi [(zi · zi) I − zi ⊗ zi ] + J0i
} (4.22)

where ⟨ζ ⊗ zi⟩ and ⟨ζ ⊗ zi⟩ vanish since zi is the position of the center of mass of Vi.
Similarly, the inertial coupling tensors in Eq. (4.11) are evaluated as

Jn ≃
Ng∑
i=1

sym ⟨(zi + ζ) ⊗ (φE
ni

+ ϕE
ni

× ζ)⟩
i

=
Ng∑
i=1

1
2
{
mi [ 2 (zi · φE

ni
) I − zi ⊗ φE

ni
− φE

ni
⊗ zi] +

+sk(ϕE
ni

) JD
0i

− JD
0i

sk(ϕE
ni

)
}

(4.23)

Jnm ≃
Ng∑
i=1

sym ⟨(φE
ni

+ ϕE
ni

× ζ) ⊗ (φE
mi

+ ϕE
mi

× ζ)⟩
i

=
Ng∑
i=1

1
2
{
mi [ 2 (φE

ni
· φE

mi
) I − φE

ni
⊗ φE

mi
− φE

mi
⊗ φE

ni
] +

−sk(ϕE
ni

) JD
0i

sk(ϕE
mi

) − sk(ϕE
mi

) JD
0i

sk(ϕE
ni

) +

−2 [sk(ϕE
ni

) : sk(ϕE
mi

)JD
0i

] I
}

(4.24)
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where sk(ϕE
ni

) is the skew-symmetric tensor associated to the cross product ϕni
× (•)

and JD
0i

is the deviatoric portion of J0i
.

Finally, the inertial coupling vectors in Eq. (4.13) are evaluated as

bnm ≃
Ng∑
i=1

∫∫∫
Vi

ρ (φE
ni

+ ϕE
ni

× ζ) × (φE
mi

+ ϕE
mi

× ζ) dV

=
Ng∑
i=1

[mi φE
ni

× φE
mi

− JD
0i

(ϕE
ni

× ϕE
mi

)] (4.25)

All the quantities necessary to evaluate Eqs. (4.22), (4.23), and (4.25) for generic
configurations can be readily obtained from a FEM model. Indeed, the position of the
ith FEM grid with respect to the PMA in undeformed configuration is an input to any
FEM analysis. The mass mi and inertia tensor J0i

of the nodal volume Vi along with
the offset of its center of mass from the ith FEM grid can be obtained from the ith
6 × 6 block of the FEM mass matrix of the assembled model. The displacement and
rotation of the ith FEM grid for any elastic mode are standard outputs of a FEM linear
normal modes analysis carried out on the unrestrained undeformed structure. From
these quantities and knowing the offset between zi and the ith grid, the displacement
φE

ni
and rotation ϕE

ni
at the center of mass of Vi can be easily evaluated according to

the assumed local rigid-body kinematic description. In the present work, the above
data are obtained by the linear normal modes solver available in the MSC Nastran
commercial FEM code [96], but the methodology can be implemented using the outputs
from any off-the-shelf FEM solver. Standard FEM normal modes analyses also give
the generalized masses mn and stiffnesses kn.

4.2 Linearized equations of motion

The nonlinear EOMs [Eqs. (4.17), (4.18), and (4.19)] are linearized by assuming small
perturbations of the rigid-body and elastic DOFs around a generic steady maneuver
defined by the trim linear and angular velocities vGe

and ωe and by the corresponding
linear aeroelastostatic response relative to the PMA, described by the equilibrium
generalized coordinates qne (n = 1, . . . ,∞).

4.2.1 Second-order form

Assuming small disturbances, Eqs. (4.17), (4.18), and (4.19) become the following:



4.2 Linearized equations of motion 109

1) Linearized translational equations:

m (∆v̇G + ωe × ∆vG − vGe
× ∆ω) = ∆fT (4.26)

2) Linearized rotational equations:

∆J̇ ωe + Je ∆ω̇ +
∞∑

n,m=1
bnmqne∆q̈m − Je ωe × ∆ω +

+ωe × (∆J ωe + Je ∆ω +
∞∑

n,m=1
bnmqne∆q̇m) = ∆mG (4.27)

3) Linearized elastic equations:

mn∆q̈n − ∆ω̇ ·
∞∑

m=1
bnmqme − ωe · ∆Ynωe +

−2∆ω · Yneωe − 2ωe ·
∞∑

m=1
bnm∆q̇m + kn∆qn = ∆fn (4.28)

where the following quantities depending on the inertial coupling coefficients, equilib-
rium generalized coordinates, and perturbation DOFs have been introduced:

Je = J0 +
∞∑

n=1
(Jn + Yne) qne ∆J = 2

∞∑
n=1

Yne∆qn ∆J̇ = 2
∞∑

n=1
Yne∆q̇n

Yne = Jn +
∞∑

m=1
Jnmqme ∆Yn =

∞∑
m=1

Jnm∆qm

(4.29)
In order to recast Eqs. (4.26), (4.27), and (4.28) in matrix form, any physical vector

w = w1e1 +w2e2 +w3e3 is replaced by the vector of its components in the PMA frame
w = {w1, w2, w3}T. Similarly, any physical tensor W is replaced by the matrix W.
Hence, the perturbation vectors ∆vG , ∆v̇G , ∆ω, ∆ω̇, ∆fT , and ∆mG are replaced by

∆vG = {∆u, ∆v, ∆w}T ∆fT = {∆X, ∆Y, ∆Z}T = ∆fA + ∆fW

∆ω = {∆p, ∆q, ∆r}T ∆mG = {∆L, ∆M, ∆N}T
(4.30)

where ∆fA and ∆fW are, respectively, the perturbed aerodynamic and weight force
resultants. The trim quantities ωe, vGe

, Je, and Yne are consistently replaced by
the vectors (ωe and vGe

) and matrices (Je and Yne) of their components in the PMA
frame. The coefficients bnm and Jnm are also replaced by the quantities bnm and Jnm,
respectively.
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Truncating the modal representation in Eq. (4.2) up to the first N elastic modes,
Eqs. (4.26), (4.27), and (4.28) are rewritten in the second-order matrix form

Me


∆v̇G

∆ω̇
∆q̈

+ De


∆vG

∆ω
∆q̇

+ Ke


∆xB

G

∆θ
∆q

 =


∆fT

∆mG

∆fE

 (4.31)

where the elements of the vectors

∆q = {∆q1, . . . , ∆qN}T ∆fE = {∆f1, . . . , ∆fN}T (4.32)

are, respectively, the perturbations of the generalized coordinates and of the corre-
sponding generalized forces, while the elements of

∆xB
G

=
{
∆xB

G
, ∆yB

G
, ∆zB

G

}T
∆θ = {∆θ1, ∆θ2, ∆θ3}T (4.33)

are, respectively, the components of the perturbation of the center of mass position
expressed in the PMA frame and the perturbations of the rigid-body rotations about
the PMAs. Introducing the following inertial coupling matrices:

Be :=
[∑N

n=1 bn1qne · · · ∑N
n=1 bnNqne

]
Ye := 2

[
Y1eωe · · · YNeωe

]

Fe :=


ωT

e J11ωe · · · ωT
e J1Nωe

... . . . ...
ωT

e JN1ωe · · · ωT
e JNNωe

 Ge := 2


ωT

e b11 · · · ωT
e b1N

... . . . ...
ωT

e bN1 · · · ωT
e bNN


(4.34)

the mass (Me), damping (De), and stiffness (Ke) matrices of the second-order system
in Eq. (4.31) are written as

Me =


mI 0 0
0 Je Be

0 BT
e M

 De =


mΩ̂e −mV̂Ge

0
0 Ω̂eJe − ĤGe

Ω̂eBe + Ye

0 −YT
e −Ge

 Ke =


0 0 0
0 0 Ω̂eYe

0 0 K − Fe


(4.35)

where M and K are the diagonal generalized mass and stiffness matrices of the unre-
strained undeformed structure.

Observing the structure of the matrices in Eq. (4.35), inertial coupling between
rigid-body and elastic DOFs can be modeled by considering the following fidelity levels:
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1) No coupling: the linearized translational, rotational, and elastic equations are
dynamically decoupled (Be = Ye = 0). Static couplings are also neglected by assuming
Je ≡ J0 and by writing the linearized elastic equations for small perturbations around
steady rectilinear flight (Fe = Ge = 0). These simplifications are assumed in Ref. [64].

2) Static coupling: only static influences between rigid-body and elastic DOFs
are considered. This consists of considering the trim inertia tensor Je ̸= J0 in the
rotational equation and including the terms Ge ̸= 0 and Fe ≠ 0 depending on the trim
angular velocity in the elastic equations. However, the latter terms vanish for small
disturbances around a steady rectilinear flight conditions (ωe = 0). Dynamic couplings
are still neglected (Be = Ye = 0).

3) Full coupling: all the static and dynamic inertial couplings are considered.
However, one has Fe = Ge = Ye = 0 for small disturbances around a steady rectilinear
flight conditions (ωe = 0). In these circumstances, static inertial coupling is only due
to the trim inertia tensor Je ̸= J0, while dynamic coupling is only due to the matrix Be.

4.2.2 Small-disturbance unsteady aerodynamics

Small-disturbance unsteady aerodynamics is described by the so-called Generalized
Aerodynamic Force (GAF) matrix E(k;M∞), where k := ωb/U∞ is the reduced fre-
quency and M∞ the freestream Mach number. The GAF matrix represents in the
frequency domain the perturbation in the generalized aerodynamic loads (aerodynamic
force/moment resultants and projections of the aerodynamic pressure distribution on
the elastic modes) due to the perturbations of the rigid-body and elastic DOFs:


∆f̃A

∆m̃G

∆f̃E

 = qD E(k,M∞)


∆x̃B

G

∆θ̃
∆q̃

 (4.36)

In Eq. (4.36), Fourier transforms are denoted by a tilde and qD = ρ∞U
2
∞/2 is the

freestream dynamic pressure.
In the present work, the GAF matrix of Eq. (4.36) is obtained from a linear

flutter analysis performed with the specific MSC Nastran solver [53], which uses the
structure FEM model coupled with a DLM aerodynamic model. Since this solver
assumes displacements and rotations with respect to the inertial axes as the rigid-body
DOFs, an appropriate script is included so that the GAF matrix is computed in terms
of displacements and rotations with respect to the PMAs. Moreover, the obtained
GAF matrix is improved by adding quasi-steady corrections evaluated from the trim
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aerodynamic load field in order to describe small-disturbance effects due to non-zero
trim angle of attack, which are relevant for the rigid-body stability but not captured
by DLM linearized formulation [74]. The use of data from MSC Nastran to implement
the unsteady aerodynamic model is further discussed in App. B.3.

In a small-disturbance fully unsteady aerodynamic model each element of the GAF
matrix is a transcendental function of k due to lag effects associated with the wake
dynamics. This type of dependency makes aeroelastic systems integro-differential
rather than purely differential, so that they are theoretically described by an infinite
number of aerodynamic states. Nevertheless, a finite-state representation of unsteady
aerodynamics can be obtained for engineering applications via a rational function
approximation of the GAF matrix data.

The GAF matrix in Eq. (4.36) may be partitioned as

E =
ERR ERE

EER EEE

 (4.37)

where the blocks ERR (6 × 6) and EER (N × 6) describe the aerodynamic effects of the
perturbations of rigid-body DOFs (∆x̃B

G
, ∆θ̃) on the rigid-body and elastic equations,

respectively, while the blocks ERE (6 × N) and EEE (N × N) describe the effects on
that equations due to the perturbations of the elastic DOFs (∆q̃).

The GAF blocks associated to perturbations in the rigid-body DOFs are approxi-
mated assuming a quasi-steady dependency on k:

ERR

EER

 ≈ (jk)
ĀRR

1

ĀER
1

+ (jk)2

ĀRR
2

ĀER
2

 (4.38)

where the terms on the right-hand side describe aerodynamic damping and mass effects.
The quasi-steady assumption in Eq. (4.38) is motivated by the fact that aircraft rigid-
body motion is typically slower than structural dynamics, so that unsteady wake effects
due to perturbations of the rigid-body DOFs may be neglected for most configurations.

The GAF blocks associated to perturbations in the elastic DOFs are approximated
using a fully unsteady rational function interpolative structure [101]

ERE

EEE

 ≈

ĀRE
0

ĀEE
0

+ (jk)
ĀRE

1

ĀEE
1

+ (jk)2

ĀRE
2

ĀEE
2

+
C̄R

C̄E

 (jkI − P̄)−1 B̄E (4.39)

The first three terms on the right-hand side describe aerodynamic stiffness, damping,
and mass effects. The latter term provides an approximate description of wake dynamics
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in terms of a finite number of aerodynamic states, governed by first-order equations
and associated to a matrix P̄ of Na poles (Na ×Na) [101]. The projection matrices C̄R,
C̄E, and B̄E in Eq. (4.39) are (6 ×Na), (N ×Na) and (Na ×N), respectively.

Substituting Eqs. (4.38) and (4.39) into Eq. (4.36) and using analytic continuation,
one obtains the following interpolative structure in the non-dimensional Laplace domain:


∆f̃A

∆m̃G

∆f̃E

 ≈ 1
2 ρ∞U∞ b (pĀ2 + Ā1)


∆ṽG

∆ω̃
∆˜̇q

+ qD Ā0


∆x̃B

G

∆θ̃
∆q̃

+ qD C̄ ∆ã (4.40)

where p := sb/U∞ is the non-dimensional Laplace variable and

∆ã := (pI − P̄)−1 B̄


∆x̃B

G

∆θ̃
∆q̃

 (4.41)

is the vector of aerodynamic states. The interpolative matrices in Eq. (4.40) are:

Ā0 :=
0 ĀRE

0

0 ĀEE
0

 Ā1 :=
ĀRR

1 ĀRE
1

ĀER
1 ĀEE

1

 Ā2 :=
ĀRR

2 ĀRE
2

ĀER
2 ĀEE

2

 C̄ :=
C̄R

C̄E

 B̄ :=
[
0 B̄E

]
(4.42)

Quasi-steady corrective terms are added to the matrix Ā1 to account for the small-
disturbance effects of the trim angle of attack [see App. B.3]. Note that the left-hand
side partitions of Ā0 are zero, since there is no static aerodynamic effect due to ∆x̃G and
∆θ̃. The left-hand side partition of the matrix B̄ is also zero due to the quasi-steady
description assumed for the aerodynamic loads due to perturbations of the rigid-body
DOFs (see Eq. (4.38)).

By observing the structure of Eqs. (4.40) and (4.42), aerodynamic couplings can
be modeled by considering:

1) No coupling: all aerodynamic interactions between rigid-body and elastic DOFs
are neglected by setting the off-diagonal blocks of the matrices Āk (k = 0, 1, 2) in
Eq. (4.42) and the block C̄R in the matrix C̄ to zero. In these circumstances, the
perturbations in the aerodynamic force/moment resultants do not depend on the
perturbations of the elastic DOFs (ERE = 0), and the perturbations in the generalized
aerodynamic loads are not influenced by the perturbations of the rigid-body DOFs
(EER = 0).

2) Full coupling: all the elements in the matrices of Eq. 4.42 are taken into account.
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4.3 State-space form

A first-order form for the system in Eq. (4.31) is obtained in terms of the state vector

yT =
{
∆vT

G
,∆ωT,∆q̇T,∆xT

G
,∆ΘT,∆qT,∆aT

}
(4.43)

where
∆xG = {∆xG , ∆yG , ∆zG}T ∆Θ = {∆φ, ∆θ, ∆ψ}T (4.44)

are the perturbation components of the center of mass coordinates in the inertial axes
and of the perturbations of the Euler angles, respectively.

The state vector in Eq. (4.43) consists of 2(6 +N) +Na states that describe the
motion of the aircraft as a whole (12 states), identified with the rigid-body motion of
the PMA frame with respect to the inertial frame, the elastic displacement relative to
the PMA (2N states), and finite-state unsteady aerodynamics (Na). The number of
rigid-body states can be reduced to 9 when the aircraft flight path is not of interest for
stability and response and the effect of density gradient is neglected [55].

4.3.1 Stability

The perturbation of the weight force ∆f̃W can be expressed in the PMA as follows:


∆f̃W

0
0

 = −KW


∆x̃G

∆Θ̃
∆q̃

 = −


0 WB 0
0 0 0
0 0 0




∆x̃G

∆Θ̃
∆q̃

 (4.45)

with

WB := −mg


0 cos θe 0

cos θe cosφe − sin θe sinφe 0
cos θe sinφe sin θe cosφe 0

 (4.46)

Inserting Eqs. (4.40) and (4.41) into the Laplace transform of Eq. (4.31) one has

(sM + D)


∆ṽG

∆ω̃
∆˜̇q

+ K


∆x̃G

∆Θ̃
∆q̃

 = qD C̄ ∆ã (4.47)
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where the following mass, damping, and stiffness matrices that include the aerodynamic
and weight perturbation effects have been introduced:

M := Me − 1
2 ρ∞b

2Ā2 D := De − 1
2 ρ∞U∞ b Ā1 K := Ke − qDĀ0 + KW (4.48)

Note that Eqs. (4.31), (4.40), and (4.41) are written in terms of the perturbations ∆x̃G

and ∆Θ̃ [Eq. (4.44)] in place ∆x̃B
G

and ∆θ̃ [Eq. 4.33] with no need of transformations,
since the elements in the first six columns of Ke, A0, and B are all zero.

A first-order dynamics for the aerodynamic states is obtained from Eq. (4.41) as

∆ȧ = U∞

b
B̄


∆xG

∆Θ
∆q

+ U∞

b
P̄ ∆a (4.49)

The system is completed with the kinematic equations


∆ẋG

∆Θ̇
∆q̇

 = T1


∆vG

∆ω
∆q̇

 =


Le 0 0
0 Te 0
0 0 I




∆vG

∆ω
∆q̇

 (4.50)

where Le and Te are, respectively, the linearized forms of the transformation matrix
from the PMAs to the inertial axes and the matrix relating the time derivatives of
the Euler angles to the components of the angular velocity in the PMA frame. Both
matrices are evaluated at trim.

Combining Eqs. (4.47), (4.49), and (4.50) one obtains the standard first-order form

ẏ = A y (4.51)

with state matrix

A =


−M−1D −M−1K qDM−1C̄

T1 0 0

0 U∞
b

B̄ U∞
b

P̄

 (4.52)

Equations (4.51) and (4.52) describes the fully coupled stability of a flexible aircraft
around a generic steady rectilinear flight or steady turn maneuver.
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4.3.2 Response

The free response to assigned initial conditions can be studied using Eqs. (4.51)
and (4.52).

An input matrix to study the response to atmospheric gust loads was developed in
Ref. [91] assuming a frozen gust model [103] in order to rewrite Eq. (4.40) as


∆f̃A

∆m̃G

∆f̃E

 = 1
2 ρ∞U∞ b (pĀ2 + Ā1)


∆ṽG − w̃

∆ω̃
∆˜̇q

+ qD Ā0


∆x̃B

G

∆θ̃
∆q̃

+ qD C̄ ∆ã (4.53)

Once Eq. (4.53) is developed as done for Eq. (4.40), one eventually obtains the state-
space model

ẏ = A y + Bg ug (4.54)

where the components of the gust input vector are the gust velocity and its derivative

uT
g =

{
wT, ẇT

}
(4.55)

and the gust input matrix is written as

Bg = −1
2 ρ∞U∞ b


M−1Ā(1:3)

1
b

U∞
M−1Ā(1:3)

2

0 0

0 0

 (4.56)

The matrices Ā(1,3)
1 and Ā(1:3)

2 consist of the first three columns of Ā1 and Ā2.
An input matrix for the response to angular displacements of control surfaces was

obtained in Ref. [102].



Chapter 5

Stability analysis of free-flying
flexible vehicles

A computational environment based on the linearized formulation of Chap. 4 is
implemented using data from MSC Nastran to provide a framework for the integrated
stability and response analysis of aircraft described in terms of detailed FEM models.
The capability of the developed tool to predict different couplings between rigid-body
and elastic degrees of freedom for realistic configurations is demonstrated by analyzing
the coupled flight dynamic/aeroelastic stability of two existing experimental vehicles:
the University of Michigan’s X-HALE [82] and the Lockheed Martin’s Body-Freedom-
Flutter (BFF) [75, 66] research drones.

The X-HALE is an unmanned aerial vehicle that is being developed by the University
of Michigan’s Active Aeroelasticity and Structures Research Laboratory (A2SRL) as a
low cost flight test configuration to collect data on nonlinear aeroelastic behavior coupled
with flight dynamics for future validation of integrated formulations and computational
tools [82]. The X-HALE ATV is designed to be aeroelastically representative of a very
flexible aircraft, so showing very low-frequency natural vibration modes along with
large aeroelastic deflections. However, the lightly instrumented RRV configuration
analyzed in this work experiences relatively moderate static displacements at typical
trim points within the flying envelope [83]. Therefore, it is an appropriate case study
to test the developed tool, whose core linearized formulation comes from fully coupled
equations of nonlinear rigid-body motion and linear structural dynamics.

The BFF vehicle is an unmanned flying-wing research drone developed by the
Lockheed Martin’s Skunk Works [75, 66]. The configuration presents small trim
deflections and inherently coupled short period and first aeroelastic modes, which
results in the body-freedom flutter instability frequently observed in tailless flexible
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vehicles. Due to these characteristics, the BFF drone is also an appropriate test case
for the present formulation.

The choice of the X-HALE RRV and of the BFF vehicle as the case studies allows
to point out different aspects of the interaction between rigid-body and elastic DOFs
that can be predicted with the present integrated model. For the X-HALE RRV the
couplings are mainly due to very low-frequency elastic modes and do not lead to flutter,
although they have a significant impact on the vehicle dynamic behavior. For the BFF
drone the couplings are mainly caused by a high-frequency flight dynamic mode and
determine a flutter instability that would occur at much higher speed and with different
characteristics in the absence of rigid-body/aeroelastic interactions. The choice of two
unconventional configurations allows to discuss behaviors and couplings that are not
typically observed in traditional wing-fuselage-tail aircraft, even in presence of significant
flexibility. In addition, the complexity of the examined vehicles also underlines the
importance of having developed a formulation that can be readily implemented using
data from commercial solvers in order to model inertial, modal, trim, and aerodynamic
characteristics using high-fidelity software tools. In order to emphasize the generality
of the present formulation and its applicability to configurations described by FEM
models of different fidelity levels, a low-order beam-type representation is considered
for the X-HALE RRV, based on a reference model implemented in the UM/NAST
code [83], whereas a more detailed FEM description including one- and two-dimensional
elements is considered for the BFF vehicle.

The work flow of the developed computational environment is described Sec. 5.1,
which explains how the data necessary to build the integrated state-space model are
obtained from the outputs of different MSC Nastran FEM and FEM/DLM linear
solvers [96, 53]. Results for the integrated flight dynamic/aeroelastic stability of the
X-HALE RRV and the BFF vehicle are presented and discussed in Secs. 5.2 and 5.3.
Response studies can be also performed using the developed computational enviroment
(see Refs. [91], [102] ), but they are not addressed in the present work.

5.1 Computational environment

The computational environment for integrated stability and response of complex
configurations based on the formulation of Chap. 4 was developed by the author in
collaboration with the colleague Francesco Saltari during the doctoral studies [91]. The
code is written in Python and Fortran and includes calls to different MSC Nastran
solvers to collect inertial, modal, trim, and steady/unsteady aerodynamic data used
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Fig. 5.1 Computational framework for integrated stability and response.

to implement the state-space model derived in Subsec. 4.3. The main contributions
from the author were the definition of the overall code work flow and interface with
MSC Nastran solvers, implementation of the inertial coupling, and the derivation and
assembly of the state-space form of the linearized equations. Saltari [91] focused on
the development of the finite-state unsteady aerodynamic model, including appropriate
transformations of MSC Nastran data and corrections to better capture the rigid-body
stability, and the implementation of the response to gust disturbances.

With reference to Fig. 5.1, the inputs to the developed code are the aircraft FEM
and DLM models along with a set of trim points at different freestream velocity and
fixed load factor. Based on these inputs, the code collects results from MSC Nastran
linear structural and aeroelastic analyses to build a database of inertial, modal, trim,
and steady/unsteady aerodynamic characteristics that are used to compute the state
and input matrices in Eqs. (4.52) and (4.56) for any trim point. The aircraft database
includes standard outputs from MSC Nastran solvers, quantities that are computed
within MSC Nastran modules and obtained as outputs by means of appropriate
scripts [104], and quantities that are evaluated by post-processing MSC Nastran results.
Once the aircraft database is built, the code performs either an integrated stability
or a response analysis. Free or 1-cosine deterministic gust response cases are so far
available in the code. A preliminary investigation on the modeling of the response to
controls described in terms of local mode shapes representing angular displacements of
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control surfaces was performed in Ref. [102]. Control-response cases along with the
possibility of using feedback control laws for stability augmentation and gust response
alleviation will be implemented in the code as a future development of this work.

The computational framework was assessed in Ref. [91] by comparing the stability
scenario of the BFF drone in steady rectilinear flight with reference results from the
literature [66]. An overview of the main tasks performed by the code is provided below.

5.1.1 Aircraft database

The aircraft database is built by collecting results from MSC Nastran linear normal
modes, linear aeroelastic trim, and linear flutter analyses [96, 53]. The obtained data
are further post-processed to obtain additional quantities necessary to implement the
state-space model that are not computed from MSC Nastran, as for instance the inertial
coupling coefficients introduced in Sec. 4.1.2.

5.1.1.1 Inertial and modal data

The aircraft inertial and modal characterization is based on the outputs from a linear
normal modes analysis carried out on the unrestrained undeformed structure using
MSC Nastran SOL 103 [96].

The inputs to the MSC Nastran solver are: 1) the FEM model of the undeformed
configuration with free-free boundary conditions; and 2) the rigid-body and elastic
modes to be considered (number or frequency range). The outputs obtained from
the analysis are: 1) the FEM grid coordinates in undeformed configuration with
respect to the default computational axes (coincident with the PMAs); 2) the model
mass distribution in terms of mass mi and inertia tensor J0i

of each nodal volume Vi

(i = 1, . . . , Ng along with the offset of the volume center of mass from the ith FEM
grid; 3) the rigid-body and elastic modes of the unrestrained undeformed structure,
normalized to have unit maximum displacement and written with respect to the default
computational axes (PMAs); and 4) the generalized masses mn and stiffnesses kn

associated with the elastic modes. The nodal masses, inertia tensors, and mass offsets
are not standard outputs of MSC Nastran, and are obtained by extracting the mass
matrix of the assembled FEM model by means of an appropriate script [104]. From
the above outputs, the code additionally computes: 1) the total aircraft mass; 2) the
inertia tensor in undeformed configuration; and 3) the inertial coupling coefficients of
Subsec. 4.1.2 using the methodology of Subsec. 4.1.4.
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A few remarks are made on the use of modal data obtained from MSC Nastran.
First, FEM normal modes analysis of unrestrained structures usually gives rigid-body
modes that involve multiple translational and rotational DOFs. Rigid-body modes that
decouple translations and rotations can be obtained using specific analysis settings [96].
Even in this case, MSC Nastran always gives mutually orthogonal rigid-body modes.
As a result, the obtained rotational modes will represent rotations about the PMA
only if these are the principal axes of the undeformed structure. Therefore, the rigid-
body rotational modes obtained from MSC Nastran are rotated using an appropriate
transformation matrix, that is applied also to the GAF matrices computed by the MSC
Nastran flutter solver [53] based on the results of the normal modes analysis. Finally,
note that translations and rotations are both considered as generalized “displacements”
by the FEM formulation. Hence, requiring a unit maximum displacement normalization
for the rigid-body rotational modes may not result in unit-rotation modes depending
on the model geometry, so that an appropriate scaling of the mode shape may be
necessary. All these issues are automatically addressed by the code.

5.1.1.2 Trim data

The examined trim conditions are characterized by means of FEM/DLM linear aeroe-
lastic trim analyses performed using MSC Nastran SOL 144 [53].

The inputs to the MSC Nastran solver are: 1) the FEM model of the undeformed
configuration with free-free boundary conditions; 2) the DLM model of the undeformed
configuration including the definition of control surfaces and static corrections to
account for incidence, camber, or twist effects; and 3) the set of equilibrium points.
The latter are characterized by a fixed load factor and different freestream velocities in
the range of interest for the integrated stability and response analyses. A unit normal
load factor (nze = 1) implies trim in steady rectilinear flight, whereas a non-unit value
prescribes trim in steady turn and can be directly related to the equilibrium angular
velocity and roll angle through standard flight mechanics relations. The outputs
obtained from the analysis are: 1) the trim aerodynamic angles and control-surface
rotations; 2) the linear aeroelastostatic displacement in terms of nodal DOFs; and 3)
the steady-state aerodynamic load field on the FEM grids. These quantities are all
standard outputs of MSC Nastran and are computed for any trim point. From the
above outputs, the code additionally computes: 1) the transformation matrix from the
stability axes (default computational axes for aeroelastic trim analysis) to the PMA
(coincident with the default computational axes for free-free normal modes and flutter
analyses); 2) the trim modal coordinates; and 3) the quasi-steady correction for the
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interpolative matrix Ā1 to account for the aerodynamic effects of non-zero trim angle
of attack using the method of App. B.3.2.

5.1.1.3 Unsteady aerodynamic data

The aircraft unsteady aerodynamics is characterized by carrying out a FEM/DLM
linear flutter analysis by means of MSC.Nastran SOL 145 [53] to compute the GAF
matrix at different reduced frequencies.

The inputs to the MSC Nastran solver are: 1) the FEM model of the undeformed
configuration with free-free boundary conditions; 2) the DLM model of the undeformed
configuration (control surfaces and static corrections are neglected for perturbation
analyses); and 3) the set of reduced frequencies for which the GAF matrix is to be
evaluated. The GAF matrix is obtained by including an appropriate script [104] in the
MSC Nastran SOL 145 sequence, since it is not standardly available as output. An
additional script is used to evaluate the GAF matrix by assuming translations and
rotations respect to the PMA as the rigid-body DOFs using the method of App. B.3.2.

Based on the computed set of GAF matrices at different reduced frequencies, the
code computes the quantities defining the finite-state unsteady aerodynamic model
developed in Subsec. 4.2.2. In order to limit the number of aerodynamic state variables,
a quasi-steady approximation of the unsteady aerodynamics due to perturbations of
rigid-body DOFs is assumed based on a least-square fitting of the GAF matrix data in
the lower reduced frequency range, while a rational function approximation of the GAF
matrix blocks associated with the elastic DOFs is performed using a rational function
approximation code developed in a previous work and integrated within the tool [101].
The interpolative matrix Ā1 associated with aerodynamic damping effects is corrected
with additional terms evaluated for any trim point from the steady-state aerodynamic
load field to account for the effects of non-zero trim angle of attack, which are not
captured by the DLM (see App. B.3.2). This is the only dependency on the trim
condition that is so far included in the small-disturbance aerodynamic model. Drag
perturbations are also included by correcting the matrix Ā1 according to simplified,
quasi-steady flight mechanics relations (drag polar).

5.1.2 Stability and response

Once the aircraft database is built, a stability or response analysis is performed.
Stability analyses are carried out by computing the eigenvalues and eigenvectors of

the state matrix [Eq. (4.52)] for the examined trim points, giving a root locus with
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respect to the freestream velocity as output. The state matrix is computed according
to one of the following fidelity levels in the modeling of couplings between rigid-body
and elastic DOFs: 1) no coupling; 2) only static inertial coupling; 3) only static and
dynamic inertial coupling; 4) only aerodynamic coupling; 5) full coupling.

Response analyses are carried out for a single trim point and according to the
chosen coupling fidelity level by applying an initial condition on the state vector or a
1-cosine deterministic gust input. The output is the set of time-histories of the state
variables obtained by integrating the free or driven response using a time-marching
algorithm.

5.2 The University of Michigan’s X-HALE

The first test case is University of Michigan’s X-HALE [82]. This flight test configuration
is being developed by the University of Michigan’s in order to gather experimental
data on coupled nonlinear flight dynamic/nonlinear aeroelastic behavior, which cannot
be obtained from wind tunnel measurements. These data will support the development
and validation of integrated models and computational tools for very flexible vehicles,
like the UM/NAST code [80]. An additional scope of the X-HALE project is to
provide a platform to test the synthesis of nonlinear control laws for aircraft with
flight dynamic and aeroelastic modes in the same frequency band. To these aims, the
X-HALE ATV will be manufactured in order to [82]: 1) show low natural frequencies
and large elastic displacements, necessary to exhibit the desired couplings and nonlinear
behaviors; 2) allow an accurate characterization of the vehicle structural, aerodynamic,
and propulsive properties, necessary to develop a representative numerical model; 3)
have sufficient control authority to excite various flight conditions, necessary during
the experimental tests.

A schematic of the X-HALE configuration as initially proposed in Ref. [80] is
illustrated in Fig. 5.2. The vehicle features a six-meter-span wing divided in unit-meter
segments, the outer presenting a 10-deg dihedral angle, two horizontal tails on each side
connected to the wing by thin tail booms, five propellers, and an equal number of pods
at the joints between subsequent wing segments. The wing cross-section has a 5-deg
built-in incidence angle and uses the EMX07 airfoil to allow trim at low body angle
of attack. In order to increase directional stability and yaw damping, a longer center
boom with a tail that is allowed to tilt from the horizontal to the vertical configuration
was added to the vehicle in a later design, together with three vertical fins associated
with the inner booms [83].
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Fig. 5.2 University of Michigan’s X-HALE: original layout [80].

Fig. 5.3 University of Michigan’s X-HALE: RRV layout [80].

Multiple low-risk configurations of the X-HALE are also being developed to perform
preliminary flight tests in order to verify the vehicle behavior with limited equipment
before manufacturing and flying the fully instrumented ATV. The layout of one of these
configurations is shown in Fig. 5.2, while the actual vehicle is illustrated in Fig. 5.3.
Further details on the characteristics of the X-HALE RRV shown in Fig. 5.3 are reported
in Ref. [83] along with preliminary correlations between flight test measurements and
simulations carried out on the UM/NAST numerical model. The X-HALE concept and
related RRVs are under continuous development, and new flight tests are forthcoming.

The present work focuses on the X-HALE RRV configuration analyzed in Ref. [86].
Due to the limited instrumentation, the vehicle experiences relatively moderate trim
deflections in typical operating flight conditions, as pointed out by numerical analyses
from different investigators [86, 92]. As a result, the configuration is an appropriate
test case for the present formulation, which captures couplings between rigid-body and
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Fig. 5.4 University of Michigan’s X-HALE: RRV ground and flight shapes [83].

Table 5.1 University of Michigan’s X-HALE: RRV undeformed inertia tensor.

J011 25.01 kg·m2 J012 3.0·10−3 kg·m2

J022 0.59 kg·m2 J013 1.3·10−3 kg·m2

J033 25.52 kg·m2 J023 0.1·10−3 kg·m2

elastic DOFs but does not account for geometric nonlinearities associated with large
structural deflections.

5.2.1 Numerical model

The FEM/DLM aeroelastic model of the X-HALE RRV considered in the present work
is shown in Fig. 5.5.

The MSC Nastran FEM structural model was developed for the numerical studies
of Ref. [86] based on a reference beam-type model implemented in UM/NAST. The
main structural components (wing, booms, tails, pods, and fins) are modeled by
one-dimensional elements. The wing consists of beam-type elements (MSC Nastran
CBEAM) and is the only flexible member, whereas booms, tails, pods, and fins are
modeled by Lagrangian rigid bars (MSC Nastran RBAR1). Lumped masses with
concentrated inertias (MSC Nastran CONM2) are added along the wing span, booms,
and tails to tune the inertial and dynamic behavior on the reference UM/NAST model.
The total vehicle mass is M = 10.862 kg. The center of mass of the whole configuration
practically lies on the wing elastic axis and it is slightly out of the plane of symmetry.
However, the center of mass of the isolated wing is forward to the elastic axis, which
makes the configuration aeroelastically stable in the linear sense. The inertia tensor
components with respect to the PMAs in undeformed configuration are reported in
Tab. 5.1. The roll and yaw inertias are comparable, while a very low pitch inertia is
observed. Further details on the structural model are provided in Ref. [86].
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The DLM aerodynamic model was developed by the author for the numerical
studies of Ref. [92] based on the VLM model used in Ref. [86]. The model includes
only aerodynamic lifting surfaces (MSC Nastran CAERO1), while the booms are not
taken into account due to the very small cross-sections. The four lateral horizontal
tails are used as elevators in aeroelastic trim analyses. Latero-directional trimming
of the actual X-HALE RRV is performed using differential thrust and antisymmetric
rotations of the tail surfaces, but it is not addressed in the present work. Loads transfer
and displacements interpolation between the FEM and DLM grids is performed using
six-degree-of-freedom (6DOF) finite beam splines (MSC Nastran SPLINE7), which
were also used for the nonlinear trim analyses of Chap. 7.

The actual X-HALE RRV wing features the EMX07 airfoil with five-deg built-in
incidence, so that a static correction to the DLM aerodynamics is necessary for an
accurate determination of the aeroelastic trim solution. The correction is supplied as
an external database of VLM aerodynamic load fields computed on the undeformed
configuration at different freestream velocities, zero angle of attack, and zero rotations
of the elevators, which are transferred to the structural grids using the developed spline
system. This approach showed a closer matching of nonlinear aeroelastic trim results
compared with the standard downwash-input method available in MSC Nastran [53], as
discussed in Chap. 7 (see also Ref. [92]). Further details on the X-HALE aerodynamic
model are provided in Refs. [86] and [92].

5.2.2 Preliminary analyses

This section describes the results of preliminary linear normal modes, linear aeroelastic
trim, and linear flutter analyses carried out on the X-HALE RRV model using MSC
Nastran. The obtained results allows to understand some of the main static and
dynamic characteristics of the vehicle in order to support and integrate the results
obtained from the coupled stability analysis.

5.2.2.1 Linear normal modes analysis

The modal scenario of the X-HALE RRV unrestrained undeformed configuration is
analyzed by performing a linear normal modes analysis using MSC Nastran SOL 103.

The six rigid-body mode shapes are shown in Figs. 5.6 and 5.7, whereas the first six
elastic mode shapes are illustrated in Figs. 5.8 and 5.9. All the modes are normalized
by requiring a unit maximum displacement and the rigid-body modes are computed by
separating translational and rotational DOF. Rigid-body translational modes are along
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Fig. 5.5 University of Michigan’s X-HALE: RRV FEM/DLM aeroelastic model.
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Table 5.2 University of Michigan’s X-HALE: RRV modal parameters.

No. Type Freq. (Hz) mn (kg·m2) kn (kg·m2/s2)
1 Bending/torsion sym 0.96 1.54 5.59·101

2 Bending/torsion asym 2.57 4.92·10−1 1.28·102

3 Bending/torsion asym 2.67 4.41·10−1 1.24·102

4 Torsion sym 3.87 3.32·10−1 1.96·102

5 Bending/torsion sym 5.04 4.79·10−1 4.80·102

6 Torsion asym 6.67 2.67·10−1 4.68·102

the PMAs, while rigid-body rotational modes are about axes slightly different from the
PMAs, since these are not principal for the undeformed structure (see the inertia tensor
in Tab. 5.1). The elastic modes are either bending/torsion or purely torsion modes
and all involve significant rigid-body displacements of the booms and tails connected
to the wing beam axis. The frequencies, generalized masses and stiffness, and mode
classification are reported in Tab. 5.2. The natural frequencies are much lower than for
traditional configurations, so that the lower-frequency aeroelastic modes are expected
to couple with the faster flight dynamic modes (roll, short period, and dutch roll).
The normalized components of the inertial coupling vectors [Eq. (4.13)] are shown in
Tab. 5.3. Due to the very small values, dynamic inertial couplings described by the
matrix Be are expected to be negligible the configuration. Inertial couplings due to the
matrices Je, Ye, Fe, and Ge must be evaluated for any trim point since they depend on
the equilibrium angular velocity and generalized coordinates. However, note that only
the static effect due to the trim inertia tensor Je and the dynamic effect described by
Be are present for small perturbations around steady rectilinear flight, since the other
quantities vanish for ωe = 0.

5.2.2.2 Linear aeroelastic trim analysis

Linear aeroelastic trim analyses are carried out using MSC Nastran SOL 144 for steady
rectilinear flight at M∞ = 0, ρ∞ = 1.222 kg/m3, and U∞ = 10 → 20 m/s [83]. Each
trim analysis is performed by adding the VLM aerodynamic load distribution on the
rigid aircraft computed at the corresponding freestream velocity, zero angle of attack,
and zero elevators.

The trim body angle of attack, elevator rotations, right-hand half-wing tip vertical
displacement (in meters and half-span percent), and the relative variation of the pitch
moment of inertia are reported in Tab. 5.4. Due to the wing incidence and EMX07
airfoil, the X-HALE RRV is trimmed at relatively low body angle of attack in the upper
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(a) φT
1 = e1

(b) φT
2 = e2

(c) φT
3 = e3

Fig. 5.6 University of Michigan’s X-HALE: RRV rigid-body translational modes.
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(a) φR
1 = e1 × z

(b) φR
2 = e2 × z

(c) φR
3 = e3 × z

Fig. 5.7 University of Michigan’s X-HALE: RRV rigid-body rotational modes.
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(a) φE
1

(b) φE
2

(c) φE
3

Fig. 5.8 University of Michigan’s X-HALE: RRV elastic modes (mode 1–3).
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(a) φE
4

(b) φE
5

(c) φE
6

Fig. 5.9 University of Michigan’s X-HALE: RRV elastic modes (mode 4–6).
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Table 5.3 University of Michigan’s X-HALE: RRV normalized inertial coupling vectors
bnm/

√
mnmm.

n m x-comp (-) y-comp (-) z-comp (-)
1 2 +1.21·10−3 +8.57·10−5 -3.90·10−3

1 3 +5.70·10−3 -1.14·10−4 +4.50·10−3

1 4 -9.27·10−6 +1.06·10−1 -5.19·10−3

1 5 +2.69·10−4 -1.95·10−2 +6.51·10−4

1 6 -5.25·10−3 -5.58·10−3 -5.67·10−3

2 3 -1.12·10−5 -1.32·10−1 +8.30·10−3

2 4 -4.29·10−3 +1.39·10−4 -1.54·10−3

2 5 +1.32·10−3 -7.22·10−4 -7.55·10−3

2 6 +7.36·10−4 -3.24·10−2 +3.60·10−3

3 4 +1.95·10−3 -2.55·10−4 -4.83·10−4

3 5 -2.21·10−3 +6.24·10−4 +7.96·10−3

3 6 -6.89·10−4 -5.22·10−2 +4.14·10−3

4 5 -6.09·10−6 -1.22·10−1 +6.36·10−3

4 6 +3.40·10−3 -7.73·10−4 +2.68·10−3

5 6 +5.70·10−3 -9.08·10−4 +9.96·10−3

Table 5.4 University of Michigan’s X-HALE: RRV trim parameters.

U∞ (m) qD (N/m2) αe (deg) δee (deg) uztip (m) uztip (%) ∆J22 (%)
10 61.08 9.46 -2.54 0.17 5.71 6.00
12 87.96 5.08 0.03 0.16 5.48 5.59
14 119.72 2.44 1.59 0.16 5.20 5.13
16 156.37 0.73 2.60 0.15 4.90 4.66
18 197.90 -0.44 3.30 0.14 4.56 4.16
20 244.32 -1.28 3.80 0.13 4.20 3.64
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Fig. 5.10 University of Michigan’s X-HALE: RRV right half-wing trim deflection.

velocity range and with positive (downward) rotation of the elevators in practically
the whole flight envelope. The tip vertical displacement is roughly 5% half-span and
slightly decreases with the freestream velocity. The results for U∞ = 16 m/s are in
good agreement with the nonlinear aeroelastic trim solutions of Ref. [92] presented in
Chap. 7, so confirming that static aeroelastic nonlinearities play a moderate role for
the X-HALE RRV. Due to the moderate trim deflections, static inertial couplings due
to the variations of Je with respect to J0 are thus expected to be slight.

The deformed configuration of the X-HALE RRV right half-wing at the examined
trim points is shown in Fig. 5.10. The front view of the true-scale deformed vehicle at
U∞ = 16 m/s is shown in Fig. 5.11. The wing trim deflection increases the dihedral
angle of the configuration, but the resulting aerodynamic coupling between the dutch
roll and first aeroelastic mode that is known to occur for the X-HALE RRV [83] is not
captured by the present analysis since the small-disturbance aerodynamic loads are
evaluated on the undeformed configuration of the DLM model.
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Fig. 5.11 University of Michigan’s X-HALE: RRV true-scale deformed configuration at
U∞ = 16 m/s.

5.2.2.3 Linear flutter analysis

A linear flutter analysis of the unrestrained undeformed vehicle is carried out for
M∞ = 0, ρ∞ = 1.222 kg/m3, and U∞ = 10 → 20 m/s using the p-k method available
in MSC Nastran SOL 145 [53]. The analysis is based on the rigid-body and elastic
modes shown in Figs. 5.6, 5.7, 5.8, 5.9. Aerodynamic coupling between the rigid-
body and elastic DOFs is taken into account by MSC Nastran SOL 145 with a
linear approach [53], according to which both sets of DOFs are treated as generalized
coordinates associated with linear modal equations. Consistently with linear aeroelastic
theory, small perturbations are assumed to occur around the undeformed configuration
at zero-angle-of-attack. Therefore, only modal displacements and rotations associated
with normal translation and pitch of the lifting surfaces have an effect on the small-
disturbance DLM aerodynamic loads, and weight perturbations are not taken into
account. Finally, note that the p-k method is an iterative technique that evaluates the
GAF matrix on the imaginary axis, so introducing approximations on the pole with
non-zero real parts.

The root locus obtained from the MSC Nastran flutter analysis is shown in Fig. 5.12,
together with a closer view of the lower-frequency range. The poles obtained for
U∞ = 10 m/s and U∞ = 20 m/s are denoted by blue and black circles, respectively,
while those for intermediate velocities by red circles. The direction of evolution of the
poles is also marked by arrows.
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Fig. 5.12 University of Michigan’s X-HALE: RRV stability analysis using the p-k method
for U∞ = 10 → 20 m/s.
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All the aeroelastic poles have negative real parts and damping that increases with
the freestream velocity, as expected since the wing center of mass is forward to the
elastic axis. The first, second, fourth, and fifth aeroelastic modes, which originate
from the symmetric elastic modes and the first antisymmetric bending/torsion mode,
are characterized by frequencies that slightly decrease with the parameter, while the
frequencies of the other antisymmetric modes increase.

The only flight dynamic poles captured by the linear flutter analysis are those
associated with short-period and dutch-roll type modes. The roll, phugoid, and spiral
dynamics are not clearly described, as expected since some of the key physical mecha-
nisms are not considered within MSC Nastran (for instance, weight and longitudinal
velocity perturbations that are important to predict the phugoid) and the p-k method
may have convergence issues for highly damped dynamics.

In contrast with the characteristics of traditional aircraft, the short period pole of
the X-HALE RRV has a higher frequency than the first aeroelastic mode and show
significant flexibility effects. Indeed, the short period pole of a rigid aircraft is typically
characterized by a linear growth of frequency with the freestream velocity at constant
damping. As a result, this pole would move along a straight line if the X-HALE RRV
were rigid, while Fig. 5.12 shows that the increase in frequency with the freestream
velocity is combined with a decrease in damping. This behavior is motivated by the
aerodynamic coupling between the short period mode and the symmetric aeroelastic
modes originating from the first, fourth, and fifth elastic modes. These modes all
involve rigid-body rotations of the horizontal tails as a consequence of the wing bending
and torsion (see Figs. 5.8 and 5.9). As a result, the horizontal tails are less effective in
giving a pitching moment opposite to the vehicle pitch rate, so that the pitch damping
of the flexible X-HALE RRV is smaller than for a rigid configuration.

In contrast with the short period, the dutch roll dynamics captured by the flutter
analysis has a typical rigid-body-like behavior characterized by a linearly increasing
frequency and constant damping. This result is motivated by considering that all DLM
lifting surfaces are assumed at zero trim angle of attack in the stability analysis carried
out using MSC Nastran. In these circumstances, the yaw damping of the configuration
is only determined by the aerodynamic loads on the vertical lifting surfaces, whose
associated structural components are all treated as rigid bodies in the FEM model.
Since perturbations of the yaw rate do not cause any variation of the aerodynamic load
on the wing and horizontal tails when zero angle of attack is considered, no coupling
between the dutch roll dynamics and the anti-symmetric bending/torsion modes is
captured at this stage.
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5.2.3 Fully coupled stability analysis

The integrated stability of the X-HALE RRV is now analyzed using the developed
computational framework. In order to investigate the influence of different coupling
mechanisms, the root locus in steady rectilinear flight is obtained for the same conditions
of Subsec. 5.2.2 by considering: 1) full decoupling (FD); 2) static inertial coupling
(SIC); 3) inertial coupling (IC); 4) aerodynamic coupling (AC); and 5) full coupling
(FC). The state matrix of Eq. (4.52) is evaluated according to each coupling model by
setting the inertial and/or aerodynamic couplings to zero or by retaining all the effects.

The results are analyzed in three steps: 1) comparison of the root loci from the
FD, SIC, and IC models to point out the influence of static and dynamic inertial
couplings with aerodynamic couplings neglected; 2) comparison of the root loci from
the FD, AC, and FC models to investigate the influence of aerodynamic couplings;
and 3) comparison of the root loci from the FC model and MSC Nastran to show
the differences between a standard FEM/DLM linear stability analysis with the p-k
method and the fully coupled one based on the present integrated formulation. All the
analyses consider 38 DOFs distributed as 9 rigid-body DOFs, 12 elastic DOFs, and 17
aerodynamic DOFs. For each coupling level, the interpolative matrix Ā1 is corrected
according to the methodology of App. B.3.2 to include quasi-steady effects due to
non-zero trim angle of attack. However, the cross-coupling blocks between rigid-body
and elastic DOFs are set to zero when the FD, SIC, and IC models are considered.

5.2.3.1 Influence of inertial coupling effects

Comparing the root loci obtained with the FD, SIC, and IC models allows to understand
the effect of static and dynamic inertial couplings between rigid-body and elastic DOFs,
while in contrast with the stability analysis of Subsec. 5.2.2 aerodynamic couplings
are not considered. Weight perturbations are taken into account, and the diagonal
rigid and elastic blocks of the interpolative matrix Ā1 include corrective terms to
account for perturbations of the local dynamic pressure and local lift direction. Drag
perturbations are also included, evaluated on the basis of the drag polar. The rigid-
body and elastic DOFs are fully decoupled in the FD model, giving the stability of
the rigid vehicle and the aeroelastic stability of the unrestrained flexible configuration
with no translational and rotational DOFs included as separate outputs. Static inertial
couplings are taken into account by the SIC model, although for small perturbations
around steady rectilinear flight these are only due to the variation of Je with respect to
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J0. The IC model adds the dynamic coupling effect described by the matrix Be, while
the other inertial couplings ones are zero for ωe = 0.

The root loci from the FD, SIC, and IC models are compared in Fig. 5.13, with
closer views of the flight dynamic poles shown in Fig. 5.14. The results given by the
three models practically overlap, so showing that inertial couplings are negligible for
the X-HALE RRV. This is motivated by considering that trim deflections are moderate,
so that static inertial coupling effects due to the dependency of Je on vehicle flexibility
are very slight. These can be only observed for the short period mode, since due to
the increase in the trim pitch inertia compared to the undeformed value the short
period frequency decreases for a fixed freestream velocity while passing from the FD
to the SIC model (see Fig. 5.14). Dynamic inertial couplings have no effect, due to the
combination of small components of the inertial coupling vectors and small values of
the trim generalized coordinates.

In contrast with the stability analysis of Subsec. 5.2.2.3, the roll, phugoid, and
spiral modes are captured by the FD, SIC, and IC models. The roll pole is a negative
real root with very high modulus, which further increases with the freestream velocity
as expected for a rigid vehicle. The spiral pole is a real root with very small modulus,
which is positive at low speed but is eventually stabilized in the upper velocity range.
This behavior is expected for the configuration, since the vertical lifting surfaces
associated with the pods, fins, and vertical tail make the directional stability higher
than the lateral one. In these circumstances, rolling moments due to yaw rates play a
more significant role than rolling moments due to perturbations of the lateral velocity,
which results in an unstable spiral dynamics. Since the rolling moment caused by a yaw
rate increases with the local angle of attack on the aerodynamic surfaces, it decreases
with the freestream velocity due to the lower trim body angle of attack. As a result,
the spiral mode become stable at high speed. Note that rolling moments due to yaw
rates are among the small-disturbance aerodynamic effects that are not captured by
MSC Nastran, so that the stability analysis conducted using the p-k method does not
clearly predict the spiral dynamics. The phugoid pole is also unstable at low speed.
The frequency decreases with the freestream velocity, as expected for a rigid vehicle,
while damping increases until the pole crosses the imaginary axis. However, note that
horizontal force perturbations due to variations in the longitudinal velocity are here
only estimated from the trim wing aerodynamic load field (see App. B.3.2). Moreover,
drag perturbations are modeled using simplified flight mechanics relations (vehicle
drag polar), and thrust perturbations associated with the X-HALE propellers are not
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Fig. 5.13 University of Michigan’s X-HALE: RRV stability analysis using the FD, SIC, and
IC coupling models for U∞ = 10 → 20 m/s.

taken into account. A more accurate modeling of these effects would be required to
adequately predict the phugoid dynamics.

5.2.3.2 Influence of aerodynamic coupling effects

Comparing the root loci obtained from the FD, AC, and FC models allows to understand
the effects of aerodynamic couplings. The root loci from the FD, AC, and FC models
are compared in Fig. 5.15, with a closer with on the flight dynamic poles in Fig. 5.16.
The results from the AC and FC models practically overlap, as expected since the
analysis of Subsec. 5.2.3.1 pointed out that inertial couplings are negligible.

The evolution of the second, fifth, and sixth aeroelastic modes is not significantly
influenced by aerodynamic couplings, while these effects decrease the frequency and
increase the damping of the first, third, and fourth aeroelastic modes.

The increasing damping of some of the aeroelastic modes is balanced by the
destabilizing effect of flexibility on the short period and roll dynamics. The behavior of
the short period pole was already discussed in Subsec. 5.2.2.3. Comparing the results
from the FD, AC, and FC models clearly points out for a fixed freestream velocity
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Fig. 5.14 University of Michigan’s X-HALE: RRV flight dynamic poles using the FD, SIC,
and IC coupling models for U∞ = 10 → 20 m/s.
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Fig. 5.15 University of Michigan’s X-HALE: RRV stability analysis using the FD, AC, and
FC coupling models for U∞ = 10 → 20 m/s.
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Fig. 5.16 University of Michigan’s X-HALE: RRV flight dynamic poles using the FD, AC,
and FC coupling models for U∞ = 10 → 20 m/s.
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including the aerodynamic coupling with the elastic DOFs has only a minor effect on
the short period frequency whereas it considerably decreases its damping. Damping
also decreases with the freestream velocity, in contrast with what observed for the rigid
aircraft. The roll pole still increases in modulus with the freestream velocity, but for a
fixed value the time constant given by the AC and FC models is smaller in modulus
that the one obtained in the fully decoupled case (FC model). This can be motivated
by considering that the roll dynamics is coupled through aerodynamics with the wing
antisymmetric bending/torsion modes, which reduces the roll damping from the wing
and also causes coupling with the yaw dynamics.

The phugoid and spiral poles are not significantly altered by aerodynamic coupling
(see Fig. 5.16), so that their behavior remains the one discussed in Subsec. 5.2.3.1. In
contrast, aerodynamic coupling significantly modifies the dutch roll pole. For fixed
freestream velocity, the pole given by the FC model has higher frequency and smaller
damping than the one obtained from the FD model, and damping further decreases
with the parameter. This result can be motivated by considering the aerodynamic
coupling between the dutch roll, roll, and the antisymmetric bending/torsion mode,
while the nonlinear coupling with the first aeroelastic mode is not captured from the
present analysis since all the small-disturbance aerodynamic loads are evaluated on
the undeformed configuration.

5.2.3.3 Integrated versus standard stability analysis

The results from the standard linear stability analysis carried out with MSC Nastran
and the fully coupled analysis performed with the FC model are finally compared in
Figs. 5.17 and 5.18. The comparison show that the differences concerning the short
period mode and the aeroelastic modes are moderate, while the stability analysis
from MSC Nastran does not capture the roll, phugoid, and spiral poles. Moreover,
completely different results are obtained for the dutch roll pole due to the corrective
aerodynamic effects that account for non-zero angle of attack that are included in the
present formulation and that increase the coupling between the dutch roll and roll
dynamics through the coupling with the antisymmetric aeroelastic modes. Indeed,
despite the aerodynamic coupling between rigid-body and elastic DOFs is considered
in the stability analysis carried out using MSC Nastran, in the absence of appropriate
corrections to include the aerodynamic effects of non-zero trim angle of attack the
dutch roll does not interacts with the aeroelastic modes, so that the obtained evolution
is that of a rigid vehicle (see Fig. 5.12). The projection of weight along the body axes
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Fig. 5.17 University of Michigan’s X-HALE: RRV stability analysis using MSC Nastran and
the FC model for U∞ = 10 → 20 m/s.

.
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Fig. 5.18 University of Michigan’s X-HALE: RRV flight dynamic poles using the p-k method
and the FC model for U∞ = 10 → 20 m/s.
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Fig. 5.19 Lockheed Martin’s BFF vehicle: layout.

in presence of a roll angle is also neglected by the standard linear stability analysis,
resulting in a smaller dutch roll frequency.

5.3 The Lockheed Martin’s BFF vehicle

The second test case is the Lockheed Martin’s BFF research drone studied in Refs. [75,
66]. This is a low-scale experimental unmanned vehicle that was developed and flown
by Lockheed Martin’s Skunk Works under the BFF research program. The main
characteristic of the configuration is to show a body-freedom flutter instability as the
first critical mode, along with a traditional bending-torsion flutter predicted at higher
speed. The body-freedom flutter is typical of tailless configurations and occurs due
to the exchange of energy between a relatively high-frequency short-period mode and
low-frequency first aeroelastic mode. The scope of the BFF program was to fly different
BFF experimental configurations beyond the flutter boundary to assess Lockheed
Martin’s prediction models and investigate integrated active stability augmentation
and flutter suppression applied to elastic vehicles. The BFF program led to the
development of a larger-scale configuration called the X-56A Multi-Utility Technology
Test bed (MUTT), a modular unmanned vehicle developed to provide a platform for
the development of advanced active stability augmentation, flutter suppression, and
gust load alleviation technologies.

A schematic of the BFF vehicle is shown in Fig. 5.19 as reported in Ref. [66].
The vehicle features a three-meter span flying-wing configuration with a leading-edge
sweep angle of 22 deg and two vertical winglets located at the wingtips to increase the
directional stability. Control surfaces are located along the wing trailing edge. The
actual BFF configuration during a flight test is shown in Fig. 5.20 together with the
follow-on X-56A MUTT vehicle.

The BFF drone shows an inherently coupled flight dynamic and aeroelastic behavior
while experiencing sufficiently small deflections to be adequately described by the linear
theory. Therefore, it provides an appropriate test case for the present formulation.
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Fig. 5.20 Lockheed Martin’s BFF and X-56A MUTT vehicles: in flight shapes.

Table 5.5 Lockheed Martin’s BFF vehicle: undeformed inertia tensor.

J011 1.14 kg·m2

J022 0.23 kg·m2

J033 1.37 kg·m2

Reference results for the integrated stability around steady rectilinear flight are available
in Ref. [75, 66] and were considered to perform a preliminary assessment of the developed
computational tool (see Ref. [91]).

5.3.1 Numerical model

The FEM and DLM models of the BFF vehicle considered in the present numerical
studies are shown in Fig. 5.21.

The MSC Nastran FEM structural model was developed for the numerical studies
reported in Ref. [91] and consists of one- and two-dimensional elements (MSC Nastran
CBEAM, CQUAD4, and CTRIA3) along with rigid elements to model the winglets
(MSC Nastran RBE2). The model geometry is based on the BFF vehicle layout reported
in Refs. [75, 66], while the sizing and material properties were obtained using the MSC
Nastran gradient-based optimization solver [105] in order to tune the vehicle total
mass, center of mass location, pitch moment of inertia, and elastic mode frequencies
with the reference data [66]. The total model mass is M = 5.457 kg, while the center
of mass has an horizontal offset of 0.658 m from the nose. The diagonal components
of the inertial tensor in undeformed configuration with respect to the center of mass
are reported in Tab. 5.5. The off-diagonal components are practically zero for this
configuration. The obtained vehicle mass, center of mass location along the x-axis,
and pitch moment of inertia are comparable with those reported in Ref. [66]. The
similarity of the modal characteristics is discussed in Subsec. 5.3.2.1.



5.3 The Lockheed Martin’s BFF vehicle 149

Fig. 5.21 Lockheed Martin’s BFF vehicle: FEM structural model.
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Fig. 5.22 Lockheed Martin’s BFF vehicle: DLM aerodynamic model.
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Table 5.6 Lockheed Martin’s BFF vehicle: modal parameters.

No. Type Freq. (Hz) mn (kg·m2) kn (kg·m2/s2)
1 Bending/torsion sym 5.83 1.29·10−1 1.73·102

2 Bending/torsion asym 8.83 1.45·10−1 4.46·102

3 In-plane bending 13.45 2.22·10−1 1.59·103

4 Torsion asym 19.82 3.63·10−3 5.63·102

5 Torsion sym 20.10 3.40·10−3 5.41·102

6 Bending/torsion sym 23.73 1.91·10−2 4.25·102

The DLM aerodynamic model was also developed for the numerical analyses of
Ref. [91]. The model include aerodynamic lifting surfaces (MSC Nastran CAERO1) for
the wing segments and winglets, with the definition of control surfaces as in Fig. 5.19.
Load transfer and displacement interpolation between the FEM and DLM models is
performed by means of standard infinite plate splines (MSC Nastran SPLINE1) used in
linear aeroelastic analyses. The use of 6DOFs finite beam splines for the X-HALE RRV
is motivated by considering that nonlinear aeroelastic analyses were also performed
using this type of splines, as discussed in Chap. 7.

5.3.2 Preliminary analyses

As done for the X-HALE RRV configuration, preliminary normal modes, linear aeroelas-
tic trim, and linear flutter analyses are carried out to characterize the BFF configuration
and help to motivate the couplings observed in the integrated stability analysis.

5.3.2.1 Linear normal modes analysis

The rigid-body translational, rigid-body rotational, and elastic mode shapes obtained
from the linear normal modes analysis with free-free boundary conditions are shown
in Figs. 5.23, 5.24, 5.25, and 5.26. The frequencies, generalized masses, generalized
stiffnesses, and mode classification are summarized in Tab. 5.5. The frequencies of the
symmetric modes show a very good agreement with the experimental measurements
from Lockheed Martin reported in Ref. [66], and the corresponding mode shapes are also
to the ones reported in Ref. [66]. The normalized components of the inertial coupling
vectors were reported in Ref. [91] and are very small. As a result, dynamic inertial
coupling effects are expected to be negligible in steady rectilinear flight conditions.
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(a) φT
1 = e1

(b) φT
2 = e2

(c) φT
3 = e3

Fig. 5.23 Lockheed Martin’s BFF vehicle: rigid-body translational modes.
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(a) φR
1 = e1

(b) φR
2 = e2

(c) φR
3 = e3

Fig. 5.24 Lockheed Martin’s BFF vehicle: rigid-body rotational modes.
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(a) φE
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3

Fig. 5.25 Lockheed Martin’s BFF vehicle: elastic modes (mode 1–3).
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Fig. 5.26 Lockheed Martin’s BFF vehicle: elastic modes (mode 4–6).
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Table 5.7 Lockheed Martin’s BFF vehicle: trim parameters.

U∞ (m) qD (N/m2) αe (deg) δee (deg) uztip (m) uztip (%)
15 125.66 8.31 -31.82 0.04 2.84
20 223.40 4.55 -19.94 0.05 3.07
25 349.06 2.80 -14.83 0.05 3.44
30 502.65 1.80 -12.68 0.06 4.06

Fig. 5.27 Lockheed Martin’s BFF vehicle: deformed configuration at U∞ = 30 m/s.

5.3.2.2 Linear aeroelastic trim analysis

Linear aeroelastic trim analyses are carried out for M∞ = 0, sea level, and U∞ = 15 →
30 m/s as considered in Ref. [66]. The trim parameters reported in Tab. 5.7 show that
the vehicle is subjected to small static displacements within the flight envelope, for
which there is no practical variation of the inertia tensor. The deformed configuration
for U∞ = 30 m/s depicted in Fig. 5.27 points out a very slight deflection of the flying
wing with respect to the undeformed configuration shown in Fig. 5.21. Based on these
results, static inertial coupling is expected to be negligible in steady rectilinear flight,
since the only effect is due to the trim inertia tensor Je.

5.3.2.3 Linear flutter analysis

A linear flutter analysis for the unrestrained underformed vehicle is carried out for M∞,
sea level, and U∞ = 15 → 30 m/s using the p-k method. The analysis is based the
rigid-body and elastic modes shown in Figs. 5.23, 5.24, 5.25, and 5.26. Aerodynamic
couplings are taken into account according to the standard linear aeroelastic description
(see Subsec. 5.2.2.3).
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The obtained root locus is shown in Fig. 5.28 and is comparable with the one
of Ref. [66], which provides an assessment of the developed aeroelastic model. The
standard linear flutter analysis captures a body-freedom flutter instability at 19.85
m/s due to the aerodynamic interaction of the short period and first aeroelastic modes.
Note that the observed coupling is completely different than the one observed for
the X-HALE RRV. For this first configuration the wing flexibility drives pitching
motions of the tails that damp the symmetric aeroelastic modes, which on the other
hand decreases the damping associated with the short period mode. Despite the
significant coupling, these modes remain stable in the whole flight envelope due to
the design characteristics of the vehicle (in particular, the position of the wing center
of mass with respect to the elastic axis). For the BFF vehicle the short period and
first aeroelastic modes are inherently coupled, and the former transfers energy to the
latter until this become unstable. Two bending-torsion flutter instabilities are also
obtained at 28.13 m/s and at 29.04 m/s, associated with the aeroelastic modes that
originate from the fourth and fifth elastic modes (see Tab. 5.5). The body-freedom
flutter speed is 16.10% smaller than the one obtained from the Lockheed Martin’s
flight tests, while the symmetric bending-torsion flutter is 0.96% smaller than the one
obtained from the Lockheed Martin’s full-order model. The other aeroelastic poles
remain on the left-hand side of the imaginary axis and are characterized by roughly
constant frequencies and decreasing damping with the freestream velocity. Note that
the third aeroelastic pole that originates from the in-plane bending mode also shows
an evolution with the parameter, which is motivated by considering the aerodynamic
loads on the vertical surfaces at the wingtips.

The linear stability analysis does not capture the roll, phugoid, and spiral modes.
The dutch roll has the typical behavior of a rigid vehicle, which is justified by considering
that the structural elements coupled with the vertical lifting surfaces are modeled as
rigid bodies. No contribution to the yaw damping or stiffness comes from the wing
according to the DLM formulation, since all lifting surfaces are assumed at zero angle
of attack.

5.3.3 Fully coupled stability analysis

The integrated stability of the BFF is here analyzed using the present tool for the
same conditions of Subsec. 5.3.2.3. The discussion of results obtained with different
coupling models is carried out as done for the X-HALE RRV. In addition, the root
locus with the FC model is also obtained for the case of small perturbations around a
steady turn condition at load factor nze = 2 to point out if there is any sensitivity on
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Fig. 5.28 Lockheed Martin’s BFF vehicle: stability analysis using the p-k method.
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the reference maneuver, which could not be captured by standard linear aeroelastic
analysis techniques.

5.3.3.1 Influence of inertial coupling effects

The stability scenario obtained from the FC, SIC, and IC models is shown in Fig. 5.29.
The root loci given by the three models practically overlap, so showing that no inertial
coupling effect is significant for this configuration. Since aerodynamic couplings are
neglected at this stage, the root locus is very different from the one of Fig. 5.28.
Indeed, the short period mode does not interact with the first aeroelastic mode and
consequently shows the typical behavior of a rigid vehicle. The dutch roll pole remains
practically unchanged with respect to what obtained from the preceding linear stability
analysis conducted using the p-k method from MSC Nastran. However, the present
formulation also captures the roll, phugoid, and spiral modes. The roll pole is a
negative real root which increases in modulus with the freestream velocity, as expected
in the absence of aerodynamic couplings with elastic DOFs. Another real pole is
also observed that is superimposed to the roll pole. This is one of the aerodynamic
poles that decreases in modulus and then crosses the imaginary axis, a behavior that
disappears when aerodynamic coupling is considered (se Subsec. 5.3.3.2). The spiral
mode is slightly unstable, as expected since the configuration shows no dihedral and
thus has a low lateral stability compared to the directional one. The phugoid pole has
also positive real part at low speed, which eventually becomes negative in the upper
velocity range. Again, a more accurate modeling of thrust and drag perturbations and
of the aerodynamic effects of variations of dynamic pressure should be considered to
improve the prediction of the phugoid dynamics.

5.3.3.2 Influence of aerodynamic coupling effects

The root loci obtained from the FD, AC, and FC models are shown in Fig. 5.29.
Including aerodynamic coupling allows to capture a body-freedom flutter instability
at 20.941 m/s, which is a better approximation of the Lockheed Martin’s flight test
results compared with the result of 19.853 m/s given by the standard p-k method
analysis. The root loci from the AC and FC models practically overlap, as expected
since inertial couplings are negligible for the configuration. Aerodynamic coupling
effects do not significantly alter the behavior of the second, third, and sixth aeroelastic
modes, and of the dutch roll, phugoid, and spiral modes. However, they play the same
destabilizing effect on the roll pole that was also observed for the X-HALE RRV.
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Fig. 5.29 Lockheed Martin’s BFF vehicle: stability analysis using the FD, SIC, and IC
coupling models.
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Fig. 5.30 Lockheed Martin’s BFF vehicle: stability analysis using the FD, AC, and FC
coupling models.
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Fig. 5.31 Lockheed Martin’s BFF vehicle: stability analysis using MSC Nastran and the
FC coupling model.
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5.3.3.3 Integrated versus standard stability analysis

Comparing the results from the FC model with the standard linear flutter analysis
carried out using MSC Nastran points out differences in the evolution of the short period
and first aeroelastic modes, and also differences for the higher-frequency aeroelastic
modes. In particular, the fourth aeroelastic mode does not cross the imaginary axis
according to the FC model, while the damping associated to the fifth mode decreases
resulting in a lower flutter speed. The differences on the short period and first
aeroelastic modes are motivated by considering that a quasi-steady description of the
small-disturbance aerodynamic loads due to perturbations of the rigid-body DOFs is
assumed in the present work, while a fully unsteady description is considered in the
p-k method analysis carried out using MSC Nastran. The choice of using a quasi-
steady model is to reduce the number of aerodynamic states introduced by the rational
function approximation, but could miss some unsteady effects associated with the very
high-frequency short period dynamics of the BFF. However, there is no theoretical
limitation to the extension of the rational function approximation to the rigid-body
DOFs, which could be addressed as a future development. The differences on the fourth
and fifth aeroelastic modes are motivated by considering the inclusion of quasi-steady
corrections to the matrix Ā1 to account for local variations of dynamic pressure and
local rotations of the lift vector. The effects of these corrective terms will be further
investigated as future development. Finally, note that the stability analysis of MSC
Nastran does not capture the roll, phugoid, and spiral modes, which are described by
the present formulation.

5.3.3.4 Influence of steady maneuvers

The stability analyses carried out with the FC model at nze = 1, 2 are finally compared
to point out the effect of different steady maneuvers. The obtained results plotted
in Fig. 5.32 show that the root locus remains qualitatively the same, while the body-
freedom flutter speed slightly increases from 20.94 m/s in steady rectilinear flight to
21.14 m/s in steady turn (0.96% difference).

The slight sensitivity to the load factor is explained by considering that the inte-
grated linearized formulation is sensitive to the reference maneuver only through the
static and inertial coupling effects associated with the matrices Ge, Fe, Ye, and He, and
through the quasi-steady correction added to the interpolative matrix A1. The inertial
coupling terms are small since the components of the coupling vectors and tensors, the
trim angular rates, and the equilibrium generalized coordinates are all small quantities.
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Fig. 5.32 Lockheed Martin’s BFF vehicle: root locus using the FC model with nze = 1, 2.

In addition, the present aerodynamic model is mostly based on a numerical fitting
of GAF matrix data from the DLM, according to which the perturbation unsteady
aerodynamic loads are always evaluated with respect to steady rectilinear flight condi-
tions. The only dependency on the reference maneuver that is present in the unsteady
aerodynamic model used in the tool is the quasi-steady corrective matrix added to the
interpolative matrix Ā1, which is evaluated by projecting the trim wing loading onto
the rigid-body and elastic mode shapes. Although this contribution allows to capture
important aerodynamic effects that play a role in the rigid-body stability which are
not naturally considered according to the DLM, the correction is slightly sensitive to
the normal load factor and therefore does not give significant differences between the
stability analyses carried out around steady rectilinear flight and steady turn. Similar
conclusions were drawn in Ref. [91] from the stability analysis of a flexible glider.

As general remark, the slight influence of inertial versus aerodynamic couplings
pointed out by the present analyses is consistent with the fact that PMAs are a
close approximation to mean axes for small elastic displacements [66]. Indeed, the
inertial coupling terms in the linearized EOMs involve products between perturbation
quantities, by definition small, and the trim generalized coordinates, which are also
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small in the limit of validity of linear elastic theory. Therefore, these effects are expected
to be slight for the study of small perturbations. However, the relevance of the inertial
coupling terms should be however assessed case by case in the flight simulation based
on the nonlinear EOMs, since in this case they multiply the total angular rate and
acceleration that may be not small during rapid unsteady maneuvers.





Chapter 6

Integrated formulation around
nonlinear aeroelastic trim

In this chapter the linearized formulation presented in Chap. 4 is extended by allowing
for large static elastic displacements. Therefore, coupled linearized EOMs for small
perturbations around geometrically nonlinear aeroelastic trim conditions are presented.
The proposed statically-nonlinear dynamically-linear description provides a framework
to study the stability and response of very flexible aircraft, for which the effects of
large aeroelastostatic deflections should be at least considered. The derivation of the
extended linearized model is conducted in order to keep a strong similarity with the
formulation of Chap. 4, so minimizing the changes in the computational framework
presented in Chap. 5 necessary to implement the statically-nonlinear dynamically-linear
description.

6.1 Linearized equations of motion

In order to obtain linearized EOMs for small perturbations around nonlinear aeroelastic
trim conditions, the elastic displacement with respect to the PMAs is split into its
static and dynamic components. In contrast with the derivation of Chap. 4, the
static contribution is now allowed to be arbitrarily large, while the dynamic term
is still assumed to be small and decomposed in terms of the elastic modes of the
statically deformed structure. Once this kinematic representation is considered, the
statically deformed configuration can be interpreted as the new baseline configuration
in the PMAs. As a consequence, the linearized EOMs maintain the same structure of
Eqs. (4.17), (4.18), and (4.19), provided that they consider the inertial, modal, and
aerodynamics characteristics of the statically deformed rather than of the undeformed
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structure and that all the contributions proportional to the trim generalized coordinates
are set to zero.

6.1.1 Kinematics

The elastic displacement relative to the PMA frame is rewritten as

uE = uEe
+ ∆uE = uEe

+
∞∑

n=1
∆qnφEe

n (6.1)

where uEe
is an arbitrarily large static (trim) component and ∆uE is a small perturbation

written in terms of the elastic modes of the statically deformed structure φEe
n and

associated generalized coordinates ∆qn. The elastic modes φEe
n are generally different

from those of the undeformed configuration φE
n, since the aircraft modal characteristics

depend on the trim point in presence of large aeroelastostatic deflections.
Using Eq. (4.3) and (6.1) the position of P in the PMA frame in deformed configu-

ration is rewritten as

r = z + uEe
+

∞∑
n=1

∆qnφEe
n = re +

∞∑
n=1

∆qnφEe
n (6.2)

where re = z + uEe
is the position of P in statically deformed configuration. The

latter can be interpreted as the new baseline configuration in the PMAs, so that the
linearized formulation of Chap. 4 remains valid once the structural and aerodynamic
characteristics of the statically deformed aircraft are considered in place of those of the
undeformed structure. In addition, the terms involving the trim generalized coordinates
must be set to zero, since only the dynamic component of the elastic displacement is
written in terms of a modal decomposition in Eq. (6.1).

The possibility to assume the statically deformed configuration as the new baseline,
so keeping the rest of the formulation unchanged, is justified by considering that the
elastic modes φEe

n verify the orthogonality conditions∫∫∫
V
ρφEe

n dV = 0
∫∫∫

V
ρre × φEe

n dV = 0 (6.3)

Indeed, they are mutually orthogonal to the rigid-body modes of the statically deformed
structure chosen so that the associated generalized coordinates are unit translations
and rotations along the PMAs:

φTe
k ≡ φT

k = ek φRe
k = ek × re (k = 1, 2, 3) (6.4)
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The conditions in Eq. (6.3) imply that the following constraints are identically satisfied:∫∫∫
V
ρvEdV = 0

∫∫∫
V
ρre × vEdV = 0 (6.5)

These can be interpreted as PMA constrains imposed on a reference configuration that
is identified with the statically deformed configuration at trim.

Note that the output of nonlinear aeroelastic trim analyses, for instance conducted
by coupling a FEM structural solver with a VLM or CFD aerodynamic solver, is
typically the aeroelastostatic displacement with respect to an attached-axis frame
with origin fixed to a reference structural grid (see Chap. 7). This displacement field,
denoted by uA

Ee
, differs from uEe

(referred to the PMA) for a rigid-body motion:

uEe
= uA

Ee
− xT − θR × z (6.6)

where xT is a rigid-body translation along the PMA and θR a rigid-body rotation of
the undeformed structure about the PMA. Since the elastic displacement uEe

must
have zero component along the rigid-body translational and rotational modes of the
statically deformed structure, namely the rigid-body modes in Eq. (6.4) , the quantities
xT and θR can be obtained by imposing the orthogonality conditions∫∫∫

V
ρuEe

dV = 0
∫∫∫

V
ρre × uEe

dV =
∫∫∫

V
ρz × uEe

dV = 0 (6.7)

Substituting Eq. (6.6) into Eq. (6.7) and considering that the instantaneous center of
mass is by definition origin of the PMA frame one has

xT = 1
m

∫∫∫
V
ρuA

Ee
θR = J−1

0

∫∫∫
V
ρz × uA

Ee
dV (6.8)

The integrals in Eq. (6.8) can be evaluated for aircraft described in terms of generic
FEM models using the discretization approach of Chap. 4.

Equations (6.7) and (6.8) allow to determine the trim statically deformed con-
figuration with respect to the PMA frame from the natural output of a nonlinear
aeroelastic trim analysis. A novel methodology to perform the latter for complex
configurations described in terms of detailed structural and aerodynamic models is pro-
posed in Chap. 7. Note that the model tangent stiffness matrix including the pre-stress
condition obtained by the nonlinear aeroelastic trim analysis for the attached-axis
frame also describes the stiffness of the statically deformed configuration written with
respect to the PMA frame, since the two frames differ for a rigid-body displacement.
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The knowledge of the statically deformed configuration and related stiffness properties
completely characterize the inertial and modal behavior of the statically deformed
structure, and it is a necessary step in order to characterize the local small-disturbance
unsteady aerodynamics.

6.1.2 Second-order form

The statically-nonlinear dynamically-linear description assumed in Eqs. (6.1) and (6.2)
implies that the linearized EOMs obtained in Chap. 4 [Eqs. (4.26), (4.27), and (4.28)]
are still applicable to study small perturbations around a nonlinear aeroelastic trim
condition, provided that statically deformed structure is considered as the new baseline
in the PMA and the terms proportional to the equilibrium generalized coordinates
are neglected, since the elastic displacement with respect to the statically deformed
structure is a perturbation quantity [see Eq. (6.1)].

From the above remarks, Eqs. (4.26), (4.27), and (4.28) become the following:

1) Linearized translational equations:

m (∆v̇G + ωe × ∆vG − vGe
× ∆ω) = ∆fT (6.9)

2) Linearized rotational equations:

∆J̇ ωe + Je ∆ω̇ − Je ωe × ∆ω + ωe × (∆J ωe + Je ∆ω) = ∆mG (6.10)

3) Linearized elastic equations:

mne∆q̈n − 2∆ω · Yneωe − 2ωe ·
∞∑

m=1
bnme∆q̇m + kne∆qn = ∆fn (6.11)

where mn and kn are, respectively, the nth generalized mass and stiffness of the
statically deformed structure.

The perturbations ∆J and ∆J̇ are evaluated by considering that the inertia tensor
in deformed configuration may be expressed as

J = Je + 2
∞∑

n=1
Jne∆qn +

∞∑
n,m=1

Jnme∆qn∆qm ≈ Je + 2
∞∑

n=1
Jne∆qn (6.12)
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where Je = ⟨ze ⊗ ze⟩ is the inertia tensor in statically deformed configuration and

Jne := 1
2
[
⟨ze ⊗ φEe

n ⟩ + ⟨φEe
n ⊗ ze⟩

]
Jnme := 1

2
[
⟨φEe

n ⊗ φEe
m ⟩ + ⟨φEe

m ⊗ φEe
n ⟩
] (6.13)

are first- and second-order coupling tensors defined in terms of the elastic modes of
the statically deformed structure. Equation (6.12) yields the sensitivity tensor

Yne := sym ⟨r ⊗ φEe
n ⟩ = 1

2
∂J
∂∆qn

= Jne +
∞∑

m=1
Jnme∆qm ≈ Jne (6.14)

from which
∆J = 2

∞∑
n=1

Yne∆qn ∆J̇ = 2
∞∑

n=1
Yne∆q̇n (6.15)

Finally, the inertial coupling vectors bmne in Eq. (6.11) are defined as

bnme :=
∫∫∫

V
ρφEe

n × φEe
m dV = −bmne (6.16)

Truncating the modal representation in Eq. (6.1) up to the first N elastic modes
and using the notation of Sec. 4.2.1, Eqs. (6.9), (6.10), and (6.11) can be still recast in
the matrix form of Eq. (4.31) with

Me =


mI 0 0
0 Je 0
0 0 Me

 De =


mΩ̂e −mV̂Ge

0
0 Ω̂eJe − ĤGe

Ye

0 −YT
e −Ge

 Ke =


0 0 0
0 0 Ω̂eYe

0 0 Ke


(6.17)

where Me and Ke are, respectively, the diagonal generalized mass and stiffness matrices
of the statically deformed configuration and the matrices Ye and Ge are evaluated as

Ye = 2
[
J1eωe · · · JNeωe

]
Ge = 2


ωT

e b11e · · · ωT
e b1Ne

... . . . ...
ωT

e bN1e · · · ωT
e bNNe

 (6.18)

Comparing Eqs. (6.17) and (4.35) one notes that: 1) the dynamic inertial coupling
term due to the matrix Be in Eq. (4.35) is not present in Eq. (6.17); 2) the static
inertial coupling term due to the matrix Fe is also not present; 3) the generalized
mass and stiffness matrices Me and Ke in Eq. (6.17) depend on the trim point; 4)
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all the inertial coupling coefficients present in Eq. (6.17) also depend on the trim
point. These differences are due to the fact that the present linearized EOMs are
obtained by assuming the statically deformed configuration along with its inertial and
modal characteristics as the baseline, and that the contributions proportional to the
equilibrium generalized coordinates in Eq. (4.35) vanish in Eq. (6.17).

6.1.3 Small-disturbance unsteady aerodynamics

The second-order mass, damping, and stiffness in Eq. (6.17) give the left-hand side
of Eq. (4.31) for the case of small perturbations around a nonlinear aeroelastic trim
condition. In order to complete the statically-nonlinear dynamically-linear framework,
the right-hand side of Eq. (4.31) must be written in terms of the perturbations of the
rigid-body and elastic DOFs and of a finite number of additional aerodynamic DOFs
that approximate the wake dynamics. The perturbation of the weight load can be
written as in Chap. 4. A possible approach to develop the aerodynamic perturbation
load that keeps a strong similarity with the derivation of Chap. 4 is described below.

The aerodynamic perturbation load may be generally written in the frequency
domain as 

∆f̃A

∆m̃G

∆f̃E

 = qD Ee(k,M∞)


∆x̃B

G

∆θ̃
∆q̃

 (6.19)

where Ee is a local GAF matrix evaluated by projecting the small-disturbance pressure
distribution evaluated on the statically deformed structure onto its rigid-body and
elastic modes. The representation in Eq. (6.19) cannot be obtained from a standard
FEM/DLM linear flutter analysis, which assume the undeformed configuration and its
properties as the baseline, but could be identified, for instance, from an input-output
procedure based on imposed-motion VLM or CFD simulations.

Following the methodology of Subsec. (4.2.2), the small-disturbance unsteady
aerodynamic model in Eq. (6.19) can be rewritten in the non-dimensional Laplace
domain as

∆f̃A

∆m̃G

∆f̃E

 ≈ 1
2 ρ∞U∞ b (pĀ2e + Ā1e)


∆ṽG

∆ω̃
∆˜̇q

+ qD Ā0e


∆x̃B

G

∆θ̃
∆q̃

+ qD C̄e ∆ã (6.20)
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with aerodynamic states introduced as

∆ã := (pI − P̄e)−1 B̄e


∆x̃B

G

∆θ̃
∆q̃

 (6.21)

All the interpolative matrices are here dependent on the trim condition, whereas
the finite-state aerodynamic model of Subsec. (4.2.2) considered only a quasi-steady
dependency from the trim condition through the additional terms added as corrections
to the matrix Ā1.

The above finite-state unsteady aerodynamic modeling approach implies to perform
multiple input-output simulations in combination with Fourier transforms to evaluate
the GAF matrix Ee for any trim point, along with a rational function approxima-
tion to obtain the appropriate local interpolative structure again for any trim point.
While modeling small-disturbance unsteady aerodynamics in the frequency domain
is convenient for linear problems, since the GAF matrix is based on the characteris-
tics of the undeformed configuration and can be readily computed using commercial
solvers, this approach may be less effective in the nonlinear framework. However,
the methodology has the advantage of allowing to keep the same structure of the
state-space model developed in Chap. 4, provided that the modal and aerodynamic
characteristics of the statically deformed structure are considered for any trim point,
which minimize the changes in the computational framework necessary to implement
the statically-nonlinear dynamically-linear description developed in this chapter.

6.2 State-space form

Following the methodology of Sec. 4.3, the state-space matrix for local stability and
response analysis around a nonlinear aeroelastic trim condition is

A =


−M−1D −M−1K qDM−1C̄e

T1 0 0

0 U∞
b

B̄e
U∞

b
P̄e

 (6.22)

where the matrices M, D, and K are here given by

M := Me − 1
2 ρ∞b

2Ā2e D := De − 1
2 ρ∞U∞ b Ā1e K := Ke − qDĀ0e + KW (6.23)
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with Me, De, and Ke given by Eq. (6.17), KW defined in Eq. (4.45), and T1 written as
in Eq. (4.50). Similarly, the input matrix for response to frozen gust loads is

Bg = −1
2 ρ∞U∞ b


M−1Ā(1:3)

1e
b

U∞
M−1Ā(1:3)

2e

0 0

0 0

 (6.24)

The differences between the state-space model and the one of Sec. 4.3 are: 1) the
linearized inertial coupling terms have been obtained by satisfying the PMA constraints
in statically deformed configuration; 2) the second-order mass, damping, and stiffness
matrices Me, De, and Ke [Eq. (6.17)] are consistently based on the modal scenario of
the statically deformed structure; and 3) the small-disturbance unsteady aerodynamic
model is locally evaluated around any trim point based on the statically deformed
configuration and its characteristics.

The statically-nonlinear dynamically-linear state-space model obtained in this
chapter will be implemented within the developed computational tool (Chap. 5)
in future works in order to provide a framework to analyze the coupled stability
and response of very flexible aircraft around geometrically nonlinear aeroelastic trim
conditions. This implies the capability to compute the trim aeroelastostatic response
of generic configurations by means of a nonlinear aeroelastic trim analysis. Since no
commercial solver is currently available for this purpose, a novel algorithm to trim very
flexible aircraft described by detailed structural and aerodynamic models is presented
in the next chapter.



Chapter 7

Nonlinear aeroelastic trim

The statically-nonlinear dynamically-linear integrated formulation of Chap. 6 requires
to solve a nonlinear aeroelastic trim problem for any equilibrium point in order to
characterize the statically deformed configuration and locally study its stability and
response.

As well known, solving an aeroelastic trim problem consists of computing the
aerodynamic angles, control-surface rotations, and aeroelastostatic displacement that
verify the force/moment equilibrium of an unrestrained flexible vehicle in an assigned
steady maneuver. At industrial level, aeroelastic trim analysis is standardly conducted
using the solution sequence available in the commercial solver MSC Nastran SOL
144 [53], which was also used in Chap. 5 to implement the linearized formulation
of Chap. 4. This allows to analyze complex configurations described in terms of a
generic linear FEM structural model, which may include lumped-mass, beam, shell, and
solid elements, and a linear DLM aerodynamic model, composed by flat-plate lifting
surfaces and slender bodies. Static corrections can be included to account for incidence,
camber, and twist effects that are not captured by the DLM [53]. More recently,
the rigid/flexible mesh capability [53] was also enabled to integrate higher-fidelity
aerodynamic data from external VLM or CFD solvers.

Despite these capabilities, MSC Nastran SOL 144 [53] has limited if any applicability
to very flexible aircraft, since it does not capture geometric nonlinearities. On the
structural side, equilibrium of loads is imposed on the undeformed configuration and
without considering follower-force effects and differential stiffness. On the aerodynamic
side, structural displacements influence only the linearized boundary conditions imposed
again on the undeformed configuration, and flat wake is also assumed. As a result,
trim solutions computed via MSC Nastran SOL 144 may be inaccurate for very flexible
vehicles. Although several algorithms have been developed to trim very flexible aircraft
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modeled as sets of beam-type members [78, 80], no commercial software tool is far
available for the nonlinear aeroelastic trim analysis of complex configurations.

Starting from a review of the linear aeroelastic trim algorithm implemented in
MSC Nastran SOL 144 [63, 53], this chapter presents a novel algorithm to trim very
flexible vehicles. The proposed approach was presented by the author in Refs. [92, 94]
and is based on the coupling of nonlinear commercial solvers for fluids and structures.
Therefore, it is applicable to complex configurations described by detailed models, and
at the same time it is also valid for vehicles represented as systems of beams. The
exchange of information between the structural and aerodynamic grids is based on an
effective procedure to perform high-fidelity nonlinear FSI simulations using commercial
solvers that was recently proposed in Ref. [88]. The procedure is adapted to solve
nonlinear aeroelastic trim problems and completed with an inertia relief technique
for large displacements to simulate unrestrained structures in a displacement-based
nonlinear FEM analysis, which is currently not possible in commercially available FEM
solvers [97].

In order to demonstrate the proposed algorithm, a computational environment
for nonlinear aeroelastic trim analysis is implemented by coupling the MSC Nastran
SOL 400 nonlinear structural solver [97] with a nonlinear VLM code provided by the
German Aerospace Center (DLR) [85, 86]. The developed computational framework
is validated by analyzing a highly flexible cantilevered wing and the X-HALE RRV,
for which reference solutions are available. Computational advantages of the proposed
approach are discussed by performing sensitivity analyses for multiple flight conditions.

7.1 Linear aeroelastic trim algorithm

The solution sequence for static aeroelasticity implemented in MSC Nastran SOL
144 [53] is based on the equations of motion for a quasi-steady aeroelastic vehicle
presented in Ref. [63] and assumes the nodal translations and rotations of the FEM
grids as the elastic degrees of freedom (DOFs). The total number of DOFs considered
in the solution process is Nt = 6Ng −Ns, Ng being the number of FEM grids and Ns

the number of DOFs eliminated by single-point constraints. The static external load
acting on the aircraft is written as [53]

f̂ = f̂A + f̂W = qD (Êq q̂ + Êu u) + f̂A0 + f̂W (7.1)
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where f̂ is the vector of Nt force and moment components on the nodal DOFs listed in
the vector q̂, f̂A and f̂W being its aerodynamic and weight contributions, u a vector of
Nu trim variables, Êq the Nt ×Nt steady generalized aerodynamic force (GAF) matrix
referred to the nodal DOFs, Êu a Nt ×Nu matrix giving the aerodynamic load on the
nodal DOFs due to unit values of the trim variables, and f̂A0 the aerodynamic load due
to initial incidence, camber, and twist. In the most general case, the vector of trim
variables can be written as

u = {α, β, pS , qS , rS , aS
2, a

S
3, ṗ

S , q̇S , ṙS , δa, δe, δr}T (7.2)

and includes the angle of attack α, the angle of sideslip β, the roll, pitch, and yaw angular
velocity components of the stability axes denoted by pS , qS , and rS , respectively, the
lateral and vertical linear acceleration components aS

2 and aS
3, the angular acceleration

components ṗS , q̇S , and ṙS , and the aileron, elevator, and rudder control-surface rotations
denoted by δa, δe, and δr, respectively. The longitudinal acceleration and thrust input
are not considered.

The basic set of equations used for linear aeroelastic trim analysis is [53]

M̂ ¨̂q + (K̂ − qD Êq) q̂ = qD Êu u + f̂A0 + f̂W (7.3)

M̂ and K̂ being the Nt ×Nt mass and stiffness matrices of the assembled FEM model.
Equation (7.3) includes Nr unrestrained rigid-body DOFs to represent a free-flying
vehicle, so that the stiffness matrix has rank Nt − Nr. The unrestrained rigid-body
motions depend on the steady maneuver, for instance one has Nr = 2 (vertical
translation and pitch rotation) for steady rectilinear flight conditions and Nr = 5
(vertical and lateral translations, and all rotations) for steady turns. The longitudinal
motion is not considered in linear aeroelastic analysis (Nr ≤ 5).

The trim condition is assigned by prescribing Nu − Nr trim variables, hereafter
referred to as the “fixed” trim variables, in order to assign the steady maneuver. These
are typically angular velocity components and linear/angular acceleration components
of the stability axes. The trim aeroelastostatic response and the remaining Nr unknown
trim variables, hereafter called the “free” trim variables, are evaluated from Eq. (7.3)
using a methodology based on the MSC Nastran inertia relief analysis in the absence
of aeroelastic effects [95, 96], which is reviewed below.

The nodal DOFs are split into Nr reference DOFs that define a support frame [95] for
the unrestrained rigid-body motions and Nl = Nt −Nr “left-over” DOFs that describe
the structural response within that frame. The support frame is an attached-axis
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frame having origin fixed with a structural grid, for instance the center of mass of
the undeformed configuration. The orientation of the support frame is also fixed with
the undeformed configuration, but its origin may not coincide with the origin of the
stability axes [53]. Based on the assumed partition, Eq. (7.3) is rewritten as [53]

M̂ll M̂lr

M̂rl M̂rr

¨̂ql
¨̂qr

+
K̂A

ll K̂A
lr

K̂A
rl K̂A

rr

q̂l

q̂r

 = −

K̂U
l

K̂U
r

 u +
f̂A0

l

f̂A0
r

+
f̂W

l

f̂W
r

 (7.4)

where the elements of the vectors q̂l and q̂r are the left-over and reference (support)
DOFs, respectively, and the following Nt × Nt and Nt × Nu matrices have been
introduced [53]:

K̂A := K̂ − qD Êq K̂U := −qD Êu (7.5)

No dynamic structural response occurs when the vehicle is trimmed, so that the
accelerations of the left-over DOFs are only due to the rigid-body motion of the support
frame with respect to the inertial frame. Therefore, one has [53]

¨̂q =
¨̂ql

¨̂qr

 =
−K̂−1

ll K̂lr

I

 ¨̂qr = D ¨̂qr
¨̂qr = Tru u (7.6)

where D is a Nt × Nr matrix describing the rigid-body acceleration of the structure
as a whole due to unit accelerations of the reference DOFs, while Tru is a Nr × Nu

matrix giving the reference (support) accelerations from the assigned accelerations of
the stability axes. Both matrices are only functions of the model geometry [53].

The aeroelastic trim analysis is performed by restraining the reference DOFs in
order to compute the aeroelastostatic response relative to the support frame. Setting
q̂r = 0 and using Eq. (7.6), the upper partition of Eq. (7.4) gives

q̂l =
(
K̂A

ll

)−1 {[(
M̂llK̂−1

ll K̂lr − M̂lr
)

Tru − K̂U
l

]
u + f̂A0

l + f̂W
l

}
(7.7)

Equation (7.7) cannot still be used to evaluate q̂l since Nr elements of the vector u are
unknown. The latter can be evaluated from the Nr global force/moment equilibrium
equations for the unrestrained rigid-body DOFs, which are obtained by pre-multiplying
Eq. (7.4) by DT. Using Eqs. (7.7) and (7.6) to rewrite ¨̂ql, ¨̂qr, and q̂l as functions of u,
the Nr global equilibrium equations can be solved with respect to the Nr free trim
variables. Once the vector u is completely known, the trim aeroelastostatic response
with respect to the support frame is obtained from Eq. (7.7).
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Fig. 7.1 Nonlinear aeroelastic trim algorithm: loops architecture.

Note that setting q̂r = 0 in the above solution process does not introduce an
unphysical constraint on the model. Indeed, the vehicle is subjected to a self-balancing
load field once the aerodynamic, gravity, and apparent inertial loads are taken into
account in the support frame [see the right-hand side of Eq. (7.7)]. The computation of
the elastic response of an unrestrained structure by means of a restrained analysis using
the inertia relief technique is standard practice in MSC Nastran linear structural and
aeroelastic solvers [95, 96, 53]. However, no inertia relief analysis for large displacements
is currently available in the MSC Nastran SOL 400 nonlinear structural solver [97],
which only provides a small-displacement option. The development of a inertia relief
procedure for large-amplitude deflections is one of the novelties of the proposed nonlinear
aeroelastic trim algorithm, which is presented below.

7.2 Nonlinear aeroelastic trim algorithm

The algorithm to trim very flexible aircraft is based on the iterative coupling of nonlinear
commercial solvers, so that it allows the analysis of complex configurations described
by detailed structural and aerodynamic models. In the present work, the algorithm
is implemented by coupling MSC Nastran SOL 400 [97] with a nonlinear VLM code
provided by the DLR [85, 86], but the approach is completely general and applicable to
any off-the-shelf FEM and VLM or CFD code. The nonlinear structural analyses are
performed by clamping a reference grid in the loop, so that the tangent model stiffness
matrix evaluated at each iteration, which includes the differential stiffness effect, is
always non-singular. The left-over structural displacements are thus evaluated with
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Fig. 7.2 Nonlinear aeroelastic trim algorithm: outer loop (k-loop).

Fig. 7.3 Nonlinear aeroelastic trim algorithm: nested loop (j-loop).
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respect to the support frame defined by the reference grid, as in the linear algorithm
of Sec. 7.1. Since no built-in inertia relief option is currently available in commercial
nonlinear FEM solvers, (see, e.g., Ref. [97]), the apparent inertial load experienced in
the support frame is computed at each iteration using a novel large-amplitude inertia
relief technique [92] and is given as input to the nonlinear structural solver together
with the aerodynamic and gravity loads in order to obtain an overall self-balancing
distribution. In this way, the obtained displacement field is still representative of an
unrestrained structure, although computed by means of a restrained analysis.

The architecture of the proposed algorithm is illustrated in Fig. 7.1. The solution
sequence consists of a main Newton-Raphson loop (Fig. 7.2) and a nested nonlinear
aeroelastostatic loop (Fig. 7.3), hereafter referred to as the k-loop and j-loop, respec-
tively. The j-loop in turn includes the sequential loops performed within the commercial
aerodynamic and structural solvers for each nonlinear analysis (see Fig. 7.1).

The work flow of a nonlinear aeroelastic trim analysis is described below for the
case of trim in steady rectilinear flight (longitudinal trim) and without addressing the
balancing of draf and thrust forces. However, the methodology can be extended by
including the drag/thrust equilibrium and also generalized to trim in steady turn. In
the case of longitudinal trim and when the drag/thrust balance is not considered, the
free trim variables reduce to α and δe, and the trim condition is satisfied when the
vertical force and pitching moment resultants of the aerodynamic and gravity loads,
respectively denoted by Z and M , both vanish in the support frame. In order to
verify the global force/moment equilibrium in the assigned flight condition, the k-loop
(Fig. 7.2) updates α and δe based on the current values, system Jacobian matrix, and
vertical force and pitching moment residuals:

α(k+1)

δ(k+1)
e

 =
α(k)

δ(k)
e

−

Z(k)
α Z

(k)
δe

M (k)
α M

(k)
δe

−1Z(k)

M (k)

 (7.8)

where Z(k)
α , Z(k)

δe
, M (k)

α , and M (k)
δe

are partial derivatives with respect to α and δe. These
are numerically computed using first-order finite differences and updated at a reduced
set of iterations of the k-loop in order to save computational time compared to a full
Newton-Raphson method. The force/moment residuals are evaluated from the outputs
of the j-loop (Fig. 7.3), which gives the converged deformed configuration and steady
load distribution for the current set of trim variables. If the residuals are not zero, α
and δe are updated using Eq. (7.8) and a new nonlinear aeroelastostatic response is
computed by the j-loop starting from the last deformed configuration.
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The j-loop (Fig. 7.3) is based on the methodology recently proposed in Ref. [88]
to perform high-fidelity nonlinear FSI simulations by coupling commercial structural
and aerodynamic solvers. A generic iteration of the j-loop is performed as follows.
The nonlinear steady aerodynamic solver (VLM or CFD) is called to compute the
aerodynamic load on the current deformed configuration, which is transferred to the
structural grids using 6DOF force splines [53, 106]. Next, the algorithm computes
the inertia relief load experienced in the support frame due to the non-balanced
force/moment resultants of aerodynamics and gravity along the reference (support)
DOFs, which for longitudinal trim are the vertical translation and pitch rotation of the
reference grid. The nonlinear structural solver is then called to compute the updated
displacements of the left-over DOFs with the reference DOFs constrained by iteratively
solving the nonlinear system:

K̂ll (q̂l) q̂(j+1)
l = sj

(
f̂A(j)
l + f̂W

l + f̂ I(j)
l

)
(7.9)

using as first-guess the previous solution q̂(j)
l and associated tangent stiffness matrix

K̂(j)
ll , which includes the differential stiffness effect. The forcing vector on the right-hand

side of Eq. (7.9) is the total load experienced in the support frame, sj ≤ 1 being a
scaling factor to perform an incremental-load relaxation (see Subsec. 7.2.2), f̂A(j)

l the
current aerodynamic load, and f̂ I(j)

l the current inertia relief load. These quantities are
given as inputs to the nonlinear structural solver, together with the weight load and
the first guess. The aerodynamic load depends on the flight condition and current set
of trim variables given by the k-loop (Fig. 7.2), and is evaluated on the last deformed
configuration. The inertia relief load is also evaluated on the last deformed configuration
and depends on the current resultants of the aerodynamic and gravity loads along
the reference DOFs (see Subsec. 7.2.3). Once Eq. (7.9) is solved, the incremental
displacement ∆q̂(j)

l = q̂(j+1)
l − q̂(j)

l is interpolated to update the aerodynamic wetted
surface by means of 6DOF displacement splines [53, 106]. If CFD aerodynamics is
considered, the aerodynamic model updating includes the deformation of the fluid-
domain volume mesh based on the new configuration of the wetted surface [88]. The
jth aeroelastostatic iteration is completed by checking the convergence of structural
displacements. If this is verified, the converged aeroelastostatic response and steady
load distribution are returned to the k-loop to verify the global equilibrium, otherwise
a new iteration of the j-loop is performed starting from the last deformed configuration
and taking into account the differential stiffness.
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The novel features of the proposed nonlinear aeroelastic trim algorithm are: 1) the
use of 6DOF splines for fluid-structure coupling; 2) the incremental-load relaxation
procedure; and 3) the large-amplitude inertia relief analysis. These features and their
advantages are further discussed in Subsecs. 7.2.1, 7.2.2, and 7.2.3. Note that if the free
trim variables (α and δe for longitudinal trim) are assigned, the k-loop in Fig. 7.2 is not
necessary and the analysis reduces to the computation of the aeroelastostatic response
performed by the j-loop. Therefore, the latter can be used as stand-alone nonlinear
solver to compute, for instance, the response of clamped structures in wind-tunnel-like
conditions. In this case, the inertia relief loads are not considered in Eq. (7.9). If α
and δe are not assigned but follower-force effects are neglected and the structure has a
linear behavior, the j-loop in Fig. 7.3 as well as the inner iterations performed by the
structural solver are not necessary, since the aeroelastostatic response for each set of
trim variables can be evaluated in a single step. In these circumstances, if aerodynamics
is also linear the aeroelastic trim problem reduces to the linear problem formulated in
Sec. 7.1.

7.2.1 Six degree-of-freedom splines

In MSC Nastran aeroelastic solvers, FEM and DLM models are coupled using surface
and/or linear splines that transfer aerodynamic loads to the structural grids (force
splines) and interpolate structural displacements onto the aerodynamic grids (dis-
placement splines). Linear splines (MSC Nastran SPLINE 1) are typically used for
beam-like structures such as high-aspect-ration wings or slender bodies, whereas surface
splines (MSC Nastran SPLINE1) are more appropriate for structures having grids
distributed over an area like low-aspect-ratio wings [53]. However, standard linear and
surface splines (MSC Nastran SPLINE1 and SPLINE2) are thought for use with the
linear panel-method aerodynamic formulations that are available internally in MSC
Nastran, for which aerodynamic panels experience only a normal (lift) force and a
pitching moment and structural dsplacements influence only the linearized boundary
conditions imposed on the undeformed configuration. As a consequence, the DOFs
used at the coupled grids include only displacements and forces normal to the lifting
components for surface splines, with possible additional use of torsional rotations for
linear splines [53].

A typical example of displacement interpolation using standard MSC Nastran
surface splines is shown in Fig. 7.4. One of the mode shapes of the BFF vehicle shown
in Fig. 7.4a is interpolated onto the DLM grids as illustrated in Fig. 7.4b. The latter
plot shows that the wingtip lifting surfaces do not displace consistently with the wing
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(a) FEM model (b) DLM model

Fig. 7.4 MSC Nastran standard displacement splines.

structural deflection, since vertical translations of the wing nodes are tangent to vertical
surfaces.

The linearized fluid-structure coupling approach of standard MSC Nastran splines is
clearly not adequate to interface FEM and VLM or CFD models in nonlinear aeroelastic
problems. In these circumstances, all the load components must be taken into account
to ensure the conservation of energy between the aerodynamic and structural grids,
and all the displacement components must be taken into account to correctly update
the aerodynamic model [88].

Due to the increasing need to couple FEM models with higher-fidelity external
aerodynamic solvers, a 6DOF spline technology has been integrated in MSC Nastran [53,
106]. Conceptually similar to the standard splines, 6DOF surface and linear splines
(MSC Nastran SPLINE6 and SPLINE7) allow the aerodynamic grids to experience
all possible load and displacement components, as necessary in presence of structural
and/or aerodynamic nonlinearities. The 6DOF splines can be generated using the MSC
Software Hybrid Static Aeroelasticity (HSA) Toolkit [106], which allows to automatically
create multiple overlapping 6DOF spline patches for each pair of aerodynamic and
structural components in order to achieve an accurate and fast exchange of information
between dissimilar sets of FEM and VLM or CFD grids [88]. This type of splines are
used in the proposed algorithm to update the aerodynamic model and ensure that the
load transfer satisfies the conservation of energy at each iteration in the loop.

7.2.2 Incremental-load relaxation procedure

When significant geometric nonlinearities are present in a static analysis, equilibrium
of applied loads and internal stresses must be imposed on the statically deformed
configuration, which requires an iterative solution strategy. For nonlinear aeroelastic
analyses, this implies staggered calls to the aerodynamic and structural solvers as
shown in Fig. 7.3. If incremental deflections are large, the aerodynamic load applied to
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the structure at the jth iteration may be not consistent with the updated deformed
configuration, which may have a negative impact on the stability, accuracy, and
computational cost of the analysis. This remark also applies to the inertia relief
load, which, as the aerodynamic load, is function of structural displacements. Finally,
follower-force effects must be also considered in nonlinear analyses. MSC Nastran
provides specific entries to define follower loads in SOL 400, but they require to locally
specify the load orientation using sets of FEM grids [97]. If appropriate sets are not
present in the model artificial grids must be added, which makes the implementation
of complex follower load fields very cumbersome for models of practical interest.

In order to overcome the above problems, the present algorithm uses the incremental-
load relaxation procedure proposed in Ref. [88]. The basic principle is to closely couple
the aerodynamic and structural solvers in order to ensure that the applied loads are
always consistent with the updated configuration, which gives a more physical load
path and results in a smoother and faster convergence.

The incremental-load relaxation procedure is implemented as follows. The structure
is gradually loaded in ns incremental load-step iterations performed by the j-loop
(Fig. 7.9), which corresponds to a step size 1/ns. Each nonlinear structural analysis
performed in the loop assumes the last deformed configuration as first guess and takes
into account the differential stiffness. The load field applied at a generic iteration
j ≤ ns is multiplied by a scaling factor sj = j/ns (j = 1, . . . , ns) [see Eq. (7.9)]. As a
result, only a load percentage s1 = 1/ns is given as input to the structural solver at the
first iteration, which allows to limit incremental displacements. At the second iteration
the load field is recomputed on the updated configuration to replace the previous
distribution, while the scaling factor is increased to s2 = 2/ns. The above procedure
is repeated until a unit scaling factor is achieved after ns iterations of the j-loop. At
this point the structure is fully loaded, but additional na fluid-structure iterations may
be still necessary to achieve convergence. These are carried out with the same load
updating approach but assuming sj = 1 for any j > ns. The total number of j-loop
iterations for a complete analysis is thus ni = ns + na, obtained by summing the ns

incremental load steps and the na additional iterations performed to get convergence
once the structure is fully loaded.

For appropriate choices of the number of load steps, the incremental-load relaxation
feature significantly improves the algorithm stability, accuracy, and computational
speed [92]. Using multiple load steps reduces incremental displacements between
subsequent calls to the structural solver, which facilitates the convergence of each
nonlinear static analysis and allows to better capture the physics of follower loads [88].



186 Nonlinear aeroelastic trim

Moreover, the load relaxation also helps the convergence of the aerodynamic solver and
improves the aerodynamic model updating, especially in the case of CFD aerodynamics
that requires volume mesh deformation. On the other hand, performing too many
load steps may increase computational time with no appreciable effect on the solution.
Therefore, a preliminary sensitivity analysis is necessary in order to tailor the load step
size based on the expected level of nonlinearity [92].

As a further advantage, the incremental-load relaxation procedure allows to assume
the aerodynamic load as non-follower within each nonlinear structural analysis. Indeed,
follower-force effects are simulated by updating the load distribution. Therefore,
standard non-follower force and moment entries can be used to input the aerodynamic
load in the MSC Nastran SOL 400 analyses performed in the loop, which eliminates the
need to define additional sets of FEM grids to implement follower-force distributions
by means of the dedicated entries.

7.2.3 Large-amplitude inertia relief

Conventional displacement-based FEM static analysis cannot be performed on unre-
strained structures, since these have a singular stiffness matrix. However, commercial
FEM solvers like MSC Nastran use the inertia relief technique to simulate unrestrained
structures in linear structural and aeroelastic analyses [95, 96, 53].

The basic principle of the inertia relief is that a free-free structure subjected to a
non-balanced load field experiences a rigid-body acceleration. Therefore, structural
analyses carried out in a non-inertial reference frame fixed with the accelerated structure
(support frame) must also include the apparent inertial loads due to that rigid-body
acceleration state. Once the apparent inertial loads are applied in combination with
the external loads, the structure is subjected to a self-balancing load distribution in
the support frame. This allows to compute the elastic displacement of the unrestrained
structure via a restrained analysis performed by clamping a reference structural grid.
Indeed, no constraint is actually placed on the model, since there is no reactive load
in presence of a self-balancing load distribution. In these circumstances, structural
responses obtained with different choices of the reference grid (support frame) can be
superimposed to each other by adding a rigid-body displacement, so that they represent
the unique deformed state of the unrestrained structure subjected to the non-balanced
external load [70].

Unfortunately, the inertia relief analysis is not available for large displacements
in commercial nonlinear FEM solvers such as MSC Nastran SOL 400 [97]. Therefore,
there is no built-in option to include the apparent inertial loads on the right-hand side
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of [Eq. (7.9)]. In the case of longitudinal trim, the aerodynamic and gravity load fields
are self-balancing when the trim condition is verified, so that the converged solution
would be still representative of an unrestrained structure. However, this would not be
valid for the intermediate iterations in the loop. As a result, the trim solution would be
approached by following an unphysical load path, with possible negative consequences
on the stability, accuracy, and computational cost of the analysis.

In the proposed algorithm, the apparent inertial loads due to the non-balanced
force/moment resultants of aerodynamics and gravity are computed at each iteration
by a developed module, and are given as inputs to the nonlinear structural solver along
with the aerodynamic and gravity loads in order simulate the structure as unrestrained
in the whole solution process. The apparent loads are scaled using the incremental-load
relaxation procedure and are updated at each iteration to account for their dependency
on structural displacements [see Eq. (7.9)]. This is neglected in the MSC Nastran
linear inertia relief analysis [95, 96], but must be taken into account in presence of
large-amplitude deflections.

The computation of the inertia relief load field is performed as follows. A reference
structural grid is clamped in the loop to define a support frame. The apparent
inertial load to obtain an overall self-balancing load distribution in the support frame
is evaluated by generalizing the MSC Nastran linear inertia relief algorithm [96] as
follows:

f̂ I(j) = −M̂D¨̂qr


(j)

= −M̂D(j)
[
D(j)TM̂D(j)

]−1
D(j)T (f̂A(j) + f̂W

)
(7.10)

where D(j) is the rigid-body mode matrix introduced in Eq. (7.6) evaluated at the
jth iteration, namely based on the current model geometry. The inertia relief load in
Eq. (7.10) is the apparent inertial load experienced in the support frame due to the
structure rigid-body acceleration caused by the non-balanced force/moment resultants
of aerodynamics and gravity along the reference DOFs. The partition related to the
left-over DOFs is added to the right-hand side of Eq. (7.9).

The proposed large-amplitude inertia relief procedure can be used to simulate the
structure as unrestrained in up to Nr ≤ 6 rigid-body DOFs in a generic nonlinear
displacement-based FEM analysis, not necessarily associated with trimming. Using
this methodology in the developed algorithm allows to approach the trim solution
by following a physical load path, since the structure is simulated as unrestrained
at each loop iteration. This has positive effects in terms of stability, accuracy, and
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Table 7.1 Nonlinear aeroelastic trim algorithm: comparison with existing solvers.

Feature Present solver UM/NAST solver DLR solver

Structural model Generic FEM Strain-based beams Generic FEM
Aerodynamic model VLM VLM VLM
Coupling approach 6DOF splines Strip-based RBF
Relaxation Yes No No
Inertia relief Yes Not applicable No

computational cost, as further discussed in Sec. 7.3.3 Indeed, although these static
iterations do not have the physical meaning of time steps of a transient analysis,
the inertia relief option combined with the incremental-load relaxation procedure of
Subsec. 7.2.2 numerically simulates the gradual achievement of the trim deformed
configuration experienced by a free-flying flexible vehicle, giving a smoother and faster
convergence [92].

7.2.4 Computational framework and validation studies

In order to demonstrate the capabilities of the proposed algorithm, a computational
environment for nonlinear aeroelastic trim analysis is implemented by coupling MSC
Nastran SOL 400 [97] with a VLM solver developed at the DLR [85, 86]. The
computational framework is validated by comparing results for two test cases with
solutions from UM/NAST [80] and from the DLR aeroelastic toolbox [86]. The main
features of these solvers are briefly described below and summarized in Table 7.1.

Nonlinear structures are modeled in UM/NAST using a strain-based geometrically
exact beam formulation [81]. Nonlinear aeroelastic trim is performed by either solving
the force/moment equilibrium or forcing zero linear and angular accelerations at the
origin of the body reference frame. This is accomplished by means of an outer Newton-
Raphson loop as the one shown in Fig. 7.2 and a nested nonlinear aeroelastostatic loop
that couples the strain-based beam formulation with strip theory or, more recently,
with a three-dimensional nonlinear VLM code [85, 86] along with gravity loads and
load factors. The solution of each nonlinear structural analysis is in terms of element
strains, from which structural displacements are recovered to update the aerodynamic
model and evaluate the aerodynamic loads. Fluid-structure coupling is performed
by transferring the load distribution along each strip of the aerodynamic model to
the corresponding beam axis location and by recovering the rigid-body cross-section
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displacement from the bending and twist of the elastic axis. Inertia relief is not
necessary in UM/NAST since the model stiffness matrix is always definite positive in
a strain-based formulation.

The DLR aeroelastic toolbox is a simulation environment to analyze complex
configurations using linear, reduced-order, or fully nonlinear structural formulations.
The nonlinear aeroelastic trim solver consists of a main Newton-Raphson loop as the
one in Fig. 7.2 and a nested nonlinear aeroelastostatic loop that couples MSC Nastran
SOL 400 with the same nonlinear VLM code used to implement the proposed algorithm
and also coupled with UM/NAST [85, 86]. Fluid-structure coupling is performed
using the Radial Basis Function (RBF) technique and, for beam-type FEM models,
the so-called coupling-model approach to interface one-dimensional structures and
two-dimensional lifting surfaces [85–87]. Incremental-load relaxation is currently not
implemented in the loop. A structural grid is clamped in the loop to invert the model
stiffness matrix, but the inertia relief load is not taken into account.

7.3 Numerical studies

This section discusses the results of numerical analyses to validate the developed
algorithm and computational environment. The core MSC Nastran SOL 400/VLM
nonlinear aeroelastostatic solver is preliminarily assessed by computing the response of
clamped structures at fixed freestream velocity and angle of attack. Next, the whole
implementation is validated by trimming the University of Michigan’s X-HALE RRV [83]
for a typical steady rectilinear flight condition. All the analyses are performed on
MSC Nastran beam-type models in order to readily compare the results with solutions
from UM/NAST [81]. The obtained results are also compared with solutions from
the MSC Nastran SOL 400/VLM solver of the DLR toolbox [86]. Since the X-HALE
RRV experiences relatively moderate static deflections in the flight envelope [86], the
nonlinear aeroelastic trim analysis is additionally compared with a linear solution
computed using MSC Nastran SOL 144 [53].

7.3.1 Validation of the nonlinear aeroelastostatic solver

The nonlinear aeroelastostatic solver is assessed by analyzing two configurations of
increasing complexity: 1) the highly flexible 16-meter wing studied in Ref. [85]; and 2)
the X-HALE RRV considered in Ref. [86]. Wind-tunnel-like conditions are assumed
for both test cases in order to focus on validating the j-loop (Fig. 7.3). The highly
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Fig. 7.5 Nonlinear aeroelastostatic response of a 16-meter wing: FEM/VLM aeroelastic
model.

flexible wing is cantilevered at the root, while the X-HALE is clamped at the wing
beam axis. The inertia relief module is disabled in the loop to simulate constrained
rather than free-free boundary conditions.

7.3.1.1 Test case 1: 16-meter wing

The FEM/VLM aeroelastic model of the highly flexible 16-meter wing was developed
for the analyses of Ref. [85] and is shown in Fig. 7.5. The MSC Nastran structural
model consists of a single-member one-dimensional structure modeled by beam-type
finite elements with quadratically varying stiffness properties. Lumped masses with
concentrated inertia tensors are distributed along the span to tune the dynamic behavior
on the reference model implemented in UM/NAST. The VLM aerodynamic model
consists of a single rectangular flat-plate lifting surface. The aerodynamic and structural
grids are coupled by means of 6DOF finite beam splines organized in 16 overlapped
axial patches. The patch number and overlapping parameters have been chosen by
performing a preliminary sensitivity analysis to verify the continuity of the interpolated
displacement field and the accuracy in reproducing the aerodynamic load distribution.
Computational advantages associated with the number of spline patches [88] are not
investigated in this work since the analyses are performed using computationally cheap
models.

The nonlinear aeroelastostatic analysis of the highly flexible 16-meter wing is
performed for incompressible flow, ρ∞ = 1.225 kg/m3, V∞ = 40 m/s, and α = 3◦, 4◦, 5◦.
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Table 7.2 Nonlinear aeroelastostatic response of a 16-meter wing: sensitivity to the load
step size for α = 5◦.

Step size (%) uztip (%) ∆uztip (%) Time (s) ns na ni

100 20.31 – 125.52 1 4 5
50 20.26 -0.21 176.44 2 4 6
20 20.21 -0.23 206.60 5 4 9
10 20.20 -0.09 264.00 10 3 13
5 20.19 -0.05 512.84 20 3 23

Table 7.3 Nonlinear aeroelastostatic response of a 16-meter wing: converged results.

α = 3◦ α = 4◦ α = 5◦

Proposed algorithm 12.60 16.50 20.20
UM/NAST with VLM 12.60 16.50 20.18

UM/NAST with strip theory 12.36 16.18 19.78
DLR toolbox 12.62 16.57 20.33

Gravity is not taken into account. The obtained results are compared with solutions
from: 1) the UM/NAST solver based on strip-theory aerodynamics corrected with
weighting factors [85]; 2) the UM/NAST solver based on VLM aerodynamics; and 3)
the MSC Nastran SOL 400/VLM solver of the DLR aeroelastic toolbox. The weighting
factors used to tune the UM/NAST strip-theory aerodynamic model are obtained from
the VLM spanwise load distribution evaluated on the rigid wing [85].

In order to define the number of load steps for the relaxation procedure, a preliminary
sensitivity analysis is carried out by performing multiple computations with different
step size at α = 5◦. The analyses are conducted on a computer machine with Intel(R)
Core(TM) i7-2700K CPU at 3.50 GHz, as all the other computations performed in
this work with the developed computational tool. The convergence of each nonlinear
aeroelastostatic analysis is achieved when the norm of the incremental displacement
field ∆q̂(j+1)

l is below a threshold of 10−4 m.
Table 7.2 summarizes the obtained results in terms of wingtip vertical displacement

over half-span uztip , its relative variation with the step size ∆uztip , computational time,
and number of iterations (load steps, additional, and total). The wingtip vertical
displacement decreases with the step size. Indeed, follower-force effects are more
accurately simulated for smaller step size, which allows to better capture the wing
shortening effect and consequently results in a smaller vertical deflection [88]. No
practical variation of the wingtip displacement is found by reducing the step size
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(a) Relaxation off (ns = 1)

(b) Relaxation on (ns = 10)

Fig. 7.6 Nonlinear aeroelastostatic response of a 16-meter wing: deformed configurations in
the loop for α = 5◦.
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Fig. 7.7 Nonlinear aeroelastostatic response of a 16-meter wing: converged deformed
configurations.
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below 10%, so that this value is assumed for all the analyses. The computational time
increases for smaller step size, since the total number of iterations ni also increases.
This behavior is motivated by observing that the number of load steps ns increases by
reducing the step size, while the number of additional iterations na performed after
the structure is fully loaded remains practically constant for this test case. Indeed, the
analysis is very fast even with no relaxation, so that na only slightly decreases from 4
to 3 by reducing the step size.

For the sake of completeness, Fig. 7.6 shows the deformed configurations in the loop
(dash-dotted blue lines) and the converged solution (solid red line) for step size equal
to 100% and 10%. The plots point out that for this test case there is no numerical
oscillation around the deformed configuration even with no relaxation.

The converged solutions in terms of wingtip vertical displacement over half-span
obtained with different algorithms for α = 3◦, 4◦, 5◦ are compared in Table 7.3. The
deformed configurations are plotted in Fig. 7.7. The present results match those from
UM/NAST with VLM aerodynamics for all the angles of attack. The DLR toolbox
solution practically lies on top of the previous ones, just showing a 0.65% larger wingtip
vertical displacement for α = 5◦. The solutions from UM/NAST with strip theory
show smaller displacements than those based on VLM aerodynamics, with a relative
difference at the wingtip that increases from 1.85% to 2% with the angle of attack.
This is motivated by considering that the wing deflection increases with the angle of
attack, while the weighting factors used to correct the strip-theory aerodynamic load
distribution are evaluated on the rigid wing [85].

7.3.1.2 Test case 2: University of Michigan’s X-HALE RRV

The FEM/VLM aeroelastic model of the X-HALE RRV was developed for the analyses
of Ref. [86] and is shown in Fig. 7.8. The MSC Nastran FEM model was described in
Subsec. 5.2.1. The VLM aerodynamic model consists of a cambered lifting surface for
the wing with a five-degree incidence and the EMX07 airfoil, while the aerodynamic
components associated with the pods, fins, and tails are modeled as flat plates. Each
half-wing is subdivided in three unit segments, with the outer segments featuring a
ten-degree dihedral angle. The aerodynamic and structural grids are coupled by means
of 6DOF finite beam splines organized in 20 overlapped axial patches for the wing and
a single patch for each lifting surface coupled with a rigid structural components.

The nonlinear aeroelastostatic analysis of the X-HALE RRV is performed for
incompressible flow, ρ∞ = 1.222 kg/m3, V∞ = 16 m/s, and α = 0◦, 0.5◦, 1◦. Gravity
is taken into account. The obtained results are compared with solutions from: 1)
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Fig. 7.8 Nonlinear aeroelastostatic response of the X-HALE RRV: FEM/VLM aeroelastic
model.

Table 7.4 Nonlinear aeroelastostatic response of the X-HALE RRV: sensitivity to the load
step size for α = 1◦.

Step size (%) uztip (%) ∆uztip (%) Time (s) ns na ni

100 17.43 – 1093.96 1 28 29
50 16.79 -0.65 727.21 2 20 22
20 16.41 -0.37 808.01 5 19 24
10 16.30 -0.12 931.56 10 17 27
5 16.24 -0.06 1227.02 20 15 35

the UM/NAST solver based on VLM aerodynamics [84]; and 2) the MSC.Nastran
SOL 400/VLM solver of the DLR toolbox. The UM/NAST results based on strip-
theory aerodynamics [86] in the comparisons since even when corrected with weighting
factors strip theory does not take into account mutual interactions between multiple
aerodynamic surfaces, which are significant for this configuration.

Multiple computations with different step size are preliminarily carried out for
α = 1◦. The results are summarized in Table 7.4. As found for the 16-meter wing,
the wingtip vertical displacement decreases by reducing the step size. However, the
computational time does not monotonically increase for smaller step size for this more
complex test case. Indeed, it first decreases by 25% when the step size is reduced
from 100% (relaxation off, single load step) to 50% (relaxation on, two load steps),
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(a) Relaxation off (ns = 1)

(b) Relaxation on (ns = 10)

Fig. 7.9 Nonlinear aeroelastostatic response of the X-HALE RRV: right-half wing deformed
configurations in the loop for α = 1◦.
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Fig. 7.10 Nonlinear aeroelastostatic response of the X-HALE RRV: converged right-half
wing deformed configurations.
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Table 7.5 Nonlinear aeroelastostatic response of the X-HALE RRV: converged results.

α = 0◦ α = 0.5◦ α = 1◦

Proposed approach 11.74 14.07 16.30
UM/NAST with VLM 11.88 14.40 16.81

DLR toolbox 11.69 14.05 16.31

next it increases again by further reducing the step size, but the analysis time for
step size equal to 10% is still 15% smaller than with no relaxation. This behavior is
motivated by observing that ns increases for smaller step size, while na decreases due
to the smoother approaching of the converged deformed configuration. The former
effect is dominant for the 16-meter wing, since the analysis is very fast even with
no relaxation and consequently na does not practically vary with the step size (see
Table 7.2). Conversely, na significantly decreases from 28 to 15 for the X-HALE by
reducing the step size from 100% to 5%. As a result, for appropriate choices of the
step size the positive effect due to the reduction of na is dominant with respect to the
negative effect due to the increase of ns, giving a faster convergence compared to the
case of no relaxation. Using the relaxation procedure also allows to better capture
the physics of follower loads [88], giving a more accurate solution. Since the obtained
results do not practically vary for step size below 10%, this value is assumed for all the
analyses.

For the sake of completeness, Fig. 7.9 shows the right half-wing deformed configu-
rations in the loop (dash-dotted blue lines) and the converged solution (red solid line)
for step size equal to 100% and 10%. The plots show that the relaxation procedure
results in a smoother convergence to the aeroelastostatic deflection, which eliminates
the numerical oscillations around the converged deformed configuration that occur
when the structure is loaded in a single step (see Fig. 7.9a).

The results in terms of right half-wing tip vertical displacement over half-span
obtained with different algorithms for α = 0◦, 0.5◦, 1◦ are compared in Table 7.5. The
deformed configurations are illustrated in Fig. 7.10. The present results match the
ones from the DLR toolbox for all the examined conditions. The UM/NAST solutions
show larger displacements with a difference at the wingtip that increases from 1.1% to
3% with the angle of attack. This behavior is justified by considering that different
coupling approaches are used in the examined algorithms. In UM/NAST the load
transferred to each structural grid is obtained by interpolating the force and moment
resultants obtained by transferring the distributions on the two closest aerodynamic
strips to the corresponding wing beam axis locations. As a result, the load on each
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structural grid is influenced only by the VLM panels in the nearest neighborhood.
The spline method considered in the present work and the RBF technique used in the
DLR toolbox both consider more extended regions of the aerodynamic and structural
models in the coupling, so that mutual influences between cross-sections are taken into
account. The more local coupling strategy used in UM/NAST has no practical effect
on the solution for the 16-meter wing, while a sensitivity to the size of the coupled
regions is found for the X-HALE.

Additional analyses performed on the X-HALE RRV for α = 1◦ and increasing
V∞ = 18, 20 m/s pointed out that the algorithm is not stable with relaxation off in
presence of large nonlinearities [92]. The DLR solver could not achieve convergent
solutions either. Although these high-angle-of-attack high-speed flight conditions are
not of practical interest for the X-HALE RRV, these results show that the relaxation
procedure may be crucial to get convergence in presence of large geometric nonlinearities.
Further investigations on solution sensitivity to the number of load steps in terms of
stability, accuracy, and computational time will be the subject of future works.

7.3.2 Validation of the nonlinear aeroelastic trim solver

A complete nonlinear aeroelastic trim analysis of the X-HALE RRV is performed for
steady rectilinear flight at ρ∞ = 1.222 kg/m3 and V∞ = 16 m/s, which is a typical trim
point for the vehicle [83, 86]. The aeroelastic model considered for trim is the same as
for the analyses of Subsec. 7.3.1.2, with the horizontal tails used as elevators to satisfy
the pitch equilibrium. The obtained results are compared with: 1) the UM/NAST
solver based on VLM aerodynamics [84]; 2) the MSC Nastran SOL 400/VLM solver of
the DLR toolbox; and 3) linear solver MSC Nastran SOL 144 [53].

The inertia relief module is activated in the loop to simulate the structure as
unrestrained at each iteration. The reference grid defining the support frame is chosen
at the wing beam axis centerline, so that the obtained aeroelastostatic deflection can be
directly compared with the solutions from UM/NAST and the DLR toolbox. Indeed,
the DLR toolbox performs the trim analysis by clamping the same grid but without
adding the inertia relief load. The aeroelastostatic deflection computed by UM/NAST
is also relative to the wing beam axis centerline, but since the strain-based stiffness
matrix is always definite positive the analysis is performed with no need of constraints
nor inertia relief.

The linear aeroelastic trim analysis performed using MSC Nastran SOL 144 [53]
considers the FEM model coupled with the DLM model used for the analyses of Chap. 5.
Since the DLM formulation does not account for incidence, camber, and twist effects,
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Table 7.6 Nonlinear aeroelastic trim of the X-HALE RRV: converged trim results.

uztip
(%) α (deg) δe (deg)

Proposed approach 5.07 0.75 2.42
DLR toolbox 5.00 0.79 2.47
UM/NAST 4.70 0.79 2.62
MSC Nastran SOL 144 with load input 4.90 0.73 2.60
MSC Nastran SOL 144 with downwash input 4.61 0.72 2.61

a static correction is necessary for the X-HALE wing in order to correctly determine
the trim solution. Two approaches are considered to implement the correction: 1) the
downwash input method [53]; and 2) the load input method [92]. The downwash input
method is a corrective technique available in MSC Nastran SOL 144 that allows to
adjust the downwash on the DLM aerodynamic panels by taking into account the static
rotation of the normal vectors due to incidence, camber, and twist. The downwash
correction does not modify the model geometry, but only affects the DLM linearized
aerodynamic boundary conditions. The load input method consists of including an
external load field in the trim analysis to take into account the incremental aerodynamic
load caused by incidence, camber, and twist. In the present analysis, the external load
field is the VLM aerodynamic load distribution evaluated on the rigid configuration at
V∞ = 16 m/s, α = 0◦, and δe = 0◦.

The nonlinear aeroelastic trim analysis is performed using a step size equal to 20%.
The choice of a larger value compared to the one used in Subsec. 7.3.1.2 is motivated by
the smaller expected wingtip deflection [86]. With the assumed step size, the nonlinear
aeroelastic trim analysis is 10% faster than without using relaxation. The aeroelastic
trim results obtained with different approaches are summarized in Table 7.6, while
the converged right half-wing deformed configurations are compared in Fig. 7.11. The
true-scale deformed configuration of the whole aircraft is shown in Fig. 7.12. A better
agreement in terms of right wingtip vertical displacement and elevators rotation is
observed between the present solver and the DLR toolbox, whereas the UM/NAST and
DLR toolbox trim angles of attack are slightly closer. However, differences between
UM/NAST and the other solutions can be expected based on the differences observed
in Subsec. 7.3.1.2, and they can be again motivated with the use of different coupling
approaches. Since the X-HALE RRV experiences a moderate deflection at the examined
trim point, a good agreement between nonlinear and linear solutions is also found. In
particular, the linear results obtained with the load input method are closer to the
nonlinear ones. This is motivated by considering that only the aerodynamic boundary
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Fig. 7.11 Nonlinear aeroelastic trim of the X-HALE RRV: converged right-half wing deformed
configurations.
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Fig. 7.12 Nonlinear aeroelastic trim of the X-HALE RRV: true-scale vehicle deformed
configuration.

conditions are influenced by the downwash input, while the DLM model geometry is
not altered and thus wing incidence and camber are not considered in the computation
of the aerodynamic influence coefficient (AIC) matrix [63]. Conversely, the external
load included in the analysis is obtained from the VLM solver and thus considers the
actual model geometry, so providing a more accurate modeling of wing incidence and
camber effects.

7.3.3 Effectiveness of the inertia relief technique

Once having assessed the developed computational framework, the effectiveness of
the inertia relief technique is investigated by performing trim analyses at different
freestream velocities V∞ = 15, 16, 17, 18 m/s with the inertia relief module off/on. The
results obtained for each trim point are compared with each other in order to focus
only on the effect of this feature, which could not be isolated in the comparison with
the other algorithms due to the multiple differences in the solution strategies. The
structure is simulated as free-flying at each iteration when the inertia relief module is
on, since the apparent inertial load field added to aerodynamics and gravity gives an
overall self-balancing load distribution in the support frame [see Eq. (7.9)]. Conversely,
the structure is simulated as constrained in the loop when the inertia relief module
is off, since aerodynamics and gravity give a self-balancing load field only when the
trim condition is verified (last iteration). Therefore, the converged solution is in both
cases representative of an unrestrained vehicle, but it is achieved by following different
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(a) U∞ = 15 m/s, inertia relief off (b) U∞ = 15 m/s, inertia relief on

(c) U∞ = 16 m/s, inertia relief off (d) U∞ = 16 m/s, inertia relief on

(e) U∞ = 17 m/s, inertia relief off (f) U∞ = 17 m/s, inertia relief on

(g) U∞ = 18 m/s, inertia relief off (h) U∞ = 18 m/s, inertia relief on

Fig. 7.13 Nonlinear aeroelastic trim of the X-HALE RRV: deformed configurations in the
loop with inertia relief off/on.
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Table 7.7 Nonlinear aeroelastic trim of the X-HALE RRV: converged trim results with
inertia relief off/on.

U∞ (m/s) Inertia relief uztip (%) αe (deg) δee (deg) Time (s) ni

15 Off 5.29 1.52 1.85 2147.21 75
15 On 5.27 1.53 1.84 1075.53 32
16 Off 5.19 0.72 2.44 2511.21 87
16 On 5.07 0.75 2.42 1111.14 32
17 Off 4.95 0.09 2.89 2847.66 99
17 On 4.86 0.11 2.87 1271.19 38
18 Off 5.23 -0.54 3.34 4226.68 140
18 On 4.66 -0.43 3.23 1309.52 40

load paths with either restrained (inertia relief off) or unrestrained (inertia relief on)
boundary conditions for the vertical translation and pitch rotation DOFs.

The results in terms of right wingtip vertical displacement over half-span, angle of
attack, elevators rotations, computational time, and total number of iterations with
inertia relief off/on are shown in Table 7.7. The intermediate right half-wing deformed
configurations in the loop (dash-dotted blue lines) and the converged solutions (red
solid line) are plotted in Fig. 7.13. All the analyses are carried out with step size equal
to 20%. The plots in Fig. 7.13 show that a much smoother convergence is achieved when
the inertia relief is on, which significantly reduces the computational time necessary to
complete the analysis for all the examined trim points (see Table 7.7). Indeed, a more
physical load path is followed when the inertia relief load field is taken into account in
the loop, since the structure is simulated as unrestrained in the whole solution process.
Conversely, the model experiences a non-zero reaction at the reference grid when the
inertia relief load is neglected in Eq. (7.9), since aerodynamics and gravity do not give
a self-balancing distribution in the loop. As a result, the structure is simulated as
constrained in the solution process, which causes large numerical oscillations around the
trim deformed configuration (see Fig. 7.13). The trim solutions obtained with inertia
relief off/on are also slightly different (see Table 7.7), which is justified by considering
that the stiffness matrix is updated in the loop and it is consequently sensitive to the
load path.

Note that the simulating unrestrained structures in nonlinear static analyses is
not critical for strain-based formulations like the one implemented in UM/NAST [81].
Indeed, the model stiffness matrix is always definite positive when the independent
variables are element strains rather than nodal displacements, which allows to perform
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static analysis of free-flying vehicles with no need of the inertia relief technique. On the
other hand, no strain-based commercial solver is available to analyze complex configu-
rations described by detailed FEM models, since the choice of strains as independent
variables is typically made only for beam-type structures.

7.4 Concluding remarks on Part II

The second part of the thesis addressed the development of an integrated formulation
of flight dynamics and aeroelasticity of free-flying flexible aircraft applicable to complex
configurations described by detailed models. The formulation was developed by
assuming a set of body axes verifying the PMA constraints in order to achieve a partial
inertial decoupling of the EOMs and to exploit the advanced modeling capabilities of
commercial FEM solvers to describe complex structures with any desired fidelity level.

Coupled equations of nonlinear rigid-body motion and linear structural dynamics
were obtained and linearized around steady maneuvers, and a computational frame-
work for the flight dynamic/aeroelastic stability and response of flexible aircraft was
implemented using data from MSC Nastran. The capabilities of the developed tool
were demonstrated by studying the coupled stability of two existing configurations:
the University of Michigan’s X-HALE and the Lockheed Martin’s BFF research drones.
The developed tool proved effective in capturing and providing insight into different
coupling mechanisms between rigid-body and elastic DOFs. However, the linearized
formulation implemented in the tool is not appropriate to study small perturbations
of very flexible aircraft around nonlinear aeroelastic trim conditions, since it comes
from EOMs that are nonlinear for the rigid-body DOFs but linear for the elastic DOFs.
In order to overcome this limitation, the linearized formulation was next extended by
allowing large elastic displacements to provide a statically-nonlinear dynamically-linear
framework for local stability and response studies of highly flexible configurations.
Implementing the statically-nonlinear dynamically-linear state-space model in the
developed tool implies the capability to solve nonlinear aeroelastic trim problems for
vehicles described with generic fidelity. Therefore, the last chapter presented a novel
approach to the nonlinear aeroelastic trim analysis of complex configurations based on
the coupling of off-the-shelf structural and aerodynamic solvers. A nonlinear aeroelastic
trim solver based on the proposed methodology was implemented and validated against
reference data for the X-HALE, and will be used to extend the computational tool for
flight dynamic/aeroelastic stability and response as a future development of this work.





Concluding remarks

This thesis focused on the development of modeling methodologies to investigate
the nonlinear aeroelasticity of wing cross-sections (two-dimensional problem) and
the coupled flight dynamics and aeroelasticity of complete free-flying aircraft (three-
dimensional problem). These are two specific aspects within the ongoing research on the
modeling of future, very flexible aircraft, which were faced using different approaches
and theoretical/computational tools.

The relative simple description of two-dimensional problems combined with the
working hypotheses of incompressible potential flow allowed to obtain a fully theoretical
geometrically exact model for the unsteady aerodynamics of a wing airfoil, which for
the first time included large-amplitude rigid-body motion and deformation in chord
along with free wake. On the other hand, the complexity of complete flexible aircraft
motivated to develop a formulation that could be readily translated into a computational
tool for the analysis of generic configuration by directly using data from commercially
available solvers. A linearized formulation in the neighborhood of steady maneuvers
applicable to detailed models was obtained, implemented, and tested on existing
vehicles, showing its capability to capture relevant couplings. In addition, it was
theoretically extended to the case of small perturbations around nonlinear aeroelastic
trim points, for the first time providing a framework for the stability and response
analysis of very flexible aircraft described by generic model representations. The
theoretical and computational points of view followed in the two parts of thesis are not
in contrast, but complementary and both oriented to increasing the understanding of
the behavior of future, increasingly flexible vehicles, as theoretical and computational
approaches were both used to address the aeroelasticity of traditional, relatively stiff
configurations, leading to the state-of-the-art models nowadays standardly used for
aircraft design.

Possible applications of the geometrically exact airfoil model presented in the first
part of the work are as nonlinear benchmark for validation of high-fidelity aerodynamic
solvers and as low-order simulation tool to investigate nonlinear aeroelastic problems in
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presence of large amplitudes and free wake effects. To these aims, future developments
of the present work include the specialization, implementation, and validation of the
proposed general formulation for cross-sections showing at least one curvature sign
change along the chord, since only the particular cases of a flat-plate and of a flexible
thin airfoil with curvature of constant sign were addressed in the thesis. In addition,
the developed unsteady aerodynamic formulation shall be coupled with consistent
structural equations in order to obtain a geometrically exact fluid-structure interaction
model to investigate nonlinear problems.

The natural application of the integrated formulation of flight dynamics and
aeroelasticity presented in the second parts of the work is in the simulation, design, and
control of flexible aircraft characterized by coupling between rigid-body and structural
dynamics. In the limit of validity of the assumptions of small elastic displacements,
future developments of the present work include improving the aerodynamic model
used in the stability and response studies, as some of the key perturbation aerodynamic
effects playing a role in the rigid-body dynamics and in its coupling with aeroelastic
response were included as simplified, quasi-steady corrections to fully linear small-
disturbance unsteady aerodynamics. In addition, although inertial couplings proved
to be negligible in the analysis of small disturbances around trim, their relevance
in simulations of unsteady maneuvers based on the coupled EOMs should be also
investigated. Beyond the limit of validity of small elastic displacements, an integrated
linearized formulation for small perturbations around nonlinear aeroelastic trim points
was deduced, but not implemented in the developed computational tool for coupled
flight dynamics/aeroelastic stability and response. Therefore, this could be also the
subject of future works in order to make the tool applicable to the analysis of very
flexible vehicles. For both the statically-linear and statically-nonlinear state-space
models, comparison with results for the X-HALE configuration could further assess the
computational framework, whose capabilities and fidelity limited to the statically-linear
description have been already assessed by comparing with available stability results for
the BFF vehicle. Finally, the nonlinear aeroelastic trim algorithm developed as a first
step to the above aim was only tested on a low-fidelity beam-type model, so that a full
demonstration of its capabilities for configurations described by detailed structure and
aerodynamic models could be also addressed in future works.
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Appendix A

Modeling of airfoil unsteady
aerodynamics

This appendix provides further details on the modeling of two-dimensional unsteady
potential flows via conformal mapping that were omitted for the sake of conciseness.

A.1 Desingularization of the Biot-Savart kernel

A physical interpretation of the desingularization procedure for the Biot-Savart ker-
nel [98] that is used in this work to numerically integrate the free wake dynamics is
provided below. The desingularization procedure allow to eliminate the singularity of
the velocity field at the discrete vortex locations, caused by the auto-induced velocity,
and it additionally enables to regularize local instabilities in the wake that arise when
two or more vortices get too close. For the sake of simplicity, the following discussion
is carried out by considering the wake kinematics written for the case of a flat-plate
airfoil, but it can be applied to any cross-section shape.

The local velocity of the jth wake vortex is written in the x-plane as in Eq. (1.25).
In the case of a flat-plate airfoil, the ∂ωΦ̃(ωvj

) is evaluated for practical numerical
implementation as follows:

∂ωΦ̃(ωvj
) = +∂ωΦ̃(nc)(ωvj

) + Γb

2πi

1
ωvj

+

+ 1
2πi

N∑
k=1

Γj

( ωvj
− ωvk

|ωvj
− ωvk

|2 + ϵ2 + 1
ωvj

− 1
ωvj

− 1/ωvk

)
(A.1)
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where the first vortex-induced term contribution corresponds to the desingularized
Biot-Savart kernel in complex form [98]

Kϵ(x) := − 1
2πi

x

|x|2 + ϵ2 (A.2)

and to the desingularized Green function

Gϵ(x) = 1
4π log(|x|2 + ε2) (A.3)

which satisfies
∇2Gϵ(x) = 1

π

ϵ2

(|x|2 + ϵ2)2 := Fϵ(x) (A.4)

while the Green function G(x) satisfies ∇2G(x) = δ(x). Note that Fϵ → δ for ϵ → 0.
The Fourier transform1 of the Green function G(x) is g(k) = −1/(2π|k|)2, which

combined with Eq. (A.4) yields

gϵ = (2π)2gf ϵ = F [G ⋆ Fϵ] (A.5)

where gϵ and f ϵ are the Fourier transforms of the functions Gϵ and Fϵ, respectively.
Thus, the desingularized Green function is also given by the convolution G ⋆ Fϵ.

This last result provides a physical interpretation of the desingularized kernel in
Eq. (A.2). Indeed, this corresponds to substituting the vorticity field (ω ⋆ Fϵ)(x) to
the original field ω(x) = Γv δ(x − xv) valid for a point vortex of circulation Γv placed
at the point x = xv. Evaluating the desingularized vorticity field as

ω ⋆ Fϵ(x) =
∫

R2
dA(y) ω(y) Fϵ(x − y) = Γv Fϵ(x − xv) (A.6)

shows that the vorticity content originally concentrated at the vortex location in
the point-vortex model is radially spread in the surrounding region according to the
regularization parameter ϵ.

In Fig. A.1 the function Fϵ is plotted versus |x − xv| for four values of ϵ > 0. The
plot shows that setting an appropriate value of ϵ allows to remove the singularity at the
vortex position (|x − xv| = 0) that would be present in a point-vortex model (ϵ = 0)

1 The Fourier transform p(k) of the function P (x) is evaluated as

p(k) = F [P ](k) = 1
(2π)2

∫
R2

dA(x) exp(−ik · x) P (x)
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Fig. A.1 Smoothing function.

without causing an excessive spreading of the vorticity content. As a result, the wake
dynamics can be better integrated and, for reasonable values of ϵ, no significant effect
is observed in the aerodynamic load applied to the airfoil [89].

A.2 Correction for sectional-analytic functions

As shown in Subsec. 1.3.3, the velocity field around a flexible thin airfoil modeled using
the formulation of Chap. (1) experiences jump discontinuities across the branch cuts of
the assumed mapping function [Eq. (1.3)]. Since the body boundary is the only branch
cut when the map is specialized to the case of a flat-plate airfoil, the velocity field is
everywhere continuous in the fluid domain. However, additional branch cuts appear in
the flow field for curved airfoil shapes, across which the conjugate velocity evaluated
using the proposed model experiences jumps described by Eq. (1.27). Although these
discontinuities can be neglected for body curvatures of practical aeronautical interest
and to the purpose of evaluating the aerodynamic load on the body boundary (see
Subsec. 3.2.2), they can be completely removed by addition a suitable sectionally
holomorphic function to the complex potential in Eq. (1.9). The development of a
corrective complex potential could be the subject of future developments of the present
work in order to increase the fidelity of the proposed theoretical model for very large
body curvatures, for instance involved in applications related to fish locomotion. A
theoretical approach to this task is presented below based on the well-established
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correction in the form of Cauchy integral [99], which is conveniently modified in order
to preserve the no-penetration condition on the airfoil boundary.

For the sake of simplicity, consider the case of a single branch cut BC(t) in the
fluid domain. The following procedure shall be carried out for any branch cut of the
map present in the flow field. The jump of the conjugate velocity [Eq. (1.2)] across the
curve BC(t) due to the mapping approach can be eliminated by adding a contribution
written as [99]

1
2πi

∫
BC(t)

dy
ϕ(y; t)

y − x(ω; t) = ∂ωΦ̃(bc)(ω; t)
∂ωx(ω; t) (A.7)

where
Φ̃(bc)(ω; t) = − 1

2πi

∫
BC(t)

dy ϕ(y; t) log[y − x(ω; t)] (A.8)

is the complex potential of the branch cut BC(t). The corrective term in Eq. (A.7)
eliminates the jump of the conjugate velocity across BC, but does not preserve the
no-penetration condition on the airfoil boundary.

Applying the circle theorem [46] to Eq. (A.8) and using the property x(ω) = x(1/ω)
of Eq. (1.3) gives

Φ̃(bc)(1/ω) = 1
2πi

∫
BC(t)

dy ϕ(y; t) log[y − x(ω; t)] =: Φ̃(bc)
i (ω; t) (A.9)

where Φ̃(bc)
i is the complex potential due to the image branch cut that allows to preserve

the no-penetration condition on the body boundary. The total conjugate velocity in
the x-plane is given by

u[x(ω; t); t] = ∂ωΦ̃(ω; t)
∂ωx(ω; t) + ∂ωΦ̃(bc)(ω; t)

∂ωx(ω; t) + ∂ωΦ̃(bc)
i (ω; t)

∂ωx(ω; t) (A.10)

where
∂ωΦ̃(bc)(ω; t)
∂ωx(ω; t) = 1

2πi

∫
BC(t)

dy
ϕ(y; t)

y − x(ω; t)

∂ωΦ̃(bc)
i (ω; t)

∂ωx(ω; t) = −∂ωx(ω; t)
∂ωx(ω; t)

1
2πi

∫
BC(t)

dy
ϕ(y; t)

y − x(ω; t)

(A.11)

The unknown correction density ϕ is evaluated by imposing that the total conjugate
velocity [Eq. (A.10)] be continuous across BC(t)

u[x(ω+; t); t] = u[x(ω−; t); t] (A.12)
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Inserting Eq. (A.10) and Eq. (1.27) in Eq. (A.12) gives

ϕ(x; t) + [u(bc)
i ](x; t) = − 1

∂ωx(ω+; t) [∂ωΦ̃(ω+; t) + ∂ωΦ̃(ω−; t)] (A.13)

where for x ∈ BC one has [u(bc)
i ](x; t) := u

(bc)
i (x+; t) − u

(bc)
i (x−; t) with

u
(bc)
i (ω±; t) = −∂ωx(ω±; t)

∂ωx(ω±; t)
1

2πi

∫
BC(t)

dy ∂yS(y; t) ϕ(y; t)
S(y; t) − x(ω±; t) (A.14)

S here being the Schwarz function of BC.
Equation (A.13) is an integral equation that involves the unknown density ϕ and its

conjugate ϕ. The solution of this equation allows to completely evaluate the corrective
complex potential such that velocity discontinuities across BC are removed while the
no-penetration condition on the airfoil is still preserved.

A.3 Aerodynamic load on a flat-plate airfoil

This appendix reviews the standard methodology to analytically evaluate integrals of
analytic functions applied to the evaluation of the unsteady aerodynamic force and
moment on a moving airfoil in incompressible potential flow. The purpose is to show
how the general formulas given by Eqs. (1.34) and (1.37) give the results reported in
Sec. 2.1.3 for the unsteady aerodynamic force and moment on a flat-plate airfoil.

A.3.1 Aerodynamic force

The derivatives of the complex potential Φ̃ written for a flat-plate airfoil are

∂tΦ̃ = +ℓ χ

4 (u̇∞ − i α̇ u∞) ω + ℓ χ

4 (u̇∞ + i α̇ u∞) 1
ω2 +

−i V̇n
ℓ

2
1
ω

+ i α̈
ℓ2

16
1
ω

− 1
2πi

N∑
j=1

Γj

( ω̇vj

ω − ωvj

+
ω̇vj

ω − 1/ωvj

)
(A.15)

∂ωΦ̃ = +ℓ χ

4 u∞ − ℓ χ

4 u∞
1

ω2 + i Vn
ℓ

2
1

ω2 − i α̇
ℓ2

8
1

ω3 + Γb

2πi
+

+ 1
2πi

n∑
j=1

Γj

( 1
ω − ωvj

+ 1
ω

− 1
ω − 1/ωvj

)
(A.16)
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Note that the time derivative does not include the term proportional to Γ̇b, since the
effect of changes in the body circulation are taken into account by the nascent vortex.

The unsteady aerodynamic force acting on an moving airfoil of arbitrary shape
immersed in an incompressible potential flow is given by Eq. (1.34). The five integral
contributions are rewritten in the ω-plane as∫

∂Ωb

dx ∂tΦ =
∫

C
dω (∂ωx ∂tΦ̃ − ub ∂ωΦ̃)

∫
∂Ωb

dx ∂xS ∂tΦ =
∫

C
dω ∂ωS (∂tΦ̃ − ub ∂ωΦ̃/∂ωx)

∫
∂Ωb

dx ∂xS ub ∂xΦ =
∫

C
dω ∂ωS ub ∂ωΦ̃/∂ωx

∫
∂Ωb

dx ub ∂xΦ =
∫

C
dω ub ∂ωΦ̃

∫
∂Ωb

dx (∂xΦ)2 =
∫

C
dω (∂ωΦ̃)2/∂ωx

(A.17)

where the relation ∂tω = −ub/∂ωx valid on the unit circle is used. Substituting the
above results into Eq. (1.34) the unsteady aerodynamic force can be rewritten as the
sum of the following three terms:

F (a,1) = −iρ

2

∫
C
dω (∂ωx ∂tΦ̃ − ub ∂ωΦ̃)

F (a,2) = −iρ

2

∫
C
dω (∂ωS ∂tΦ̃ − ub ∂ωΦ̃)

F (a,3) = −iρ

2

∫
C
dω (∂ωΦ̃)2/∂ωx

(A.18)

that can be specialized to the case of a flat-plate airfoil using the relations developed
in Sec.2.1 and the derivatives in Eqs. (A.15) and (A.16). The integrand functions of
the first two terms in Eq. (A.18) are not singular on C. Hence, these contributions
can be analytically evaluated using the residue theorem [49]. The integrand functions
of the last contribution is singular at the point ω = −1, while the singularity at
ω = +1 is removed by the trailing-edge Kutta condition. Therefore, this contribution
is analytically evaluated as the Cauchy principal value integral

∫
−

C
dω

f(ω)
ω + 1 = 2πi

Nr∑
j=1

Rj + iπf(−1) (A.19)
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where the f(ω) is not singular on C, Rj are the residues of the integrand function
f(ω)/(ω + 1) inside C, and the last contribution is due to the singularity at ω = −1.

A.3.2 Aerodynamic moment

The aerodynamic moment with respect to the origin is given by Eq. (1.37). This may
be rewritten in the ω-plane by following the same methodology as for the aerodynamic
force, which yields the three contributions

M
(a,1)
0 = −ρ

2 Re
[ ∫

C
dω S (∂ωx ∂tΦ̃ − ub ∂ωΦ̃)

]

M
(a,2)
0 = −ρ

2 Re
[ ∫

C
dω x (∂ωS ∂tΦ̃ − ub ∂ωΦ̃)

]

M
(a,3)
0 = −ρ

2 Re
[ ∫

C
dω x (∂ωΦ̃)2/∂ωx

]
(A.20)

These can specialized to the case of a flat-plate using the relations in Eqs. (2.1), (2.2), (2.5),
and (2.6) along with the derivatives in Eqs. (A.15) and (A.16). Again, the first two
contributions can be evaluated using the residue theorem, whereas the latter as a
Cauchy principal value integral [Eq. (A.19)].

A.4 General flat-plate aeroelastic model

The flat-plate aeroelastic model developed in Sec. 2.2 assumes mass and elastic centers
located at the centroid. The derivation of the general EOMs is reported below.

The positions of the elastic and mass center are respectively introduced as

xE = H − ξE
ℓ

2 τ xG = H − ξG
ℓ

2 τ (A.21)

where ξE and ξG are the non-dimensional offsets with respect to the centroid, assumed
positive toward the trailing edge. From Eq. (A.21) the velocity and acceleration of the
center of mass are written as

ẋG = Ḣ − α̇ ξG
ℓ

2 n ẍG = Ḧ − α̈ ξG
ℓ

2 n + α̇2 ξG
ℓ

2 τ (A.22)

while the x- and y-components of the elastic force and the elastic moment are written in
terms of the position of the elastic center and the pitch angle as F (e)

x = −kx(xEx −xExe
),
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F (e)
x = −ky(xEy − xEye

), and M (e) = kα(α−αe), respectively, xEe = xExe
+ ixEye

being
the equilibrium position of the elastic center.

Using Eq. (2.19) and the relation JE = JG [1 + 8 (ξE − ξG)2 µ/σ] the equation of
translational motion is

ẍG = σ
[ (

Gn − V̇n

)
n +Gτ τ

]
+ F (e)

m
(A.23)

which can be recast as

Ḧ =
[
α̈ ξG

ℓ

2 +σ
(
Gn − V̇n

)
+F (e)

n /m
]

n +
[
− α̇2 ξG

ℓ

2 +σGτ +F (e)
τ /m

]
τ (A.24)

The quantity V̇n is evaluated as

V̇n = Ḧ · n − α̇Vτ = 1
1 + σ

[
σGn + F (e)

n /m− α̇Vτ + α̈ ξG
ℓ

2
]

(A.25)

and substituted into Eq. (A.24) to obtain

Ḧ = 1
1 + σ

[
σ
(
Gn + α̇Vτ

)
+ F (e)

n /m+ α̈ ξG
ℓ

2
]

n +
[
σGτ + F (e)

τ /m− α̇2ξG
ℓ

2
]

τ

(A.26)
The equation of rotational motion is written with respect to the center of mass as

− JG α̈ = M
(a)
xG

+M (e) − (ξG − ξE) ℓ2 F
(e)
n (A.27)

where the aerodynamic moment about that point is

M
(a)
xG

= M
(a)
H − ξG

ℓ

2 F
(a)
n = ρπℓ4

128
(
α̈− M(a)

)
− ρπℓ3

8 ξG
(
Gn − V̇n

)
(A.28)

Substituting Eq. (A.25) and Eq. (A.28) into Eq. (A.27), with some manipulation one
obtains the following explicit equation involving only α̈ as second-order time derivative:

α̈ = 1 + σ

(1 + µ)(1 + σ) + 8µξ2
G

{
µM(a) −M (e)/Jα

[
1 + 8µ

σ
(ξG − ξE)2

] }
+

16µ
ℓσ[(1 + µ)(1 + σ) + 8µξ2

G]
{
σξG(Gn + α̇Vτ ) +

[
ξG − (1 + σ)ξE)

]
F (e)

n /m
}

(A.29)

The dynamics of the typical-section can be simulated by first integrating Eq. (A.29) at
each Runge-Kutta substep and then using Eq. A.26 to obtain the centroid acceleration.
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The choice of H as the reference point is due to the fact that the map in Eq. 3.1 is
naturally written in terms of that point. The position, velocity, and acceleration of the
elastic and mass center follow from the rigid-body kinematic law.

If the mass and elastic center coincide (ξG = ξE), Eq. (A.29) and (A.26) simplify to

Ḧ = 1
1 + σ

[
σ
(
Gn + α̇Vτ

)
+ F (e)

n /m+ α̈ ξE
ℓ

2
]

n +

[
σGτ + F (e)

τ /m− α̇2 ξE
ℓ

2
]

τ

α̈ = 1 + σ

(1 + µ)(1 + σ) + 8µξ2
E

{
µM(a) −M (e)/Jα

}
+

16µ
ℓσ[(1 + µ)(1 + σ) + 8µξ2

E]
{
σξE(Gn + α̇Vτ ) − σ ξE F

(e)
n /m

}
(A.30)

The EOMs of Sec. 2.3 are recovered for if both the elastic and mass centers are located
at the centroid (ξE = ξG = 0).

A.5 Conservation of the airfoil length for n = 2

The condition of constant body length for a deformable airfoil described by Eq. (3.1)
and cantilevered at the leading edge is given by Eq. (3.28). Using the change of variable
ξ = cos θ, this becomes

∫ +1

−1
dξ
[
m2

1 + 8m1m2 cos(φ1 − φ2)ξ + 16m2
2ξ

2
]1/2

= 2 (A.31)

which must be satisfied for any time. Introducing the real positive quantities

R± =
[
m2

1 ± 8m1m2 cos(φ1 − φ2) + 16m2
2

]1/2
(A.32)

the result of the integral in Eq. (3.27) can be rewritten as the algebraic equation

m2
1 sin2(φ1 − φ2) log m1 cos(φ1 − φ2) + 4m2 +R+

m1 cos(φ1 − φ2) − 4m2 +R−
+

+[m1 cos(φ1 − φ2) + 4m2] R+ − [m1 cos(φ1 − φ2) − 4m2] R− = 16m2 (A.33)

The airfoil motion is imposed by assigning the time-history c2(t) and for any time
obtaining the values c1(t) and h(t) from the boundary condition and enforcing Eq. (??).
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To this aim, noting that R+ = |c1 − 4c2| = γ and using the relations

m2
1 sin2(φ1 − φ2) = γ2 sin2 φ2

m1 cos(φ1 − φ2) = 4m2 + γ cosφ2

R+(γ) = (64m2
2 + 16m2γ cosφ2 + γ2)1/2

(A.34)

Eq. (A.33) may be rewritten as a nonlinear function f(γ,m2, φ2) = 0 where

f := γ2 sin2 φ2 log γ cosφ2 + 8m2 +R+(γ)
(1 + cosφ2) γ

−γ2 cosφ2 +(γ cosφ2 +8m2) R+(γ)−16m2

(A.35)
Once the history c2(t) is assigned, the only unknown in Eq. (A.35) is γ. Hence, the
nonlinear problem f(γ,m2, φ2) = 0 becomes the one-variable problem f(γ) = 0 that
can be solved by means of the Newton-Raphson method.

The quantity γ̇ can be obtained from the time derivative of f [γ(t),m2(t), φ2(t)]
[Eq. (A.35)], which is identically equal to zero. The quantities ċ1(t) and ḣ(t) can be
obtained for any time from the known function ċ2(t) and the time derivatives of of
Eqs. (3.27) and (3.25).

A.6 Unsteady aerodynamic model for n = 3
The general formulation of Chap 1 is specialized below to the case n = 3.

A.6.1 Map

The generalized map in Eq. (1.3) written for n = 3 becomes

x = h + ℓ χ

4
[

c1
(

ω + 1
ω

)
+ c2

(
ω2 + 1

ω

2 )
+ c3

(
ω3 + 1

ω3

) ]
(A.36)

so that the body boundary is described by

xb = h + ℓ χ

2
(

c1 cos θ + c2 cos 2θ + c3 cos 3θ
)

(A.37)

and shows one curvature sign change along the chord. The Schwarz function of the
body boundary is obtained by substituting the Schwarz function of the unit circle into
the conjugate of Eq. (A.37). The velocity of a generic point on the airfoil boundary is
obtained by specializing Eq. (1.6) to n = 3. The function ub is evaluated by substituting
the Schwarz function of the unit circle into the conjugate of ub.
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The ω-derivative of Eq. (A.36) is

∂ωx = ℓ χ

4 3 c3
ω2 − 1

ω4

(
ω4 + 2

3
c2

c3
ω3 + 1

3
c1

c3
ω2 2

3
c2

c3
ω + 1

)
(A.38)

which vanish at the points ω1,2 = ±1 and at the roots ωk (k = 1, . . . , 4) of

ω4 + 2
3

c2

c3
ω3 + 1

3
c1

c3
ω2 2

3
c2

c3
ω + 1 = 0

Two roots ω3 = Λ1 and ω5 = Λ2 are outside C, and correspond to two critical points
Y1,2 in the x-plane that are the origins of two branch cuts BC1,2. The other roots
ω4 = 1/Λ1 = λ1 and ω6 = 1/Λ2 = λ2 are inside the unit circle and are not mapped
onto the x-plane.

A.6.2 Noncirculatory flow

The complex potential Φ̃(nc) written for n = 3 is defined by 9 coefficients [see Eq. (1.12)]
that are evaluated by imposing the six independent relations given by from Eq. (1.14),
Eq. (1.15), and two regularity conditions [Eq. (1.18)] imposed at the points Λ1,2.

Using the notation of Eq. (3.9), four independent relations given by Eq. (1.14)
combined with Eq. (1.15) give

d−6 = i
ℓ2

32 (δ33 + α̇ σ33)

d−5 = i
ℓ2

16
( 3

5 δ23 + 2
5 δ32 + α̇ σ23

)

d−4 = i
ℓ2

16
[ 1

2 δ22 + 3
4 δ13 + 1

4 δ31 + α̇ (c2
2 + σ13)

]

d−3 = i
ℓ2

16
( 2

3 δ12 + 1
3 δ21 + α̇ σ12

)
+ i

ℓ

4 ν3 + ℓ χ

4 u∞ c3

d3 = ℓ χ

4 u∞ c3

(A.39)

while the last two independent relations are rewritten as

d2 − d−2 = A2 =: i
ℓ

4 ν2 + i
ℓ2

16
[ 1

2 δ11 + 3
2 δ13 − 1

2 δ31 + α̇ (c2
1 + σ13)

]

d1 − d−1 = A1 =: i
l

4 ν1 + i
l2

16
[

2 δ12 − δ21 + 3 δ23 − 2 δ32 + α̇ (σ12 + σ23)
] (A.40)
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Using Eq. (A.40) the regularity conditions imposed at the points Λ1,2 are written as

2 Λ2
k d2 + Λk d1 − λk d1 − 2 λ2

k d2 = Bk (A.41)

with right-hand side

Bk = λkA1 + 2 λ2
k A2 − 3 Λ3

k d3 + 3 λ3
k d−3 + 4 λ4

k d−4 + 5 λ5
k d−5 + 6 λ6

k d−6 (A.42)

Coupling the conditions in Eq. (A.41) with their conjugates yields the system:


2Λ2
1 Λ1 −λ1 −2λ2

1

2Λ2
2 Λ2 −λ2 −2λ2

2

−2λ
2
1 −λ1 Λ1 2Λ2

1

−2λ
2
2 −λ2 Λ2 2Λ2

2





d2

d1

d1

d2

 =



B1

B2

B1

B2

 (A.43)

whose solution gives the coefficients d1 and d2. The remaining ones d−1 and d−2 are
evaluated using Eq. (A.41).

A.6.3 Circulatory flow

The complex potential of the circulatory flow is written as in Eq. (1.19), with complex
potentials Φ̃(v) and Φ̃(b) evaluated by specializing the general formulas in Eqs. (1.22)
and Eq. (1.23) to the case n = 3.

The complex potential Φ̃(v) involves two unknown coefficients a1,2 that are evaluated
by imposing that its ω-derivative vanish at the points Λ1,2. This gives a system of two
equations in a1,2 and their conjugates, which coupled with the conjugate equations
and using the notation introduced in Eqs. (3.17) and (3.18) give the system



D12 D11 E11 E12

D22 D21 E21 E22

E12 E11 D11 D12

E22 E21 D21 D22





a2

a1

a1

a2

 =



F 1

F 2

F 1

F 2

 . (A.44)

which enables to evaluate a1,2.
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The complex potential Φ̃(b) involves the unknown distances r1,2 that are evaluated
by solving the nonlinear system


1

Λ1 − r1 σ1
− λ1 σ1/r1

Λ1 − σ1/r1
+ 1

Λ1 − r2 σ2
− λ1 σ2/r2

Λ1 − σ2/r2
= −λ1

1
Λ2 − r1 σ1

− λ2 σ1/r1

Λ1 − σ1/r1
+ 1

Λ2 − r2 σ2
− λ2 σ2/r2

Λ2 − σ2/r2
= −λ2

(A.45)

with r1 > ρ1 and r2 > ρ2.
The total complex potential in the ω-plane can be obtained by specializing Eq. (1.9)

with the above relation and, if velocity discontinuities across the branch cuts BC1,2 can
be neglected, it can be used to evaluate the pressure distribution on the deformable
airfoil described by Eq. (A.37).





Appendix B

Modeling of coupled flight
dynamics and aeroelasticity

This appendix provides further details on the integrated modeling of flight dynamics
and aeroelasticity that were not included in the second part of the thesis for the sake
of conciseness.

B.1 Eigenfunctions of unrestrained structures

The linear structural dynamics of an elastic continuous structure is described by a
linear, self-adjoint differential operator with real positive eigenvalues λn := ω2

n and real
eigenfunctions φn that satisfy the orthogonality condition

⟨φn,φp⟩ =
∫∫∫

V
ρφn · φpdV = 0 λn ̸= λp (B.1)

If the structure is unrestrained, the eigenfunctions (normal modes) are:
1) three rigid-body translational eigenfunctions (rigid-body translational modes)

φT
k = ek (k = 1, 2, 3) (B.2)

2) three rigid-body rotational eigenfunctions (rigid-body rotational modes)

φR
k = ek × z (k = 1, 2, 3) (B.3)

3) infinite elastic eigenfunctions φE
n (elastic modes).
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Note that the choice of the six rigid-body eigenfunctions is arbitrary since they all
correspond to a zero eigenvalue. However, the rigid-body modes are chosen as unit
translations and rotations along the PMAs.

The orthogonality condition [Eq. (B.1)] applied to the above eigenfunctions gives:
1) translational-translational conditions:

⟨φT
h ,φ

T
k ⟩ =

∫∫∫
V
ρeh · ekdV = meh · ek = mδhk (B.4)

2) translational-rotational conditions:

⟨φT
h ,φ

R
k ⟩ =

∫∫∫
V
ρeh · ek × zdV = eh · ek ×

∫∫∫
V
ρzdV = 0 (B.5)

3) rotational-rotational conditions:

⟨φR
h ,φ

R
k ⟩ =

∫∫∫
V
ρeh × z · ek × zdV =

∫∫∫
V
ρ
[
∥z∥2δhk − zhzk

]
dV = J0hk (B.6)

where J0hk
is the hkth element of the inertia tensor in undeformed configuration;

4) translational-elastic conditions:

⟨φT
k ,φ

E
n⟩ =

∫∫∫
V
ρek · φE

ndV = 0 →
∫∫∫

V
ρφE

ndV = 0 (B.7)

5) rotational-elastic conditions:

⟨φR
k ,φ

E
n⟩ =

∫∫∫
V
ρek × z · φE

ndV = 0 →
∫∫∫

V
ρz × φE

ndV = 0 (B.8)

6) elastic-elastic conditions:

⟨φE
n,φ

E
p⟩ =

∫∫∫
V
ρφE

n · φE
pdV = mnδnp (B.9)

The last three conditions [Eqs. (B.7), (B.8), and (B.9)] follow from Eq. (B.1). In
particular, the conditions in Eqs. (B.7) and (B.8) are the PMA constraints written in
terms of elastic modes [Eq. (4.7)]. Eigenfunctions that correspond to the same eigenval-
ues are generally not mutually orthogonal to each other. However, the present choice
of the rigid-body eigenfunctions additionally yields the first three sets of conditions
[Eqs. (B.4), (B.5), and (B.6)]. These show that the rigid-body translational modes
are mutually orthogonal and also orthogonal to the rigid-body rotational modes. The
latter are orthogonal to each other only when the PMA are the principal axes of the
undeformed configuration.
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B.2 Derivation of the fully coupled EOMs

The fully coupled EOMs in Eqs. (4.17), (4.18), and (4.19) are obtained by substituting
the virtual displacement in Eq. (4.16) into the weak formulation of Cauchy equation in
Eq. (4.15) and using the orthogonality conditions of App. B.1.

The term on the left-hand side of Eq. (4.15) is developed as

∫∫∫
V
ρa · δxdV = δxG ·

∫∫∫
V
ρadV + δθ ·

∫∫∫
V
ρr × adV +

∞∑
n=1

δqn

∫∫∫
V
ρa · φE

ndV (B.10)

Noting that a = Dv/Dt, the first integral is evaluated as
∫∫∫

V
ρadV =

∫∫∫
V
ρ

Dv
Dt dV = d

dt

∫∫∫
V
ρvdV = m

dvG

dt (B.11)

Introducing the relative velocity with respect to the center of mass v′ := Dr/Dt =
ω × r + vE and using the angular momentum in Eq. (4.14), the second integral on the
right-hand side of Eq. (B.10) becomes

∫∫∫
V
ρr × Dv

Dt dV =
∫∫∫

V
ρr × Dv′

Dt dV =
∫∫∫

V
ρ

D
Dt(r × v′)dV = dhG

dt (B.12)

while the last one gives∫∫∫
V
ρa · φE

ndV = ⟨ω̇ × r,φE
n⟩ + ⟨ω × (ω × r),φE

n⟩ + 2⟨ω × vE ,φ
E
n⟩ + ⟨aE ,φ

E
n⟩ (B.13)

Using the orthogonality conditions in App. B.1 with some manipulation one has

⟨ω̇ × r,φE
n⟩ = dω

dt ·
∫∫∫

V
ρr × φE

ndV = dω

dt ·
∫∫∫

V
ρuE × φE

ndV = −dω

dt ·
∞∑

p=1
bnpqp

⟨ω × (ω × r),φE
n⟩ = −

∫∫∫
V
ρω × r · ω × φE

ndV = −ω · sym⟨r ⊗ φE
n⟩ω = −ω · Ynω

⟨ω × vE ,φ
E
n⟩ =

∫∫∫
V
ρω × vE · φE

ndV = ω ·
∫∫∫

V
ρvE × φE

ndV = −ω ·
∞∑

p=1
bnpq̇p

⟨aE ,φ
E
n⟩ =

∫∫∫
V
ρaE · φE

ndV = mnq̈n

(B.14)
The first two integrals on the right-hand side of Eq. (4.15) give the total virtual

work of the external load
∫∫∫

V
ρf · δxdV + ⃝

∫∫
S

t · δxdS = fT · δxG + mG · δθ +
∞∑

n=1
fnδqn (B.15)
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while for a linear elastic solid the last integral becomes
∫∫∫

V
T : δEdV =

∞∑
n=1

∂E
∂qn

δqn =
∞∑

n=1
knδqn (B.16)

Substituting the above results into Eq. (4.15) this is rewritten as
(
m

dvG

dt − fT

)
· δxG +

(
dhG

dt − mG

)
· δθ +

+
∞∑

n=1

−dω

dt ·
∞∑

p=1
bnpqp − ω · Ynω − 2ω ·

∞∑
p=1

bnpq̇p +mnq̈n − fn + kn

 δqn = 0

which for the arbitrariness of the virtual displacement yields Eqs. (4.17), (4.18),
and (4.19).

B.3 Computation of the GAF matrix

In the present work the GAF matrix in Eq. (4.36) is evaluated using the MSC Nastran
FEM/DLM flutter solver [53]. Consistently with linear aeroelastic theory, the latter
assumes translations and rotations with respect to the inertial axes as the rigid-body
DOFs, whereas Eq. (4.36) involves translations and rotations with respect to the PMA.
Moreover, small-disturbance aerodynamics is modeled in the linear framework by
considering small perturbations of rigid-body and elastic DOFs around the undeformed
configuration at zero angle of attack. As a result, the GAF matrix obtained from
MSC Nastran does not capture some small-disturbance aerodynamic effects that are
important for rigid-body stability, for instance perturbations in the roll moment due
the local increase of dynamic pressure on a wing caused by perturbations in the yaw
rate. The methodology followed in the present work to correct and transform the GAF
matrix data obtained from MSC Nastran is reviewed below based on the derivation of
Ref. [91].

B.3.1 Transformation of rigid-body DOFs

In order to transform the GAF matrix to have translations and rotations with respect
to the PMA as rigid-body DOFs, recall that the GAF matrix obtained from the DLM
is expressed as [53]

E = E4E32E1 (B.17)
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where E4, E32, and E1 are, respectively the projection matrix of the perturbation in
the pressure jump coefficient on the rigid-body and elastic modes, the inverse of the
interference matrix, and the downwash matrix.

The downwash at a generic point on a DLM lifting surface is written as χ = v · n,
where the local velocity v and local outer normal unit vector nfor an unrestrained
vehicle are written as

v = iU∞ +
3∑

m=1
(φT

m∆ẋE
m + φR

m∆θ̇E
m) +

∞∑
n=1

φE
n∆q̇n

n = n0 +
3∑

p=1
(nT

p ∆xE
p + nR

p ∆θE
p ) +

∞∑
q=1

nE
q ∆qq

(B.18)

where n0 is the outer normal unit vector in undeformed configuration, the vectors
nT

p , nR
p , and nE

q depend on the rigid-body and elastic modes, and the quantities ∆xE
m

and ∆θE
m are the perturbation displacements and rotations defined in the inertial axes.

Therefore, the standard form of the vector ∆χ̃ that lists the perturbations of the
non-dimensional downwash on the DLM panels is

∆χ̃/U∞ =
(

E1r + jkE1i

) 
∆x̃E

G

∆θ̃E

∆q̃

 (B.19)

with E1 := E1r + jkE1i.

In the present work, Eq. (B.18) is rewritten as

v = e1U∞ + φT
1 ∆u+ φT

2 ∆v + φT
3 ∆w + φR

1 ∆p+ φR
2 ∆q + φR

3 ∆r +
∞∑

n=1
φE

n∆q̇n

n = n0 +
∞∑

p=1
nE

p∆qp

(B.20)

Comparing Eqs. (B.18) with Eq. (B.20) it follows that the first six columns of E(r)
1

must be set to zero in order to represent the downwash, and then the GAF matrix, in
terms of the perturbations ∆x̃B

G
, ∆θ̃, and ∆q̃ rather than using perturbation quantities

with respect to the inertial axes. This modification is included in MSC Nastran flutter
solver [53] by means of an appropriate script [104].
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B.3.2 Inclusion of effects due to the trim angle of attack

The GAF matrix obtained from MSC Nastran, including the modification of App. B.3.1,
is improved in order to account for small-disturbance aerodynamic effects of a non-
zero trim angle of attack. The correction is introduced according to a quasi-steady
description and include the effects of local perturbations of the dynamic pressure and
local changes in the angle of attack, which results in a rotation of the local lift vector.
These aerodynamic effects are not taken into account in the GAF matrix data obtained
from a standard FEM/DLM linear flutter analysis, which assume small perturbations of
the undeformed configuration around a zero-angle-of-attack equilibrium configuration.

The corrective terms are obtained by assuming that local variations of the dynamic
pressure vary the local lift magnitude, while those of the angle of attack modify the
lift direction. The perturbation in the local aerodynamic load due to these effects is
written as

∆fA(z) = −2 fA e(z) ∆v1(z)
U∞

+ fA e(z) · e3
∆v3(z)
U∞

e1 (B.21)

where fA e is the trim aerodynamic load. The latter can be obtained as standard output
of a MSC Nastran linear aeroelastic trim analysis [53].

Writing the perturbation velocities ∆v1 and ∆v3 in terms of the perturbations of
the rigid-body and elastic DOFs and projecting Eq. (B.21) onto the mth mode shape
gives

∆f̃m = − 2k
U∞

Ng∑
i=1

fA e(zi)·φm(zi)
N+6∑
n=1

φn1(zi)∆q̃n+ k

U∞

Ng∑
i=1

fA e3
(zi)φm1(zi)

N+6∑
n=1

φn3(zi)∆q̃n

(B.22)
where, for the sake of conciseness, the summations on the eigenfunctions include also
the contributions from the rigid-body modes and associated generalized coordinates
(translations and rotations along the PMAs). The above contribution is the incre-
ment of the mth generalized aerodynamic force (aerodynamic force/moment resultant
component or projection of the aerodynamic load on an elastic mode) due to the
perturbations in the rigid-body and DOFs at non-zero trim angle of attack. The
contribution from to the nth perturbation DOF is used to correct the mnth element of
the interpolative matrix A1. The first and third elements on the first row of the matrix
are further improved by adding the effects of drag perturbations evaluated on the basis
of simplified quasi-steady flight mechanics relations (drag polar). Thrust perturbations
are so far neglected.
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