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2. ABSTRACT 

Detection of new psychoactive substances (NPS), both in conventional and non-

conventional biological samples, represents a hard challenge for forensic toxicologists.  

The number of newly NPS, increases each year. As soon as NPS are scheduled, new 

derivatives appear in the market. Despite the increasing number of NPS and the fact 

that fatal and acute intoxication cases have been already attributed to this novel class of 

compounds this phenomenon appears to be considerably underestimated, mainly due to 

the substantial lack of comprehensive screening methods for their detection in 

biological specimens. Development of analytical methods for the determination of NPS 

in biological specimens is of great importance to keep in pace with this phenomenon.  

Thus, we sought to develop and validate a simple and rapid UHPLC–MS/MS screening 

method for the determination of 49 NPS belonging to different chemical classes 

(synthetic cannabinoids, cathinones, benzofurans, aminoindanes, phenethylamines, 

piperazines and piperidines) in serum, urine and hair extracts in a single run, following 

rapid and easy sample pre-injection treatment.  

The method was very fast, easy to perform, cheap and minimum amount of sample (0.1 

ml serum or urine and 50 mg hair) was required. Chromatography was carried out using 

an Acquity UPLC BEH reversed phase C18 column (2.1 x 75 mm, 1.7 µm) and a 

gradient elution with two solvents: 0.1% formic acid in water (solvent A) and 

acetonitrile (solvent B). The separated analytes were detected with a triple quadrupole 

mass spectrometer operated in multiple reaction monitoring (MRM) mode via positive 

electrospray ionization (ESI). The method was sensitive, linear from 1 to 100 ng/ml for 

serum and urine and from 1 to 100 pg/mg for hair, precise and accurate for most of the 

analytes. Matrix effects did not negatively affect the analytical sensitivity.  

The validated method was successfully applied to authentic samples (serum, urine and 

hair) collected from an intoxication case after the consumption of NPS; and hair 

samples obtained by illicit drugs users who attended Drug Addiction Services or Care 

Emergency Departments (ED). 

Keywords: new psychoactive substances, ultra-high performance liquid 

chromatography - tandem mass spectrometry, serum, urine, hair, toxicology 
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3. ABBREVIATIONS  

2 C-B 2,5-dimethoxy-4-bromophenethylamine 

4-APB 4-(2-aminopropyl)-benzofuran 

4-FA 4-Fluoroamphetamine 

5-APB 5-(2-aminopropyl)benzofuran 

5-EAPB  5-(2-ethylaminopropyl)benzofuran  

5F-ADB 

Methyl (R)-2-[1-(5-fluoropentyl)-1H-indazole-3-carboxamido]-3,3-

dimethylbutanoate 

5-MAPB 5-(2-Methylaminopropyl)benzofuran  

6-APB 6-(2-aminopropyl)-benzofuran  

AM-2201 1-(5-fluoropentyl)-3-(1-naphthoyl)indole 

AM-2233 1-[(N-methylpiperidin-2-yl)methyl]-3-(2-iodobenzoyl)indole 

AM-694 1-(5-fluoropentyl)-3-(2-iodobenzoyl)indole 

bk-MBDB 2-methylamino-1-(3,4-methylenedioxyphenyl)butan-1-one  

BZP 1-benzylpiperazine  

CB-13 Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl) methanone 

DLLME Dispersive Liquid/Liquid Microextraction  

EI Electron ionization 

EMCDDA European Monitoring Centre of Drug and Drug Addiction 

ESI Electrospray ionization 

ETP  Ethylphenidate 

GC-MS Gas chromatography-mass spectrometry  

IS Internal standard 

https://en.wikipedia.org/wiki/Phenethylamine
https://en.wikipedia.org/wiki/Electron_ionization
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IV Intravenous  

JWH-007 1-pentyl-2-methyl-3-(1-naphthoyl)indole 

JWH-016 (1-butyl-2-methyl-1H-indol-3-yl)-1-naphthalenyl-methanone 

JWH-018 1-pentyl-3-(1-naphthoyl)indole 

JWH-019 1-hexyl-3-(naphthalen-1-oyl)indole 

JWH-073 Naphthalen-1-yl-(1-butylindol-3-yl) methanone 

JWH-081 4-methoxynaphthalen- 1-yl- (1-pentylindol- 3-yl)methanone 

JWH-098 4-methoxynaphthalen-1-yl-(1-pentyl-2-methylindol-3-yl)methanone 

JWH-147 (1-hexyl-5-phenyl-1H-pyrrol-3-yl)-1-naphthalenyl-methanone 

JWH-200 (1-(2-morpholin-4-ylethyl)indol-3-yl)-naphthalen-1-ylmethanone 

JWH-203 1-pentyl-3-(2-chlorophenylacetyl)indole 

JWH-210 4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone 

JWH-250 1-pentyl-3-(2-methoxyphenylacetyl)indole 

JWH-251 1-pentyl-3-(2-methylphenylacetyl)indole 

JWH-302 1-pentyl-3-(3-methoxyphenylacetyl)indole 

JWH-307 (5-(2-fluorophenyl)-1-pentylpyrrol-3-yl)-naphthalen-1-ylmethanone 

JWH-398 1-pentyl-3-(4-chloro-1-naphthoyl)indole 

LC Liquid chromatography  

LC-HRMS Liquid chromatography–high resolution mass spectrometry 

LC-MS/MS Liquid chromatography – tandem mass spectrometry 

LC-QTOF MS Liquid chromatography quadrupole time-of-flight mass spectrometry  

LLE Liquid-liquid extraction 

LOD Limit of detection 
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LOQ Limit of quantification 

mCPP meta-Chlorophenylpiperazine  

MDA 3,4-methylenedioxyamphetamine 

MDAI 5,6-methylenedioxy-2-aminoindane 

MDMA 3,4-methylenedioxymethamphetamine   

MDPA 3,4-methylenedioxy-N-propyl-amphetamine 

MDPV Methylenedioxypyrovalerone  

MeOH Methyl alcohol (methanol) 

MMB-2201 Methyl (1-(5-fluoropentyl)-1H-indole-3-carbonyl)-L-valinate 

MP Mobile phase 

MS Mass spectrometry 

MS/MS Tandem mass spectrometry  

NaOH Sodium hydroxide 

NPS New psychoactive substances 

QC Quality control 

RCS-4 1-pentyl-3-(4-methoxybenzoyl)indole 

RCS-8 1-(2-cyclohexylethyl)-3-(2-methoxyphenylacetyl)indole 

S/N Signal to noise ratio  

SoHT Society of hair drug testing 

SPE Solid phase extraction 

THC-d3 Tetrahydrocannabinol-d3 

UHPLC-MS/MS Ultra-high-performance liquid chromatography – tandem mass spectrometry  

UNODC United Nations Office on Drugs and Crime  
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WDR World drug report 

XLR-11 (1-(5-fluoropentyl)-1H-indol-3-yl) (2,2,3,3-tetramethylcyclopropyl)methanone 

μ-SPE Micro solid phase extraction   
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4. INTRODUCTION 

4.1 New psychoactive substances (NPS) 

In the recent years, an increasing global concern has been arisen over the rapid 

emergence of new substances in the market of illicit psychotropic drugs. New 

Psychoactive Substances (NPS) belong to several chemical classes, including but not 

limited to synthetic cannabinoids, cathinones, phenethylamines and piperazines and 

they are commonly sold via the internet as legal substitutes for classical drugs of abuse.  

The number of newly NPS, as reported by the European Monitoring Centre of Drug 

and Drug Addiction (EMCDDA) and the United Nations Office on Drugs and Crime 

(UNODC), increases each year (1, 2). NPS have been synthesized to evade existing 

drug laws, usually by altering the chemical structures of illegal drugs or by finding 

compounds with different structures that produce effects similar to those of existing 

stimulant, hallucinogenic, psychedelic, sedative, dissociative or euphoric drugs. As 

soon as NPS are scheduled, new derivatives appear in the market. Therefore, according 

to the 2014 Flash Eurobarometer 3 per cent of young adults (ages 16-24) have reported 

using NPS (2). 

Furthermore, the use of NPS as adulterants of stimulant recreational controlled drugs, 

has recently been documented as a new worrying phenomenon (3).  

Despite the increasing number of NPS and the fact that fatal and acute intoxication 

cases have been already attributed to this novel class of compounds (4, 5) this 

phenomenon appears to be considerably underestimated, mainly due to the substantial 

lack of comprehensive screening methods for their detection in biological samples.   

This rapid increase of NPS sets new challenges not only in drug prevention and 

legislation but also in clinical and forensic toxicology. The acute and chronic toxicity 

of many of these compounds is unknown and only little information is available on the 

pharmacology and toxicology, toxicokinetics, or detectability in body samples of such 

new compounds. There is a need for evidence-based treatment recommendations for 

acute intoxications and a demand for new strategies in analyzing these substances in 

clinical and forensic cases (6, 7).  

Development of analytical methods for the determination of NPS both in traditional 

and alternative matrices is of great importance to investigate drug metabolism and to 
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associate intake to clinical outcomes and eventual intoxication symptoms, as well as to 

provide evidence in forensic cases (human performance and post-mortem cases). 

 

4.1.1 Synthetic cannabinoids  

Synthetic cannabinoids are a class of substances that differ from the cannabinoids 

occurred in cannabis plants but which also bind to cannabinoid receptors. They are 

usually marketed as designer drugs or sold in products claiming that they give the 

effects of cannabis. When these drugs are sprayed or otherwise soaked into a plant or 

other base material the blend is sometimes misleadingly marketed as synthetic 

marijuana. These synthetic marijuana products are sold for recreational drug use.  

There are several psychoactive synthesized cannabinoid families such as AM-xxx, HU-

xxx, JWH-xxx, CP-xx that are sprayed onto plant material that is then sold under brand 

names like K2 and Spice both of which are now often used as generic terms for any 

synthetic cannabinoid product. 

They have been sold in head shops, online, and other stores. Studies have associated 

synthetic cannabinoid use with psychotic episodes days after use, some of which have 

resulted in death.  These blends are often marketed as herbal incense or "herbal smoking 

blends", and the products are commonly consumed through smoking (8). 

Synthetic cannabinoids frequently induce adverse effects which lead to hospitalization 

(9); they are potent drugs capable to cause intoxication and death (10). Many substances 

have been banned in many countries, although gaps remain and new compounds 

continue to emerge on a regular basis (8, 11). 

As reported in the world drug report (WDR) 2016 the global market for synthetic NPS 

continues to be dominated by synthetic cannabinoids.  In Europe, significant seizures 

of synthetic cannabinoids were recorded: 5.4 tons of synthetic cannabinoids were seized 

in 2014 (mainly in Cyprus and Turkey), compared with 1.2 tons in 2013. Moreover, 

between 2012 and 2014, most substances reported for the first time to the UNODC 

belonged to the group of synthetic cannabinoids (12). 

 

 

https://en.wikipedia.org/wiki/Cannabinoids
https://en.wikipedia.org/wiki/Binding_affinity
https://en.wikipedia.org/wiki/Cannabinoid_receptors
https://en.wikipedia.org/wiki/Designer_drugs
https://en.wikipedia.org/wiki/Effects_of_cannabis
https://en.wikipedia.org/wiki/Recreational_drug_use
https://en.wikipedia.org/wiki/Psychoactive
https://en.wikipedia.org/wiki/Cannabinoid
https://en.wikipedia.org/wiki/Head_shop
https://en.wikipedia.org/wiki/Herbal_incense
https://en.wikipedia.org/wiki/Adverse_effects
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4.1.2 Synthetic cathinones 

Synthetic cathinones are an emerging class of designer drugs abused of due to their 

psychostimulant and hallucinogenic effects, similar to those of cocaine, 3,4-

methylenedioxymethamphetamine (MDMA), amphetamines and methamphetamines 

(5). Indeed, they are marketed as cheap substitutes for the latter compounds. They are 

chemically related to cathinone, a stimulant found in the khat plant, which grows in 

East Africa and Southern Arabia, and people sometimes chew its leaves for their mild 

stimulant effects. Synthetic variants of cathinone can be much more potent than the 

natural product and, in some cases, very dangerous or even lethal (13). A number of 

synthetic cathinones related deaths has been published (5). 

Synthetic cathinones, referred to as "bath salts" (14), can be found in the form of a 

brown or white crystal-like powder and are sold in small foil or plastic packages 

labelled as "not for human consumption", "jewellery cleaner", "plant food" or "phone 

screen cleaner". They are available online and in drug paraphernalia stores under a 

variety of brand names, such as Flakka, Cloud Nine, Lunar Wave, White Lightning, 

Bloom, Scarface and Vanilla Sky. In 2013, European countries reported more than 110 

NPS products containing a combination of up to seven different NPS compounds sold 

as one product. Synthetic cannabinoids were found to be present in more than 55 % of 

these NPS products, and synthetic cathinones were present in more than 25 % (12). 

In some countries, shortage of heroin and an increase in local availability of synthetic 

cathinones contributed to high-risk drug users switching to injecting NPS, primarily 

synthetic cathinones, as reported by WDR 2016. New synthetic cathinones are 

continuously emerging; although data collection for 2015 is still in progress, 75 new 

substances have been reported to UNODC for the first time, among which 20 belong to 

synthetic cathinones group compared to 21 newly emerged synthetic cannabinoids. 

Moreover, global seizures of synthetic cathinones have been steadily increasing since 

they were first reported in 2010. Those seizures tripled between 2013 and 2014, 

reaching 1.3 tons. Most synthetic cathinones were seized in Europe and in East and 

South-East Asia (12).  
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4.1.3 Ethylphenidate (ETP) 

Ethylphenidate (ethyl 2-phenyl-2-(piperidin-2-yl) acetate, ETP) is a psychostimulant 

NPS that inhibits reuptake of both dopamine and noradrenaline. It is an analogue of 

methylphenidate first reported to the EMCDDA in 2011 by the UK (15) and often sold 

under the street name ‘Nopaine’ or ‘Gogaine’. ETP is also produced in vivo as a 

metabolite following the co-ingestion of methylphenidate and ethanol (16), first 

reported in two cases of methylphenidate overdose in 1999 (17). In 2014, ETP was first 

detected in postmortem blood following its abuse (18). 

Recreational ETP use has been described on internet drug forums since 2010. ETP is 

thought to provide a stronger stimulant effect than cocaine and an empathogenic effect 

similar to ecstasy and mephedrone. Desirable effects for the user include euphoria, 

alertness, a general mood lift and increased social skills. However, this drug causes a 

range of unwanted effects, including chest pain, palpitations, agitation, nasal pain and 

irritation, bruxism, and abdominal and testicular pain. ETP has a far greater 

dopaminergic selectivity compared to methylphenidate, which may increase its 

dependence potential. Common routes of administration of ETP are insufflation and 

intravenous (IV) injection, with significant risks of infections associated with IV drug 

use (19, 20). 

Some scientific reports on acute and chronic poisoning attributed to ETP and related 

fatalities have been published (18, 21-26). One of the major concerns about ETP, 

reported by users in more than one internet forums, is “a persistent impulse to 

redosing”. The long-term abuse potential is hard to determine, even if its pharmacology 

suggests that there is a significant risk of abuse (25). Only a few ETP long-term effects 

have been reported and only one case report of dependence has been documented (22-

24). 

 

4.1.4 Benzofuran analogues  

Benzofurans are psychoactive substances structurally very similar to the popular 

recreational drug MDMA and its active metabolite 3,4-methylenedioxyamphetamine 

(MDA). These compounds were originally synthesized for research purposes, 

specifically 5-(2-aminopropyl)-benzofuran (5-APB) and 6-(2-aminopropyl)-
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benzofuran (6-APB) were synthesized to examine the role of the MDA dioxyle ring 

structure when interacting with serotonergic neurons. 

These two benzofurans appeared in the drug market in 2010–2011. Since then, the 

presence of benzofurans in the illicit drug market has rapidly increased (27, 28). In 

2012, 6-APB was amongst the most frequently offered NPS in online shops (29). 

Moreover, in 2013 benzofurans were one of the four most frequently detected NPS in 

the Netherlands (28). In Italy, 4-APB and 6-APB were also detected in seized materials 

analyzed in an Italian forensic toxicology laboratory in the period 2013-2015 (30). 

Information regarding the desired effects of benzofurans is limited only to online user 

forums. These reports indicate increased empathy, euphoria, visual stimulation, 

appreciation for music and dancing and an increase in mood and self-acceptance, 

among positive effects (31-32). Nevertheless, users have reported multiple adverse 

effects of benzofurans, e.g., nausea, bruxism, dry mouth and eyes, diarrhea, sensitivity 

to light, palpitations, increased heart rate, blood pressure and temperature, hot flushes, 

headaches, drowsiness and clonus of the hands and feet. Also, psychological symptoms 

have been reported, such as hallucinations, depression, anxiety, panic attacks, insomnia, 

severe paranoia and psychosis. Furthermore, some users also reported an unpleasant 

‘comedown’ that could last for several days (31-33). Main routes of administration of 

benzofurans include nasal insufflation of powder and ingestion. 

To date, only a few scientific reports on acute benzofuran-related poisoning and fatal 

case reports are available in literature (32-38). There are no published reports on 

dependence to benzofurans (31). Neither have the long-term effects of regular use of 

these NPS been reported, nor has their chronic use been analytically confirmed by hair 

analysis.  

 

4.2 Methods for the determination of NPS in biological samples 

4.2.1 Blood and urine 

Analytical methods for the simultaneous determination of NPS belonging to different 

chemical classes as well as case reports (acute intoxications/fatalities) where one or 

more NPS were detected in blood and/or urine have been reported in the scientific 

literature (4, 5, 39-41).  
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4.2.1.1 Blood 

The blood concentration of different NPS varies from class to class and it highly 

depends on the route of administration. For instance, the concentration of the 

unchanged synthetic cannabinoids in blood is very low (ng/ml) even in fatal cases, 

whereas concentrations in the range of μg/ml were found in mephedrone related 

intoxications and fatalities (5, 42). 

Adamowicz et al developed a fast and simple liquid chromatography – tandem mass 

spectrometry (LC-MS/MS) screening procedure for 143 NPS coming from different 

groups such as cathinones, phenethylamines, tryptamines, piperazines, piperidines, 

synthetic cannabinoids, arylalkylamines, arylcyclohexylamines, aminoindanes, and 

other drugs in blood. The sample pretreatment was easy and fast, employing only 

precipitation of 0.2 ml blood sample with 0.6 ml acetonitrile. The limit of detection 

(LOD) values were estimated for 104 drugs and ranged from 0.01 to 3.09 ng/ml. The 

extraction recoveries determined for 32 substances were between 1.8 and 133%. The 

procedure was successfully applied to the analysis of forensic blood samples in routine 

casework (43).  

Vaiano et al developed and fully validated a LC–MS/MS screening method for the 

simultaneous detection of 69 substances, including 64 NPS belonging to different 

chemical classes and 5 ‘‘traditional’’ amphetamines in blood. The method was very 

fast, easy to perform and cheap as it only required the deproteinization of 0.2 ml blood 

sample with acetonitrile. The achieved limit of quantification (LOQ) values ranged 

from 0.1 to 0.5 ng/ml and the method was linear from 1 to 100 ng/ml. Precision and 

accuracy were acceptable at any quality control (QC) level and recovery efficiency 

ranged from 72 to 110%. Matrix effects did not negatively affect the analytical 

sensitivity. The validated method was successfully applied to three authentic samples 

allowing identification and quantification of: mephedrone and methamphetamine (post-

mortem); ketamine, MDMA and MDA (post-mortem); and AB-FUBINACA (ante-

mortem) (44). 

Another research group developed and validated a method for the simultaneous 

determination of different classes of NPS (synthetic cannabinoids and their metabolites, 

cathinones and phenethylamines) directly on whole blood (0.1 ml) without anti-

coagulants employing micro solid phase extraction (μ-SPE) and LC–MS/MS. 
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Recoveries ranged from 21% to 70%; matrix effect was lower than 15% for all the 

substances under investigation. LOQ values were 5 ng/ml for cathinones and 

phenethylamines, between 0.25 and 1 ng/ml for synthetic cannabinoids and up to 2.5 

ng/ml for synthetic cannabinoid metabolites (45). 

A gas chromatography – mass spectrometry (GC-MS) assay has been validated for 

qualitative and quantitative determination of a number of NPS belonging to synthetic 

cathinones and phenethylamines in 0.25 ml pericardial fluid and whole blood. The 

method included mixed-mode solid phase extraction, followed by microwave fast 

derivatization. Linearity ranged from 5 to 600 ng/ml. Intra- and inter-day precision 

ranged between 0.1 and 13.6%, while accuracy from 80 to 120% interval from the 

nominal concentration at all tested levels. The extraction efficiencies ranged from 76.6 

to 112.8%. The method was applied to real samples (46). 

Odoardi et al developed an ultra-high-performance liquid chromatography - tandem 

mass spectrometry (UHPLC-MS/MS) screening assay for the determination of 78 NPS 

of different classes in blood samples. The extraction of analytes was achieved by 

Dispersive Liquid/Liquid Microextraction (DLLME), a very rapid, cheap and efficient 

extraction technique that needs small amount of organic solvents. LODs ranged from 

0.2 to 2 ng/ml. The method was then applied to 60 authentic specimens from forensic 

cases, demonstrating its suitability for the screening of a broad range of NPS (47). 

 

4.2.1.2 Urine 

Although detection of substances in blood suggests recent exposure and associate 

intoxication to the causative compound, urine is still the most preferred testing matrix 

in clinical and forensic settings (48).  

Concheiro et al developed a liquid chromatography-high resolution mass spectrometry 

(LC-HRMS) method for the simultaneous determination of 40 novel psychoactive 

stimulants (8 piperazines, 4 designer amphetamines and 28 synthetic cathinones and 4 

metabolites) in urine. The method was applied to real urine samples (n=62). One-

hundred μl urine was subjected to solid phase cation exchange extraction. The 

chromatographic reverse-phase separation was achieved in 20 min (48). 
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A multi-component LC–MS/MS method was developed and validated for the detection 

and quantification of 11 designer benzodiazepines in urine. The method employed 

dilution of urine with internal standard (IS) and hydrolysis of any glucuronide 

conjugated forms. Separation of the analytes was achieved on a BEH Phenyl column, 

followed by tandem mass spectrometry (MS/MS) detection in positive electrospray 

ionization mode (ESI). The method was applied to study the occurrence of designer 

benzodiazepines in Sweden in 2014–2015, by analysis of 390 specimens retrieved from 

a routine drug testing laboratory. Forty percent of the latter specimens, selected based 

on a positive immunoassay benzodiazepine screening but a negative mass spectrometry 

(MS) confirmation for the common set of prescription benzodiazepines, were found 

positive to designer benzodiazepines. These findings stress the importance of 

employing and updating confirmation methods to include the increasing number of 

designer benzodiazepines appearing in the NPS market (49). 

A research group developed and validated a LC-MS/MS method for simultaneous 

identification of traditional drugs of abuse, benzodiazepines and NPS in urine. The 

samples were undergone liquid-liquid extraction (LLE) and passed through a 0.22-mm 

polyvinylidene difluoride filter before injection into the chromatographic system. LOQ 

values ranged from 0.5 ng/mL to 31.3 ng/ml. The linearity ranged from 0.5 ng/ml to 

200 ng/ml. The precision results were below 15.4% (intra-day) and 18.7% (inter-day). 

The assay was applied to 769 urine specimens. The most common drugs identified were 

ketamine, amphetamine, and opiates (50).  

Bell et al developed a rapid multi-analyte screening method, using UHPLC-MS/MS for 

the analysis of 8 new designer drugs in urine following a 1:4 dilution of urine with 

mobile phase (MP). Although all target analytes were readily detected at 500 ng/ml, a 

cut-off of 1000 ng/ml was chosen to mirror the amphetamine screening cut-off 

commonly used for routine analysis of workplace drug testing samples. The authors 

concluded that direct analysis using LC-MS/MS offers an attractive way for the 

development of a rapid routine screen for NPS (51). 

 

 

 

 

 



18 
 

4.2.2 Hair 

Hair testing for drugs of abuse was introduced over 60 years ago (52) and appears to be 

one of the most efficient tools to investigate drug-related history (53), due to the greater 

window of detection compared to that of blood and urine. Hair has been recently 

characterized as a peculiar tissue which ‘‘keeps memory’’ of the past history of drug 

intake of the subject (54). 

Hair drug testing has gained increased interest and recognition over the past two 

decades and its application has been expanded in both forensic and clinical toxicology.  

Hair is recognized as a complimentary testing matrix and is widely used with samples 

routinely collected during criminal investigations. Hair testing has been successfully 

applied for consumption history of classical drugs of abuse and it is used to monitor 

drug usage during drug rehabilitation programs (55); in post- mortem cases (56); in 

workplace drug testing (57); driving license regranting (58) and in child custody cases 

(59, 60). In the light of that, similarly to what happened with traditional drugs of abuse, 

assays for the determination of NPS and eventual metabolites in hair are in continuous 

development due to the high demand for the detection of the latter substances both in 

clinical and forensic cases.   

The currently available methods for screening and quantitative analysis of NPS in hair 

were recently the subject of a comprehensive review with 54 references (61). The 

authors documented a wide variety of analytical methods for determination of NPS in 

hair and presented a concise table providing LOD and LOQ values as well as precision 

and accuracy for each method. 

Methods for the determination of NPS in hair, are in continuous development together 

with some existing analytical methods for hair testing which are expanded to include 

as many NPS as possible due to an increasing demand to disclose their eventual 

presence in hair of users. Some studies have been carried out for the evaluation of the 

prevalence and diffusion of NPS. Re-analysis of previously tested hair samples for 

common drugs of abuse revealed some positive results for these new psychoactive 

compounds suggesting on the one hand their underestimated prevalence in users of 

recreational drugs and on the other a hand the need for NPS screenings to be routinely 

employed both in forensic and clinical toxicology. 
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Advances in MS technology enabled the improvement of sensitivity so that these novel 

substances, whose used doses are in the majority of cases unknown can be detected at 

low concentrations, i.e. pg per mg hair whereas traditional drugs of abuse are usually 

in the range of ng per mg keratin matrix. 

Hyphenated mass spectrometric techniques are indispensable tools in clinical and 

forensic toxicology and doping control. Whereas GC-MS in the electron ionization (EI) 

mode plays a major role particularly in comprehensive screening procedures because a 

very large collection of reference spectra is available and the cost of the instrument is 

not excessive, LC coupled with different mass analyzer types is becoming more and 

more a standard technique for automated target screening procedures and particularly 

for high -throughput quantification. Indeed, LC-MS has shown to be an ideal 

supplement, especially for detection of more polar, unstable or low-dose drugs (62-67). 

Although very few GC-MS methods have been described for the determination of NPS 

in hair, the vast majority of studies conducted on this regard use LC-MS/MS or 

UHPLC–MS/MS. Moreover, liquid chromatography quadrupole time-of-flight mass 

spectrometry (LC-QTOF MS) and LC-HRMS have also been used with achieved LODs 

at decimal picograms.  

However, limitations, common with the published procedures for traditional 

psychotropic drugs such as the difficulty in evaluating the real performance of the 

extraction procedure due to the lack of certified reference hair specimens with known 

drug content and lack of a protocol for washing procedures, should not be 

underestimated. 

 

4.2.3 Alternative biological matrices 

Determination of NPS and their metabolites in biological fluids or matrices other than 

blood or urine may be of interest in certain areas of drug concentration monitoring (68), 

since blood and urine drug testing may fail to document drug use when samples are 

collected at inconvenient times. Oral fluid is the only fluid which can be used 

successfully as a substitute for blood in therapeutic drug monitoring (69), while an 

individual's past history, can be obtained from hair or nails drug analysis. Drug 

concentrations in the bile and faeces can account for excretion of drugs and metabolites 

other than by the renal route. Furthermore, it is important that certain matrices (tears, 
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cerebrospinal fluid, bronchial secretions, peritoneal fluid and interstitial fluid) are 

analyzed, as these may reveal the presence of a drug at the site of action; others (fetal 

blood, amniotic fluid and breast milk) are useful for determining fetal and perinatal 

exposure to drugs.  

For all these reasons, drug concentration measurement in nonconventional matrices and 

fluids, although sometimes expensive and difficult to carry out, should therefore be 

considered for inclusion in studies of the pharmacokinetics and pharmacodynamics of 

new drugs (68).  

NPS have been determined in various alternative matrices including stomach content 

(70), vitreous humour (46, 71), meconium (72), brain, heart, lung, liver, kidney, spleen, 

and pancreas (42, 73, 74). However, the vast majority of the literature focuses on two 

alternative matrices: hair and oral fluid. In this concern, recently Øiestad et al. published 

a comprehensive review on the trends in analytical methods for the detection and/or 

quantification of NPS in oral fluid (75).  

 

4.3 Ultra-high-performance liquid chromatography – tandem mass 

spectrometry (UHPLC-MS/MS) 

(UHP)LC-MS/MS is a powerful hyphenated technique which combines the physical 

separation capabilities of liquid chromatography (LC) with the outstanding qualitative 

efficiency of MS. It has gained enormous growth both in forensic and clinical 

laboratories the last 20 years due to its superior analytical specificity over conventional 

high-performance liquid chromatography - mass spectrometry (HPLC - MS) and GC-

MS (76). It is a powerful technique used for many applications which has very high 

sensitivity and selectivity. Generally, its application is oriented towards the general 

detection and potential identification of chemicals in the presence of other chemicals 

(in a complex mixture). The technique has both qualitative and quantitative uses such 

as identifying unknown compounds and quantifying the amount of a compound in a 

sample. 
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Figure 1: Triple quadrupole MS diagram (77) 

   

 

Figure 2: From left to right: An ultra-high-performance liquid chromatography system 

(Waters Acquity UPLC) and a triple quadrupole mass spectrometer (Waters Xevo TQ) 

(78, 79) 
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5. AIMS 

The aim of this project was the development and validation of a simple and rapid 

UHPLC–MS/MS screening method for the determination of 49 NPS belonging to 

different chemical classes (synthetic cannabinoids, synthetic cathinones, benzofurans, 

aminoindanes, phenethylamines, piperazines and piperidines) in serum, urine and hair 

extracts in a single run, following rapid and easy sample pre-injection treatment; and 

the application to authentic samples (serum, urine and hair) collected from an 

intoxication case after the consumption of NPS and hair samples obtained by illicit 

drugs consumers who attended Drug Addiction Services or Care Emergency 

Departments (ED). 
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6. EXPERIMENTAL 

 

6.1 Chemicals and reagents 

All drug standards as reported in Table 1 were supplied from LGC standards (Milan, 

Italy) apart from 5-(2-Methylaminopropyl)benzofuran hydrochloride (5-MAPB), 5-

APB hydrochloride and 5-(2-ethylaminopropyl)benzofuran hydrochloride (5-EAPB) 

solutions which were purchased from Cayman Chemical (Cayman Chemical, MI, USA) 

and (±)-threo-Ethylphenidate (ETP) hydrochloride solution which was supplied from 

Sigma (Sigma-Aldrich, Barcelona, Spain).  

Water, acetonitrile, formic acid and methyl alcohol were obtained from Sigma-Aldrich 

(Milano, Italy). Phree Phospholipid Removal tube, SPE columns were purchased from 

Phenomenex (Macclesfield, UK). 

All other chemicals used for experiments were analytical reagent or HPLC grade from 

commercial resources. 
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Table 1. List of analytes with their chemical groups, retention times and quantification and confirmation MRM transitions together with 

optimized cone voltages and collision energies  

 MRM transitions 

Analyte Chemical 

group 

RT 

(min) 

Quantification Confirmation 

 m/z CV (V) CE (eV) m/z CV (V) CE (eV) 

MDAI Aminoindane 2.20 178.2 ˃ 130.7 20 20 178.2 ˃ 103.2 20 20 

Methcathinone Cathinone 2.20 164.2 ˃ 131.0 20 20 164.2 ˃ 146.2 20 20 

Dimethylcathinone Cathinone 2.25 178.3 ˃ 105.1 26 20 178.3 ˃ 72.2 26 20 

Methylone Cathinone 2.25 208.2 ˃ 160.2 22 18 208.2 ˃ 132.3 22 26 

4-fluoromethcathinone Cathinone 2.32 182.3 ˃ 149.1 24 20 182.3 ˃ 123.1 24 20 

Ethylone Cathinone 2.38 222.2 ˃ 174.1 26 16 222.2 ˃ 204.2 26 16 

Methedrone Cathinone 2.40 194.3 ˃ 161.1 18 20 194.3 ˃ 146.0 18 26 

Buphedrone Cathinone 2.45 178.3 ˃ 91.1 22 20 178.3 ˃ 160.0 22 12 

4-FA Phenethylamine 2.48 154.2 ˃ 136.7 20 10 154.2 ˃ 109.3 20 10 

Butylone Cathinone 2.48 222.2 ˃ 174.2 22 18 222.2 ˃ 131.3 22 34 
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Mephedrone Cathinone 2.59 178.2 ˃ 145.3 20 20 178.2 ˃ 159.8 20 20 

4 methylethcathinone Cathinone 2.71 192.3 ˃ 144.4 22 28 192.3 ˃ 119.2 22 24 

Pentedrone Cathinone 2.75 192.3 ˃ 132.1 26 18 192.3 ˃ 174.2 22 14 

Pentylone Cathinone 2.76 236.2 ˃ 188.3 24 18 236.2 ˃ 131.2 24 36 

5-APB Benzofuran 2.80 176.4 ˃ 131.0 15 15 176.4 ˃ 159.4 15 12 

m-CPP Piperazine 2.85 197.2 ˃ 154.0 22 22 197.2 ˃ 119.2 22 25 

3,4-dimethylmethcathinone Cathinone 2.89 192.1 ˃ 159.1 22 20 192.1 ˃ 174.1 22 20 

5-MAPB Benzofuran 2.90 190.3 ˃ 131.1 20 20 190.3 ˃ 159.1 20 12 

2 C-B Phenethylamine 2.94 260.1 ˃ 228.0 20 22 260.1 ˃ 213.0 20 32 

MDPV Cathinone 2.96 276.3 ˃ 175.1 20 22 276.3 ˃ 126.3 20 22 

5-EAPB Benzofuran 3.03 204.4 ˃ 131.1 20 20 204.4 ˃ 159.0 15 15 

ETP Piperidine 3.26 248.3 ˃ 84.2 26 15 248.3 ˃ 248.3 26 5 

Pravadoline Cannabinoid 3.48 379.4 ˃ 135.1 28 18 379.4 ˃ 77.1 28 54 

Naphyrone Cathinone 3.54 282.2 ˃ 141.4 34 20 282.2 ˃ 155.2 34 28 

AM-2233 Cannabinoid 3.57 459.2 ˃ 231.0 26 34 459.2 ˃ 98.1 26 28 
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JWH-200 Cannabinoid 3.74 385.3 ˃ 155.1 30 20 385.3 ˃ 114.2 30 26 

MMB-2201 Cannabinoid 5.11 363.3 ˃ 232.2 20 16 363.3 ˃ 144.1 20 40 

AM-694 Cannabinoid 5.50 436.2 ˃ 231.0 38 26 436.2 ˃ 203.1 38 44 

5F-ADB Cannabinoid 5.64 378.3 ˃ 318.2 26 16 378.3 ˃ 233.1 26 24 

AM-2201 Cannabinoid 5.72 360.0 ˃ 155.1 40 28 360.0 ˃ 232.1 40 28 

RCS-4 Cannabinoid 5.85 322.3 ˃ 135.1 38 24 322.3 ˃ 214.2 38 24 

JWH-250 Cannabinoid 5.93 336.03 ˃ 121.2 32 15 336.03 ˃ 200.1 32 24 

JWH-302 Cannabinoid 5.94 336.2 ˃ 121.1 32 20 336.2 ˃ 214.2 32 30 

JWH-073 Cannabinoid 6.00 328.0 ˃ 155.1 38 22 328.0 ˃ 127.2 38 38 

XLR-11 Cannabinoid 6.06 330.4 ˃ 125.2 68 22 330.4 ˃ 232.2 68 24 

JWH-251 Cannabinoid 6.11 320.3 ˃ 105.1 38 24 320.3 ˃ 214.2 38 26 

JWH-203 Cannabinoid 6.13 340.3 ˃ 125.1 38 26 340.3 ˃ 188.2 38 20 

JWH-018 Cannabinoid 6.24 342.3 ˃ 155.2 40 24 342.3 ˃ 127.2 40 50 

JWH-016 Cannabinoid 6.25 342.3 ˃ 155.2 38 24 342.3 ˃ 127.2 38 50 

JWH-081 Cannabinoid 6.33 372.2 ˃ 214.2 40 25 372.2 ˃ 185.3 40 25 
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JWH-019 Cannabinoid 6.38 356.4 ˃ 155.1 40 24 356.4 ˃ 127.1 40 44 

JWH-098 Cannabinoid 6.42 386.3 ˃ 185.1 38 26 386.3 ˃ 228.2 38 20 

JWH-307 Cannabinoid 6.42 386.3 ˃ 155.1 32 20 386.3 ˃ 127.1 32 48 

JWH-007 Cannabinoid 6.49 356.3 ˃ 155.1 38 26 356.3 ˃ 127.2 38 48 

RCS-8 Cannabinoid 6.50 376.4 ˃ 121.1 34 22 376.4 ˃ 91.1 34 50 

JWH-398 Cannabinoid 6.63 376.4 ˃ 189.1 40 28 376.4 ˃ 161.1 40 42 

JWH-210 Cannabinoid 6.64 370.3 ˃ 183.1 36 24 370.3 ˃ 214.2 36 24 

JWH-147 Cannabinoid 6.70 382.4 ˃ 155.1 32 20 382.4 ˃ 127.1 32 50 

CB-13 Cannabinoid 7.13 369.3 ˃ 155.1 36 24 369.3 ˃ 171.1 36 28 

MDPA IS 2.80 222.2 ˃162.9 20 15    

THC-d3 IS 6.66 318.3 ˃196.3 20 25    
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6.2 Biological material 

Drug-free (blank) serum and urine samples, used for the development and validation of 

the method were obtained from a regional hospital from individuals with no drug-

related history. Drug-free hair specimens were collected and donated by professional 

hairdressers. 

 

6.3 Standard, working solutions, calibrators and QCs 

All the standards were available at the concentration of 0.1 mg/ml in methyl alcohol 

and were kept at – 20 °C. Mix working solutions containing all the 49 analytes (see 

analyte list in Table 1) were prepared by dilution of the appropriate volume of stock 

standard solutions in methyl alcohol to obtain final concentrations of 1000, 100 and 10 

ng/ml for hair testing and 1 and 0.1 µg/ml for serum and urine analysis. Mix IS working 

solution was prepared at the concentration of 0.5 μg/ml and 100 ng/ml for serum and 

urine analysis and hair testing, respectively. All working solutions were also stored at 

– 20 °C in amber glass vials. 

Blank serum, urine and hair were evaluated to ensure absence of detectable analytes 

prior to fortification with working solutions to prepare calibrators and QCs. Addition 

of proper volume of mix standard working solutions in 1 ml blank serum, urine and 25 

mg of hair created calibrators at 1, 5, 10, 50, 100 ng/ml, 1, 2.5, 5, 10, 50, 100 ng/ml and 

1, 5, 10, 50, 100 pg/mg, respectively.  

Three QC samples (low, medium, high) were prepared at the concentration of 1.2, 40 

and 85 ng/ml in serum and 5, 40 and 85 ng/ml in urine. One ml of blank serum and 

urine were spiked with proper volumes of mix standard working solutions. The latter 

standards used for the fortification of blank serum and urine to yield QC samples were 

separately prepared from the ones used for the preparation of calibrators. 

 

6.4 Hair preparation approaches evaluated during method development 

Different extraction procedures were tested in order to choose the most suitable one for 

the majority of the analytes. The initial aim was to find an extraction method that could 

be used to simultaneously recover all the compounds. The following tests were carried 
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out: a) digestion of 25 mg hair using NaOH 1M (30 min at r.t) and extraction either 

with ethyl acetate or a mixture of hexane:ethyl acetate 80:20, evaporation, 

reconstitution in MP A:B, 80:20, b) the same as (a) but the digestion was performed by 

overnight incubation at 45°C, c) extraction of 25 mg hair in 1.5 ml methyl alcohol:CCl3, 

9:1, evaporation, reconstitution in MP A:B, 80:20, d) digestion of 25 mg hair using 

NaOH 1M (1 h at 90°C) and extraction after: 1) neutralization, 2) acidification, 3) 

without changing pH, either with ethyl acetate or a mixture of hexane:ethyl acetate 

80:20, evaporation, reconstitution in MP A:B, 80:20 and e) treatment of 25 mg hair 

with 0.5 ml M3 reagent for 1 h at 100 °C, 1:4 dilution with water and direct injection. 

Moreover, different reconstitution solvents, consisted of different percentages of MP A 

and B, were used to re-dissolve serum and hair dried extracts in order to choose the 

optimum one. Hundred percent MP A, 100% MP B, 20:80 MP A:B, 80:20 MP A:B, 

50:50 MP A:B, 30:70 MP A:B and 70:30 MP A:B, were tested. 

 

6.5 Sample preparation 

6.5.1 Serum 

Serum specimens (sample/QC/calibrator) (100 µl) were added with 10 µl mix IS 

solution at the concentration of 0.5 µg/ml (50 ng/ml) and 400 µl methyl alcohol. Vortex 

and ultracentrifugation at 13000 rpm for 10 minutes was followed. The supernatant was 

then collected and loaded directly into phospholipids removal cartridges. The cartridges 

(placed into clean glass vials) were vortex mixed and centrifuged at 3500 rpm at room 

temperature for 5 min. The filtrate was evaporated to dryness under gentle stream of 

nitrogen. The residue was reconstituted with 100 µl MP A:B, 80:20 and 10 µl were 

injected into the chromatographic system (See Figure 3). Whenever the real sample 

concentrations were found to exceed the highest calibration point, the extracts were 

appropriately diluted and re-injected into the chromatographic system. 
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Figure 3: Serum pre-injection treatment 

 

6.5.2 Urine  

Urine specimens (sample/QC/calibrator) were prepared for analysis by centrifuging at 

13000 rpm for 10 minutes. Following the addition of 10 µl mix IS solution at the 

concentration of 0.5 µg/ml (50 ng/ml) to 100 µl sample, the samples were vortex mixed 

for 30 s and then diluted 1:4 (v/v) with MP A:B, 80:20. The samples (10 µl) were then 

directly injected into the UHPLC-MS/MS system. The procedure is schematically 

given in Figure 4.  Whenever the real sample concentrations were found to exceed the 

highest calibration point, the extracts were opportunely diluted and re-injected into the 

chromatographic system.  

 

 

 

 

 

 

 

 

 

serum + mix IS + 

MeOH 

The supernatant was then loaded 

directly into phospholipids removal 

cartridges. The cartridges (placed 

into clean glass vials) were vortex 

mixed and centrifuged at 3500 rpm at 

room temperature for 5 min.  

Serum specimens (100 µl) were 

added with 10 µl mix IS solution and 

400 µl MeOH. Vortex and 

ultracentrifugation at 13000 rpm for 

10 minutes was followed. 

The filtrate was evaporated to 

dryness under gentle stream of 

nitrogen. The residue was 

reconstituted with 100 µl MP A:B, 

80:20 and 10 µl were injected into 

the UHPLC–MS/MS system. 
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Figure 4: Urine pre-injection treatment 

 

6.5.3 Hair 

Hair samples were washed twice with deionized water and twice with dichloromethane 

and left to dry after the removal of solvent washes. Once dried, were cut into 2 segments 

of 2 cm each and put into 2 different labelled vials, indicating the proximal and distal 

segment. Subsequently, the specimens were cut into small pieces (<1mm) with clean 

scissors. Aliquots of 25 mg finely cut hair samples were weighed and added with 25 μl 

of mix IS solution (100 ng/ml) yielding a final concentration of 100 pg/mg.   

A unique extraction procedure capable to recover all the analytes was not found due to 

the different physicochemical properties of the investigated substances; thus depending 

on the type of analytes to be extracted, two different procedures were followed:   

(a) For cathinones, piperazines, aminoindanes and phenethylamines: Overnight 

incubation under sonication at 45°C with 300 μl HCOOH 0.1%, centrifugation at 3500 

rpm for 5 min, injection of 10 μl of the extract into the chromatographic system;  

100 l urine 

Ultracentrifugation (13000 rpm, 10 min) 

Collection of the supernatant  

Addition of 10 µl mix IS 

Vortex mixing, dilution 1:4 (v/v) with 

MP A:B, 80:20.  

Direct injection of 10 µl into 

UHPLC-MS/MS  
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(b) For cannabinoids: Addition of 1 ml NaOH 1 M, incubation at 90 °C for 1h, 

extraction with 1 ml ethyl acetate (twice). After vortex and centrifugation at 3500 rpm 

for 5 min, the organic phases were collected and combined. The extracts were 

evaporated to dryness under gentle stream of nitrogen and reconstituted in 100 μl MP 

A:B, 80:20. After vortex mix, ultracentrifugation at 13000 rpm for 10 minutes was 

followed and 10 μl were injected in UHPLC-MS/MS (See Figure 5). Whenever the real 

sample concentrations were found to exceed the highest calibration point, the extracts 

were opportunely diluted and re-injected into the chromatographic system. 

 

 

Figure 5: Hair pre-injection treatment 
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6.6 Ultra-high-performance liquid chromatography – tandem mass 

spectrometry (UHPLC-MS/MS) 

Analytes in serum, urine and hair were detected using an ultra-high performance liquid 

chromatography system (Waters Acquity UPLC, Waters Corporation, Milan, Italy) 

coupled with a triple quadrupole mass spectrometer (Waters Xevo TQ, Waters 

Corporation). Chromatography was carried out using an Acquity UPLC BEH reversed 

phase C18 column (2.1 x 75 mm, 1.7 µm) and a gradient elution with two solvents: 

0.1% formic acid in water (solvent A) and acetonitrile (solvent B). Solvent B was 

maintained 1% for the first 0.50 min. It was increased to 100% from 0.50 to 6.50 min, 

then decreased back to 1% from 6.51 to 7.50 min and held at 1% from 7.51 to 15.00 

min for re-equilibration. The flow rate was kept constant at 0.30 ml/min during the 

analysis. 

The separated analytes were detected with a triple quadrupole mass spectrometer 

operated in multiple reaction monitoring (MRM) mode via positive ESI. The applied 

ESI conditions were: capillary voltage 2.5 kV, desolvation temperature 600ºC, source 

temperature 150ºC, cone gas flow rate 30 l/h, desolvation gas flow rate 1000 l/h and 

collision gas flow rate 0.13 ml/min. Optimized cone energy (CV) voltages, MRM 

transitions, collision energy (CE) voltages and retention time for each analyte and IS 

are given in Table 1. 
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7. VALIDATION  

Validation protocol applied in the present study included linearity, LOD and LOQ, 

precision, accuracy, matrix effect, recovery, and freeze-thaw stability for serum and 

urine, whereas only linearity, LOD and LOQ were evaluated for hair matrix (80).  

Validation parameters were calculated using five different daily replicates of QC 

samples (low, medium, and high QC) along three subsequent working days. Linearity 

was determined by least-squares regression with 1/x2 weighting. Acceptable linearity 

was achieved when the coefficient of determination was at least 0.990 and the 

calibrators were quantified within ±20% at the LOQ and ±15% at higher concentrations. 

The LOD and LOQ were evaluated with decreasing analyte concentrations in the 

different biological matrices. 

LOD was defined as the lowest analyte concentration that can be detected and identified 

with a given degree of certainty. Standard deviation (SD) of the mean noise level over 

the retention time window of each analyte was used to determine LOD. A minimum 

requirement for signal to noise ratio (S/N) of 3 is widely accepted. LOQ was the lowest 

concentration that met LOD criteria and a S/N of at least 10. Precision and accuracy 

were determined at the three QC samples concentrations by analyzing five replicates 

on three different days (n = 15) and expressed as the coefficient of variation (%) of the 

measured values and error (%) respectively, were expected to be less than 20%.  

Over-the-curve samples (drug free samples fortified with all the analytes at a 

concentration five or 10 times higher than the highest calibration point) were tested for 

calibration curve fitting, precision and accuracy once they were appropriately diluted.  

Matrix effects, recovery and process efficiency were determined using the experimental 

design proposed by Matuszewski et al. (81). Set 1 was five replicates of QC solutions 

prepared in the MP. Sets 2 and 3 were five replicates of blank samples fortified with 

QC solutions after and before extraction, respectively for serum and after and before 

dilution for urine. Matrix effects were determined by dividing mean peak areas of set 2 

by set 1 multiplied by 100. Recovery was determined by comparing the mean peak 

areas of compounds under investigation obtained in set 3 to those in set 2 multiplied by 

100. Process efficiency expressed as the ratio of the mean peak area of an analyte spiked 

before extraction (set 3) to the mean peak area of the same analyte standards (set 1) 

multiplied by 100. The effect of three freeze-thaw cycles (storage at –20°C) on the 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Matuszewski%20BK%5BAuthor%5D&cauthor=true&cauthor_uid=12964746
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compounds stability in serum and urine was evaluated by repeated analysis (n=3) of 

QC samples.  
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8. REAL SAMPLES 

Real hair samples were collected from illicit drugs users who attended Drug Addiction 

Services or admitted to ED. Segmental head hair analysis was performed when hair 

length was equal or longer than 4 cm, whereas when shorter than 4 cm were analyzed 

in their full length. All the samples were preliminarily analyzed with routine methods 

employed in the collected laboratories for common drugs of abuse (opiates, 

amphetamines, cocaine, benzodiazepines, cannabis). 

In our laboratory, an aliquot of these hair samples was received to be screened with the 

here described method for the presence of NPS since these new classes of substances 

are not routinely tested in roadside control, workplace drug testing and in the evaluation 

for traditional drug abstinence.  

Moreover, serum, urine and hair samples were collected from a young individual, after 

acute intoxication related to consumption of drugs of abuse, and aliquots were sent to 

our laboratory. Briefly, a 24-year-old male with a diagnosis of schizoaffective disorder 

and drug abuse was brought to the ED of Hospital Universitari Son Espases, Palma de 

Mallorca, Spain by his partner and mother, who claimed that he had been presenting 

behavioral alterations during the previous week.  

The psychiatric examination of the patient revealed a high psychomotor excitability 

with irritability and mydriasis. His speech was reiterative, expressed in a high tone and 

rate and focused on the repetition of world injustices.  

His family explained that the patient had not been sleeping recently, and that they had 

found with him a powdery substance, apparently obtained on the Internet, which 

according to the website, was ETP.  

A test and an electrocardiogram were performed, showing no alterations and a 

toxicological analysis was also carried out. In order to obtain analytical confirmation 

of acute use and chronic drug exposure, serum, urine and a 4-cm length hair sample 

were obtained at admission (t0). The patient signed an informed consent form for the 

analysis of his biological samples. Approval for the study was obtained from the 

Hospital Ethics Committee. While waiting for results of toxicological analysis, the 

patient was admitted to the psychiatric unit for detoxification and clinical stability. A 

second urine sample was collected twelve hours after admission (t1). After 36 hours, 
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the symptoms presented by the patient settled, and no decompensation of his 

schizoaffective disorder was observed. At this time, a second serum sample was 

obtained (t2). Once the patient was stabilized he declared that he had been suffering 

from sub-depressive symptoms and had been taking in several occasions psychoactive 

substances and in particular ETP to improve his sexuality and to be more sociable. On 

day 8 of hospitalization a third set of urine and serum samples was collected (t3). As 

the detoxification treatment was successful the patient was discharged with outpatient 

follow-up.  Five days later, a new urine sample was obtained during a follow-up visit 

(t4). 
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9. RESULTS - DISCUSSION 

9.1 Method Validation 

A UHPLC-MS/MS screening method was developed and validated for selective 

detection in serum, urine and hair of 49 NPS including synthetic cannabinoids, 

cathinones, phenethylamines, benzofurans, piperazines, aminoindanes, and piperidines. 

The list of compounds is presented in Table 1. 

The gradient method allowed for separation of 49 substances in a 15-min run time. The 

retention times of compounds were from 2.2 to 7.13 min as given in Table 1.   

No interfering peaks were observed in the drug-free serum and urine samples taken 

from 20 different sources. Similarly, none of the principal drugs of abuse (opiates, 

cocaine, cannabinoids, amphetamines type-stimulants) or common medications 

(antidepressants, benzodiazepines) interfered with the assay and with the accurate 

quantification of the low QC samples in serum and urine. 

 

9.1.1 Serum 

Linear calibration curves showed determination coefficients (R2) equal to or higher than 

0.99 (apart from Pravadoline, R2 = 0.9860). LOD and LOQ values were adequate for 

the purpose of the present study (Table 2). The intra- and inter-assay precision and 

accuracy were in accordance with the internationally established acceptance criteria 

(Table 3).  

Every analyte suffered from ion suppression, (results <100%) or enhancement (results 

>100%). Low recoveries were observed for some analytes (for example naphyrone). 

Recovery and matrix effect are given in Table 4. However, as mentioned by Peters et 

al (80), recovery is not among the validation parameters regarded as essential for 

method validation. Most authors agree, that the value for recovery is not important, as 

long as the data for LOQ, LOD, precision and accuracy (bias) are acceptable, as in the 

here described method. Nevertheless, some guidance documents request the 

determination of the recovery at high and low concentrations or even specify that the 

recovery should be greater than 50% (80). Most of the analytes met the latter criterion 

of an extraction recovery higher than 50%. 

Regarding the following analytes: 5-APB, 5-MAPB, 5-EAPB and ETP, analytical 

recoveries obtained for the three different QC samples were always above 80%. The 



39 
 

intra- and inter-assay precision (% RSD) and accuracy (% error) values were always 

lower than 11%. The latter analytes showed no significant ion 

suppression/enhancement (< 15% analytical signal suppression due to matrix effect). 

Selected MRM chromatograms of the serum extracts spiked with analytes at the 

concentration of 50 ng/ml are presented in Appendix 1. 

 

Table 2. LOD, LOQ and linearity (coefficient of determination (R2)) achieved for each analyte 

included in the screening method in serum 

Compound 
LOD 

(ng/ml) 

LOQ 

(ng/ml) 

R2 

(1-100 ng/ml) 

MDAI 0.1 0.3 0.9943 

Methcathinone 0.3 1.0 0.9978 

dimethylcathinone 0.1 0.3 0.9979 

Methylone 0.3 1.0 0.9976 

4-fluoromethcathinone 0.3 1.0 0.9988 

Ethylone 0.1 0.3 0.9936 

Methedrone 0.1 0.3 0.9958 

Buphedrone 0.1 0.3 0.9975 

4-FA 0.1 0.4 0.9905 

Butylone 0.1 0.3 0.9921 

Mephedrone 0.2 0.6 0.9972 

4 methylethcathinone 0.1 0.4 0.9949 

Pentedrone 0.1 0.3 0.9955 

Pentylone 0.1 0.2 0.9953 

5-APB 1.5 5 0.9965 (5-100 ng/ml) 

m-CPP 0.3 1 0.9960 

3,4-dimethylmethcathinone 0.1 0.3 0.9972 

5-MAPB 1.5 5 0.9981 (5-100 ng/ml) 

2 C-B 0.1 0.3 0.9961 

MDPV 0.1 0.4 0.9938 

5-EAPB 1.5 5 0.9936 (5-100 ng/ml) 

ETP 1.5 5 0.9948 (5-100 ng/ml) 

Pravadoline 0.1 0.3 0.9860 

Naphyrone 0.3 0.9 0.9900 
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AM-2233 0.1 0.4 0.9917 

JWH-200 0.1 0.2 0.9946 

AM-694 0.1 0.2 0.9993 

AM-2201 0.1 0.4 0.9942 

RCS-4 0.1 0.3 0.9914 

JWH-250 0.1 0.4 0.9981 

JWH-302 0.1 0.2 0.9968 

JWH-073 0.1 0.3 0.9904 

XLR-11 0.3 1.0 0.9969 

JWH-251 0.3 1.0 0.9979 

JWH-203 0.3 1.0 0.9965 

JWH-018 0.1 0.5 0.9964 

JWH-016 0.1 0.3 0.9909 

JWH-081 0.1 0.3 0.9959 

JWH-019 0.3 1 0.9978 

JWH-098 0.1 0.2 0.9968 

JWH-307 0.1 0.2 0.9962 

JWH-007 0.3 1 0.9984 

RCS-8 0.2 0.6 0.9957 

JWH-398 0.3 1 0.9967 

JWH-210 0.1 0.3 0.9964 

JWH-147 0.1 0.2 0.9946 

CB-13 0.3 1 0.9961 
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Table 3. Intra- and inter day precision and accuracy in serum 

Analytes Intra-day precision 

% RSD 

Intra-day accuracy % 

Error 

Inter-day precision 

% RSD 

Inter-day accuracy % 

Error 

Low 

QC 

Medium 

QC 

High 

QC 

Low 

QC 

Medium 

QC 

High 

QC 

Low 

QC 

Medium 

QC 

High 

QC 

Low 

QC 

Medium 

QC 

High 

QC 

MDAI 8.3 1.4 3.6 16.2 5.1 5.4 7.6 2.1 3.9 15.4 7.3 7.7 

Methcathinone 13.5 6.0 4.4 14.7 4.3 13.6 14.2 8.6 5.9 19.8 8.4 12.4 

Dimethylcathinone 9.9 2.3 7.7 19.1 7.0 9.9 8.0 4.3 7.9 17.6 10.5 7.6 

Methylone 8.5 5.5 2.8 14.3 4.0 9.0 9.1 6.6 3.2 15.7 6.5 5.5 

4-fluoromethcathinone 10.6 9.0 10.3 17.1 13.2 12.9 11.3 5.1 11.7 18.6 10.7 13.6 

Ethylone 11.8 5.1 8.8 17.9 5.2 11.5 8.7 3.7 10.8 12.6 3.4 10.4 

Methedrone 8.64 5.2 3.4 12.5 6.4 3.1 8.4 4.7 4.3 11.9 5.3 4.2 

Buphedrone 5.7 3.2 3.7 18.9 4.0 5.0 3.8 4.2 4.6 16.7 6.6 3.8 

4-FA 14.4 1.4 7.9 17.9 4.8 13.3 8.1 2.3 7.4 11.7 6.4 12.5 

Butylone 4.3 5.6 0.5 14.2 5.8 1.1 4.4 5.6 0.5 15.8 4.8 2.4 

Mephedrone 8.7 5.9 3.1 15.8 8.0 2.2 4.1 3.0 3.6 16.0 9.3 3.6 

4-methylethcathinone 6.4 1.3 4.3 14.3 8.6 3.1 7.4 1.8 5.6 13.0 9.5 2.9 

Pentedrone 3.7 2.0 1.2 16.9 1.4 1.8 6.9 1.9 5.3 15.5 3.8 4.2 

Pentylone 8.6 7.3 3.0 12.0 5.2 2.8 9.9 6.5 3.8 10.5 6.0 3.3 

m-CPP 12.3 11.4 9.1 19.5 7.6 6.2 18.6 14.7 12.0 17.2 8.3 6.7 

3,4-dimethylmethcathinone 7.1 4.8 5.8 19.5 11.2 5.0 9.2 5.9 6.6 18.2 11.8 5.9 

2 C-B 8.6 5.3 1.3 16.1 6.1 6.7 7.3 4.9 2.4 19.5 5.6 6.6 

MDPV 10.3 4.1 9.6 19.8 14.5 8.5 15.8 5.2 6.3 13.3 13.4 12.5 

Pravadoline 15.0 11.5 13.7 15.8 13.8 12.2 16.2 10.7 13.6 14.3 14.8 12.7 

Naphyrone 17.7 14.6 13.7 19.1 14.3 13.8 18.4 11.3 13.2 16.0 12.6 12.3 

AM-2233 8.3 5.5 7.2 18.2 14.9 9.4 9.0 8.7 6.0 14.0 13.6 11.3 

JWH-200 12.5 5.3 14.0 14.1 6.7 10.3 13.6 7.1 13.2 16.7 8.5 12.6 

AM-694 7.6 3.0 11.2 12.8 13.5 7.8 9.1 3.8 8.0 13.5 10.6 5.6 

AM-2201 13.1 8.4 3.9 14.8 11.1 8.8 15.1 9.6 5.2 18.5 9.2 7.8 
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RCS-4 7.3 4.0 3.3 19.6 14.7 12.5 8.1 2.7 4.3 14.8 12.3 12.9 

JWH-250 14.9 1.2 5.3 19.9 13.3 3.8 9.6 2.1 6.0 18.4 11.6 5.1 

JWH-302 13.5 8.2 7.2 14.0 15.0 9.1 12.3 7.7 6.0 16.3 10.0 7.3 

JWH-073 17.1 11.8 4.3 14.1 9.6 5.6 11.2 6.7 4.2 15.9 7.9 4.6 

XLR-11 9.8 4.1 9.0 18.8 14.6 9.2 8.1 3.9 8.8 16.8 8.6 7.7 

JWH-251 15.9 3.3 9.2 16.8 6.6 7.7 18.7 4.5 10.1 15.3 7.8 10.8 

JWH-203 18.7 
 

11.8 6.0 19.9 7.7 8.0 18.5 9.8 5.9 18.9 10.3 6.7 

JWH-018 16.6 8.1 12.8 15.8 11.9 14.3 14.8 9.0 10.7 16.5 9.7 12.6 

JWH-016 19.4 11.1 
 

13.5 17.6 11.7 9.4 19.9 8.3 11.1 15.3 11.4 7.7 

JWH-081 18.2 10.1 13.6 18.4 6.7 13.0 16.4 8.8 14.4 18.0 10.6 12.2 

JWH-019 15.2 11.9 5.0 14.5 13.7 11.6 14.6 7.7 4.9 15.8 10.4 10.4 

JWH-098 18.5 13.1 7.5 14.2 10.5 7.7 16.5 10.8 9.3 14.5 13.9 6.8 

JWH-307 15.1 7.6 4.2 14.5 10.2 11.9 12.0 7.9 5.2 11.1 9.1 9.7 

JWH-007 15.6 7.6 10.7 15.7 8.0 14.8 10.2 4.8 7.2 19.7 6.8 11.7 

RCS-8 19.8 5.8 14.2 15.6 14.1 13.2 19.2 2.9 12.3 15.2 13.2 11.4 

JWH-398 13.9 12.5 6.4 19.5 14.4 14.8 9.4 10.9 7.3 17.7 14.5 11.5 

JWH-210 12.5 3.2 10.8 13.0 12.4 9.8 14.0 4.4 11.8 11.3 10.5 8.6 

JWH-147 16.2 5.4 13.3 15.3 7.9 11.7 13.8 8.3 10.7 13.0 7.2 9.8 

CB-13 17.7 13.5 12.7 16.4 13.6 12.1 18.9 10.6 13.6 15.2 14.7 11.5 
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Table 4.  Recovery and matrix effect for each analyte in serum 

Analytes Recovery (%) Matrix effect (%) 

Low QC Medium 

QC 

High QC Low QC Medium 

QC 

High QC 

MDAI 74.8 

 
 

80.1 48.7 115.2 

 
 

104.1 120.6 

Methcathinone 45.0 

 
 

54.4 61.1 83.6 

 
 

86.2 83.4 

dimethylcathinone 85.0 

 
 

64.4 51.6 77.8 

 
 

75.2 77.0 

Methylone 103.2 

 
 

83.7 50.2 

 
 

105.6 

 
 

112.6 115.8 

4-fluoromethcathinone 46.6 

 
 

58.1 74.7 95.0 

 
 

97.4 81.9 

Ethylone 73.8 

 
 

87.6 62.6 104.2 

 
 

113.9 114.1 

Methedrone 98.4 

 
 

66.3 53.9 104.3 

 
 

117.7 114.8 

Buphedrone 64.1 

 
 

67.9 54.9 118.2 

 
 

103.6 120.4 

4-FA 152.9 

 
 

71.9 82.8 71.6 

 
 

75.1 73.7 

Butylone 73.8 

 
 

79.2 63.1 108.3 

 
 

113.0 117.7 

Mephedrone 56.3 

 
 

64.1 50.5 83.7 

 
 

71.0 82.0 

4-methylethcathinone 52.2 

 
 

54.1 43.5 

 
 

88.2 

 
 

78.0 98.1 

Pentedrone 81.7 
 

60.4 42.3 97.9 

 
 

71.8 93.9 

Pentylone 204.1 

 
 

159.5 133.9 103.3 

 
 

114.5 

 
 

120.6 

m-CPP 78.9 
 

64.6 52.7 123.5 119.9 108.1 

 
 

3,4-

dimethylmethcathinone 

56.5 

 
 

58.6 30.0 97.9 

 
 

67.2 95.8 

2 C-B 143.9 

 
 

75.6 54.8 101.1 

 
 

113.4 119.0 

MDPV 117.4 

 
 

58.2 75.5 108.6 

 
 

105.6 112.0 

Pravadoline 83.7 
 

78.9 72.0 87.2 

 
 

93.5 97.0 

Naphyrone 33.8 

 
 

25.6 27.0 89.4 

 
 

87.6 90.3 

AM-2233 65.5 

 
 

94.9 74.2 75.2 

 
 

68.4 73.1 
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JWH-200 97.3 

 
 

92.5 91.2 86.0 67.1 70.8 

AM-694 77.2 

 
 

83.8 55.1 65.5 

 
 

59.0 69.6 

AM-2201 76.6 

 
 

69.6 44.5 

 
 

113.5 102.4 115.6 

RCS-4 90.1 
 

50.7 55.9 92.6 72.2 73.9 

JWH-250 80.0 

 
 

63.5 52.5 91.6 

 
 

99.5 97.7 

JWH-302 97.5 

 
 

64.9 41.2 108.7 

 
 

107.2 115.2 

JWH-073 78.9 

 
 

76.3 50.8 116.3 110.4 117.7 

XLR-11 94.4 

 
 

85.6 55.8 86.1 

 
 

76.0 100.1 

JWH-251 66.5 
 

80.0 47.8 116.7 

 
 

111.4 118.7 

JWH-203 58.1 

 
 

66.8 40.1 117.7 

 
 

105.8 114.3 

JWH-018 67.0 

 
 

71.2 46.7 114.1 

 
 

103.5 113.6 

JWH-016 58.6 

 
 

70.7 46.1 113.4 

 
 

105.9 112.7 
 

JWH-081 67.5 

 
 

67.6 43.7 112.7 

 
 

103.3 116.4 

JWH-019 44.3 

 
 

51.1 57.2 118.6 

 
 

105.0 119.4 

JWH-098 
68.3 

 
 

65.7 42.9 113.4 

 
 

107.2 114.9 

JWH-307 55.8 

 
 

67.5 45.4 112.2 

 
 

115.2 119.1 

JWH-007 59.3 

 
 

64.4 46.6 120.4 

 
 

117.8 119.1 

RCS-8 53.8 

 
 

60.9 46.3 114.3 

 
 

104.0 106.9 

JWH-398 63.4 

 
 

70.8 37.9 117.2 

 
 

116.6 114.9 

JWH-210 53.6 

 
 

75.9 36.0 110.8 

 
 

108.5 107.6 

JWH-147 66.5 

 
 

76.8 38.6 

 
 

112.1 

 
 

108.1 
 

110.3 
 

CB-13 55.0 

 
 

67.1 27.8 123.1 

 
 

119.3 116.7 
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9.1.2 Urine 

Linear calibration curves showed determination coefficients (R2) equal to or higher than 

0.99 (apart from XLR-11, R2= 0.9887 and RCS-8, R2= 0.9840). LOD and LOQ values 

were adequate for the purpose of the present study, ranging from 0.1 to 9.3 and from 

0.2 to 31.1 ng/ml, respectively (Table 5). The intra- and inter-assay precision and 

accuracy were in accordance with the internationally established acceptance criteria 

(Table 6).  

Every analyte suffered from ion suppression, (results <100%) or enhancement (results 

>100%). Low recoveries were observed for some analytes. Recovery and matrix effect 

are given in Table 7.  

Regarding the following analytes: 5-APB, 5-MAPB, 5-EAPB and ETP, analytical 

recoveries obtained for the three different QC samples were always above 80%. The 

intra- and inter-assay precision (% RSD) and accuracy (% error) values were always 

lower than 11%. The latter analytes showed no significant ion 

suppression/enhancement (< 15% analytical signal suppression due to matrix effect). 

Selected MRM chromatograms of the serum extracts spiked with analytes at the 

concentration of 50 ng/ml are presented in Appendix 2. 
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Table 5. LOD, LOQ and linearity (coefficient of determination (R2)) achieved for each 

substance included in the screening method in urine 

Compound 
LOD 

(ng/ml) 

LOQ 

(ng/ml) 

R2 

(LOQ-100 ng/ml) 

MDAI 0.2 0.7 0.9976 

Methcathinone 1.3 4.4 0.9936 

dimethylcathinone 0.8 2.7 0.9962 

Methylone 1.8 5.9 0.9982 

4-fluoromethcathinone 9.0 30.1 0.9999 

Ethylone 0.4 1.2 0.9985 

Methedrone 0.8 2.6 0.9999 

Buphedrone 3.7 12.2 0.9991 

4-FA 8.9 28.7 0.9973 

Butylone 0.5 1.7 0.9975 

Mephedrone 5.0 16.7 0.9956 

4 methylethcathinone 0.5 1.5 0.9985 

Pentedrone 0.3 1.0 0.9960 

Pentylone 6.3 21.0 0.9912 

5-APB 1.5 5 0.9936 

3,4-dimethylmethcathinone 3.5 11.7 0.9972 

5-MAPB 1.5 5 0.9993 

2 C-B 9.3 31.1 0.9969 

MDPV 0.6 1.9 0.9970 

5-EAPB 0.5 2.5 0.9987 

ETP 1.5 5 0.9954 

Pravadoline 2.1 7.1 0.9912 

Naphyrone 1.6 5.0 0.9968 

AM-2233 0.2 0.6 1.000 

JWH-200 0.1 0.4 0.9969 

AM-694 0.1 0.3 0.9990 

AM-2201 0.5 1.7 0.9952 

RCS-4 0.2 0.5 0.9969 

JWH-250 0.1 0.3 0.9985 

JWH-302 0.6 2 0.9996 

JWH-073 0.1 0.2 0.9988 
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XLR-11 0.1 0.2 0.9887 

JWH-251 0.1 0.3 0.9996 

JWH-203 0.1 0.3 0.9980 

JWH-018 0.1 0.3 0.9997 

JWH-016 0.2 0.6 0.9973 

JWH-081 0.1 0.3 0.9978 

JWH-019 1.3 4.4 0.9996 

JWH-098 0.1 0.4 0.9956 

JWH-307 0.1 0.2 0.9974 

JWH-007 0.1 0.3 0.9978 

RCS-8 0.1 0.3 0.9840 

JWH-398 0.1 0.3 0.9978 

JWH-210 0.1 0.3 0.9979 

JWH-147 0.1 0.3 0.9990 

CB-13 0.9 3.0 0.9971 
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Table 6. Intra- and inter day precision and accuracy in urine 

Analytes Intra-day precision 

% RSD 

Intra-day accuracy % 

Error 

Inter-day precision 

% RSD 

Inter-day accuracy % 

Error 

Low 

QC 

Medium 

QC 

High 

QC 

Low 

QC 

Medium 

QC 

High 

QC 

Low 

QC 

Medium 

QC 

High 

QC 

Low 

QC 

Medium 

QC 

High 

QC 

MDAI 15.1 
 

7.3 1.5 19.4 
 

13.3 10.6 10.8 
 

3.8 1.1 18.8 
 

11.3 8.4 

Methcathinone 19.4 
 

8.4 4.1 19.1 
 

14.9 12.7 14.1 
 

10.5 6.4 16.2 
 

13.8 10.2 

Dimethylcathinone 5.4 
 

4.7 2.6 19.2 14.8 11.5 6.9 
 

2.9 1.3 18.6 
 

15.9 11.9 

Methylone NA 12.0 3.4 NA 14.4 10.6 NA 7.7 4.9 NA 10.7 8.3 

4-fluoromethcathinone NA 15.0 
 

4.9 NA 11.5 
 

8.5 NA 13.7 
 

7.8 NA 12.6 7.4 

Ethylone 9.6 
 

8.5 4.4 17.7 
 

14.6 5.4 8.4 
 

6.4 3.8 15.6 
 

11.8 3.4 

Methedrone 3.7 
 

2.4 1.5 16.1 
 

8.2 4.9 
 

2.9 2.7 1.5 19.8 
 

17.0 4.9 

Buphedrone NA 12.6 
 

5.7 NA 11.2 9.7 NA 10.2 7.4 NA 9.1 6.7 

4-FA NA 15.0 7.2 NA 14.6 5.1 NA 10.0 7.5 NA 13.9 5.0 

Butylone 16.7 
 

8.1 4.8 15.1 
 

13.2 1.1 17.1 
 

5.7 3.1 19.1 
 

13.3 2.3 

Mephedrone NA 11.4 8.2 NA 10.7 7.2 NA 8.7 6.7 NA 13.0 7.9 

4-methylethcathinone 13.0 
 

7.9 2.0 19.2 
 

9.6 5.4 12.6 
 

7.3 3.2 17.6 8.8 4.3 

Pentedrone 16.8 
 

7.3 5.6 19.5 
 

13.6 5.5 14.0 
 

5.7 5.1 17.3 12.1 8.6 

Pentylone NA 11.8 3.8 NA 12.3 2.7 NA 9.5 3.8 NA 8.2 4 

3,4-dimethylmethcathinone NA 7.7 5.5 NA 11.3 8.3 NA 7.6 4.9 NA 13.8 6.4 

2 C-B NA 3.5 2.3 NA 14.0 10.5 NA 2.5 1.7 NA 13.1 6.2 

MDPV 6.4 
 

3.1 1.6 17.2 
 

15.0 5.1 7.5 
 

4.0 2.3 15.7 6.3 8.6 

Pravadoline NA 2.2 
 

1.4 NA 8.2 1.1 NA 3.0 2.7 NA 7.3 2.6 

Naphyrone 16.2 
 

11.3 4.3 14.1 
 

12.8 12.0 16.4 
 

11.5 6.6 16.8 
 

14.0 10.4 

AM-2233 14.1 4.8 10.8 19.6 
 

5.7 10.6 10.9 7.9 10.2 17.2 
 

8.3 12.4. 

JWH-200 8.7 
 

7.6 4.4 17.1 
 

10.7 9.8 5.4 
 

4.4 2.5 14.5 
 

12.3 9.5 

AM-694 8.7 
 

8.5 6.2 15.0 
 

9.2 5.9 14.7 
 

8.1 7.3 11.9 
 

10.4 10.0 
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AM-2201 9.5 
 

6.8 6.3 14.3 12.5 6.6 12.4 
 

8.0 5.4 17.4 
 

13.9 7.0 

RCS-4 12.9 
 

8.5 2.3 16.3 6.3 2.1 12.7 
 

8.9 3.3 17.1 
 

6.4 4.1 

JWH-250 18.3 13.2 3.2 14.4 
 

12.6 11.9 18.0 
 

12.8 1.9 16.4 
 

13.1 12.9 

JWH-302 12.0 
 

6.4 2.3 14.4 
 

9.9 5.2 20.0 
 

13.7 6.2 18.1 
 

9.1 7.1 

JWH-073 15.6 
 

7.4 6.9 17.2 5.9 5.3 14.3 8.4 7.1 13.8 
 

10.7 9.1 

XLR-11 14.4 
 

8.9 8.0 17.9 
 

6.3 5.5 16.0 
 

9.1 8.1 17.5 
 

8.8 7.2 

JWH-251 13.0 
 

6.6 4.2 12.3 
 

6.3 2.7 17.7 
 

6.3 2.1 12.6 
 

9.8 3.7 

JWH-203 9.8 
 

2.5 1.0 15.5 
 

5.3 4.9 9.1 
 

1.9 1.0 15.2 
 

4.1 3.4 

JWH-018 16.2 
 

8.2 5.4 17.6 
 

9.3 6.5 11.7 
 

5.1 3.3 18.4 
 

6.1 3.3 

JWH-016 9.4 
 

6.0 2.1 12.4 10.9 3.5 11.7 5.6 2.2 13.1 7.9 6.2 

JWH-081 16.5 
 

9.4 4.5 18.6 
 

13.5 10.6 16.6 12.1 3.2 19.6 
 

12.7 12.6 

JWH-019 15.0 
 

6.5 3.1 10.4 
 

8.8 3.3 14.8 
 

4.3 3.0 12.2 
 

4.5 2.2 

JWH-098 13.2 
 

7.1 4.9 11.4 
 

9.2 6.3 12.8 
 

8.8 7.9 12.9 
 

8.4 3.6 

JWH-307 12.9 
 

6.8 3.7 13.8 
 

7.7 6.7 17.2 
 

3.9 2.3 12.7 
 

7.3 5.2 

JWH-007 9.8 
 

5.6 1.9 11.7 
 

6.5 4.5 7.3 
 

5.2 4.1 11.8 
 

10.6 8.8 

RCS-8 15.4 
 

5.6 3.7 11.3 
 

8.5 7.9 10.4 
 

7.1 4.0 13.4 
 

8.7 6.2 

JWH-398 9.9 
 

5.9 4.1 13.2 
 

9.9 8.9 11.1 
 

8.0 5.2 15.2 
 

8.3 6.1 

JWH-210 8.0 
 

4.4 2.7 12.4 
 

9.5 5.8 8.7 8.0 5.8 10.7 
 

8.0 7.6 

JWH-147 14.4 
 

4.4 2.6 13.2 
 

10.9 8.9 8.7 
 

4.7 3.3 13.1 
 

7.5 1.8 

CB-13 10.1 
 

6.8 4.4 12.9 
 

11.9 11.1 12.5 
 

9.2 2.7 14.4 
 

10.4 10.2 
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Table 7. Recovery and matrix effect for each analyte in urine 

Analytes 

Recovery (%) Matrix effect (%) 

Low QC Medium 

QC 

High 

QC 

Low QC Medium 

QC 

High 

QC 

MDAI 85.1 92.6 84.5 78.2 73.4 75.6 

Methcathinone 91.1 91.5 88.3 89.5 80.3 108.1 

dimethylcathinone 105.4 104.9 79.1 78.8 78.0 93.3 

Methylone NA 104.9 79.1 NA 79.0 93.3 

4-fluoromethcathinone NA 107.1 94.7 NA 86.1 123.7 

Ethylone 62.8 74.3 56.8 106.4 109.5 116.5 

Methedrone 90.6 107.5 84.0 88.0 93.2 102.8 

Buphedrone NA 101.0 95.6 NA 75.7 78.4 

4-FA NA 98.4 86.7 NA 77.4 75.1 

Butylone 88.3 103.7 94.6 116.6 111.6 119.5 

Mephedrone NA 100.5 90.5 NA 81.6 76.4 

4-methylethcathinone 86.6 97.5 87.0 77.9 79.2 71.5 

Pentedrone 67.2 77.2 62.3 90.3 90.2 93.1 

Pentylone NA 92.4 75.6 NA 129.0 117.1 

3,4-dimethylmethcathinone NA 111.4 91.8 NA 76.1 77.3 

2 C-B NA 54.3 59.4 NA 106.0 131.3 

MDPV 63.3 85.8 78.1 89.5 76.4 94.6 

Pravadoline NA 115.6 90.6 NA 87.9 117.8 

Naphyrone 98.5 83.2 91.0 75.1 79.4 75.5 

AM-2233 84.3 98.9 89.2 79.1 78.9 76.3 

JWH-200 112.5 102.0 95.5 81.3 74.1 88.9 

AM-694 75.3 91.6 88.7 79.7 78.0 90.7 

AM-2201 58.4 56.5 83.3 78.4 95.2 104.6 

RCS-4 42.8 58.0 71.3 99.7 94.1 107.0 

JWH-250 55.9 63.9 74.6 98.6 94.8 109.2 

JWH-302 53.5 66.8 77.2 105.7 84.0 102.9 
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JWH-073 32.9 36.2 62.9 115.1 106.6 112.9 

XLR-11 67.8 42.5 63.5 99.5 85.1 105.1 

JWH-251 38.0 43.1 61.0 100.3 101.7 109.7 

JWH-203 31.6 34.5 46.8 110.6 109.4 96.8 

JWH-018 40.6 47.9 53.0 110.1 115.9 111.4 

JWH-016 57.4 61.0 53.4 113.3 109.7 101.9 

JWH-081 50.5 60.3 52.5 104.6 103.5 112.9 

JWH-019 53.0 57.2 50.3 121.0 112.5 120.7 

JWH-098 51.3 58.7 50.9 101.0 105.5 108.9 

JWH-307 36.1 41.4 40.6 92.0 94.7 108.5 

JWH-007 54.1 47.4 43.2 109.9 106.2 102.7 

RCS-8 49.7 42.7 53.3 114.9 104.5 107.7 

JWH-398 39.5 39.6 34.9 104.2 114.7 116.3 

JWH-210 59.8 60.7 64.0 100.9 109.5 109.9 

JWH-147 36.6 37.3 27.6 109.0 102.5 104.1 

CB-13 53.2 55.3 55.0 108.2 105.2 105.0 

 

 

9.1.3 Hair 

Linear calibration curves showed determination coefficients (R2) equal to or higher than 

0.99. LOD and LOQ values, were acceptable for the purpose of the present study (Table 

8). However, relatively high LOQ values were obtained for 4-FA and XLR-11, but were 

still adequate for the purpose of the method. 

Selected MRM chromatograms of the serum extracts spiked with analytes at the 

concentration of 50 pg/mg are presented in Appendix 3. 
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Table 8. LOD, LOQ and linearity (coefficient of determination (R2)) achieved for each substance 

included in the screening method in hair 

Compound 
LOD 

(pg/mg) 

LOQ 

(pg/mg) 

R2 

(LOQ-100 pg/mg) 

MDAI 0.3 0.9 0.9980 

Methcathinone 2.0 6.5 0.9912 

dimethylcathinone 0.7 2.3 0.9992 

Methylone 0.7 2.4 0.9996 

4-fluoromethcathinone 0.5 1.8 0.9995 

Ethylone 2.0 6.7 0.9999 

Methedrone 0.8 2.7 0.9966 

Buphedrone 3.8 12.8 0.9915 

4-FA 10.3 34.5 0.9996 

Butylone 1.7 5.8 0.9998 

Mephedrone 1.8 5.9 0.9986 

4 methylethcathinone 0.2 0.7 0.9973 

Pentedrone 0.5 1.7 0.9983 

Pentylone 1.9 6.4 0.9997 

5-APB 2 5 0.9995 

m-CPP 2.3 7.8 0.9993 

3,4-dimethylmethcathinone 1.2 4.0 0.9993 

5-MAPB 2 5 0.9983 

2 C-B 0.2 0.8 0.9999 

MDPV 0.9 3 0.9918 

5-EAPB 2 5 0.9998 

Pravadoline 0.6 2.2 0.9969 

Naphyrone 0.5 1.5 0.9998 

AM-2233 2.8 9.2 0.9987 

JWH-200 0.8 2.6 0.9937 

AM-694 0.3 0.9 0.9965 

AM-2201 0.2 0.6 0.9989 

RCS-4 3.7 12.4 0.9960 

JWH-250 1.3 4.5 0.9943 

JWH-302 0.7 2.4 0.9997 

JWH-073 0.3 0.9 0.9958 
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XLR-11 28.7 95.6 0.9968 (LOQ-500 pg/mg) 

JWH-251 0.2 0.8 0.9985 

JWH-203 0.5 1.6 0.9983 

JWH-018 0.3 1.0 0.9936 

JWH-016 0.4 1.2 0.9999 

JWH-081 0.5 1.7 0.9952 

JWH-019 0.3 1.0 0.9971 

JWH-098 0.1 1.4 0.9996 

JWH-307 0.4 1.2 0.9933 

JWH-007 0.3 1.0 0.9999 

RCS-8 2.6 8.6 0.9924 

JWH-398 0.3 1.0 0.9964 

JWH-210 0.4 1.1 0.9903 

JWH-147 0.4 1.2 0.9996 

CB-13 2.5 8.4 0.9975 

 

9.2 Real samples 

9.2.1 Intoxication related to 5-APB, 5-MAPB, 5-EAPB and ETP 

(serum, urine, hair) 

In the case of the 24-year-old male, urine screening revealed 5-MAPB, 5-EAPB, 5-

APB and ETP. Substances were then confirmed and quantified in urine and serum 

samples (Table 9 and Appendix 4). The pre-treatment performed for all the biological 

samples was slightly different from the here described one since it was adjusted to 

achieve a targeted measurement of these specific compounds and ritalinic acid. The 

exact procedure is described by Barceló  et al (82).  

To verify if also a repeated exposure to benzofurans and ETP occurred, segmental hair 

testing of two subsequent 2 cm segments was performed with both segments positive 

for 5-MAPB, 5-EAPB, 5-APB and ETP (Table 10). 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Barcel%C3%B3%20B%5BAuthor%5D&cauthor=true&cauthor_uid=28710651
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§Times after the admission to the ED: t0: at 0 h; t1: at 12 h; t2: at 36 h, t3: at 8 days and t4: at 13 days. 

* Insufficient volume of sample  

 

 

An acute intoxication accompanied by high psychomotor excitability, high irritability 

and mydriasis following the intake of benzofurans and ETP has been here described 

and analytically confirmed. Moreover, the use of segmental hair analysis has been also 

applied to demonstrate that the intoxication was not occasional, but likely due to 

chronic consumption of the same products in different occasions.  

With respect to the detected NPS, it can be said that in the international literature there 

is only one other case of non-fatal acute overdose of ETP with analytical confirmation 

(21) and serum and urine values were much lower than those detected in the here 

described case. Moreover, only once ETP has been qualitatively identified in the hair 

Table 9: Serum and urine 5-APB, 5-MAPB, 5-EAPB, ETP and ritalinic acid 

concentrations found in the specimens collected at three different time intervals, following 

UHPLC-MS/MS analysis 

Sample 

5-APB 

(ng/mL) 

5-MAPB 

(ng/mL) 

5-EAPB 

(ng/mL) 

ETP  

(ng/mL) 

Ritalinic 

Acid 

(ng/mL) 

Serum t0§ 69.3 153.7 376.2 450.3 507.7 

Serum t2§ 56.9 85.8 116.1 110.9 121.9 

Serum t3§ Neg Neg Neg Neg Neg 

 

Urine t0§ * * * * * 

Urine t1§ 5172.3 12340.2 29880.8 3048.5 172041.5 

Urine t3§ 77.5 8.5 3.7 Neg 100.0 

Urine t4§ Neg Neg Neg Neg 9.8 

Table 10: Hair 5-APB, 5-MAPB, 5-EAPB and ETP concentrations found after segmental analysis 

Sample 
5-APB 

(ng/mg) 

5-MAPB 

(ng/mg) 

5-EAPB 

(ng/mg) 

ETP  

(ng/mg) 

Segment 1 (0-2 cm, proximal) 2.6 5.3 7.1 10.2 

Segment 2 (2-4 cm, distal) 0.8 4.4 5.1 11.4 
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sample of a fatal case (18), while there is no analytical confirmation of repeated use in 

previously published case reports (22-24). 

Conversely, to our knowledge up to date there is no analytical confirmation of 5-EAPB 

poisonings and very limited analytical data proving the consumption of 5-APB or 5-

MAPB in some case reports (33-37). In addition, this is the first time that repeated use 

of these compounds has been objectively assessed by hair testing. 

 

9.2.2 Hair samples 

The developed method was used in our laboratory for analyses of forensic hair samples 

collected from drug abusers, drivers, and other individuals in cases where there was a 

need to prove or exclude the presence of NPS. Four out of the 10 samples analyzed 

were found positive to the following substances: 4-methylethcathinone; JWH-081; 

JWH-073 and JWH-250; and JWH-018. Interpretation of the findings is almost 

impossible mainly due to the lack of testing for metabolites and limited information on 

chemical and toxicological properties of these substances. Especially, when it comes to 

synthetic cannabinoids (main route of administration: smoking) external contamination 

could not be excluded.  

The use of hair testing for forensic issues concerning NPS is still debatable. In 

particular, little information is currently available regarding the incorporation in the 

keratin matrix after use and the correlation between dose, use frequency, passive 

exposure, and resulting hair concentrations. Limitations and issues of hair NPS analysis 

still deserve substantial research and discussion within the scientific community, before 

a definitive interpretation of either a positive or negative result can be safely reported 

to the local authorities. The main issue when comes to the interpretation of the results 

are the discrimination between: (i) passive exposure vs. active consumption and (ii) 

sporadic vs. chronic use. Under these circumstances, any analytical finding from NPS 

hair testing should be cautiously interpreted by experienced forensic toxicologist (83). 

Moreover, as for hair testing for common drugs, limitations and issues for hair NPS 

analysis exist. The Society of Hair Testing (SoHT) guidelines (84) state that external 

contamination must be taken into account when interpreting the findings and 

laboratories should evaluate the effectiveness of their wash procedures. In the methods 

for hair NPS testing reviewed by Kyriakou et al. (61) great heterogeneity has been noted 
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regarding decontamination step with some studies following extensive washing 

procedures and others none at all. Nonetheless, some authors used both aqueous and 

organic solvents, as proposed by SoHT for traditional drugs of abuse.  

Another pitfall, common with the published procedures for traditional psychotropic 

drugs is the difficulty in evaluating the real performance of the extraction procedure 

due to the lack of certified reference hair specimens with known drug content. 
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10. CONCLUSIONS 

NPS are the most recent challenge in clinical and forensic toxicology. They represent a 

great threat for EDs, which increasingly face intoxications due to undetectable 

substances with commonly available assays and whose health hazards are unknown. 

Hence, the development of analytical methods aiming at the detection of a broad-

spectrum of compounds in conventional and non-conventional biological matrices is 

helpful. 

We developed a sensitive UHPLC-MS/MS method for the simultaneous detection of 

49 NPS in serum, urine and hair. The developed method allows a rapid screening 

analysis and requires only 0.1 ml serum and urine and 50 mg hair specimens. Such 

multi-analyte methods are necessary for both forensic and clinical laboratories due to 

the ever-growing spectrum of novel substances. The current method can be easily 

expanded to include a greater number of NPS and can be used in our laboratory in 

routine work for testing forensic biological samples collected from drug users, drivers 

and other individuals in cases where there is need to prove or exclude the presence of 

NPS. In general, our method can be utilized for clinical and forensic toxicology (human 

performance and post-mortem). Moreover, the method was already successfully 

applied to real cases.  
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11. FURTHER WORK 

This methodology, as already mentioned, could be easily adapted by both clinical and 

toxicological laboratories and expanded to include more substances according to the 

needs of each laboratory. 

Moreover, two ISs (JWH 018-d9 and mephedrone-d3) have been chromatographically 

characterized; optimized transitions, cone voltages and collision energies were also 

found thus permitting us to use them for the quantification of synthetic cannabinoids 

and cathinones, respectively.  

The current method could also be used for the analysis of already tested samples that 

gave negative results for traditional drugs of abuse but there was a suspicion of drug 

consumption, to estimate the prevalence of NPS within tested population. 
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13. APPENDICES 

1. Selected MRM chromatograms of the serum extracts spiked with analytes at the 

concentration of 50 ng/ml 

1.1 Smoothed chromatogram of the confirmation transitions (see Table 1) of 

selected cathinones: dimethylcathinone, methcathinone, 4-

fluoromethcathinone, methedrone, methylone, m-cpp, pentylone, 2C-B, MDPV 

 

 

1.1.1 Overlay chromatogram of the analytes presented in the chromatogram 1.1 
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1.2 Smoothed chromatogram of the confirmation transitions (see Table 1) of 

selected cannabinoids: pravadoline, JWH-200, AM-2233, JWH-210, RCS-8, 

JWH-098, JWH-307, JWH-147, JWH-398, CB-13. 

 

 

 

1.2.1 Overlay chromatogram of the analytes presented in the chromatogram 1.2 
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2. Selected MRM chromatograms of the urine extracts spiked with analytes at the 

concentration of 50 ng/ml 

2.1 Smoothed chromatogram of the confirmation transitions (see Table 1) of 

selected cathinones: MDPV, 2C-B, pentylone, pentedrone, 3,4 

dimethylmethcathinone, methcathinone, dimethylcathinone, 4-

fluoromethcathinone, methylone. 

 
 

 
  

2.1.1 Overlay chromatogram of the analytes presented in the chromatogram 2.1 
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2.2 Smoothed chromatogram of the confirmation transitions (see Table 1) of 

selected cannabinoids: RCS-8, JWH-081, JWH-210, AM-2201, AM-694, 

JWH-098, JWH-307, JWH-147, JWH-398. 

 
 

 

3. Selected MRM chromatograms of the hair extracts spiked with analytes at the 

concentration of 50 pg/mg 

3.1 Smoothed chromatogram of the confirmation transitions (see Table 1) of 

selected cathinones: 4-methylethcathinone, pentylone, 2C-B, MDPV, 

methylone, methedrone, 4-fluoromethcathinone, dimethylcathinone, 

methcathinone. 
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3.2 Overlay chromatogram of selected cathinones: pentedrone, 4-

methylethcathinone, pentylone, 2C-B, MDPV, methylone, methedrone, 4-

fluoromethcathinone, dimethylcathinone and methcathinone. 

 

 

3.3 Smoothed chromatogram of the confirmation transitions (see Table 1) of 

selected cannabinoids: AM-694, JWH-098, JWH-307, JWH-147, JWH-398, 

CB-13, RCS-4 and JWH-251. 
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3.4 Overlay chromatogram of the confirmation transitions (see Table 1) of selected 

cannabinoids: RCS-8, AM 2201, AM-694, RCS-4, CB-13, JWH-251, JWH-

398, JWH-147, JWH-307, JWH-098, JWH-073, JWH-250, JWH-081, JWH-

210. 

 

 

 

4. Selected MRM chromatograms of the serum, urine and hair extracts of a real 

intoxication case related to 5-APB, 5-MAPB, 5-EAPB and ETP 

4.1 Serum t0 quantification and confirmation transitions for detected compounds 
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4.1.1  Serum t0 TIC for detected compounds 

 

4.1.2 Overlay serum t0 
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4.2 Serum t1 quantification and confirmation transitions for detected compounds 

 

 

 

4.2.1 Serum t1 TIC for detected compounds 
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4.3 Urine t1 quantification and confirmation transitions for detected compounds 

 

 

 

4.4 Hair segment 1 (0-2 cm, proximal) quantification and confirmation transitions for 

detected compounds 
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4.5 Hair segment 2 (2-4 cm, distal) quantification and confirmation transitions for 

detected compounds 

 

 

 


