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1. INTRODUCTION 
1.1 Epigenetics  

Conrad Waddington, who introduced the term epigenetics in the early 1940s [1], defined 

epigenetics as ‘‘the branch of biology which studies the causal interactions between genes 

and their products which bring the phenotype into being.’’ In the original sense of this 

definition, epigenetics referred to all molecular pathways modulating the expression of a 

genotype into a particular phenotype. Over the following years, the meaning of the word has 

gradually narrowed, due to drastic progress of genetics [1-3]. By contrast, Arthur Riggs and 

colleagues defined epigenetics as “the study of mitotically and/or meiotically heritable 

changes in gene function that cannot be explained by changes in DNA sequence” [4]. Given 

that there are several existing definitions of epigenetics, the following could be a unifying 

definition of epigenetic events: the structural adaptation of chromosomal regions so as to 

register, signal or perpetuate altered activity states. This definition is inclusive of 

chromosomal marks, because transient modifications associated with both DNA repair or cell-

cycle phases and stable changes maintained across multiple cell generations qualify. It focuses 

on chromosomes and genes, implicitly excluding potential three-dimensional architectural 

templating of membrane systems and prions, except when these impinge on chromosome 

function. Also included is the exciting possibility that epigenetic processes are buffers of 

genetic variation, pending an epigenetic (or mutational) change of state that leads an identical 

combination of genes to produce a different developmental outcome [5]. 

In the eukaryotic nucleus, DNA is compacted in a structure defined as chromatin, whose 

basic unit is the nucleosome. Each nucleosome is formed by protein called histone which in 

turn surrounded by about 145–147 pairs of DNA bases. Histone is an octamer constituted by 

four pairs of proteins, called H3, H4, H2A and H2B. The very long molecules of DNA are firstly 

“supercoiled” and then packaged on to histones, allowing to their compression into a single 

cell [6-7]. Eukaryotic chromatin is in equilibrium between two distinct higher-order 

structures: heterochromatin is a more condensed structure, transcriptionally silent, and in 

regions surrounding centromeres and telomeres; euchromatin is a less condensed structure 

and transcriptionally competent [8-9]. This feature accomplishes that, starting to the same 

DNA sequence, cells may differentiate in very different ways. The bidirectional conversion 

between euchromatin and heterochromatin is determined by epigenetic regulation. Over-all, 
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three main mechanisms of epigenetic regulation have been identified. Two of them, including 

DNA methylation and histone covalent modification, influence the type of chromatin, 

whereas the third is based on the expression of micro-RNAs [10-11]. The most intensely 

studied epigenetic modification is DNA methylation[12]; however, the most diverse modifi-

cations are those that occur on histone proteins [13-14]. In addition to DNA and histone 

modification, chromatin structure and function are regulated by chromatin remodeling 

complexes (for example, SWI/SNF and NuRD families), non-coding RNAs (for example, HOX 

transcript antisense RNA (HOTAIR) and HOXA distal transcript antisense RNA (HOTTIP)) and 

mutations in histone proteins themselves [15-16]. 

These mechanisms together alter the local structural dynamics of chromatin to regulate 

the functioning of the genome, mostly by regulating its accessibility and compactness. All 

together, these mechanisms govern the chromatin architecture and gene function in various 

cell types, developmental and disease states [10, 14, 17-20]. Disruption in the proper 

maintenance of these heritable epigenetic mechanisms can result in activation or inhibition 

of various critical cell signaling pathways thus leading to various disease states [21-22]. 

Importantly, the epigenetic state of a cell is malleable; it evolves in an ordered manner during 

the cellular differentiation and development of an organism, and epigenetic changes are 

responsible for cellular plasticity that enables cellular reprogramming and response to the 

environment. Because epigenetic mechanisms are responsible for the integration of 

environmental cues at the cellular level, they have important roles in diseases related to diet, 

lifestyle, early life experience and environmental exposure to toxins [23-24]. Thus, epigenetics 

is of therapeutic relevance in multiple diseases such as cancer, inflammation, metabolic 

disease and neurological disorder, as well as in infectious diseases [25-27]. 

Epigenetic regulators can be divided into distinct groups based on broad functions: 

epigenetic writers lay down epigenetic marks on DNA or histones; these marks are removed 

by epigenetic erasers and recognized by epigenetic readers (Fig. 1.1). The enzymatic nature 

of epigenetic writers and erasers has facilitated the generation of pharmacological inhibitors 

for many of these enzymes, some of which are clinically approved [15-16]. Inhibitors of epi-

genetic readers are also in development [16, 28]. These inhibitors show potent anticancer 

efficacy as well as activity in a range of other disease states. The most successful and long-

standing inhibitors of epigenetic processes are the US Food and Drug Administration (FDA)-

approved DNA-demethylating agents azacitidine (also known as 5-azacytidine (Vidaza; 
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Celgene)) and decitabine (also known as 5-aza-2ʹ-deoxycytidine (Dacogen; Eisai)), which are 

used to treat myelodysplastic syndromes (MDS) and a range of other malignancies [29-30]. 

Other inhibitors of epigenetic writers, such as the histone methyltransferases DOT1L [31-32] 

and EZH2 [33-34], have exciting potential for cancer treatment, whereas protein arginine 

methyltransferase (PRMT) inhibitors show promise for cancer and immune-mediated 

diseases [35-36]. 

 
Fig. 1.1: Simplified framework of the various components and mechanisms of the epigenetic machinery. A 

histone octamer is shown as orange cylinder, and DNA wrapped around the octamer is shown as green ribbon. 
Chemical modifications to histone surfaces and tails are depicted as filled circles, and modifications to DNA are 
depicted as filled diamonds [37]. 

1.2 DNA Methylation 
DNA methylation is a common mechanism of epigenetic regulation in eukaryotic 

organisms ranging from fungi to mammals. DNA methylation is a heritable epigenetic mark 

involving the covalent transfer of a methyl group to the C-5 position of the cytosine ring of 

DNA by DNA methyltransferases (DNMTs) [38].  In humans, DNA methylation is a stable 

epigenetic mark that occurs at the C5 position of cytosines, mainly in a CpG dinucleotide 

context, but also in non-CpG regions of stem cells[39-40]. More than 50% of genes are 

associated with CpG islands in their promoter regions. Generally, low levels or a lack of DNA 

methylation in the promoter region is correlated with an “on” configuration of chromatin that 
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favors the interaction of DNA with transcription complexes leading to the activation of gene 

expression. By contrast, methylation of CpG islands in gene promoters is correlated with an 

“off” configuration of chromatin that leads to gene silencing [41-42]. DNA methylation can 

maintain differential gene expression patterns in a tissue-specific and developmental-stage-

specific manner. The roles of DNA methylation in gene bodies and other regions started to be 

characterized in the last years [41]. DNA methylation is a highly effective mechanism for 

silencing of gene expression in vertebrates and plants, either by interfering with the binding 

of transcription factors, or by attracting methylated DNA-binding proteins (MBDs), able to 

recruit other proteins and histone modifying enzymes, which leads to formation of a closed 

chromatin configuration and silencing of gene expression [43-44]. Indeed, most DNA 

methylation is essential for normal development, and it plays a very important role in a 

number of key processes including genomic imprinting, X-chromosome inactivation, and 

suppression of repetitive element transcription and transposition and, when dysregulated, 

contributes to diseases like cancer [38, 45]. Noteworthy, DNA methylation patterns are 

altered in the progression of cancer. Both the hypomethylation and hypermethylation of 

different regions of the genome play a crucial role in tumorigenesis. During the development 

of tumors, a genome-wide demethylation occurs and this can promote genomic instability 

possibly by activating silenced retrotransposons [46]. On the other hand, focal 

hypermethylation of CpG islands has been intensively studied in cancer. Nearly all types of 

cancers have transcriptional inactivation of tumor suppressor genes due to DNA 

hypermethylation [12]. However, the exact mechanism responsible for the appearance of 

DNA methylation in a given promoter is not fully understood.  

DNA methylation is regulated by a family of DNMTs: DNMT1, DNMT2, DNMT3A, 

DNMT3B, and DNMT3L [47-49]. DNMT1 preferentially methylates hemimethylated DNA in 

vitro and is localized to replication foci during S phase. As such, it is the proposed maintenance 

methyltransferase responsible for copying DNA methylation patterns to the daughter strands 

during DNA replication [50].  DNMT2 is a methyltransferase homolog that methylates 

cytosine-38 in the anticodon loop of aspartic acid transfer RNA instead of DNA [51]. DNMT3A 

and DNMT3B, in contrast to DNMT1, have preference for unmethylated CpG dinucleotides 

and perform de novo methylation during development. Possessing homology to DNMT3A and 

DNMT3B, DNMT3L assists the de novo methyltransferases by increasing their ability to bind 

to the methyl group donor, S-adenosyl-L-methionine (SAM), and stimulating their activity in 
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vivo [52], although DNMT3L has no catalytic activity itself. Cooperation among different 

DNMTs is also required in methylating some regions of the genome, particularly repetitive 

elements. As previously mentioned, it has been widely believed that DNMT1 acts mainly as a 

“maintenance” methyltransferase during DNA synthesis and that DNMT3A and DNMT3B act 

as “de novo” enzymes in development. However, mounting evidence indicates that DNMT1 

may also be required for de novo methylation of genomic DNA [53] and that DNMT3A and 

DNMT3B contribute to maintenance methylation during replication [54]. 

A mechanistic proposal for the DNA methylation at the cytosine C5 position in CpG 

nucleotide islands catalysed by DNMT is shown in Fig. 1.2. The formation of a reactive 

enamine intermediate by the addition of a cysteine residue of the DNMT binding pocket to 

cytosine C6 position following base-flipping [55-56], assisted by the protonation at C3 by a 

glutamic acid, is followed by the transfer of the methyl group of cofactor SAM to and a β-

elimination on the 5-methyl-6-Cys-S-5,6-dihydrocytosine intermediate [57].  

 
Fig. 1.2: Mechanism of cytosine methylation at C5 catalysed by DNMT, with SAM as electrophile 

[57]. 
 

1.3 Histone Modification and Chromatin Remodeling  
Eukaryotic cells organize their genetic material into a DNA-protein complex, called 

chromatin where its assembly limits the accessibility of genomic sequences, and thus it 

creates inherent barriers for nuclear events such as transcription, DNA replication, and DNA 

repair. Consequently, chromatin structure must be dynamic or fluid, and local changes in 

chromatin structure are utilized to provide the cell with profoundly effective methods for fine-

tuning DNA metabolism. Not too surprisingly, disruption of mechanisms that control 

chromatin dynamics can lead to aberrant gene expression, improper or nonexistent DNA 

repair, chromosomal translocations, inappropriate proliferation, developmental errors, 

oncogenesis, or even cell death [58]. 
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Nucleosomes are efficient DNA-packaging units (Fig. 1.3). The fundamental protein unit 

of the nucleosome is the histone dimer, a simple α-helical domain possessing a highly basic, 

curved surface that closely matches the phosphate backbone of bent duplex DNA. Two copies 

each of histone heterodimer, H3/H4 and H2A/H2B, form a histone octamer that is wrapped 

with approximately 146 bp of duplex DNA in a left-handed spiral [59-60]. Nucleosomes are 

assembled into long, linear arrays in which each nucleosome is connected by 10–70 bp of 

linker DNA, with the length varying between species and cell types. The high affinity of the 

histone octamer for DNA ensures that nucleosome assembly is a significant barrier for 

enzymes requiring DNA access, and the folding or compaction of nucleosomal arrays can lead 

to additional constraints on nuclear processes [61].  

 
Fig. 1.3: Structure of nucleosome. a) Each nucleosome comprises an octamer of histone molecules, which 

consists of an H32–H42 tetramer and two H2A–H2B dimers. The amino (N) termini of histones project out of the 
nucleosome core and can be epigenetically modified. b) Crystal structure of the nucleosome depicting the 
interaction of DNA with histones. c) Many sites in the N terminus can be targets for epigenetic tagging [62]. 

Consequently, in addition to DNA sequence, which influences both preferred nucleosome 

positioning and unwrapping characteristics [63-66], two distinct mechanisms further 

modulate nucleosome stability and dynamics. One mechanism involves chemically altering 
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the histones themselves, which changes the energy landscape of histone–DNA interactions 

and therefore greatly increases the dynamic range of DNA accessibility. These chemical 

changes can be in the form of post-translational modifications (PTMs) that can modulate 

chromatin folding [67-68], and guide the binding of regulatory proteins [69-70]. Non-allelic 

variants of the core histones, such as H2A.Z or H3.3, can also be incorporated into 

nucleosomes, and these variant nucleosomes can have altered stability and/or present novel 

opportunities for PTMs [71-72].  

The second, and perhaps most potent mechanism, is the use of ATP-dependent 

chromatin remodeling enzymes that can lead to a discernible change in histone–DNA 

contacts. Such changes in contacts can result from the repositioning (sliding) of nucleosomes 

on DNA, the removal of part or all of the histone octamer from DNA, an induced change in 

the accessibility of the DNA in chromatin to proteins such as transcription factors or 

nucleases, and the exchange of histone variants for core histones [73]. Indeed, several 

chromatin remodeling enzymes use the energy of ATP hydrolysis to catalyze the deposition 

or removal of histone variants, and thus they play an integral role in regulating their 

chromosomal distributions. There are four subfamilies of ATP-dependent chromatin 

remodeling enzymes: SWI/SNF, INO80, ISWI, and CHD [58, 73-74]. Each family is defined by a 

characteristic ATPase subunit that is related to the DEAD/H superfamily of DNA helicases, but 

they also possess unique motifs that mediate binding to nucleosomes and individual complex 

subunits.  

In conjunction with histone variants, PTMs not only alter intrinsic dynamics of 

nucleosomes but also provide chemical signposts to help guide cellular factors to particular 

locations in the genome. Through recruitment of cellular factors that bind to PTM-marked 

histones, termed the “histone code,” PTMs play an essential role in defining and maintaining 

functionally distinct regions of the genome [75-80]. Histone chaperones and chromatin 

remodels bind to and sense PTMs as well, and in many cases the specificity of their activities 

can be traced to PTM-dependent interactions [81-87]. The majority of histone PTMs occur 

within the 10–30 amino acid N-terminal domains of each of the histones (often called the 

histone “tails”). These domains extend from the nucleosomal surface, and although they do 

not directly contribute to the organization of nucleosomal DNA, the N-terminal tails provide 

interaction surfaces for a host of nucleosome binding proteins, and are essential for 

chromatin higher order folding [61, 69]. Histone modifications also occur within the globular 
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domains that organize nucleosomal DNA, and given the remarkable number of histone 

modifications, it may well be that every solvent-exposed histone residue might be a target for 

modification. Histone PTMs that can be dynamically added and removed enzymatically, with 

the best-studied modifications including acetylation, methylation, phosphorylation, 

ubiquitylation, and ADP-ribosylation (Fig. 1.4) [75-76, 80]. These marks, plus other more 

recently appreciated modifications such as crotonylation, succinylation, and malonylation 

[88], have the potential to alter histone–DNA and histone–histone interactions and thus 

provide a means for transiently targeting changes in nucleosome dynamics [89-

91]. Surprisingly, very few histone marks appear to affect chromatin structure dramatically by 

themselves [69], with the large majority of histone modifications influencing either the 

binding or activity of other regulatory factors, such as ATP-dependent chromatin remodelling 

enzymes. 

 

 
Fig. 1.4: Histone modifying enzymes. The histone octamer is assembled from a histone H3:H4 tetramer and 

two H2A:H2B dimers. The histone tails of all four core histones are subject to a variety of post-translational 
modifications, including methylation (Me), acetylation (Ac), phosphorylation (P), and ubiquitination (Ub). These 
modifications are controlled by enzymes such as: histone methyltransferases (HMTs) (dark blue), HDMs (purple), 
HATs (dark green), HDACs (pink), kinases (orange), and ubiquitin-conjugating enzymes (dark red) [92]. 
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2. HISTONE POSTTRANSLATIONAL MODIFICATIONS (PTMs) 
2.1 Histone Methylation 

Methylation of histones was first described in 1964 [93]. Direct evidence linking 

methylation and transcription was only found some 35 years later, when the histone H3 

arginine-specific histone methyltransferase (HMT) CARM1 was shown to interact and 

cooperate with the steroid-hormone-receptor coactivator GRIP-1 in transcriptional activation 

[94]. Histone methylation occurs on all basic residues: arginines, lysines and histidines. Lysines 

can be mono-, di- or trimethylated on their ε-amine group [93, 95], arginines can be 

monomethylated, symmetrically dimethylated or asymmetrically dimethylated on their 

guanidinyl group, and histidines have been reported to be monomethylated, although this 

methylation appears to be rare and has not been further characterized [96-97]. Initial studies 

of histone modifications have indicated that histones H3 (lysines 4, 9 and 27) and H4 (lysine 

20) are frequently preferentially methylated [98]. Whereas, Arginine methylation takes place 

within the tails of histone H3 at R2, R17, R26 and histone H4 at R3. Furthermore, the N-

terminus of H1 is methylated at lysine residues [99] and the methylation of nonhistone 

proteins has been documented as well [100-101]. However, many other basic residues beside 

the histone proteins H1, H2A, H2B, H3 and H4 have also recently been identified as 

methylated by mass spectrometry and quantitative proteomic analyses. The number of 

targetable histone lysine residues and the degree of methylation on each methylation site 

give rise to a highly complex repertoire of potential functional outputs. Histone methylation 

marks do not working in isolation but rather in cooperation with other histone modifications 

[102]. While some lysine methylation marks are preferentially associated with euchromatin 

and hence gene activation (like H3K4, H3K36, and H3K79) or with heterochromatin and gene 

silencing (H3K9, H3K27, and H4K20) [103], more often the final effect on chromatin is 

influenced by the interplay of several histone modifications together (“histone crosstalk”) 

[104]. An aberrant covalent histone modification profile, leading to a dysregulated expression 

of oncogenes and tumor suppressor genes, is often associated with cancer [102]. Fraga et al. 

demonstrated, for example, that the reduction of Lys16 acetylation and Lys20 trimethylation 

at histone 4 constitutes a typical “cancer signature” [105]. Furthermore, aberrant histone 

methylation has been related not only with cancer but also with mental retardation and aging 

[106-108]. 
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Histone methylation is a stable epigenetic mark that does not alter the overall charge of 

the histone tails. However, with increasing methylation [109] comes an increase in basicity, 

hydrophobicity, and an influence on the affinity for anionic molecules like DNA [110-111]. 

HMTs display remarkable specificity in the level of methylation they catalyze, and the latest 

findings suggest that this could have functional significance in transcription [112]. 

Similar to other histone modifications, histone methylation can modulate histone 

interaction with DNA and chromatin associated proteins, which results in an alteration of 

nucleosomal structures and functions, and ultimately contributes to different biological 

processes [113]. Two super-families of enzyme control histone lysine methylation states: 

lysine methyltransferases (KMTs) and demethylases (KDMs). 

2.1.1 Histone Methyltransferases 
Histone lysine methyltransferases (termed protein lysine methyltransferases, PKMTs, 

because of their histone and non-histone substrates) and histone arginine methyltransferases 

(termed protein arginine methyltransferases, PRMTs) [114] catalyze the transfer of a methyl 

group from S-adenosyl-L-methionine (Ado-Met) to N-terminal histone lysines (producing 

mono, di-, and trimethylate) and arginines (producing mono- or dimethylate in a symmetric 

or asymmetric manner), respectively, with release of S-adenosyl-L-homocysteine (Ado-Hyc) 

(Fig. 2.1). A range of 60−96 HMTs have been identified in the human genome through 

phylogenetic analysis, though not all putative HMTs have been shown to methylate histones 

[23, 114]. There are two different families of lysine methyltransferases divided on the basis 

of their catalytic domain sequence: the DOT1-like proteins and the SET domain-containing 

proteins. The acronym SET came from the Drosophila polycomb proteins in which this domain 

was originally found, namely Suppressor of variegation 3–9 (Su(var)3–9), Enhancer of zeste 

(E(z)), and Trithorax (Trx) [115-117]. 
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Fig. 2.1: (top) Mechanism of methylation of histone lysine residues catalyzed by KMTs and (bottom) of 
arginine residues catalyzed by PRMTs [57]. 

To date, over 300 proteins have been identified that contain SET domains[118], and 

which can be grouped into four major classes: SET1, SET2, SUV39 and RIZ-SET. Their 

classification is based foremost on sequence similarity between the SET domains and 

secondarily on their relationship to SET domains in the yeast S. cerevisiae [119-120]. 

Furthermore, each enzyme family shows other common structural features, such as bromo-, 

chromo-, PRE-SET- and POST-SET domains; it appears that all of them have the same substrate 

specificity [119, 121-122]. 

The SET methyltransferase represents the catalytic domain, while the accessory proteins 

control the selectivity and the activity of the complex. The SET1 family is characterized by the 

presence of the SET domain usually followed by a post-SET domain, even if the two most 

studied members of this family, EZH1 and EZH2, do not harbor this region. The members of 
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the SET2 class have a SET domain that is always between a post-SET and an AWS domain, rich 

in cysteines. In this family, we find the nuclear receptor binding SET domain-containing 

proteins NSD1-3, the SETD2 and the SMYD family proteins. The SUV39 family members all 

present a pre-SET domain, essential for enzymatic activity [115]. SUV39H1, SUV39H2, G9a, 

GLP, ESET, and CLLL8 belong to this class. Finally, the RIZ family members, bearing the SET 

domain at the amino terminus, are RIZ1, BLIMP1, and PFM1. To date, no known RIZ proteins 

possess methyltransferase activity. There are examples of SET domain HKMTs that 

monomethylate only (SET7/9) and that mono-, di-, and trimethylate (G9a, EZH2) histone 

lysines. PKMT-catalyzed trimethylation has been found to proceed by both processive (G9a) 

and distributive (EZH2) biochemical mechanisms [123-125].  

In 2002, the first non-SET HKMT was identified, termed Dot1. It exhibits specificity for H3-

K79 [116]. For this reason, HKMTs should not be classified by sequence homology, but instead 

on the basis of epigenetic criteria regarding their histone specificity. At this point it is not 

known how different HKMTs control their catalysis of mono-, di-, and trimethylation, and in 

which way this varied substitution pattern correlates with transcription [126]. 

Mammalian PRMTs methylate the terminal guanidino side chain of Arg to one of three 

species: (1) monomethyl arginine, (2) asymmetric dimethylarginine, and (3) symmetric 

dimethylarginine (Fig. 2.1) [127-128]. There are nine mammalian PRMTs, all of which catalyze 

the formation of monomethyl arginine. Among these, type I PRMTs also catalyze the 

formation of asymmetric dimethylarginine (PRMT1−4, -6, and -8), and type II PRMTs also 

catalyze the formation of symmetric dimethylarginine (PRMT5) [128-129]. PRMT7 catalyzes 

only monomethyl arginine formation, and PRMT9 is active but has not yet been characterized. 

Enzyme and structural studies indicate that PRMT-catalyzed reactions proceed via an ordered 

sequential bi-bi kinetic mechanism with Ado-Met, as the methyl donor, binding followed by 

binding of the arginine-containing protein [130]. Similar to that of PKMTs, PRMT-catalyzed 

methyl transfer likely proceeds through an SN2 mechanism, and data indicate that the 

reaction is processive from arginine to dimethylarginine (Fig. 2.1) [114, 131]. 

2.1.2 Histone Demethylases 

For many years after the discovery and characterization of histone methylation, it was 

proposed that this PTM is highly stable [111, 132] and that only nonenzymatic mechanisms, 

such as histone protein exchange, are responsible for histone demethylation [133-134]. Only 
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a decade ago was this disproven by Shi and colleagues with the first report of a histone 

demethylase, lysine-specific demethylase 1 (LSD1) [115].  

Up to date, two classes of KDM have been described: the amine-oxidase type lysine-

specific demethylases 1 and 2 (LSD1 and 2; also known as KDM1A and B, respectively) and the 

JumonjiC (JMJC) domain-containing histone demethylases (Table 2.1). The latter consist of a 

group which contains over 30 members and can be divided, based on the JMJC-domain 

homology, into seven subfamilies (KDM2-8) [115, 135-136]. These two classes of 

demethylases possess different catalytic mechanism. LSD1 and LSD2 are flavin adenine 

dinucleotide (FAD)-dependent amine oxidases that catalyze a two-electron oxidation of 

methylated lysine, generating FADH2 and H2O2, to form an imine that reduces upon addition 

of water to form demethylated lysine and formaldehyde (Fig. 2.2). The catalytic mechanism 

relies on a lone electron pair on the lysine ε-nitrogen atom, and for this reason the LSD 

enzymes can demethylate mono- and dimethylated lysines but not trimethylated lysines 

[137]. Whereas the Jumonjii domain-containing demethylases are iron and α- ketoglutarate 

(2-oxoglutarate (2-OG))-dependent enzymes and are able to remove methyl groups from all 

three methyl lysine states, with concomitant production of succinate, carbon dioxide, and the 

demethylated lysine and formaldehyde (Fig. 2.3) [136, 138]. The target specificity of KDMs is 

regulated by their participation in different complexes. KDMs are implicated in different 

diseases, such as leukemia, prostate and breast cancer, esophageal squamous carcinoma, and 

as mental retardation [102, 139-140]. 
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Fig. 2.2: Outline of the demethylation mechanisms for the KDM1 (LSD). The KDM1 enzymes (KDM1A and 
KDM1B) are members of the amine oxidase superfamily that couple oxidation of the methyl group to reduction 
of the co-substrate flavin adenine dinucleotide (FAD), likely via transfer of hydride. The resultant iminium ion 
intermediate is unstable and reacts with water to give the demethylated product and formaldehyde. The 
reduced FAD is reoxidized by molecular oxygen, forming hydrogen peroxide. The inset shows a view from a 
crystal structure of KDM1A (PDB 2UXN).  
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Fig. 2.3: Outline of the demethylation mechanisms for the JmjC KDM. JmjC KDM catalysis proceeds via 
oxidative decarboxylation of 2-oxoglutarate to give succinate, carbon dioxide and a Fe(IV) = O species, which 
catalyzes methyl group oxidation to give a hemiaminal which fragments to give the demethylated product and 
formaldehyde. The inset shows a view from a crystal structure of KDM4A complexed with H3K9me3, N-
oxalylglycine substituting for 2-oxoglutarate, and nickel for iron (PDB 2OQ6). 

 
Table 2.1: Classification of histone demethylases 

Histone 
demethylase 

Other 
names 

Histone 
Substrates Phenotype Association with human 

disease 

LSD1 
KDM1A, 
AOF2, 

BHC110 

H3K4me2/1 
H3K9me2/1 

Embryonic 
lethality around 

E5.5 

Overexpression in prostate 
cancer, undifferentiated 

malignant neuroblastoma, 
oestrogen-receptor-negative 

breast cancer, bladder 
cancer, lung and colorectal 
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carcinoma and 
silencing/downregulation in 

breast cancer 

LSD2 KDM1B, 
AOF1 H3K4me2/1 Maternal effect 

lethality 

Amplification and 
overexpression in urothelial 

carcinoma 

JMJD5 KDM8 H3K36me2 
Embryonic 

lethality around 
E11 

N.D. 

JMJD6 N.D. H3R2, H4R3 

Perinatal 
lethality and 

various 
developmental 

defects 

Overexpression in chronic 
pancreatitis 

FBXL11 KDM2A, 
JHDM1A H3K36me2/1 N.D. N.D. 

FBXL10 KDM2B, 
JHDM1B 

H3K36me2/1 
H3K4me3 

Partial peri- or 
postnatal 

lethality, neural 
tube closure 

defects, 
exencephaly 
and reduced 
sperm count 

Overexpression in various 
leukaemias and bladder 

carcinoma 

KIAA1718 KDM7A, 
JHDM1D 

H3K9me2/1 
H3K27me2/1 N.D. N.D. 

PHF2 JHDM1E H3K9me2 N.D. 

Mutation or 
silencing/downregulation in 
breast carcinoma and head 

and neck squamous cell 
carcinoma 

PHF8 JHDM1F H3K9me2/1 
H4K20me1 N.D. 

Mutation and deletion 
associated with X-linked 

mental retardation and cleft 
lip/palate 

JMJD1A 
KDM3A, 
JHDM2A, 

TSGA 
H3K9me2/me1 

Male infertility 
and adult onset 

obesity 

Overexpression in malignant 
colorectal cancer, 

metastasized prostate 
adenocarcinoma, renal cell 

carcinoma and 
hepatocellular carcinoma 

UTX KDM6A H3K27me2, 
H3K27me3 

Neural tube 
defects at E9.5, 

female 
embryonic 
lethality at 

E10.5, partial 
male embryonic 
lethality, defects 

in cardiac 
development 

Mutation in multiple tumour 
types including multiple 
myeloma, oesophageal 

squamus cell carcinoma, 
renal clear cell carcinoma, 
transitional cell carcinoma, 

chronic myelomonocytic 
leukaemia, overexpression in 
breast cancer and deletion in 

Kabuki syndrome 
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and increased 
tumour 

formation 

JMJD3 KDM6B H3K27me3/me2 

Perinatal 
lethality and 

premature lung 
development 

Overexpression in various 
cancers including lung and 

liver carcinomas and several 
haematological 

malignancies, in neutrophils 
of patients with ANCA 

vasculitis and in primary 
Hodgkin's lymphoma 

JMJD2A KDM4A, 
JHDM3A 

H3K9me3/2 
H3K36me3/2 

H1.4K26me3/2 

Altered 
response to 

cardiac stress 

Silencing/downregulation in 
bladder cancer and 

overexpression in breast 
cancer 

JMJD2B KDM4B, 
JHDM3B 

H3K9me3/me2 
H3K36 me3/me2 

H1.4K26, me3/me2 
N.D. 

Overexpression in malignant 
peripheral nerve sheath 

tumour 

JMJD2C 
KDM4C, 
JHDM3C, 

GASC1 

H3K9me3/me2 
H3K36me3/me2 

H1.4K26me3/me2 
N.D. 

Amplification in oesophageal 
cancer, breast cancer, 
medulloblastoma and 

translocation in lymphoma 

RBP2 KDM5A, 
JARID1A, H3K4me3/2 

Aberrant 
behaviour when 
held by the tail 

and 
haematological 
abnormalities 

Silencing/downregulation or 
deletion in melanoma, 
translocation in acute 

leukaemia and mutation in 
ankylosing spondylitis 

JARID1B KDM5B, 
PLU1 H3K4me3/2 

Embryonic 
lethality before 

E7.5 

Overexpression in bladder 
cancer, prostate cancer and 

breast cancer 

JARID1C KDM5C, 
SMCX H3K4me3/2 

Neurulation and 
cardiac looping 

defects 

Mutation in mental 
retardation, in autism and in 

renal carcinoma 

JARID1D KDM5D, 
SMCY H3K4me3/2 N.D. Deletion in prostate cancer 

JARID2   
Embryonic 

lethality before 
E15.5 

Mutation associated with 
non-syndromic cleft lip, 

spina bifida and congenital 
heart defects 

NO66 N.D. H3K4me3/2 
H3K36me3/2 N.D. Overexpression in non-small 

cell lung cancer 

2.1.2.1 Lysine Specific Demethylase-1 (LSD1) 
Human lysine demethylase 1 (KDM1 or LSD1) was originally identified as a component of 

a transcriptional corepressor complex that also contained the REST corepressor (CoREST) and 

HDAC1/2. This transcriptional corepressor complex could be recruited to RE1 element-
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containing gene promoters by REST and repressed the transcription of neuron-specific genes 

in nonneuronal cells [141-144]. 

Analysis of the LSD1 structure has led to significantly greater insight into its function. 

Overall, the structure of LSD1 consists of an N-terminal SWIRM domain [145], and an amine 

oxidase domain split into two halves, consisting of a substrate-binding half and an FAD-

binding half, which come together to form a globular domain (Fig. 2.4). The active site of the 

enzyme is located in between these two halves. Two long, antiparallel α-helices divide and 

project away from the globular halves of the amine oxidase active site. This so-called tower 

domain serves as the binding interface between LSD1 and its protein cofactor, CoREST, and 

distinguishes it from other amine oxidases [146-147]. The Tower domain of LSD1 is essential 

for the interaction with other proteins, such as a transcriptional corepressor protein (CoREST) 

and histone deacetylase (HDAC) 1 or 2, together with them it forms a stable core subcomplex 

recruited by many chromatin remodeling multiprotein complexes [148]. 

 
Fig. 2.4: LSD1 structure interacting with CoREST (PDB code 2UXN). The SWIRM domain is represented as 

cyan protein surface. AOL domain is represented as orange cartoon, while the tower domain is represented as 
salmon cartoon. FAD is shown as black sticks while the substrate is represented as blue surface. CoREST is 
represented as yellow cartoon, while SANT2 domain is shown as purple cartoon. There is a schematic 
representation of the LSD1 domains according to residues enumeration at the bottom [148-149]. 

In corepressor complexes, LSD1 binds to the C-terminal portion of CoREST, forming a 

biochemically stable complex that renders LSD1 less prone to proteasomal degradation [150-

151]. In addition to its function as an adaptor, CoREST binding is required for LSD1 to catalyze 

H3K4 demethylation on intact nucleosomal particles [150, 152]. Although nucleosomal 
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substrates are refractory to recombinant LSD1, addition of recombinant CoREST endows 

nucleosomal demethylation by LSD1, indicating that the primary function of CoREST is to 

enable LSD1 demethylation of nucleosomal substrates [150, 152]. Consistently, mutations 

that inhibit the ability of CoREST to bind to DNA inhibit the ability of the complex to 

demethylate nucleosomes [147]. 

Without these binding proteins LSD1 is able to demethylate H3K4me1/me2 in peptide or 

bulk histones but not in nucleosomes. The crystal structure of the LSD1-CoREST-histone 

peptide ternary complex reveals that the peptide binds to the amine oxidase domain [153] 

adopting a folded conformation that enables the binding site to accommodate the relatively 

long stretch of the N-terminal H3 tail (Fig. 2.4). The H3-histone N-terminal tail peptide binding 

of LSD1 performs as an allosteric modulator by repressing the turning of the amine oxidase 

(AO) domain regarding the tower domain [154-155]. 

Modulation of LSD1 specificity can also be altered by association with other specific 

cofactors. Metzger et al.  demonstrated that LSD1 can change specificity from H3K4 to H3K9 

when it is associated with the androgen receptor. This presents a strategy by which LSD1 can 

enhance its substrate repertoire by associating with different regulatory proteins [156-157]. 

The structural basis of this protein cofactor-dependent switch in LSD1 substrate specificity is 

not known. 

Indeed, as well as site of action, the protein complex partners LSD1 takes have a major 

influence on its downstream effects on gene expression. In vitro LSD1 is able to directly 

demethylate isolated histones but not when they are organized in the context of intact 

nucleosomes, as they exist in vivo [137]. Interactions with various protein complexes via the 

Tower domain release its catalytic activity, but also dictate the genetic loci at which this 

activity can occur. LSD1 has most commonly been found in association with transcription-

repressive complexes, such as the CoREST-containing chromatin regulatory complex, which 

itself associates with certain HDACs and other proteins with transcription-repressive activity. 

Its core component, RCOR1, has been found to be critical in allowing LSD1 to demethylate 

histone lysines on nucleosome complexes. Yang et al. showed that this complex interacts in a 

bidentate manner, with recognition of the H3 tail by a shallow groove on the surface of LSD1 

[147], and interactions with DNA on the chromatin via a SANT2 domain bound to the Tower 

domain of LSD1 [158]. This additional interaction has been observed both to increase the 

catalytic rate and decrease proteasomal degradation of LSD1, thereby permitting CoREST to 
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direct its demethylation of H3K4 and so act to repress gene expression [151]. LSD1 has also 

been found in association with other repressive complexes, including the NuRD and the CtBP 

chromatin modifying complexes [159-160]. 

In contrast, LSD1 is also found in complexes that activate transcription, most notably 

through interaction with the androgen and estrogen receptors, in which context its substrate 

specificity and demethylase activity is alternatively directed against H3K9, resulting in 

activated gene expression [156]. 

Several data have shown that LSD1 is highly expressed in different types of cancer, 

including bladder and colorectal cancer, oestrogen-receptor-negative breast cancer and 

prostate cancer[161-163]. Recent demonstrations have suggested that inhibiting LSD1 

activity may have therapeutic potential in cancer; examples include the finding that LSD1 is 

required for the maintenance of acute myeloid leukaemia (AML)-containing MLL trans-

locations [164], and that its inhibition can reactivate the all-trans retinoic acid (ATRA) 

differentiation pathway in AML [165]. In addition to providing genetic evidence for a role of 

LSD1 in a mouse model of MLL–AF9-induced leukaemia, Harris et al. showed that the 

monoamine oxidase (MAO) inhibitor tranylcypromine (also known as 

trans-2-phenylcyclopropylamine; 2-PCPA) significantly inhibited the colony-forming ability of 

AML cells [164]. This proof-of-concept study was further extended using two analogues of 

tranylcypromine that have been reported to be more potent and more selective inhibitors of 

LSD1 [164]. These tranylcypromine analogues exhibited 23- and 57-fold higher biological 

potencies than tranylcypromine in a similar setting, thus underlining the feasibility of LSD1 

inhibition for the treatment of AML. 

There are very few reports that link histone demethylases to diseases other than cancer. 

LSD1 is involved in the ‘hyperglycemic memory’ of cells, a series of mechanisms that causes 

negative effects of hyperglycemia to persist for an extended period of time after return to 

normoglycemia. LSD1 shows enhanced recruitment to monomethylated H3K9 in 

hyperglycemic cells and thus contributes to an increased expression of pro-inflammatory 

genes such as NFκB. The expression of these genes is elevated in mice during and after periods 

of transient hyperglycemia [166-167]. 

2.1.2.2 Lysine Specific Demethylase-2 (LSD2) 
In 2009, the second FAD-dependent demethylase, AOF1/LSD2/KDM1B, was identified in 

mammals [135]. Similar to LSD1, LSD2 contains a conserved SWIRM domain required for its 
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catalytic activity and specifically demethylates H3K4me1 and H3K4me2; nevertheless, its 

repressing activity seems to be unrelated to the demethylase function [168]. LSD2 shared less 

than 31% sequence similarity with LSD1. Different from LSD1, LSD2 lacks the Tower domain 

and thus it is not able to bind CoREST (Fig. 2.5); it forms active complexes with euchromatic 

histone methyltransferases such as G9a and NSD3 as well as cellular factors involved in 

transcription elongation rather than with HDACs, and it is localized at the gene body level 

rather than at the promoters [169]. With respect to LSD1, LSD2 has a more restricted 

expression pattern, it being abundant essentially in growing oocytes and being required for de 

novo DNA methylation of some imprinted genes [170]. Thus, considering the involvement of 

both the 2 flavin-containing amino oxidases LSD1 and LSD2 with DNMTs and de novo DNA 

methylation, it seems feasible that a real functional link between DNA methylation and 

histone demethylation would exist. LSD2 has been reported to promote H3K9me2 in addition 

to H3K4me2 demethylation, leading to control of stimulus-induced recruitment of NF-κB to 

the MDC and IL12B promoters and activation of these inflammatory genes [171]. 

 
Fig. 2.5: Lysine-specific demethylase 1 (LSD1) and LSD2 have an amine oxidase-like (AOL) domain shared 

by a large family of oxidases, and uniquely among these they also have the chromatin factor-associated SWIRM 
(SWI3, RSC8 and Moira) domain. The Tower domain of LSD1 and the zinc finger (ZFs) domain of LSD2 distinguish 
the two proteins from each other. PDB ID for LSD1: 2H94; PDB ID for LSD2: 4GU1. 

2.1.2.3 JmjC Histone Demethylase 
The JmjC domain-containing KDMs (KDM2-7 subfamilies; JmjC KDMs) represent the 

larger KDM class, comprising about 20 human enzymes which are grouped into five 

subfamilies (KDM2/7, KDM3, KDM4, KDM5, and KDM6) [172]. These enzymes belong to a 

much larger enzyme superfamily, the 2-OG oxygenases, whose members (about 70-80 genes 
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in the human genome) catalyse a diverse range of oxidation reactions, using 2-OG, molecular 

oxygen, and Fe2+ as co-substrates/co-factors [173].  In particular, the 2-OG-dependent 

histone lysine demethylases are members of the Jumonji family of 2-OG oxygenases, which 

have common structural features (e.g., with respect to 2-OG binding residues) and comprise 

nonhistone modifying enzymes such as factor inhibiting HIF (FIH) [174]. The name Jumonji, 

Japanese for ‘cruciform’, originates from the first reported Jmj family study [175], which 

detailed the formation of a cross-like shape upon neural groove development in jmj knockout 

mice. Among the 30 JmjC domain-containing proteins identified so far within the human 

genome, about 20 have been published to demethylate specific lysines in the histone proteins 

[176-177]. 

The enzymatic mechanism involves two cofactors, Fe(II) and 2-oxoglutarate, which are 

bound in the JMJC domain; they react with dioxygen to form a highly reactive oxo-ferryl 

(Fe(IV)=O) intermediate that hydroxylates the Nε-methyl groups of the methylated lysine 

substrate. The resulting, hemiaminal intermediate, is highly reactive and spontaneously gives 

formaldehyde and lysine residue lacking one methyl group, while oxidative decarboxylation 

α-ketoglutarate gives succinate and CO2 (Fig. 2.3) [173, 178-179]. Unlike LSD1, the 

hydroxylation-based mechanism of the JmjC KDMs does not require a protonatable lysine ε-

amine group, enabling these enzymes to demethylate all 3 lysine methylation states (tri-, di- 

and monomethylation) at H3K4, H3K9, H3K27, and H3K36, as well as H1K26 [180].  

Six different subfamilies (JMJD1s, JMJD2s, JARID1s, UTX/Y-JMJD3, PHFs, and FBXLs) of 

JmjC histone demethylases have been identified, which have different histone sequence and 

methylation state selectivity [180-181]. For instance, KDMs of the JmjC domain-containing 2 

(JMJD2) subfamily are selective for the demethylation of the tri- and di-Nε-methylation states 

of specific lysines on histone H3, whereas other subfamilies (e.g., the PHF and FBXL 

subfamilies) are selective for the di- and mono-Nε-methylated states and do not accept the 

trimethylated state [182]. 

The JmjC domain is a double-stranded β-helical (DSBH) fold also called the jelly-roll fold 

or double Greek motif. The DSBH fold is composed of eight β-strands that form a β-sandwich 

structure comprised of two four-stranded antiparallel β-sheets. The active center is buried in 

the interior of the JmjC domain, where Fe2+ is coordinated by three conserved residues 

(HxE/DxH iron binding motif comprising one aspartyl/glutamyl and two histidyl residues) and 

further stabilized by the 2OG cofactor (Fig. 2.6). The substrate is bound unusual by hydrogen 
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bonds, which is formed between one methyl group of methylated lysine and the oxygen 

atoms from active-site residues [172, 182-185]. In addition to the core structure of the JmjC 

domain, most JmjC-dependent demethylases contain auxiliary functional domains that 

maintain the overall structural stability and contribute to substrate recognition, recruitment 

and catalysis. These auxiliary domains include PHD, Tudor, CXXC, FBOX, ARID, LRR, JmjN, and 

Zn2+ finger domains, which are likely to contribute to substrate selectivity [172, 186-188]. For 

example, the JmjN domain, which is formed by three short helices and two β-strands, is 

essential for the demethylation activity of JHDM3/JMJD2 [189].  

 
Fig. 2.6: The Overall Structures of c-JMJD2A with and without α-KG. (A) The structure of c-JMJD2A in the 

presence of Fe2+ and Zn. The domains include the JmjN domain (residues 14 to 56, green), the long β hairpin 
(residues 65 to 94, red), the mixed structural motif (residues 95 to 171, gray), the JmjC domain (residues 171 to 
293, light blue), and the C-terminal domain (residues 294 to 350, pink). The Fe and Zn ions are coloured brown 
and purple, respectively. (B) The structure of c-JMJD2A with Fe2+ and α-KG. The colour coding is the same as in 
(A). α-KG is coloured yellow with the oxygen atoms shown in red. Residues involved in α-KG binding and Fe 
chelating are labelled.  
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Despite the functional characterization of many JmjC histone demethylases being still at 

a relatively early stage, recent evidence suggests for these enzymes many important 

biological roles ranging from the regulation of cellular differentiation and development to the 

control of neuronal function. Notably, dysregulation of JmjC demethylases can lead to 

aberrant histone methylation states and is associated with a number of diseases, including 

cancer and neurological disorders such as autism and X-linked mental retardation [190-192] 

(Table 2.1). An additional mechanism by which KDMs are overexpressed in various cancers is 

via their induction under hypoxic conditions. Inadequate or inefficient vascularization of 

rapidly growing tumors results in reduced oxygen tension, which activates the hypoxia-

inducible factor (HIF) transcription factor [102].  

2.2 Histone Acetylation 
One of the most widely studied histone PTM is acetylation [193]. Histones are covalently 

modified at the ε-amino group of lysines by histone acetyltransferases (HATs), thereby 

neutralizing the positive charge and thus interfering with the histone−DNA interaction 

essential for nucleosome stability [194]. Since Allfrey’s discovery of histone acetylation in 

1964 [195], it is now understood that the interplay of acetylation and deacetylation of 

chromatin plays a critical role in transcription [193]. The transfer or removal of acetyl groups 

to ε-amino group of lysine residues is mediated by two classes of enzymes. HATs catalyze the 

covalent attachment of acetyl groups to lysine residues of histones and other proteins by 

using acetyl-coenzyme A (acetyl-CoA) as a cofactor. Histone deacetylases (HDACs) conversely 

catalyze the amide hydrolysis of acetylated lysine. The attachment of acetyl groups to lysine 

residues goes along with two functional consequences. First, the positive charge of 

physiologically protonated ε-amino groups is abolished, resulting in altered electrostatic as 

well as steric properties of the affected protein region. Second, acetylation serves as a mark 

for distinct “reader” domains, which comprise specialized tertiary structures in proteins that 

undergo a selective interaction with acetylated lysines [196-197]. Key to this process is the 

ability of “readers” to recognize specific PTMs that ultimately determine the functional 

outcome of the PTM[77, 198]. Three readers (bromodomain [199-200], double PHD finger 

[201-202], and pleckstrin homology domain) [203] that recognize acetylated lysine (KAc) have 

been identified and the bromodomain is the most thoroughly characterized of the three 

[204]. 
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 ε-N-acetylation of lysine residues on the amino-terminal tails of histones has been 

generally associated with open chromatin architecture as well as transcriptional activation 

[205]. Upon acetylation, local affinity of the modified histone protein to negatively charged 

DNA is decreased, resulting in a less condensed chromatin structure and in exposure of 

promoter sites. As a consequence of the increased accessibility, the DNA globally becomes 

more prone to access of the transcriptional machinery [131]. In addition, transcription factors 

and other regulatory elements are recruited in a modification-specific manner to the relaxed 

promoter locus by interaction of specialized reader domains with acetyl lysine moieties [197, 

206]. Thus, HATs and histone acetylation are functionally linked with the control of 

transcription activation, replication, and DNA damage repair [207]. 

2.2.1 Histone Acetyltransferases (HATs)  
HATs catalyze the acetylation of lysine residues, which has been accepted as an 

important epigenetic marker. Acetylation occurs on both histone and nonhistone proteins, 

with an estimated 2,000–4,000 acetylated proteins and 15,000 acetylation sites in animal 

tissues [208]. HATs catalyze the transfer of acetyl groups to lysine residues using acetyl-CoA 

as donor. Fig. 2.7 depicts the transfer of the acetyl group to the lysine ε-amino residues in 

histones on a ternary complex with the lysine substrate bound to a hydrophobic pocket 

located close to the acetyl group of the acetyl-CoA binding site, which is one of the 

mechanisms proposed based on crystal structures [209]. 

 
Fig. 2.7: Mechanism of acetyl transfer in the ternary complex containing the HAT, acetyl-CoA (insert), and 

a fragment of H3 [209] 

Since the isolation of the Gcn5 HAT from Tetrahymena by Allis and coworkers [210], and 

the identification of HAT1 by Sternglanz and coworkers [211] and Gottschling and coworkers 
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[212] just more than a decade ago, many other HATs have been identified from yeast to man. 

Some of these HATs (e.g., PCAF and HAT1) show sequence conservation with Gcn5 within 

their catalytic domain, leading to their classification as Gcn5-related histone N-

acetyltransferases (GNATs) [213]. Many other HATs, like CBP/p300, Rtt109, and the MYST 

proteins have extremely limited sequence conservation. Based on this sequence divergence 

within the HAT domain, HATs can be grouped into at least five different subfamilies (Table 

2.2). This includes HAT1 (named histone acetyltransferase 1 as the founding member of the 

superfamily or KAT1) [214], Gcn5/PCAF (named for its founding member yeast Gcn5 and its 

human ortholog, PCAF, or KAT2a/KAT2B according to the alternative nomenclature), MYST 

(named for the founding members MOZ, Ybf2/ Sas3, Sas2, and TIP60, or KAT5), p300/CBP 

(named for the two human paralogs p300 and CBP, or KAT3B/KAT3A), and Rtt109 (named for 

its initial identification as a regulator of Ty1 transposition gene product 109, also referred to 

as KAT11). Although the Gcn5/PCAF, HAT1, and MYST subfamilies have homologs from yeast 

to man, p300/CBP is metazoan specific, and Rtt109 is fungal specific [206]. Although other 

nuclear HAT subfamilies have been identified, such as the steroid receptor coactivators 

(ACTR/AIB1, SRC1) [215], TAF250 [216], ATF-2 [217], and CLOCK [218], their HAT activities 

have not been studied as extensively as the five major HAT classes. 

Table 2.2: The five major HAT families. 

Major HAT 
subfamilies 

Prominent 
members Key structural and biochemical properties 

HAT1 yHat1 

Member of the GNAT family, 
Amino- and carboxy-terminal segments used for histone 
substrate binding, 
Requires the yHat2 regulatory subunit for maximal catalytic 
activity 

Gcn5/PCAF 
yGcn5 
hGCN5 
hPCAF 

Member of the GNAT family, 
Uses a ternary complex catalytic mechanism, 
Amino- and carboxy-terminal segments used for histone 
substrate binding 

MYST 

yEsa1 
ySas2 
ySas3 
hMOZ 
dMof 
hMOF 
hTIP60 
hHBO1 

Uses a ping-pong catalytic mechanism, 
Requires autoacetylation of a specific lysine at the active site 
for cognate histone acetylation 

p300/CBP hp300 
hCBP 

Metazoan-specific, but shows structural homology with 
yRtt109 
Uses a ternary Theorell–Chance (hit-and-run) catalytic 
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mechanism, 
Contains a substrate-binding loop that participates in AcCoA 
and lysine, binding 
Contains an autoacetylation loop that requires lysine 
autoacetylation for maximal catalytic activity 

Rtt109 yR11109 

Fungal-specific, but shows structural homology with p300 
Contains a substrate-binding loop that participates in AcCoA 
and probably also lysine binding, 
Requires autoacetylation of a lysine residue near the active site 
for maximal catalytic activity, 
Requires one of two histone chaperone cofactors (Asf1 or 
Vps75) for maximal catalytic activity and histone substrate 
specificity 

y, yeast; h, human; GNAT, Gcn5-related N-acetyltransferase. 

HATs mediate many different biological processes including cell-cycle progression, 

dosage compensation, repair of DNA damage, and hormone signaling. Aberrant HAT function 

is correlated with several human diseases including solid tumors, leukemias, inflammatory 

lung disease, viral infection, diabetes, fungal infection, and drug addiction [219-220]. 

Deregulated HAT activity is particularly linked to cancer formation and progression [23, 221-

223]. Certain types of leukemia are characterized by the occurrence of fusion proteins with 

increased HAT activity [224]. Furthermore, lysine acetylation of the oncogenic fusion protein 

AML1-ETO by the HAT p300 has been demonstrated in patient blasts using western blotting 

and is required for leukemic transformation in mouse models as shown by mutation studies. 

In addition, the p300 inhibitor C646 increased survival in a mouse model of leukemia [225]. An 

impaired acetylation equilibrium is also observed in several solid tumors [221, 226] including 

prostate [227-228], colon [229] and breast [230] cancers with evidences for both HATs and 

deacetylases as potential drug targets. The activities of HATs and HDACs are also changed in 

asthma and chronic obstructive pulmonary disease because bronchial biopsies and alveolar 

macrophages from asthmatic patients show increased HAT and reduced HDAC activity [231]. 

p300-mediated acetylation of the HIV-1 viral protein, integrase, increases its activity in 

integrating the HIV-1 virus into the human genome [232]. The leading diabetes drug, 

Metformin, was shown to act through p300/CBP inhibition, and heterozygous CBP knockout 

mice are noticeably lean with increased insulin sensitivity [233]. The Rt109 HAT was also 

reported to be required for the pathogenesis of Candida albicans, the most prevalent cause 

of hospital-acquired fungal infections [234]. Studies in drug addiction and the related disease 
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of depression using animal models have also uncovered interesting correlations between 

stages of drug addiction and histone acetylation status [220]. 

2.2.2 Histone Deacetylases 
HDACs catalyse the removal of acetyl groups from the amino-terminal lysine residues of 

histone and non-histone proteins, such as transcription factors (TFs), hormone receptors, 

signaling proteins, chaperones, and DNA damage response proteins [235-238]. There are 18 

different mammalian HDACs which are categorized into 2 families and 4 classes. First 

identified zinc dependent Rpd3/Hda1 family (class I, II, and IV) is referred as ‘classical’ HDACs, 

while the NAD+-dependent sirtuin family or Sir2 proteins (SIRT1–7) are divided into class III 

HDACs [13, 236, 239-240]. HDAC1, 2, 3, and 8 belong to class I and are localized in the nucleus, 

presenting similarity to the yeast Rpd3 [236]. Class II HDACs [241] are present in both the 

cytoplasm and nucleus, and they shuttle between these compartments [242-245]. Class II 

HDACs (grouped for homology to Hda1 in yeast) are divided into two subclasses: class IIa 

(HDAC4, 5, 7, and 9) and class IIb (HDAC6, 10). Class IV HDACs includes one member (HDAC11) 

[246-247], which can be considered a “hybrid” sharing similarities to both class I and II HDACs. 

Sirtuins, related to Sir2 in yeast [248], have also been categorized as class III HDACs [249] (Fig. 

2.8, lower part) and grouped as SIRT1-7 [250]. These enzymes display an NAD function that is 

associated to a nuclear, mitochondrial, and cytoplasmic localization [251-252].  
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Fig. 2.8: HDAC and SIRT classification. Enzymes are divided into classes and sub-classes; subcellular 

localization and tissue distribution is reported for each member.  
 

2.2.2.1 HDACs 
HDACs are heterogeneous in length, varying from 347 amino acids for the shortest 

(HDAC11) to 1215 amino acids for the longest (HDAC6) (Fig. 2.8) [235, 253]. All HDACs have a 

highly conserved deacetylase domain. Based on the ligand-bound crystal structures, the 

mechanism of deacetylation (Fig. 2.9) was recognized to involve the activation of the 
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acetamide carbonyl group by the Zn2+ ion and its hydrolysis with formation of a tetrahedral 

intermediate facilitated by a “charge-relay” system. Several variants of the deacetylation 

mechanism have been proposed [254-257]. Upon activation, the N-acetyl group is attacked 

by a water molecule, producing an N- 3 free lysine and acetic acid. The major residues 

differences are found at the entry of the active site. The most recent computations support 

the involvement of two charge-relay systems, the recognition of the H142/D176 dyad as the 

general base of the reaction, the stabilization of the intermediate by Y306, and the inhibitory 

effect of K+. 

 
Fig. 2.9: Simplified mechanism for HDAC-8 catalyzed deacetylation reactions [257] 

Histone deacetylation gives a tag for epigenetic repression and plays an important role 

in transcriptional regulation, cell cycle progression and developmental events. The classical 

HDACs are emerging targets for metabolic disease [258], cancer [259], and 

neurodegeneration [260]. HDACs are also involved in inflammation and infection. Class I 

HDACs have a role in innate immunity through inflammatory cytokine production and class 

IIa HDACs are involved in adaptive immunity through the regulation of antigen presentation 

[16].  

2.2.2.2 HDAC Inhibitors 
HDAC inhibitors (HDACi) have set a paradigm to reverse abnormal epigenetic changes 

related to cancer. HDACi are mostly studied as anticancer agents, but there is a growing body 

of literature ascribing these enzymes to play a crucial role in other diseases such as 

neurological disorders, inflammatory processes and infectious diseases [261-264]. With 

emphasis on their structural diversity, the different classes of HDAC inhibitors include 

hydroxamic acids, benzamides, short chain fatty acids, macrocyclic peptides and others. 

These Zn2+ dependent HDAC inhibitors share three pharmacophoric motifs, a cap group or a 

surface recognition unit (usually a hydrophobic and aromatic group interacting with the rim 

of the binding pocket), a Zn2+ binding domain (ZBD) or chelating group (hydroxamic acid, 

carboxylic acid or benzamide groups), that coordinates with Zn2+ ion and a saturated or 
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unsaturated linker with linear or cyclic structure, joining the cap group to the ZBD (Fig. 2.10). 

Alterations in any or all three motifs have variably affected the potency and selectivity of the 

HDAC inhibitors [265-270].  

 
Fig. 2.10: Approved HDAC inhibitors in clinical trials with their pharmacophores. The cap, linker and the 

Zn2+ binding group are represented in blue, green and red, respectively [263]. 

In 2006, the hydroxamic acid SAHA (suberoylanilide hydroxamic acid, INN: Vorinostat, 

Fig. 2.10) was the first KDAC inhibitor that was approved for the treatment of cutaneous T-

cell lymphoma (CTCL) [271]. Romidepsin, belinostat, and chidamide followed with similar 

indications (Fig. 2.10). While romidepsin is approved for the treatment of CTCL and peripheral 

T-cell lymphoma (PTCL) [272], the use of belinostat and chidamide is restricted to PTCL [273-

274]. Panobinostat (Fig. 2.10) is approved for the treatment of multiplemyeloma [275]. 
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Currently, there are numerous HDACi under clinical development (Table 2.3), which can be 

divided into three groups based on their specificity: (1) nonselective HDACi, such as 

vorinostat, belinostat, and panobinostat; (2) selective HDACi, such as class I HDACi 

(romidepsin and entinostat) and HDAC6 inhibitor (ricolinostat); and (3) multipharmacological 

HDACi, such as CUDC-101 and CUDC-907 [276]. 

Table 2.3: HDAC inhibitors currently under clinical investigations 
HDACi Specificity Cancer types Clinical trial Ref 
Hydroxamic acid 

Vorinostat (SAHA) Classes I, II, and 
IV CTCL FDA approved 

in 2006  [277] 

Belinostat 
(Beleodaq/PXD101) 

Classes I, II, and 
IV PTCL FDA approved 

in 2014 [278] 

Panobinostat (LBH-589) Classes I, II, and 
IV MM FDA approved 

in 2015 [279] 

Resminostat (4SC-201) Classes I and II 
Advanced colorectal 
and hepatocellular 
carcinoma; HL 

Phase II trial [280-281] 

Givinostat (ITF2357) Classes I and II CLL; MM; HL Phase II trial [282-283] 

Pracinostat (SB939) Classes I, II, and 
IV AML Phase II trial [284] 

Abexinostat (PCI-24781) Classes I and II 
Metastatic solid 
tumors; HL; non-HL; 
CLL 

Phase I trial [285-286] 

Quisinostat (JNJ-
26481585) 

Class I and II 
HDACs 

Advanced solid tumor; 
lymphoma; CTCL 

Phase I and II 
trial [287] 

MPT0E028 HDAC1, 2, 6 Advanced solid tumor Phase I trial [288] 
CHR-3996 Class I Solid tumor Phase I trial [289] 

CUDC-101 
Classes I and II 
HDAC, EGFR, 
HER2 

Solid tumor Phase I trial [290] 

CUDC-907 Classes I and II 
HDAC, PI3K 

MM; lymphoma; solid 
tumor Phase I trial [291] 

Benzamides 

Entinostat (MS-275) Class I 
Solid and 
hematological 
malignancies 

Phase I and II 
trial [292] 

Mocetinostat 
(MGCD0103) Class I and IV 

Solid and 
hematological 
malignancies 

Phase I and II 
trial [293] 

Tacedinaline (CI-994) Class I MM; lung and 
pancreatic cancer 

Phase II and III 
trial [294] 

Ricolinostat (ACY-1215) HDAC6 MM; lymphoma Phase I and II 
trial [295] 

Chidamide (CS055/HBI-
8000) 

HDAC1, 2, 3, 
and 10 PTCL 

Chinese FDA 
approved in 
2015 

[273, 296] 

Cyclic peptides 
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Romidepsin 
(Depsipeptide/FK228) Class I CTCL; PTCL 

FDA approved 
in 2009 and 
2011 

[297] 

Aliphatic fatty acids 

Valproic acid (VPA) Class I and II 
Solid and 
hematological 
malignancies 

Phase I and II 
trial [298] 

Phenylbutyrate Classes I and II 
Solid and 
hematological 
malignancies 

Phase I and II 
trial [299] 

AR-42 Class I and IIb AML Phase I trial [300] 
Pivanex (AN-9) Classes I and II NSCLC; myeloma; CLL Phase II trial [301] 

2.2.2.3 Sirtuins 
Sirtuins, also referred to as Sir2-like proteins, were discovered in the late 1970s by Klar 

et al. when studying the yeast gene Sir2 (silent information regulator 2) [302]. Initial 

investigations on the catalytic activity suggested Sir2 to be primarily a mono-ADP-

ribosyltransferase [303]. It took a while until the NAD+-dependent deacetylase activity of Sir2 

was elucidated by Imai et al. in the year 2000 [304]. Today, more than 200 members of the 

sirtuin family were identified in bacteria, plants, invertebrates, and vertebrates [305]. In 

prokaryotes, usually one or two sirtuin isotypes can be found, whereas eukaryotic genomes 

encode several sirtuin isotypes. The hallmark of this enzyme family is a domain of 

approximately 260 amino acids with a high degree of sequence homology across the species 

[249]. In mammals, the sirtuin family comprises seven proteins (SIRT1-SIRT7), which vary in 

tissue specificity, subcellular localization, enzymatic activity and targets. Sirtuins carry a 

conserved catalytic domain consisting of about 275 residues. Based on phylogenetic analysis 

mammalian Sirtuins are grouped into four different classes (I-IV) [306-308]. SIRT1, SIRT2 and 

SIRT3 belong to class I along with most eukaryotic Sirtuins such as Sir2.1 from Drosophila 

melanogaster and the founding member yeast Sir2, HST1 and 2 from yeast. SIRT4 belongs to 

class II, SIRT5 to class III, and SIRT6 and SIRT7 are placed in class IV. Additionally, a novel class 

(“U”) has been created to include sirtuins with unique features, such as gram-positive bacteria 

and Termoga maritime sirtuins [308-310]. 

The subcellular localization of the sirtuin isotypes as well as their different slice variants 

(isoforms) is actively regulated by their C- and N-termini, which can contain specific 

localization sequences. For example, Sirt1 and Sirt2 were shown to be able to shuttle between 

nucleoplasm and cytoplasm in a cell cycle and cell-type-dependent manner [311-312]. 

Nevertheless, Sirt1 is a primarily nuclear deacetylase, while Sirt2 is the most important 
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cytosolic sirtuin isotype. The mitochondrial sirtuins are Sirt3–5. However, the existence of a 

long, unprocessed isoform of Sirt3 (lSirt3) in the nucleus was reported as well [313-314]. After 

its mitochondrial uptake lSirt3 is cleaved by the mitochondrial matrix processing peptidase 

(MPP) to sSirt3, which is shorter by 16 kDa [315]. Sirt6 is an exclusively nuclear isotype. The 

localization of Sirt7 was reported to be restricted to the nucleolus. Recently, a cytosolic 

isoform of Sirt7 (lSirt7, 47.5 kDa) was identified, which is slightly longer than the known 

nucleolar isoform (sSirt7, 45 kDa) [316]. SIRTs can catalyze both deacetylation and ADP-

ribosylation [251]. Their best characterized activity is NAD+-dependent lysine deacetylation, 

but recent studies demonstrated that some SIRTs also remove other acyl groups such as 

succinyl, malonyl, glutaryl, and long-chain fatty acyl groups [307, 317] (Table 2.4). Moreover, 

SIRT4 and SIRT6 possess ADP-ribosyltransferase activity, yet its biological relevance remains 

to be fully established [303, 318-320]. Together, all these enzymatic activities are essential 

for mammalian sirtuins to modulate a variety of physiological processes, such as 

transcriptional regulation, genomic stability, cellular responses to stress, metabolism, 

inflammation, aging and cancer [321-322]. 

Table 2.4: Characterization of seven mammalian sirtuins 
HDAC 
III 

Sirtui
n 

Localization Substrates Catalytic 
activity 

Function Phathology 

Class I SIRT1 Cytosol, 
nucleus 

PGC1α, 
eNOS, 
FOXO, 
MyoD, NF-
kB, H3K9ac, 
H1K26ac, 
H4K16ac 

NAD+-
dependent 
protein 
deacetylation 

Cell survival, 
insulin, 
signaling, 
inflammation, 
metabolism 
regulation 
oxidative stress 
response, 
lifespan 
regulation. 

Neurodegenerat
ive diseases.       
Cancer: AML, 
colon, prostate, 
ovarian, glioma, 
breast, 
melanoma, lung 
adenocarcinom
a. 

SIRT2 Cytosol, 
nucleus 

H3K56ac, 
H4K16ac, α-
tubulin, 
Foxo3a, 
p53, G6PD, 
MYC 

NAD+-
dependent 
protein 
deacetylation 

Cell cycle 
regulation, 
nervous system 
development. 

Neurodegenerat
ive diseases. 
Cancer: brain 
tissue, glioma. 

SIRT3 Mitochondria
, nucleus 

AceC2, 
ShdhA, 
SOD2, 
PDMC1a, 
IDH2, 
GOT2, 
FoxO3a 

NAD+-
dependent 
protein 
deacetylation 

Regulation of 
mitochondrial 
energetic 
metabolism. 
 

Neurodegenerat
ive diseases. 
Cancer: B-CLL, 
mantle cell 
lymphoma, CLL, 
breast, gastric. 
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Class II SIRT4 Mitochondria GDH, MCD Mono- ADP-
ribosyltransfera
se, NAD+-
dependent 
protein 
deacetylation 

Regulation of 
mitochondrial 
energetic 
metabolism/ 
lipid 
metabolism, 
insulin 
secretion. 
 

Cancer: breast, 
colorectal. 

Class 
III 

SIRT5 Mitochondria Histone H4, 
CPS1, cyt c 

NAD+-
dependent 
Malonyl, 
succinyl, 
glutaryl 
deacetylase 

Urea cycle 
regulation, 
apoptosis. 
 

Cancer: 
pancreatic, 
breast, non-
small cell lung 
carcinoma. 

Class 
IV 

SIRT6 Nucleus H3K9ac 
H3K56ac, 
PARP1 

NAD+-
dependent 
protein 
deacetylation, 
Mono- ADP-
ribosyltransfera
se, long-chain 
fatty acyl 
deacetylase 

Genome 
stability, DNA 
repair, 
nutrient-
dependent 
metabolism 
regulation. 

Cancer: breast, 
colon 

SIRT7 Nucleoli RNA pol I, 
p53, 
histone 
H3K18ac 

NAD+-
dependent 
protein 
deacylation 

Regulation of 
rRNA 
transcription, 
cell cycle 
regulation. 

Cancer: liver, 
testis, spleen, 
thyroid, breast. 
 

 
All sirtuins share a conserved catalytic core of ∼275 amino acids that is flanked by N- and 

C-terminal extensions. The extensions are variable in length and sequence, and they have 

been reported to play various roles such as ensuring a proper cellular localization, regulating 

the oligomerization state, and/or exerting autoregulation mechanisms [315, 323-324]. 

Whereas other HDAC families activate a water molecule for the hydrolysis reaction by using 

a zinc cofactor, the unique Sirtuin mechanism is based on the use of NAD+ as a co-substrate. 

Catalytic mechanisms of nucleophilic substitution SN1-type [325-326] or SN2-type [327-329] 

deacetylation by NAD+-dependent class III deacetylases or sirtuins [330] have been proposed 

with formation of an O-alkylamidate intermediate as shown in Fig. 2.11. A highly dissociative 

and concerted displacement of nicotinamide has been proposed as first step of the 

mechanism of deacetylation. The transition state shows a significant oxocarbenium ion 

character, but the cleavage appears to be facilitated by the nucleophilic assistance of the 

acetylated lysine, as shown by dynamics simulations [331]. Once the nicotinamide has been 
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released it can rebind in the C-pocket and react with the intermediate to reform NAD+. In this 

step Phe33 appears to play a role as gatekeeper in the nicotinamide exchange reaction in 

which it helps to shield the O-alkylamidate intermediate from free nicotinamide. After the 

formation of 1′-O-alkylamidate intermediate, the 2′-hydroxyl group of the ribose is activated 

by a conserved His116 to afford 1′, 2′-cyclic intermediate. Then a protonated histidine can act 

as acid, protonates the amino-acetal and led the deacetylated substrate release. Finally, an 

activated water molecule attacks the cyclic intermediate to furnish 2′-O-acetyl-ADP ribose 

(might be in equilibrium with its corresponding 3′ isomer) [328, 332]. 

 
Fig. 2.11: Mechanism of deacetylation of acetylated lysine catalyzed by sirtuins [258, 325-326, 331]. 

2.2.2.4 Sirtuin Inhibitors 
The potential involvement of sirtuins in the pathogenesis of several diseases has driven 

research groups worldwide to develop small-molecule modulators of sirtuin activity. To 

identify novel sirtuin modulators various approaches have been applied, for example, high-

throughput screening, focused library screening, fragment-based screening, or computer-

based screening in combination with in vitro modulation tests. Despite the little structural 

information toward sirtuin modulation, the use of in silico methods has resulted in the 

identification of several promising sirtuin modulators. However, in contrast to the small-

molecule inhibitors of the Zn2+-dependent KDACs, which are already established drugs in the 

treatment of certain cancers, the clinical potential of sirtuin inhibitors is mostly unknown. Up 

to date, only one sirtuin inhibitor, selisistat, reached clinical trials [333-335]. One reason for 

this is certainly that until recently, most of the developed inhibitors lack either potency, 

isotype selectivity, or suitable physicochemical properties. In the last few years, however, 
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several promising inhibitor classes have been developed that fulfill these requirements. Most 

studies that were launched to discover sirtuin inhibitors focused on the isotypes Sirt1–3 and 

mainly on the inhibition of their deacetylase activity. Very recently, first studies were 

published concerning the pharmacological inhibition of isotypes Sirt4–7 as well as the acyl 

selectivity of sirtuin inhibition. Nonetheless, several small-molecule [336-342] and peptide-

based [343-358] Sirtuin inhibitors have been reported in the literature. 

2.3 Histone Phosphorylation  
Phosphorylation of histones, which is highly dynamic, takes place on serines, threonines 

and tyrosines, predominantly, but not exclusively, in the N-terminal histone tails [76]. The 

levels of the modification are controlled by kinases and phosphatases that add and remove 

the modification, respectively [359]. All of the identified histone kinases transfer a phosphate 

group from ATP to the hydroxyl group of the target amino-acid side chain. In doing so, the 

modification adds significant negative charge to the histone that undoubtedly influences the 

chromatin structure [360].  

Histone phosphorylation controls many important cellular processes, including 

transcription, apoptosis, DNA repair, and chromosome condensation  [14, 361-363]. In most 

cases, phosphorylation of serine and threonine residues of the histone tails appears to be 

involved in chromatin condensation during mitosis and meiosis; for example, C-terminal 

phosphorylation of Thr119 in histone H2A is linked to regulation of chromatin structure and 

function during mitosis [362], and H3 Ser10 (H3S10) phosphorylation is related to chromatin 

compaction during mitosis. Yet H3S10 phosphorylation has also been shown to play a role in 

transcriptional activation of NF-κB pathway genes and immediate early genes like c-jun and 

c-fos [14]. With regard to DNA repair, phosphorylation of histone H2AX at Ser139 (γ-H2AX) 

has been identified as one of the early events after a DNA double-strand break that helps 

recruit DNA damage repair proteins to the site [364].  

2.4 Histone Ubiquitylation  
Ubiquitin (Ub) is a highly conserved protein of 76 amino acids. Its name reflects the broad 

presence of Ub in all eukaryotic cells [365]. The covalent attachment of Ub to other proteins 

was observed 30 years ago with histones [366]. The exact purpose of this modification is still 

under investigation. In most cases, ubiquitinylation serves as a mark for the proteolytic, ATP-

dependent degradation of proteins by the proteasome [367]. In this process, several Ub units 

are transferred to the target protein by a succession of three enzymatic steps [368]. 
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Histone H2A is the first protein identified to be modified by ubiquitin in cells [369]. We 

know now H2A and H2B are two of the most abundant ubiquitinated proteins in the nucleus. 

The dominant form of ubiquitinated histones are monoubiquitinated H2A (H2Aub) and H2B 

(H2Bub). A single molecule of ubiquitin is added to the highly-conserved lysine residues: Lys-

119 for H2A, and Lys-123 in yeast or Lys-120 in vertebrate for H2B [370-372]. Usually histone 

modifications result in relatively small molecular changes to amino-acid side chains. In 

contrast, ubiquitylation results in a much larger covalent modification. Ubiquitin itself is a 76-

amino acid polypeptide that is attached to histone lysines via the sequential action of three 

enzymes: ubiquitin-activating enzymes, ubiquitin-conjugating enzymes and ubiquitin ligases 

[373]. Even though ubiquitylation is such a large modification, it is still a highly dynamic one. 

The modification is removed via the action of isopeptidases called de-ubiquitinating enzyme 

(DUBs) and this activity is important for both gene activity and silencing [76].  

In addition to H2A & H2B, core histones H3, H4, and linker histone H1 have also been 

reported to be modified by ubiquitin. For example, H3 & H4 were polyubiquitinated in vivo by 

CUL4–DDB–RBX1 ubiquitin ligase complex after UV irradiation[374-375]. But the biological 

function of these modifications has not been well elucidated. Besides monoubiquitination, 

histone H2A and H2B can be modified by ubiquitin chains [376-377]. Ubiquitination of 

mammalian H2B occurs at K120 and is predominantly regulated by ubiquitin-conjugating 

enzyme E2A (UBE2A or RAD6A) and the RNF20/RNF40 ubiquitin ligase complex [378]. Altered 

expression of UBE2A and RNF20/RNF40 may contributes to the development and progression 

of various tumor types. Recent study shown that the ubiquitination of H2B is involved in DNA 

double strand break (DSB) repair [371, 379]. Furthermore, cells in which either RNF20 or 

RNF40 were independently or simultaneously silenced exhibited significant increases in DSBs 

which strongly links H2Bub1 to DNA DSB repair [380].  

2.5 Histone ADP-ribosylation 
Histones are known to be mono- and poly-ADP ribosylated on glutamate and arginine 

residues, but relatively little is known concerning the function of this modification. What we 

do know is that once again the modification is reversible. For example, poly-ADP-ribosylation 

of histones is performed by the poly-ADP-ribose polymerase (PARP) family of enzymes and 

reversed by the PARP family of enzymes. These enzymes function together to control the 

levels of poly-ADP ribosylated histones that have been correlated with a relatively relaxed 

chromatin state [381]. Presumably, this is a consequence, at least in part, of the negative 
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charge that the modification confers to the histone. In addition, though, it has been reported 

that the activation of PARP-1 leads to elevated levels of core histone acetylation [382]. 

Moreover, PARP-1-mediated ribosylation of the H3K4me3 demethylase KDM5B inhibits the 

demethylase and excludes it from chromatin, while simultaneously excluding H1, thereby 

making target promoters more accessible [383]. Histone mono-ADP-ribosylation is performed 

by the mono-ADP-ribosyltransferases and has been detected on all 4 core histones, as well as 

on the linker histone H1. Notably, these modifications significantly increase upon DNA 

damage implicating the pathway in the DNA damage response [381].  

The inclusion of PARP-1 into the group of chromatin modifying enzymes is justified by 

some similarities to HATs, for example [384]. PARP-1 affects various DNA-based processes like 

transcription, replication, and DNA repair; it also participates directly in the assembly of 

transcription complexes at enhancers and promoters [385]. In addition, the PAR modification 

is part of a synergism that is typical for the histone code: nucleosomes can be modified 

simultaneously by acetyl groups and PAR residues [386]. 

2.6 Histone SUMOylation  
The abbreviation SUMO (small ubiquitin-like modifier) designates a group of small 

proteins that are related to Ub through secondary and tertiary structure elements [387]. Their 

mechanism of attachment to target proteins is also similar to that of Ub. A SUMO-activating 

enzyme E1 (SAE1/SAE2) binds SUMO with concomitant ATP hydrolysis as a reactive thioester, 

which is trans-esterified to the SUMO-conjugating enzyme E2 (Ubc9). The last step is likely to 

be the transfer of the SUMO group from E2 to the e-amino function of a lysine residue by the 

action of a ligase E3 [388]. 

Sumoylation is a modification related to ubiquitylation [388], and involves the covalent 

attachment of small ubiquitin-like modifier molecules to histone lysines via the action of 

ubiquitin-activating, conjugating and ligases enzymes. Sumoylation has been detected on all 

four core histones and seems to function by antagonizing acetylation and ubiquitylation that 

might otherwise occur on the same lysine side chain [389-390]. Consequently, it has mainly 

been associated with repressive functions, but more work is clearly needed to elucidate the 

molecular mechanism(s) through which sumoylation exerts its effect on chromatin. 
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3. EPIGENETIC TARGETS IN MALARIA AND NEGLECTED TROPICAL DISEASES 
3.1 Overview of Malaria and Neglected Tropical Diseases 

Neglected tropical diseases (NTDs) are defined by WHO as ‘a diverse group of 

communicable diseases that prevail in tropical and subtropical conditions;’ the official WHO 

list of NTDs is currently comprised of 17 infectious diseases [391]. NTDs, which though 

treatable and/or preventable, remain a leading cause of morbidity and mortality among the 

world’s poorest populations. These diseases further fuel a vicious cycle because they are also 

big contributors to regression of child development and human productivity [392]. Alongside 

malaria, these diseases predominantly affect populations living in poverty, under poor living 

conditions and in close proximity with the vectors of disease-causing agents. Their effects are 

far-reaching and devastating: over 1 billion people in 149 countries suffer from one or more 

NTDs with millions of others at risk, and the economic repercussions of these diseases can be 

just as damaging as their health effects [391-392]. These diseases contribute significantly to 

child mortality in the developing world and greatly undermine economic development. In 

2010, NTDs and malaria were estimated to be the cause of 1.321 million deaths globally, an 

increase of 9.2% from 1990 and representing 2.5% of all deaths that year [393]. The 

socioeconomic impact of the NTDs is not trivial. It is projected that 57 million disability 

adjusted life-years (DALYs) are lost every year due to these diseases, a figure widely believed 

to be an underestimate [394]. Additionally, diseases such as the trypanosomiases, which are 

zoonoses, also affect livestock, contributing to reduced livestock productivity in infected 

populations and thereby aggravating the economic impact by decreasing agricultural output 

[391]. 

Although most, if not all, of the NTDs including malaria can be managed clinically through 

fairly inexpensive chemotherapeutic and public health interventions, major contributors to 

their continued prevalence include increasing drug resistance, a limited range of available 

drug options, and in the case of diseases such as trypanosomiasis and leishmaniasis, the high 

cost and very significant toxicity of current recommended drug regimens. Most important is 

the fact that these diseases mainly afflict patients from the poorest populations in the world 

where costs of healthcare remain largely beyond the reach of many [392].  

Altogether, in the absence, with the only exception of RTS,S/AS01 for malaria [395], of 

approved vaccines targeted to the human parasitic diseases, anti-parasitic drugs, together 

with focused public health measures, continue to be crucial to addressing the growing health 
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and economic burdens caused by these diseases. Unfortunately, where the drugs are 

available, they are old, have unknown mechanisms of action, and quite often have limited 

efficacy and poor safety profiles. Moreover, the pandemic drug resistance, that has been 

observed following the treatment of all major parasitic pathologies, put the currently 

available drugs under an increasing threat of failure. Therefore, huge research efforts are now 

underway to develop new drugs to treat parasitic diseases and to overcome the growing 

problem of drug resistance. One extremely promising strategy to face these problems is 

represented by the so called “piggyback” approach that, focusing on drug targets and 

associated drug compounds that have been already validated for other human diseases, try 

to apply them to new indications such as parasitic diseases. Although this “drug repurposing” 

strategy is quite attractive, since it has the potential to accelerate the drug development 

process due to lower costs, reduced risk and decreased time to market due to availability of 

preclinical data, the parasite selectivity remains one of the major obstacles to overcome in 

moving such compounds into clinical trials as potential novel anti-parasitic drugs [396-397]. 

By using the “piggyback” approach, small molecule epigenetic modulators, which have 

been originally targeted for cancer use or other diseases, are now being investigated to target 

a range of parasitic diseases [397]. This approach holds great promise and can in part mitigate 

the relative lack of investment in efforts to improve the control and treatment of those 

malaria and neglected parasitic diseases. 

3.2 Malaria Epidemiology and Therapeutics  
The word ‘Malaria’ originates from the Italian word mala aria, meaning ‘bad air’ which 

justly reflects how this deadly disease had instilled fear from people in the medieval time 

[398]. Malaria is a devastating infectious disease that is characterized by intermittent high 

fevers and, in the case of cerebral malaria, neurological complications such as brain injury and 

coma. Found in tropical regions throughout sub-Saharan Africa, Southeast Asia, the Pacific 

Islands, India, and Central and South America, malaria parasites threaten the lives of 3.3 

billion and cause 600,000 deaths and there are approximately 200 million clinical cases of 

infection each year. Africa is still the leading region in terms of malaria burden. This region 

accounts for majority (80%) of the malaria cases as well as malaria-associated deaths (90%) 

globally [264, 396]. While pregnant women and children are particularly vulnerable to the 

threat of malaria, severe disease is also a threat for naïve travelers to malaria endemic regions 

and immunocompromised people [399]. It is caused by protozoan parasites of the genus 
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Plasmodium, which are transmitted to humans by the bites of female Anopheles mosquitoes. 

Four of the more than 100 Plasmodium species infect humans and cause distinct disease 

patterns: P. falciparum (malaria tropical), P. vivax, P. ovale (both malaria tertiana), and P. 

malariae (malaria quartana). P. falciparum and P. vivax account for 95% of all malaria 

infections. P. falciparum is found throughout tropical Africa, Asia, and Latin America. Nearly 

all severe and fatal cases are caused by P. falciparum. P. vivax is more common in India and 

South America, but is also found worldwide in tropical and some temperate zones. P. ovale is 

mainly confined to tropical West Africa, while the occurrence of P. malariae is worldwide, 

although its distribution is patchy [400-401]. 

Indeed, a strong relationship exists between poverty and malaria. This relationship is 

evident in the fact that most malaria endemic countries are also among the poorest countries 

of the world. Poverty contributes to the malaria burden as it has the ability to affect integral 

aspects of malaria treatment-seeking behaviors [402], including access to preventive 

measures and treatment—in relation to affordability, acceptability and availability—[403], 

and adherence to treatment. 

Presently, there have been renewed efforts in the global malaria control with several 

organizations and non-endemic countries increasingly getting involved in the fight against 

malaria [404-405]. These efforts have resulted in reduction in the global malaria burden over 

the last decade [406]. The current achievement is mostly attributed to the increase in malaria 

research funding, and scale-up of interventions against malaria, including insecticides-treated 

nets (ITNs), indoor residual spraying (IRS), rapid diagnostic testing (RDT), and importantly, the 

use of artemisinin-based combination therapy (ACT) [407]. There has been significant 

improvement in access, availability and affordability of ACT in malaria endemic regions [406]. 

While substantial funds have been invested in producing a malarial vaccine, to date poor 

efficacy has been achieved for those that have been trialed clinically, including the leading 

candidate RTS,S [408-409]. This means that mosquito control and chemotherapy are the main 

strategies for the prevention and treatment of this disease. ACTs have been adopted as first 

line treatment for uncomplicated malaria in most endemic countries, while chloroquine is 

now only used in some countries in the Americas due to widespread drug resistance [396]. In 

relation to previously used anti-malarial drugs, artemisinin drugs are very effective in parasite 

clearance and can relief the malaria symptoms faster [410-411]. Unfortunately, the 

development of resistance to ACT (which has been confirmed in five countries of Southeast 
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Asia: Cambodia, Lao PDR, Myanmar, Thailand and Viet Nam] [412-415] poses a major threat 

to its efficacy and use as first-line treatment. This also threatens the sustainability of the 

present success in malaria control [416]. 

Similar to the artemisinin class drugs, the development of resistance to most of the 

previously used anti-malarial drugs (such as chloroquine, sulfadoxine-pyrimethamine, 

mefloquine) originated from South East Asia. Nevertheless, the burden and effects of 

resistance are usually borne more by the African region that accounts for most of the global 

malaria cases. Considering the quick and widespread of previous cases of resistance to anti-

malarial drugs from the SEA to Africa, the African region stands at risk of spread of artemisinin 

resistance [417-418]. Regrettably, only one drug, primaquine, can completely eliminate P. 

vivax and P. ovale and thus provide a radical cure. P. vivax and P. ovale infections are 

challenging to treat because they form dormant liver stages (hypnozoites) that are refractory 

to most drugs. Primaquine, an 8- aminoquinoline, requires repeated dosing (up to 15 days) 

and is toxic to individuals with glucose-6-phosphate dehydrogenase deficiency [419] a 

common condition in malaria endemic regions. This limits the use of primaquine by the 

billions of people at risk for P. vivax infection in Central and Southeast Asia, and in Central 

and South America [420]. Therefore, new drugs with activity against all stages of the parasite 

life cycle and with new mechanisms of action are needed to help fulfill the ultimate goal of 

elimination. This is pushing research efforts into development and discovery of new 

antimalarial drugs endowed with new mechanisms of action on novel targets in the parasite.  

3.3 Malaria Life Cycle 
Malaria parasites have a complex life cycle that use a multi-stage developmental program 

to transition between their mammalian host and mosquito vector: while replicative stages in 

the host are strictly haploid and intracellular, cell division in the vector occurs in an 

extracellular milieu, within a cyst-like structure. Each developmental stage (Fig. 3.1) has a 

distinct morphology and physiology that is determined by its gene expression profile, as 

revealed by stage-specific transcriptomic and proteomic analyses of human and rodent 

malaria parasites [421-427]. Human infection starts with the bite of an infected 

female Anopheles mosquito, resulting in the transfer of sporozoites, motile cell forms that 

enter the bloodstream soon after the insect's bite, that quickly migrate to the liver [428-433]. 

Inside liver cells (hepatocytes), these sporozoites multiply extensively over a period of 

approximately two weeks and are then released into the vasculature in the form of thousands 
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of merozoites to infect red blood cells. P. vivax and P. ovale can remain dormant in the liver 

as hypnozoites, but can re-emerge and begin a blood-stage infection month to years after 

initial infection (relapsing malaria). During this intra-erythrocytic developmental cycle (IDC), 

the parasite progresses through three distinct stages, termed ring, trophozoite, and schizont. 

The ring stage is characterized by remodeling of the host cell to establish the supply of 

hemoglobin as an energy source, as well as to ensure evasion of the human immune system. 

During the trophozoite stage, the parasite becomes highly transcriptionally and metabolically 

active, in preparation for cell division. Finally, the parasite multiplies into 16–32 daughter 

parasites using a process of asexual replication called schizogony. During schizogony, the 

nucleus undergoes multiple rounds of division, which is followed by cytokinesis to subdivide 

the multinucleated parasite into identical daughter cells. Approximately 48 h after invasion 

of the red blood cell, these daughter parasites burst out of the host cell, ready to invade new 

red blood cells [432-433].  

 In a process that is not completely understood, a small fraction of the haploid asexual 

parasites differentiate into male and females gametocytes within the red blood cell [434]. It 

is possible that secreted parasite factors induce this differentiation [435-436]. These 

asymptomatic, non-replicating forms can persist for weeks and are responsible for malaria 

transmission. The uptake of mature gametocytes by a feeding mosquito followed by sexual 

replication in the mosquito midgut [437] and further develop into the salivary gland 

sporozoites that can be transmitted to a new human host. 

The asexual replication cycle is responsible for symptomatic disease and for the 

complications that are associated with severe malaria, such as anemia due to rupturing of red 

blood cells. In addition, severe disease can result from cytoadherence, the attachment of P. 

falciparum-infected erythrocytes to the smallest blood vessels, preventing clearance by the 

spleen and causing organ dysfunction. This cytoadherence is mediated by a family of parasite 

virulence proteins that are expressed on the erythrocyte surface: Plasmodium falciparum 

Erythrocyte Membrane Protein 1 (PfEMP1) [438-440]. Each P. falciparum parasite has 

approximately 60 different PfEMP1 variants encoded by var genes, only one of which is 

expressed at any time. Switching var gene expression enables the parasite to escape from 

host immune responses [441-442]. This process of antigenic variation is one example of the 

excellent adaptation of the parasite to survive in the human host. For these reasons, this 

parasite species and this stage of the parasite life cycle have been most extensively studied. 
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Consequently, most of our knowledge concerning epigenetic regulation of gene expression in 

the parasite is restricted to the P. falciparum IDC, while little is known about epigenetic 

profiles in sporozoites, the liver stage, the mosquito stages, or in other Plasmodium species.  

 
Fig. 3.1: Life cycle of malaria [431]. 

3.4 The Epidemiology and Distribution of Human Schistosomiasis 
Schistosomiasis is one of the major neglected parasitic diseases which still represents a 

serious public health problem in tropical regions of the world [443-444]; where infections are 

mediated through contact with infected fresh water snails that serve as intermediate vectors 

between human hosts. However, recently S. haematobium was reported in the 

Mediterranean area, particularly in the island of Corsica, a French territory  [445-447]. This 

finding, together with a decade of native cases around Europe, raised concerns regarding the 

presence of schistosomiasis in Europe. Three epidemiological conditions were argued [446] 

to be of special relevance in further assessing the risk of schistosomiasis in Mediterranean 

Europe: (i) this area is ecologically favorable to snails of the genus Bulinus which are the 

intermediate hosts of human  and animal schistosomes [448], (ii) climate warming creates 

favorable conditions for local transmission of Schistosoma spp. [449], and (iii) movement of 
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people which brings infected individuals from endemic regions to the European region 

allowing, given the conditions, the establishment of transmission chains in these areas. 

The disease is endemic in 76 countries globally; mainly in South America, southeast Asia, 

but mostly Africa where more than 90% of the estimated 41 000 deaths and approximately 

1.7 million DALYs lost occur every year. It is also estimated that the disease has a prevalence 

of 230 million cases annually worldwide [450]. It also affects almost 259 million people 

worldwide [451] causing an annual death toll of 280,000 [452] and millions of people suffering 

from long-term morbidity due to chronic schistosomiasis. Eight species of Schistosoma have 

been reported infecting humans (Table 3.1). Definitive vertebrate host species, other than 

human, may contribute to Schistosoma epidemiology and persistence in nature (Table 3.1). 

Table 3.1: The eight species of schistosome reported in humans [453].  
Schistosoma 
species 

Distribution  Natural definitive host species (excluding 
humans)  

Human public 
health 
importance  

S. mansoni  Africa, Middle East,  
South America,  
Caribbean  

Non-human primates (including  
apes), rodents, insectivores,  
artiodactylids  
(waterbuck),  
procyonids (raccoon)  

High  

S. haematobium  Africa, Middle East  Non-human primates (not apes)  High  
S. intercalatum  Central Africa  

(D.R. Congo only)  
Possibly rodents  Low  

S. guineensis  West Africa  
(Lower Guinea)  

Possibly rodents  Low  

S. mattheei  Southern Africa  Non-human primates (not apes), 
artiodactylids (cattle, antelope)  

Low  

S. japonicum  East Asia (China,  
Philippines,  
Indonesia)  

Non-human primates, artiodactylids 
(water buffalos in particular),  
carnivores, rodents, perissodactylids 
(horses)  

High  

S. mekongi  SE Asia (Vietnam,  
Cambodia, Laos,  
Thailand)  

Carnivores (dogs), artiodactylids (pigs)  Moderate  

S. malayensis  Malayan penisular  Rodents (van Mueller’s rat)  Low  

3.5 Schistosoma mansoni Life Cycle  
Schistosomiasis is caused by the platyhelminth worms of the genus Schistosoma, 

trematodes that live in the bloodstream of humans and animals. Three species (Schistosoma 

mansoni, Schistosoma haematobium and Schistosoma japonicum) account for the majority of 

human infections [454]. Schistosomes are digenean parasites that successively infect fresh 

water snails (the intermediate host) and the vertebrate definitive host. They reproduce both 
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asexually (within the snail host) and sexually (vertebrate host) and their life-cycle includes 

four distinct morphological forms and separate sexes at the adult worm stage (Fig. 3.2) [455]. 

Cercariae break out of the snail tissues into the water, swimming actively till dying or 

penetrating the unbroken skin of humans or animals, the definitive host, where they lose their 

bifurcated tail and become schistosomula. During the first 24 h after infection, nearly 90% of 

S. mansoni and S. haematobium schistosomula are present only in the blood-free, lymph-free 

epidermis. Majority of schistosomula are found in the dermis only after 48 h, and they appear 

to reach the dermal vessels around 72 h after infection [456-458]. Once in the blood 

capillaries, the schistosomula are carried passively by the blood flow till reaching the right 

heart and then the lungs. Depending on the species, schistosomula stay inside the pulmonary 

capillaries from 3 to 16 days, where they change into much longer and slender organisms, 

such a shape that enables them to traverse the thin pulmonary capillaries to the left heart 

and the systemic circulation [459].  

Following this period, schistosomula migrate from the lungs to the hepatic portal system 

via the blood stream and transform into adult worms. Male and female worms pair in the 

hepatic portal system and migrate to the mesenteric veins (except S. haematobium, which 

migrates to the urogenital system) to lay nearly 300 eggs per day. These eggs either pass into 

the gut lumen to be voided in the faeces and continue the life cycle or pass through the 

mesenteric veins and lodge in the liver, where they can cause granulomatous changes and 

fibrosis, both of which are key contributors to schistosomiasis [456, 460]. The morbidity 

associated with schistosomiasis results from the immunologic reactions to egg-derived 

antigens, beside the mechanical and toxic irritation caused by eggs trapped in the wall of 

blood vessels. Some of the most common pathological changes seen in chronic 

schistosomiasis infections include bleeding into the intestine or urinary system, liver and 

spleen enlargement, and periportal fibrosis [460-462].  
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Fig. 3.2: Lifecycle of Schistosoma [392]. 

3.6 Control of Schistosomiasis, the Lack of Alternative Therapeutics 
Despite its introduction in the mid-1970s, praziquantel still remains the only drug of 

choice for the treatment of schistosomiasis [463-464]. Praziquantel is a low-cost and highly 

effective antischistosomial agent, which is active against all Schistosoma species, albeit its 

exact mechanism of action is still not fully understood [465-466]. It is adminstered orally as a 

single dose, showing no notable side effects [467]. The long-term use of praziquentel as a sole 

antischistosomal treatment alongside its implementation in mass drug administration 

campaigns has raised deep concerns over the potential for emergence of drug-

resistance[465-466, 468-470]. Indeed, incidences of a reduced efficacy of praziquantel against 

some Schistosoma species [471-473] and the induction of drug-resistance in laboratrory 

strains [474-476] have already been reported. Evidently, a diminished efficacy of praziquantel 

would have a serious impact on the ongoing efforts to combat the disease, highlighting the 

need to develop new antischistosomal agents. 
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4. MALARIA EPIGENETICS  
4.1 Epigenetic Mechanisms as Drug Targets for P. falciparum 

Throughout the Plasmodium lifecycle, regulation of gene expression is orchestrated by a 

variety of mechanisms, including epigenetic, transcriptional, posttranscriptional, and 

translational control of gene expression. Owing to the absence of most canonical eukaryotic 

transcription factors in the Plasmodium genome [477], epigenetic control has long been 

recognized to play an important role in gene expression regulation. 

The epigenome of P. falciparum mainly consists of histone PTMs, histone variants, 

chromatin remodelers, histone modifying enzymes and non-coding RNAs (ncRNAs) [429, 431, 

478-485]. DNA methylation, although not well characterized in P. falciparum and which 

previously could not be detected [486], has recently been identified [487-488]. Still, the 

overall epigenetic makeup of Plasmodium is unique and differs from other eukaryotic 

organisms in many ways. Unlike the other eukaryotes, the Plasmodium epigenome is mainly 

euchromatic [489-490] and lacks the linker histone H1 [491]. Absence of a functional RNA 

interference system [492] also suggests an involvement of alternative regulators of epigenetic 

processes compared with other eukaryotes.  

In malaria parasites, epigenetic regulation of gene expression has been extensively 

studied only in Plasmodium falciparum. For many years, studying epigenetics in this parasite 

was almost synonymous to studying the regulation of var genes, which are important for 

antigenic variation and virulence [493]. However, recent findings have revealed a more 

general role for epigenetics in malaria parasite biology, including processes as diverse as 

erythrocyte invasion, solute transport, or formation of sexual forms necessary for human-to-

mosquito transmission. The contribution of epigenetic regulation of gene expression to these 

processes stems from the clonally variant expression of some of the genes involved. Silencing 

of clonally variant genes, which is a process truly controlled at the epigenetic level [494], 

generally depends on histone modifications that result in reversible formation of repressive 

chromatin structures (heterochromatin), but several additional layers of regulation operate 

specifically on particular gene families such as var genes. 

In Plasmodium, the epigenetic mechanism of regulation of gene expression can be 

divided broadly into three distinct areas based on parasite development [495]. 

Firstly, during asexual intra-erythrocytic developmental stages where differential gene 

expression occurs which are responsible for all clinical symptoms of malaria. Plasmodium 
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falciparum shows unusual mode of gene expression during its 48 h developmental process 

within the erythrocyte, implying tight and integrated genome-wide regulation of transcription 

[496-498]. Recently, a battery of proteins like Api-AP2, HP1, histone deacetylases, and histone 

methylases have been shown to be involved in gene regulation [499-501]. Two nucleosome 

assembly proteins, PfNapS and PfNapL, have been also identified [502] and PfNapS was shown 

to be essential for the parasite’s survival [503].These observations suggest the role of 

epigenetic mechanism in transcriptional regulation in Plasmodium. 

Secondly, epigenetics likely play role during sexual and morphological differentiation for 

the rest of the life cycle. The blood stage parasites differentiate in to gametocytes. These 

gametocytes mate to form ookinetes followed by formation of sporozoites in the mosquito, 

leading to the subsequent transmission and development in the human hepatocytes before 

the release of the merozoites in the asexual erythrocytic cycle. Distinct transcriptional 

profiling has been reported in gametocytes, ookinetes, oocyst sporozoites, salivary gland 

sporozoites hepatocyte stage and erythrocyte stage [424, 504-508]. All these observations 

may suggest epigenetic control over life cycle transition and stage differentiation. The AP2 

transcription factor, pfap2-g, located on chromosome 12, is one of the master regulators of 

gametocyte differentiation [509-510][. In asexual parasites, the locus containing pfap2-g is 

localized to the nuclear periphery and silenced by H3K9me3 and PfHP1 (Fig. 4.1C) [489, 

511]. In vitro studies show that downregulation of PfHDA2 activates pfap2-g and induces the 

formation of gametocytes [512]. Similarly, depletion of PfHP1 activates pfap2-g and increases 

the rate of gametocyte production [513]. These results raised the idea that sexual conversion 

is regulated at the epigenetic level, a view that was later corroborated by studies in which 

specific epigenetic factors were depleted [512-513]. The ortholog of pfap2-g in the distantly 

related murine malaria parasite P. berghei, pbap2-g, also plays a key role in gametocyte 

formation [510]. This observation suggests that ap2-g is a conserved regulator of sexual 

conversion in malaria parasites; whether or not epigenetic control of the process is a 

conserved feature in all Plasmodium species awaits experimental confirmation. 

Moreover, invasion proteins present in P. falciparum, responsible for new erythrocyte 

invasion are also regulated epigenetically. Invasion of a new erythrocyte by the malaria 

parasite involves binding of parasite ligands to specific recognition surface receptors on the 

red blood cell [514]. Eba, rhoph1/clag, acbp, and PfRH are among some of the gene families 

involved in the invasion process, but are not essential for parasite survival. The genes in these 
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families are thought to be partially regulated through epigenetic mechanisms and show 

differential expression patters in different parasite lines, as they can be in either active or 

inactive states (Fig. 4.1B) [515]. According to a more recent study exploring the parasite-

specific bromodomain protein PfBDP1 using in vitro culture, invasion genes are regulated in 

a more ‘classical’ manner by transcription factors interacting with specific promoters [516]. 

In schizonts, an enrichment of PfBDP1 was observed at the transcription start sites of invasion 

genes. PfBDP1 was shown to positively regulate transcription of invasion genes by binding to 

acetylated histone H3. Additionally, conditional knockdown of PfBDP1 resulted in erythrocyte 

invasion defects and parasite growth inhibition, further confirming the essentiality of this 

bromodomain protein for the coordinated expression of invasion genes in P. falciparum. 

Thirdly and most importantly, epigenetic control is involved in the mutually exclusive 

expression of individual var genes involved in the virulence processes such as cytoadherence 

and variant erythrocyte invasion. The best characterized family of antigen coding gene is the 

var family in P. falciparum. This gene family encodes ~ 60 variants of PfEMP1, expressed on 

infected erythrocytes. PfEMP1 is responsible for the attachment of the infected erythrocytes 

with the vascular endothelial cells thereby preventing the clearance from the circulatory 

system. Most of the var genes are generally silenced, with only one or a few being expressed 

at any given time [495, 497, 517-520]. Silent var genes are clustered to one or more repressive 

regions at the nuclear periphery, marked by H3K9me3 and PfHP1 (Fig. 4.1A) [489-490, 511, 

521-524]. Absence of PfHP1 in the parasite has also been shown to result in loss of 

monoallelic var gene expression as well as result in parasite growth arrest [513], which 

indicates that PfHP1 plays an essential role in maintaining repressive heterochromatin. The 

variegated expression of these genes has been shown to correlate with alterations in histone 

modifications and these chromatin states can be epigenetically inherited [489, 525-526]. 

HDACs, in particular NAD+-dependent class III HDAC proteins PfSIR2A and PfSIR2B and class II 

HDAC protein PfHDA2, play a role in regulating the repressive clusters containing 

silent var genes, as manipulated parasite lines lacking these proteins show loss of 

monoallelic var gene expression [489, 512, 527-528]. PfSET2 is an HKMT that specifically 

marks var genes, and the disruption of PfSET2 results in the de-repression of the 

silenced var gene cluster(s) [529-530]. The active var gene, transcribed at the ring stage, is 

distinguished by the presence of H3K4me3 and H3K9ac marks and resides in a region of the 

nucleus away from the repressive heterochromatin cluster(s) [489, 526-527]. At the later 
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trophozoite and schizont stages, the active var gene is controlled by the HKMT PfSET10, which 

is suggested to play a role in maintaining epigenetic memory of var gene expression [531]. 

Recent evidence suggests that sense and anti-sense long ncRNAs can also regulate var gene 

expression [532-534]. Collectively, these results highlight the relationship between proper 

chromatin assembly and regulation of antigenic variation in the parasite.  

 

 

 
Fig. 4.1: Epigenetic Regulation of Specific Genes and Gene Families in Plasmodium falciparum. (A) The 

family of var genes is controlled by clustering of silent var genes at the nuclear periphery and the deposition of 
repressive H3K9me3 marks, which recruits PfHP1 and results in the formation of heterochromatin. The single 
active var gene is isolated from all other var genes, marked by H3K4me3 and H3K9ac, and localized in a 
euchromatic environment. LncRNAs transcribed from a bidirectional promoter in the var introns also contribute 
to regulation of var gene expression. (B) Several families of invasion genes are epigenetically regulated through 
repressive and active histone marks that recruit heterochromatin marker PfHP1 and gene activator PfBDP1, 
respectively. (C) During the IDC, gametocyte-specific TF pfap2-g localizes to the nuclear periphery and is silenced 
by repressive histone marks, including H3K9me3 and PfHP1 [483]. 
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4.2 Plasmodium falciparum Chromatin Organization and Histone PTMs 
The malaria parasite chromosomes have a typical nucleosomal organization consisting of 

155 bp of DNA [535]. This is complemented by the absence of linker histone H1 [536], 

indicating ‘‘looser” chromosome packaging and/or an absence of higher order compaction of 

P. falciparum DNA. The low level of chromosome compaction likely underlines the 

transcriptionally active euchromatin that persists throughout the IDC. The four core histones 

H2A, H2B, H3, and H4, as well as four P. falciparum variant histones H2A.Z, H2Bv (or H2B.Z), 

H3.3 and H3Cen (H3 centromeric), have been identified in P. falciparum parasites [491, 537]. 

The P. falciparum H3 and H3.3 protein sequences are 94% identical. PfCenH3 protein shares 

61% amino acids identity with H3 and H3.3 (Table 4.1)  [479].  

Table 4.1: Histones and their different modifications in P. falciparum 
Sr. No. Histones Gene ID Chromosome Length 

(aa) 
PTM(s) 

1. H2A PFF0860c 11 132 N-term-ac, K3ac, K5ac 
2. H2A.Z PFC0920w 3 158 N-term-ac, K11ac,K15ac, 

K19ac, K25ac K28ac, K30ac, 
K35ac 

3. H2B PF11_0062 11 117 K112ub 
4. H2Bv Pf07_0054 7 123 N-term-ac, K3ac, K8ac, K13ac, 

K14ac, K18ac, T85ph 
5. H3 PFF0510w 6 136 K4me, K4me2, K4me3, K9ac, 

K9me, K9me3, K14ac, K14me, 
R17me, R17me2, K18ac, K23ac, 
K27ac, K36me3, K56ac, 
K79me3 

6. H3.3 PFF0865w 6 136 K4me, K4me2, K4me3, K9ac, 
K14ac, R17me, R7me2, 
K18ac, K23ac, K27ac 

7. H4 PF11_0061 11 103 N-term-ac, R3me, R3me2, 
K5me, K5ac, K8ac, K12ac, 
K12me, K16ac, R17me, K20me, 
K20me2, K20me3 

8. CenH3 Pf13_0185 13 170  
 

Epigenetics lies at the very heart of gene expression, regulating access of the 

transcriptional machinery to chromatin [482, 538] via (1) PTMs of histones, (2) nucleosome 

occupancy, and (3) global chromatin architecture. In the past decade, various histone PTMs 

have been identified throughout the Plasmodium lifecycle. Although the histones are well 

conserved amongst the eukaryotes, P. falciparum histone variants H2A.Z and H2Bv carry 

more PTMs including several unique acetylations [537]. At least 50 different histone PTMs 

(Table 4.2) have been identified in P. falciparum, including acetylations, methylations, 
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phosphorylations, ubiquitylations, and sumoylations [491, 537, 539-540]. PTMs involve 

multiple acetylation sites on H2A, H2A.Z and H2Bv, one phosphorylation site on H2Bv, one 

ubiquitination site on H2B, and many acetylation and methylation sites on H3, H3.3 and H4. 

An additional in-depth analysis revealed the presence of 14 phosphorylation sites at the N-

terminal tails of all histones in P. falciparum that are frequently adjacent to acetylation sites 

[541]. Moreover, H4 and H2A.Z were identified as small ubiquitin modifier (SUMO) substrates 

with at least six independent SUMOylation sites [542]. It is, however, important to mention 

that a majority of the parasite genome carries a large proportion of activating histone marks 

(H3K9ac and H3K4me3) compared to silencing marks (H3K9me3 and H3K36me3). This 

contrasts with what has been identified in multicellular eukaryotes [543], but validates 

further the transcriptionally permissive euchromatic state of the parasite genome. In 

mammalian genomes, H3K9ac and H3K4me3 strictly localize to active promoters [103, 544-

547], while in P. falciparum these modifications not only mark promoters and 5′ coding 

regions of genes that are highly transcribed [548-549], but are also found in intergenic regions 

and ‘silenced’ promoters [490, 537, 548].  

Repressive histone marks are mostly limited to regions of the genome harboring the 

clonally expressed variant surface antigen gene families (var, rifin, stevor, and pfmc-2tm) and 

invasion gene families (eba and clag), as well as some additional loci, such as the gametocyte-

specific transcription factor pfap2-g. These regions are organized into transcriptionally silent 

heterochromatin marked by H3K9me3 [489-490, 523, 525, 550]. In addition, silent var genes 

and to a lesser extent rifin and stevor genes carry H3K36me3 [49]. The single active var gene 

is physically separated from this repressive heterochromatin and is enriched in H3K4me3 and 

H3K9ac, in particular around its TSS [526]. 

The extensive ability of P. falciparum to evade the host’s immune system has been 

traditionally attributed to the high sequence variability and the mutually exclusive pattern of 

the var gene family expression. However, transcriptional switching is also one of the main 

factors of var-driven immune evasion of P. falciparum and it is now clear that epigenetic 

mechanisms play a central role in silencing of the var genes and possibly other 

heterochromatin-linked genes in P. falciparum. Indeed, the canonical heterochromatin 

marker, H3K9me3, helps in maintaining the silenced state of the var genes [489]. Their 

activation is then restored by replacement of H3K9me3 at their 5′flanking regions by H3K9ac 

[525-526]. Hence epigenetic memory plays a role in antigenic switching of the var genes as 
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well as other transcriptional heterogeneity amongst isogenic parasite lines [551-553]. Similar 

to var genes, factors involved in red blood cell invasion and genes implicated in nutrient 

import across the infected red blood cell plasma membrane are also regulated through 

epigenetic mechanisms; some in a mutually exclusive manner [515, 554]. There is a general 

association between heterochromatin marks and clonally variant gene expression of 

essentially all differentially expressed gene families [553, 555]. These results suggest that 

phenotypic variations of parasite populations are (at least partially) governed by H3K9me3 

linked heterochromatin. 

H3K36me3 is also enriched at the transcription start sites (TSSs) of silent var genes and 

at the coding regions of both active and repressed members [529]. Moreover, H3K36me2 

serves as another global repressive mark in P. falciparum and gene expression is regulated by 

altering the ratio of activation marks to H3K36me2 [556]. Interestingly, the highly conserved 

heterochromatic marker, H3K27me3, has not been detected in Plasmodium [537]. H4K20 

methylations also mark silent heterochromatic domains in P. falciparum and Toxoplasma 

gondii [557] but their distribution and role are still not conclusive. In particular, H4K20me3 

that is enriched at heterochromatin in most eukaryotes [558-559], has a broad chromosomal 

distribution in P. falciparum [489]. In fact, H4K20me3 marks euchromatic as well as 

heterochromatic domains but its transcription associated occupancy is restricted mainly to 

the var genes [560]. These observations tempt us to speculate that the mutually exclusive 

expression of var genes and epigenetic memory are maintained by multiple histone PTMs 

including H3K9ac, H4K20me3, H3K36me2 and possibly others. 

In addition to histone PTMs, nucleosome organization plays a critical role in gene 

expression regulation in Plasmodium. In general, heterochromatin is substantially enriched in 

nucleosomes compared with euchromatin [561] and active promoters and intergenic regions 

in Pf show markedly reduced nucleosome occupancy [562]. In addition, common transcript 

features such as TSSs, transcription termination sites, and splice donor/ acceptor sites show 

clearly distinguishable nucleosome positioning in P. falciparum [563], but previously 

described dynamic changes in nucleosome positioning [561] appeared to be mostly restricted 

to TSSs during the IDC [563]. Uniquely in Plasmodium spp., canonical histones in intergenic 

regions are replaced by histone variant H2A.Z [548], which, in concert with the apicomplexan-

specific H2B.Z, establishes a H2A.Z/H2B.Z double-variant nucleosome subtype enriched at AT-
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rich promoter regions and correlates with open chromatin and active gene transcription 

[564]. 

Table 4.2: List of putative epigenetic factors involved in controlling chromatin structure and 
epigenetic regulation in P. falciparum 

Histone methyltransferases Proposed function 
Protein name                         Gene ID (previous ID)                                               
PfSET1 PF3D7_0629700 

(PFF1440w) 
Involved in the deposition of the epigenetic mark 
H3K4me3 

PfSET2 (PfSETvs) PF3D7_1322100 
(MAL13P1.122) 

Involved in the deposition of the epigenetic mark 
H3K36me2/3, participates in var regulation 

PfSET3 (PfKMT1) PF3D7_0827800 
(PF08_0012) 

Involved in the deposition of the epigenetic mark 
H3K9me2/3 

PfSET4 PF3D7_0910000 
(PFI0485c) 

Involved in the deposition of epigenetic marks on H3K4 

PfSET5 PF3D7_1214200 
(PFL0690c) 

Involved in the deposition of unknown epigenetic marks; 
mitochondrial localization also reported  

PfSET6 PF3D7_1355300 
(PF13_0293) 

Involved in the deposition of epigenetic marks on H3K4 

PfSET7 PF3D7_1115200 
(PF11_0160) 

In vitro data suggest methylation of H3K4 and H3K9 

PfSET8 PF3D7_0403900 
(PFD0190w) 

Involved in the deposition of the epigenetic mark 
H4K20me1/2/3 

PfSET9 PF3D7_0508100 
(PFE0400w) 

Involved in the deposition of unknown epigenetic marks 

PfSET10 PF3D7_1221000 
(PFL1010c) 

Involved in the deposition of the epigenetic mark 
H3K4me3, localized to the var expression site 

Protein Arginine transferase (PRMT) 
PfRMT1 PF14_0242  
PfRMT4/PfCAR
M1  

PF08_0092  

PfRMT5   PF13_0323  
Histone demethylases  
JmjC1 PF3D7_0809900 

(MAL8P1.111) 
Involved in the removal of epigenetic marks from H3K9 
and H3K36 

JmjC2 PF3D7_0602800 
(PFF0135w) 

Involved in the removal of unknown epigenetic marks 

LSD1 PF3D7_1211600 
(PFL0575w) 

Involved in the removal of unknown epigenetic marks 

Histone acetyltransferases  
PfGCN5 PF3D7_0823300 

(PF08_0034) 
Involved in the deposition of the epigenetic marks 
H3K9ac and H3K14ac 

PfHAT1 PF3D7_0416400 
(PFD0795w) 

Probable ortholog to HAT1 in higher eukaryotes 

PfMYST PF3D7_1118600 
(PF11_0192) 

Member of the MYST family of acetyltransferases, 
proposed to acetylate H4K5, K8, K12, and K16 

Histone deacetylases  
PfSIR2A PF3D7_1328800 Involved in telomere maintenance and 
PfSIR2B (PF13_0152) 

PF3D7_1451400 
regulation of var gene expression 
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(PF14_0489) 
PfHDAC1 PF3D7_0925700 

(PFI1260c) 
Putative class I histone deacetylase, probable ortholog of 
Rpd3 from yeast 

PfHDAC2 PF3D7_1472200 
(PF14_0690) 

Putative class II histone deacetylase 

PfHDAC3 
(PfHda2) 

PF3D7_1008000 
(PF10_0078) 

Putative class II histone deacetylase, linked to var gene 
silencing and sexual differentiation 

Other 
PfBDP1 PF3D7_1033700 

(PF10_0328) 
Bromodomain protein 1, involved in the regulation of 
genes linked to erythrocyte invasion 

PfHP1 PF3D7_1220900 
(PFL1005c) 

Heterochromatin protein 1, involved in the maintenance 
of silenced regions of the genome, linked to var gene 
silencing and sexual differentiation 

Both current 3D7 ID numbers and previous numbers are provided, along with a brief, 

general description of the predicted function. Many of the listed functions are predicted 

based on computational analysis and have not been experimentally verified. Several 

additional uncharacterized putative epigenetic factors have been predicted by in silico 

analysis [565]. 

4.3 Malarial Histone-modifying Enzymes 
There are several classes of histone-modifying enzymes influencing chromatin structure 

via histone PTMs that were recently studied in P. falciparum. These include (i) modifiers of 

histone acetylation: HATs and HDAC); and (ii) modifiers of histone methylation: HMTs and 

HDMs (Table 4.2). 

4.3.1 Modifiers of histone acetylation 
4.3.1.1 Plasmodium HATs 

Histone acetylation is usually associated with transcriptionally active genomic regions 

through direct alterations of physical properties of the chromatin and/or recruitment of 

specialized protein complexes that regulate transcription directly or indirectly [566]. In 

particular, acetylation of nucleosomes around the TSSs stabilizes binding of transcription-

modulating chromatin remodeling factors at the promoter regions [567]. Histone lysine 

acetylation is catalyzed by histone acetyltransferase (HATs). At least four HATs are found in 

malaria parasite genomes: PF08_0034, PF11_0192, PFL1345c and PFD0795w [568]. 

Plasmodium falciparum GCN5 N acetyltransferase 5 (PfGCN5), a well characterized member 

of GNAT family has most homologous region within HAT domain and bromodomain in 

Plasmodium species [500]. PfGCN5 (PF08_0034), in association with its coactivator ADA2 

[569], acetylates H3K9 and H3K14 residues in P. falciparum [500, 569], implicating that its 
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active role in chromatin remodeling and regulation of transcription in P. falciparum [569]. By 

contrast, PfMYST exhibits a predilection to acetylate histone H4 at K5, K8, K12 and K16 [531]. 

Both proteins seem to be essential for asexual intraerythrocytic growth, and PfGCN5 inhibi-

tion leads to the arrest of parasite development, while PfMYST overexpression leads to the 

disruption of cell cycle regulation and DNA repair [531, 570]. 

4.3.1.2 Plasmodium HDACs 
In contrast, HDACs mediate removal of acetyl groups that generally leads to tight inter-

nucleosomal interactions limiting the access of DNA to transcription factors. The HDAC super-

family is grouped into three classes based on their phylogenetic relationship to the yeast 

orthologues. Class I (Rpd3) and class II (Hda1) have a zinc-dependent HDAC activity and act 

on intra-chromosomal domains [571], while class III HDACs (Sir2) are NAD-dependent and 

mediate gene silencing at the subtelomeres as well as the mating-type and rDNA loci [572-

573]). Five HDAC encoding genes have been identified in the Plasmodium falciparum genome. 

Three of these genes encode proteins with homology to class I (PfHDAC1) or class-II (PfHDAC2 

and 3) mammalian HDACs, while two genes are class-III HDAC homologues (PfSir2A and 

PfSir2B) [264, 397, 512, 574-576].  

PfHDAC1 is localized in the parasite nucleus, has up to  55% sequence identity to other 

eukaryotic class-I HDACs and is expressed/transcribed across multiple lifecycle stages of the 

parasite (asexual intraerythrocytic parasites, gametocytes, and sporozoites) [397, 422, 574-

575, 577]. Despite the PfHDAC1 functional roles have still to be fully characterized, the 

consequences of the HDACi treatment of P. falciparum parasites have recently begun to be 

elucidated and confirm that PfHDAC1 is involved in the post-translational modification of 

histone and non-histone Plasmodium proteins, in the consequent modulation of its gene 

expression, and seems also important for the parasites survival [550, 574-575, 578-580]. In 

silico homology modeling studies of PfHDAC1 have shown that the predicted active site tunnel 

of PfHDAC1 is highly conserved with that of human HDACs, but displays differences at its 

entrance that could explain the better in vitro growth inhibition of P. falciparum compared 

with mammalian cells that has been observed with several HDACi [264, 397, 574-575] and 

could also be more efficiently exploited by novel HDACi tailored to be selective for PfHDAC1 

over hHDACs [264, 397, 422, 574-575, 577-579]. 

The PfHDAC2 regulates virulence gene expression and frequency of gametocyte 

conversion [512]. Thus, PfHDAC2 is part of the epigenetic machinery that controls the 
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expression of var genes and of the master regulator of sexual development — the 

transcription factor PfAP2G [509, 512]. PfHdA2 is proposed to control histone PTMs within 

the heterochromatin domain as its knockdown leads to deregulation of the var genes and 

increased conversion to gametocytes. The latter event is likely caused by upregulation of the 

PfAP2-G transcription factor that resides in a heterochromatin domain and is believed to 

function as a “master regulator” of the sexual stage commitment. Both PfHDAC2 and 

PfHDAC3 are predicted to be high molecular weight proteins, that share less than 14 % amino 

acid identity to each other, and have limited sequence homology with other class II HDACs 

[422, 512, 576-577]. Recently, by the mean of knock-down experiments, PfHDAC3 has been 

reported to be essential to the asexual-stage P. falciparum parasite growth and survival, and 

to play a role in P. falciparum transcriptional control [512]. 

4.3.1.3 Plasmodium Sirtuins 
Sir2 is an NAD+-dependent HDAC (or sirtuin) that was first identified in yeast as important 

for silencing telomeric genes. Since NAD+ is a key cofactor and metabolite, Sir2 may act as a 

sensor for environmental or nutrient changes. In Plasmodium, there are two Sir2 orthologs, 

PfSir2A and PfSir2B [528] that work in concert to regulate var silencing. Plasmodium parasites 

that lack PfSir2A and B are unable to effectively silence undesired var genes, and transcript 

levels of var genes are generally elevated [528, 581]. 

PfSir2A and PfSir2B have been assigned as type III and IV sirtuins since they have 30% and 

38% sequence identity to an Archaeoglobus fulgidus class-III HDAC and group IV sirtuins, 

respectively [528, 582]. In addition to both histone deacetylase and ADP-ribosyltransferase 

activity [582-583], PfSir2A is also able to effectively remove medium and long chain fatty acyl 

groups from lysine residues [584]. PfSir2A has a role in maintaining P. falciparum telomere 

length, in establishing heterochromatin in subtelomeric genomic regions, and in the 

regulation of a subset of P. falciparum virulence genes involved in antigenic variation and 

cytoadhesion/pathogenesis [528, 550].  Recently, a new role has been reported for PfSir2A in 

modulating rRNA transcription [585]. Using a parasite line in which PfSir2A has been 

disrupted, it was observed that histones near the transcription start sites of all rRNA genes 

are hyperacetylated and that transcription of rRNA genes is upregulated, which are linked to 

higher numbers of daughter merozoites and increased parasite multiplication rate. More in 

detail, both PfSir2A and PfSir2B are involved in the mutually exclusive silencing (or expression) 

of different telomeric-associated var gene subsets, with distinct promoter types, that encode 
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for the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) molecules 

that are displayed on the erythrocyte surface [528, 550]. The resulting antigenic variation of 

PfEMP1 accounts for the ability of P. falciparum to evade the host immune surveillance during 

infection.76  Apart from virulence genes, PfSir2A also deacetylates rRNA genes and regulates 

the multiplication rate in P. falciparum [585]. Moreover, PfSir2B has been also found to have 

a role in the telomeric end protection [528]. Knock-out of the two P. falciparum Sir2 genes 

has shown that the absence of either one of them is not lethal to the parasite, and also 

established their functional redundancy in the parasite [528]. However, to the best of our 

knowledge, the effect of a simultaneous knock-out of both PfSir2 genes has not been 

examined yet. Despite both PfSir2A and PfSir2B seem to dispensable for the in vitro growth 

and development of P. falciparum [550, 576], both of them, for their crucial role in regulating 

var genes expression, are thought to be essential for the persistence parasite survival in vivo 

(or inside a host), and have been proposed as potential targets for antimalarial therapies, for 

example by interfering with infected erythrocyte cytoadhesion to host cell receptors that 

mediate severe forms of the diseases and/or by blocking the malarial parasite’s evasion from 

the host innate immune system [528, 550]. In other Plasmodium species, even though no var 

genes have been identified, other sub-telomeric gene families able to undergo antigenic 

switching have been disclosed, suggesting the possible involvement of their sirtuins (Sir2A 

and Sir2B) in the mutually exclusive silencing (or expression) of these sub-telomeric genes 

[528]. 

4.3.2 Modifiers of Histone Methylation 

Histone methylation, either in lysine or arginine residues, mediated by histone lysine 

methyltransferases (HKMT) or protein arginine methyltransferases (PRMT), is involved in both 

transcriptional activation and silencing [586]. Bioinformatics analysis of P. falciparum genome 

reveals at least ten members of histone methyltransferases (HMTs) containing a SET [Su(var), 

E(z), Trithorax] domain, characteristic of histone lysine methyl transferases and five putative 

PRMTs [587]. During the IDC, PfSET1, PfSET2, PfSET3 and PfSET8 mediate methylations at 

H3K4, H3K36, H3K9 and H4K20, respectively [557, 588]. An unusual function has been 

revealed for PfSET2, which methylates H3K36 and is associated with repressive chromatin of 

the var multigene family (in other eukaryotes, SET2 is associated with RNA polymerase II 

function) [529]. PfSET8 displays conserved activity to confer H4K20 mono-, di-, and 

trimethylation [557, 588]. The H3K9 methylase PfSET3 (PF08_0012) is encoded by an essential 
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gene and is localized to the heterochromatic nuclear periphery marked by CenH3, and 

H3K9me3-enriched genes also reside in this compartment [489, 589]. PfSET7 methylates 

H3K4 and H3K9, and localizes to distinct foci outside of the parasite nucleus in erythrocytic 

and liver stages, and throughout the cytoplasm in sporozoites  [590]. This cytoplasmic 

localization hints that pfSET7 might be acting on newly synthesized histones and/or additional 

non-histone substrates. PfSET7 is presumed to be essential for both the blood and mosquito 

stages of parasite development and thus may be amenable as a potent drug target. PfSET10, 

which methylates H3K4, colocalizes with the active var gene in post-ring stages, suggesting a 

role for PfSET10 in maintaining the active var gene in a poised state during mature stage 55. 

In contrast, Dot1, the HKMT without a SET domain, is absent in apicomplexans. The presence 

of corresponding epigenetic mark H3K79 methylation in P. falciparum is controversial as it 

was not seen by mass spectrometry [537, 588], but it has been shown to be localized to the 

nuclear periphery [591]. The SET subfamily E(z) and the corresponding mark H3K27me are 

also not reported in P. falciparum [537, 588]. Among, the PRMTs, only PfPRMT1/ PfCARM1 

has been characterized. PfPRMT1 localizes to the nucleus and cytoplasm of intraerythrocytic 

parasites and catalyzes mono- and di-methylation of R3 of histone H4, as well as non-histone 

protein substrates [587]. 

The malaria parasite genome also contains two types of histone demethylases (HDMs), 

the lysine specific demthylases (LSD1) and JmjC (jumionji C) domain containing histone 

demethylases (JHDMs). There are at least one LDS1 (PFL0575w) and two JHDMs (MAL8P1.111 

and PFF0135w) in Plasmodium [592]. Knockout of the corresponding genes showed that these 

genes are not essential in blood-stage parasites [529]. The role of histone methylation in gene 

regulation and maintenance of the subtelomeric heterochromatin needs to be explored 

further in P. falciparum. 

4.3.3 Consequences of Histone Modifications: “Histone Readers” in Malaria 
It is now clear that both heterochromatin and euchromatin carry multiple types of 

epigenetic “modules” that are characterized by distinct combinations of histone PTMs. For 

transcriptional regulation, these must be interpreted by downstream factors known as 

“histone readers” [565, 593]. Many histone PTMs exert their function by recruiting specific 

proteins called histone readers, which contain functional domains that bind to acetylated 

lysine residues (bromodomains), methylated lysine residues (chromodomains and plant 

homeodomains (PHDs)) or phosphorylated serine and threonine residues (14-3-3 proteins) 



 
 

62 
 

(Fig. 4.2) [120, 199, 429, 480, 593-594]. P. falciparum has more than 15 predicted proteins 

containing such binding domains [479, 565, 589], and two of them have been validated as 

specific histone readers: the structural protein heterochromatin protein 1 (PfHP1) and a 

14-3-3 protein. Specifically, PfGCN5 (HAT) and PfSET1 (HKMT) carry a single bromodomain, 

and PfMYST and heterochromatin protein 1 (PfHP1) possess one chromodomain. In addition 

to bromodomain, PfSET1 also possesses four PHD domains, suggesting that PfSET1 is targeting 

the euchromatic regions that are marked with histone acetylations and H3K4 methylations 

[588]. Despite the great number of potential histone PTM-binding modules in Plasmodium, 

only PfHP1 has been characterized [511, 524]. PfHP1 contains a chromodomain and a chromo-

shadow domain, which are involved in H3K9me3 binding and dimerization, respectively. 

Inducible PfHP1 depletion leads to var gene derepression and gametocyte production, 

showing that the same histone modification controls monoallelic var gene expression and 

switch to sexual commitment [513], which is similar to the dual effects mediated by the 

deacetylase PfHDAC2 [512]. PfSIP2, a member of the ApiAP2 family of transcription factors, 

is associated with PfHP1 [499, 595-596]. A parasite-specific bromodomain protein, PfBDP1, 

binds at TSSs of invasion-related genes and positively controls their expression [516]. PfBDP1 

also binds to acetylated histone H3 and another bromodomain protein, PfBDP2, suggesting a 

critical coordination during the expression of the invasion genes. PfHP1 is essential for IDC, 

and overexpression of PfHP1 leads to enhancement of variegated gene expression [511]. The 

ability of this protein to dimerize is probably responsible for aggregating nucleosomes in the 

subtelomeric regions and thus for the formation of the subtelomeric heterochromatin. 

 In addition to the canonical histone readers, P. falciparum protein Pf14-3-3I binds 

selectively to histone H3 phosphorylated on Ser28, suggesting its role in chromatin binding 

[541]. Taken together, P. falciparum contains a number of well conserved as well as unique 

chromatin binding proteins that are capable of interpreting the histone PTM modules in both 

heterochromatin and euchromatin. Given the unique character of the P. 

falciparum epigenome, it is feasible to speculate that these proteins evolved to adjust to the 

highly dynamic character of the unique histone PTM combinations.  
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Fig. 4.2: Post-translational modifications (PTMs) and their writers and readers observed in the amino-

terminal region of histone H3 of Plasmodium falciparum — including methylation (me; on lysine 4 (K4), K9 and 
K36), acetylation (ac; on K9, K14, K18 and K23) and phosphorylation (P; on serine 10 (S10), threonine 11 (T11) 
and S28) — are illustrated.  

4.4 Antimalarial Epi-drugs 
The emergence and spread of malaria drug resistance presents a worrisome situation 

impacting disease control programs. It is now becoming clear that the (possibly near) future 

of malaria control will require the introduction of new chemotherapies to overcome this 

situation. In fact, in the search for promising drugs to combat malaria, inhibitors of chromatin 

modifying factors have started to obtain attention. The first obvious targets for antimalarial 

“epidrug” development are the enzymes that add or remove acetyl or methyl groups from 

histone tails (Table 4.2). Importantly, inhibitors of this type of enzymes have been developed 

for the fight against other diseases such as cancer, providing a large number of chemical 

starting points and a wealth of knowledge that could be used for the development of malaria-

specific epigenetic inhibitors. Several compounds that were identified as inhibitors of HDACs 

or HATs in other eukaryotes inhibit P. falciparum growth, and some of them have a more 

potent effect on malaria parasites than on human cells [264, 481, 574, 583, 588, 597]. 

Inhibitors of P. falciparum KMTs have also been identified and shown to effectively kill malaria 

parasites of different species and at different stages of development [598-599]. In any case, 

new antimalarial drugs with desirable properties, such as being effective against all parasite 

stages or requiring a single dose, if available, would certainly facilitate the task. In this regard, 
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epigenetic regulators are considered a promising new class of drug targets, with some 

attractive characteristics described below. 

4.4.1 Antimalarial HAT Inhibitors 

Histone acetylation in the parasite has been shown to regulate the monoallelic 

expression of the var genes, which mediates the antigenic switching and virulence of the 

parasite [527, 550]. Variegated expression of genes essential for erythrocyte invasion in 

different parasite clones are under epigenetic control suggesting conserved epigenetic 

mechanism for transcriptional regulation in malaria parasites [515]. The H3 acetylation by 

GCN5 plays important role in the parasite gene activation and inactivation of histone 

acetylation compromises the parasite development suggesting its role for viable drug targets 

[500, 549, 569]. Parasite growth has been shown to be inhibited by PfGCN5 HAT inhibitors 

curcumin (Fig. 4.3) [570]. Reversible and noncompetitive inhibition of PfGCN5 by Anacardic 

acid (1) treatment induced hypoacetylation at H3K9 and H3K14, causing down-regulation of 

207 genes in late trophozoite state [600]. Treatment with Anacardic acid for 12 h induced 

two-fold or greater changes in the expression of ~5% of genes in P. falciparum trophozoites, 

among which 76% were downregulated [600].  Both curcumin (2) and Anacardic acid inhibited 

the growth of chloroquine resistant and susceptible strains of P. falciparum either by 

generating reactive oxygen species or by down-regulating the HAT activity of PfGCN5 which 

introduced disturbances in the regulation of transcription in the parasite [600] [570]. Embelin 

(3) (Fig. 4.3), a HAT inhibitor showed down-regulation of var gene expression with 

hypoacetylation at H3K9 around var gene promoters suggesting interplay among histone 

acetylation status, as well as subnuclear compartmentalization of different genes and their 

activation in P. falciparum [601]. Competitive methylation and acetylation marks at H3K9 in 

var 5′ flanking region is reported to epigenetically regulate mono-allelic expression pattern of 

var genes during parasite proliferation through activation or repression [602]. Kumar et al. 

elucidated, through comparative sequence and structural analysis, differences in the catalytic 

pocket of PfGCN5 which can be exploited to design selective inhibitors specific to PfGCN5 

over HsGCN5 [603]. This study reports 20 potential inhibitors of PfGCN5, in which 11 were 

found to be selective to PfGCN5 over HsGCN5. Compound C14 (4) (Fig. 4.3) was validated for 

its inhibitory action against PfGCN5 experimentally. In vitro parasite growth assay in the 

presence of C14 showed significantly lower IC50 (225 nM) than the previously known HAT 

inhibitor like Curcumin, Anacardic acid and Embelin (20 μM, 30 μM and 25 μM, respectively) 
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in P. falciparum, but, no effect in mammalian fibroblast cells was observed for C14 (up to 

20 μM). The authors suggested that C14 could be used as hit to study the effect of GCN5 

mediated acetylation in gene expression of P. falciparum.  

Therefore, the effect of these inhibitors in histone hypoacetylation and downregulation 

of developmentally regulated genes in the parasite may have great potential for parasite 

survival and growth. 

 
Fig. 4.3: HAT inhibitors potentially active against Plasmodium falciparum  

4.4.2 Antimalarial HDAC Inhibitors 
The potential utility of HDACi as antimalarial agents was first reported two decades ago 

when the cyclic tetrapeptide 5 (apicidin) was found to potentially target Plasmodium and 

other Apicomplexan parasites [604]. Since then a growing number of studies have focused on 

the antimalarial activity of HDACi belonging to various structural classes, highlighting the 

potential of these epigenetic modulators for anti-parasitic intervention. 

4.4.2.1 Cyclic Tetrapeptide HDAC Inhibitors 
In a pioneering study in 1996, Darkin-Ratray et al. disclosed that the natural cyclic 

tetrapeptide 5 (Table 4.3) is endowed with a potent in vitro activity against P. falciparum (IC50 

= 200 nM) and a panel of Apicomplexan parasites (T. gondii, Cr. parvum, N. caninum, B. 

jellisoni, E. tenella, etc.) [604]. Subsequent studies showed that 5 is able to induce substantial 

changes to the P. falciparum intra-erythrocytic developmental cycle transcriptional cascade, 

with ~ 30-60% of the genes showing altered expression [605-606], so resembling the effects 

of many HDACi, including 5 itself, on higher eukaryotic cells [607-608]. Indeed, 5 causes in situ 

hyperacetylation of P. falciparum histones [604] and inhibits the activity of recombinant 
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PfHDAC1 enzyme in the low nanomolar range (IC50  1 nM) [580]. Despite orally (2-20 mg/kg 

for 3 days) active in vivo in a lethal P. berghei mouse model of malaria [609], 5 for its poor 

bioavailability and a substantial lack of selectivity for P. falciparum-infected erythrocytes 

versus mammalian cell lines (Table 4.3) has never been considered suitable for clinical 

applications. While the structural similarities between one of the side chains of 5 called Aoda 

(2-amino-8-oxodecanoic acid) and the acetylated histone lysines enable the chelation of the 

zinc ion at the bottom of the HDAC catalytic tunnel, the other components of the cyclic 

peptide presumably do not distinguish the flanking amino acid residues that characterize the 

different entrances to the catalytic active site of the different HDAC isoforms so providing a 

possible explanation for its inability to selectively inhibit P. falciparum over human HDACs 

[604, 609]. To address the selectivity issue, many analogues of 5 were prepared over the years 

by Merck Research Laboratories by modifying either its Aoda side chain or its tryptophan 

moiety, and it was found that the replacement of tryptophan with quinolone/quinoline nuclei 

led to analogues of 5 showing 50- to 230-fold parasite selectivity over mammalian cells (e.g. 

compound 6, Table 4.3) [609-612]. Together with a series of synthetic analogues, 5 was also 

comparatively investigated for inhibitory activity against two Trypanosoma species (T. cruzi 

and T. brucei), P. falciparum and L. donovani. Both 5 and its analogues showed potent and 

nonselective activity toward T. brucei, similarly to P. falciparum, but revealed to be toxic 

against T. cruzi and L. donovani [612]. Recently, the cyclic depsipeptide 7 (romidepsin, also 

called FK228 in Table 4.3), together with the other three HDACi to date clinically approved as 

anticancer drugs (see below in the text), was assessed for its in vitro activity against drug 

sensitive (3D7) and drug resistant (Dd2) asexual P. falciparum parasites and the bloodstream 

forms of T. b brucei. Parasites [613]. Compound 7 displayed activity in the low nanomolar 

range against all parasite lines, caused hyperacetylation of both histone and non-histone 

proteins in P. falciparum, and inhibited deacetylase activity of parasite nuclear extracts and 

recombinant PfHDAC1, but unfortunately exhibited no selectivity over mammalian cells (NFF 

and HEK293) for both parasites (SI < 1) [613]. 

4.4.2.2 Short-chain Fatty Acid HDAC Inhibitors 
Short-chain fatty acid-type HDACi, such as 8 (VPA, Table 4.3), sodium butyrate, 4-

phenylbutyrate and related derivatives, despite weak inhibitors of mammalian HDACs, are 

pretty safe molecules, in one case already approved for some therapeutic indications (e.g. 8 

is still widely used as antiepileptic and mood-stabilizing drug), that are now undergoing 
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several trials for HDAC-related diseases, and could be intriguing for repurposing in parasitic 

diseases [614]. These compounds are active in vitro in the (sub)millimolar range against 

different parasites such as P. falciparum, T. gondii and S. mansoni and suffer from poor 

selectivity for parasites (especially P. falciparum) over mammalian cells [615-617]. To best of 

our knowledge, compound 8, despite its anti-parasitic activity in vitro falls within the 

therapeutic range of the compound for its primary use as mood-stabilizing drug, has still to 

be tested in vivo in animal models of any of these parasitic diseases. 

4.4.2.3 Hydroxamate-Based HDAC Inhibitors 
As in other human diseases such as cancer, HDACi bearing a hydroxamic acid warhead as 

zinc-binding group (ZBG) are the best studied anti-parasitic HDACi and have shown promising 

in vitro activity profiles against P. falciparum and other parasites. Several studies have been 

devoted to investigate the antimalarial potential of a number of natural and synthetic class-

I/II HDACi such as 9 (TSA) [618], suberoylanilide hydroxamic acid 10 (SAHA) [613], suberic 

bishydroxamate 11 (SBHA) [618], 12 (MW2796) [618] and aroyl-pyrrolylhydroxyamides 

(APHAs, e.g. 13), [619] which were among the first hydroxamate-based HDACi tested against 

several parasites, including P. falciparum (Table 4.3) [618] [397, 574-575, 580, 619-620]. 

These compounds showed inhibitory activities against P. falciparum in the range of low/sub 

micromolar (10, 12, 13, etc.) to nanomolar (9) concentrations, but almost all suffered, despite 

to a different extent, of poor selectivity versus host cells, with the only exception of 11, which 

displayed somewhat better selectivity for the parasite based on mammalian cytotoxicity data. 

More in detail, the extremely potent compound 9, despite not suitable for clinical progression 

for its lack of selectivity, has resulted a highly useful tool to understand how HDAC inhibition 

affects malarial parasite’s growth, development and gene transcription [580, 605, 621]. 

Indeed, 9 inhibited PfHDAC1 activity in the subnanomolar range (IC50  0.6 nM) [580] and, like 

5, caused hyperacetylation of P. falciparum histones and large scale genome-wide 

transcriptional changes in the parasite [605]. Compound 10, the first HDACi approved for the 

clinical treatment of cutaneous T-cell lymphoma in humans with the name of vorinostat in 

2006, is less potent than 9 against P. falciparum parasites in vitro (IC50 values in the 

submicromolar range), but displays a somewhat improved parasite selectivity (up to  200-

fold, Table 4.3) [397, 574, 620]. Despite its clinical utility for cancer, the in vivo efficacy of 10 

against Plasmodium parasites in mice models of malaria has still to be evaluated. In contrast, 

compound 11, endowed with lower 
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in vitro potency than 10 against P. falciparum, but, depending on 

the specific cell lines examined, better selectivity for the parasite versus 

mammalian cells (Table 4.3), has been examined in vivo in P. berghei-infected BALB/c mice 

(200 mg/kg, twice daily intra-peritoneally for 3 days) where it showed a cytostatic effect by 

significantly inhibiting peripheral parasitemia [618]. Despite no mice recovery was observed, 

these early data about compound 11 suggested that hydroxamate-based HDACi deserved 

further investigation as potential antimalarial agents [397, 574, 618].  

Inspired by the promising initial results, a number of HDACi with better in vitro potency 

against P. falciparum parasites than 10 or 11, and with varying improvements on selectivity, 

were identified in the subsequent years by screening compounds that, keeping intact the 

hydroxamic acid as ZBG, showed variations into the three other structural motifs of the 

general pharmacophoric model for HDAC inhibition: the CAP group that, acting as an enzyme 

surface recognition moiety, interacts at the entrance of the catalytic tunnel; the linker region 

that connecting the CAP with the ZBG fits the narrow, hydrophobic, tubular enzyme cavity; 

and the dispensable polar connection unit (CU) between the CAP and the linker [397, 574-

575, 622]. Among them, supported by in silico molecular modeling of PfHDAC1 and docking 

studies, the Fairlie’s group reported some L-cysteine-based (thioether in the linker region, e.g. 

45) and 2-aminosuberic acid (2-ASA)-based (only methylene groups in the linker region) 

hydroxamates that showed similar in vitro anti-parasitic potency (IC50s in the low nanomolar 

range) against both CQ-sensitive (3D7) and CQ-resistant (Dd2) P. falciparum strains, with the 

better selectivity generally observed for the 2-ASA compounds (Table 4.3). Among these 

latter, 15 (2-ASA-9) and 16 (2-ASA-14), in addition to cause a marked hyperacetylation of P. 

falciparum histones, showed the interesting capability to inhibit the P. falciparum growth in 

erythrocytes at both early and late stages of the parasite’s life cycle [579]. In one study, 9, 10 

and 15 were profiled for their effects on gene expression in P. falciparum parasites. Each 

compound caused genome-wide transcriptional changes (up to 2-21%), consistent with 

inhibition of HDAC activity in the parasite. Though the three inhibitors had very different 

overall effects on gene expression profiles, -tubulin II was found to be one of the small set 

of genes up-regulated by all three HDACi and its identification as transcriptional marker 

induced by structurally different HDACi in P. falciparum has been proposed as an important 

finding since this marker might be utilized for developing HDACi as “specific” antimalarial 

agents [597]. The ASA compounds 15 and 16, as well as 10, were also the first HDACi to be 
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tested against P. vivax, that is the second most important human infecting malaria parasite 

because, despite not generally responsible of death, is the cause of significant malaria-related 

morbidity and relapses due to parasite stages that can remain dormant in the liver. All three 

hydroxamates were able to inhibit the ex vivo growth of multi-drug resistant P. falciparum 

and P. vivax isolates obtained directly from infected patients [623]. The similar activity profiles 

obtained for 10, 15 and 16 against both P. falciparum (IC50 310, 533, and 266 nM, respectively) 

and P. vivax (IC50 170, 503, and 278 nM, respectively), despite somewhat higher than those 

reported in vitro against laboratory strains, provided the first examples of HDACi targeting 

multiple human-infecting malaria parasite species, which is nowadays thought to be highly 

beneficial for clinical applications. Several series of 2-ASA compounds, such as the one 

containing typical non-steroidal anti-inflammatory (NSAID) components in the CAP region 

(e.g. 17, Table 4.3) were tested over the years for their inhibitory activity against P. 

falciparum, but although many compounds displayed an extremely potent activity against P. 

falciparum (IC50s in the low nanomolar range), it was substantially impossible to get significant 

improvements of parasite selectivity in comparison to 15 (Table 4.3) [624].  

In 2009, Patel et al. screened in a high-throughput viability assay the antimalarial efficacy 

of a library of  2000 HDACi characterized by an acyl hydrazone moiety as CU and with 

chemical diversity in the recognition CAP, the ZBG, and the hydrophobic linker length (4-6 

methylene units). Although many compounds potently inhibited P. falciparum parasite 

growth and recombinant PfHDAC1 activity, only 17 derivatives demonstrated anti-parasitic 

activity in the low nanomolar range coupled with minimum perturbation of mammalian cell 

(human myeloma MM.1S cells) histone acetylation, that was used as an indicator of 

selectivity. Within this series, the selective inhibition of P. falciparum proliferation was highly 

favored by the presence of ortho-substituents (mainly bromine and hydroxyl) in the CAP 

aromatic group, of a hydroxamic acid as metal chelator, and of a linker of five methylene units 

(e.g 18, Table 4.3) [580].  

In the same period, Kozikowski and collaborators reported two series of suberoylamide 

hydroxamates bearing substituted triazolylphenyl and phenylthiazolyl (WR compounds) 

moieties as CAP groups. Among the triazolylphenyl-based HDACi, compound 19, endowed 

with an activity in the low nanomolar range (Table 4.3), resulted one order-fold more potent 

than most of the other congeners and more active than mefloquine and chloroquine against 

the multiple drug-resistant P. falciparum strains C235 and C2A, but in the best case was only 
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 23 fold more selective for C235 over mammalian cells [625]. Interestingly, in a panel of 50 

phenylthiazolyl hydroxamate-based HDACi, were identified three very potent compounds 

(IC50 < 3 nM) with more than 600-fold selectivity toward P. falciparum compared to human 

cells. The most promising HDACi from this set resulted the derivative 20 (WR301801), that 

exhibited IC50 values in the (sub)nanomolar range against several drug-resistant strains (D6, 

W2, C235 and C2A) of P. falciparum (Table 4.3), with a significant inhibition of HDAC activity 

in P. falciparum nuclear extracts (IC50  10 nM), and a strong hyperacetylation of parasite 

histones in situ [620]. In one study, 20 caused a significant suppression of parasitemia but did 

not cure P. berghei-infected mice when administered orally as monotherapy at doses of up 

to 640 mg/kg, while some, but not all, mice were cured when it was combined with sub-

curative doses of CQ (52 mg/kg of 20 plus 64 mg/kg of CQ) [620]. Likewise, oral administration 

of 20 (32 mg/kg/day for 3 days) to P. falciparum-infected Aotus monkeys resulted in parasite 

suppression but not eradication [620]. In another study, 20 improved survival and completely 

and irreversibly suppressed parasitemia in P. berghei-infected mice when given by intra-

peritoneal injection at a dose of 50 mg/kg/day for 4 days, with an experimental follow up 

period of 6 weeks [626]. Despite the optimization of the pharmacokinetic properties of 20 

seems highly desirable since it is rapidly hydrolyzed both in vitro and in vivo to its 

corresponding inactive carboxylic acid, these findings clearly demonstrate the potential of 

HDACi in mono- and/or combination therapy for the treatment of malaria [620, 626].  

In 2010, a series of aryltriazolyl hydroxamate-based HDACi was tested by Oyelere’s team 

for their inhibitory activity against promastigote stages of L. donovani and asexual P. 

falciparum blood-stage parasites [627]. Under the tested conditions, several compounds 

achieved better inhibitory activity (IC50s in the nanomolar range) and selectivity than 10 

against P. falciparum growth (D6 and W2 strains). Despite less active than against P. 

falciparum, some compounds possessed also modest inhibitory potency versus L. donovani, 

with IC50 values from 2- to 4-fold better than those of compound 10 and comparable to 

miltefosine, the standard oral drug for the treatment of visceral leishmaniasis. Notably, the 

anti-parasitic activity was dependent on the length of polymethylene linker and the nature of 

the CAP group. For any given CAP moiety, the activity against both parasites was maximal in 

analogues with 5 or 6 methylene units in the spacer region between the CAP and the ZBG. 

Indeed, compounds 21 and 22 (Table 4.3), characterized by a 3’-biphenyltriazolyl moiety as 

CAP and by a 6 and 5 methylene units linker, respectively, displayed the best activity and 
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selectivity against P. falciparum, with 22 that resulted also the most active against L. donovani 

(IC50  32 M) [627]. Oyelere and collaborators also investigated the antimalarial and 

antileishmanial activity of five tricyclic ketolide-based phenyltriazolyl HDACi [628]. Under the 

tested conditions, the optimal length of the linker between the CAP and the hydroxamic acid 

was of 6 methylene units for the best antimalarial activity that also mirrored the most potent 

PfHDAC1 inhibition (23a), while of 9 methylene units for the best antileishmanial activity that 

did not correlate with the PfHDAC1 inhibition (23b) [628]. More in detail, compound 23a 

showed IC50 values against both CQ-sensitive (D6) and CQ-resistant (W2) P. falciparum strains 

from 7- to 10-fold lower than those of compound 10, resulted up to 10-fold more selective 

over mammalian cells (Vero) compared to it (Table 4.3), and was devoid of antileishmanial 

activity, while compound 23b showed an activity against L. donovani (IC50  5 M) 16-fold 

stronger than 10 (IC50  81 M) together with modest antimalarial effects (Table 4.3) [628]. 

The same group also reported the antimalarial and antileishmanial activities of HDACi 

characterized by nonpeptide macrocyclic skeletons derived from 14- and 15-membered 

macrolides linked to a phenyltriazolyl moiety as large recognition CAP groups. All compounds 

inhibited the proliferation of both CQ-sensitive (D6 clone) and CQ-resistant (W2 clone) strains 

of P. falciparum with IC50 values in the (sub)micromolar range [629]. For both macrolide 

skeletons, the maximum activity and selectivity against P. falciparum was achieved with 6 

methylene units in the linker group separating the triazole ring of the CAP group from the 

active-site zinc binding hydroxamate, accordingly to previous reports [627-628]. The best 

among these compounds resulted the derivative 24 (Table 4.3), that is characterized by a 15-

membered macrolide skeleton, showed the highest anti PfHDAC1 activity (IC50 = 29 nM) and 

exhibited up to 11-fold more potent antiplasmodial activity and up to 14-fold increased 

selectivity over mammalian cells (Vero) in comparison to 10. Interestingly, for both macrolide 

skeletons, compounds with 5 to 7 methylene units at the linker group were devoid of activity 

against the promastigote stage of L. donovani, while maximum activity was obtained for those 

compounds having either 8 or 9 methylene units [629], as in the case of ketolide-based HDACi 

[628], but differently from SAR observed in aryltriazolyl hydroxamates [627]. In particular, 

compound 25 (Table 4.3), that contains a 14-membered macrolide skeleton and a 9 

methylene units linker, was up to 25-fold more active than 10 (IC50  81 μM), displaying the 
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maximum antileishmanial activity with IC50 values of 3.2 and 4.7 μM against the promastigote 

and amastigote stages of the parasite, respectively [629]. 

In 2012, Andrews and coworkers reported the in vitro and in vivo antiplasmodial activities 

of the orally active anticancer HDACi 26 (pracinostat, also indicated as SB939). Compound 26 

potently inhibited the growth of P. falciparum asexual-stage parasites in human erythrocytes 

in vitro (IC50s in the nanomolar range), causing hyperacetylation of parasite histone and non-

histone proteins and showing selectivity indexes over mammalian cells ranging from 4 to  

1250, depending on the different tested cell lines (Table 4.3) [630]. In addition to a promising 

additive effect in vitro in combination with the antimalarial protease inhibitor lopinavir, 26 

offered the first evidence of HDACi as liver-stage antimalarial drug leads. Indeed, 26, as well 

as 10, displayed a potent inhibition of the in vitro growth of exo-erythrocytic-stage P. berghei 

ANKA mouse malaria parasites within HepG2 human hepatocytes (IC50  150 nM) [630]. 

Finally, orally administrated compound 26 was found to be effective in vivo by reducing both 

peripheral parasitemia and total parasite burden at doses of up to 100mg/kg/day in the P. 

berghei ANKA mouse model of malaria. Despite mice were not cured, treatment with 26 

prevented the development of experimental cerebral malaria-like symptoms, and mice did 

not develop hyperparasitemia until 2-3 weeks after the interruption of the treatment.  

Subsequently, a panel of 21 HDACi characterized by a pentyloxyamide connection 

unit/linker moiety and by a substituted benzene ring as CAP were tested by the same group 

in vitro for their effects against different Plasmodium life cycle stages: asexual blood stage of 

P. falciparum (3D7 line); tissue schizontocidal stage of P. berghei (exo-erythrocytic forms 

cultured in HepG2 human liver cells); and late stage (IV and V) P. falciparum gametocytes. All 

compounds displayed activity (IC50 values in the range of 0.09-1.12 μM) against the asexual 

form of P. falciparum, with the potency and selectivity increasing along with the bulkiness of 

the alkyl/alkoxy substituents at the para position of the phenyl ring, as exemplified by the 

most active compound 27a (Table 4.3). Three derivatives revealed nanomolar activity against 

all three life cycle stages (e.g. 27b, Table 4.3), and several compounds showed an improved 

parasite selectivity compared to 11 for at least the asexual and exo-erythrocytic life cycle 

stages (e.g. 27c, Table 4.3) [631]. The same team also reported the antimalarial activity and a 

structure-activity relationship investigation of a series of related alkoxyurea-based HDACi 

[632-633]. Several compounds were active at (sub)micromolar level against the 3D7 line of P. 

falciparum [632], and some of them also displayed early/late stage gametocytocidal activity 
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in the single digit micromolar range (IC50 = 1.68-6.65 µM) [632-633]. The SAR studies revealed 

that the hydroxamic acid as ZBG and a linker of 5 methylene units were crucial for the 

antiplasmodial activity. Indeed, alternative ZBGs such as N-methylhydroxamic acid, o-

hydroxyanilide and o-aminoanilide were inactive, and chain-shortened analogues (less than 5 

methylene units at the linker) exhibited lower potency. Also in this series, bulky alkyl/alkoxy 

substituents at the 4-position of the phenyl CAP group, and its replacement with bulky 

aromatic rings led to the most potent and selective compounds against both asexual and 

gametocyte P. falciparum forms, as exemplified by the 4-tert-butyl derivative 28 and the 1-

naphthyl derivative 29, that anyway both resulted not better than 10 in terms of potency 

while, under the tested conditions, compound 29 was more parasite selective than 10 in its 

asexual stage and late-stage gametocyte killing activity (Table 4.3).  

In 2015, Giannini et al. assessed the potential anti-parasitic (P. falciparum, L. donovani, 

T. cruzi, T. brucei, G. lamblia) efficacy and SAR of a few 10 analogues characterized by the 

substitution with / lactam-carboxamides at the position α of the anilide CU and with 

(trifluoro)methyl groups in the meta position of the phenyl ring CAP, as well as by an 

hydroxamic acid or a thiol function as ZBG [634]. Remarkably, all hydroxamates showed a 

potency comparable with CQ (3-23 versus 6 nM) and slightly better than 10 (3-23 versus 25 

nM) against P. falciparum, the most sensitive parasite, and were highly selective for P. 

falciparum over mammalian L6 cells (SIs = 205-3953), while the thio derivatives, both the free 

and the pro-drug, exhibited poor anti-parasitic activity. It can be pointed out that a 

hydroxamate as ZBG, a -lactam carboxamide in α to the anilide CU, and a methyl or 

trifluoromethyl substituent in the meta phenyl ring position associate with an enhanced anti-

parasitic activity (at least toward P. falciparum and, to a lesser extent, T. cruzi and brucei 

species), though the phenyl modifications are also responsible of an increased cytotoxicity 

and reduced selectivity over mammalian cells [634].  Indeed, in a preliminary test in vivo the 

best results in a P. berghei mouse model of malaria were obtained with the unsubstituted 

phenyl derivative 30, that was the most selective in vitro (Table 4.3) and that inhibited  88% 

of the Plasmodium development versus 99.8% of dihydroartemisinine.  

In 2015, as already above mentioned, Andrews and coworkers reported the in vitro 

activity against P. falciparum (Table 4.3) and T. b. brucei parasites of all four HDACi clinically 

approved for the treatment of cancer [7, 10, 31 (belinostat), and 32 (panobinostat)] up to now 

[613]. All compounds inhibited the growth of asexual-stage P. falciparum parasites with 
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nanomolar potencies (Table 4.3), while only 7 was active at nanomolar level against the 

bloodstream form T. b. brucei (IC50 = 35 nM), despite devoid of any selectivity over 

mammalian cells. The four HDACi also inhibited the deacetylase activity of P. falciparum 

nuclear extracts and of recombinant PfHDAC1 and caused hyperacetylation of (non)histone 

proteins, differentially affecting the acetylation profiles of histones H3 and H4, but no one, 

with the exception of 10 and, to a lesser extent, of 31, displayed some selectivity for malaria 

parasites over mammalian cells (NFF and HEK293) [613].  

4.4.2.4 Thiol-based HDAC Inhibitors 
The thiol-based HDAC6 (class IIb) selective inhibitor 33 [635], when tested against CQ-

sensitive (3D7) and CQ-resistant (Dd2) P. falciparum strains, resulted only poorly active (IC50s 

in the micromolar range) in inhibiting the proliferation of the parasite (Table 4.3), so providing 

a further evidence of the necessity to focus on hydroxamate-based and likely on pan-HDACi 

as potential antimalarial agents [579].  

4.4.2.5 Ortho-Amino-Anilides HDAC Inhibitors 
The same conclusions can be drawn by considering the series of HDACi containing an 

ortho-aminoanilide moiety as ZBG. The prototype of these HDACi is the class-I HDAC selective 

inhibitor 34 (MS275, entinostat) [622, 636-637], that in multiple screening over the years has 

always resulted a modest inhibitor of both PfHDAC1 and parasite proliferation with IC50 values 

of 0.94 μM and  8 μM, respectively [264, 397, 574-575, 579-580].  

Table 4.3: In vitro Antimalarial Activity of Selected Class-I/II HDAC Inhibitors 
Class/ 
Inhibitor 

Structure Nuclear 
extract 
[rPfHDAC1]a 
IC50 (nM) 

P. falciparum 
IC50 (μM) 

Mammalia
n cells  
IC50 (μM) 

SIb 

 5 
(Apicidin)  
 

N

O

HN

O
NH

NH
O

O

O

H

N O

 

NA 
[1±0.1] 

0.200 0.05-0.1 0.2-
0.5 

6 

 

NA 0.063 >15 >238 



 
 

75 
 

7  
(Romidepsin, 
FK228) 

 

0.9±0.8 
[48±39% 
@1M] 

0.09-0.13 0.001-
<0.005 

<1 

Short-Chain Fatty Acids  
8  
(Valproic acid, 
VPA) HO O  

NA >100 1350 NA 

Hydroxamic Acids 
9 
(TSA) 
 N

O

NHOH

O

 

NA  
 [0.6±0.1] 

0.008-0.120 0.2-0.3 2-38 

10  
(SAHA, 
Vorinostat)  

NA  
[59±6] 

0.025-2.2 0.26-20 0-200 

11  
(SBHA) 

 

NA 0.8-2.3 50-300 22-
375 

12 
(MW2796) 

NHOH

O

HOHN

O

 

NA 0.9-1.1 NA NA 

13 
(APHA-7) 

 

NA 1.2-4 >20 5-17 

14 

 

NA 0.048 0.6 12 

15  
(2-ASA-9) 

H
N

O

N
H

O

N

NHOH

O  

NA 0.015-0.039 1.24 30-83 
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16  
(2-ASA-14) 

 

NA 0.013-0.033 0.34 10-26 

17 

 

NA 0.013 0.26 20 

18 Br

N
N
H

NHOH

O O

 

NA 
[37] 

0.015 NA NA 

19  

NHOH

O

5

H
N

O

NN
N

 

NA 0.017-0.035 0.02-0.8 0.6-
22.8 

20  
(WR301801) NHOH

O

5

H
N

O

N

S
H2N  

1-10 
[NA] 

0.0006-0.0016 0.6 400-
1016 

21 

 

NA 0.069 NC >190.
4 

22 

 

NA 0.074-0.107 NC >127 
(>183) 
 

 
23a  
(n=6) 
 

 

NA 
[10±0.5] 

0.144-0.148 >5.2 >36 
(>35) 

23b  
(n=9) 

NA 
[304±17] 

0.93-1.24 >5 >5.4 
(>4) 

24 

 

NA 
[29±0.9] 

0.094-0.226 NC >20.7 
(>47.6
) 

25 

 

NA 
[401±19.7] 

0.76-1.32 NC >3.4 
(>6) 
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26  
(Pracinostat, 
SB939) 

N

N

NHOH

N

O

 

NA 0.08-0.15 0.8->100 4-
>1250 

27 

R N
H

O

O

NHOH

O

5  

a. R = 4-t-Bu-
Ph 

[68.6±1.2% 
@1M] 

0.09 12.47 139 

b. R = 3,4-
CH3-Ph 

[82.6±4.2% 
@1M] 

0.12 3.24 27 

c. R = 4-BuO-
Ph 

[72.1±5% 
@1M] 

0.17 >50 >294 

28 

 

NA 0.16 
(3.45)c 

4.9 31 
(2)c 

29 

 

NA 0.25-0.32 
(2.12-2.25)c 

19.5 36-78 
(9)c 

30 

 

NA 0.019 75.1 >3950 

31  
(Belinostat) 

N
H

S
NHOH

OOO

 

214.7±15.3 
[78.5±4.7% 
@1M] 

0.06-0.13 1.4-2.4 11-40 

32 
(Panobinostat 
) 

HN

N
H

NHOH

O  

3.3±0.7 
[100±0% 
@1M] 

0.01-0.03 0.07-0.18 2-18 

33 

H
N SH

O

HN O

O

 

NA 15.2-19.9 NA NA 

34  
(MS275, 
Entinostat) N

O N
H

O

H
N

NH2

O  

NA 
[940±90] 

7.8-8.3 >20 2.5 

a Deacetylase activity tested using either P. falciparum nuclear lysates (no brackets) or recombinant 
PfHDAC1[brackets]; bSI: Selectivity Index - fold difference between mammalian cell and P. falciparum IC50 values 
(IC50 mammalian cells/IC50 P. falciparum); c Relative to gametocytocidal activity; NA: data not available; NC: no 
cytotoxicity at the maximum tested concentration. 

4.4.2.6 Other Amides as HDAC Inhibitors 
Very recently, Ontoria et al., in addition to cast doubts on PfHDAC1 inhibition data 

reported in literature so far, described an innovative screening approach that led to the 

identification of a novel series of P. falciparum growth inhibitors claimed as selective PfHDACi 
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and characterized by a secondary amide as ZBG, an examethylene chain as linker and two 

groups such as an (hetero)aryl substituted imidazole ring and a 2-thiazolylcarboxamide as 

surface contact CAP moieties. Some derivatives in the series showed submicromolar 

inhibition of P. falciparum proliferation (EC50 < 500 nM) with only a modest inhibition of 

human class I HDACs in HeLa cells (IC50 values in the micromolar range), used as an indicator 

of selectivity [638]. Both activity and selectivity were strongly influenced by the nature of the 

(hetero)aryl substituent attached to the imidazole core. Although clear SAR trends were 

difficult to identify, compounds based on phenyl-/ biphenyl-/ benzimidazole- or 

benzotriazole- substituted imidazoles were either weak or poorly selective inhibitors of 

parasite growth. Conversely, analogues bearing indole-, indazole-, isoquinoline- and mainly 

pyrazolylphenyl- (35 and 36) or quinoline-substituted (37) imidazoles turned out to show the 

best activity and selectivity for the parasite (Table 4.4) [638]. Support for the selective 

PfHDACs inhibition as the mechanism of action of these compounds was provided by the 

evidence that compound 35, one the most potent and selective (SI = 37) of the series, induced 

the hyperacetylation of the histone H4K8 in parasite cells at a concentration (EC50 = 350 nM) 

quite close to the potency measured in the parasite growth inhibition assay (EC50 = 450 nM) 

and quite far from the concentration necessary to inhibit recombinant (EC50  5 M) and 

cellular (EC50 = 16.7 M) hHDACs and to promote the same extent of  histone H4 

hyperacetylation in human HeLa cells (EC50  25 M). In summary, the two step screening 

strategy [(i) comparison of parasite growth inhibition in erythrocytes with hHDAC inhibition 

in HeLa cells as preliminary readout of selectivity; (ii) conclusive validation of the parasite 

selectivity of the most promising compounds by measurements of nuclear histone 

hyperacetylation in both human and parasite treated cells] proposed by Ontoria et al. for 

evaluating the parasite selectivity of new potential antimalarial agents seems quite attractive 

because it allows to avoid the problems of the common PfHDAC preparations that are likely 

inactive without endogenous cofactors and are endowed with low in vitro activities just 

because contaminated by co-purified host HDACs coming from the cellular expression 

vectors, and therefore are not reliable for inhibition studies.  

 Table 4.4: In vitro Antimalarial Activity of N-Methyl Carboxamides as HDAC Inhibitors. 

Class/ 
Inhibitor Structure 

Nuclear  
extract 
[rPfHDAC1]a 
IC50 (nM) 

P. falciparum 
EC50 (μM) 

Class I 
hHDACs in 
HeLa cells  
IC50 (μM) 

SIb 
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35 

 

NA 0.45 16.6 37 

36 

 

NA 0.90 20.5 23 

37 

 

NA 0.5 >25 54 

a Deacetylase activity tested using either P. falciparum nuclear lysates (no brackets) or recombinant 
PfHDAC1[brackets]; b SI: Selectivity Index [HeLa class I HDACs IC50 (M) / Pfgrowth EC50 (M)]; NA: data not 
available. 

4.4.3 Antimalarial Sirtuin Inhibitors 
 Despite less studied than class I/II/IV HDACi, a certain number of SIRTi have been tested 

in vitro for anti-proliferative activity against P. falciparum-infected erythrocytes and for 

inhibition of the recombinant PfSir2A protein [264, 397, 574]. Known natural and synthetic 

SIRTi that have been examined over the years for P. falciparum growth inhibition comprise 38 

(IC50  9-13 M) [582-583], 39 (splitomycin, IC50  10 M) [580, 582-583], 40 (surfactin, IC50  

9 M) [582], and 41 (hyperforin, IC50  1.5-2 M) [639-640] (Fig. 4.4). Compound 42 

(nicotinamide), the physiological product of the Sir2-catalyzed NAD+-dependent 

deacetylation reaction, was found to be significantly less active at whole cell level (IC50  9.9 

mM), with a delayed parasite growth inhibitory effect observed (Fig. 4.4) [582-583, 641].  

The depsipeptide 40 and, to a lesser extent, 42 are more potent inhibitors of PfSir2A (IC50 

= 35 and 51 M, respectively) than hSIRT1 (IC50  600 and = 88-250 M, respectively), while 

38 and 39 are less active than them versus PfSir2A (IC50  50 and  400 M, respectively). In 

2009, Chakrabarty et al. applied a click chemistry approach to synthesize lysine-based 

tripeptide analogues designed to target PfSir2A through competition with the peptide binding 

pocket [642]. Despite three of four tested analogues had similar or better potency (IC50s = 23-
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34 M) against PfSir2A compared with 40 and 42, all of them were devoid of selectivity for 

the parasite Sir2 over human SIRT1. The most active compound 43 versus PfSir2A was also 

tested in vitro against P. falciparum-infected erythrocytes where it was as potent as 38 and 

40 in inhibiting the growth of the parasite (IC50 = 9.8 M) [582]. The natural hSIRT1 activator 

resveratrol [308], able to modestly inhibit in vitro the growth of P. falciparum (IC50  60 M), 

was also tested against recombinant PfSir2A, but no enzyme activation or inhibition was 

detected [583].  

Overall, the in vitro activity of the SIRTi tested so far against P. falciparum parasite growth 

is modest, but this is not surprising in the light of the aforementioned experimental evidences 

that seem to indicate PfSir2A and PfSir2B as not essential for the in vitro parasite growth and 

development, and anyway considering the low sequence homology observed between the 

PfSir2 and other eukaryotic Sir2 proteins [527-528]. Moreover, the somewhat low consistency 

between the PfSir2A inhibitory potencies and the in vitro antiproliferative effects promoted 

by some compounds (e.g.  38, 39, 42 and, to a lesser extent, 40) and the pleiotropic nature of 

some of them (e.g. 38 and 42), do not allow to exclude additional mechanisms involved in 

their P. falciparum growth inhibitory activity. For these reasons, it is presently highly desirable 

to identify/develop inhibitors with significantly increased potency against PfSir2 enzymes and 

selectivity over human sirtuins, that could be useful as tools for studying the biology of P. 

falciparum sirtuins and potentially for their pharmacological validation as targets of drugs 

exerting a direct or an indirect (by blocking the parasite evasion from the host innate immune 

surveillance) anti-parasitic activity (see above in text) [527-528].   
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Fig. 4.4: Chemical structures of antimalarial class-III HDAC (SIRT) inhibitors.  

4.4.4 Antimalarial HKMT Inhibitors 
Plasmodium falciparum HKMTs (PfHKMTs) play key role in controlling Plasmodium gene 

expression through epigenetic pathways [560, 643].  PfHKMTs were found to be essential in the 

asexual blood-stages of the parasite, in particular, knockout of PfSET2 was found to reverse the 

silencing of the var gene family, which is centrally involved in the immune evasion mechanism by 

which Plasmodium avoids the host antibody response [529, 643],   and thus may represent good 

drug targets [529, 531]. Despite this potential, production of enzymatically active PfHKMTs has 

proved to be challenging, with only a few successful reports in the literature [531, 590], thus 

hindering the prospect of PfHKMT inhibitor discovery. Indeed, by modifying the amino side chains 

of this scaffold, diaminoquinazoline inhibitors have been reported exhibiting human SETD8 [644-

645] and EZH2 [646] activity. Given this broad HKMT activity, Malmquist et al. [598] suggested 

that ‘repurposing’ the diaminoquinazoline scaffold as inhibitors of the homologous PfHKMTs as a 

potential new antimalarial targets. Two compounds, 44 (BIX-01294) and its derivative 45 (TM2-
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115) (Fig. 4.5), inhibited P. falciparum 3D7 parasites in culture with IC50 values of ∼100 nM, 

values at least 22-fold more potent than their apparent IC50 toward two human cell lines and 

one mouse cell line. These compounds irreversibly arrested parasite growth at all stages of 

the intraerythrocytic life cycle. Decrease in parasite viability (>40%) was seen after a 3-h 

incubation with 1 µM BIX-01294 and resulted in complete parasite killing after a 12-h 

incubation. Additionally, mice with patent Plasmodium berghei ANKA strain infection treated 

with a single dose (40 mg/kg) of TM2-115 had 18-fold reduced parasitemia the following day 

A dose-dependent reduction in histone methylation (H3K4 and, to a lesser extent H3K9) was 

observed in parasites upon treatment (Western analysis), suggesting on-target PfHKMT activity 

[598], and that the broad ranging effects of these compounds is likely due to their target. Highly 

promising effects were also observed for other life cycle stages, with mature gametocyte 

progression to gamete formation inhibited at submicromolar concentrations [599],  and both 

compounds were shown to activate dormant liver forms called hypnozoites [647], which are 

produced by some malaria parasite species including P. vivax and are considered one of the 

less accessible malaria infection reservoirs. This observation raises the intriguing possibility 

that hypnozoite activation may be regulated at the epigenetic level and suggesting that it may 

be possible to target these highly resilient forms with epigenetic drugs. 

A preliminary SAR study on our diaminoquinazoline series revealed that some 

pharmacophoric features might be conserved for both parasite-killing and G9a inhibition, thereby 

suggesting potential similarities between G9a and the yet unidentified PfHKMT target(s) 

responsible for the anti-parasitic activity [648]. As a result, a variety of analogues, based on BIX-

01294 and TM2-115, were designed by substituting the 2 and 4 positions of the quinazoline 

core and these molecules were tested against Plasmodium falciparum (3D7 strain). The 

resulting derivatives were assessed for cytotoxicity against the human HepG2 

hepatocarcinoma cell line as a measure of parasite versus human selectivity. Several 

analogues with IC50 values as low as 18.5 nM and with low mammalian cell toxicity (HepG2) 

were identified [648]. Promisingly, four lead compounds, BIX-01294, TM2-115 and two new 

compounds (46 and 47) (Fig. 4.5) were found to not only be highly potent against Pf3D7, but 

also highly selective for parasite versus host cell killing [599]. All four compounds were found 

to be 110-388-fold more active on Pf3D7 compared to HepG2 cell viability. Both 46 and 47 

revealed a decreased H3K4me3 and H3K9me3 levels and showed similar rapid and 

erythrocytic stage-independent killing phenotype as previously shown for BIX-01294 and 
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TM2-115 [598]. More recently, the same authors reported that an extensive study of the SAR of 

this series against both G9a and P. falciparum. From this series, compound 48 and 49 (Fig. 4.5) 

were employed in analogous phenotypic assays in order to study whether the diaminoquinoline 

chemotype has a comparable target profile to the diaminoquinazolines [649]. Consequently, both 

compounds showed similar erythrocytic stage-independent killing phenotype, suggesting a 

common target profile for the anti-Plasmodium activity with that of BIX-01294. Together, this data 

suggests that while broadly similar, the G9a and potential PfHKMT target(s) binding pockets and/or 

binding modes of the diaminoquinazoline analogues exhibit clear and exploitable differences. 

Thus, there remains significant potential in this series to further develop parasite selective 

analogues. Based on this, we believe this scaffold to have clear potential for development into a 

novel and much needed, new medicine for malaria. 

 
Fig. 4.5: PfHKMT inhibitors 
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5. EPIGENETIC MECHANISMS AS DRUG TARGETS FOR SCHISTOSOMA MANSONI 
The term “epigenetics” envelops a variety of heritable changes in gene expression that 

are linked to structural modifications of the chromatin, without changes to the DNA 

sequence. These include DNA methylation, reversible post-translational modifications of 

histones, histone variants, chromatin remodeling factors and non-coding RNAs. The 

investigation of the role of epigenetic mechanisms in the control of gene transcription in 

schistosomes, and hence in biological processes like development and reproduction, is in its 

early stages. Nevertheless, the complexity of schistosome development and differentiation 

implies a tight control of gene transcription at all stages of the life-cycle and that epigenetic 

mechanisms are likely to play a crucial role in these processes, suggesting that they are viable 

drug targets. In this context, the understanding of developmental and reproductive biology 

of schistosomes is crucial to fight schistosomiasis. Many works have highlighted the 

responsiveness of the developing S. mansoni to the host blood microenvironment and shown 

that the parasite might exploit endocrine and host immune signals to accomplish its 

development [650-654]. The mating status (i.e. paired vs unpaired) has also been shown to 

play an essential role for the maturation of both male and female [655-658]. Other molecular 

studies have highlighted male- or female-biased pathways essential for the development and 

the reproduction of the parasite [659-661]. Global transcriptomic analyses were carried out 

on diverse developmental stages [662-663] and sex-biased expressions were explored in adult 

[663-664] or cercariae [665]. Epigenetic control for gene expression regulation has also been 

investigated and highlighted sex-specific epigenetic processes with chromatin structural 

changes occurring on female-specific microsatellite repeats of the W-chromosome during the 

development of the parasite [666]. Similarly, Picard et al. highlighted that sexual 

differentiation in S. mansoni is accompanied by distinct male and female transcriptional 

landscapes of known players of the host-parasite crosstalk, genetic determinants and 

epigenetic regulators [667]. Therefore, the knowledge so far acquired, or inferred from the 

nature of schistosomes as invertebrate metazoan organisms and from a detailed analysis of 

the epigenetic actors encoded in their genomes, can be exploited to develop novel 

therapeutic strategies. Viewed as potential targets, the most readily “druggable” are the 

enzymes that carry out DNA methylation and histone modifications, and increasingly, micro-

RNAs (miRNAs) among the non-coding RNA categories.  
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5.1 DNA Methylation in Schistosomes  
The presence of functional DNA methylation marks in schistosome genomes is 

controversial. Early work showed no differences in the restriction profiles for adult male or 

female S. mansoni DNA [668]. Moreover, the methyl cytosine-dependent restriction 

endonuclease McrBC failed to digest S. mansoni DNA. However, recently, cytosine 

methylation was found to be a conserved epigenetic feature throughout the phylum 

Platyhelminthes, including Schistosoma haematobium, Schistosoma japonicum, and S. 

mansoni [669]. In addition to cytosine methylation, the arginine methyltransferase PRMT1 

homolog was also identified in S. mansoni and S. japonicum [670-671]. Dnmt 2 has only weak 

DNA methyltransferase activity but has robust methyltransferase activity toward tRNAAsp 

and other tRNAs [51]. However, Dnmt2 does retain some cytosine methyltransferase activity 

[672-673] showed that siRNA knockdown of SmDnmt2 transcripts reduced overall 

methylcytosine levels in the schistosome genome. These authors have further suggested that 

cytosine methylation is conserved throughout the phylum Platyhelminthes [669]. Against this, 

a comprehensive study [674] using whole-genome bisulfite sequencing showed that the S. 

mansoni genome lacked a detectable DNA methylation pattern, even at the 

“hypermethylated” locus identified by [673]. Some clusters of incompletely converted 

cytosines were detected outside this region, but were consistent with bisulfite deamination 

artefacts [675]. However, although these results strongly suggested that the S. mansoni 

genome is in fact unmethylated, the criticism has been levelled that the life-cycle stage 

analyzed, adult male worms, has the lowest level of DNA methylation measured using an 

ELISA method [669]. Notwithstanding this controversy, Dnmt inhibitors were found to 

strongly affect adult worms, particularly in terms of the morphology of the ovaries and in vitro 

egg-laying [673], that indicates Dnmt inhibitors such as 5-azacytidine may provide the basis 

for developing precursors of novel anti-schistosome drugs. 

5.2 Schistosome miRNAs  
Early diagnosis of schistosomiasis is critical to control this disease. However, no reliable 

biomarker exists for early diagnosis of schistosomiasis. Circulating miRNAs, which are present 

in a stable form in the plasma or serum of an infected host, have been considered ideal 

biomarkers for the diagnosis of some cancers. It is possible that such circulating miRNAs could 

also serve as biomarkers for schistosomiasis diagnosis. Because miRNAs act as critical post-

transcriptional regulators in many organisms, studies have been conducted to determine the 
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roles of miRNAs in schistosomes. These miRNAs are likely to play critical roles in schistosome 

development and gene regulation.  

A survey of the available S. mansoni EST sequences [676] concluded that 10.3% (21,107 

sequences) match the genome but have no protein coding potential and are therefore 

possible ncRNAs, suggesting that the parasite may use a range of ncRNAs in transcriptional 

and translational regulation. To the best of our knowledge, miRNAs were first identified in S. 

japonicum [677-678] in two separate studies that demonstrated the existence of a limited 

number of miRNA that are conserved in other organisms and that the miRNA expression 

profiles were highly stage-specific. In a more comprehensive study, researchers used a high-

throughput sequencing technology to characterize small RNAs populations in S. japonicum 

schistosomula, the early stage in the vertebrate host, which identified 16 schistosome-specific 

miRNAs [679-680]. In S. mansoni, the sequencing of a small-RNA cDNA library yielded 211 

novel miRNA candidates of which 11 were further verified by Northern blotting and presented 

data supporting stage-regulated expression patterns for some of the miRNAs [681].  

Thirteen microRNAs exhibit sex-biased expression, 10 of which are more abundant in 

females than in males [682]. Some miRNAs are associated with the morphological formation 

of ovaries in female schistosomes in S. japonicum [683]. These results demonstrate that 

during the life cycle of schistosomes, different microRNAs are likely to participate in 

differentiation/maintenance processes and it is clear that these miRNAs are potential 

therapeutic targets.  

5.3 Schistosome Histone Modifications  
The S. mansoni genome encodes 55 HMEs involved in protein acetylation/deacetylation 

or methylation/demethylation (Table 5.1) [684]. Some of these, including the class I HDACs 

[685] and the sirtuins [686] have been cloned and characterized and preliminary choices of 

targets can be made based on their degree of sequence conservation. Moreover, histone 

modifications have been identified in different life stages of schistosomes, and changes in 

histone modifications appear to be crucial for pathogenesis and thus to be potential 

therapeutic targets. For example, bivalent histone H3 methylation was observed in cercariae, 

demethylation of H3K27 and activation of transcription were observed during the 

transformation into schistosomula (remaining absent in adults), and alterations of H3K9 

methylation and acetylation occurred upstream and downstream of the transcriptional start 

site (TSS) [687]. The modification profiles of four histone modifications (H3K4me3, 
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H3K27me3, H3K27ac, and H4K20me1) were different between the sympatric host and 

allopatric host and these histone marks also differ in cercariae and adult [688]. The promoters 

of the S. mansoni mucingene (SmPoMuc), a key component of the compatibility between the 

schistosome and its snail host, contains the epigenetic marks H3K9Met3 and H3K9Ac, which 

differ significantly between compatible (C) and incompatible (IC) strains and negatively 

regulates the expression of SmPoMuc [689]. The structure of the parasite chromatin 

differentially modifies the transcription of SmPoMuc in the IC strain compared with the C 

strain [690]. These findings suggest that histone alterations maybe important for the initial 

steps in the adaptation of pathogens to new hosts and epidrugs can be used to control 

parasite development. Comparison of H3K27me3 histone modification before (in cercariae) 

and after (in adults) showed that the H3K27me3 enrichment profile in cercariae differs 

between the two sexes both upstream and along the transcription unit, whereas in the adult 

stage, males and females display the same profile after the TSS, while their profile upstream 

the TSS remains different [667]. These results suggest epigenetic regulators play important 

roles in the sex determination and sexual differentiation in schistosomes and represent a 

promising source of therapeutic targets.  

Table 5.1: Identity and characteristics of Schistosoma mansoni histone modifying enzymes [691]. 
HME 
type 

Class Closest human ortholog Size (aa) Substrate 
specificity 

Gene Ida 

HDAC I HDAC1 517* 
 

Smp_005210  
I HDAC3 418* 

 
Smp_093280  

I HDAC8 440* 
 

Smp_091990  
II HDAC4 291 

 
Smp_191310  

II HDAC5 701 
 

Smp_069380  
II HDAC6 1132 

 
Smp_138770  

III Sirtuin) Sirt1 568* H1 – H3 – H4 Smp_138640  
III 
(Sirtuin) 

Sirt2 337* H4K16 Smp_084140 

 
III 
(Sirtuin) 

Sirt5 305* 
 

Smp_055090 

 
III 
(Sirtuin) 

Sirt6 386* H3K9 – H3K56 Smp_134630 

 
III 
(Sirtuin) 

Sirt7 517* 
 

Smp_024670 

HAT GNAT GCN5 (KAT2A) 899* H3K9 – H3K14 – 
H3K18 H2B 

Smp_070190 

 
GNAT HAT1 (KAT1) 435 H4K5 – H4K12 Smp_178700  
MYST Tip60 (KAT5) 463 H2AK5 – H3K14 – 

H4K5 – H4K8 – 
H4K12 – H4K16 

Smp_053140 

 
MYST MYST1 (KAT8) 496 H4K16 Smp_194520 
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MYST MYST2 (KAT7) 400 H4K5 – H4K8 – 

H4K12 – H3 
Smp_171700 

 
MYST MYST3 (KAT6A) 971 H3K14 Smp_131320  
CBP/p300 CBP/SmCBP1 (KAT3A) 2093* H2AK5 – H2BK15 – 

H3K14 – H3K18 – 
H4K5 – H4K8 

Smp_105910 

 
CBP/p300 CBP/SmCBP2 (KAT3A) 1892 H2AK5 – H2BK15 – 

H3K14 – H3K18 – 
H4K5 – H4K8 

Smp_127010 

 
TAFII250 TFIID subunit 1 2241 H3 – H4 Smp_166840 

HMT SET EZH1 1026 H3K27 Smp_078900  
SET MLL3 (KMT2C) 399 H3K4 Smp_070210  
SET MLL3 (KMT2C) 1560 H3K4 Smp_138030  
SET MLL1/4 (KMT2D) 3002 H3K4 Smp_144180  
SET MLL5 (KMT2E) 751 H3K4 Smp_161010  
SET C20orf11/MLL5/Ranbp9 1305 

 
Smp_009980  

SET NSD2/WHSC1 1746 H3K4 – H4K20 Smp_160700  
SET NSD1/2 (KMT3B) 1343 H3K36 – H4K44 Smp_137060  
SET SET8 (KMT5A) 409 H4K20 Smp_055310  
SET SUV 39H2 (KMT1B) 586 H3K9 Smp_027300  
SET SUV4-20H1 (KMT5C) 613 H4K20 Smp_062530  
SET SETD2 1575 H3K36 Smp_133910  
SET SETD1B 1720/1822 H3K4 Smp_140390  
SET SETDB 918/1032 

 
Smp_150850  

SET SETMAR 250 H3K9 Smp_043580  
SET SET/MYND4 782 

 
Smp_000700  

SET SET/MYND4 527 
 

Smp_124950  
SET SET/MYND5 423/429/433 

 
Smp_121610  

DOT1 DOT1L (KMT4) 
 

H3K79 Smp_165000  
PRMT PRMT1 252/359/334 H4R3 Smp_029240  
PRMT PRMT3 1564 

 
Smp_127950  

PRMT PRMT4/CARM1 737 H3R2 – H3R17 – 
H3R26 

Smp_070340 

 
PRMT PRMT5 630 H2A – H4 Smp_171150  
PRMT PRMT7 755 

 
Smp_025550 

HDM KDM1 LSD1A 1043 
 

Smp_150560  
KDM1 LSD1A 916 

 
Smp_160810  

KDM1 LSD1 (KDM1) 1073 H3K4 – H3K9 Smp_162940  
JmjC JMJD1B (KDM3) 273 H3K9 Smp_161410  
JmjC JMJD2C (KDM4C) 1136 H3K9 – H3K36 Smp_132170  
JmjC JMJD4 809 

 
Smp_147870  

JmjC JMJD6 839 
 

Smp_137240  
JmjC JHDM1D (KDM7) 653 H3K36 Smp_127230  
JmjC Jarid (KDM5) 2372 H3K4 Smp_156290  
JmjC jarid (KDM5) 1639 H3K4 Smp_019170  
JmjC UTX (KDM6A) 1137 H3K27 Smp_034000 

5.3.1 Schistosome Histone Acetyltransferase 
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Histone acetyltransferase inhibition also has developmental consequences in 

schistosomes, particularly in egg maturation. The HATs, GCN5, was identified in S. mansoni, 

and specific acetylation at H3K14 was catalyzed by the transcriptional co-activator GCN5 [692-

693]. SmCBP/p300 was also identified in S. mansoni, and it was expressed during all life cycle 

stages, interacted functionally with the nuclear receptor SmFtz-F1 and also potentiated the 

transcriptional activity of this receptor in the CV-1 cell line [694]. 

The schistosome orthologue of the HAT GCN5 has been shown to acetylate H3 and H2A, 

and in particular H3K14 [692] and the CBP/P300 orthologue SmCBP1 primarily acetylates H4 

[694-695]. Knockdown of either or both of these HATs in adult schistosomes has been shown 

to markedly reduce the transcription levels of the major egg shell protein p14 and to damage 

the reproductive system of mature female worms, egg-laying and egg morphology. This result 

suggests that inhibition of Smp14 expression targeting SmGCN5 and/or SmCBP1 represents a 

novel and effective strategy to control S. mansoni egg development and that HATs can be 

used as a drug target against schistosomiasis. Moreover, these effects are reproduced by 

treating adult worm pairs with an HAT inhibitor, PU139 (Fig. 5.1) [696]. After both inhibitor 

treatment and RNAi to knock down transcripts of the HATs, the phenotypic effects on egg 

laying and development were correlated with decreased acetylation of H3 and H4, increased 

methylation at H3K27, a marker of transcriptional repression, on the p14 proximal promoter. 

More recently, the SmEZH2 methyltransferase PRC2 component was targeted with a new 

EZH2 inhibitor GSK343 (Fig. 5.1) and showed a synergistic effect with TSA, significantly 

increasing schistosomula mortality [697]. This paves way to target histone reader genes 

involved in regulation of the epigenetic program in S. mansoni as a starting point to look for 

possible novel schistosomicidal targets. 

 
Fig. 5.1: Example of HAT inhibitors active against Schistosoma mansoni  
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5.3.2 Schistosoma HDACs 
Studies have shown that class-I HDACs (smHDAC1, 3 and 8) are expressed in all stages of 

the Schistosoma lifecycle, with smHDAC8 being the most abundant [685]. Conversely, the 

human orthologue HDAC8 was reported to generally show less abundance than HDAC1 and 

HDAC3 in human cells, except in some tumor cells which show up-regulated levels of HDAC8 

[698]. 

The effects of both HDAC and HAT inhibitors on schistosomes suggest that histone 

acetylation may be a legitimate therapeutic target and initial studies investigating the effect 

of pan-HDAC inhibitors demonstrated their ability to induce schistosome mortality; the exact 

mechanism however is not completely clarified yet [615, 699]. Incubation of schistosomula 

larvae with trichostatin A (TSA) or valproic acid (VPA) caused parasite mortality via an 

apoptotic mechanism. The results indicated that TSA induces a sustained hyperacetylation of 

H4 leading to an increased expression of CASP7, which is responsible of inducing apoptosis 

[699]. Another study demonstrated that TSA arrests the transformation of Schistosoma 

miracidia to intramolluskal sporocysts [615]. These experiments shed light on the potential 

mechanism of HDAC inhibitors-mediated mortality of schistosomes.  

Several studies have thus focused on smHDAC8 as a potential therapeutic target for the 

treatment of schistosomiasis [700-703]. SmHDAC8 was found in in vivo studies to play an 

important role in the homeostasis of the parasite and to be essential for its pathogenicity. 

Mice infected with smHDAC8 knocked-down schistosomules showed, 35 days post 

incubation, a reduced number of recovered adult worms and lower egg burden compared to 

control mice. This indicated the importance of smHDAC8 for the survival and maturation of 

the parasite in its host [702]. 

5.3.3 Antischistosomal HDAC Inhibitors 
To further investigate and confirm the role of smHDAC8 in schistosome biology, several 

investigations were dedicated to the development of smHDAC8 small molecule inhibitors and 

investigate their effect in in vitro studies [700-703]. A structure-based virtual screening 

campaign was successful in finding 25 hydroxamic acid derivatives with an in vitro inhibitory 

potency against smHDAC8. Nine compounds exhibited an activity in the low micromolar range 

[701]. Among the identified inhibitors, J1075 (Fig. 5.2) was found to induce apoptosis and 

mortality in schistosomula larvae [702]. Heimburg et al. recently reported on a new proof of 

concept study, where several benzohydroxamic derivatives were designed as parasite-specific 
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inhibitors. The developed inhibitors were evaluated for their inhibitory activity against 

schistosomal and human HDACs (smHDAC8, hHDAC1, hHDAC6 and hHDAC8). Twenty-seven 

compounds exhibited an inhibitory activity in the nanomolar range in in vitro assays. 

Interestingly, many of the reported compounds showed a notable selectivity for smHDAC8 

over the major human HDAC isoforms (HDAC1 and HDAC6), some of which even exhibited a 

preference for smHDAC8 over human HDAC8 [700]. The obtained crystal structures of 

smHDAC-inhibitor complexes as well as docking studies show that, besides the expected 

coordination of the catalytic zinc-ion by the hydroxamate group, two H-bond interactions are 

formed between the amide linker and the side chains of the protein residues His292 and 

Lys20. This could partly account for the selectivity of the compound over HDAC1 and HDAC6 

(Fig. 5.3). Further phenotypic assays demonstrated that two of the reported compounds 

caused significant dose-dependent reduction of cultured schistosomula larvae [700], as 

opposed to praziquantel which is known to be less effective against larval developing stages 

of the parasite [704]. Moreover, TH65 (Fig. 5.2) caused a noticeable separation of female and 

male worm pairs and an impairment of egg-laying by adult worms [700]. Further hits from 

other chemical series, partially including a thiol group as warheads to chelate the catalytic 

zinc-ion, were also reported to possess in vitro inhibitory activity against schistosomula of S. 

mansoni [703].  

 
Fig. 5.2: Chemical structures of most relevant antischistosomal HDAC  
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Fig. 5.3: (A) X-ray structure of the inhibitor TH31 in complex with SmHDAC8 (PDB ID 5FUE). (B) Docking 

pose of the inhibitor TH65 in SmHDAC8. TH31 and 2 are shown in yellow, protein residues involved in the 
interaction in white, zinc-ion as orange spheres, and H-bond as well as interactions with the metal ion as yellow 
dashed lines.  

5.3.4 Schistosoma Sirtuins 
Sirtuins are NAD+- dependent lysine deacetylases that are involved in a wide variety of 

cellular processes including histone deacetylation, and they have been shown to be 

therapeutic targets in various pathologies including cancer. It has been previously pointed out 

that severalilarities between schistosomes and tumors including the cellular proliferation 

removed from control by the host, a degree of invisibility to the immune response and energy 

metabolism based on the consumption of large amounts of glucose and oxidative glycolysis 

producing lactate as the end-product [684]. It was also pointed out that schistosomes 

undergo a rapid switch from energy production based on oxidative phosphorylation in 

cercariae to glycolysis in schistosomula immediately after skin penetration, and this is 

stimulated by the presence of glucose in the external medium [705]. This metabolic switch is 

analogous to the Warburg effect noted in numerous tumors. Sirtuins link the control of 

metabolism and DNA repair to tumorigenesis and it is probable that schistosome sirtuins fulfill 

similar functions to their human counterparts [706].  

Parasitic class I sirtuins, characterized by the GAGXSXXXGIPDFRS, PS/TXXH, TQNID and 

HG motifs [707] have been extensively and successfully explored as antiparasitic targets. It 

has been reported that these proteins have vital role in parasite survival by catalyzing the 

deacetylation reaction of acetylated lysine residues of nuclear histones and other substrates, 

with NAD+ as a cofactor [708]. To evaluate schistosomal sirtuins and their potential as 

therapeutic drug targets, Lancelot et al. identified and characterized 5 sirtuins encoded in the 
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S. mansoni genome and established their homology relationship to human isoforms. 

Altogether, five sirtuins were found to be encoded in S. mansoni genome, which are 

orthologues of the human sirtuins SIRT1, SIRT2, SIRT5, SIRT6 and SIRT7. The encoded sirtuins 

are expressed at all stages of S. mansoni life cycle; however, there are wide variations in the 

levels of transcripts, particularly in the case of the nuclear sirtuins, Sirt6 and Sirt7, which are 

highly expressed in larval stages, whereas the nucleo-cytosolic sirtuins, Sirt1 and Sirt2 show 

less variation.  

5.3.5 Schistosoma Sirtuin Inhibitors 
With the aim of assessing the potential of schistosomal sirtuins as targets for anti-

parasitic drug development, several reported mammalian SIRTi were tested in in vitro assays 

to investigate their effects on cultured schistosomula and adult worms. Compound sirtinol, 

salermide and the thiobarbiturate derivative MS3 (Fig. 5.4) significantly reduced the viability 

of schistosomula through induction of apoptosis. Moreover, incubation of the 

aforementioned sirtuin inhibitors with adult worms caused separation of female and male 

worms and reduction in egg laying. Interestingly, Salermide also caused a remarkable change 

in the morphology of ovaries and testes [686]. These results suggest that schistosome sirtuins 

could be potential therapeutic targets and validate screening for selective sirtuin inhibitors as 

a strategy for the development of new drugs against schistosomiasis. 

The molecular features of SmSirt2 as well as its use for the development of new targets 

for schistosomiasis were explored in some recent studies [709-710]. The schistosome sirtuins, 

while showing overall conservation of essential catalytic domain residues [686], also show 

significant differences. The solution of crystal structures of schistosome sirtuins bound to 

inhibitors would represent a significant advance for the development of selective inhibitors 

[706]. 

Nevertheless, the use of high-throughput screening of extensive compound libraries 

represents a complementary strategy that has recently been used with success to generate 

inhibitors of human Sirts 1, 2 and 3 that show nanomolar IC50 inhibitory values, although they 

are not selective [711]. It is to be expected that the application of both high-throughput and 

structure-based screening strategies will rapidly lead to the identification of both selective 

and potent sirtuin inhibitors. Indeed, in a recent study, we report the optimization of 

fluorescence-based assays for S. mansoni Sirt2 that allowed a pilot screen with inhibitors 
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showing IC50  values of <50 μM and docking studies rationalizing the binding of hits to the 

target using a homology model of the enzyme [712]. 

 

Fig. 5.4: Chemical structures of most relevant antischistosomal HDAC and sirtuin inhibitors. 

5.3.6 Histone Methylation and Demethylation 
Schistosome genome analysis (Table 5.1) allows to identify 18 lysine methyltransferases 

and 5 PRMT family proteins [691]. A closer look at the specificity of the orthologues of the 

schistosome HMT proteins shows that the parasites possess enzymes that could methylate 

the histone lysine residues involved in transcriptional control: H3K4 (MLL, SETD1B), H3K9 

(Suv39H2, SETDB), H3K27 (EZH1), H3K36 (NSD2/WHSC1, SETD2, NSD1/2, SETMAR), H3K79 

(DOT1L), H4K20 (NSD2/WHSC1, SET8, NSD1/2, Suv420H1), H3R2 (CARM1) and H4R3 (PRMT1, 

PRMT5, PRMT7) [713-714]. Putative orthologues are also present of further lysine 

methyltransferases (Smyd 4 and 5) for which the histone substrates have yet to be defined. 

On the other hand, of the 11 HDM encoded in the S. mansoni genome (Table 5.1), 3 are similar 

to LSD1 and the remaining 8 are JmjC domain-containing proteins. 

In common with the HATs and HDACs, some HMTs have been shown to act on non-

histone proteins. For example, schistosomes present an orthologue of PRMT3, which 

principally methylates the 40S ribosomal protein S2 [715] and the lysine methyltransferase 

SET8 methylates p53 on lysine-382 [716]. 

The latter include a putative orthologue of Utx that has H3K27 demethylase activity, but 

not of JMJD3 that also has this specificity [717]. 

Overall the lower numbers of both HDMs and HMTs in the schistosome genome 

compared to the human genome point to a lower degree of functional redundancy for the 

schistosome enzymes. For example, EZH1 and EZH2 show functional redundancy for the 

methylation of H3K27 [718] and Utx and JMJD3 are both involved in its demethylation. As the 

S. mansoni genome encodes neither EZH2 nor JMJD3, the EZH1 and Utx orthologues are the 
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unique enzymes carrying out these tasks and may therefore represent particularly sensitive 

therapeutic targets [717].. 

Studies using HMT and HDM inhibitors are less common, but some results have shown 

that the chloroacetyl derivative, allantodapsone, a PRMT1 (arginine methyltransferase) 

inhibitor, showed selective inhibition affecting the growth of tumor cells [719]. Recent studies 

performed, knocked down for PRMT3 and KDMs in schistosomula by RNA interference, show 

that these enzymes are important for S. mansoni reproduction.  
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6. DESIGN, SYNTHESIS AND BIOLOGICAL VALIDATION OF URACIL-BASED 
HYDROXAMIDES (HDAC INHIBITORS) AS NEW ANTIMALARIAL AGENTS 

6.1 Research Project 
The emergence and spread of malaria drug resistance presents a worrisome situation 

impacting disease control programs [412, 415]. It is now becoming clear that malaria control 

will require the introduction of new chemotherapies to overcome this situation [720]. One 

promising strategy to identify new antimalarial agents is the “piggyback” approach, which 

focuses on drug targets that have been validated for other diseases, try to apply them to new 

indications such as parasitic diseases [396]. Accumulating evidence indicates that the malaria 

parasite has a unique histone modification signature that plays a fundamental role in gene 

expression and virulence [721]. In the search for promising drugs to combat malaria, 

inhibitors of histone modifying enzymes have started to obtain attention [264]. The factors 

affecting histone modifications are also suggested to have links between mode of action of 

artemisinin and its resistance. Eearlier studies clearly reported that HAT, Sirtuins and HDAC 

inhibitors, including apicidin, curcumin and several hydroxamate derivatives as well as the 

clinically approved HDACi are potent inhibitors of Plasmodium growth [264, 397, 429, 582, 

599, 722-723] Specifically, several HDAC inhibitors have been shown to be highly effective 

blockers of P. falciparum growth, which put the HDAC enzymes into the spotlight of this 

research [264, 397, 574, 579-580, 610, 626, 722, 724] and several of them displaying a 

significant in vitro, ex vivo and, in a few cases, in vivo activity against malarial parasites. Such 

findings underscore the potential for PfHDAC inhibitors to be used for malaria therapy [264, 

397, 633]. 

 HDAC inhibition is expected to affect chromatin structure and the patterns of gene 

expression. The transcriptome explorations of the effects of HDAC inhibition have shown that 

different inhibitors impact differently on the expression of genes highlighting the mechanistic 

complexity of the control of gene expression in the parasite. Despite some progress in recent 

years, there are still a number of challenges in the rational development of HDAC inhibitors 

as antimalarial drug leads. Next generation compounds should retain potent antiplasmodial 

activity and low host cell toxicity, but they also require improved pharmacokinetic properties 

relative to current generation compounds.  

As in other human diseases such as cancer, HDACi bearing a hydroxamic acid warhead as 

zinc-binding group (ZBG) are the best studied anti-parasitic HDACi and have shown promising 
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in vitro activity profiles against P. falciparum and other parasites. From a medicinal chemistry 

point of view, this compound class features fall into a pharmacophoric model widely 

accepted, which consists of a capping group (CAP), able to interact with the rim of the catalytic 

tunnel of the enzyme, a zinc binding group (ZBG), able to complex the Zn2+ ion at the bottom 

of the catalytic cavity, and hydrophobic linker connecting the two parts [264, 574, 722]. In 

this project, we investigated the antimalarial activity of a small library of epi-drugs, including 

the HDAC inhibitors of the class uracil-based hydroxamides (UBHAs, MC1746 and MC1761), 

cinnamyl hydroxamates and related compounds (MC1575, MC2780, MC2059), 2'-

aminoanilides (MS-275 and MC2392), and Sirtuin inhibitors (MC2141, MC1776) (Fig. 6.1), 

against Pf3D7 sensitive strains.  These compounds were chosen because having different 

chemical structures and different selectivity for the various HDAC isoforms. As far as the 

uracil-based hydroxamides are considered, compounds with a phenyl/benzyl ring at the 

uracil-C6 position and bearing 4-5 carbon units as well as methylenecinnamyl moiety as a 

spacer were the most potent inhibitors [725]. Thus, we prepared MC1746 bearing a 2-niphthyl 

group as a CAP, a uracil moiety as a connecting unit, 4 carbon methylene units as hydrophobic 

a spacer, and the hydroxamate function to bind the Zn ion. Whereas, MC1761 was 

characterized by a phenyl group as a CAP, a uracil moiety as a connecting unit, 

methylenecinnamyl moiety as a spacer, and the hydroxamate function to bind the Zn ion, 

crucial for the catalytic activity of the enzyme (Fig. 6.1). it would be nice to metion tha all 

biological tests haven performed by Prof. Khalife’s group at the ‘Institut Pasteur De Lille’, Lille, 

France. 
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Fig. 6.1: A small library of HDAC and Sirtuin inhibitors tested against Pf3D7 sensitive and W2 multidrug 

resistant strains.   

The target-based drugs approach using a series of histone modifying enzymes enable us 

to identify few potent compounds active in vitro on P. falciparum strains with low toxicity. 

More specifically, the antiparasitic activity revealed that MC1746, the only HDACi selective 

towards classes I and IIb of HDACs, as the most potent compound, with IC50 values of 79 nM 

against Pf3D7 sensitive strains (Table 6.1).  

Table 6.1: Percentage of growth inhibition at 10 µM and IC50 values on 3D7 of compounds from the 
primary library. ND: not determined. IC50 values were not determined when the percentage of 
inhibition at 10 µM was lower than 50%. 

Epi-targets Compounds % of 
inhibition at 
10 µM 

IC50 (nM) 

HDACs  MC1746 
class I/IIb HDACi 

97.44 79.38 ± 0.73 

 MC2392 
context-selective class I 
HDACi 

97.09 >1 µM 

 MS-275 
HDAC1-3 inhibitor 

50.91 >1 µM 

 MC1575 
HDAC4-6,8 inhibitor 

89.62 >1 µM 

 MC2780 
HDAC6-selective inhibitor 

100 422.39 ± 19.44 

 MC2059 
pan-HDACi 

98.00 244.03 ± 52.18 
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 MC1761 
HDAC8 inhibitor 

2.82 ND 

    
Sirtuins  MC2141 

Sirt1/2i 
80.52 >1 µM 

 MC1776 
Sirt1/2i 

72.31 >1 µM 

 

In an effort to improve HDAC inhibitory potency against P. falciparum, and however to 

further generate structure-activity relationships on the core UBHA, we decided to prepare 

another small group of compounds (Table 6. 2). During this process, we focused our attention 

on the two portions that, by a HDACi medicinal chemistry point of view, characterize the 

UBHA template: the CAP group and the hydrophobic spacer (HS) by keeping the hydroxamate 

as Zn-binding group (ZBG). For what concerning the CAP group (R, Fig. 6.2), first of all, in 

addition to the phenyl moiety at C6 of the Uracil ring, we also introduced benzyl moiety in 

which both characterized by variety of substituents at meta, or para position of the benzene 

ring of the phenyl/benzyl moiety, including less bulkier aromatic rings (Table 6.2). While 

pursuing our searches on HS (X, Fig. 6.2), we explored the effect of 4 and 5 methylene units 

on the anti-plasmodial activity of such compounds. Selected compounds were then examined 

for their activity against Pf3D7 sensitive and W2 multidrug resistant strains (Table 6.3). 

 
Fig. 6.2: Modifications of the UBHA template 

6.2 Chemistry  
For the synthesis of the UBHA derivatives bearing linear HSs, the properly 6-substituted 

2-thiouracils 20a-j were treated with various sizes of ethyl ω-bromoalkanoates in the 

presence of anhydrous potassium carbonate to afford the ethyl esters 21a-r, which were, in 
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part, hydrolyzed to the corresponding carboxylic acids 22a-r. A subsequent treatment of  22a-

r with (i) ethyl chloroformate and triethylamine, (ii) O-(2-methoxy-2-propyl)-hydroxylamine 

[726], and (iii) Amberlyst 15 ion-exchange resin in methanol  afforded the related 

hydroxamates 1-18 (Scheme 1).  

Among the 6-substituted-2-thioxopyrimidin-4-ones 20a-j,  the synthesis of the not 

commercially available intermediates has been accomplished by condensation of thiourea in 

alkaline medium with the appropriate ethyl β-ketoesters 19a-j, previously prepared by 

reacting potassium monoethylmalonate with chlorides or imidazolides of the corresponding 

acids in the presence of the magnesium/triethylamine system [727]. 

Scheme 1 a  

 
a Reagents and conditions: (a) 1) CDI, CH3CN, 2) KOOCCH2COOEt, (Et)3N, MgCl2, CH3CN, rt then reflux, 3) 

13% HCl; (b) EtONa, thiourea, EtOH, reflux; (c) Br-X-COOEt, K2CO3, DMF, rt; (d) 2N KOH, EtOH, H2O, rt; (e) 1) 
ClCOOEt, (Et)3N, dry THF, 0°C, then NH2OC(CH3)2OCH3, rt, 2) Amberlyst® 15, MeOH, rt; 

Table 6.2. Physical and Chemical Data for Compounds 1-18. 
 

 
comp

d Lab code R X mp, °C recryst. 
solventa yield, % 

1  Ph (CH2)4 194-196 b 54 
2  Ph (CH2)5 144-146 c 57 
3 MC1716 3-Cl-Ph (CH2)4 196-198 a 61 
4  3-Cl-Ph (CH2)5 188-192 a 67 
5 MC1714 4-Cl-Ph (CH2)4 198-200 a 52 
6  1-naphthyl (CH2)4 182-184 a 48 
7  1-naphthyl (CH2)5 198-200 a 54 
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8 MC1745 2-naphthyl (CH2)4 188-190 b 51 
9 MC1746 2-naphthyl (CH2)5 144-146 d 57 

10 MC1742 4’-biphenyl (CH2)4 202-204 a 57 
11 MC1738 4’-biphenyl (CH2)5 192-194 a 51 
12  3’-biphenyl (CH2)5 188-190 a 56 
13  3’-biphenyl (CH2)4 198-200 a 52 
14  PhCH2 (CH2)5 179-181 b 57 
15  PhCH2 (CH2)4 104-106 c 49 
16  1-

naphthylCH2 
(CH2)5 172-174 a 51 

17  2-
naphthylCH2 

(CH2)5 160-162 b 52 

18  4’-
biphenylCH2 

(CH2)5 208-210 e 47 

 aa: methanol; b: acetonitrile/methanol; c: acetonitrile; d: benzene; e: ethanol. 
 

6.3 Experimental Section  
Chemistry. Melting points were determined on a Stuart melting point apparatus 

SMP10TM. 1H-NMR spectra were recorded at 400 MHz using a Bruker AC 400 spectrometer; 

chemical shifts are reported in δ (ppm) units relative to the internal reference 

tetramethylsilane (Me4Si). Microwave-assisted reactions were performed with a Biotage 

InitiatorTM (Uppsala, Sweden) high frequency microwave synthesizer working at 2.45 GHz, 

fitted with magnetic stirrer and sample processor; reaction vessels were Biotage microwave 

glass vials sealed with applicable cap; temperature was controlled through the internal IR 

sensor of the microwave apparatus Biotage Isolera One™. All compounds were routinely 

checked by TLC and 1H-NMR. TLC was performed on aluminum-backed silica gel plates (Merck 

DC, Alufolien Kieselgel 60 F254) with spots visualized by UV light or using a KMnO4 alkaline 

solution. All solvents were reagent grade and, when necessary, were purified and dried by 

standard methods. Concentration of solutions after reactions and extractions involved the 

use of a rotary evaporator operating at reduced pressure of ~ 20 Torr. Organic solutions were 

dried over anhydrous sodium sulfate. All chemicals were purchased from Sigma Aldrich s.r.l., 

Milan (Italy) or from TCI Europe N.V., Zwijndrecht (Belgium), and were of the highest purity. 

As a rule, samples prepared for physical and biological studies were dried in high vacuum over 

P2O5 for 20 h at temperatures ranging from 25 to 40 °C, depending on the sample melting 

point. 

General Procedure for the Synthesis of N-Hydroxy-ω-(3,4-dihydro-4-oxo-6-substituted-

2-pyrimidinylthio)alkanamides (1-18). Example 5-((4-([1,1′-Biphenyl]-4-yl)-6-oxo-1,6-

dihydropyrimidin-2-yl)thio)-N-hydroxypentanamide (10, MC1742). To a 0 °C cooled solution 
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of 5-((4-([1,1'-biphenyl]-4-yl)-6-oxo-1,6-dihydropyrimidin-2-yl)thio)pentanoic acid (20j) (0.53 

mmol, 200 mg) in dry tetrahydrofuran (4 mL), ethyl chloroformate (1.3 mmol, 138 mg, 0.12 

mL) and triethylamine (1.38 mmol, 140 mg, 0.19 mL) were added and the mixture was stirred 

for 10 min. The solid was filtered off, and O-(2-methoxy-2-propyl)-hydroxylamine (3.18 mmol, 

0.24 mL) was added to the filtrate. The resulting mixture was stirred at rt for 1 h then was 

evaporated under reduced pressure, and the residue was diluted in MeOH (2.5 mL). 

Amberlyst 15 ion-exchange resin (106 mg) was added to the solution of the O-protected 

hydroxamate, and the mixture was stirred at rt for 1 h. Afterward, the reaction was filtered 

and the filtrate was concentrated in vacuum to give the crude 10, which was purified by 

recrystallization. Recrystallization system: methanol. 1H NMR (DMSO-d6) δ 1.69 (m, 4H, 

CH2CH2CH2CH2S), 2.02 (t, 2H, CH2CO), 3.25 (t, 2H, CH2S), 6.72 (s, 1H, C5-H), 7.39−7.48 (m, 3H, 

benzene rings), 7.73−7.83 (m, 4H, benzene rings), 8.14 (m, 2H, benzene rings), 8.69 (s, 1H, 

NHOH), 10.37 (s, 1H, NHOH), 12.6 (s, 1H, uracil NH). MS (ESI), m/z: 396 [M + H]. 

N-Hydroxy-5-(3,4-dihydro-4-oxo-6-phenyl-2-pyrimidinylthio)pentanamide (1). 1H NMR 

(DMSO-d6) δ 1.65 (m, 4H, CH2CH2CH2S), 1.97 (t, 2H, CH2CO), 3.21 (t, 2H, CH2S), 6.65 (s, 1H, 

C5-H), 7.48 (m, 3H, benzene ring), 8.04 (m, 2H, benzene ring), 8.70 (s, 1H, NHOH), 10.34 (s, 

1H, NHOH), 12.68 (s, 1H, NH uracil ring). 

N-Hydroxy-6-(3,4-dihydro-4-oxo-6-phenyl-2-pyrimidinylthio)hexanamide (2). 1H NMR 

(DMSO-d6) δ 1.38 (m, 2H, CH2CH2CH2S), 1.52 (m, 2H, CH2CH2CO), 1.70 (m, 2H, CH2CH2S), 1.94 

(t, 2H, CH2CO), 3.19 (t, 2H, CH2S), 6.65 (s, 1H, C5-H), 7.47 (m, 3H, benzene ring), 8.03 (m, 2H, 

benzene ring), 8.65 (s, 1H, NHOH), 10.35 (s, 1H, NHOH), 12.65 (s, 1H, NH uracil ring). 

N-Hydroxy-6-(3,4-dihydro-4-oxo-6-benzyl-2-pyrimidinylthio)hexanamide (14). 1H NMR 

(DMSO-d6) δ 1.27 (m, 2H, CH2CH2CH2S), 1.44 (m, 2H, CH2CH2CO), 1.50 (m, 2H, CH2CH2S), 1.92 

(t, 2H, CH2CO), 3.01 (t, 2H, CH2S), 3.72 (s, 2H, PhCH2), 5.92 (s, 1H, C5-H), 7.24 (m, 5H, benzene 

ring), 8.66 (s, 1H, NHOH), 10.33 (s, 1H, NHOH), 12.45 (s, 1H, NH uracil ring). 

N-Hydroxy-5-(3,4-dihydro-4-oxo-6-benzyl-2-pyrimidinylthio)pentanamide (15). 1H 

NMR (DMSO-d6) δ 1.52 (m, 4H, CH2CH2CH2S), 2.03 (t, 2H, CH2CO), 3.03 (t, 2H, CH2S), 3.72 (s, 

2H, PhCH2), 5.91 (s, 1H, C5-H), 7.23 (m, 5H, benzene ring), 8.68 (s, 1H, NHOH), 10.34 (s, 1H, 

NHOH), 12.35 (s, 1H, NH uracil ring). 

General Procedure for the Synthesis of 6-(3,4-Dihydro-4-oxo-6-substituted-2-

pyrimidinylthio)- alkanoic Acids (22a-r). Example: 5-((4-([1,1'-biphenyl]-4-yl)-6-oxo-1,6-

dihydropyrimidin-2-yl)thio)hexanoic acid (22k). A mixture of ethyl 5-((4-([1,1'-biphenyl]-4-



 
 

103 
 

yl)-6-oxo-1,6-dihydropyrimidin-2-yl)thio)hexanoate (21k) (1.1 mmol), 2 N KOH (8.8 mmol), 

and EtOH (5 mL) was stirred at room temperature for 18 h. The solution was poured into 

water (50 mL) and extracted with ethyl acetate (2 X 20 mL). HCl (2 N) was added to the 

aqueous layer until the pH 5, and the precipitate was filtered and recrystallized to yield the 

title compound 22k as a pure solid. 1H NMR (DMSO-d6) δ 1.32 (m, 2H, CH2CH2CH2S), 1.49 (m, 

2H, CH2CH2CO), 1.61 (m, 2H, CH2CH2S), 1.93 (t, 2H, CH2CO), 3.06 (t, 2H, CH2S), 6.07 (s, 1H, C5-

H, uracil), 7.39−7.48 (m, 3H, benzene rings), 7.73−7.83 (m, 4H, benzene rings), 8.14 (m, 2H, 

benzene rings),12.2 (s, 1H, COOH).  

General Procedure for the Synthesis of Ethyl -(3,4-Dihydro-4-oxo-6-substituted-2-

pyrimidinylthio)alkanoates (21a-n). Example: Ethyl 6-(6-Benzyl-3,4-dihydro-4-

oxopyrimidin-2-ylthio)hexanoate (21n). A mixture of 6-benzyl-4-hydroxy-2-

mercaptopyrimidine (20n) (9.16 mmol, 2.0 g), ethyl 6-bromohexanoate (10 mmol, 1.8 mL), 

and anhydrous potassium carbonate (10 mmol, 1.4 g) in 3 mL of anhydrous DMF was stirred 

at room temperature for 1 h. After treatment with cold water (100 mL), the precipitate which 

formed was filtered and washed to furnish 21n (1.6 g), which was purified by crystallization 

from MeOH. Yield: 49%; mp: 104-106 °C; recrystallization solvent: MeOH; 1H NMR (CDCl3) δ 

1.25 (t, 3H, CH2CH3), 1.40 (m, 2H, CH2CH2CH2CO), 1.63 (m, 4H, CH2CH2CO and CH2CH2S), 2.28 

(t, 2H, CH2CO), 3.13 (t, 2H, CH2S), 3.80 (s, 2H, PhCH2), 4.13 (q, 2H, CH2CH3), 5.96 (s, 1H, H C5), 

7.28 (m, 5H, benzene ring), 12.87 (s, 1H, NH). Anal. C, H, N, S. 

General procedure for the synthesis of derivatives of the 6-substituted 2-thiouracils 

(18a-g). Example: Example: 6-(benzyl)-3,4-dihydro-2-thioxopyrimidin-4(3H)-one (19h). 

Sodium metal (23.70 mmol) was dissolved in 21 mL of absolute ethanol, and thiourea (16.6 

mmol) and 18h (11.80 mmol) were added to the clear solution. The mixture was heated at 

reflux for 12 h. After the completion of reaction the mixture was cooled, the solvent was 

distilled in vacuo at 40-50 °C until dry and the residue was dissolved in water (15 mL) and 

made acidic with 2 N HCl. The resulting precipitate was filtered under reduced pressure, 

washed with diethyl ether, and vacuum dried at 80 °C for 12 h to give title compound 19h as 

a pure white solid which was further purified by crystallization from ethanol. Yield: 68%; mp: 

242-245 °C; recrystallization solvent: ethanol. 1H NMR (DMSO) δ 3.28 5.04 (s, 2H, PhCH2), 5.78 

(s, 1H, C5-H), 7.40 (m, 5H, benzene ring), 12.38 (s, 1H, NH ), 12.43 (s, 1H, NH). 

General procedure for the synthesis of ethyl β-ketoesters (18a-j). Example: ethyl 3-oxo-

4-phenylbutanoate (18h). Triethylamine (48.00 mmol) and magnesium chloride (37.50 
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mmol) were added to a stirred suspension of potassium ethyl malonate (31.50 mmol) in 

acetonitrile (50 mL), and stirring was continued at room temperature for 2 h. Then, a solution 

of phenylacetyl imidazolide [prepared from phenylacetic acid (15.00 mmol) and N,N-

carbonyldiimidazole (CDI, 18.00 mmol)] in acetonitrile (15 mL) was added and the reaction 

mixture was stirred overnight at room temperature. 13% HCl (90 mL) was cautiously added 

while keeping the temperature below 25°C and the resulting clear mixture was stirred for a 

further 15 min. The organic layer was separated from aqueous mixture and evaporated; then 

the residue was treated with ethyl acetate (30 mL). The aqueous layer was extracted with 

ethyl acetate (3 x 30 mL), and the organic phases were combined, washed with saturated 

sodium bicarbonate solution (3 x 30 mL) and brine (3 x 30 mL), dried, and concentrated to 

give 18h as a yellow oil. Yield: 88%. 1H NMR (CDCl3) δ 1.22 (t, 3H, OCH2CH3), 3.50 (m, 2H, 

COCH2CO), 4.13 (q, 2H, OCH2CH3), 4.77 (s, 2H, PhCH2), 7.35 (m, 5H, benzene ring). 

6.4 Biological Evaluation and Results 
6.4.1 Phenotypic screening of epigenetic modulators against 3D7 

In this target-based screening, the antiplasmodial activities of the selected HDAC and 

Sirtuin inhibitors were initially assessed at 10 µM against the P. falciparum 3D7 strain. As 

shown in Table 6.1, 8 compounds inhibited parasite growth between 50 and 100%, and 1 

compound showed an inhibition of parasite growth lower than 5%. The 8 compounds were 

then tested in dose response assays to determine their IC50 values (50% or half maximal 

inhibitory concentration). The most potent compound showing IC50 values of 79.38 was the 

UBHA-based HDACi, MC1746, bearing selectivity for classes I/IIb of HDACs (Table 6.1).  

6.4.2 Antiplasmodial activity of analogues derived from active compounds (focused 
screening) 

In order to optimize the potency of the active compounds primarily tested, further a small 

series of analogues were tested belonging to the HDACi which gave the highest Plasmodium 

growth arrest in the first screen, i.e. MC1746 (focused screening). They were first screened at 

10 µM for their ability to inhibit 3D7 parasite growth. Several compounds showed an 

inhibition of parasite growth greater than 50%; more specifically, among the screened 

compounds, 5 compounds displayed 96-100% inhibition of parasite growth (Table 6.3). For 

the new analogues, IC50 values were then determined as previously described (Table 6.3). 

About the new tested HDACi, several new analogues exhibited IC50 values < 100 nM, 

moreover, three compounds (8, 10 and 11) showed IC50 values lower than the corresponding 
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prototype, in particular 11 displayed the highest antiplasmodial potency with IC50 value of 

4.21 (Table 6.3). Thus, from the results obtained by the two screenings, we selected 11 for 

further experiments. 

Table 6.3: Percentage of growth inhibition at 10 µM and IC50 values on 3D7 of the hit and its 
newly synthesized analogues. ND: not determined. IC50 values were not determined when the 
percentage of inhibition at 10 µM was lower than 50%. 

 

Compounds Structures 
 

% of inh. 
at 10 µM IC50 (nM) 

1 

 

80.23 88.98 ± 
3.12 

2 

 

76.00 98.58 ± 
2.11 

3 
MC1716 

 

 
 
 

98.01 
 
 

 
 

88.61 ± 
2.16 

 
 

4 

 

90.30 108.01 ± 
5.12 

5 
MC1714 

 

92.05 87.6 ± 5.28 

6 

 

75.24 104.87 ± 
5.19 
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7 

 

65.98 110 ± 6.21 

8 
MC1745 

 

97.92 25.17 ± 
4.98 

9 
MC1746 

 

 

97.44 79.38 ± 
0.73 

10 
MC1738 

 

97.44 50.89 ± 
5.01 

11 
MC1742 

 

 
 
 

96.12 
 
 
 

4.21 ± 0.39 

12 

 

78.20 90.39 ± 
4.69 

13 

 

83.45 81.97 ± 
3.41 
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14 

 

66.65 114.19 ± 
5.91 

15 

 

70.00 109.47 ± 
4.91 

16 

 

76.07 98.69 ± 
5.56 

17 

 

68.04 106.94 ± 
6.01 

18 

 

88.95 85.81 ± 
4.85 

6.4.3 Antiplasmodial activity against W2, a multiresistant strain 
Several criteria have been proposed for defining hits and leads in the development of 

drugs for diseases such as malaria. To be validated as a hit for antiplasmodial activity, a 

selected compound should be active against multidrug-resistant strains [728]. To this end, the 

growth inhibition of the multidrug-resistant W2 strain [729] has been tested along with the 

sensitive 3D7 strain. Under the experimental conditions used throughout this study, 

chloroquine had an IC50 value of 21.5 nM (± 1.6) and 290 nM (± 6) for 3D7 and W2 strains, 
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respectively, which is consistent with previous reports [598]. As far as MC1742 is considered, 

the IC50 value obtained for W2 (6.6 nM) as close to that obtained for 3D7 (4.2 nM) strain. 

Altogether, these results suggest that MC1742 is a very promising candidate as hit/early lead 

compound for antimalarial treatment.  

6.4.4 Selectivity Index (SI) on primary activated cells (splenic murine cells) and on 
eukaryotic cell line (HFF) 

The high selectivity of a compound for Plasmodium is one of the criterion that has to be 

addressed to exclude potential toxic effects and to validate a compound as a hit (greater than 

10-fold selectivity between the half maximal cytotoxic concentration for mammalian cell line 

and the IC50 value for Plasmodium [728]. To assess the selectivity index (SI) of MC1742, a 

cytotoxicity assay on a murine splenic primary cell line and a human foreskin fibroblast cell 

line (HFF) was performed. As shown in Table 6.4, testing the cytotoxicity of this compound on 

HFF cell line showed SI = 783. The same assay performed on primary murine cells revealed SI 

value of 186, which was less selective in this test. 

Table 6.4: MC1742 selectivity 
   Mammalian cells 
  3D7 Splenic cells HFF 
Epi-target Compd IC50 (nM) IC50 (nM) SI IC50 (nM) SI 
HDAC MC1742 4.21 ± 0.39 785 ± 78 186 3295 ± 247 783 

SI – selectivity index; mammalian cell IC50/P. falciparum IC50.  

4.4.5 Pharmacokinetic analysis 
Based on criteria including P. falciparum IC50 values (<50 nM) on both sensitive and 

multidrug-resistant strains, selectivity indexes on primary murine cells and HFF cell line (> 

100-fold) and the new promising chemical structure, MC1742 was selected for 

pharmacokinetic (PK) studies. A (2-hydroxypropyl)-beta-cyclodextrin (HP-β-CD)-based 

formulation, suitable for both intravenous (i.v.) and per os (p.o.) administration, was selected 

for these PK studies. For MC1742, 2 mice were administered with one single dose (50 mg/kg) 

either intravenously or p.o.. Blood was collected at 3 different time points (15, 60 and 180 

min for i.v and 30, 60 and 180 min p.o). Plasma samples were analysed and concentrations 

are summarized in Table 6.5. MC1742 administered at a 50 mg/kg dose was well tolerated. 

The 15 min i.v. samples showed quite high MC1742 plasma concentrations, but the compound 

concentration decreased rapidly with time. P.o. and i.v. plasma samples at 1 h post 

administration showed MC1742 concentrations between 0.5 and 2.2 µM and after 3 h 

between 43 and 300 nM.  



 
 

109 
 

Table 6.5: Pharmacokinetic parameters of MC1742 administered intravenously or orally to mice. 

 
Administration 
i.v. Per os 

Compound/Dose Time 
(min) 

Concentrations (µM) Time 
(min) 

Concentrations (µM) 
Mouse 1 Mouse 2 Mouse 3 Mouse 4 

MC1742 
50 mg/kg 

15 15.2 10.7 30 2.43 0.67 
60 2.16 1.67 60 0.90 0.48 
180 0.044 0.043 180 0.30 0.070 

6.4.6 Effect on histones of treated P. falciparum parasites 
To determine whether MC1742 has an effect on parasite histone acetylation levels, we 

treated parasites with a concentration of 3-fold its IC50 value, collected samples after 5 h 

incubation and performed histone acetylation-specific Western blots on the treated parasites 

samples (Fig. 6.3).  

 

 

Fig. 6.3: Hyper-acetylation, WB; Histone acetylation levels in treated parasites. Asynchronous P. falciparum 
parasites were grown in 3-fold of the IC50 values of MC1742, MC2590 and in DMSO for 5 hours for 
immunoblotting with anti H3 CT and anti-acetyl H4.  

6.4.7 In vivo antimalarial activity in P. berghei infected mice 
In order to comply with “early leads” criteria for malaria treatment, compounds should 

present oral efficacy [728]. From the above PK studies, it appears that the plasma 

concentrations of the selected compounds, when compared to their IC50 values, could provide 

enough exposure to affect parasite growth. To examine the oral efficacy, the Peters 4-day 

suppressive test [730], which indicates the capacity of compounds to reduce or to completely 

inhibit blood parasite growth was carried out. Groups of 6 BALB/c mice were infected 

intraperitoneally (i.p) with 106 P. berghei ANKA parasites and treated as depicted in Fig. 6.4A. 

On day 4 post infection, parasitemia levels in treated groups were compared to vehicle 

control groups. 
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In the group treated orally with MC1742 at 50 mg/kg, none of the mice showed a 

reduction of parasitemia (Fig. 6.4B, Exp. 1). The efficacy of MC1742 was then assessed by a 

combination of oral and i.v route as the PK studies revealed that the concentration of MC1742 

was higher in the plasma samples after 15 and 60 min when administered i.v. (12.95 and 1.91 

µM, respectively) compared to per os (1.55 and 0.69 µM, respectively, Table 6.5). Data 

presented in Fig. 6.4B (Exp. 2) showed that the combined route treatment of mice twice a 

day, one per os and one i.v., still did not have any effect on blood stage infection. 

 

Fig. 6.4: Treatment of BALB/c male mice infected with P. berghei ANKA strain with MC1742 administered 
orally show total parasites clearance at Day 4 of the suppressive Peter’s test. For each compound, 2 independent 
experiments, Exp 1 and Exp 2, were performed. Fifteen BALB/c mice were infected i.p. with 106 RBC infected 
with P. berghei ANKA strain. (A) Six mice were given per os the compound at the appropriate concentration, 
twice a day, 6 mice were given per os DMSO (7%), the vehicle and negative control and 3 mice were given per 
os CQ at 10 mg/kg, the positive control once a day, for 4 days. For MC1742, in Exp 2, mice received also 2 
administrations: one per os and one per iv. On Day 4, parasitemia was determined for each mouse on a blood 
smear (and mouse survival was followed thereafter). Each dot represents one mouse. (B) Parasitemia at Day 4 
for MC1742 (50 mg/kg) and the control-treated groups. The data in panels B, C, D and E are means +/- SEM. 

6.5 Discussion and Conclusion 
The key role played by epigenetic modifications, well known to be involved in 

transcriptional regulation in Plasmodium, provided a strong boost to research efforts on 

epigenetic inhibitors. Nonetheless, the clinical treatment of parasitic infections is quite 

different from that of other diseases, such as cancer, because most morbidity and mortality 

associated with parasitic diseases occur in resource-constrained regions of the world, with 

children, pregnant women, and immune-compromised people being at highest risk. 

Moreover, the coinfection of people in these regions with different infective agents (e.g., HIV) 
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is quite common and needs to be taken into account due to potential drug–drug interactions. 

Consequently, the main features that a HDACi, as any other new antiparasitic drug, should 

have before being considered for clinical use include: (1) high potency and selectivity in vivo 

for parasite over normal host cells, (2) activity against organisms resistant to currently 

employed drug(s), (3) an elevated degree of safety for use also in children and pregnant 

women, (4) low cost, to potentially treat hundreds of millions of deprived people, (5) oral 

bioavailability and effective pharmacokinetic profiles that allow single daily doses, and (6) 

hopefully, pharmacokinetics compatible with those of potential partner drugs to prevent or 

limit the development of drug resistance. 

To progress class I/II HDACi toward clinical trials as potential antiparasitic drugs, a high 

level of potency and selectivity for parasites versus host cells is essential. From a medicinal 

chemistry point of view, there is opportunity to optimize the chemical structures of the 

currently available class I/II HDACi for therapeutic use against parasites by modifying each 

one of the four portions (CAP, CU, linker, and ZBG) of the general pharmacophoric model for 

class I/II HDAC inhibition. The zinc-coordinating residues in HDACs and the tubular cavity 

between the zinc and the surface of HDAC enzymes are relatively well-conserved between 

human and parasite enzymes [264, 578-579], and the linker moiety of HDACi is not able to be 

varied a great deal, being restricted by the size and shape of the active site tunnel. Moreover, 

the length of the linker group has been found to be a major structural determinant for the 

antimalarial and antileishmanial activities of two classes of nonpeptide macrocyclic HDACi 

that displayed the maximal antileishmanial activity in analogues with linkers comprising eight 

or nine methylene units [268, 629], whereas the best antimalarial potency was observed for 

analogues with five or six methylene unit spacers. The CAP group involved in the interaction 

with the rim at the entrance of the catalytic tunnel has more scope for variation and 

exploitation, and it is to be expected that most attempts to improve the activity and/or 

selectivity of the future antiparasitic HDACi will focus on this. 

Therefore, in an attempt to identify HDAC inhibitors with potent and selective 

antimalarial activity, we examined a first series of HDAC inhibitors, including uracil-based 

hydroxamides (UBHAs, MC1746 and MC1761) (Fig. 6.1). Antiparasitic activity revealed 

MC1746, the only HDACi selective towards classes I and IIb of HDACs, as the most potent 

compound, with IC50 value of 79.38 nM against Pf3D7 sensitive strains (Table 6.1). On the 
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other hand, none of the sirtuin inhibitors exhibited appreciable parasite growth inhibition (in 

general IC50 values > 1 µM). 

 To further generate structure-activity relationships on MC1746, another small group of 

analogues (Table 6.2) were synthesized and evaluated their HDAC inhibitory activity against 

P. falciparum. From this series, 4 analogues of MC1742 (MC1716, MC1738, MC1745 and 

MC1746) were found to be active against P. falciparum (Table 6.2). Respect to MC1742, the 

new analogues were different for the C6-uracil substitution [various aryl or aryl methyl 

instead of 4-biphenyl group], or for the length of the spacer between the sulphur atom and 

the hydroxamide [5 instead of 4 methylene groups], or for both. Similar to MC1746, the new 

analogues showed the selectivity for class I/IIb HDACs inhibition. When tested against 3D7, 

several analogues showed a better potency respect to the hit/MC1746, where MC1742 was 

the most potent derivative with IC50 values of 4 and 6 nM against Pf3D7 sensitive and W2 

multidrug resistant strains, respectively.  

From our previous work, in the UBHA general structure, the introduction of 

benzyl/phenyl moiety at the C6 position of the uracil group furnished highly active derivatives, 

depending on either the size of the linear spacer or the methylenecinnamyl regioisomer 

connecting the uracil with the hydroxamate group. Likewise, compounds with a linear, 

polymethylene spacer between the uracil and the hydroxamate showed the highest activity 

with the insertion of 4 to 5 carbon units. By increasing this number to 7 carbon units as well 

as by introducing shorter, linear HSs in the UBHA general formula, a decrease of inhibiting 

activity was recorded. Particularly, the corresponding unsaturated analogues failed in 

inhibiting HDACs. This study also showed that the C6 phenyl substituted analogues performed 

better activity toward P. falciparum compared to the C6 benzyl ones. Indeed, the C6 

benzyl/phenyl substitution with bulkier aromatic rings, in general, led to derivatives with 

better parasite inhibitory activity. In fact, as far as the C6 phenyl substituted analogues are 

considered, the 4′-biphenyl showed the best parasite inhibitory activity followed by 2-

naphthyl whilst the meta and para chloro-substituted phenyl displayed moderate inhibitory 

activity. Interestingly, in all compounds, when we compare the linear HSs of the tested 

compounds, compounds having 4 carbon unit showed a better potency in comparison to 5 

carbon unit compounds, for example, MC1742 vs MC1738 (IC50 = 6.03 vs 50.89) and MC1745 

vs MC1746 (IC50 = 25.17 vs 79.38).  
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In the light of potential role of MC1742 to inhibit HDACs, its role was explored on Histone 

H4 acetylation in P. falciparum. Treated parasites with MC1742 clearly exhibit increased H4 

acetylation, supporting that this compound acts as parasite HADCs inhibitor. The toxicity of 

MC1742 against murine primary cells and human cell line revealed SI values of 186 and 783, 

respectively. These data, together with the PK studies, prompted us to examine MC1742 in a 

rodent model of malaria infection. Mice treated with MC1742 did not show any reduction of 

parasitemia at day 4 post infection and thereafter either after an oral administration or after 

a combination of oral/i.v. injections. In mice treated with chloroquine at 10 mg/kg, no blood 

stage parasites were detected. It is unlikely that the lack of in vivo activity could be linked to 

differences in targeted HDAC enzymes as they are well conserved between P. falciparum and 

P. berghei (60 up to 95% aa identity). The failure of MC1742 to cure mice at doses up to 50 

mg/kg twice a day may be due to a too short exposure of parasites to the compound, even 

after 4-days treatment. Another possibility may be related to the mouse model in which P. 

berghei could be less sensitive in vivo due to genetic redundancy and /or to a tighter control 

of the target expression level. This could be further explored by additional studies using P. 

falciparum-infected humanized SCID mice receiving human erythrocytes [731]. This approach 

could also point out whether metabolism of human versus mouse erythrocytes could affect 

the antiparasitic activity of the compound. However, in the context of hydroxamate-based 

drugs, it is noteworthy that several and convergent studies reported that they showed high 

potencies in vitro when compared to approved drugs, but yet exhibited poor antimalarial 

activities [620, 630, 732].  

In general, MC1742’s lack of in vivo activity was unexpected considering its best ever in 

vitro activity against Pf3D7 sensitive and W2 multidrug resistant strains compared to the 

previously reported HDAC inhibitors (see Table 4.3). 

6.6 Methods  
6.6.1 Determination of in vitro activity against P. falciparum 

Growth inhibition assay performed on P. falciparum 3D7 line using SYBR Green I was 

described in detail in Fréville et al. [733]. Briefly, in vitro cultured P. falciparum 3D7 line 

infected erythrocytes (0.5% parasitemia, 1% haematocrit) were seeded in duplicate wells into 

96-well tissue culture plates containing vehicle control (DMSO, <0.5%), positive control 

(chloroquine, Sigma Aldrich) or test compound and incubated under standard P. falciparum 

culture conditions for 48 h. Cultures were stained for 30 minutes in the dark with SYBR Green 
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I 1X (Invitrogen) diluted in 20 mM Tris pH 8.8, 138 mM NaCl, and fixed with 1% 

paraformaldehyde. Fixed parasited red blood cells (RBC) were stored at 4°C in the dark until 

flow cytometry analysis. Parasite growth was assessed by flow cytometry on a BD FACS 

CantoII (BD Biosciences). Cell pairs were excluded from the analysis using a forward scatter 

(FSC)-width versus FSC-area dot plot. Infected and uninfected erythrocytes were gated on the 

basis of their FSC and side scatter (SSC) signals. Fluorescence analysis (Green fluorescence 

FITC) was performed using BD FACSDiva software (version 6.1.3, BD Biosciences) on a total of 

200,000 acquired events. Fluorescence was observed on a two-parameter dot plot (FTIC-FSC). 

Fluorescence of non-infected RBC was adjusted to plot between 100 and 102.  

For testing the inhibitory effects on P. falciparum, a drug-sensitive (3D7) and drug-

resistant (W2) line were used. For both P. falciparum cell lines growth inhibition was initially 

assessed at 10 µM in two independent assays. Compounds showing more than 50% inhibition 

at 10 µM were then tested in dose response assays to determine 50% growth inhibition (IC50) 

values on Pf3D7. All IC50 values were calculated using log-linear interpolation with mean 

values (±SD) determined over two independent experiments [734]. 

6.6.2 In vivo experiments 
Parasite clearing was examined in an acute infection murine model. To test the anti-

malarial effect in vivo, the Peter’s test was followed using BALB/c male mice infected with P. 

berghei ANKA strain parasites [730]. The compounds were administered per os, twice a day 

for 4 days (D0 to D3). Each experiment comprised 3 groups of mice: a first group of 6 mice 

was given the compound to be tested at the appropriate concentration determined by the PK 

studies, i. e. 50 mg/kg for MC1742; a second group of 6 mice, the negative control (DMSO, 

7%) and the third group of 3 mice, the positive control (CQ at 10 mg/kg, once a day). The 

experiment lasted for 4 days. At Day 0, the mice were all infected i.p. with 106 parasitized red 

blood cells with P. berghei ANKA strain. At Day 4, the parasitemia was determined for each 

mouse on blood smears. Mice parasitemia was followed thereafter for 2 weeks. For each 

compound, the experiment was repeated twice. 

All animal experiments were approved by the animal ethics committee, in accordance 

with the French National Regulations. In this study, infected animals with at least 2 clinical 

signs (respiratory distress, lethargy, piloerection, anemia and body loss weight) were 

euthanized and this time point is denoted as time of death. 
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7. DESIGN, SYNTHESIS AND PRELIMINARY BIOLOGICAL VALIDATION OF 
SCHISTOSOMA MANSONI SIRT2 INHIBITORS 
7.1 Research Project 

Most of the current efforts to identify new drug leads for schistosomiasis and other 

neglected parasitic diseases rely on the screening of random compound libraries directly on 

the parasite maintained in culture (phenotypic screening). The recent publication of the 

genome sequences of a variety of parasites including the three-main species of schistosomes 

that infect humans [735-737] now means that approaches targeting specific gene products or 

pathways can be envisaged. These can include enzymes with activities specific to the parasite, 

or at least not found in the human host [738], metabolic bottlenecks, or molecules that are 

targeted in other pathologies. Nevertheless, the use of high-throughput screening of 

extensive compound libraries represents a complementary strategy that has recently been 

used with success to generate inhibitors of human Sirts 1, 2 and 3 that show nanomolar IC50 

inhibitory values, although they are not selective [711]. It is to be expected that the 

application of both high-throughput and structure-based screening strategies will rapidly lead 

to the identification of both selective and potent sirtuin inhibitors. It has been reported that 

sirtuins have vital role in parasite survival by catalyzing the deacetylation reaction of 

acetylated lysine residues of nuclear histones and other substrates, with NAD+ as a cofactor 

[708]. Altogether, five sirtuins were found to be encoded in S. mansoni genome, which are 

orthologues of the human sirtuins SIRT1, SIRT2, SIRT5, SIRT6 and SIRT7. The encoded sirtuins 

are expressed at all stages of S. mansoni life cycle; suggesting that schistosome sirtuins could 

be potential therapeutic targets and validate screening for selective sirtuin inhibitors as a 

strategy for the development of new drugs against schistosomiasis. 

Previous work showed strong effects of hSirt2 inhibitors on both worm life span and 

reproduction. The molecular features of SmSirt2 as well as its use for the development of new 

targets for schistosomiasis were explored in some recent studies [709-710]. The schistosome 

sirtuins, while showing overall conservation of essential catalytic domain residues [686], also 

show significant differences. The solution of crystal structures of schistosome sirtuins bound 

to inhibitors would represent a significant advance for the development of selective inhibitors 

[706]. Indeed, in a recent study, fluorescence-based assays were optimized for S. mansoni 

Sirt2 that allowed a pilot screen with inhibitors showing IC50  values of <50 μM and docking 

studies rationalizing the binding of hits to the target using a homology model of the enzyme 
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[712]. All these efforts constituent a very good foundation for further development of SmSirt2 

inhibitors. 

GSK published for the first time the outcome from a parallel high throughput screening 

of a pharma compound collection (1.8 million compounds) against three kinetoplastids: 

Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Three corresponding 

kinetoplastid chemical boxes of, 200 compounds each were assembled, encompassing a wide 

variety of potential targets, such as kinases, proteases, and cytochromes as well as potential 

host-pathogen interaction targets. After the setup of the three chemical boxes, they were 

made public with all the relevant data to encourage the search for new potent drugs. These 

chemical boxes prompted us to apply for Schistosoma mansoni based on the basic idea that, 

like T. cruzi, T. brucei and L. donovani, Schistosoma mansoni is a parasite with a complex life 

cycle during which many morphological changes are expected that may be partially 

determined by epigenetic modulators. In our attempt to identify smSIRT2 inhibitors (perhaps 

with the help of our collaborator Prof. Jung), the three chemical boxes were then tested on 

smSirt2 and, from the assays carried out, some compounds are emerged with a discrete 

activity on the target enzyme. We thus decided to work on a particular compound: TCMDC-

143295 (Fig. 7.1), as the starting point for development of novel smSIRT2 inhibitors. TCMDC-

143295 is a pyrimido[4,5-d]pyrimidine with three amino groups, one of which in turn 

substituted, of which an IC50 value of 23.7 ± 9.6 μM was calculated that we considered it to 

be a good starting point for our next optimization work. All biological evaluations have been 

done at Prof. Jung’s lab at the Institute of Pharmacy, Albert-Ludwigs-Universty of Freiburg, 

Germany. 

 
Fig. 7.1: Chemical structure of TCMDC-143295 

Starting from the prototype, we decided to synthesize analogues characterized by a 

simplified structure. Being the starting molecule characterized by a structure that is already 

quite important from the point of view of dimensions, it was thought to embark on a 
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"molecular striptease" pathway that, through progressive de-construction, would allow us to 

identify analogues with the smallest molecular portion that retain or improve the inhibitory 

activity against smSirt2. In particular, the idea was to maintain the pyrimido[4,5-d]pyrimidine 

portion (which could be important for the activity, perhaps mimicking the adenosine portion 

of NAD+) with the two free amine groups. 

Extensive structure-activity relationship (SAR) studies have been applied on the N7-(1-(4-

(4-methoxyphenoxy)phenyl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-2,4,7-triamine 

(TCMDC-143295) to obtain new hit compounds showing potent and selective inhibition of 

smSirt2. In particular, in a first stage of the project, the influence of substituents at the N7 

position of the bispyrimidine ring of TCMDC-143295 has been explored by replacing the 

substituents on the prototype basically by substituents with smaller structures (Table 7.1). In 

general, the newly synthesized analogues in this attempt can be represented by four groups: 

(i) the N7 position of the bispyrimidine is a primary amine, i.e., no substituents (2, MC4222), 

(ii) the N7 position of the bispyrimidine is a secondary amine, i.e., no methyl group at the N7 

position (3-7, MC4262, MC4261, MC4189, MC4234, MC4265); (iii) the N7 position of the 

bispyrimidine is a tertiary amine and is a part of a cyclic structure (8-11, MC4232, MC4235, 

MC4269, MC4236); and (iv) the N7 position of the  bispyrimidine is a tertiary amine, i.e., with 

methyl group at the N7 position, (1, 12-17, MC4223, MC4268, MC4180, MC4210, MC4231, 

MC4211, MC4233). 
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Table 7.1: The newly synthesised dervatives in the first round of optimazation 

 
Sr.
No 

Lab 
code R1 R2 Structure 

1 MC4223 CH3 

 
 

2  
MC4222 H H 

 

3  
MC4262 H CH3 

 

4  
MC4261 H 

 

 

5  
MC4189 H 

 
 

6 
 
 

MC4234 
H 

 

7  
MC4265 H 
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Sr. 
No 

Lab 
code 

 

Structure 

8 MC4232 1,2,3,4-tetrahydroisoquinoline 

 

 
9 MC4235 2-methylpiperidine 

 

10 MC4269 2-phenylpiperidine 

 

11 MC4236 1-phenylpiperazine 

 

 
S.N
o 

Lab 
code R1 R2 Structure 

12 MC4268 CH3 

 
 

13 MC4180 CH3 
 

 

14 
 MC4210 CH3 
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 Surprisingly, when the final compounds were subjected to enzymatic assays for their 

inhibitory activity of smSIRT2 and hSIRT2 at Prof. Jung's laboratory, we noticed that majority 

of the newly synthesized compounds displayed no activity against both smSIRT2 and hSirt2 

inhibition. Only MC4233 and MC4211 showed some activity against smSIRT2. From this 

attempt, we learnt that smaller substituents or no substituents at N7 position of the 

bispyrimidine yielded analogues devoid of activity. Though the changes made to the 

prototype did not allow derivative with better activity against smSIRT2, on the other hand, 

this attempt highlights the core SARs of the molecule which intern could be useful input for 

the next optimization process. In particular, it was possible to notice that the diphenyl ether 

portion is indispensable for activity against the parasite’s enzyme as well as presence of para 

methoxy in the second phenyl moiety.  

In light of the above observations, in the second part of the project, we decided to keep 

the N7-methyl. Indeed, the alpha carbon at N7 position has been replaced with larger steric 

groups compared the prototype to increase molecular constraint while the portion of 

diphenyl ether, given its importance, remained almost unchanged, though we investigate the 

effect of other heteroatoms instead of oxygen, or increasing the linkage or replacing the 

second phenyl with bulky groups (Table 7.2). Thus, in the second round of modification, we 

decided to keep the methyl group at N7 position of the bispyrimidine (R1 = CH3), except in the 

case of MC4314 (R1 = H), in any way we did modification at four regions of the molecule (Fig. 

7.2): (i) removing the methyl group at N7 position of the bispyrimidine (18, MC4314);  (ii) 

introduction of bulky groups at α-carbon of the N7 position of bispyrimidine (R2), i.e., replacing 

15 MC4231 CH3 

 

16 MC4211 CH3 

 

17 

 
 
MC4233 CH3 
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methyl group by ethyl (19, MC4315), isopropyl (20, MC4313) or phenyl (21, MC4318) group; 

(iii) substitution of the oxygen linkage between the two phenyls (X) by sulfur (22, MC4304) or 

nitrogen (23, MC4316); or increase this linkage by one carbon (24, MC4320); (iv) substitution 

of  the 4-methoxyphenyl part the molecule (R3) by 3,4-dimethoxyphenyl (25, MC4310), 3,5-

dimethoxyphenyl (26, MC4319), 3,4,5-trimethoxyphenyl (27, MC4309), 4-

trifluorommethoxyphenyl (28, MC4311), 3-methoxyphenyl (29, MC4298), 4-benzoxyphenyl 

(30, MC4312), or 4-methoxynaphthalenyl (31, MC4323). 

 

Fig. 7.2: Designed analogues for the second round of optimization 
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Table 7.2: The newly synthesised dervatives in the second round of optimazation 

 

Sr.

N

o 

Cpd R1 R2 X R3 Structures 

1 MC4223 Me Me O 4-MeOPh 

 

18 MC4314 H Me O 4-MeOPh 

19 MC4315 Me Et O 4-MeOPh 

 

20 MC4313 Me i-Pr O 4-MeOPh 

21 MC4318 Me Ph O 4-MeOPh 

22 MC4304 Me Me S 4-MeOPh 

23 MC4316 Me Me N 4-MeOPh 
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7.2 Chemistry 
The final compounds (1, 3-31) were prepared from condensation of the free base 

guanidine and the key pyrimidine intermediates (33, 35a-e, 37a-d, 48a-v) that are 

appropriately substituted at N2 position of the pyrimidine ring according to Scheme 1. While 

24 MC4320 Me Me CH2O 4-MeOPh 

25 MC4310 Me Me O 

3,4-

(MeO)2Ph 

 
 

26 MC4319 Me Me O 
3,5-

(MeO)2Ph 

 

27 MC4309 Me Me O 
3,4,5-

(MeO)3Ph 

 

28 MC4311 Me Me O 4- F3COPh 

29 MC4298 Me Me O 3-MeOPh 

 

30 MC4312 Me Me O 4-BnOPh 

 

31 MC4323 Me Me O 

4-

Methoxyna

phthalen-1-

yl 

Store all compounds at -20 °C and dissolve them in DMSO. 



 
 

124 
 

compound 2 was prepared by refluxing guanidine and the unsubstituted pyrimidine (33), 

which in turn was prepared from 4-amino-2-bromopyrimidine-5-carbonitrile (32) by treating 

with 7 M methanolic solution of NH3. On the other hand, the displacement reaction between 

32 and the commercially available amines (34a-e and 36a-d) in 2-MeOEtOH in the presence 

of Et3N afforded the intermediates 35a-f and 37a-d, respectively. Similar displacement 

reaction between 32 and 47a-v also gave the intermediates 48a-v. Except compound 47b and 

g, which are commercially available, the other amines (47a,c-f, and h-v) were synthesized 

starting from the appropriately substituted carbonyl compounds (40, 43a-e and 46a-n) by 

treating with a 2 M solution methylamine in anhydrous MeOH in the presence of   Ti(Oi-Pr)4 , 

and a subsequent addition of the reducing agent NaBH4 yielded the aforementioned amine 

intermediates (Scheme 2). While compound 40 and 43a-e are commercially available, 

compounds 46a-n are prepared according to Scheme 2 using three different procedures 

based on the nature of the connection unit (X). Compounds 46a-k, having oxygen/sulfur as 

connecting unit (X = O, S), were synthesized from the appropriate naphthols/phenols (44a-h) 

and para-fluoro substituted ketones (45a-c) in the presence of anhydrous K2CO3 in dry DMF, 

while 1-(4-((4-methoxybenzyl)oxy)phenyl)ethan-1-one (46l), -CH2O- as connecting unit, was 

prepared by refluxing 1-(bromomethyl)-4-methoxybenzene (38) and 1-(4-

hydroxyphenyl)ethan-1-one (39) together with K2CO3 and NaI in dry CH3CN. Finally, the 

reaction of 4-methoxyaniline (41) and 1-(4-bromophenyl)ethan-1-one (42) in the presence of 

K2CO3, Pd2(dba)3 and Xphos in dry toluene yielded 1-(4-((4-

methoxyphenyl)amino)phenyl)ethan-1-one (46m). Table 7.3. depicts the chemical and physical 

data of the final compounds. 
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Scheme 1a 

 
 

a Reagents and conditions: (a) 7M methanolic NH3, TEA, 2-MeOEtOH, 80 °C; (b) TEA, 2-MeOEtOH, 80 °C, 
2.5 h; (c) guanidine, dry 2-MeOEtOH, 150 °C, 4.5 h 

Scheme 2a 
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R2

HN
R3

47a-v

R

R2

O

F

45a-d

X = O,S,NH,CH2O
For the phenyl (R1= 4-MeO, 4- F3CO, 

4-BnO, 3-MeO, 3,4-(MeO)2, 
3,5-(MeO)2, 3,4.5-(MeO)3)

For the naphthalenyl (R1= 4-MeO)

R2 = Me,Et, i-Pr, Ph

CH3

O

R4

R4 = Ph, MeO, PhO,
(MeO)PhO

43a-e

44a-h

46a-n

d

d

CH3

O

Br

NH2

MeO +

c

CH3

O

HOMeO
+

b

Br

+

a

CHO

O

H3CO

d

X

R1OH/SH

R1

R2

O

38 39 40

41 42

R3= H, Me

 
a Reagents and conditions: (a) K2CO3, dry DMF, 175 °C; (b) K2CO3, NaI, dry CH3CN, 95 °C, 2.5 h; (c) 

K2CO3, Pd2(dba)3, Xphos, dry toluene, 140 °C, 48 h; (d) (i) 2M methylamine, Ti(Oi-Pr)4, dry MeOH, N2, 
5.5 h, rt; (ii) NaBH4, 0 °C-rt. 
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Table 7.3. Physico-chemical data of compounds 1-31 
Sr.
No Cpd Structure MW Mpt (°C) Yield (%) 

1 MC4223 

 

417.47 181-184 60.0 

2  
MC4222 

 

 
177.17 

 
>300 

 
68.5 

3  
MC4262 

 

 
191.20 

 
>300 

 
70.1 

4  
MC4261 

 

 
267.30 

 
>300 

 
75.4 

 

5  
MC4189 

 

 
281.32 

 
>300 

 
68.3 

6 
 
 

MC4234 

 

 
 

297.32 

 
 

>300 

 
 

82.7 

7  
MC4265 

 

 
350.43 

 
205-208 

 
75.3 

8  
MC4232 

 

 
293.33 

 
278-280 

 
70.6 

 
9 

 
MC4235 

 

 
259.32 

 
>300 

 
52.8 
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10  
MC4269 

 

 
321.39 

 
188-190 

 
61.1 

11 
 
 

MC4236 

 

 
 

322.38 

 
 

>300 

 
 

62.8 

12 
 
 

MC4268 

 

 
 

371.45 

 
 

>300 

 
 

57.1 

13  
MC4180 

 

 
281.323 

 
275-277 

 
65.2 

14 
 

 
MC4210 

 

 
295.350 

 
192-194 

 
76.8 

15  
MC4231 

 

 
325.376 

 
184-187 

 
60.1 

 
 

16  
MC4211 

 

 
387.45 

 
185-187 

 
41.9 

17 
 
 

MC4233 

 

 

 
 

403.45 

 
 

244-247 

 
 

68.0 
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18 MC4314 

 

403.45 > 300 82.5 

19 MC4315 

 

431.50 186-190 60.7 

20 MC4313 

 

445.53 162-167 64 

21 MC4318 479.54 248-250 58.8 

22 MC4304 

 

433.53 160-163 72.9 

23 MC4316 

 

416.49 146-149 52.1 

24 MC4320 

 

431.50 225-228 78.1 

25 MC4310 

 

447.50 185-188 69.2 

26 MC4319 

 

447.50 233-235 75.6 
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7.3 Experimental Section  
Chemistry: melting points were determined on a Buchi 530 melting point apparatus. 1H-

NMR spectra were recorded at 400 MHz using a Bruker AC 400 spectrometer; chemical shifts 

are reported in δ (ppm) units relative to the internal reference tetramethylsilane (Me4Si). 

Mass spectra were recorded on a API-TOF Mariner by Perspective Biosystem (Stratford, Texas, 

USA), samples were injected by an Harvard pump using a flow rate of 5−10 μL/min, infused in 

the Electrospray system. All compounds were routinely checked by TLC and 1H-NMR. TLC was 

performed on aluminum-backed silica gel plates (Merck DC, Alufolien Kieselgel 60 F254) with 

spots visualized by UV light or using a KMnO4 alkaline solution. All solvents were reagent 

grade and, when necessary, were purified and dried by standard methods. Concentration of 

solutions after reactions and extractions involved the use of a rotary evaporator operating at 

reduced pressure of ~ 20 Torr. Organic solutions were dried over anhydrous sodium sulfate. 

Elemental analysis has been used to determine purity of the described compounds, that is > 

95%. Analytical results are within 0.40% of the theoretical values. All chemicals were 

purchased from Sigma Aldrich s.r.l., Milan (Italy) or from TCI Europe N.V., Zwijndrecht 

(Belgium), and were of the highest purity. As a rule, samples prepared for physical and 

27 MC4309 

 

477.53 172-176 67.1 

28 MC4311 

 

471.44 140-143 58.3 

29 MC4298 

 

417.47 152-154 47.4 

30 MC4312 

 

493.57 129-132 77.8 

31 MC4323 

 

467.53 >300 71.9 
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biological studies were dried in high vacuum over P2O5 for 20h at temperatures ranging from 

25 to 40 °C, depending on the sample melting point. 

General procedure for the synthesis of intermediates 46a-e and h-n. Example:  1-(4-(4-

(benzyloxy)phenoxy)phenyl)ethan-1-one (46m). 

 

A mixture of 4-(benzyloxy)phenol (44c) (1 eq, 2.5 mmol), 1-(4-fluorophenyl)ethan-1-one 

(45a) (1 eq., 2.5 mmol) and  K2CO3 (1.2 eq, 3 mmol) in anhydrous DMF (2.5 mL) was refluxed 

at 175 °C. After 2 h, another 0.2 eq. of 45a and 0.25 eq. of K2CO3 were added and further 6 h 

stirring the reaction was completed and stopped by quenching with 20 mLof NaClss. 

Subsequently, extraction with EtOAc (5 x 20 mL) and washed with NaClss (2 x 5 mL) of NaClss. 

The organic phase thus was dried over Na2SO4, filtered and evaporated. The crude was 

subjected to SiO2 column purification using a mobile phase consisting of EeOAc/PE (1: 7) to 

afford 46m as a white solid. Yield = 70.8% 

General procedure for the synthesis of intermediate: 1-(4-((4-

methoxyphenyl)amino)phenyl)ethan-1-one (46f). 

 

 

A mixture of 4-methoxyaniline (41) (1.2 eq, 3.014 mmol, 5 mL) and 4-(4-

bromophenyl)ethan-1-one (42) (1 eq, 2.5 mmol) in the presence of K2CO3, Pd2(dba)3 and 

Xphos in dry toluene was refluxed at 140 °C and left to stir for 48h. After this time, the reaction 

was stopped and diluted with 20 mL of EtOAc. Then the mixture was filtered using double 

filter paper with subsequent washing with chloroform. The combined organic phase was 

evaporated and the resulting crude was purified Chromatographed using SiO2 with eluent of 

EtOA/Hexane/CHCl3 (15:70:15) to afford 46f as a dark-brown oil. Yield: 66.01% 

General procedure for the synthesis of intermediate: 1-(4-((4-

methoxyphenyl)amino)phenyl)ethan-1-one (46g). 
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A mixture of 4 (methoxy)benzyl bromide (38) (1.2 eq., 3.6 mmol.) and 1-(4-

hydroxyphenyl)ethan-1-one (39) (1 eq, 3 mmol) in anhydrous CH3CN (15 mL) was reacted in 

the presence of  K2CO3 (1.5 eq, 4.5 mmol) and NaI (1.1 eq, 3.3 mmol) at 95 °C. After 5 h, the 

reaction was finished and quenched with 20 mL of water. Following extraction with EtOAc (5 

x 20 mL) and washing with NaClss (2 x 5 mL), the organic layer was dried over Na2SO4, filtered 

and evaporated. The crude was subjected to SiO2 column purification using a mobile phase 

consisting of EeOAc/PE (1:8) to afford 46g as a white solid. Yield = 57.58%. 

General procedure for the synthesis of intermediates 47a, c-f, and h-v. Example:  N-

methyl-1- (4-phenoxyphenyl) ethan-1-amine (47d). 

 

A mixture of 1- (4-phenoxyphenyl) ethan-1-one (43c) (1 eq, 2 mmol), methylamine 2 M 

in methanol (3 eq, 6 mmol) and Ti(Oi-Pr)4 (1.3 eq., 2.6 mmol) in anhydrous methanol (5 ml) 

was reacted under nitrogen and rt for 5 h 30min, subsequently, NaBH4 (1.1eq, 2.2mmol) was 

added at 0 °C and kept the reaction string at rt for another 2 h. Then, the reaction was stopped 

by quenching with distilled H2O (20 mL) and acidified with 1M HCl (12 mL) until a pH of 1-2. 

The resulting suspension was filtered on celite and washed with a mixture of water and EtOAc. 

The filtrate was extracted with 20 ml of EtOAc. Following basification of the aqueous layer to 

pH 10-12 using 10% NaOH (5 mL), it was further extracted with EtOAc (3 x 30 mL). The 

combined EtOAc layer was dried over anhydrous Na2SO4, filtered and evaporated. The 

resulting oily crude was then purified by silica chromatography eluting with a mixture of 

CHCl3: MeOH: NH3 (45: 1: 0.1) to obtain the pure N-methyl-1-(4-phenoxyphenyl)ethan-1-

amine (47d) as an oil. 
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General procedure for the synthesis of intermediates 35a-f, 37a-d, 48a-v. Example:  4-

amino-2- (methyl (1-(4-phenoxyphenyl) ethyl)amino)-pyrimidine-5-carbonitrile (48d). 

 

N-methyl-1- (4-phenoxyphenyl) ethan-1-amine (47d) (1.2 eq, 1.2 mmol), 4-amino-2-

bromopyrimidine-5-carbonitrile (32) (1 eq, 1.0 mmol), TEA (1.6 eq, 1.6 mmol) and 2-MeOEtOH 

(2.0 mL, equal to [c] = 0.5 M) were added to a vial and heated at 80 ° C. After 2.5h, the reaction 

was stopped and transferred into round bottom flask and evaporated. To the crude 60 mL of 

EtOAc was added and washed with 0.1 N KHSO4 (2x3 mL) counter extracted with EtOAc. The 

combined organic layer was dried over Na2SO4, filtered and evaporated. The crude was 

purified by silica column eluting with a mixture of CHCl3:n-Hexane (80:20) to give 4-amino-2-

(methyl(1-(4-phenoxyphenyl)ethyl)amino)pyrimidine-5-carbonitrile (48d). 

Synthesis of the intermediate of 2,4-diaminopyrimidine-5-carbonitrile (33) 

 

A mixture of 7 M methanolic solution of NH3 (1.3 eq), 4-amino-2-bromopyrimidine-5-

carbonitrile (32) (1.0 eq), TEA (1.6 eq) and 2-MeOEtOH (2 mL) was refluxed at 80 ° C in a vial 

for 2.5 h. The reaction content was transferred into round bottom flask and evaporated and 

dissolved with 60 mL of EtOAc, followed by washing with 0.1 N KHSO4 (2x3 mL) and counter 

extraction with EtOAc. The combined organic layer was dried over Na2SO4, filtered and 

evaporated to give a pure compound 33.  

General procedure for the synthesis of final compounds (1-30). Example:  Synthesis of 

N7-methyl-N7- (1- (4-phenoxyphenyl) ethyl) pyrimido [4,5-d] pyrimidine-2,4,7-triamine (16) 



 
 

134 
 

 

4-Amino-2-(methyl (1-(4-phenoxyphenyl)ethyl) amino) pyrimidine-5-carbonitrile (42d) 

(1eq, 0.829 mmol) was reacted with a 0.73M free base guanidine solution (3.5 eq, 2.901 

mmol) in 2-MeOEtOH anhydrous previously prepared. The reaction is conducted in an oil bath 

at a temperature of 150 ° C. After 4.5 h, the reaction content was transferred into a round 

bottom flask and evaporated. To the crude 10 mL of distilled H2O are added and the extracted 

with EtOAc (5x40 mL). The organic phase was dried over Na2SO4, filtered and evaporated. The 

resulting crude was purified by silica column eluting with a mixture of CHCl3:MeOH:NH3 

(20:1:0.1).After trituration with Et2O and string for 45 minutes, it was filtered to yield a pure 

N7-methyl-N7- (1- (4-phenoxyphenyl) ethyl) pyrimido[4,5-d] pyrimidine-2,4,7-triamine (16) as 

white solid. 1H NMR (400 MHz, DMSO- d6) δ 8.96 (s, 1H, CH pyrimidine), 7.40-7.30 (m, 6H, 

NH2 in pos. 4 pyrimido-pyrimidine and CH aromatic), 7.15-7.11 (m, 1H, CH aromatic), 7.01-

6.97 (m, 4H, CH aromatic), 6.49 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 6.30 (m, 1H, 

CHCH3), 2.84 (s, 3H, N-CH3), 1.53 (d, 3H, CHCH3). MS (ESI) m/z: 378.18 [M]+. 

N7-(1-(4-(4-Methoxyphenoxy)phenyl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-

2,4,7-triamine (1, 4223). 1H NMR (400 MHz, DMSO- d6) δ 8.95 (s, 1H, CH pyrimidine), 7.54 (s, 

2H, NH2 in pos. 4 pyrimido-pyrimidine), 7.27-7.25 (m, 2H, CH aromatic), 7.00-6.94 (m, 4H, CH 

aromatic), 6.90-6.87 (m, 2H, CH aromatic), 6.49 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 

6.28 (m, 1H, CHCH3), 3.74 (s, 3H, OCH3), 2.82 (s, 3H, N-CH3), 1.51 (d, 3H, CHCH3), MS (ESI) m/z: 

417.19 [M]+. 

Pyrimido[4,5-d]pyrimidine-2,4,7-triamine (2, MC4222). 1H NMR (400 MHz, DMSO- d6) δ 

8.86 (s, 1H, CH pyrimidine), 7.31 (s, 2H, NH2 in pos. 4 pyrimido-pyrimidine), 6.71 (s, 2H, NH2 

in pos. 7 pyrimido-pyrimidine), 6.44 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), MS (ESI) m/z: 

177.08 [M]+. 

N7-Methylpyrimido[4,5-d]pyrimidine-2,4,7-triamine (3, MC4262). 1H NMR (400 MHz, 

DMSO- d6) δ 8.85 (s, 1H, C-H pyrimidine), 7.3-7.1 (m, 3H, NH + NH2 in pos. 4 pyrimido-

pyrimidine), 6.45 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 2.8 (s, 3H, NHCH3), MS (ESI) m/z: 
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191.09 [M]+. 

N7-Benzylpyrimido[4,5-d]pyrimidine-2,4,7-triamine (4, MC4261). 1H NMR (400 MHz, 

DMSO- d6) δ 8.85 (s, 1H, CH pyrimidine), 7.8 (sb, 1H, NH) 7.40-7.20 (m, 7H, NH2 in pos. 4 

pyrimido-pyrimidine + CH aromatic), 6.4 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 4.5 (s, 2H, 

CH2), MS (ESI) m/z: 267.12 [M]+. 

N7-(1-Phenylethyl)pyrimido[4,5-d]pyrimidine-2,4,7-triamine (5, MC4189). 1H NMR (400 

MHz, DMSO- d6) δ 8.85 (s, 1H, CH pyrimidine), 7.81-7.79 (sb, 1H, NH) 7.39-7.37 (m, 2H, NH2 

in pos. 4 pyrimido-pyrimidine), 7.30-7.27 (m, 4H, CH aromatic), 7.19-7.16 (m, 1H, CH 

aromatic), 6.44 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 5.14 (m, 1H, CHCH3), 1.42 (d, 3H, 

CHCH3), MS (ESI) m/z: 281.14 [M]+. 

N7-(4-Methoxybenzyl)pyrimido[4,5-d]pyrimidine-2,4,7-triamine (6, MC4234). 1H NMR 

(400 MHz, DMSO-d6) δ 8.86 (s, 1H, CH pyrimidine), 7.67 (sb, 1H, NH) 7.31-7.24 (m, 4H, NH2 in 

pos. 4 pyrimido-pyrimidine + CH aromatic), 6.86-6.84 (m, 2H, CH aromatic), 6.46 (s, 2H, NH2 

in pos. 2 pyrimido-pyrimidine), 4.43-4.41 (m, 2H, CH2), 3.60 (s, 3H, OCH3), MS (ESI) m/z: 297.13 

[M]+. 

N7-(1-Benzylpiperidin-4-yl)pyrimido[4,5-d]pyrimidine-2,4,7-triamine (7, MC4265). 1H 

NMR (400 MHz, DMSO- d6) δ 8.84 (s, 1H, CH pyrimidine), 7.35-7.29 (m, 5H, NH + NH2 in pos. 

4 pyrimido-pyrimidine + CH aromatic), 7.27-7.26 (m, 2H, CH aromatic) 7.25-7.18 (m, 1H, CH 

aromatic), 6.40 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 3.74 (s, 1H, CH piperidine), 3.46 (s, 

2H, CH2-Ph), 2.81-2.79 (m, 2H, CH2 piperidine), 2.01 (t, 2H, CH2 piperidine), 1.84-1.82 (m, 2H, 

CH2 piperidine), 1.54-1.46 (m, 2H, CH2 piperidine), MS (ESI) m/z: 350.20 [M]+. 

7-(3,4-Dihydroisoquinolin-2(1H)-yl)pyrimido[4,5-d]pyrimidine-2,4-diamine (8, 

MC4232). 1H NMR (400 MHz, DMSO- d6) δ 8.97 (s, 1H, CH pyrimidine), 7.43 (s, 2H, NH2 in pos. 

4 pyrimido-pyrimidine), 7.25-7.18 (m, 4H, CH aromatic), 6.51 (s, 2H, NH2 in pos. 2 pyrimido-

pyrimidine), 4.92 (s, 2H, CH2 piperidine), 4.03 (t, 2H, CH2 piperidine), 2.86 (t, 2H, CH2 

piperidine), MS (ESI) m/z: 293.14 [M]+. 

7-(2-Methylpiperidin-1-yl)pyrimido[4,5-d]pyrimidine-2,4-diamine (9, MC4235). 1H 

NMR (400 MHz, DMSO- d6) δ 8.90 (s, 1H, CH pyrimidine), 7.34 (s, 2H, NH2 in pos. 4 pyrimido-

pyrimidine), 6.43 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 5.10 (m, 1H, CH piperidine), 4.69-

4.66 (m, 1H, CH pyrimidine), 2.92-2.85 (m, 1H, CH piperidine), 1.70-1.58 (m, 5H, CH 

piperidine), 1.38-1.24 (m, 1H, CH piperidine), 1.14 (d, 3H, CHCH3), MS (ESI) m/z: 259.15 [M]+. 
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7-(2-Phenylpiperidin-1-yl)pyrimido[4,5-d]pyrimidine-2,4-diamine (10, MC4269). 1H 

NMR (400 MHz, DMSO- d6) δ 8.93 (s, 1H, CH pyrimidine), 7.40 (sb, 2H, NH2 in pos. 4 pyrimido-

pyrimidine), 7.35-7.32 (m, 2H, CH aromatic), 7.23-7.18 (m, 3H, CH aromatic), 6.48 (s, 2H, NH2 

in pos. 2 pyrimido-pyrimidine), 6.19 (m, 1H, CH piperidine), 4.84-4.81 (m, 1H, CH piperidine), 

2.84-2.81 (m, 1H, CH piperidine), 2.45-2.41 (m, 1H, CH piperidine), 1.84 (m, 1H, CH piperidine), 

1.63-1.61 (m, 2H, CH2 piperidine), 1.48-1.36 (m, 2H, CH2 piperidine), MS (ESI) m/z: 321.17 

[M]+. 

7-(4-Phenylpiperazin-1-yl)pyrimido[4,5-d]pyrimidine-2,4-diamine (11, MC4236). 1H 

NMR (400 MHz, DMSO- d6) δ 8.96 (s, 1H, CH pyrimidine), 7.43 (s, 2H, NH2 in pos. 4 pyrimido-

pyrimidine), 7.26-7.22 (m, 2H, CH aromatic) 7.01-6.99 (m, 2H, CH aromatic), 6.83-6.79 (m, 1H, 

CH aromatic), 6.52 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 3.95 (m, 4H, CH2 piperazine), 

3.20-3.19 (m, 4H, CH2 piperazine), MS (ESI) m/z: 322.17 [M]+. 

N7-(1-([1,1'-Biphenyl]-4-yl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-2,4,7-triamine 

(12, MC4268). 
1H NMR (400 MHz, DMSO- d6) δ 8.97 (s, 1H, CH pyrimidine), 7.66-7.63 (m, 4H, NH2 in pos. 

4 pyrimido-pyrimidine + CH aromatic), 7.48-7.39 (m, 7H, CH aromatic), 6.51 (s, 2H, NH2 in pos. 

4 pyrimido-pyrimidine), 6.35 (s, 1H, CHCH3), 2.87 (s, 3H, N-CH3), 1.59 (d,3H, CHCH3), MS (ESI) 

m/z: 371.19 [M]+. 

N7-Benzyl-N7-methylpyrimido[4,5-d]pyrimidine-2,4,7-triamine (13, MC4180). 1H NMR 

(400 MHz, DMSO- d6) δ 8.94 (s, 1H, CH pyrimidine), 7.33-7.24 (m, 7H, NH2 in pos. 4 pyrimido-

pyrimidine + CH aromatic), 6.49 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 4.90 (s, 2H, CH2), 

3.09 (s, 3H, N-CH3), MS (ESI) m/z: 281.14 [M]+. 

N7-Methyl-N7-(1-phenylethyl)pyrimido[4,5-d]pyrimidine-2,4,7-triamine (14, 4210). 1H 

NMR (400 MHz, DMSO- d6) δ 8.96 (s, 1H, CH pyrimidine), 7.34-7.28 (m, 7H, NH2 in pos. 4 

pyrimido-pyrimidine and CH aromatic), 6.48 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 6.32-

6.31 (m, 1H, CHCH3), 2.82 (s, 3H, N-CH3), 1.54 (d, 3H, CHCH3), MS (ESI) m/z: 295.15 [M]+. 

N7-(1-(4-Methoxyphenyl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-2,4,7-triamine 

(15, MC4231). 1H NMR (400 MHz, DMSO- d6) δ 8.95 (s, 1H, CH pyrimidine), 7.40-7.39 (s broad, 

2H, NH2 in pos. 4 pyrimido-pyrimidine), 7.22-7.20 (m, 2H, CH aromatic), 6.90-6.88 (m, 2H, CH 

aromatic), 6.48 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 6.26 (s, 1H, CHCH3), 3.73 (s, 3H, 

OCH3) 2.78 (s, 3H, N-CH3), 1.49 (d, 3H, CHCH3), MS (ESI) m/z: 325.17 [M]+. 

N7-(4-(4-Methoxyphenoxy)benzyl)-N7-methylpyrimido[4,5-d]pyrimidine-2,4,7-
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triamine (17, MC4233). 1H NMR (400 MHz, DMSO- d6) δ 8.94 (s, 1H, CH pyrimidine), 7.54-

7.23 (m, 4H, NH2 in pos. 4 pyrimido-pyrimidine + CH aromatic), 6.99-6.86 (m, 6H, CH aromatic), 

6.50 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 4.85 (s, 2H, CH2), 3.74 (s, 3H, OCH3), 3.08 (s, 

3H, N-CH3), MS (ESI) m/z: 403.18 [M]+. 

N7-(1-(4-(4-Methoxyphenoxy)phenyl)ethyl)pyrimido[4,5-d]pyrimidine-2,4,7-triamine 

(18, MC4314). 1H NMR (400 MHz, DMSO-d6) δ 8.85 (s, 1H, CH pyrimidine), 7.78-7.768 (m, 1H, 

NH), 7.36-733 (d, 4H, CH aromatic), 6.98-6.85, (m, 4H, aromatic CH), 6.85-6.83 (d, 2H, NH2 in 

pos. 4 pyrimido-pyrimidine), 6.45 (s, 2H, NH2 in pos. 2 pyrimido-pyrimidine), 5.13 (m, 1H, 

CHCH3), 3.91 (s, 3H, OCH3) 1.42 (s, 3H, CHCH3), MS (ESI) m/z: 403.18 [M]+. 

N7-(1-(4-(4-Methoxyphenoxy)phenyl)propyl)-N7-methylpyrimido[4,5-d]pyrimidine-

2,4,7-triamine (19, MC4315). 1H NMR (400 MHz, DMSO-d6) δ 8.95 (s, 1H, CH pyrimidine), 

7.38-7.30 (d, 4H, CH arom.), 7.00-6.94 (m, 4H, aromatic CH), 6.89-6.86 (d, 2H, NH2 in pos. 4 

pyrimido-pyrimidine), 6.48 (sb, 2H, NH2 in pos. 2 pyrimidopyrimidine), 6.01 (d, 1H, CHCH2CH3), 

3.74 (s, 3H, OCH3), 2.82-2.79 (m, 3H, N-CH3), 2.07-1.89 (m, 2H, CH2CH3), 0.86 (m, 3H, CH2CH3), 

MS (ESI) m/z: 431.21 [M]+. 

N7-(1-(4-(4-Methoxyphenoxy)phenyl)-2-methylpropyl)-N7-methylpyrimido[4,5-

d]pyrimidine-2,4,7-triamine (20, MC4313). 1H NMR (400 MHz, DMSO-d6) δ 8.95-8.91 (d, 1H, 

CH pyrimidine), 7.42-7.36 (m, 4H, CH arom.), 7.00-6.93 (m, 4H, aromatic CH), 6.87-6.85 (d, 2H, 

NH2 in position 4 pyrimido-pyrimidine), 6.46 (sb, 2H, NH2 in pos. 2-pyrimidopyrimidine), 5.84-

5.81 (d, 1H, CH-iPr), 3.74 (s, 3H, OCH3), 2.89-2.81 (d, 3H, N-CH3), 2.51-2.50 (m, 1H CH-iPr), 

0.89-0.83 (m, 6H, CH3-iPr), MS (ESI) m/z: 445.22 [M]+. 

N7-((4-(4-Methoxyphenoxy)phenyl)(phenyl)methyl)-N7-methylpyrimido[4,5-

d]pyrimidine-2,4,7-triamine (21, MC4318). 1H NMR (400 MHz, DMSO-d6) δ 8.97 (s, 1H, CH 

pyrimidine), 7.43-7-23 (m, 6H, NH2 in pos. 4 pyrimidopyrimidine, CH aromatic), 7.18-7.13 (m, 

4H, CH aromatic), 7.04-6.90 (m, 6H, CH aromatic, CH-Ph), 6.52 (sb, 2H, NH2 in pos. 2 

pyrimidopyrimidine), 3.93 (s, 3H, OCH3), 2.89 (s, 3H, N-CH3), MS (ESI) m/z: 479.21 [M]+. 

N7-(1-(4-((4-Methoxyphenyl)thio)phenyl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-

2,4,7-triamine (22, MC4304). 1H NMR (400 MHz, DMSO-d6) δ 8.95 (s, 1H, CH pyrimidine), 7.54 

(sb, 2H, NH2 in position 4 pyrimido-pyrimidine) 7.27-7.25 (m, 2H, CH aromatic), 7.00-6.94 (m, 

4H, aromatic CH), 6.90-6.87 (m, 2H, CH aromatic), 6.49 (sb, 2H, NH2 in position 2 pyrimido-

pyrimidine), 6.28 (m, 1H, CHCH3), 3.74 (s, 3H, OCH3), 2.82 (s, 3H, NCH3), 1.51 (s, 3H, CHCH3), 

MS (ESI) m/z: 433.17 [M]+. 
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N7-(1-(4-((4-Methoxyphenyl)amino)phenyl)ethyl)-N7-methylpyrimido[4,5-

d]pyrimidine-2,4,7-triamine (23, MC4316). 1H NMR (400 MHz, DMSO-d6) δ 8.95 (s, 1H, CH 

pyrimidine), 7.83 (s, 1H, Ph-NH-Ph), 7.38-7.37 (sb, 2H, NH2 in pos. 4-pyrimidopyrimidine), 7.1-

7.08 (d, 2H, CH aromatic), 7.03-7.01 (d, 2H, CH aromatic, 6.89-6.83 (m, 4H, CH aromatic), 6.46 

(sb, 2H, NH2 in pos. 2 pyrimidopyrimidine), 6.23 (m, 1H, CHCH3), 3.70 (s, 3H, OCH3), 2.79 (s, 

3H, N-CH3) 1.47-1.46 (d, 3H, CHCH3), MS (ESI) m/z: 416.21 [M]+. 

N7-(1-(4-((4-Methoxybenzyl)oxy)phenyl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-

2,4,7-triamine (24, MC4320). 1H NMR (400 MHz, DMSO-d6) δ 8.95 (s, 1H, CH pyrimidine), 

7.37-7.35 (d, 4H, CH aromatic), 7.21-7.20 (sb, 2H, NH2 in pos. 4-pyrimidopyrimidine), 6.96-

6.92 (t, 4H, CH arom.), 6.47 (sb, 2H, NH2 in pos. 2-pyrimidopyrimidine), 6.26 (m, 1H, CHCH3), 

4.99 (s, 2H, O-CH2-Ph) 3.76 (s, 3H, OCH₃), 2.79 (s, 3H, N-CH₃), 1.50-1.49 (d, 3H, CHCH₃), MS 

(ESI) m/z: 431.21 [M]+. 

N7-(1-(4-(3,4-Dimethoxyphenoxy)phenyl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-

2,4,7-triamine (25, MC4310). 1H NMR (400 MHz, DMSO-d6) δ 8.96 (s, 1H, CH pyrimidine), 7.39 

(sb, 2H, NH2 in pos. 4 pyrimidopyrimidine), 7.27-7.25 (sb, 2H, NH2 in position 2 pyrimido-

pyrimidine), 6.95-6.89 (m, 3H, CH aromatic), 6.74-6.73 (m, 1H, CH arom.), 6.53-6.48 (m, 3H, 

CH arom.), 6.29 (s, 1H, CHCH3), 3.74-3.72 (d, 6H, OCH3), 2.82 (s, 3H, N-CH3), 1.52-1.50 (d, 3H, 

CHCH3), MS (ESI) m/z: 447.20 [M]+. 

N7-(1-(4-(3,5-Dimethoxyphenoxy)phenyl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-

2,4,7-triamine (26, MC4319). 1H NMR (400 MHz, DMSO-d6) δ 8.96 (s, 1H, CH pyrimidine), 7.39 

(sb, 2H, NH2 in pos. 4 pyrimidopyrimidine) 7.31-7.29 (m, 2H, CH aromatic), 7.00-6.98 (m, 2H, 

CH aromatic), 6.48 (sb, 2H, NH2 in position 2 pyrimido-pyrimidine), 6.79-6.83 (m, 1H, CH 

arom.), 6.59-6.61 (m, 2H, CH arom.), 6.31 (s, 1H, CHCH3), 3.74-3.72 (d, 6H, OCH3), 2.82 (s, 3H, 

N-CH3), 1.52-1.50 (d, 3H, CHCH3),  MS (ESI) m/z: 447.20 [M]+. 

N7-Methyl-N7-(1-(4-(3,4,5-trimethoxyphenoxy)phenyl)ethyl)pyrimido[4,5-

d]pyrimidine-2,4,7-triamine (27, MC4309). 1H NMR (400 MHz, DMSO-d6) δ 8.96 (s, 1H, CH 

pyrimidine), 7.40 (sb, 2H, NH2 in pos. 4 pyrimidopyrimidine), 7.29-7.27 (d, 2H, CH aromatic), 

6.96-6.94 (m, 2H, CH aromatic), 6.48 (sb, 2H, NH2 in pos. 2 pyrimidopyrimidine), 6.39 (s, 2H, 

CH aromatic), 6.30 (m, 1H, CHCH3), 3.71 (s, 6H, m-OCH3), 3.63 (s, 3H, p-OCH3), 2.82 (s, 3H, N-

CH3), 1.52-1.51 (d, 3H, CHCH3), MS (ESI) m/z: 477.21 [M]+. 

N7-Methyl-N7-(1-(4-(4-(trifluoromethoxy)phenoxy)phenyl)ethyl)pyrimido[4,5-

d]pyrimidine-2,4,7-triamine (28, MC4311). 1H NMR (400 MHz, DMSO-d6) δ 8.96 (s, 1H, CH 
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pyrimidine), 7.38-7.32 (m, 6H, NH2 in position 4 pyrimidopyrimidine, CH arom.), 7.10-7.03 (m, 

4H, CH arom.), 6.49 (sb, 2H, NH2 in pos. Pyrimidopyrimidine), 6.31 (sb, 1H, CHCH3), 2.85 (s, 

3H, N-CH3), 1.54-1.53 (m, 3H, CHCH3), MS (ESI) m/z: 471.16 [M]+. 

N7-(1-(4-(3-Methoxyphenoxy)phenyl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-

2,4,7-triamine (29, MC4298). 1H NMR (400 MHz, DMSO-d6) δ 8.94 (s, 1H, CH pyrimidine), 7.54 

(s, 2H, NH2 in position 4 pyrimido-pyrimidine) 7.27-7.25 (m, 2H, CH aromatic), 7.00-6.94 (m, 

4H, aromatic CH), 6.90-6.87 (m, 2H, CH aromatic), 6.49 (s, 2H, NH2 in position 2 pyrimido-

pyrimidine), 6.28 (m, 1H, CHCH3), 3.74 (s, 3H, OCH3), 2.82 (s, 3H, N-CH3), 1.51 (d, 3H, CHCH3), 

MS (ESI) m/z: 417.19 [M]+. 

N7-(1-(4-(4-(Benzyloxy)phenoxy)phenyl)ethyl)-N7-methylpyrimido[4,5-d]pyrimidine-

2,4,7-triamine (30, MC4312). 1H NMR (400 MHz, DMSO-d6) δ 8.96 (s, 1H, CH pyrimidine), 

7.47-7.38 (m, 5H, CH aromatic), 7.35-7.34 (d, 2H, NH2 in position 4 pyrimido-pyrimidine), 7.28-

7.25 (d, 2H, CH2 aromatic), 7.04-6.97 (m, 4H, aromatic CH), 6.90-6.88 (m, 2H, CH aromatic), 

6.48 (sb, 2H, NH2 in position 2 pyrimidopyrimidine), 6.28 (s, 1H, CHCH3), 5.08 (s, 2H, OCH2-

Ph), 2.81 (s, 3H, NCH3), 1.52-1.51 (d, 3H, CHCH3), MS (ESI) m/z: 493.22 [M]+. 

N7-(1-(4-((4-Methoxynaphthalen-1-yl)oxy)phenyl)ethyl)-N7-methylpyrimido[4,5-

d]pyrimidine-2,4,7-triamine (31, MC4323). 1H NMR (400 MHz, DMSO-d6) δ 8.95 (s, 1H, CH 

pyrimidine) 8.21-8.19 (t, 1H, aromatic CH), 7.91-7.88 (t, 1H, aromatic CH), 7.587-53 (m, 2H, 

CH aromatic), 7.38 (sb, 2H, NH2 in position 4 pyrimidopyrimidine), 7.30-7.24 (t, 2H, CH arom.), 

7.09-7.07 (d, 1H, CH arom.), 6.96-6.89 (m, 3H, aromatic CH), 6.46 (sb, 2H, NH2 in pos. 2 

pyrimido-pyrimidine), 6.28 (m, 1H, CHCH3), 3.98 (s, 3H, OCH3), 2.82 (s, 3H, N-CH3), 1.51-1.49 

(d, 3H, CHCH3), MS (ESI) m/z: 467.21 [M]+. 

7.4 Biological evaluation, results and discussion 
The inhibitory effects of the newly synthesized compounds on smSirt2 and hSirt2 

deacetylase activity were tested through continuous fluorescence assay. The residual smSirt2 

and hSirt2 activity in presence of 25 µM of the candidate inhibitors was evaluated (Table 7.4).  

Table 7.4: Enzymatic inhibition of selected compounds derived from the prototype at 25 µM 

 Lab code Structure 
% inh. 

smSIRT2 at 
25 µM 

% inh. 
hSIRT2 at 25 

µM 

1 MC4223 

 

62.6% 
± 

1.1% 
IC50 =23.7 ± 

9.6 µM 

21.9% 
± 

0.6% 
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2  
MC4222 

 

-14.1% 
± 

4.7% 

-16.4% 
± 

3.7% 

5  
MC4189 

 

0.9% 
± 

7.2% 

-0.8% 
± 

4.4% 

6 
 
 

MC4234 

 

 
-13.7% 

± 
1.8% 

 
-18.35% 

± 
5.1% 

7 MC4265 

 

-7.9%  
 23.2 %  

 
8 

 
MC4232 

 

-4.4% 
± 

0.7% 

-5.2% 
± 

5.7% 

9  
MC4235 

 

-6.6% 
± 

3.5% 

-3.9% 
± 

8.1% 

11 
 
 

MC4236 

 

 
-8.8% 

± 
8.7% 

 
-10.9% 

± 
5.6% 

12 
 
 

MC4268 

 

 
24.8%  

 
 

9.3% 

13  
MC4180 

 

-0.5% 
± 

2.4% 

1.8% 
± 

3.7% 
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14  
MC4210 

 

-1.1% 
± 

6.8% 

-4.4% 
± 

5.5% 

15 
 
 

MC4231 

 

 
3.2% 

± 
1.4 

 
-11.1% 

± 
4.6% 

16  
MC4211 

 

27.6% 
± 

2.8% 

5.0% 
± 

4.5% 

 
 

17 

 
 

MC4233 
 

 
14.0 % 

± 
3.3% 

 
4.2% 

± 
0.1% 

18 MC4314 

 

37.5% 
 
 

21.0% 

19 MC4315 

 

 IC50 = 12.8 ± 
0.8 µM* 

 
 

49.6% 

20 MC4313 

 

37.9%  
 
 

57.4% 

21 MC4318 

 

IC50 = 2.34 ± 
0.2 µM* 

 
 

 63.4%  
 

22 MC4304 

 

IC50 =14.9 ± 
0.9 µM* 

 
 

45.9%  
 

23 MC4316 

 

52.9% 
 
 

 40.8% 
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24 MC4320 

 

 18.4% 
 
 

30.6% 

25 MC4310 

 

IC50 = 44.7± 
4.4 µM* 

 
 

35.3% 
 

26 MC4319 

 

IC50 = 12.5 ± 
1.1 µM* 

 
 

7.4% 
 

27 MC4309 

 

52.2%  
 
 

29.2% 
 

28 MC4311 

 

20.3% 
 
 

37.5% 

29 MC4298 

 

 IC50 = 23.1± 
1.4 µM* 

 
 

33.8% 
 

30 MC4312 

 

40.3% 
 
 

70.4% 

31 MC4323 
 46.2%  

 
 

61.7% 

Intermediate compounds tested along the final one 

 
48g 

 
MC4238 

 

2.0% 
± 

2.6% 

-18.1% 
± 

7.6% 

 
47c 

 
MC4239 

 

-9.9% 
± 

1.1% 

4.9% 
± 

0.6% 

In the first part of this project, extensive structure-activity relationship (SAR) studies have 

been applied on the N7-(1-(4-(4-methoxyphenoxy)phenyl)ethyl)-N7-methylpyrimido[4,5-
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d]pyrimidine-2,4,7-triamine (TCMDC-143295) to obtain new hit compounds showing potent 

and selective inhibition of smSirt2; in particular, the influence of substituents at the N7 

position of the bispyrimidine ring of TCMDC-143295 has been investigated by replacing the 

substituents on the prototype basically by substituents with smaller structures. 

Unfortunately, none of the newly synthesized compounds showed better smSirt2 inhibitory 

activity compared to the prototype. Together with these final compounds, we tested also the 

pyrimidine intermediate, MC4238, and the amine intermediate, MC4239; but neither of them 

did not show any smSirt2 inhibitory activity. In general, the tested compounds, except for 

three compounds MC4233, MC4211 and MC4268 which showed modest smSirt2 inhibitory 

activities, showed either very poor or no activity against both smSirt2 and hSirt2. Noticeably, 

replacing the substituent at the N7 position of the bispyrimidine ring of TCMDC-143295 

basically by substituents with smaller structures strongly decreased or totally abolished both 

smSirt2 and hSirt2 inhibitory activity. More accurately, no substituents at the N7 position of 

bispyrimidine (MC4222), or no methyl group at the N7 position of bispyrimidine (MC4189, 

MC4261, MC4234, MC4262, MC4265, MC4314), or the N7 position of bispyrimidine is a 

tertiary amine and is a part of a cyclic structure (MC4236, MC4269, MC4235, MC4232), 

resulted in significant reduction or total loss of activity toward smSirt2. In the light of these 

data, one methyl group and another larger substituent, N7 position of pyrimido[4,5-

d]pyrimidine appear to be essential for the maintenance of inhibitory activity against 

smSIRT2. 

In the second round of modification, we decided to keep the methyl group at the N7 

position of bispyrimidine ring, however, introduction of bulky groups at α-carbon of the N7 

position of bispyrimidine, i.e., replacing methyl group by ethyl (MC4315), isopropyl (MC4313) 

or phenyl (MC4318) group; led to compounds with better smSirt2 inhibitory activity (MC4315 

and MC4318) or slightly lower smSirt2 inhibitory activity (MC4313) compared to the 

prototype. In this regard, substitution of the methyl group with ethyl or phenyl group gave 

analogues with improved potency. Nevertheless, this improved potency came as the expense 

of poor selectivity over the hSirt2. Compared to the prototype, analogues with bulky group at   

α-carbon of the N7 position of bispyrimidine ring showed also improved hSirt2 inhibitory 

activity. 
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On the other hand, substitution of the oxygen linkage between the two phenyls by sulfur 

afforded compound (MC4304) with improved potency toward both smSirt2 and hSirt2 activity 

while replacing it with nitrogen gave compound (MC4316) with comparable potency but low 

selectivity over hSirt2 compared to the prototype. Likewise, increasing this linkage by one 

carbon resulted in analogue (MC4320) characterized by weak smSirt2 activity but comparable 

hSirt2 activity in comparison to the prototype. 

Furthermore, several modifications have been made on the etheric phenyl such as 

shifting the methoxy group from para to meta gave compound MC4298, having the same 

potency against smSirt2 but higher potency toward hSirt2 compared to the prototype. The 

introduction of additional methoxy groups, for example, 3,4-dimethoxyphenyl instead of 4-

methoxyphenyl resulted in derivative MC4310 that showed low potency and selectivity over 

hSirt2 in comparison to the prototype, whereas replacement of the 4-methoxyphenyl by 

3,4,5-trimethoxyphenyl led to compound MC4309 with similar potency and selectivity 

compared to the prototype. Interestingly, the substitution of 4-methoxyphenyl by 3,5-

dimethoxyphenyl produced analogue MC4319 which is characterized with good potency and 

the best selectivity over hSirt2 in comparison to the prototype. This is one of the most 

promising compound from the series with modest smSirt2 activity (IC50 = 12.5 µM) and almost 

devoid of activity against hSirt2 (7.4% inh. @ 25 µM). Finally, replacement of 4-

methoxyphenyl by 4-trifluorommethoxyphenyl resulted in a 3-fold loss of potency against 

smSirt2 and selectivity over hSirt2 (MC4311), whilst replacement of 4-methoxyphenyl by 4-

benzoxyphenyl (MC4312) or 4-methoxynaphthalenyl (MC4323) led to modest reduction of 

potency against smSirt2 but more than 3-fold active toward hSirt2 in comparison to the 

prototype. Fig. 7.3 represents the IC50 curves of selected compounds. 
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Fig. 7.3: The IC50 curves of selected compounds. 

7.5 Conclusion and perspectives  
Sirtuins are crucial regulators of cellular processes, two of which, energy metabolism and 

the DNA repair response, determine their potential importance as therapeutic targets. In the 

case of parasitic diseases, it is evident that the inhibition of sirtuins is sufficient to cause 

detrimental effects to the parasite and that species selectivity and/or enhanced bioavailability 

to the parasitic organism is most important. The differences in the catalytic domains of 
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schistosome sirtuins compared with their human counterparts are likely to be sufficient to 

allow the development of selective inhibitors, but this requires verification by molecular 

modeling and, where possible, x-ray crystallographic studies. However, high-throughput 

screening of recombinant enzymes can also allow the detection of inhibitors with novel 

scaffolds and warheads that are selective. Using the later approach, a fluorescent-based 

enzyme assay was developed by our collaborators and this led to the identification of novel 

compounds targeting smSirt2. From the screening series disclosed here we select one 

compound/hit, TCMDC-143295, as initial structural feature and represents a novel smSirt2 

inhibition template that provides the possibility to develop potent and selective inhibitors for 

the therapy of schistosomiasis. Consequently, extensive structure-activity relationship (SAR) 

studies have been applied on TCMDC-143295 (MC4223) to obtain new hit compounds 

showing potent and selective inhibition of smSirt2; in particular, the influence of substituents 

at the N7 position of the bispyrimidine ring of TCMDC-143295 has been investigated. 

Unfortunately, in the first round of SAR optimization, none of the newly synthesized 

compounds showed better smSirt2 inhibitory activity compared to the prototype. In light of 

the above observations, in the second part of the project, we decided to keep the N7-methyl. 

Indeed, the alpha carbon at N7 position has been replaced with larger steric groups compared 

prototype to increase molecular constraint while the portion of diphenyl ether, given its 

importance, remained almost unchanged. Enzymatic assays of the tested compounds showed 

that several compounds exhibit a relatively better potency and selectivity toward smSirt2, 

indicating that the inhibition of some of these new analogues could be some potential leads 

for further SAR optimizations. Central to this optimization was the inclusion of a methyl or 

bulky groups at the alpha carbon of N7 position of bispyrimidine ring and dimethoxy group at 

the phenyl moiety as well as replacement of the ether with thioether linkage.  

Thus, while we recognize that both potency toward smSirt2 and selectivity over hSirt2 

still needs optimization, there are strong indications that the high selectivity by MC4319 with 

respect to hSirt2 and good potency by MC4304 and MC4318 that we have already obtained 

are more important for potential further SAR optimization of new derivatives with better 

potency toward smSirt2 and selectivity over hSirt2.  

A best strategy could be to synthesize new derivatives based on the above observations, 

specifically, further exploring the different SAR approaches, perhaps by combination, that had 

already led to better potency toward smSirt2 and selectivity over hSirt2, in particular, it would 
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be a good of intervening on the other portion of the molecule without, for now, touching the 

pyrimido[4,5-d]pyrimidine nucleus. The above results suggest that the ether linkage between 

the two phenyls is flexible and it could be replaced with sulphones, sulphoxides, amides or 

methylene groups in obtaining derivatives with target biological profile. It would be also nice 

to see the effects of methylthio instead of methoxy on the ethereal phenyl. Further goal of 

future projects will be to investigate the importance of carbon chiral alpha at N7. Indeed, it is 

thought to be possible to functionalize the N2 of pyrimido[4,5-d]pyrimidine by using 

condensation reactions with appropriately substituted guanidine (Fig. 7.4). 

 

 

Fig. 7.4: Suggested possible future modifications for further SAR optimization on MC4223/TCMDC-143295 

7.6 Methods 
Coupled Enzymatic Deacetylation Assay: the deacetylase activity of smSirt2 was assayed 

using a described coupled enzymatic reaction, preciously optimized for assay of hSirt2.[739-

740] This assay is based on fluorescence measurements and uses a synthetic substrate, Z-

Acetyl-Lysine-Amino-methylcumarin (ZMAL), that mimics the peptide containing an 

acetylated lysine residue. smSIRT2 will deacylated ZMAL, thus leading to the liberation of the 

lysine amino-terminal group (ZML), which is recognized only in the deacylated state, by 

trypsin. Trypsin mediates the lysis of amide bonds, leading therefore to the release of Amino-

methylcumarin (AMC), which is fluorescent (Fig. 7.5). As negative control, sample without the 

inhibitor was used (in this case smSIRT2 will deacylated lysine and trypsin will split the peptide 

bond), while nicotinamide (which acts as SIRT4 inhibitor) was employed as a positive control, 
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finally only enzyme in DMSO was used as a blank control in order to identify hypothetical 

contamination. Briefly, smSirt2 (60 ng/μL), NAD+ (500 µM), ZMAL (10.5 µM), the potential 

inhibitor (dissolved in DMSO at various concentrations), and the FdL-developer (Trypsin 

1mg/mL and nicotinamide 8 mM). The assay employed 384 wells (Greiner Bio-One) with a 

reaction volume of 20 μl per well and all tests were performed at least in duplicate. The 

concentration of both smSIRT2 and NAD+ was prepared by dissolving in a buffer of 50mM 

TRIS, 137mM NaCl, 2.7mM KCl, 1mM MgCl2, 0.5mM DTT, 0.015% Triton X-100, pH 8.0. while 

ZMAL was prepared from 12.6 mM DMSO solutions which were diluted with the same buffer 

until the concentration became 10.5 μM. On the other hand, the FdL-developer (stop 

solution) was composed of 50mM TRIS, 100mM NaCl, 6.7% (v / v) DMSO, 1mg / mL trypsin, 

8mM nicotinamide, pH 8.0. 

Thus, ZMAL, smSIRT2, NAD+ and a hypothetical inhibitor dissolved in DMSO at various 

concentrations were incubated at 37 °C for 1h. In the presence of its cofactor, NAD+, smSIRT2 

is able to deacetylase ZMAL to the formation of AMC, but in the presence of smSIRT2 inhibitor, 

this activity is blocked or become less depending on the power of the smSIRT2 inhibitory 

activity. Then, a solution containing/buffer trypsin and nicotinamide, was added and the 

plates were incubated at 37 °C for another 20 min. The action of trypsin leads to the formation 

of AMC and Z-lysine, where AMC is the source of fluorescence signal in the assay. Then the 

fluorescence intensity was measured in a microplate reader (BMG 

Polarstar, λex 365 nm, λem 465 nm). The amount of inhibition was determined with respect to 

the mixture with only DMSO. IC50 values were determined with Graphpad Prism software 

using a non-linear regression to fit the dose–response curve. 
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Fig. 7.5: Graphic representation of the deacetylation of the substrate ZMAL during the assay 
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8. DESIGN AND SYNTHESIS OF TRANYLCYPROMINE-BASED LSD1 INHIBITORS 
POTENTIALLY ACTIVE AGAINST SCHISTOSOMA MANSONI 
8.1 Research Project 

The role of epigenetic mechanisms in the control of gene transcription in schistosomes, 

and hence in bio-logical processes like development and reproduction, has gained a 

momentum in epigenetics.  Epi-drugs, including LSD1 inhibitors, were characterized and 

studied in recent years as potential new drug targets, with the strategy of testing known anti-

cancer drugs to kill schistosomes [264, 686, 699, 702-703, 708-709, 741]. Here, we prosed a 

new series of LSD1 inhibitors based on the trans 2-phenylcyclopropylamine (trans-2-PCPA), 

which is a useful lead to develop several highly potent small-molecules active toward various 

cancer cell lines, as a potentially active against S. mansoni parasites. The rationale of the 

approach is based on the fact that the parasite shares some of the characteristics of malignant 

cells, such as high levels of metabolic activity and of cell division, an effective host immune 

evasion, and an intense oxidative metabolism [684]. In addition, in silico analyses [742] have 

pointed to a large number of S. mansoni histone binding partners potentially involved in the 

regulation of gene expression, DNA replication, cell death, cellular growth and proliferation 

[742], thus suggesting that drug-induced histone modifications could affect these cellular 

processes in the parasite.  Insights into schistosome epigenetic mechanisms has been gained 

from studies aimed at developing such strategies, including for example the characterization 

of the actions of inhibitors of histone modifying enzymes (HMEs), or from transcript 

knockdown studies.  For example, during the previous EC-funded project (SEtTReND) 

transcript knockdown by RNA interference was used to identify three HMEs, SmHDAC8, 

SmLSD1 and SmPRMT3 as valid targets in Schistosoma mansoni and three of them were found 

to be essential to the survival and/or development of the parasite within its mammalian host. 

Studies on these three HMEs have been continued during another EC-funded project (A-

ParaDDisE) in which our group involved in.  

The results from both SEtTReND and A-ParaDDisE prompted us, as part of the FP7 A-

ParaDDise Project, to prepare a small group of LSD1 inhibitors (1-9, 11, 15, 19-24, Table 8.1) 

potentially active against S. mansoni. The resulting compounds have been tested against 

Schistosoma at Prof. Fantappié’s lab (in Brazil). Interestingly, preliminary data indicate that 

most of the tested compounds were relatively toxic to the juvenile stage of schistosomula 

(the ideal target to control schistosomiasis because no eggs are involved in this stage) and to 



 
 

151 
 

a lesser extent to adult worms. Among these tested compounds, MC3935, an analogue of the 

2-phenylcyclopropylamine (Fig. 8.1), was found to be extremely toxic to both schistosomula 

and adults. A subsequent treatment of S. mansoni with MC3935 led to induced tegumental 

and muscle abnormalities as well as the presence of apoptotic and necrotic vesicles and 

granules. Induction of apoptosis cause the death of the parasite after treatment and extensive 

alterations to reproductive systems were also observed in adult schistosomes treated with 

these inhibitors. These inhibitors resulted in hypermethylation of histone 3 at lysine 4 (H3K4), 

which is the specific target of this enzyme, that showed the aforementioned alterations in the 

parasites are in fact as a result of inhibition of LSD1. RNASeq analysis of adult worms treated 

with the LSD1 inhibitor showed that 2709 and 938 genes were differentially expressed in 

males and females, respectively. While, 270 genes were differentially expressed in 

schistosomula treated with the inhibitor. Downregulated genes in male worms included those 

involved in drug pumps and cytoskeleton formation, whereas in female’s transmembrane 

transporter genes were downregulated. Notch signaling pathway genes were upregulated in 

female worms and schistosomula. 

 

  

Fig. 8.1: Effect of MC3935 on the tegument of S. mansoni after treatment with 25 µM for 

48h. 

These compounds deserved further investigation, more specifically, MC3935 is an 

interested compound with magnificent antischistosomal activities that needs further 

medicinal chemistry exploration.  Hence, we decided to synthesized a small group of 

compounds by chemical modifications of MC3935 in order to improve its potency and 

selectivity over human LSD1 activity. As result, during my stay in Prof. Ganesan′s lab at the 
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University of East Angelia, Norwich, I prepared small series of MC3935 analogues (10, 12-14, 

16-18, 25 and 26, Table 8.1).  In this regard, the new analogues were designed by two 

modification approaches on MC3935: (i) moving the ethynyl from para to meta position(GS4), 

or substituting the ethynyl group with other alkynyl (GS3 and GS5-7) or alkyl (GS1 and GS2) 

groups; and (ii) moving the amido (CONH) from para to meta and varying the aroyl groups 

(GS8 and GS9) (Fig. 8.2). 

 
Fig. 8.2: Structure of MC3935 and its proposed potential analogues 

8.2 Chemistry  
The trans-2-(3/4-ntrophenyl)cyclopropylcarboxylic acids (28a,b) were prepared by 

treating the commercially available trans-2-phenylcyclopropylcarboxylic acid (27) with 69.5% 

HNO3. To a suspension of trans-2- (3/4-nitrophenyl) cyclopropylcarboxylic acid in anhydrous 

toluene was added TEA, DPPA, tert-butanol and di-tert-butyl dicarbonate and refluxed under 

nitrogen to afford trans-tert-butyl-2- (3/4-nitrophenyl) cyclopropylcarbamates (29a,b) [743]. 

The key intermediate trans-tert-butyl-2- (3/4-aminophenyl) cyclopropylcarbamates (30a,b) 

were prepared by hydrogenation of trans-tert-butyl-2- (3/4-nitrophenyl) 

cyclopropylcarbamate in MeOH in the presence of 10% Pd/C under nitrogen condition 

(Scheme 3). Subsequently, the synthesis of the final compounds 1-26 was carried out 

following two routes. According to Scheme 1, the appropriate acids, prepared as Scheme 4 

and 5 (35a-c, 39a-c) or commercially available (40-44), were activated by benzotriazol-1-yl-

oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) or 1-(3-dimethylaminopropyl)-

3-ethylcarbodiimide (EDC), in the presence triethylamine and condensated with tert-butyl N-

[2-(4-aminophenyl)cyclopropyl]carbamate 30a to afford their corresponding carbamates 

45a-j. The final compounds 1-11 were smoothly obtained by removing Boc protection with 

hydrochloric acid in dioxane. On the other hand, the final compounds 12-26 were prepared 
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according to Scheme 2. Where, the key intermediates 30a,b were treated with the 

appropriate arolyl/benzyl chlorides, which were prepared as scheme 6 (49a-c) or 

commercially available (50-59), in the presence of TEA and dry DCM to give the intermediates, 

trans tert-butyl 2-(4-aroyl/benzyl)aminophenyl)cyclopropyl carbamates (60a-o).1 Finally, 

cleavage of the Boc group by the addition of 4 N hydrochloric acid in dioxane/tetrahydrofuran 

yielded the final compounds, trans tert-butyl 2-(4-

aroyl/benzyl)aminophenyl)cyclopropylamine hydrochlorides (12-26) [744]. The arolyl 

chloride intermediates (49a-c) were synthesized starting from methyl-4- iodobenzoate (46), 

which was treated with the appropriate alkynes in the presence of   PdCl2(PPh3)2 and CuI in 

dry DMF/THF to provide the corresponding substituted para-alkyne-benzoates (47a-c) [745-

746]. The resulting esters were dissolved in MeOH, treated with aqueous 2 N LiOH and heated 

under reflux to give the carboxylic acids (48a-c). Further the appropriate carboxylic acid was 

heated under reflux with excess thionyl chloride to furnish the arolyl chlorides (49a-c). Table 

8.1 depicts the physico-chemical data of the final compounds 1-26. 

Scheme 1a 

 
a Reagents and conditions: (a) PyBop, Et3N, dry DMF, N2 atmosphere, overnight, rt; (b) 4 N HCl 

in dioxane, anhydrous THF, 24-48 h, 0 °C-rt. 

Scheme 2a 
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a Reagents and conditions: (a) Et3N, anhydrous DCM, 2-4 h, 0 °C-rt; (b) 4 N HCl in dioxane, 

anhydrous THF, 24-48 h, 0 °C-rt. 

Table 8.1. Physico-chemical data of compounds 1-26 
Sr. 
No 

Lab 
Code R Structure M.W. M.P. 

(°C) 
Yield 
(%) 

1 MC33
71 

  

523.03 195-
197 77 

2 MC33
84 

N N

HN

O
O

H3C

 
 

572.53 190-
192 79 

3 MC34
73 

 
 

523.03 186-
189 78 

4 MC34
13  

 

411.89 177-
179 62 
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5 MC32
88 

  

411.89 192-
194 61 

6 MC33
82 

  

461.95 202-
204 63 

7 MC39
37  

 

264.75 >250 75 

8 MC39
34  

 

314.81 >250 80 

9 MC39
35 

 
 

312.79
3 >250 86 

10 GS4 

 

N
H

O

NH3 Cl

 

312.80 >250 70 

11 MC32
05 

  

465.98 
218-
220 

 
70 

Cm
pd 

Lab 
Code R1  M.W. M.P. 

(°C) Yield 

12 GS5 

 
 

388.90 >250 69 

13 GS6 

 
 

352.86 >250 72 
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14 GS7 

 
 

326.82 >250 78 

15 MC25
84 

  

288.78 210-
212 83 

16 GS1 

 
 

302.80 >250 86 

17 GS2 
 

 

330.86 >250 79 

18 GS3 

 
 

313.79 >250 65 

19 MC26
52 

 
 

364.87 >250 85 

20 MC26
53 

  

338.84 >250 81 

21 MC26
34 

  

338.84 >250 76 

22 MC26
46  

 

352.86 238-
240 84 

23 MC26
45 

  

352.86 240-
242 78 

24 MC26
39 

  

302.80 180-
182 73 

25 GS8 
 

 

326.82 >250 75 
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26 GS9 

 
 

352.86 >250 60 

 

8.3 Experimental Section  
Chemistry. Melting points were determined on a Buchi 530 melting point apparatus. 1H-

NMR spectra were recorded at 400 MHz using a Bruker AC 400 spectrometer; chemical shifts 

are reported in δ (ppm) units relative to the internal reference tetramethylsilane (Me4Si). 

Mass spectra were recorded on a API-TOF Mariner by Perspective Biosystem (Stratford, Texas, 

USA), samples were injected by an Harvard pump using a flow rate of 5−10 μL/min, infused in 

the Electrospray system. All compounds were routinely checked by TLC and 1H-NMR. TLC was 

performed on aluminum-backed silica gel plates (Merck DC, Alufolien Kieselgel 60 F254) with 

spots visualized by UV light or using a KMnO4 alkaline solution. All solvents were reagent 

grade and, when necessary, were purified and dried by standard methods. Concentration of 

solutions after reactions and extractions involved the use of a rotary evaporator operating at 

reduced pressure of ~ 20 Torr. Organic solutions were dried over anhydrous sodium sulfate. 

Elemental analysis has been used to determine purity of the described compounds, that is > 

95%. Analytical results are within 0.40% of the theoretical values. All chemicals were 

purchased from Sigma Aldrich s.r.l., Milan (Italy) or from TCI Europe N.V., Zwijndrecht 

(Belgium), and were of the highest purity. As a rule, samples prepared for physical and 

biological studies were dried in high vacuum over P2O5 for 20h at temperatures ranging from 

25 to 40 °C, depending on the sample melting point. 

General Procedure for the synthesis of 2- (3/4-nitrophenyl) cyclopropylcarboxylic acids 

(28a,b, Scheme 3). Example: trans 2-(4-nitrophenyl)cyclopropylcarboxylic acid (28a). The 

commercially available trans -2-phenylcyclopropylcarboxylic 27 (1 eq) was treated with 69.5% 

nitric acid solution (15 eq) and left to stir at rt for 7 h. After completion of the reaction, it was 

filtered and washed with water to give the trans 2-(4-Nitrophenyl)cyclopropylcarboxylic and 

trans 2-(3-Nitrophenyl)cyclopropylcarboxylic (4:1). Crystallization of the resulting solid from 

benzene affords the pure trans 2-(4-nitrophenyl)cyclopropylcarboxylic 28a as a white solid. 
1H NMR (DMSO, 400 MHz): δ 1.44–1.48 (m, 1H, CHH cyclopropane), 1.51-1.56 (m, 1H, CHH 

cyclopropane), 1.96–2.00 (m, 1H, CHCOOH cyclopropane), 2.54–2.59 (m, 1H, PhCH 
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cyclopropane), 7.44–7.46 (d, 2H, benzene protons), 8.11–8.13 (d, 2H, benzene protons), 12.47 

(bs, 1H, COOH). 

General Procedure for the Synthesis of trans tert-Butyl 2-(3/4-Nitrophenyl)cyclopropyl 

Carbamates (29ab, Scheme 3): example trans tert-butyl 2-(4-nitrophenyl)cyclopropyl 

carbamate (29a). A solution of trans 2-(4-Nitrophenyl)cyclopropylcarboxylic 28a (12.5 mmol, 

2.56 g) in dry toluene (75 mL), triethylamine (16.25 mmol, 2.26 mL), diphenylphosphoryl azide 

(15 mmol; 3.23 mL) and tert-butanol (24 mmol, 5 mL) was stirred at 90 °C under N2 

atmosphere for 18 h. Afterwards, di-tert-butyldicarbonate (18.75 mmol, 4.1 g) was added, 

and the reaction was continued at 90 °C for further 2 h. The solvent was removed under 

vacuum and dissolved with a 100 mL EtOAc and extracted with 50 Ml of H2O and 50 mL of 

saturated NaHCO3. After drying with Na2SO4 and evaporation, the resulting residue was 

purified on flash chromatography by silica gel eluting with ethyl acetatet/n-hexane to give 

pure trans tert-butyl 2-(4-nitrophenyl)cyclopropyl carbamate 29a as a white solid. 1H NMR 

(CDCl3, 400 MHz, δ; ppm) δ 1.10–1.15 (m, 1H, CHH cyclopropane), 1.19-1.23 (m, 1H, CHH 

cyclopropane), 1.39 (s, 9H, C(CH3)3), 2.40-2.45 (m, 1H, CHNH cyclopropane), 2.62-2.67,(m, 1H, 

PhCH cyclopropane), 4.96 (bs, 1H, NHCO), 7.29-7.31 (d, 2H, benzene protons), 7.84-7.86 (d, 

2H, benzene protons). 

General procedure for the synthesis of trans tert-Butyl 2-(3/4-amophenyl)cyclopropyl 

Carbamate (30a,b, Scheme 3): example trans tert-Butyl 2-(4-Amminophenyl)cyclopropyl 

Carbamate (30a). To a solution trans tert-butyl 2-(4-nitrophenyl)cyclopropyl carbamate 29a 

(6.72 mmol, 1.87 g) in methanol (100 mL), 10% Pd/C (100 mg) was added at nitrogen 

atmosphere. The reaction mixture was stirred under hydrogen gas at room temperature for 

4 h. After completion, the reaction mixture was filtered off through a Celite bed, and the 

filtrate was concentrated. The crude was subjected to flash column chromatography using 

ethyl acetate/hexane as eluting system to provide the trans tert-butyl 2-(4-

amminophenyl)cyclopropyl carbamate 30a as an oil. 1H NMR (CDCl3, 400 MHz, δ; ppm) 

δ 0.98–1.01 (m, 1H, CHH cyclopropane), 1.17-1.21 (m, 1H, CHH cyclopropane), 1.38 (s, 9H, 

C(CH3)3), 1.85-1.90 (m, 1H, CHNH cyclopropane), 2.55-2.57 (m, 1H, PhCH cyclopropane), 3.49 

(bs, 2H, –NH2), 4.73 (bs, 1H, NHCO), 6.52-6.54 (d, 2H, benzene protons), 6.88-8.90 (d, 2H, 

benzene protons). 

Scheme 3 
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Reagents and conditions: (a) 69.5% HNO3, rt; (b) (i) Et3N, DPPA, tert-BuOH, anhydrous toluene, 

N2 atmosphere, 16 h, 90 °C; (ii) di-tert-butyl dicarbonate, 2 h, 90 °C; (c) H2, 10% Pd/C, anhydrous 
MeOH, 5 h, rt. 

General procedures for preparation of tert-butyl 3/4-morpholino/(4-methylpiperazin-

1-yl)-3/4-nitrobenzoate (32a-c) Scheme 4. Example: tert-Butyl 4-(4-methylpiperazin-1-yl)-3-

nitrobenzoate (32b. A suspension of 2.0 g (7.8 mmol) tert butyl 4-chloro-3-nitro-benzoate 31, 

3.22 g (23.3 mmol) of dry K2CO3) and 2.58 mL (23.3 mmol) of N-methylpiperazine was stirred 

in 10 mL of dry DMF at 90 °C for 5 h in a sealed tube. Then, the reaction mixture was quenched 

with water and extracted with EtOAc. The combined organic phases were washed with brine, 

dried over Na2SO4, concentrated and the residue was purified on silica gel (eluent: EtOAc) and 

recrystallized from toluene to obtain 2.3 g (92%) of intermediate 32b as a yellow solid. 1H 

NMR (CDCl3, 400 MHz) δ, 1.61 (s, 9H, -COOC(CH3)3), 2.38 (s, 3H, -NCH3), 3.20 (t, 4H, -

PhN(CH2)2), 2.58 (t, 4H, -CH3N(CH2)2), 7.07-7.10 (d, 1H, aromatic proton), 8.03-8.06 (d, 1H, 

aromatic proton), 8.37 (s, 1H, aromatic proton); MS (EI) m/z: 321.17 [M]+; m.p. 138- 140°C.  

tert-butyl 3/4-amino-3/4-morpholino/(4-methylpiperazin-1-yl)benzoate (33a-c) 

Scheme 4. Example: tert-Butyl 3-amino-4-(4-methylpiperazin-1-yl)benzoate (33b). A 

suspension of 0.80 g (2.5 mmol) of the tert-butyl nitrobenzoate 32b in 30 mL MeOH and 0.13 

g (0.12 mmol) of 10% palladium on carbon were placed in a Parr apparatus and was 

hydrogenated at 50 psi and 25 °C for 5 h. The palladium was then filtered off and the MeOH 

was evaporated to afford an oily residue that was first purified on silica gel (eluent: 

CHCl3/MeOH, 10:1, v:v) and then recrystallized from cyclohexane to provide 0.29 g (65%) of 

the tert-butyl 4-amino-benzoate 33b as a yellow solid. 1H NMR (CDCl3, 400 MHz) δ 1.58 (s, 

9Η,-COOC(CH3)3), 2.38 (s, 3H, -N(CH3)),  2.61 (t, 4H, -CH3N(CH2)2), 2.98 (t, 4H, -PhN(CH2)2), 3.96 



 
 

160 
 

(s, 2H, Ph(NH2)), 6.99-7.00 (d, 1H, aromatic proton), 7.36 (d, 1H, aromatic proton), 7.41-7.43 

(dd, 1H, aromatic proton),; MS (EI) m/z: 291.19 [M]+; m.p. 114-116°C. 

tert-butyl 3/4-(benzyloxycarbonylamino)-3/4-morpholino/(4-methylpiperazin-1-

yl)benzoate (34a-c) Scheme 4. Example: tert-Butyl 3-(benzyloxycarbonylamino)-4-(4-

methylpiperazin-1-yl)benzoate (34b). 

Benzyl chloroformate (2.1 mmol, 0.3 mL) was slowly added at 0 °C to a solution of 0.50 g 

(1.72 mmol) of tert-butyl 4-amino-3-(4-methylpiperazin-1-yl)benzoate (33b) 1in 10 mL of THF 

and 0.29 mL (2.1 mmol) of TEA. After stirring at RT for 1.5 h the solution was then quenched 

with water (20 mL) and extracted with CH2Cl2 (3 x 20 mL). The organic phases were washed 

with brine, dried over Na2SO4 and concentrated to afford a residue that was purified on silica 

gel (eluent EtOAc/CHCl3, 1:1, v:v) providing 0.53 g (65%) of the tert-butyl benzoate 34b. 1H 

NMR (CDCl3, 400 MHz) δ 1.60 (s, 9Η, -COOC(CH3)3), 2.20 (s, 3H, -N(CH3)),  2.61 (t, 4H, 

CH3N(CH2)2), 2.92 (t, 4H, -PhN(CH2)2), 5.28 (s, 2H, -COOCH2Ph), 7.15-7.17 (d, 1H, aromatic 

proton), 7.37-7.47 (m, 5H, -CH2Ph), 7.69-7.71 (m, 2H, aromatic proton), 8.69 (br s, 1H, -

PhNHCOO),; MS (EI) m/z: 425.23 [M]+. 

3/4-(benzyloxycarbonylamino)-3/4-morpholino/(4-methylpiperazin-1-yl)benzoic acid 

(35a-c) Scheme 4. Example: 3-(benzyloxycarbonylamino)-4-(4-methylpiperazin-1-yl)benzoic 

acid (35b). A solution of 0.20 g (0.47 mmol) of tert-butyl benzoate 34b, and 0.72 mL (9.4 

mmol) of TFA in 5 mL of dry CH2Cl2 was stirred at RT overnight. The solvent was then removed 

and the resulting solid was first triturated with 10 mL Et2O and then crystallized from 

acetonitrile to give 0.13 g (76%) of the benzoic acid 35b as a colorless solid. 1H NMR (DMSO-

d6, 400 MHz) δ 2.86 (s, 3H, -N(CH3)), 3.08 (t, 4H, CH3N(CH2)2), 3.20 (t, 4H, -PhN(CH2)2), 5.22 (s, 

2H, -COOCH2Ph), 7.22-7.25 (d, 1H, aromatic proton), 7.36-7.38 (d, 2H, aromatic protons),  

7.40-7.46 (m, 3H, aromatic protons), 7.66-7.68 (d, 1H, aromatic proton), 8.36 (s, 1H, aromatic 

proton),  9.85 (br s, 1H, -PhNHCOO),12.84 (br s, 1H, -COOH); MS (EI) m/z: 369.17 [M]+; m.p. 

205-207°C. 

Scheme 4a 
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a Reagents and conditions: (a) morpholine or 4-methylpiperazine, K2CO3, DMF,90 °C. 5 h; (b) 10% 

Pd-C, MeOH, Parr apparatus, 50 psi, 25 °C, 5h; (c) Benzyl chloroformate, TEA, THF, RT 1.5 h; (d) TFA, 
CH2Cl2, RT, overnight.  

General procedure for the synthesis of the tert-butyl 1H-pyrrole and -1H-indole–2- and 

-3-carboxylates (37-c, Scheme 5). Example: tert-butyl 1H-pyrrole-3-carboxylate (37a). A 

mixture of 1H-pyrrole-3-carboxylic acid 36a (1.0 mmol, 0.11 g) and N,N-dimethylformamide 

di-tert-butyl acetal (3.96 mmol, 0.80 g, 0.95 mL) in anhydrous benzene (15 mL) was stirred at 

80 ºC for 1 h. Afterwards, the solvent was evaporated and the residue obtained was purified 

by column chromatography (SiO2 eluting with ethyl acetate/petroleum ether 1:9) to provide 

the pure 37a. 1H NMR (CDCl3, 400 MHz, δ; ppm) δ 1.63 (s, 9H, (CH3)3), 6.78 (s, 1H, pyrrole 

proton), 7.12 (s, 1H, pyrrole proton), 7.46 (s, 1H, pyrrole proton), 11.3 (bs, 1H, NH pyrrole). 

MS (EI) m/z: 167.09 [M]+. 

General procedure for the synthesis of the 1-benzyl 2- and 3-tertbutyl 1H-pyrrole- and 

1H-indole-1,2- and -1,3-dicarboxylates 38a-c (Scheme 5). Example: 1-benzyl 3-tert-butyl 1H-

pyrrole-1,3- dicarboxylate (38a). Tert-butyl 1H-pyrrole-3-carboxylate 37a (0.63 mmol, 0.14 g) 

in dry THF (2 mL) was added to a solution of NaH (0.94 mmol, 0.04 g) in dry THF (3 mL) at 0 

°C, and the mixture was stirred at room temperature for 30 min, followed by the addition of 

benzyl chloroformate (0.94 mmol, 0.13 mL), and the reaction was stirred for 1 h further. The 

reaction was then quenched with water (20 mL) and extracted with chloroform (3 × 30 mL). 

The organic layers were washed with saturated sodium chloride solution (2 × 15 mL), dried 
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with anhydrous sodium sulfate and concentrated. The residue was purified by 

chromatographic column on silica gel eluting with ethyl acetate/n-hexane 1:10 to afford the 

pure 38a. 1H NMR (CDCl3, 400 MHz, δ; ppm) δ 1.63 (s, 9H, (CH3)3), 5.27 (s, 2H, CH2), 6.48 (s, 

1H, pyrrole proton), 7.02 (s, 1H, pyrrole proton), 7.33- 7.36 (m, 3H, benzene protons), 7.54-

7.56 (m, 2H, benzene protons), 8.03 (s, 1H, pyrrole proton. MS (EI) m/z: 401.13 [M]+. 

General procedure for the synthesis of the 1- (benzyloxycarbonyl)-1H-pyrrole- and -1H-

indole-2- and -3- carboxylic acids 39a-c (Scheme 5). Example: 1- (benzyloxycarbonyl)-1H-

pyrrole-3-carboxylic acid (39a). 1-Benzyl 3-tert-butyl 1H-pyrrole-1,3-dicarboxylate 38a (0.64 

mmol, 0.22 g) was added to a solution of trifluoroacetic acid (0.77 mmol, 0.05 mL) in dry 

dichloromethane (3 mL). The resulting mixture was stirred for 5 h at room temperature. The 

reaction was then quenched with water (30 mL) and extracted with ethyl acetate (3 × 30 mL). 

The organic layers were washed with saturated sodium chloride solution (2 × 15 mL), dried 

with anhydrous sodium sulfate and concentrated in vacuo. The precipitated colorless solid 

was filtered, washed with petroleum ether and dried to afford the pure 39a. 1H NMR (DMSO-

d6, 400 MHz, δ; ppm) δ 5.45 (s, 2H, CH2), 6.78 (s, 1H, pyrrole proton), 7.12 (s, 1H, pyrrole 

proton), 7.43.7.46 (m, 3H, benzene protons), 7.64-7.66 (m, 2H, benzene protons), 8.33 (s, 1H, 

pyrrole proton), 12.09 (bs, 1H, COOH); MS (EI) m/z: 245.07 [M]+. 

Scheme 5a 
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a Reagents and conditions: (a) N,N-dimethylformamide di-tert-butyl acetal, toluene, 1 h, 80 °C; 
(b) 60% NaH, dry THF, benzyl chloroformate, 1 h, rt; (c) trifluoroacetic acid, dry DCM, 5 h, rt. 

General procedure for Sonogashira reaction in liquid phase compounds 47a-c (Scheme 

6): example methyl- 4-cyclopropylethynyl-benzoate (47b). Methyl-4-iodobenzoate 46 (2.50 

mmol; 655 mg), triethylamine (25 mmol; 3.5 mL), CuI (5 mol %), PdCl2(PPh3)2 (5 mol %), and 

ethynylcyclopropane (3.25 mmol) were dissolved in dry DMF (10 mL). After the mixture was 

stirred at 70 °C overnight, it was quenched with EtOAc and filtrated on Celite. The EtOAc 

solution was washed with water and brine, and the organic layer was dried over MgSO4 and 

evaporated. The residue was purified by flash chromatography (ethyl acetate/hexane) to give 

methyl- 4-cyclopropylethynyl-benzoate 47b as a white solid. 1H NMR (400 MHz, CDCl3): δ 

0.75-0.77 (m, 2H, CH2 cyclopropyl), 0.82-0.85 (m, 2H, CH2 cyclopropyl), 1.38-1.42 (m, 1H CH 

cyclopropyl), 3.83 (s, 3H, CH3), 7.33-7.36 (d, 2H, benzene protons), 7.85-7.88 (d, 2H, benzene 

protons). 

General Procedure for the Preparation of 4-(Alkynyl)benzoic acids 48a-c (Scheme 6): 

example 4-(phenylethynyl)benzoic acid (48a). Methyl 4-(phenylethynyl)benzoate 47a (2.27 

mmol, 1 eq) was dissolved in a 60 mL of methanol/water (3:1), 2 N LiHO (6.81 mmol, 3 eq) 

was added thereto, and the mixture was stirred at room temperature for 5 min, and heated 

under reflux for overnight. The reaction mixture was allowed to cool to room temperature, 

and the solvent was evaporated under reduced pressure. The residue was suspended in 

water, and the suspension was acidified with 1 N HCl solution (pH = 2-4), and stirred at room 

temperature for 30 min. The obtained suspension was filtered, washed with water, and dried 

to obtain 4-(phenylethynyl)benzoic acid 48a as a white solid. 1H NMR (400 MHz, CDCl3): δ 

7.45-7.47 (m, 3H, benzene protons), 7.59-7.61 (m, 2H, benzene protons), 7.66-7.69 (d, 2H, 

benzene protons), 7.96-7.99 (d, 2H, benzene protons), 13.19 (bs, 1H, OH). 

General Procedure for the preparation of aroyl chlorides 49a-c (Scheme 6): example 4-

propynebenzoyl chloride (49c). A mixture of 4-phenylethynyl benzoic acid 48c (3 mmol) in 

excess of SOCl2 with two drops of N,N-dimethylformamide was refluxed at 85 °C for 3 h with 

nitrogen purge before the SOCl2 was distilled off and purified by flash chromatography with 

DCM to afford 4-propynebenzoyl chloride 49c as a low melting yellowish-solid. 1H NMR (400 

MHz, CDCl3): δ 2.03 (s, 3H, CH3), 7.41-7.43 (d, 2H, benzene protons), 7.95-7.98 (d, 2H, benzene 

protons). 

Scheme 6a 
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a Reagents and conditions: (a) alkyne, 5% PdCl2(PPh3)2, 5% CuI, Et3N, dry THF/DMF, 

overnight, rt-70 °C; (b) 2 N LiOH, MeOH:H2O, (3:1) overnight, rt; (c) SOCl2, 3 h reflux. 

General procedures for the preparation of carbamates (45a-j) according to Method 1 

(Scheme 1). Example: tert-Butyl ((1R,2S)-2-(4-((R)-2-(((Benzyloxy)carbonyl)amino)-3-

phenylpropanamido)phenyl) cyclopropyl)carbamate 45j. Triethylamine (0.89 mmol, 0.12 

mL) and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.89 mmol, 0.39 g) 

were added to a solution of N-benzyloxycarbonyl-D-phenylalanine 44 (0.74 mmol, 0.22 g) and 

N-hydroxybenzotriazole (0.89 mmol, 0.12 g) in dry dichloromethane (5 mL), and the mixture 

was stirred over a period of 1h. After this time, the compound 30a [tert-butyl ((1R,2S)-2-(4-

aminophenyl)cyclopropyl)carbamate, 0.81 mmol, 0.2 g] was added, and the stirring was 

continued for 1 h. The reaction was poured into water (50 mL) and extracted with 

dichloromethane (3 × 10 mL). The organic layers were washed with saturated sodium chloride 

solution (3 × 10 mL), dried with anhydrous sodium sulfate and concentrated. The residue was 

purified by chromatographic column on silica gel eluting with ethyl acetate/n-hexane 1/2 to 

afford the pure 45j as a colorless solid. 1H NMR (CDCl3, 400 MHz, δ; ppm) δ 0.87-0.89 (m, 1H, 

CHH cyclopropane), 1.05-1.07 (m, 1H, CHH cyclopropane), 1.47 (s, 9H, C(CH3)3), 1.99-2.01 (m, 

1H, PhCH), 2.67-2.69 (m, 1H, CHNH), 3.08-3.13 (m, 2H, PhCH2CH), 4.54-4.56 (m, 1H, 

PhCH2CH), 4.89 (bs, 1H, NHCOOC(CH3)3), 5.10 (s, 2H, PhCH2OCONH), 5.60 (bs, 1H, NHCOOBn), 

7.03-7.05 (d, 2H, benzene protons), 7.21-7.34 (m, 12H, benzene protons), 7.77 (bs, 1H, 

PhNHCOCH); MS (EI) m/z: 529.26 [M]+. 

General Procedure for the Synthesis of trans tert-butyl 2-(3/4-

aroyl/benzyl)aminophenyl)cyclopropyl carbamates  60a-o (Method 2, Scheme 2). Example: 

trans tert-butyl (2-(4-(4-propylbenzamido)phenyl)cyclopropyl)carbamate (60f). 

Triethylamine (0.846 mmol; 0.120 mL; 1.5 equiv) and 4-propyl-benzoyl chloride 52 

(0.677 mmol; 0.130 mL; 1.2 equiv) were added dropwise to a cooled (0 °C) solution of trans 

tert-butyl 2-(4-aminophenyl)cyclopropylcarbamate 30a (0.564 mmol; 140 mg; 1.0 equiv) in 

dry dichloromethane (5 mL). The mixture was stirred at room temperature for 2.3 h, 
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afterwards the reaction was quenched with saturated NaHCO3 (30 mL) and extracted with 

EtOAc (3 × 30 mL), washed with saturated NaHCO3 and Na2CO3 solution and dried with 

sodium sulfate. The solvent was removed under vacuum and the residue purified by flash 

chromatography on silica gel 60 eluting with ethyl acetate:hexane system to provide 

pure trans tert-butyl (2-(4-(4-propylbenzamido)phenyl)cyclopropyl)carbamate 60f as white 

solid. 1H NMR (CDCl3, 400 MHz): δ 0.86–0.90 (t, 3H, CH2CH2CH3), 1.05–1.09 (m, 1H, CHH 

cyclopropane), 1.18 (s, 1H, CHH cyclopropane), 1.39 (s, 9H,  COO(CH3)3), 1.57–1.63 (m, 2H, 

CH2CH2CH3), 1.94–1.99 (m, 1H,  CHNHCOO(CH3)3 cyclopropane), 2.56–2.60 (t, 2H, 

CH2CH2CH3), 2.62–2.64 (m, 1H, PhCH cyclopropane), 4.78 (bs,1H,  NHCOO(CH3)3), 7.06–7.08 

(d, 2H, benzene protons), 7.20–7.22 (d, 2H, benzene protons), 7.45–7.47 (d, 2H, benzene 

protons), 7.68 (bs, 1H, NHCOPh), 7.70–7.72 (d, 2H, benzene protons). MS (EI) m/z: 395.23 

[M]+. 

General Procedure for the preparation of the final compounds 1-26 (Scheme 1 and 2): 

example trans 2-(4-(4-cyanobenzamido)phenyl)cyclopropylamine hydrochloride (18, GS3). 

trans tert-Butyl (2-(4-(4-cyanobenzamido)phenyl)cyclopropyl)carbamate 60g (95.5 mg, 

0.253 mmol; 1.0 equiv) was dissolved in dry tetrahydrofuran (6 mL) and the solution was 

stirred at 0 °C. Then 4 N HCl in 1,4-dioxane (4.1 mL; 16.45 mmol; 65 equiv) was added 

dropwise and the mixture was allowed to warm at room temperature. After 48 h, when 

conversion was complete, the suspension was filtered and washed with dry THF and then with 

dry Et2O to afford 18 as a hydrochloride salt. 1H NMR (DMSO-d6, 400 MHz, δ; ppm) δ 1.17–

1.22 (m, 1H, CHH cyclopropane), 1.36–1.34 (m, 1H, CHH cyclopropane), 2.32–2.34 (m, 1H, 

CHNH2), 2.77–2.82 (m, 1H, PhCH), 7.15–7.17 (d, 2H, benzene protons), 7.70–7.72 (d, 2H, 

benzene protons), 8.01–8.03 (d, 2H, benzene protons), 8.10–8.12 (d, 2H, benzene protons), 

8.46 (bs, 3H, NH3
+), 10.51 (bs, 1H, CONH). 

Benzyl N-[5-[[4-[trans-2-aminocyclopropyl]phenyl]carbamoyl]-2-morpholinophenyl] 

carbamate hydrochloride (1, MC3371). Yield: 77%. 1H NMR (DMSO-d6, 400 MHz) δ 1.21 (m, 

1H, -CHH cyclopropane), 1.38 (m, 1H, -CHH cyclopropane), 2.33 (m, 1H, -CHNH2),  2.89 (t, 4H, 

-N(CH2)2), 3.88 (m, 4H, -O(CH2)2), 5.27 (s, 2H, -NHCOOCH2Ph), 7.15-7.18 (d, 2H, aromatic 

protons), 7.32-7.46 (m,5H, aromatic protons), 7.71-7.73 (d, 2H, aromatic protons), 7.79-7.86 

(m, 2H, aromatic protons), 8.03-8.05 (d, 1H, aromatic proton), 8.58 (br s, 3H, -NH3 
+)8.75 (br 

s, 1H, -NHCOOCH2Ph), 10.30 (br s, 1H, -PhCONH), 11.13 (br s, 1H, -NH+); MS (ESI) m/z: 487 

([M+H]+). 
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Benzyl N-[5-[[4-[trans-2-aminocyclopropyl]phenyl]carbamoyl]-2-(4-methylpiperazin-1- 

yl)phenyl]carbamate dihydrochloride (2, MC3384). 1H NMR (DMSO-d6, 400 MHz) δ 1.20 

(m, 1H, CHH cyclopropane), 1.39 (m, 1H, -CHH cyclopropane, 2.34 (m, 1H, -CHNH2),), 2.83 (t, 

4H, -CH3N(CH2)2), 3.15 (m, 4H, -PhN(CH2) 2), 3.33 (s, 3H, -NCH3), 5.23 (s, 2H, -NHCOOCH2Ph),  

7.15-7.18 (d, 2H, aromatic protons), 7.30-7.48 (m, 5H, aromatic protons), 7.70-7.72 (d, 2H, 

aromatic protons), 7.79-7.86 (m, 2H, aromatic protons), 8.01-8.03 (d, 1H, aromatic proton), 

8.56 (br s, 3H, -NH3 +), 8.74 (br s, 1H, -NHCOOCH2Ph), 10.27 (br s, 1H, -PhCONH), 11.12 (br s, 

1H, -NH+); MS (ESI) m/z: 500 ([M+H]+). 

Benzyl N-[4-[[4-[trans-2-aminocyclopropyl]phenyl]carbamoyl]-2-morpholinophenyl] 

carbamate hydrochloride (3, MC3473). Yield: 78%. 1H NMR (DMSO-d6, 400 MHz) δ1.22 

(m, 1H, -CHH cyclopropane), 1.38 (m, 1H, -CHH cyclopropane), 2.33 (m, 1H, -CHNH2), 2.88 (t, 

4H, -N(CH2)2), 3.79 (m, 4H, -O(CH2)2), 5.22 (s, 2H, -NHCOOCH2Ph), 7.14-7.16 (d, 1H, aromatic 

proton), 7.31-7.46 (m, 6H, aromatic protons), 7.69-7.71 (d, 1H, aromatic proton), 7.74-7.83 

(m, 3H, aromatic protons), 7.94-8.02 (m, 2H, aromatic protons), 8.47 (br s, 3H, -NH3 +),  8.61 

(br s, 1H, - NHCOOCH2Ph), 10.15 (br s, 1H, -PhCONH); MS (EI) m/z: 486.23 [M]+. 

trans benzyl 3-((4-(2-aminocyclopropyl)phenyl)carbamoyl)-1Hpyrrole-1-carboxylate 

hydrochloride (4, MC3413). Mp, 177-179 °C (acetonitrile/methanol); yield, 62%. 1H NMR 

(DMSO-d6, 400 MHz, δ; ppm) δ 1.33-1.35 (m, 2H, CH2 cyclopropane), 2.27 (m, 1H, CHNH2HCl), 

2.77-2.78 (m, 1H, PhCH), 5.46 (s, 2H, CH2), 6.79 (s, 1H, pyrrole proton), 7.11-7.13 (d, 2H 

benzene protons), 7.41-7.47 (m, 4H, benzene and pyrrole protons), 7.52-7.54 (d, 2H, benzene 

protons), 7.64-7.66 (d, 2H, benzene protons), 8.33 (bs, 3H, NH3
+), 9.91 (bs, 1H, CONH) ppm; 

13C NMR (DMSO-d6, 100 MHz, δ; ppm) δ 17.2, 25.6, 34.3, 66.3, 102.4, 109.8, 115.0, 118.9, 

121.0 (2C), 125.2 (2C), 127.0 (2C), 127.8, 128.7 (2C), 134.6, 136.4, 137.9, 150.1, 164.9 ppm; 

MS (EI) m/z: 375.16 [M]+ 

trans benzyl 2-((4-(2-aminocyclopropyl)phenyl)carbamoyl)-1Hpyrrole-1-carboxylate 

hydrochloride (5, MC3288). Mp, 192-194 °C (methanol); yield, 61%. 1H NMR (DMSO-d6, 400 

MHz, δ; ppm) δ 1.33-1.35 (m, 2H, CH2 cyclopropane), 2.28 (m, 1H, CHNH2HCl), 2.76-2.78 (m, 

1H, PhCH), 5.57 (s, 2H, CH2), 6.79 (s, 1H, pyrrole proton), 6.91 (s, 1H, pyrrole proton), 7.11-

7.13 (d, 2H benzene protons), 7.39-7.43 (m, 4H, benzene and pyrrole protons), 7.52-7.54 (d, 

2H, benzene protons), 7.64-7.66 (d, 2H, benzene protons), 8.31 (bs, 3H, NH3
+), 10.01 (bs, 1H, 

CONH) ppm; 13C NMR (DMSO-d6, 100 MHz, δ; ppm) δ 17.2, 25.6, 34.3, 66.1, 109.0, 110.8, 
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121.0 (2C), 124.0, 124.7, 125.2 (2C) 127.1 (2C), 127.7, 128.6 (2C), 134.5, 136.1, 137.6, 150.3, 

162.7 ppm; MS (EI) m/z: 375.18 [M]+. 

trans benzyl 2-((4-(2-aminocyclopropyl)phenyl)carbamoyl)-1Hindole-1-carboxylate 

hydrochloride (6, MC3382). Mp, 202-204 °C (methanol); yield, 63%. 1H NMR (DMSO-d6, 400 

MHz, δ; ppm) δ 1.31-1.33 (m, 2H, CH2 cyclopropane), 2.26 (m, 1H, CHNH2HCl), 2.74-2.75 (m, 

1H, PhCH), 5.44 (s, 2H, CH2), 7.28-7.31 (m, 2H, benzene and indole protons), 7.31-7.43 (m, 4H 

benzene and indole protons), 7.47-7.52 (d, 2H, benzene protons), 7.59-7.61 (d, 2H, benzene 

protons), 7.69-7.71 (d, 2H, benzene protons), 7.94-7.96 (d, 1H, benzene proton), 8.14 (s, 1H, 

indole proton), 8.30 (bs, 3H, NH3
+), 9.99 (bs, 1H, CONH) ppm; 13C NMR (DMSO-d6, 100 MHz, 

δ; ppm) δ 17.2, 25.6, 34.3, 66.3, 114.4, 115.8, 119.9, 121.2 (2C), 123.9, 124.1, 125.6 (2C), 127.0 

(2C), 127.5, 127.9, 128.9 (2C), 134.1, 136.0, 136.9, 137.9, 144.1, 150.0, 162.3 ppm; MS (EI) 

m/z: 425.17 [M]+. 

trans 2-(4-(3-Ethynylbenzamido)phenyl)cyclopropylamine hydrochloride (10, GS4): 1H 

NMR (DMSO-d6, 400 MHz, δ; ppm) δ 1.16–1.21 (m, 1H, CHH cyclopropane), 1.34–1.40 (m, 1H, 

CHH cyclopropane), 2.28–2.32 (m, 1H, CHNH2), 2.76–2.79 (m, 1H, PhCH), 4.33 (s, 1H, CH 

acetylene), 7.14–7.16 (d, 2H, benzene protons), 7.53–7.57 (t, 1H, benzene protons), 7.68–

7.72 (t, 3H, benzene protons), 7.96–7.98 (d, 1H, benzene protons), 8.05 (s, 1H, benzene 

protons), 8.42 (bs, 3H, NH3
+), 10.33 (bs, 1H, CONH). 

Benzyl ((R)-1-((4-((1S,2R)-2-aminocyclopropyl)phenyl)amino)-1-oxo-3-phenylpropan-

2-yl)carbamate Hydrochloride (11, MC3205). 1H NMR (DMSO-d6, 400 MHz, δ; ppm) δ 1.12-

1.17 (m, 1H, CHH cyclopropane), 1.36-1.40 (m, 1H, CHH cyclopropane), 2.27-2.32 (m, 1H, 

CHNH2), 2.74-2.78 (m, 1H, PhCH), 2.83-2.88 (m, 1H, PhCHHCH), 2.99-3.04 (m, 1H, PhCHHCH), 

4.38-4.42 (t, 1H, PhCH2CHCONH), 4.96 (s, 2H, PhCH2OCONH), 7.09-7.33 (m, 12H, benzene 

protons and NHCOOBn), 7.53-7.55 (d, 2H, benzene protons), 7.70-7.72 (d, 1H, benzene 

proton), 8.47 (bs, 1H, NH3
+), 10.19 (bs, 1H, CONH); MS (EI) m/z: 465.18 [M]+. 

trans 2-(4-(4-Phenylethynylbenzamido)phenyl)cyclopropylamine hydrochloride (12, 

GS5): 1H NMR (DMSO-d6, 400 MHz, δ; ppm) δ 1.18–1.21 (m, 1H, CHH cyclopropane), 1.35–

1.40 (m, 1H, CHH cyclopropane), 2.29–2.33 (m, 1H, CHNH2), 2.78–2.81 (m, 1H, PhCH), 15–7.17 

(d, 2H, benzene protons), 7.46–7.47 (m, 3H, benzene protons), 7.60–7.62 (m, 2H, benzene 

protons), 7.71–7.74 (m, 4H, benzene protons), 8.01–8.03 (d, 2H, benzene protons), 8.38 (bs, 

3H, NH3
+), 10.34 (bs, 1H, CONH). 
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 trans 2-(4-(4-Cyclopropylethynylbenzamido)phenyl)cyclopropylamine hydrochloride 

(13, GS6): 1H NMR (DMSO-d6, 400 MHz, δ; ppm) δ 0.78 (s, 2H, CH2 cyclopropane acetylene), 

0.92–0,93 (d, 2H, CH2 cyclopropane acetylene), 1.16–1.20 (m, 1H, CHH cyclopropane), 1.35–

1.39 (m, 1H, CHH cyclopropane), 1.55–1.62 (m, 1H, CH cyclopropane acetylene), 2.29–2.33 

(m, 1H, CHNH), 2.78–2.80 (m, 1H, PhCH), 7.13–7.15 (d, 2H, benzene protons), 7.49–7.51 (d, 

2H, benzene protons), 7.69–7.71 (d, 2H, benzene protons), 7.90–7.92 (d, 2H, benzene 

protons), 8.38 (bs, 3H, NH3
+), 10.26 (bs, 1H, CONH). 

trans 2-(4-(4-Propynylbenzamido)phenyl)cyclopropylamine hydrochloride (14, GS7): 1H 

NMR (DMSO-d6, 400 MHz, δ; ppm) δ 1.16-1.21 (m, 1H, CHH cyclopropane), 1.34-1.38 (m, H, 

CHH cyclopropane), 2.09 (s, 3H, CH3), 2.31–2.33 (m, 1H, CHNH), 2.77–2.79 (m, 1H, PhCH), 

7.13–7.15 (d, 2H, benzene protons), 7.52–7.54 (d, 2H, benzene protons), 7.69–7.72 (d, 2H, 

benzene protons), 7.91–7.93 (d, 2H, benzene protons), 8.40 (bs, 3H, NH3
+), 10.27 (bs, 1H, 

CONH). 

trans 2-(4-(4-Methylbenzamido)phenyl)cyclopropylamine hydrochloride (16, GS1): 1H 

NMR (DMSO-d6, 400 MHz, δ; ppm) δ 1.16–1.22 (m, 1H, CHH cyclopropane), 1.34–1.39 (m, 1H, 

CHH cyclopropane), 2.28–2.33 (m, 1H, CHNH2), 2.39 (s, 3H, CH3), 2.77–2.80 (m, 1H, PhCH), 

7.13–7.15 (d, 2H, benzene protons), 7.32–7.34 (d, 2H, benzene protons), 7.70–7.72 (d, 2H, 

benzene protons), 7.86–7.88 (d, 2H, benzene protons), 8.42 (bs, 3H, NH3
+), 10.15 (bs, 1H, 

CONH). 

trans 2-(4-(4-Propylbenzamido)phenyl)cyclopropylamine hydrochloride (17, GS2): 1H 

NMR (DMSO-d6, 400 MHz, δ; ppm) δ 0.88–0.92 (t, 3H, CH2CH2CH3), 1.16–1.21 (m, 1H, CHH 

cyclopropane), 1.33–1.38 (m, 1H, CHH cyclopropane), 1.57–1.67 (m, 2H, CH2CH2CH3), 2.27–

2.32 (m, 1H, CHNH2), 2.61–2.65 (t, 2H, CH2CH2CH3), 2.76–2.80 (m, 1H, PhCH), 7.12–7.14 (d, 

2H, benzene protons), 7.33–7.35 (d, 2H, benzene protons), 7.69–7.71 (d, 2H, benzene 

protons), 7.86–7.88 (d, 2H, benzene protons), 8.38 (bs, 3H, NH3
+), 10.15 (bs, 1H, CONH). 

trans 2-(3-(4-Propynylbenzamido)phenyl)cyclopropylamine hydrochloride (25, GS8): 1H 

NMR (DMSO-d6, 400 MHz, δ; ppm) δ 1.14-1.19 (m, 1H, CHH cyclopropane), 1.26-1.31 (m, H, 

CHH cyclopropane), 2.09 (s, 3H, CH3), 2.43–2.47 (m, 1H, CHNH), 2.79–2.81 (m, 1H, PhCH), 

7.07–7.08 (d, 1H, benzene protons), 7.21–7.29 (m, 2H, benzene protons), 7.33–7.35 (m, 1H, 

benzene protons), 7.52–7.55 (d, 2H, benzene protons), 8.02–8.04 (d, 2H, benzene protons), 

8.39 (bs, 3H, NH3
+), 10.21 (bs, 1H, CONH). 
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 trans 2-(3-(4-Cyclopropylethynylbenzamido)phenyl)cyclopropylamine hydrochloride 

(26, GS9): 1H NMR (DMSO-d6, 400 MHz, δ; ppm) δ 0.79-80 (d, 2H, CH2 cyclopropane 

acetylene), 0.94–0,96 (m, 2H, CH2 cyclopropane acetylene), 1.15–1.19 (m, 1H, CHH 

cyclopropane), 1.28–1.31 (m, 1H, CHH cyclopropane), 1.58–1.63 (m, 1H, CH cyclopropane 

acetylene), 2.44–2.47 (m, 1H, CHNH), 2.81–2.82 (m, 1H, PhCH), 7.08–7.09 (d, 1H, benzene 

protons), 7.22–7.30 (m, 2H, benzene protons), 7.34–7.35 (d, 1H, benzene protons), 7.51–7.53 

(d, 2H, benzene protons), 8.02–8.04 (d, 2H, benzene protons), 8.38 (bs, 3H, NH3
+), 10.21 (bs, 

1H, CONH). 

8.4 Conclusion and perspectives  
At this stage of the analysis of the results obtained with different LSD1 inhibitors in 

schistosomes, it is too early to draw hard and fast conclusions, as we are still waiting for 

biological results from Prof. Fantappié. However, some of the tested LSD1 inhibitors, including 

MC3935, have striking effects on the morphology of adults and schistosomula. Indeed, these 

effects are correlated with the downregulation of genes involved in egg shell formation and 

transmembrane transporters. Besides, effects on signaling pathways and genes involved in 

cell differentiation and cell fate determination are affected. This suggests that LSD1 inhibitors 

affect parasite development pathways. Taking into account the preliminary effect of MC3935 

on S. mansoni, it has been demonstrated, as expected, that histone demethylase inhibitors 

are essential and attractive targets for development of new antischistosomal agents. 

Indeed, several patents described LSD1 inhibitors, predominantly N-alkylated 

compounds, have been reported with excellent potency and selectivity against LSD1 over 

MAOs. In fact, the first two of the N-alkylated compounds, GSK2879552 and ORY-1001, have 

already been advanced to clinical trials for the treatment of cancer and neurodegenerative 

diseases. Hence, it would be wise to further explore the effect of N-alkylation of MC3935 and 

related derivatives on their activity against S. mansoni (Fig. 8.3).  

 

Fig. 8.3: Suggested further modifications on MC3935 and other analogues. 
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