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Chapter 1 

 

The eye and the adaptive optics retinal imaging 

 

 

 

 

 

 

 

 

1.1 The eye: how we see 
 

The human eye functions as an optical system whose purpose is to bring the outside world 

into focus on the retina, thereby allowing us to see [1]. 

 

 

 

Figure 1.1 Eye image from https://www.nkcf.org/about-keratoconus/how-the-human-eye-works/. 

 

https://www.nkcf.org/about-keratoconus/how-the-human-eye-works/
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Light rays enter the eye through the cornea (about 8 mm of diameter) and pass freely through 

the pupil, the opening in the center of the iris, through which light enters the eye. The iris 

can enlarge and shrink, like a shutter in a camera. After, the light rays pass through the eye’s 

crystalline lens that like the lens in a camera, shortens and lengthens its width to focus light 

rays properly. Light rays pass through a dense, transparent gel-like substance, called the 

vitreous that fills the globe of the eyeball and helps the eye hold its spherical shape. Then, 

the light rays come to a sharp focusing point on the retina, the fovea. The retina functions 

like the film in a camera: captures all the light rays, and transforms this image into electrical 

impulses that are carried by the optic nerve to the brain (Figure 1.1). 

In the retina, the light continues travelling through all the retinal layers until it reaches the 

photoreceptor layers. Once at the photoreceptor layers, the luminance of the light activates 

the rods and the cones. This produces a chemical reaction with the cones and the rods causing 

a propagation of neural signal that stimulates bipolar cells. The process activates the retina 

ganglion cells (RGCs) and the signal passes through the axons of the ganglion cells or retinal 

nerve fibre layer (RNFL) and optic nerve to reach the visual centre at the back of the brain 

via the optic nerve head (ONH). At this point, the neural signal undergoes further processing 

in the visual cortex of the brain before vision take place. 

 

 

1.2 The retina 
 

The retina remains the best studied part of the human brain: embryologically part of the 

central nervous system, but readily and noninvasively accessible to examination, it can 

be investigated with relative ease by both scientists and clinicians [2]. Optical examination 

of internal structures of the eye began as early as 1704 when Jean Méry observed feline 

retinal vasculature and optic disk structure [3]. Subsequent observations of the internal 

structures of the eye were facilitated by Charles Babbage’s invention of the ophthalmoscope 

in 1847, and subsequent implementation by Herman Helmholtz [4]. Modern versions of his 

original design are principally the same and are still in use today, allowing direct observation 

of gross structures within the eye (Figure 1.2). 
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Figure 1.2 A view of the retina seen through an ophthalmoscope. 

 

The retina has a unique cytoarchitecture with its sophisticated neurocircuitry, and is the 

neurosensory component of the eye. Its outer part is supplied by a vascular layer, the choroid, 

and protected by a tough outer layer, the sclera. The cellular elements of the retina are 

arranged and adapted to meet the functional requirements of the different regions of the 

retina. The different retinal layers are showed in Figure 1.3. 

 

 

Figure 1.3 Anatomy of the different retinal layers. (Image from the web site 

http://www.rci.rutgers.edu/~uzwiak/AnatPhys/Vision.htm) 
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All vertebrate retinas are composed of three layers of nerve cell bodies and two layers of 

synapses. The outer nuclear layer (ONL) contains cell bodies of the rods and cones, the inner 

nuclear layer (INL) contains cell bodies of the bipolar, horizontal and amacrine cells and the 

ganglion cell layer (GCL) contains cell bodies of ganglion cells and displaced amacrine cells. 

Dividing these nerve cell layers are two neuropils where synaptic contacts occur. The first 

area of neuropil is the outer plexiform layer (OPL) where connections between rod and 

cones, and vertically running bipolar cells and horizontally oriented horizontal cells occur. 

The second neuropil of the retina, is the inner plexiform layer (IPL), and it functions as a 

relay station for the vertical-information-carrying nerve cells, the bipolar cells, to connect to 

ganglion cells. In addition, different varieties of horizontally- and vertically-directed 

amacrine cells, somehow interact in further networks to influence and integrate the ganglion 

cell signals. It is at the culmination of all this neural processing in the inner plexiform layer 

(IPL) that the message concerning the visual image is transmitted to the brain along the optic 

nerve [5]. 

 

 

Figure 1.4 The structure of a single rod (A) and cone (B) photoreceptor from the adult human retina. 

The outer segment (OS) of a photoreceptor houses the machinery necessary to detect light. The inner 

segment (IS) is responsible for the production of energy and metabolites that will be shipped to the 

outer segment. The cell body is responsible for mediating cell function, and synaptic terminals are 

responsible for carrying the signal to the innervated bipolar cells. (Image from the web site 

http://www.rci.rutgers.edu/~uzwiak/AnatPhys/Vision.htm) 
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The photoreceptors (Figure 1.4) are the sensors of the visual system that convert the capture 

of photons into a nerve signal in a process called phototransduction. The human retina 

contains approximately four to five million cones and 77–107 million rods. Only cones are 

found in the foveola, whereas rods predominate outside the foveola in the remaining fovea 

and all of the peripheral retina. Each photoreceptor consists of an outer segment 

(photopigment), inner segment (mitochondria, endoplasmatic reticulum), a nucleus, an inner 

fiber (analogous to an axon), and the synaptic terminal. The outer segment contains the 

photon-capturing photopigment. Opsin is a transmembranous protein that anchors the 

photopigment in the plasma membrane. In the outer segments, the plasma membrane is 

stacked into hundreds of flat discs, thereby increasing the density of retinal-opsin 

photopigment per photoreceptor cell. The discs in cones are deep invaginations of the outer 

segment membrane, while in rods, the discs are separate from the outer segment (except at 

the base). Shed discs are phagocytosed by the RPE. A nonmotile cilium connects the outer 

and inner segments. The inner segment contains the cellular machinery necessary to meet 

the high metabolic requirements of the photoreceptor cells. Its outer portion (the ellipsoid) 

is packed with mitochondria that produce ATP by oxidative phosphorylation, while the inner 

portion (the myoid) contains smooth and rough endoplasmic reticulum for synthetic activity 

as well as microtubules for intracellular transport. The photoreceptor nucleus contains all 

nonmitochondrial DNA. The inner fiber is the axon of the photoreceptor cell and transmits 

the photoreceptor cell signals to the outer plexiform layer (OPL) via its synaptic terminals. 

Due to the absence of inner nuclear layer cells in the foveola, foveolar inner fibers have to 

travel to the OPL in the surrounding macula to make synaptic contact. The synaptic 

neurotransmitter of the photoreceptor cell is glutamate, which is released in response to 

depolarization. The terminal endings of the photoreceptors interact with neighboring 

photoreceptors and interneurons (horizontal and bipolar cells) and play a critical 

physiological role in the transmission and early processing of visual information in the retina 

[2]. 

 

 

1.3 Phototransduction 
 

In most sensory systems, activation of a receptor by the appropriate stimulus causes the cell 

membrane to depolarize, ultimately stimulating an action potential and transmitter release 

onto the neurons it contacts. In the retina, however, photoreceptors do not exhibit action 

https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2855/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2255/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2815/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2254/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2935/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2826/
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potentials; rather, light activation causes a graded change in membrane potential and a 

corresponding change in the rate of transmitter release onto postsynaptic neurons. Indeed, 

much of the processing within the retina is mediated by graded potentials, largely because 

action potentials are not required to transmit information over the relatively short distances 

involved. 

 

 

Figure 1.5 An intracellular recording from a single cone stimulated with different amounts of 

light (the cone has been taken from the turtle retina, which accounts for the relatively long 

time course of the response). Each trace represents the response to a brief flash that was varied 

in intensity. At the highest light levels, the response amplitude saturates (at about -65 mV). 

The hyperpolarizing response is characteristic of vertebrate photoreceptors; interestingly, 

some invertebrate photoreceptors depolarize in response to light [6]. 

 

 

Perhaps even more surprising is that shining light on a photoreceptor, either a rod or a cone, 

leads to membrane hyperpolarization rather than depolarization (Figure 1.5). In the dark, 

the receptor is in a depolarized state, with a membrane potential of roughly -40 mV 

(including those portions of the cell that release transmitters). Progressive increases in the 

intensity of illumination cause the potential across the receptor membrane to become more 

negative, a response that saturates when the membrane potential reaches about -65 mV. 

Although the sign of the potential change may seem odd, the only logical requirement for 

subsequent visual processing is a consistent relationship between luminance changes and the 

rate of transmitter release from the photoreceptor terminals. As in other nerve cells, 

transmitter release from the synaptic terminals of the photoreceptor is dependent on voltage-

sensitive Ca2+ channels in the terminal membrane. Thus, in the dark, when photoreceptors 

are relatively depolarized, the number of open Ca2+ channels in the synaptic terminal is high, 

and the rate of transmitter release is correspondingly great; in the light, when receptors are 

hyperpolarized, the number of open Ca2+ channels is reduced, and the rate of transmitter 

https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2771/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2826/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2964/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2559/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2533/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2409/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2815/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2935/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2658/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2919/
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release is also reduced. The reason for this unusual arrangement compared to 

other sensory receptor cells is not known. 

The relatively depolarized state of photoreceptors in the dark depends on the presence of ion 

channels in the outer segment membrane that permit Na+ and Ca2+ ions to flow into the cell, 

thus reducing the degree of inside negativity (Figure 1.6). The probability of these channels 

in the outer segment being open or closed is regulated in turn by the levels of the nucleotide 

cyclic guanosine monophosphate (cGMP). In darkness, high levels of cGMP in the outer 

segment keep the channels open. In the light, however, cGMP levels drop and some of the 

channels close, leading to hyperpolarization of the outer segment membrane, and ultimately 

the reduction of transmitter release at the photoreceptor synapse. 

 

 

Figure 1.6. Cyclic GMP-gated channels in the outer segment membrane are responsible for the light-

induced changes in the electrical activity of photoreceptors (a rod is shown here, but the same scheme 

applies to cones). In the dark, cGMP levels in the outer segment are high; this molecule binds to the 

Na+-permeable channels in the membrane, keeping them open and allowing sodium (and other 

cations) to enter, thus depolarizing the cell. Exposure to light leads to a decrease in cGMP levels, a 

closing of the channels, and receptor hyperpolarization. (Image from the web site 

http://www.rci.rutgers.edu/~uzwiak/AnatPhys/Vision.htm) 

 

 

The series of biochemical changes that ultimately leads to a reduction in cGMP levels begins 

when a photon is absorbed by the photopigment in the receptor disks. The photopigment 

contains a light-absorbing chromophore (retinal, an aldehyde of vitamin A) coupled to one 

https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2855/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2562/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2562/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2721/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2533/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2935/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2905/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2721/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2374/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2815/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2533/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2815/
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of several possible proteins called opsins that tune the molecule's absorption of light to a 

particular region of the spectrum. Indeed, it is the different protein component of the 

photopigment in rods and cones that contributes to the functional specialization of these two 

receptor types. Most of what is known about the molecular events of phototransduction has 

been gleaned from experiments in rods, in which the photopigment is rhodopsin (Figure 

1.7A); however, there is evidence that much of the inactivation process is paralleled in cones 

[7,8,9]. 

When the retinal moiety in the rhodopsin molecule absorbs a photon, its configuration 

changes from the 11-cis isomer to all-trans retinal; this change then triggers a series of 

alterations in the protein component of the molecule (Figure 1.7B). The changes lead, in 

turn, to the activation of an intracellular messenger called transducin, which activates a 

phosphodiesterase that hydrolyzes cGMP. All of these events take place within the disk 

membrane. The hydrolysis by phosphodiesterase at the disk membrane lowers the 

concentration of cGMP throughout the outer segment, and thus reduces the number of cGMP 

molecules that are available for binding to the channels in the surface of the outer segment 

membrane, leading to channel closure. 

 

 

Figure 1.7. Details of phototransduction in rod photoreceptors. (A) The molecular structure 

of rhodopsin, the pigment in rods. (B) The second messenger cascade of phototransduction. Light 

stimulation of rhodopsin in the receptor disks leads to the activation of a G-protein (transducin), 

which in turn activates a phosphodiesterase (PDE). The phosphodiesterase hydrolyzes cGMP, 

reducing its concentration in the outer segment and leading to the closure of sodium channels in the 

outer segment membrane. (Image from the web site 

http://www.rci.rutgers.edu/~uzwiak/AnatPhys/Vision.htm) 

 

 

https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2702/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2835/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2374/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2831/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2255/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2931/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2721/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2831/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2835/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2815/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2255/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2931/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2721/
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One of the important features of this complex biochemical cascade initiated by photon 

capture is that it provides enormous signal amplification. It has been estimated that a single 

light-activated rhodopsin molecule can activate 800 transducin molecules, roughly eight 

percent of the molecules on the disk surface. Although each transducin molecule activates 

only one phosphodiesterase molecule, each of these is in turn capable of catalyzing the 

breakdown of as many as six cGMP molecules. As a result, the absorption of a single photon 

by a rhodopsin molecule results in the closure of approximately 200 ion channels, or about 

2% of the number of channels in each rod that are open in the dark. This number of channel 

closures causes a net change in the membrane potential of about 1 mV. 

Equally important is the fact that the magnitude of this amplification varies with the 

prevailing levels of illumination, a phenomenon known as light adaptation. At low levels of 

illumination, photoreceptors are the most sensitive to light. As levels of illumination 

increase, sensitivity decreases, preventing the receptors from saturating and thereby greatly 

extending the range of light intensities over which they operate. The concentration of Ca2+ in 

the outer segment appears to play a key role in the light-induced modulation of 

photoreceptor sensitivity. The cGMP-gated channels in the outer segment are permeable to 

both Na+ and Ca2+; thus, light-induced closure of these channels leads to a net decrease in 

the internal Ca2+ concentration. This decrease triggers a number of changes in the 

phototransduction cascade, all of which tend to reduce the sensitivity of the receptor to light. 

For example, the decrease in Ca2+ increases the activity of guanylate cyclase, the cGMP 

synthesizing enzyme, leading to an increase in cGMP levels. Likewise, the decrease in 

Ca2+ increases the affinity of the cGMP-gated channels for cGMP, reducing the impact of 

the light-induced reduction of cGMP levels. The regulatory effects of Ca2+ on the 

phototransduction cascade are only one part of the mechanism that adapts retinal sensitivity 

to background levels of illumination; another important contribution comes from neural 

interactions between horizontal cells and photoreceptor terminals. 

Once initiated, additional mechanisms limit the duration of this amplifying cascade and 

restore the various molecules to their inactivated states. The protein arrestin, for instance, 

blocks the ability of activated rhodopsin to activate transducin, and facilitates the breakdown 

of activated rhodopsin. The all-trans retinal then dissociates from the opsin, diffuses into the 

cytosol of the outer segment, and is transported out of the outer segment and into the pigment 

epithelium, where appropriate enzymes ultimately convert it to 11-cis retinal. After it is 

transported back into the outer segment, the 11-cis retinal recombines with opsin in 

the receptor disks. The recycling of rhodopsin is critically important for maintaining the light 

sensitivity of photoreceptors. Even under intense levels of illumination, the rate of 

https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2831/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2931/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2562/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2256/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2721/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2815/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2527/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2831/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2931/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2721/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2752/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2752/
https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2815/


14 

 

regeneration is sufficient to maintain a significant number of active photopigment molecules 

[10]. 

 

 

 

1.4 The Optical System of the Human Eye 

 

As seen, the human eye functions as an optical system and consists of three main 

components: the cornea, the crystalline lens and in between them the iris. The cornea, the 

outermost optical element, is responsible for about 2/3 of the optical power and aberrations 

of the eye. The iris controls the amount of light coming into the retina by regulating the pupil 

diameter. The pupil has important consequences for image formation: a smaller pupil 

increases the depth of focus and minimizes the effects of high-order aberrations, on the 

contrary, the magnitude of aberrations increases with pupil dilation leading to a decrease in 

both visual performance and optical quality of the retinal image [1]. 

The crystalline lens accounts for about 1/3 of the optical power of the eye but it is capable 

of changing its focusing properties: controlled changes in the shape and thickness of the 

crystalline lens allow the eye to accommodate, the process by which the eye focuses on near 

objects. 

Even in the normal eye, the optics and how they are aligned are not perfect, with the 

consequence that incoming light rays deviate from the desired path that reaches the foveal 

center. The deviations are defined as optical aberrations and can be classified into low-order 

(LOA) and high-order aberrations (HOA). LOA are the predominant optical aberrations, 

90% of the overall wavefront aberration (WA) of the eye, and include defocus (hyperopia 

and myopia), the dominant aberration, followed by astigmatism. It is well known that HOA 

cannot yet be accurately corrected and greatly diminish the overall optical quality of the eye, 

though their contribution to the overall WA of the eye is ≤10% [11,12].  

Aberrations impair ocular vision by bluring images formed on the retina, and decrease the 

quality in images taken of the retina by ophthalmic imaging cameras. To significantly 

improve visual performance and retinal imaging the eye's WA have to be measure and 

correct.  

The presence of HOA, beyond defocus and astigmatism, has been known by researchers 

since the 19th century, but only in the 1990s wavefront sensors have been developed to allow 

routine estimation of the eye's WA.  
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Adaptive optics (AO) is a technology used to improve the performance of optical systems 

by minimizing aberrations. An AO ophthalmic device measures and corrects for the 

fluctuations of the eye’s WA, with improvement of the resolution of images taken from the 

eye. This technology has been developed for astronomical telescopes to remove the effect of 

atmospheric turbulence from astrophysics objects and only in recent years has been extended 

to ophthalmology [13,14]. By correcting ocular aberrations, AO retinal imaging can improve 

the resolution to 2 μm, providing information about the retinal microstructures not allowed 

with current retinal imaging techniques. Retinal imaging with AO technology represents a 

sensitive and accurate diagnostic tool to support the ophthalmologists in the diagnosis of 

retinal diseases at an early stage, and in the monitoring of the effects of new therapeutic 

treatments at microscopic scale. 

 

 

1.5 Adaptive Optics Technology for Retinal Imaging 

 

In the late 1990s, the principles and technologies of adaptive optics (AO), originally 

developed for astronomy, were adapted to image the retina. The history of adaptive optics 

for ophthalmic imaging is just over 20 years old. Adaptive optics by itself does not provide 

a retinal image, rather an AO subsystem must be incorporated into an imaging device. In 

1989, Dreher et al. used AO for the correction of second order optical aberrations of the eye 

[15]. Only in 1997, AO technology was successfully applied to high resolution imaging in 

the human eye by Liang et al. [16]. Since that time AO technology has been incorporated in 

almost all existing ophthalmic modalities to enhance quality and resolution of the retinal 

images: flood illumination fundus imaging, confocal scanning laser ophthalmoscopy and 

ophthalmic optical coherence tomography.  

A typical AO retinal imaging camera has three principal components: a wavefront sensor, a 

corrective element and a control system, Figure 1.8. The wavefront sensor and corrector 

measure and correct the eye's wave aberrations respectively.  

The wavefront sensor is used to measure the structure of the aberrations of the eye, with the 

Shack-Hartmann design being the most commonly used type. It consists of an array of 

lenslets, where each lenslet samples a local portion of the incident wavefront and focuses 

this light on a charge-coupled device (CCD). The displacement of any given spot from its 

intended position is directly related to the slope and amplitude of the wavefront in that 

portion of the pupil.  
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The corrective element (the “adaptive” optical element) is used to compensate for these 

aberrations, most commonly by using a deformable mirror, which relies on a series of 

actuators to deflect the mirror surface. There are many types of deformable mirrors in use in 

AO retinal imaging systems [14]. 

The AO controller, programmed with a computer, controls the interaction between the 

wavefront sensor and the corrector element; it interprets the wavefront sensor data and 

computes the appropriate wavefront corrector drive signals. 

 

 

 

Figure 1.8. Basic layout of an adaptive optics system for retinal imaging. The system measures 

the ocular aberrations with a wavefront sensor and corrects for them with a wavefront corrector 

to achieve high lateral resolution imaging. Two light sources are generally used by an AO 

system: one is used to measure and correct the wavefront aberration of the eye; the second 

source is used to illuminate the retinal field being imaged. The AO compensated retinal image 

is captured by a high-resolution imaging camera [1]. 
 

 

AO systems operating in closed-loop place the wavefront sensor after the wavefront 

corrector. In this configuration, the measured wavefront is the error signal that gets fed back 

to the controller to further reduce the residual aberrations in the next iteration, theoretically 

correcting the retinal images up to the diffraction limit. 

 

 

 



17 

 

1.6 rtx1; Adaptive Optics Retinal Camera 
 

In this work, the sequences of retinal images are obtained using a commercial AO-assisted 

flood illumination system; the rtx1 from Imagine Eyes, France as shown in Figure 1.9 [17, 

18].  

 

 

Figure 1.9 Rtx1 AO retinal camera by Imagine Eyes, France, (image from http://www.imagine-

eyes.com/imagine-eyes-many-thanks-to-presenters-at-the-rtx1-e-workshop/). 

 

 

The rtx1 has seven different optical paths; 4 for illumination, 1 for analysis and 2 for 

imaging. The illumination and imaging system of rtx1 are shown in Figures 1.10 and 1.11 

respectively. 

 

 

 

Figure 1.10 Illumination system of the rtx1 retinal camera (where r is retina, p is pupil, L is lenses, badal 

optometer, BS is the beam splitters, R-IL is the illumination source for the retinal imaging, FIX is the fixation 

target and A-IL is the illumination source for wavefront sensing) [18]. 
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Figure 1.11 Imaging system of the rtx1 retinal camera (where r is retina, p is pupil, L is lenses, Badal 

optometer, DM is the deformable mirror, CCD is the scientific camera for retinal imaging, BS is beam 

splitters and sensor is the wavefront sensor) [18]. 

 

 

 

In the rtx1 retinal imaging illumination system, to provide a uniform illumination field on 

the retina an 850 nm LED (R-IL) is used.  By a 750 nm super luminescent diode (SLD) (A-

IL), a point source on the retina, for wavefront sensing, is created, and an array of ten 950 

nm LEDs are used to uniformly illuminate the iris. As a fixation target on the retina, an 

internal organic light emitting diode (OLED) miniature monitor (FIX) is used. 

In the rtx1 retinal imaging system, a low noise CCD camera (R-CCD) (Rooper Scientific) 

with 1392 x 1040 pixels is used to image the 4°x 4° area of the retina, which corresponds to 

approximately 1.2 mm x 1.2 mm in the retina for an emmetropic eye. Here, one camera pixel 

is equivalent to 1.6 µm in the retina. The rtx1 uses a continuous magnetic deformable mirror 

mirao52e (Imagine Eyes, France) which provides a maximum ±50 µm stroke to correct for 

the aberrations present in almost any eye. In this deformable mirror, the magnets are glued 

under the continuous membrane of the mirror and set above coils. When voltage is applied 

to the coils, they generate magnetic fields which push or pull the magnets. Here, the 52 

actuators are placed in an ~ 17 mm diameter area where the mirror surface covers an area of 

15 mm diameter. 

The pupil imaging used for patient alignment is using a standard CCD (Allied vision) camera 

with 656 x 494 pixels mounted with a standard objective (Pentax) with a focal length of 35 

mm. In addition, each of the optical paths except for pupil illumination and imaging, has a 

badal system to compensate for the eye ametropia from -10 D to + 8 D, leaving the 

deformable mirror stroke fully available to compensate for astigmatism up to 5D, strong eye 

optical defects and to focus the image at different layers of the retinal microstructure. 

The rtx1 imaging system requires 9 ms exposure time. The total acquisition time for the 40 

frames is approximately 4 seconds with 105 ms of interval time between the frames [18]. 
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The full exam including patient alignment and post-processing takes a few minutes per eye 

for most patients, making it suitable for use in large-scale clinical studies. 

The AO retinal camera, rtx1, allows to resolve numerous structural aspects of the living 

human retina by the direct visualization of photoreceptors, retinal vessels and nerve fiber 

bundles. The photoreceptor cells represent the study primary target for many research 

groups. Due in part to the optical waveguide properties of photoreceptors, the cone mosaic 

can be imaged easily (Figure 1.12), and furthermore, many retinal diseases involve cones 

losses.  

 

 

 

Figure 1.12. Example of rtx1 AO image montage form a healthy 29 year old female subject. 

 

 

1.7 The Photoreceptor Mosaic and degenerative diseases of the 

human retina 

 

The arrangement of the photoreceptor types in the retina is well described histologically 

[19,20]. The cone and rod photoreceptors are closely packed, forming a patterned 

appearance, or mosaic. Rods substantially outnumber cones over the entire retina. In the 
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developing human retina, the relative distribution of cone and rod photoreceptors is roughly 

constant; that is, a 20:1 ratio is maintained across the entire retina. However, across an adult 

retina, the ratio of rods to cones varies substantially. The adult fovea contains the highest 

density of cone photoreceptors, enabling high acuity vision. 

However, the density of cone photoreceptors quickly falls off as a function of distance from 

the fovea, yielding to a high density of rod photoreceptors, which peaks at about 10 degrees 

from the fovea (Figure 1.13). 

 

 

Figure 1.13 Rods (in violet) and cones (in green) are distributed regionally: in the Center of 

the eye (i.e., the fovea) there are only cones; in the Peripheral retina, mainly rods and few 

cones. (Image from the web site http://www.rci.rutgers.edu/~uzwiak/AnatPhys/Vision.htm) 

 

 

In some eye diseases, the retina becomes damaged or compromised, and degenerative 

changes set in that eventually lead to serious damage to the nerve cells that carry the vital 

messages about the visual image to the brain. Many inherited and acquired retinal diseases 

are associated with disruption or alteration of photoreceptor structure and function, including 

Best vitelliform macular dystrophy, retinitis pigmentosa, Usher syndrome, cone-rod 

dystrophy, age-related macular degeneration, and diabetic retinopathy (Figure 1.14).  
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Figure 1.14 A view of the fundus of the eye and of the retina in patients who have 

acquired and inherited retinal diseases [21]. 

 

These pathologies are typically tracked using clinical instruments which have resolution 

limited to gross retinal structures, thereby limiting the ability to effectively track disease 

progression at cellular level.  

Adaptive optics (AO) ophthalmoscopy can be applied to assess these pathologies with very 

high resolution, allowing a finer view of retinal disease progression [22], Figure 1.15. 

 

 

Figure 1.15. Adaptive optics images of the parafoveal cone mosaic in patients with retinal 

diseases and healthy subjects acquired at 1.5 degrees superior from the fovea. Up: the 

photoreceptor mosaic showed variable cell loss and abnormalities in the packing arrangement 

of the cones with respect to healthy subjects (down). 
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1.8 Summary of dissertation aim  
 

The assessment of the structure of the photoreceptor mosaic in AO images needs methods 

to quantify the arrangement of the cells. For this purpose, a variety of geometric and 

statistical algorithms were developed to analyse the coordinates identifying the position of 

cone centroids. In particular, the most used metrics are cell density, the percentage of six-

sided Voronoi cells and spacing metrics. 

The aim of this thesis is to study the arrangement of the parafoveal cone mosaic from AO 

flood illumination images with two different approaches: 

 

1. The first approach is a global analysis of the spacing between cones by extraction of 

three frequently used spacing metrics; 

2. The second approach is a local pointwise analysis of the tendencies of the cones for 

aggregation and repulsion at specific distance, by statistical point pattern analysis. 

 

First, Chapter 2 explores the relationship between in-use spacing metrics of photoreceptor 

structure and how each is affected by changes in retinal eccentricity and window sample 

size. This chapter deals with the introduction and the assessment of three spacing metrics, 

the center-to-center spacing (Scc), the local cone spacing (LCS), and the Density Recovery 

Profile Distance (DRPD) frequently used to evaluate the distribution of cell distances in 

adaptive optics (AO) images of the cone mosaic. 

Chapters 3 focus on the application of new approaches for measuring photoreceptor 

arrangement by spatial point pattern analysis. Here we used statistical second order 

descriptors to characterize the spatial distributions of photoreceptors in real and simulated 

images. These spatial descriptors include the pair correlation function g2(r), the structure 

factor s(k) and various nearest neighbor second order statistics (G(r), K(r) and L(r)), to 

quantify the reciprocal influence of the cells at a variable distance r. 

Finally, starting from the results of the previous spatial point pattern analysis, the aim of 

Chapter 4 is evaluating dissimilarities profiles of the individual spatial second order 

functions, seen in the previous chapter 3, extracted from the control and diseased groups, for 

partitioning individual curves into homogeneous classes. 
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Chapter 2 

 

 

Reliability and agreement between metrics of cone spacing in 

adaptive optics images of the human retinal photoreceptor 

mosaic  
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2.1 Introduction 
 

Adaptive optics (AO) retinal imaging has enabled direct visualization of the cone mosaic 

and measurement of density, spacing and packing arrangement of cones in normal eyes and 

eyes with retinal diseases [23,24]. Since an increasing number of studies is providing 

descriptive information about the integrity and pathological change of the retinal cone 

mosaic using various approaches, it is of clinical importance to understand whether the 

results from different studies can be reliably compared [25,29]. In previous work [30,31], 

we have evaluated the agreement of density and packing arrangement of cones between 

sampling areas of different size and geometry. The results from normal eyes have shown 

that caution is needed when comparing cone density evaluated in sampling areas of different 

sizes (the average difference can reach 10% between 320x320 µm and 64x64 µm sampling 

windows) [30,31]; the packing arrangement of cones by Voronoi analysis has been shown to 

be minimally affected by window size. To construct a Voronoi, each cone, identified by its 

geometrical centroid, corresponds to a Voronoi tile that is color coded with respect to their 

cones neighbors. The primary advantages and drawbacks of these metrics have been 

previously discussed [1,26,27,30,31]. Cone density analysis creates strict demands on image 

quality because it requires that all cones within the region of interest be identified. For this 

reason, manual inspection of the cones in each image is highly recommended in order to 

minimize errors [1,26,30,31]. In addition, the moderate to high variability of cone density 

even in healthy adults may make this metric insensitive to small deviations from normal 

[1,29]. The limit of Voronoi analysis is related to the accuracy of the cone identification 

algorithm, the manual re-selection of the unidentified or misidentified cones, and the 

boundary effect which is an apparent distortion of the Voronoi mosaic due to the exclusion 

of cones beyond the sampling window, the effect of which increases as the sampling window 

decreases [30,31]. It has been previously shown that the cone detection algorithm which 

segments the cone aperture, rather than only identifying the cone centroid position, is the 

most accurate approach for identifying the cones [32,33]. 

Despite broad use of spacing metrics in clinical studies, there have been few evaluations of 

the reliability and agreement among various metrics.13 Overall, cone spacing analysis is less 

affected by image quality variations than cone density, because these methods do not require 

identification of every cone within the region of interest [1,25,26,28,35]. For this reason, 

spacing metrics can be less prone to errors than cone density when tracking disease 

progression or response to treatment in eyes with retinal diseases, in which cones may be 

poorly imaged due to loss of wave-guiding property or missing cells [25]. However, there is 
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no supporting evidence that cone spacing metrics alone may provide a robust measurement 

for comparison among eyes (or even the same eye over time) in clinical studies [1,25,34,35]. 

The majority of studies have used two main methodologies to estimate the spacing of cells 

in AO images of the cone mosaic; the density-count method and the distribution-of-distances 

methods. The center-to-center spacing (Scc) is a measure that has been frequently adopted in 

studies of cone photoreceptor mosaic [36,37,38]. The Scc is based on the density count 

method, which is derived from the number of cones per unit area. The distribution-of-

distances methods are assumption free and provide estimates of both central tendency and 

variation. These methods include the nearest neighbour distance (NND), the local cone 

spacing (LCS), and the nearest-neighbour cone spacing extracted from the Density Recovery 

Profile (DRP), which has been recently termed Density Recovery Profile Distance (DRPD) 

[19,34,39,40]. 

The scope of the present work was to assess the reliability and agreement of three spacing 

metrics, such as Scc, LCS and DRPD, for evaluating the distribution of cell distances in AO 

flood illumination images of the parafoveal cone mosaic. The metrics were calculated over 

two different sampling areas to evaluate the effect of window size on cone spacing estimates. 

In order to evaluate the influence of cell reflectivity loss and cone packing arrangement 

abnormalities on spacing metrics, the dataset included AO images acquired from healthy 

adult subjects and patients with a diagnosis of acquired or inherited retinal diseases.  

 

2.2 Methods 
 

All research procedures described in this work adhered to the tenets of the Declaration of 

Helsinki. The protocol was approved by the local ethical committee (Azienda Sanitaria 

Locale Roma A, Rome, Italy) and all subjects recruited gave written informed consent after 

a full explanation of the procedure. Inclusion criteria were age >18 years old, no previous 

eye surgery, eye inflammation, glaucoma or cataract; in addition, control subjects were 

required to have no history or presence of systemic diseases. Subjects recruited for the study 

received a complete eye examination, including non-contact ocular biometry using the IOL 

Master (Carl Zeiss Meditec Inc, Jena, Germany). 
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2.2.1 Human subjects 

 

Twenty healthy volunteers (age 33± 9 years old; range 23-54 years; gender: 15 F and 5 M), 

and twelve patients with retinal diseases (age 41±10 years old; range 23-59 years; gender: 

10 F and 2 M) were recruited in this study (Table 2.1). The latter participants included 

subjects with a diagnosis of diffuse cuticular drusen and a family history of age-related 

macular degeneration (Drusen; n=2) [41,42], non proliferative diabetic retinopathy (NPDR; 

Table 2.1. Characteristics of study participants. 

Participants Age (years) Gender AxL (mm)* SEr (D)* 
RMFcorr 

(mm/deg2)* 

Healthy subjects      

C_1 52 F 24.73 -0.5 0.294 

C_2 37 F 25.49 -4.7 0.303 

C_3 24 F 25.06 -2.7 0.298 

C_4 32 M 27.04 -6.2 0.322 

C_5 33 F 23.60 0.0 0.281 

C_6 27 M 23.58 -2.5 0.281 

C_7 40 M 22.61 0.0 0.269 

C_8 26 F 26.29 -5.2 0.313 

C_9 24 F 21.66 -1.2 0.258 

C_10 36 F 25.67 -5.2 0.306 

C_11 39 F 22.11 0.2 0.263 

C_12 37 F 22.11 0.5 0.263 

C_13 29 F 24.42 -2.2 0.291 

C_14 24 F 24.38 -3.7 0.290 

C_15 23 F 25.34 -3.5 0.302 

C_16 36 F 23.98 -5.1 0.285 

C_17 54 F 24.73 -0.5 0.294 

C_18 23 F 24.53 0.0 0.292 

C_19 46 M 23.50 0.2 0.280 

C_20 33 M 23.69 0.0 0.282 

M±SD 33 ± 9  24.23±1.42 -2.1±2.3 0.200±0.017 

Retinal diseases      

Drusen_1 38 M 24.03 -0.2 0.286 

Drusen_2 42 F 25.40 -0.5 0.302 

NPDR_1 51 F 24.77 -1.5 0.295 

NPDR_2 38 F 23.80 0.0 0.283 

NPDR_4 33 M 26.34 -4.2 0.314 

NPDR_5 35 F 21.89 0.0 0.261 

Best 56 F 24.07 -0.5 0.286 

OMD 23 F 25.57 -2.0 0.304 

RP_1 46 F 24.50 -1.0 0.292 

RP_2 40 F 23.20 0.0 0.276 

RP_3 42 F 22.62 1.0 0.269 

RP_4 59 F 22.81 1.0 0.271 

M±SD 41± 10  24.08±1.32 -0.7±1.4 0.287±0.016 

*Axl=axial length; SEr= manifest spherical equivalent refraction; RMFcorr= corrected magnification factor. 
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n=4) according to the ETDRS severity scale [43,44], retinitis pigmentosa (RP; n=4; USH2A 

gene mutation), Best macular dystrophy (Best; n=1; BEST 1 gene mutation) and occult 

macular dystrophy (OMD; n=1; RP1L1 gene mutation) [45]. 

These participants were enrolled in this study in order to have a dataset of AO images of the 

cone mosaic with increasing amount of cell loss and variable abnormalities in the packing 

arrangement of the cones. 

 

 

2.2.2 Image acquisition and processing 

 

A flood-illuminated AO retinal camera (rtx1, Imagine Eyes, France) was used to collect 

images of the cone mosaic on 20 healthy subjects and 12 subjects with various retinal 

diseases. The imaging session was conducted after dilating the pupil with one drop of 1% 

tropicamide. During imaging, fixation was maintained by instructing the patient to fixate on 

the internal target of the instrument moved by the investigator. At each retinal location, a 

sequence of 40 frames (rate: 9.5 frames/sec) was acquired by illuminating a retinal area 

subtending 4 degrees of visual angle in the right eye of each subject; images were acquired 

at several locations in the central retina covering an area of 5x4 degrees centered on the 

preferred locus of fixation (PRL, coordinates x=0° and y=0° and here used as the foveal 

reference point).  

A proprietary program from the manufacturer has been used to correct for distortions within 

frames of the raw image sequence and to register and frame-average to produce a final image 

with enhanced signal-to-noise ratio prior to further analysis. In this study, two sampling areas 

of different size (64x64 µm and 204x204 µm) were cropped from each final image at 1.5 

degrees superior and 2.5 degrees temporal from the PRL. The two eccentricities were chosen 

to be a compromise between the resolution limit of the instrument, which does not allow all 

the cones to be resolved too close to the fovea, and the presence of rods, which alter the cone 

relative spacing enough to be detectable by the instrument when further than 4 degrees from 

the fovea. 

The nonlinear formula of Drasdo and Fowler and the Gullstrand schematic model eye 

parameterized by the biometry measurements (corneal central curvature, anterior chamber 

central depth, axial length) were used to convert each final image from degrees of visual 

angle to micrometers on the retina [46,47]. The corrected magnification factor (RMFcorr) was 

calculated for each eye in order to correct for the differences in optical magnification and 

thus retinal image size between eyes, as previously described [30,31,44-47]. 
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Image cone labelling was automatically performed using an enhanced version of the 

algorithm implemented with the image processing toolbox in Matlab (The Mathworks Inc, 

Natick MA, USA) [30,31,43,44,48]. Cones were identified independently in each sampling 

window. The cone identification algorithm’s performance was verified by three expert 

investigators (DG, LM, ML), who reviewed each sampling area and manually identified 

cones that they agreed to be missed or selected in error by the algorithm. This procedure 

ensured that the number of excluded cones was minimised. A buffer zone was created in 

each sampling window in order to minimize the boundary effect for packing geometry 

metrics [30.31]. The x,y coordinates of the cones in each sampling window were then stored 

in a text array and used to calculate the cone metrics. 

 

2.2.3 Density and packing arrangement metrics of the cone mosaic 

 

Cone counts were converted into local densities by calculating their number per square 

millimeter (cones/mm2). The cone packing arrangement was analyzed using Voronoi 

diagrams [30,31,49,50]. The Voronoi tessellation was implemented by the voronoi Matlab 

function from the bidimensional coordinates of labelled cones, as previously described 

[30,31,44,49]. The Voronoi regions lying at the bounds of each section were excluded from 

further analysis, creating a buffer zone = 2 NND in order to minimize the boundary effect. 

The number of Voronoi tiles with six sides (6n) was divided by the total number of bound 

Voronoi tiles within each sampling area and expressed as a percentage. 

 

2.2.4  Spacing metrics of the cone mosaic 

 

Three metrics were used to describe the distribution of cone distances: 

1. The center-to-center spacing (Scc) was determined from cone density using the 

following expression:  
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where D is the number of cones per square millimeter. Since the method assumes an 

exact relationship between cone density and spacing, the cones are expected to be 

arranged in triangular lattice (this metric was also termed minimum center-to-center 
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spacing) [36-38,49]. It is equivalent to the metric S used by Chui et al. [36] and S(x,y) 

used by Li et al. [37]. Care should be taken to avoid regions of missing data (e.g., 

large blood vessels, image boundary etc.) or defects in the image in order to avoid 

overestimating the spacing distribution of cones. 

2. The local cone spacing (LCS) was determined by calculating the average of the 

minimum distances from the center of a given cone to the centers of six neighboring 

cones within an area of 12 pixels (9.6 µm) diameter (i.e., almost twice the size of the 

cone at both retinal locations) [44]. The LCS has been developed in order to minimize 

the known limits of NND in estimating the mosaic spacing. Indeed, the NND takes 

into account only the nearest of each cell’s known neighbours, regardless of its 

distance; therefore, it can be strongly influenced by very large NNDs of isolated cells, 

which decrease its sensitivity to represent the distribution of cell distances in retinal 

diseases [34]. 

3. The density recovery profile distance (DRPD) was derived from the DRP 

reconstructed from the autocorrelogram [39]. The spatial autocorrelogram was 

generated by superimposing the distribution of all cells in a sampling area using each 

cell in the area in turn as the reference cell. In order to determine the nearest-

neighbour cone distance, the DRPD was calculated as the first local maximum of the 

Density Recovery Profile created from the autocorrelogram with max radius = 1/5 of 

the image dimension and a series of annuli of 1 µm width. The width of each bin was 

determined from equation 16 in Rodieck et al. [39], under assumption of having a 

reliability factor value of 5 and 4 for healthy subjects and patients with retinal 

diseases, respectively. The bin’s width was accordingly 1 µm in the two populations. 

The DRPD takes into account all of a cell’s neighbours up to a limited distance that 

depends on the shape of the DRP, which is a graphical representation of spatial 

behaviour derived from the spatial autocorrelogram [39]. It is equivalent to the 

nearest-neighbour cone spacing determined from the DRP in previous studies 

[25,35]. Nevertheless, the DRP provides a different measure than the nearest 

neighbour distance and a more complete overview of the spatial arrangement of the 

cone mosaic; its estimates are based upon all of the other points about a given point, 

rather than just one. 
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Figure 2.1 - Adaptive optics images of the parafoveal cone mosaic in patients with retinal diseases and healthy 

subjects acquired at 1.5 degrees superior and 2.5 degrees temporal from the fovea. The photoreceptor mosaic 

in patients with retinal diseases showed variable cell loss and abnormalities in the packing arrangement of the 

cones with respect to healthy subjects. The sampling area subtends 64x64 μm. Data from participants are 

summarized in table 2.1. 

 

Figure 2.2 - Adaptive optics images of the parafoveal cone mosaic in patients with retinal diseases and healthy 

subjects acquired at 1.5 degrees superior and 2.5 degrees temporal from the fovea. The sampling area subtends 

204x204 μm. Data from participants are summarized in table 2.1. 
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2.2.5 Statistics 

 

Data were expressed as mean ± standard deviation. Statistics were performed using the SPSS 

software (version 17.1; SPSS Inc., Chicago, IL USA) and Matlab (version R2013a, The 

Mathworks Inc., Natick MA, USA).  

The sample size was calculated to detect a mean difference in cone density of 2500 

cones/mm2 (SD = 2500 cones/mm2) between healthy subjects and patients with retinal 

diseases (2:1 allocation) with a two-sided significance level of 5% and a power of 82%.  

The intraclass correlation coefficient (ICC; two-way, random effects model) was calculated 

in order to estimate the absolute agreement between each pair of spacing metrics in the two 

sampling areas for each study group. The correlation and Bland-Altman analysis were used 

to assess the 95% limits of agreement (LoA) between the pair of spacing metrics that have 

shown high absolute agreement (ICC>0.7), and between the values of each spacing metric 

extracted from the two sampling areas. The differences between the spacing metrics of the 

two study groups was evaluated using the non-parametric Mann Whitney U test. 

 

2.3 Results 

2.3.1 Cone density and packing arrangement 

 

Over a 64x64 µm sampling area, the cone densities at 1.5 degrees and 2.5 degrees retinal 

eccentricities in healthy subjects were 32281±2281 cones/mm2 and 29411±2147 cones/mm2, 

respectively (Figure 2.1). Cone density in patients with retinal diseases was on average 

26±3% (range from 2% to 65%; P<0.001) lower than in healthy subjects. 

Over a 204x204 µm sampling area, the cone densities at 1.5 degrees and 2.5 degrees from 

the PRL in healthy subjects were 31494±2489 cones/mm2 and 28703±1822 cones/mm2, 

respectively (Figure 2.2). Cone density in patients with retinal diseases was on average 

16±5% (range from 1% to 58%; P<0.001) lower than that in healthy subjects. 

The average percentage of six-sided Voronoi tiles was almost constant across different 

sampling areas in either study groups. In healthy subjects, the 6n Voronoi average ranged 

from 50% to 45% for 1.5 degrees and 2.5 degrees, respectively. In patients with retinal 

diseases, the average 6n Voronoi tiles were significantly lower than control values (P<0.05), 

except for values calculated in 204x204 µm sampling areas at 2.5 degrees retinal eccentricity 

(P=0.14). Cone density and percent of six-sided Voronois for all cases are shown in table 

2.2. 
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Table 2.2. Mean (±SD) cone density and percentage of six-sided (6n) Voronois in study participants over different 

sampling areas at two retinal locations. 

Sampling area 64 µm x 64 µm 204 µm x 204 µm 

Metric Cone density (cones/mm2) 6n Voronois (%) Cone density (cones/mm2) 6n Voronois (%) 

Retinal 

eccentricity 
1.5 degrees 2.5 degrees 1.5 degrees 2.5 degrees 1.5 degrees 2.5 degrees 1.5 degrees 2.5 degrees 

Healthy subjects        

C_1 30476 26905 51.1 47.3 29924 27438 48.7 43.2 

C_2 36341 30732 57.0 46.5 35517 30154 57.1 48.1 

C_3 29286 26429 48.2 45.3 27683 26591 51.5 45.9 

C_4 31951 28780 55.9 45.6 31707 28331 55.7 48.0 

C_5 34146 33659 47.0 40.8 33397 32153 47.0 42.4 

C_6 28537 30976 59.3 45.6 27632 29587 53.0 41.7 

C_7 31951 29024 43.0 40.9 30431 27392 39.1 45.5 

C_8 32927 28780 41.8 51.2 34880 27861 47.3 48.4 

C_9 31220 28537 48.9 32.5 29021 27375 48.2 39.7 

C_10 36098 30732 50.9 43.0 34641 29139 48.7 48.0 

C_11 34146 28537 44.5 40.7 31599 27446 43.8 40.0 

C_12 32195 26585 41.8 44.8 31367 29305 44.1 41.6 

C_13 34878 29512 57.6 50.0 33861 27387 54.5 53.9 

C_14 35366 27561 58.2 50.6 34053 26595 52.5 52.7 

C_15 32927 27805 60.4 44.9 34378 27081 53.2 47.2 

C_16 30488 30488 44.8 46.0 30571 30476 42.2 46.1 

C_17 30000 29756 39.3 39.3 28490 28727 51.1 44.4 

C_18 30000 34390 59.5 53.0 29333 32952 51.6 46.1 

C_19 30732 27805 40.5 48.7 29986 27374 38.0 45.3 

C_20 31951 31220 54.4 39.1 31411 30694 51.1 40.9 

M±SD 32281±2281 29411±2147 50.3±7.0 44.8±4.9 31494±2489 28703±1822 48.9±5.3 45.5±3.9 

Retinal diseases        

Drusen_1 24146 27317 48.5 44.2 22679 28900 50.1 43.4 

Drusen_2 24390 28780 41.2 49.4 27524 28762 42.9 41.5 

NPDR_1 26341 23902 39.2 34.4 26571 24000 47.5 47.9 

NPDR_2 26098 23171 44.4 47.6 26738 23452 42.9 46.6 

NPDR_4 31707 24146 34.8 47.7 32110 25396 47.9 46.4 

NPDR_5 24146 25122 48.4 36.6 24442 23444 43.2 43.5 

Best 23500 25750 58.1 34.8 25444 24412 45.6 48.8 

OMD 11463 10244 44.0 31.8 13134 16914 35.5 33.4 

RP_1 19024 17073 43.7 30.2 26754 27112 41.2 39.1 

RP_2 24146 23902 47.6 35.9 25273 27411 39.1 41.7 

RP_3 25366 21951 41.4 37.9 26850 25298 41.0 39.3 

RP_4 19512 18293 32.6 34.7 25273 26247 41.7 41.3 

M±SD 23320±4937 22471±5089 43.7±6.8 38.8±6.7 25233±4422 25112±3203 43.2±4.1 42.7±4.4 

P value  <0.001 <0.001 0.02 0.01 <0.001 <0.001 0.003 0.14 
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2.3.2  Cone spacing metrics  

 

In healthy subjects, the values of all spacing metrics increased with increasing eccentricity 

and showed high consistency between the two different sampling areas; Scc ranged from 

5.99±0.21 µm to 6.35±0.24 µm from 1.5 degrees to 2.5 degrees from the fovea respectively; 

LCS ranged from 6.12±0.18 µm to 6.41±0.18 µm respectively; and DRPD ranged from 

5.80±0.80 µm to 6.20±0.66 µm respectively. In patients with retinal diseases, the spacing 

metrics showed higher variation around the mean values, which was caused by the abnormal 

and variable distribution of distances between cells across the parafoveal retinal locations in 

the disease population (Table 2.3).  

The differences of Scc and LCS values between healthy subjects and patients with retinal 

diseases were statistically significant (P≤0.01) in both sampling areas at both retinal 

eccentricities, except for the LCS values measured in the 204x204 µm area at 2.5 degrees 

retinal eccentricity (P=0.27). This result was consistent with the distribution of 6n Voronois 

between healthy and pathologic cases in the same area (see Table 2.2). The differences of 

DRPD values between healthy subjects and patients with retinal diseases were not 

statistically significant in any case. 

 

 

2.3.2.1 Agreement and correlation between spacing metrics 

 

The Scc and LCS values showed high agreement with each other in healthy subjects over 

both sampling areas and both retinal eccentricities (averaged ICC=0.86; ICC range=0.80-

0.93). On the other hand, the agreement between Scc and LCS values in patients with retinal 

diseases was poor (averaged ICC=0.28; ICC range=0.08-0.51). The agreement between the 

DRPD and the other two spacing metrics was low in both study groups (averaged ICC=0.27; 

ICC range=0.05-0.47). The ICC analysis between each pair of spacing metrics is 

summarized in Table 2.4. 
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Table 2.3. Mean (±SD) values of the three spacing metrics in different sampling areas at two retinal locations. 

Sampling area 64 µm x 64 µm 204 µm x 204 µm 

Metric Scc (µm) LCS (µm) DRPD (µm) Scc (µm) LCS (µm) DRPD (µm) 

Retinal 

eccentricity 

1.5 

deg 

2.5 

deg 

1.5 

deg 

2.5 

deg 

1.5 

deg 

2.5 

deg 

1.5 

deg 

2.5 

deg 

1.5 

deg 

2.5 

deg 

1.5 

deg 

2.5 

deg 

Healthy subjects 
           

C_1 6.16 6.55 6.22 6.57 5.50 6.50 6.21 6.49 6.29 6.46 5.50 6.50 

C_2 5.64 6.13 5.86 6.31 5.50 6.50 5.70 6.19 5.82 6.25 5.50 5.50 

C_3 6.28 6.61 6.39 6.65 6.50 6.50 6.46 6.59 6.51 6.59 5.50 6.50 

C_4 6.01 6.33 6.07 6.43 5.50 5.50 6.03 6.38 6.12 6.45 5.50 6.50 

C_5 5.82 5.86 5.90 6.05 5.50 5.50 5.88 5.99 5.96 6.08 5.50 5.50 

C_6 6.36 6.11 6.09 6.38 5.50 5.50 6.46 6.25 6.26 6.53 5.50 5.50 

C_7 6.01 6.31 6.41 6.28 6.50 6.50 6.16 6.49 6.50 6.31 6.50 6.50 

C_8 5.92 6.33 6.01 6.38 5.50 6.50 5.75 6.44 5.86 6.50 5.50 6.50 

C_9 6.08 6.36 6.18 6.52 6.50 5.50 6.31 6.49 6.36 6.52 6.50 6.50 

C_10 5.66 6.13 5.89 6.40 4.50 5.50 5.77 6.30 5.86 6.42 5.50 5.50 

C_11 5.82 6.36 6.07 6.95 5.50 6.50 6.05 6.49 6.15 6.51 6.50 6.50 

C_12 5.99 6.59 6.08 6.63 5.50 6.50 6.07 6.28 6.17 6.36 5.50 6.50 

C_13 5.75 6.26 5.92 6.43 5.50 5.50 5.84 6.49 5.96 6.60 5.50 5.50 

C_14 5.71 6.47 5.89 6.61 5.50 5.50 5.82 6.59 5.91 6.65 5.50 5.50 

C_15 5.92 6.44 6.07 6.38 5.50 7.50 5.80 6.53 5.90 6.55 5.50 6.50 

C_16 6.15 6.15 6.33 6.27 6.50 5.50 6.15 6.16 6.20 6.24 6.50 5.50 

C_17 6.20 6.23 6.37 6.46 5.50 7.50 6.37 6.34 6.42 6.37 5.50 6.50 

C_18 6.20 5.79 6.28 5.91 5.50 6.50 6.27 5.92 6.34 5.99 5.50 5.50 

C_19 6.13 6.44 6.31 6.53 8.50 6.50 6.21 6.49 6.25 6.52 8.50 6.50 

C_20 6.01 6.08 6.11 6.27 5.50 6.50 6.06 6.13 6.14 6.24 5.50 6.50 

M±SD 
 

5.99± 

0.21 

6.28± 

0.22 

6.12± 

0.18 

6.42± 

0.22 

5.80± 

0.8 

6.20± 

0.66 

6.07± 

0.24 

6.35± 

0.19 

6.15± 

0.22 

6.41± 

0.18 

5.85± 

0.75 

6.10± 

0.5 

Retinal diseases 
   

        

Drusen_1 6.92 6.50 6.91 6.57 5.50 5.50 7.14 6.32 7.01 6.32 6.50 5.50 

Drusen_2 6.88 6.33 6.64 6.31 5.50 4.50 6.48 6.34 6.33 6.29 5.50 5.50 

NPDR_1 6.62 6.95 6.55 6.82 6.50 6.50 6.59 6.94 6.59 6.83 5.50 6.50 

NPDR_2 6.65 7.06 6.56 6.88 6.50 5.50 6.57 7.02 6.54 6.86 6.50 6.50 

NPDR_4 6.03 6.92 6.08 6.81 5.50 6.50 6.00 6.74 6.02 6.73 5.50 6.50 

NPDR_5 6.92 6.78 6.74 6.59 6.50 6.50 6.87 7.02 6.65 6.79 6.50 6.50 

Best 7.01 6.70 6.94 6.61 6.50 6.50 6.74 6.88 6.67 6.70 6.50 6.50 

OMD 10.04 10.62 6.91 6.48 6.50 4.50 9.38 8.26 6.59 6.38 6.50 4.50 

RP_1 7.79 8.22 6.62 6.56 4.50 4.50 6.57 6.53 6.26 6.14 5.50 4.50 

RP_2 6.92 6.95 6.69 6.34 6.50 4.50 6.76 6.49 6.47 6.34 5.50 5.50 

RP_3 6.75 7.25 6.50 6.70 5.50 7.50 6.56 6.76 6.36 6.46 6.50 5.50 

RP_4 7.69 7.95 6.60 6.61 5.50 4.50 6.76 6.63 6.44 6.46 5.50 5.50 

M±SD 
 

7.19± 

1.01 

7.35± 

1.16 
6.65± 

0.23 
6.61± 

0.18 
5.92± 

0.67 
5.58± 

1.08 
6.87± 

0.84 
6.83± 

0.51 
6.49± 

0.25 
6.53± 

0.24 
6.00± 

0.52 
5.75± 

0.75 

P value  <0.001 <0.001 <0.001 0.01 0.32 0.09 <0.001 <0.001 <0.001 0.27 0.25 0.25 
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In healthy subjects, the correlation between Scc and LCS was high over both sampling areas 

(R2=0.75, P<0.001; and R2=0.88, P<0.001, over 64x64 µm and 204x24 µm respectively) 

(Figure 2.3). In patients with retinal diseases, the correlation between Scc and LCS was poor 

over both sampling areas (R2=0.018, P=0.53; and R2=0.25, P=0.014, respectively).  

The 95% LoA was slightly influenced by window size; the agreement between Scc and LCS 

values over 204x204 µm areas was greater than 64x64 µm areas (Figure 2.3). This was 

associated with the greater percentage of 6n Voronois in patients with retinal diseases over 

a 204x204 µm sampling window. 

 

 

Table 2.4. Intraclass correlation coefficient (ICC) showing, for each study group, the absolute 

agreement between cone spacing metrics in two different sampling areas at two retinal locations.  

Sampling area 64 µm x 64 µm 204 µm x 204 µm 

Retinal eccentricity 1.5 degrees 2.5 degrees 1.5 degrees 2.5 degrees 

Healthy subjects     

ICC between Scc and LCS* 0.80 0.80 0.93 0.93 

ICC between Scc and DRPD 0.33 0.26 0.24 0.44 

ICC between LCS and DRPD 0.37 0.11 0.25 0.25 

Retinal diseases     

ICC between Scc and LCS 0.08 0.23 0.51 0.29 

ICC between Scc and DRPD 0.05 0.47 0.36 0.14 

ICC between LCS and DRPD 0.27 0.26 0.36 0.25 
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Figure 2.3 – A) Correlation between local cone spacing (LCS) and center -to-center spacing (Scc) in 

64x64 µm sampling areas. Data were aggregated from 1.5 degrees and 2.5 degrees retinal eccentricities. 

In healthy subjects, the correlation between LCS and S cc was high (R2=0.75, y=0.846x+1.082, 

P<0.001); almost all values (85%) were on the bisector (y=x, R2=1). In patients with retinal diseases, 

the correlation between LCS and Scc was very low (R2=0.018, y=-0.028x+6.733, P=0.53); the patients 

with advanced stages of inherited retinal dystrophies (OMD and RP) and diffuse loss of cone reflectivity 

(≥30%) primarily contributed to the decreased correlation between this pair of spacing metrics. B) 

Correlation between LCS and Scc in 204x204 µm sampling areas. In healthy subjects, the correlation 

was high (R2=0.89, y=0.859x+0.946, P<0.001); 95% of the LCS and Scc values were on the bisector. In 

patients with retinal diseases, correlation between LCS and S cc was low (R2=0.25, y=0.171x+5.433, 

P=0.01). C and D) Bland-Altman plots of Scc and LCS values calculated over 64x64 μm and 204x204 

μm sampling areas respectively. Although the agreement between this pair of spacing metrics was high 

in the 64x64 μm area, the use of greater sampling areas further increased agreement between metrics. 

The symbols are described in the plot. 

 

2.3.2.2 Influence of the sampling area on Scc 

The Scc values calculated over sampling areas of different sizes showed high correlation both 

in healthy subjects (R2=0.84, P<0.001) and patients with retinal diseases (R2=0.66, 

P<0.001). On the other hand, the distribution of data points in the Bland-Altman plot showed 

that agreement was poor for Scc values estimated from cone mosaics with more than 30% 

cone reflectivity loss (Figure 2.4). 
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Figure 2.4 – A) Correlation between Scc values calculated in the two sampling areas of 64x64 μm and 

204x204 μm. In healthy subjects, the correlation was high (R2=0.84, y=0.924x+0.541, P<0.001), with 

85% of Scc values that were on the bisector. In patients with retinal diseases, the correlation was 

moderate (R2=0.67, y=0.517x+3.088, P<0.001); the patients with advanced stages of inherited retinal 

dystrophies (OMD and RP) and diffuse loss of cone reflectivity (≥30%) contributed to decrease the 

overall correlation between Scc values taken over sampling areas of different sizes. B) Bland-Altman 

plot of Scc values. The outliers in the Bland-Altman plot are represented by three patients (OMD, RP1 

and RP4; see table 3.1) that had the lowest cone density in the study population. Data were aggregated 

from 1.5 degrees and 2.5 degrees from the fovea. The symbols are described in the plot. 

  

2.3.2.3 Influence of the sampling area on LCS 

The correlation between LCS values of the two sampling areas was high in healthy subjects 

(R2=0.76, P<0.001) and moderate in patients with retinal diseases (R2=0.46, P<0.001) at 

both retinal eccentricities (Figure 2.5). The 95% LoA showed scattered values around the 

bias line that tended to increase as the average LCS value increased. 

 

2.3.2.4 Influence of the sampling area on DRPD 

The correlation of DRPD values between the two sampling areas was moderate in healthy 

subjects (R2=0.59, y=0.659x+2.02, P<0.001) and low in patients with retinal diseases 

(R2=0.34, y=0.419x+3.466, P=0.003) at both retinal eccentricities. Both the scatter plot and 

the Bland-Altman plot (not shown) did not evidence any difference in the distribution of data 

points between healthy subjects and patients with retinal diseases.  
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Figure 2.5 – A) Correlation of the LCS values calculated in the two sampling areas. In healthy subjects, 

the correlation between the LCS values was good (R2=0.76, y=0.823x+1.116, P<0.001); on the other 

hand, it was moderate (R2=0.46, y=0.715x+1.935, P<0.001) in patients with retinal diseases.  B) Bland-

Altman plot of the LCS values. Agreement between the LCS values calculated over sampling areas of 

different sizes was primarily decreased by patients with retinal diseases (i.e., for increasing values of 

LCS). Data were aggregated from 1.5 degrees and 2.5 degrees from the fovea. The symbols are 

described in the plot. 

 

 

2.4 Discussion 
 

We evaluated the agreement between three metrics currently used to describe the distribution 

of distances between cones in AO images of the cone mosaic. A group of healthy subjects 

and a group of patients with different retinal diseases and variable loss of cone reflectivity 

(from 2% to 65% with respect to healthy photoreceptor mosaic) were included in the study 

in order to understand if center-to-center spacing (Scc), local cone spacing (LCS) and density 

recovery profile distance (DRPD), which have been calculated over sampling areas of 

different size, could be used interchangeably in clinical studies.  

Both Scc and LCS were able to discriminate between healthy subjects and patients with 

retinal diseases; on the other hand, DRPD did not reliably detect any abnormality in the 

distribution of distances in the study population. This is related to the fact that this metric is 

calculated from the shape of the DRP, which remains unchanged even for large 

undersampling (only the vertical scale, i.e., cone density, is influenced by cell loss) [39]. 

Previously, Cooper et al. [34] have shown - in simulated AOSLO images of the cone mosaic 

- that the DRPD was remarkably insensitive to undersampling of cone coordinates, being 

unable to classify as pathological mosaics with up to 60% loss of cone reflectivity. In the 

same study [34], the authors have found that NND was also insensitive to undersampling 
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(up to 50%). Therefore, the use of single spatial metrics based on DRPD or NND would not 

be clinically valuable to accurately discriminate between healthy and pathological 

photoreceptor mosaics. In order to overcome this major limit of NND in evaluating the 

distribution of cell distances in a human retinal cone mosaic, we have previously developed 

the LCS metric [44]. In this study, the Scc and LCS were highly correlated and could be used 

interchangeably without incurring any methodological error until 20-25% of the cones in the 

given mosaic have been lost (e.g., cases with hard drusen and NPDR in this study). However, 

both correlation and agreement between this pair of spacing metrics dropped when cell 

reflectivity loss was ≥30%, primarily when comparison was made in 64x64 µm sampling 

areas (e.g., cases with inherited retinal dystrophies). In this study, cases with retinal diseases 

had significantly fewer six-sided Voronois than healthy cone mosaics, as expected. Since 

lattice quality diminishes with disease progression (as well as with retinal eccentricity even 

in healthy subjects) [34,38,44]. The Scc, which provides a single-point estimate without a 

measure of variation and assumes an ordered lattice, is more prone to overestimating the 

integrity of the cone mosaic in retinal diseases than LCS. On the other hand, LCS alone may 

lose the sensitivity to detect small deviations from normal (<20% undersampling, as for 

example in hard drusen and NPDR cases in this study). Since the methodology of calculating 

LCS also indirectly provides estimates of both the standard deviation and mean of the 

distances between cells, the use of their ratio, previously termed Linear Dispersion index 

[44], has been shown to achieve enough sensitivity to evaluate the averaged distribution of 

cell distances across the parafovea in controlled clinical study. 

The influence of the sampling window size was relevant for the analysis of intercell distance 

in AO images of the cone mosaic, possibly because photoreceptor loss is variable across 

areas of the retinal mosaic as well as among retinal diseases. Overall, the choice of the 

window size should avoid poor sampling. The use of smaller sampling windows, such as the 

conventional 64x64 µm area, allows for a local analysis of the integrity of the cone mosaic, 

while the use of larger areas, such as 204x204 µm, may lead to overestimating the integrity 

of the retinal mosaic, probably because of the presence of healthy domains of the cone 

mosaic in the area of analysis. As shown in figures 3.4 and 3.5, the use of smaller sampling 

areas would be preferable for tracking disease progression when using Scc and LCS (and 

possibly NND). If data analysis were carried out over large sampling areas, the 

complementary use of more than one metric to describe the spatial arrangement of the cones 

would be preferable. We have already shown that the pathological decrease of cone density 

in adult subjects, even when density falls within normal limits, induces abnormal changes in 

the arrangement of the cones [44]; therefore, the complementary use of regularity indices 
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based on Voronoi analysis together with spacing and density metrics is very helpful to detect 

small deviations from normal cone mosaic arrangement [44,51]. 

The spacing metrics examined in this work do not represent the full list of metrics for 

evaluating the distribution of cell distances of a retinal mosaic. Several other metrics have 

been generated from the point coordinates of cells or directly from the AO image of the cone 

mosaic, such as those based on analysis of the Fourier spectrum of the image [34,52-59]. 

Currently, the main limit of any metric describing the spatial position of the cones is related 

to the correct cell identification. As disease progresses, cell loss and disorder in cell spacing 

increases, which in turn decreases resolution by distorting the AO image of the cone mosaic. 

Accurate cone identification and segmentation is required in order to minimize 

methodological errors [1,30,31,33,34]. The present AO images were acquired at 1.5 degrees 

superior and 2.5 degrees temporal from the PRL and the results from the present work cannot 

be directly extended to different areas of the retina. In previous studies [31,37,60] the PRL 

was found to deviate, on average, 27±15 µm from the foveal center, and the displacement of 

the PRL to foveal center was not correlated to SEr or AxL. Co-registration of AO images 

with OCT cross-section images would be desirable in clinical studies in order to avoid 

variation in determination of eccentricity caused by compromised vision that may have the 

PRL away from the anatomic foveal center. It was also outside the scope of this work to 

determine the best spacing metric to be used in clinical studies. Overall, as cone density and 

packing arrangement of the cones deviate from normal expected values, Scc is less reliable 

than LCS to determine the distribution of cell distances in the human photoreceptor mosaic. 

The complementary use of density, spacing and regularity metrics is valuable to increase the 

sensitivity of each descriptor for evaluating small deviations of the cone mosaic from the 

normal expected packing density arrangement [34,44,45,49,51]. 

The use of other AO imaging modalities, such as non confocal split-detector based AOSLO, 

would enhance the identification of cell loss over other confocal or non confocal techniques 

[1,61]. For this reason, we preferred using the term loss of cone reflectivity instead of cone 

loss. Comparing the results of cone metrics calculated on images of the same mosaic 

collected by different AO imaging modalities would be valuable to understand differences 

between instruments.  

In conclusion, the sampling window size and the method used for evaluating the distribution 

of cell distances in AO images of the human retinal cone mosaic should be considered when 

comparing spacing metrics between clinical studies.  
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Chapter 3 

 

 

Statistical analysis of second-order properties of cone mosaic 
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3.1 Introduction 

 

In the retina, decrease in cone density or spatial deviation from normal non-random 

arrangement may cause deterioration in visual quality. Accordingly, there is increasing 

interest to understand if there is a “normal” spatial arrangement of photoreceptors and if 

exists any correlation between photoreceptors on local, intermediate and long length scales. 

Understanding how the photoreceptors are packed may provide an indicator to detect retinal 

pathologies early in their onset in patients. In addition, this indicator could be valuable for 

monitoring in vivo the spatial distribution of photoreceptors over time and for monitoring 

the efficacy of novel therapies to slow down or halt photoreceptor loss at cellular level.  

Currently, local spatial statistics, such as density, number of neighboring points and spacing 

metrics (see Chapter 2, par. 2.3.2), are based on the 2D distribution of the cones, provide 

global information about the spacing regularity of the cones in the given mosaic. Another 

systematic way to obtain this statistical information is to construct Voronoi graph associated 

with the spatial distribution of the cones. Each cone, identified by its geometrical centroid, 

corresponds to a Voronoi tile that is color coded with respect to their cones neighbors. In 

healthy photoreceptors mosaic, the hexagonal arrangement is predominant and it is usually 

analyzed by evaluating the percentage of six-neighbours cells or the area they occupy over 

the other cells.  

Overall, all the currently used statistical approached provide useful local structural 

information on the photoreceptor mosaic but they lack to capture the salient mosaic features 

of spatial correlation between photoreceptors: how are they distributed? It is not 

straightforward to understand whether a spatial order exists and how we can quantify it. 

On the other hand, techniques from the theory of heterogeneous media were used to 

characterize spatially optical images of the distribution of the cell nuclei, i.e. in brain tumors 

[62-65]. By identifying the geometrical centroids of the cell, a spatial distribution of cell can 

be modeled as a distribution of points. Point distributions are models used for many-particle 

systems in various branches of modern science, the aim of this work is to investigate novel 

classes of spatial and statistical microstructural descriptors, which arise in the theory of 

statistical mechanics and particle packing theory heterogeneous and condensed matter, such 

as liquid crystal, and employ them to characterize the spatial distribution of retinal 

photoreceptors. These models allow to study the spatial correlation of the points on short, 

intermediate and large scales, to investigate the mechanisms of the arrangement of a point 

distribution.  
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In general, models with various degrees of spatial correlations can be generated: a Poisson 

distribution is generated by randomly placing a prescribed number of points in a domain 

with fix volume, regardless the positions of existing points, it is an example of Complete 

Spatial Randomness (CSR); in a random sequential addition (RSA) distribution, no disk can 

overlap any other disks (i.e., the inhibition distance between any two disk centers must not 

be smaller than the diameter of the disks). Therefore, the points from a Poisson distribution 

are completely uncorrelated to each other, while a RSA distribution presents spatial 

correlations between the centers and respects the non-overlapping property of the real cell 

systems. 

Here we used statistical second order descriptors to characterize the spatial distributions of 

photoreceptors in real and simulated images. These spatial descriptors include the pair 

correlation function g2(r), the structure factor s(k) and various nearest neighbor second order 

statistics (G(r), K(r) and L(r)), to quantify the reciprocal influence of the cells at a variable 

distance r. 

We generated simulated pattern points with the Poisson distribution, that is often used in 

literature as reference system but is totally uncorrelated, and with the RSA distribution that 

is a more realistic simulation, thanks to the inhibition distance between points, like in real 

cell mosaic. 

By comparing the statistics of the cone distributions to the reference systems, Poisson and 

RSA distribution and by directly comparing appropriately scaled (respect the intensity) 

distributions of normal and diseased cone mosaic (i.e., cone mosaic of patients affected from 

non proliferative diabetic retinopathy (NPDR) and inherited retinal disease (IRD)), we found 

that salient structural features related to different short and long arrangement of the cone 

mosaics, in healthy and diseased subjects, are captured very well by these correlation 

functions. Our results showed that the normal cone mosaic is more densely packed than 

diseased cone mosaic, holds stronger short-range correlations, and the distributions of cone 

photoreceptors in all study groups present different long-range spatial correlations. The 

difference between the spatial statistics of the three study groups suggests that different 

arrangement models can be developed to characterize the cone mosaic in normal eyes and 

eyes with retinal diseases, and that also in case of disease the rearrangement of the cone 

photoreceptors is not random but reflects a complex system, as in the healthy retina. 
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3.2 Methods 

 

All research procedures described in this work adhered to the tenets of the Declaration of 

Helsinki. The protocol was approved by the independent local ethical committee and all 

subjects recruited gave written informed consent after a full explanation of the procedure. 

Inclusion criteria were age >18 years old, no previous eye surgery, eye inflammation, 

glaucoma or cataract. Subjects recruited for the study received a complete eye examination, 

including non-contact ocular biometry using the IOL Master (Carl Zeiss Meditec Inc, Jena, 

Germany). 

 

3.2.1 Human subjects 

 

Thirty-three healthy volunteers (age 33± 6 years old; gender: 20 F and 13 M), and ten 

patients with a diagnosis of acquired (n=6, age 48±9 years old; gender: 3 F and 3 M) or 

inherited (n=4, age 37±16 years old; gender: 2 F and 2 M) retinal diseases were recruited in 

this study. The latter participants included subjects with a diagnosis of non proliferative 

diabetic retinopathy (NPDR; n=6), according to the ETDRS severity scale [43,44], called in 

the text NPDR group, and of retinitis pigmentosa (RP; n=2; USH2A gene mutation), Best 

macular dystrophy (Best; n=1; BEST 1 gene mutation) and occult macular dystrophy (OMD; 

n=1; RP1L1 gene mutation) [45], called in the text IRD group. 

These participants were enrolled in this study to have a dataset of AO images of the cone 

mosaic with increasing amount of cell loss and variable abnormalities in the packing 

arrangement of the cones. 

 

3.2.2 Image acquisition and processing: Real data 

 

The flood-illuminated AO retinal camera (rtx1, Imagine Eyes, France) was used to collect 

images of the cone mosaic on 33 healthy subjects and 10 subjects with various retinal 

diseases. The imaging session was conducted as described in Chap. 2 par. 2.2.2. In this study, 

a sampling area of 240x240 µm size was cropped from each final image at 2.0 degrees 

temporal from the fovea center, identified by using the corresponding optical coherence 

tomography (OCT) foveal images of each subject (Figure 3.1). 

Image cone labelling was automatically performed using an enhanced version of the 

algorithm implemented with the image processing toolbox in Matlab (The Mathworks Inc, 
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Natick MA, USA) [30,31,43,44,48]. Cones were identified independently in each sampling 

window. The cone identification algorithm’s performance was verified by three expert 

investigators, who reviewed each sampling area and manually identified cones that they 

agreed to be missed or selected in error by the algorithm. This procedure ensured that the 

number of excluded cones was minimised. A buffer zone was created in each sampling 

window in order to minimize the boundary effect for packing geometry metrics [30,31]. The 

x,y coordinates of the cones in each sampling window were stored in a text array, in this way 

we mapped the distributions of cone photoreceptors into point distributions, and then used 

to calculate the spatial statistics. 

 

Figure 3.1. Up, AO montage of the photoreceptor mosaic in a healthy subject (C_1). The red dot shows 

the foveal center and the red square the sample area (240x240 µm). Down, cropped AO images with 

cone centroids in three representative cases. On the left, the image shows the mosaic appearance from 

a subject affected by NPDR, in the center the mosaic of a healthy subject and on the right, the retinal 

mosaic in a subject with Best macular dystrophy (IRD group).  
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3.2.3 Generation of Simulated data 

 

As reference systems, we created two dataset of simulated pattern points (Figure 3.2). The 

customized algorithm in Matlab (The Mathworks Inc, Natick MA, USA) generated 50 cone 

densities from a normal distribution of mean and standard deviation of the cone density in 

Control group. For each one of these values, a homogeneous 2-D Poisson process of data 

points, uniformly distributed over the study region, and a random sequential addition (RSA) 

distribution with inhibition distance between any two centroids of 5 pixels, were built. As 

for the real data, the x,y coordinates of the points in each sampling window were then stored 

in a text array and used for subsequent analysis. 

 

 

Figure 3.2. Examples of the Poisson, RSA and real mosaic after digitalization of the cone controid  

coordinates. 

 

 

3.2.4 Spatial statistics 

 

Spatial statistics concerns with statistical methods, which explore the spatial arrangement of 

points for discovering their spatial correlations or in general for inferring their overall 

behavior. Typically, data can fall into three categories: point patterns, geostatistical data and 

lattice data. In order to investigate the cone photoreceptor mosaic arrangement, methods that 

infer information from point patterns arrangement were evaluated. 

Spatial point patterns are data made up of the location of point events. We investigated if 

their relative locations represent significant point patterns, i.e., whether such patterns are 

clustered or present some regularity or if they hold some specific spatial statistical point 

distribution. Moreover, the point-pattern data can be associated to an attribute of the spatial 
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events: i.e., the cone reflectance. Each point location si is a vector containing the coordinates 

of i-th events, si=[xi,yi], located in the sampling window R. Theoretically, the study region 

can assume any shape, but care must be taken about the edge effects that can occur with the 

statistics methods used. The edge effects are handled by leaving a specified safeguard area 

around the edge of the study region, but still within R.  

First order property of the spatial point patterns is in terms of the number of events, in our 

case events are the cone photoreceptors, occurring in an arbitrary sub-region R. We can 

denote the number of events in a sub-region A as Y(A). The spatial process is then 

represented by random variables Y(A), with A contained in R. 

After digitizing the coordinates of the centroids of the cone reflectance on sampling window, 

exploratory methods of data analysis can be applied to characterize the 2D point process of 

cone photoreceptors. The most basic information is an estimate of the intensity λ of the point 

process, i.e. the mean (= E = expected) number of points per unit reference area. If Y(A) is 

a motion-invariant point process, in our case events are the cone photoreceptors, then 

 

                                 𝜆 =
𝐸(𝑌(𝐴))

|𝐴|
                                                                  (3.1) 

 

The intensity is correlated with the cone density but is referenced to a sub-region of R, 

whereas the cone density is referenced to whole study region R. 

In order to understand the second-order properties of a spatial point process, we need to look 

at the number of events in pairs of sub-regions R. The second-order property reflects the 

spatial dependence in the process, γ(si,sj). 

For understanding the behavior of the spatial point arrangement, we can compare the 

experimental/observed spatial cone location with a common benchmark spatial model like 

as the Complete Spatial Randomness (CSR). Events follow a homogeneous Poisson process 

over the study region. The definition is given by: 

1. The intensity does not vary over the region. Thus, Y(A) follows a Poisson 

distribution with mean λA, where A is the area of A and λ is constant; 

2. There are no interactions between events. This means that, for a given n, representing 

the total number of events in R, the events are uniformly and independently 

distributed over the region of interest. 

In a CSR process, each event has the same probability of occurring at any location in R, and 

events are neither inhibit nor attract each other. To look for the presence of clusters and/or 
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regular spatial patterns, we study if the spatial patterns are statistically like a CSR process or 

departure from it.    

In the following, methods used for estimating the first-order and second-order properties of 

the point-process were presented. 

 

3.2.4.1 Intensity estimation 

 

One methodology to summarize the events in a spatial point pattern is to divide the region 

of interest into sub-regions of equal size, which are termed quadrants, and to count the 

number of events falling in each sub-region. Then the intensity is estimated by dividing the 

number of events occurred in each sub-region with the sub-region area (Eq. 3.1).  

Another method to estimate the intensity is the Kernel Estimation, which results are 

smoother than the quadrant method. The estimation of the intensity is given by: 

 

                                                                  𝜆ℎ =
1

𝛿ℎ(𝑠)
∑

1

ℎ2 𝑘 (
𝑠−𝑠𝑖

ℎ
)𝑛

𝑖=1     (3.2) 

 

where k is the kernel function, h is the bandwidth and δh is the edge correction factor. An 

overly large h provides an estimate that is very smooth, hiding variation in the intensity; 

whereas a small bandwidth might indicate more variation than that are real, making it harder 

to see the overall pattern in the intensity. The kernel function we have implemented is the 

quartic kernel:  

 

                                                                  𝜆ℎ = ∑
3

𝜋ℎ2𝑑𝑖≤ℎ (1 −
𝑑𝑖

2

ℎ2)
2

    (3.3) 

 

Where di is the distance between pairs of events locations and the correction for edge effects 

is not included.  

We investigated the second-order properties of the point-process by studying the relationship 

of distance between events in the region of interest R and comparing their spatial distribution 

along distance to a random spatial point, Poisson, and to a random sequential addition, RSA, 

process. While the intensity is a single quantity, second-order functions provide a series of 

values as a function of the interpoint distance r. Their functional values indicate which kind 

of interaction between points prevails at a certain distance. This interaction may consist in 

attraction (clustering) or repulsion, or otherwise there may be no interactive effects between 

the points at all at a certain distance. 
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3.2.4.2 Nearest Neighbour Distance Function G 

 

The nearest neighbour distance distribution function (also called the “event-to-event” or 

“inter-event” distribution) of a point process Y is the cumulative distribution function G(r) 

of the distance from a typical random point of Y to the nearest other point of Y. 

An estimate of G(r) derived from a spatial point pattern dataset can be used in exploratory 

data analysis and formal inference about the pattern [66-68]. In exploratory analysis, the 

estimate of G(r) is a useful statistic summarizing one aspect of the “clustering” of points. 

For inferential purpose, the estimate of G(r) is usually compared to the true value of G(r) for 

a completely spatial random point process (i.e., CSR). Deviations between the observed and 

CSR theoretical G(r) curves may suggest spatial clustering or spatial regularity. G(r) 

measures the fraction of nearest-neighboring distances that are less than or equal to r: 

 

                                                                  𝐺(𝑟) =
1

𝑛
∑ 𝐼(𝑟𝑖 ≤ 𝑟)𝑛

𝑖=1     (3.4) 

 

where ri is the distance of events i-th to its nearest-neighbor and n are the total number of 

events in the study region, and I is an indicator function which assumes value of 1 if ri ≤ r 

otherwise it is zero. Since G(r) is a cumulative probability, the range of G(r) is [0,1]. Hence, 

G(r) is normally evaluated over a range from 0 to some value w such that G(r) = 1.  

 

 

3.2.4.3 K and L Functions 

 

The empirical cumulative distribution function G(r) uses distances to the nearest neighbor, 

so it considers only the behavior of point patterns at the smallest scales. It would be useful 

to have an insight about the pattern at several scales: we can use an estimate of the K-

function, which is related to the second order-properties of an isotropic process.    

The definition is: 

                                                                  𝐾(𝑟) =
𝐴

𝑛2
∑ ∑

𝐼(𝑑𝑖𝑗≤𝑟)

𝛿𝑖𝑗
𝑗≠𝑖

𝑛
𝑖=1      (3.5) 

 

where dij is the distance between the i-th and j-th events and I is an indicator function that 

takes on the value of 1 if dij ≤r and zero otherwise. The δij is a correction factor for the edge 

effects. The K(r) function is the cumulative version of the Density Recovery Profile (DRP). 
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The advantage of the K(r) function is that it is not necessary to specify a bin width, and so 

we are not troubled by setting large bin widths when the number of cell bodies is low.  

The estimated K(r) function can be also compared with a CSR spatial point process. The 

theoretical K(r) function for CSR is known and equal to K(r) =πr2. An initial curve segment 

with K(r) = 0 indicates that the interpoint distance does not attain values below a certain 

minimum. In the case of biological structures such as cells, cell nuclei or capillaries, this 

behavior may simply result from their physical size, if no overlapping is possible. Such curve 

segments may hence be interpreted as a sign of a hard-core property. The lowest r-value for 

which the sample K(r) function reaches a positive value, r0, may be considered as an estimate 

of the hard-core distance (see Table 4.1). 

If the observed process exhibits regularity for a given value w, then we expect that the 

estimated K(r) function will be less than πr2, alternatively if the spatial pattern presents a 

clustering behavior K(r) ≥ πr2.  

Another approach, based on this assumption, is to define a characteristic length function, 

named L(r) function: 

                                         𝐿(𝑟) = √
𝐾(𝑟)

𝜋
− 𝑟      (3.6) 

 

Peaks of positive value in a plot of L(r) vs r would correspond to clustering, with troughs of 

negative values indicating regularity for the corresponding r. 

The pair correlation function, g2(r), (also known as radial distribution function, whose 

information is similar to that provided by an autocorrelogram) and the structure factor, s(k), 

may provide relevant information about short and long range spatial correlations order of 

retinal photoreceptors respectively [62].  

 

 

3.2.4.4 Pair correlation function g2(r) and Structure factor: s(k) 

 

Assuming again that the photoreceptor mosaic is a statistically homogeneous and isotropic 

system, g2(r) is a measure of the probability of finding a particle at distance r away from a 

given cone photoreceptor. The pair correlation function g2(r) may be obtained after 

differentiation and normalization of K(r): 

 

                                         𝑔2(𝑟) =
1

2𝜋𝑟

𝑑𝐾(𝑟)

𝑑𝑟
      (3.7) 
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In the case of a Poisson point process: 

 

                                         𝑔2
𝑃𝑜𝑖(𝑟) ≡ 1       (3.8) 

 

for all r (by insertion of K(r)=πr2 into eq. (3.7)). 

In general, the algorithm involves determining how many particles are within a distance r 

and r+dr from each cone. The g2(r) function should be used to characterize spatial 

correlation between pairs of cones on a relatively short scale length. Since two cones can 

never occupy the same space, the probability of finding two cones at the same place (i.e., r 

= 0) is zero, so that g2(r = 0) = 0. At finite separations, the relative position of a given cone 

can be influenced by the other cones in the same mosaic, which leads to variation in 

probability of finding cones at certain distances away from a given cone. The way in which 

g2(r) assumes values greater than 0 holds information on the spatial correlation between 

cones at short range. Moreover, for higher values of r, g2(r) approaches its asymptotic value 

to unity, meaning that the probability to finding two cones at relative large distance is 

constant (i.e., there is uniform probability). Values of g2(r) below 1 indicate repulsion, value 

above 1 indicate clustering for point pairs of such a distance r. Hills and valleys above and 

below the constant value 1 indicate domains of r-values with tendencies of the points for 

aggregation and repulsion, respectively. 

In the same way, the structure factor, which is defined for statistically homogeneous and 

isotropic systems as: 

 

                                         𝑠(𝑘) = 1 + 𝛿ℎ(𝑘)      (3.9) 

 

where  is cone density, h(k) is the Fourier transform of the total correlation function h(r) = 

g2(r) -1 and k is the wavenumber of the reciprocal variable r, (k=2πn/L, with n=1,2,3… and 

L is the linear size of the system). 

For non-ordered systems, the s(k) value associated to small k reflects the long-range 

correlation in the mosaic in the real space. Therefore, small s(k) behavior for small k values 

is related to the way g2(r) approaches its large r asymptotic value to unity. In other words, 

s(k) for small k values reflects the degree to which there exists large-scale collective 

organizations in the spatial distributions of cones.  

If the cones are not correlated on a long scale length, i.e., the position of the cones is not 

influenced by cones that are far away in the mosaic, the structure factor is equal to unity for 
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all values of k. If the spatial distribution of cones possesses long-range spatial correlations, 

variations in s(k) from unity should be observed for low k values.  

 

 

3.2.5 Statistical methodology 

 

Data were expressed as mean ± standard deviation. Statistics were performed using the SPSS 

software (version 17.1; SPSS Inc., Chicago, IL USA) and Matlab (version R2013a, The 

Mathworks Inc., Natick MA, USA). The 95% confidence intervals of the spatial function 

were computed by bootstrap methods with 1000 bootstrap samples for each r-value. 

After Kruskal Wallis test, the differences between the spatial statistics at fixed r of the two 

patient groups, respect the control group, the RSA and Poisson simulations group were 

evaluated using the non-parametric Mann Whitney U test, while independent-samples t-test 

was performed to compare control with RSA and Poisson simulations, due to the multiple 

comparisons a Bonferroni correction was applied. A P-value < 0.05 was considered 

statistically significant. 

 

 

3.2.6 Summary characteristics 

 

In addition, to the local computation of confidence intervals and significance tests for fixed 

r, to summarize the course of the g2(r) by a single quantity, from each estimated function 

was extracted a statistic. By identification of the first maximum gmax and the next following 

minimum gmin with the corresponding r values rmax and rmin for each g-function, where rmin 

> rmax, the follow statistic was computed [69]: 

                                          𝑀 =
𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛

𝑟𝑚𝑖𝑛−𝑟𝑚𝑎𝑥

                                                    (3.10) 

The statistic M is related to the global degree of order in the spatial point pattern. Large 

values indicate a high degree of order and may be expected e.g. in the case of point patterns 

with an element of periodicity. 
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3.3 Results 

The mean intensity and the mean cone density were 20% and 29% lower in NPDR than 

control eyes respectively (P<0.01); they were 75% and 50% lower in IRD than control eyes 

respectively (P<0.01). Data are summarized in Table 3.1. 

The summarizing characteristics rmax, gmax, rmin and gmin were computed for all individual 

g2(r) functions. From these values, the statistic M was computed. The minimum interpoint 

distance r0 was also recorded for each K(r) function. As showed in Table 3.1, there were no 

significant differences between the mean values of this parameters in the NPDR group 

compared to the control. On the contrary, there were high significant increase of mean gmax, 

rmin and gmin, in the IRD group. These finding corroborate that cones patterns of control and 

patient groups are spatially different, although the significant differences between control 

and NPDR patients were only in terms of intensity/density. 

 

Table 3.1. Mean (±SD) summary characteristics in study participants over the sampling area at 2.0 degrees 

temporal from the fovea center. 

Estimate 

Control 

group 
NPDR group 

IRD group Level of 

significance 

Cont/NPDR 

Level of 

significance 

Cont/IRD x  SD x  SD x  SD 

Density 

(ncones/mm2) 
28181 2057 21715 3241 14418 4246 0.001 0.001 

Intensity λ 0.042 0.003 0.035 0.006 0.024 0.007 0.007 0.001 

r0 (µm) 3.39 0.45 3.33 0.33 3.00 0.40 N.S. N.S. 

rmax (µm) 5.04 0.58 5.33 0.83 5.60 0.92 N.S. N.S. 

gmax (µm) 1.43 0.08 1.44 0.11 1.59 0.14 N.S. 0.014 

rmin (µm) 8.00 0.00 8.00 0.00 10.40 4.80 N.S. 0.004 

gmin (µm) 0.90 0.06 0.98 0.08 1.20 0.15 N.S. 0.001 

M 0.19 0.08 0.18 0.12 0.14 0.12 N.S. N.S. 
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Figure 3.3. Example of the mean g2(r) with the 95% confidence intervals in the three real groups. 

 

For the further analysis, the means of the spatial functions for each r in the study groups 

were estimated, and the 95% confidence intervals were computed by bootstrap method (1000 

samples), see Figure 3.3 and Table 3.2-6. 

At short range (r=1-15 µm; k=1-30), all the spatial functions showed significant difference 

(P<0.05) between the values in the control, NPDR and IRD groups in comparison with the 

Poisson simulation group at all the r values. At intermediate range, the mean spatial curves 

of control and NPDR groups approached the Poisson profile, while the IRD group was 

significantly different (Figure 3.4-8). The mean control spatial functions showed very similar 

profile with the RSA simulations; however, significant differences were found for G(r) in 

the range 3-6 µm, for the K(r) and g2(r) in almost all the r values, although the profile 

appeared equal by visual inspection, for the L(r) in the range 1-12 µm and for the s(k) under 

wavenumber k=30. The NPDR group showed similar results, while for the curves relative to 

the IRD group we found significant differences (P<0.05) at all the fixed r. 
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Figure 3.4. Mean G(r) function in all the real and simulated study groups. In the range r=2-5 

µm, the inhibition distance, the mean G(r) of real groups are very close and high different 

respect Poisson and RSA simulated mean curves. The Poisson distribution theoretically has no 

inhibition distance, while the RSA distribution presents an inhibition distance exactly about 5 

µm. The real curves are placed between these two cases: presenting much regularity respect a 

Poisson process, but less than the very regular RSA process. From 6 to 10 µm, all the curves 

approach the Poisson profile but with different slope: RSA and control mean curves are 

overlapped, and NPDR and IRD show a delay to reach the unity, bigger for the IRD group. So, 

in the second part the curves reach the unity with different velocity, proportional to cone 

density, loss of cones may determine this a minor tendency to aggregation in the photoreceptor 

cells.   

 

 
 

Figure 3.5. Mean K(r) and L(r) functions in all the real and simulated study groups. In the first 

part of the profiles, below 8 µm, all the groups show regularity respect the Poisson profile. In 

the L(r) graph the RSA and real mean curves appear not overlapped, with a higher regulatory 

for the RSA points pattern, followed by NPDR and control, overlapped, and finally IRD. In 

the second part of the profiles, over 8 µm, the RSA, control and NPDR mean curves approach 

the Poisson profile, while the IRD mean K(r) and L(r) functions show a clustering feature.  
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Figure 3.6. Mean g2(r) function in all the real and simulated study groups. In the range r=0-3 

µm all the mean curves show repulsion tendency between cells, due to the inhibition distance. 

At r= 5 µm, the tendency to aggregation of the photoreceptor cells are max with a first positive 

peak, then all the mean functions approach the unity with the characteristic trend with hills 

and valley, except for the IRD g2(r) profile that remains far from the unity. This great tendency 

for aggregation of the IRD pattern points is a sign of high clustering. 

 

 

 

Figure 3.7. Mean s(k) function in all the real and simulated study groups. In the range k=0-30 

s(k) gives information about the long range organization of the pattern points. In this specific 

range we observe that all the mean s(k) profiles deviate from the Poisson, so all the mosaic 

present a non random arrangement at long range. Control and RSA curves are almost 

overlapped, while the NPDR and IRD are well distinguishable. Furthermore, it seems that more 

the mosaic is packed densely, more is the distance from the Poisson plot, so high cone density 

leads a greater communication between cells at long range distance.  
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In the real study groups (Table 3.2-6), significant differences in the range r=6-9 µm were 

found for the mean G(r) function (P<0.01), in the range r=10-20 µm were found for the mean 

K(r) and L(r) functions (P<0.05) and in the range k=1-20 for the mean s(k) (P<0.05) between 

the Control and the NPDR group, no differences in the two g2(r) profiles. Finally, the 

comparison between the control and the IRD groups’ mean spatial functions showed 

significant differences in the range r=6-18 µm for the G(r) function (P<0.01), in the range 

r=4-20 µm for the K(r) function (P<0.05), in the range r=3-20 µm for the L(r) function 

(P<0.05), in the range r=3-16 µm for the g2(r) function (P<0.05) and for the structure factor 

s(k) in the range k=1-25, as shown in Table 3.2-6. 

 

 

3.4 Discussion 

 

In the present study, parametric and non parametric methods were used to compare mean 

values of five spatial functions (G(r), K(r), L(r), g2(r) and s(k)) in a dataset composed of the 

retinal cone mosaic of healthy subjects, patients with different severity of retinal diseases, 

and two simulated pattern points from a Poisson and a random sequential addition (RSA) 

distributions. The estimated spatial functions from these pattern points quantified regularity 

or clustering characteristics at short, intermediate (G(r), K(r), L(r), g2(r)) and long range 

(s(k)). The G(r) function estimates the Nearest Neighbour Distance by describing as the 

probability of find two cells approaching the unity for the fixed r values. Comparing the K(r) 

and the L(r) functions profiles with those relative to a CSR model (or Poisson in our case) is 

a method that can be used to quantify the regularity and clustering of the pattern points: 

domains of r values of these curves below the Poisson spatial function measures the 

regularity, while the values over the function measure clustering. Also, the pair correlation 

function g2(r) gives information about short range arrangement of cells: the hard-core effect 

leads to an initial segment with zero values, then hills and valleys above and below the unit 

indicate domains of r values with tendencies of the points for aggregation (clustering) and 

repulsion, respectively. Finally, short range of k values in the structure factor s(k), reflects 

the long range arrangement of the pattern points, in a CSR process the s(k) is constant equal 

to the unit, deviation from this value quantifies deviation from total uncorrelated pattern 

points.    
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Local approach with consecutive significance tests at fixed r/k-values was chosen, in order 

to investigate at which specific ranges of interaction the significant differences between the 

mean spatial function values in the study groups emerge. At short range (r=1-15 µm; k=1-

30), the observed point processes were not compatible with simulation from Poisson point 

distribution. The property of non overlapping of the photoreceptor cells clearly characterized 

these pattern points as “hard-core” point processes. The other used simulation model, RSA, 

was generated starting from extracted data of the empirical images such as cone density and 

intercell distance, this leads to a more realistic simulated pattern point that showed in the 

results very similar profile respect those of the control group. Nevertheless, significant 

differences were found between RSA and Control, NPDR, IRD mean spatial functions at 

several r values: for G(r) function in the range 3-6 µm, 3-10 µm and 2-18 µm respectively; 

for K(r) function in the range 3-15 µm, 3-20 µm and 3-28 µm respectively; for L(r) and g2(r) 

at almost all the r values; and for s(k) factor in the range 25-70, 1-55 and 1-80 respectively. 

The RSA model appeared to have very high regularity respect to the control one, as a matter 

of fact, the mean L(r) curve of the RSA showed the bigger area below the Poisson mean 

curve, that is a measure of regularity. A solution to have a better simulated model may be to 

generate the pattern points with different inhibition distance, to mimic the variability present 

in real cone mosaic. 

At short range, few differences at fixed r values were found between control and NPDR 

groups, the mean functions showed similar profiles, that signifies very regularity at short 

range and no clustering of these pattern points, as showed in the mean K(r) and L(r) functions 

that were below the Poisson mean curve for all the r values. The mean spatial functions 

relative to the IRD group showed a lot of significant differences respect control and 

simulated groups. This is the only group with high clustering tendency: in the mean K(r) and 

L(r) function the curves were over the Poisson profile starting from r=8 µm, the mean g2(r) 

is above 1 for all the r-values at short and intermediate range. 

At long range, k=1-30, the mean s(k) factor of all the groups showed differences respect the 

Poisson mean curve: mean s(k) curves of Control and RSA groups were overlapped, while 

the NPDR and IRD groups demonstrate less difference in comparison with the Poisson 

pattern points. With decreasing in cone density (intensity), the long range spatial correlation 

appeared to decrease, indeed the mean s(k) relative to the IRD group was the nearest to the 

Poisson mean s(k). 

The G(r), K(r), L(r), g2(r) and s(k) functions showed high sensitivity to discriminate between 

healthy and diseased retinal cone mosaics; the healthy retinal cones are more densely packed 

than pathologic retinal mosaics and possess stronger short and long range correlations. The 
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RSA, with some improvement to decrease the very high regularity for example by a variable 

inhibition distance, could be a good candidate to model real retinal photoreceptor mosaics. 

In addition, these spatial functions could be valuable for monitoring the spatial arrangement 

and distribution of photoreceptors over time in patients and for monitoring the efficacy of 

novel therapies to slow down or halt photoreceptor loss at cellular level.
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Table 3.2. Mean (±SD), bootstrap bounds and P value for the G(r) function in the three real case groups. 

r (µm) ( )G r  SD Bootstrap bounds ( )G r  SD Bootstrap bounds ( )G r  SD Bootstrap bounds Level of significance 

Normal photoreceptor mosaic NPDR photoreceptor mosaic IRD photoreceptor mosaic Normal/NPDR Normal/IRD 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N.S. N.S. 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N.S. N.S. 

3 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.02 0.01 0.03 N.S. N.S. 

4 0.05 0.03 0.04 0.06 0.04 0.02 0.02 0.05 0.06 0.03 0.04 0.10 N.S. N.S. 

5 0.24 0.08 0.21 0.27 0.20 0.06 0.15 0.23 0.21 0.06 0.18 0.27 N.S. N.S. 

6 0.86 0.08 0.83 0.88 0.77 0.09 0.70 0.83 0.66 0.08 0.57 0.72 0.018 0.003 

7 0.98 0.02 0.97 0.98 0.92 0.04 0.89 0.95 0.83 0.08 0.71 0.88 0.002 0.001 

8 1.00 0.00 1.00 1.00 0.98 0.02 0.96 0.99 0.92 0.06 0.83 0.95 P<0.001 P<0.001 

9 1.00 0.00 1.00 1.00 0.99 0.01 0.98 1.00 0.96 0.04 0.90 0.98 P<0.001 P<0.001 

10 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 0.98 0.02 0.95 0.99 N.S. P<0.001 

11 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 0.99 0.02 0.96 1.00 N.S. P<0.001 

12 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 0.99 0.01 0.97 1.00 N.S. 0.004 

13 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 0.99 0.01 0.98 1.00 N.S. 0.004 

14 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 0.99 0.01 0.98 1.00 N.S. 0.004 

15 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.01 0.99 1.00 N.S. 0.004 

16 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.01 0.99 1.00 N.S. 0.004 

17 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.99 1.00 N.S. 0.004 

18 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.99 1.00 N.S. 0.004 

19 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 N.S. N.S. 

20 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 N.S. N.S. 
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Table 3.3. Mean (±SD), bootstrap bounds and P value for the K(r) function in the three real case groups. 

r (µm) ( )K r  SD Bootstrap bounds ( )K r  
SD Bootstrap bounds ( )K r  

SD Bootstrap bounds Level of significance 

Normal photoreceptor mosaic NPDR photoreceptor mosaic IRD photoreceptor mosaic Normal/NPDR Normal/IRD 

1 0 0 0 0 0 0 0 0 0 0 0 0 N.S. N.S. 

2 0 0 0 0 0 0 0 0 0 0 0 0 N.S. N.S. 

3 0 0 0 0 0 0 0 0 1 1 1 2 N.S. N.S. 

4 2 1 2 2 2 1 1 2 5 2 3 7 N.S. 0.003 

5 9 3 8 10 10 2 8 11 17 6 12 23 N.S. 0.004 

6 56 9 53 59 56 8 48 61 72 14 60 83 N.S. 0.013 

7 96 7 94 98 95 9 87 101 116 16 103 129 N.S. 0.022 

8 140 4 139 142 141 8 134 145 171 22 155 194 N.S. 0.045 

9 178 3 177 179 181 7 176 186 222 27 203 250 N.S. 0.010 

10 249 3 248 250 258 10 254 269 320 34 292 347 N.S. 0.001 

11 301 6 299 303 313 13 306 326 386 42 352 419 N.S. 0.001 

12 358 8 356 361 372 17 362 388 455 43 419 490 0.004 0.001 

13 423 6 421 425 438 17 428 455 529 41 495 563 0.000 0.001 

14 547 3 545 548 564 17 556 584 674 43 638 710 0.016 0.001 

15 617 3 616 618 636 21 626 660 757 46 720 794 0.047 0.001 

16 694 4 693 696 717 24 705 745 847 51 806 887 0.013 0.001 

17 773 6 771 775 797 30 783 832 940 56 896 996 0.002 0.001 

18 942 7 940 945 969 32 953 1005 1139 62 1087 1200 0.000 0.001 

19 1030 6 1028 1032 1059 32 1042 1096 1239 66 1187 1305 0.000 0.001 

20 1119 7 1117 1121 1151 36 1133 1193 1341 73 1292 1414 0.000 0.001 
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Table 3.4. Mean (±SD), bootstrap bounds and P value for the L(r) function in the three real case groups. 

r (µm) ( )L r  SD Bootstrap bounds ( )L r  SD Bootstrap bounds ( )L r  SD Bootstrap bounds Level of significance 

Normal photoreceptor mosaic NPDR photoreceptor mosaic IRD photoreceptor mosaic Normal/NPDR Normal/IRD 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N.S. N.S. 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N.S. N.S. 

3 0.27 0.15 0.22 0.31 0.25 0.14 0.12 0.33 0.59 0.22 0.45 0.82 N.S. 0.003 

4 0.73 0.22 0.65 0.80 0.70 0.20 0.57 0.85 1.18 0.28 1.01 1.46 N.S. 0.004 

5 1.70 0.32 1.58 1.81 1.73 0.24 1.53 1.87 2.33 0.43 1.94 2.69 N.S. 0.012 

6 4.22 0.33 4.09 4.32 4.23 0.32 3.94 4.40 4.76 0.46 4.32 5.14 N.S. 0.038 

7 5.53 0.21 5.46 5.59 5.49 0.27 5.27 5.65 6.06 0.42 5.71 6.48 N.S. 0.011 

8 6.68 0.09 6.65 6.71 6.69 0.19 6.50 6.79 7.36 0.48 7.02 7.86 N.S. 0.001 

9 7.52 0.06 7.50 7.54 7.59 0.14 7.47 7.69 8.40 0.50 8.01 8.92 N.S. 0.001 

10 8.90 0.05 8.88 8.91 9.06 0.16 8.98 9.26 10.08 0.53 9.64 10.55 P<0.001 0.001 

11 9.79 0.10 9.75 9.82 9.97 0.20 9.87 10.21 11.07 0.60 10.58 11.63 0.015 0.001 

12 10.68 0.12 10.64 10.72 10.87 0.24 10.74 11.12 12.02 0.57 11.51 12.49 0.041 0.001 

13 11.61 0.09 11.58 11.64 11.81 0.23 11.67 12.01 12.97 0.50 12.49 13.33 0.015 0.001 

14 13.19 0.04 13.17 13.20 13.40 0.21 13.30 13.65 14.64 0.47 14.17 15.03 P<0.001 0.001 

15 14.01 0.03 14.00 14.02 14.22 0.23 14.12 14.50 15.52 0.47 15.09 15.90 P<0.001 0.001 

16 14.87 0.05 14.85 14.88 15.10 0.25 14.98 15.40 16.42 0.50 16.02 16.80 P<0.001 0.001 

17 15.68 0.06 15.66 15.70 15.93 0.29 15.79 16.28 17.29 0.51 16.81 17.67 P<0.001 0.001 

18 17.32 0.06 17.30 17.34 17.56 0.29 17.42 17.92 19.04 0.52 18.60 19.50 0.001 0.001 

19 18.11 0.05 18.09 18.13 18.35 0.28 18.22 18.70 19.85 0.52 19.44 20.32 P<0.001 0.001 

20 18.87 0.06 18.85 18.89 19.14 0.30 18.99 19.49 20.65 0.56 20.28 21.22 P<0.001 0.001 
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Table 3.5. Mean (±SD), bootstrap bounds and P value for the pair correlation function g2(r) in the three real case groups. 

 

 

 

r (µm) 2
( )g r  SD Bootstrap bounds 2 ( )g r  SD Bootstrap bounds 2 ( )g r  SD 

Bootstrap 

bounds 
Level of significance 

Normal photoreceptor mosaic NPDR photoreceptor mosaic IRD photoreceptor mosaic Normal/NPDR Normal/IRD 

2 0.11 0.06 0.09 0.13 0.10 0.05 0.06 0.13 0.26 0.13 0.18 0.41 N.S. N.S. 

3 0.77 0.18 0.71 0.83 0.81 0.14 0.68 0.89 1.04 0.23 0.85 1.25 N.S. 0.047 

5 1.42 0.09 1.39 1.45 1.38 0.14 1.25 1.46 1.56 0.16 1.43 1.72 N.S. 0.002 

6 1.21 0.14 1.17 1.26 1.28 0.13 1.21 1.41 1.57 0.16 1.48 1.79 N.S. 0.001 

8 0.90 0.06 0.88 0.92 0.98 0.08 0.92 1.04 1.24 0.13 1.09 1.32 N.S. 0.001 

10 1.13 0.08 1.11 1.16 1.18 0.09 1.11 1.25 1.38 0.10 1.30 1.47 N.S. 0.002 

11 1.08 0.05 1.07 1.10 1.11 0.04 1.07 1.13 1.24 0.06 1.20 1.29 N.S. 0.019 

13 1.03 0.03 1.02 1.04 1.07 0.03 1.04 1.09 1.18 0.12 1.06 1.27 0.028 0.002 

14 1.05 0.03 1.04 1.06 1.09 0.05 1.06 1.14 1.21 0.12 1.14 1.33 N.S. 0.001 

16 1.07 0.02 1.06 1.08 1.07 0.02 1.06 1.09 1.22 0.05 1.19 1.30 N.S. N.S. 

18 0.99 0.02 0.98 0.99 1.03 0.03 1.01 1.05 1.10 0.09 1.01 1.17 0.002 N.S. 

19 1.07 0.02 1.07 1.08 1.09 0.04 1.06 1.12 1.18 0.13 1.04 1.26 N.S. N.S. 

21 1.01 0.02 1.00 1.02 1.03 0.02 1.01 1.04 1.10 0.13 0.98 1.18 0.035 0.001 

22 1.03 0.02 1.03 1.04 1.04 0.02 1.02 1.06 1.15 0.08 1.10 1.25 N.S. N.S. 

24 1.03 0.02 1.03 1.04 1.05 0.01 1.05 1.06 1.11 0.10 1.03 1.21 0.004 N.S. 

26 1.01 0.02 1.01 1.02 1.02 0.01 1.01 1.03 1.07 0.14 0.89 1.15 N.S. 0.027 

27 1.01 0.01 1.00 1.01 1.02 0.03 0.99 1.04 1.08 0.06 1.02 1.12 0.037 N.S. 

29 1.01 0.02 1.00 1.01 1.02 0.01 1.01 1.03 1.09 0.09 1.02 1.17 N.S. N.S. 

30 1.05 0.02 1.04 1.05 1.05 0.02 1.04 1.07 1.08 0.12 0.92 1.15 N.S. N.S. 

32 1.01 0.01 1.00 1.01 1.02 0.01 1.01 1.02 1.05 0.11 0.95 1.14 N.S. N.S. 
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Table 3.6. Mean (±SD), bootstrap bounds and P value for the s(k) function in the three real case groups. 

k ( )s k  SD 
Bootstrap 

bounds 
( )s K  SD Bootstrap bounds ( )s K  SD Bootstrap bounds Level of significance 

Normal photoreceptor mosaic NPDR photoreceptor mosaic IRD photoreceptor mosaic Normal/NPDR Normal/IRD 

1 0.23 0.05 0.21 0.24 0.33 0.08 0.28 0.39 0.58 0.28 0.42 0.88 0.003 0.001 

5 0.20 0.06 0.18 0.22 0.32 0.05 0.30 0.38 0.51 0.21 0.39 0.73 0.017 0.004 

10 0.25 0.06 0.23 0.27 0.34 0.06 0.30 0.39 0.48 0.08 0.42 0.56 N.S. N.S. 

15 0.31 0.07 0.29 0.34 0.47 0.09 0.40 0.53 0.56 0.07 0.51 0.62 0.013 0.014 

20 0.42 0.08 0.40 0.45 0.60 0.12 0.51 0.68 0.75 0.08 0.71 0.85 0.002 0.001 

25 0.69 0.15 0.65 0.75 0.79 0.13 0.68 0.87 0.91 0.04 0.88 0.95 N.S. 0.006 

30 1.12 0.23 1.05 1.21 1.14 0.27 0.97 1.38 1.01 0.14 0.87 1.10 N.S. N.S. 

35 1.36 0.19 1.30 1.43 1.35 0.17 1.19 1.44 1.17 0.25 1.03 1.43 N.S. N.S. 

40 1.25 0.17 1.19 1.31 1.18 0.15 1.07 1.28 1.04 0.10 0.94 1.11 N.S. 0.029 

45 1.09 0.16 1.04 1.14 1.10 0.10 1.03 1.16 1.04 0.10 0.94 1.10 N.S. N.S. 

50 0.97 0.08 0.94 1.00 0.93 0.13 0.85 1.04 0.97 0.05 0.91 1.00 N.S. N.S. 

55 0.93 0.10 0.90 0.96 0.93 0.09 0.86 0.99 0.97 0.07 0.93 1.05 N.S. N.S. 

60 0.95 0.06 0.93 0.97 1.01 0.07 0.94 1.05 0.99 0.03 0.97 1.02 N.S. N.S. 

65 0.96 0.08 0.93 0.98 0.98 0.05 0.95 1.03 1.01 0.07 0.96 1.07 N.S. N.S. 

70 0.99 0.09 0.96 1.02 1.07 0.11 0.98 1.14 1.00 0.05 0.97 1.05 N.S. N.S. 

75 1.02 0.08 0.99 1.06 0.96 0.07 0.92 1.02 0.95 0.06 0.90 1.01 N.S. N.S. 

80 0.98 0.08 0.95 1.00 0.99 0.05 0.96 1.04 1.01 0.04 0.99 1.06 N.S. N.S. 

85 1.02 0.07 0.99 1.04 0.98 0.08 0.92 1.03 0.96 0.05 0.91 0.99 N.S. N.S. 

90 1.02 0.09 0.99 1.06 0.96 0.11 0.84 1.02 0.99 0.06 0.95 1.04 N.S. N.S. 

95 1.02 0.05 1.00 1.04 0.97 0.06 0.92 1.01 1.09 0.07 1.04 1.15 0.048 N.S. 
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Chapter 4 

 

Clustering of spatial functions profiles extracted from normal and 

diseased AO cone mosaics 
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4.1 Introduction 

 

Multivariate-multioccasion phenomena can be studied through a set X of IJT values corresponding 

to J variables, observed on a set of I units, on T different occasions (different times, places, etc.). 

The three-way array X is organized according to three modes: units, variables, and occasions. The 

most widely collected three-way array is given when, together with units and variables, different time 

occasions are considered, i.e. repeated recurring surveys, longitudinal surveys and so on. 

This kind of three-way data, allows to make inferences about the dynamics of change from 

crosssectional evidence, with increasing of the degrees of freedom and reducing co-linearity among 

explanatory variables, respect the two-way dataset. The problem to evaluate a dissimilarity between 

trajectories was first introduced by considering as measure the result of two weighted components 

combined using subjective weights [70, 71]. 

Our three-way dataset is not longitudinal, called the X set of IJS, is composed of the spatial second 

order function values (J variables), observed on the control and inherited retinal disease (IRD) study 

groups (I units), at different distance r (S). The dissimilarity between spatial curves were defined as 

a conic combination of the dissimilarities between trends, velocities and accelerations of the pair of 

function profiles. The coefficients of the linear combination are estimated maximizing its variance. 

The proposed methodology was applied only for the r values in short range scale by excluding the 

initial inhibition distance. The individual classification was conducted between the control and IRD 

groups (see Chap. 3), because the NPDR group showed very similar behaviour of the mean spatial 

statistic functions of control group, so classification between NPDR and control could need bigger 

sample size.  

 

 

4.2 Methods 

 

4.2.1 Trend 

 

Let X X X k1 2, ,...,  be k quantitative variables observed on n units (subjects) at r consecutive space 

points. The observed data can be arranged into a three-way data set: 

 

 1 2( , ,..., ): , : , ,i r i r i r ikr ijrx x x i I r S x i I j J r S
         X x      (4.1) 
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where ijrx  is the value of the j-th variable (spatial statistic curves) collected on the i-th object (subject 

in our case) at space r;  I n= 1,..., ,  J k= 1,..., ,  and  uS 1,...,=  are the set of indices pertaining to 

objects (subjects in our case), variables and space points, respectively. 

The observed objects can be represented as points of a vectorial space equipped with a distance, i.e. 

a real function   on the set  SrIirxxx ikrririri   ,:),,...,,(= 21yY  from: Y Y  to 
 , such 

that: ,0),( iir ),,(),( illi rr    0),( lir , ),,(),(),( hilhli rrr     i l h I, , ,  where ),( lir  

indicates the distance between subject i and l of I , at space r. Let M dk +1  ( , )Y  be the metric space 

spanning the k variables and space. 

For each object i,  SriY ri   :)( y  describes a space trajectory of the i-th subject according to the 

k examined variables. The trajectory Y i( )  is geometrically represented by u 1 segments connecting 

u points 
riy  of M k +1 . 

 

 

4.2.2 Velocity and acceleration 

 

Velocity and acceleration are two trajectories’ characteristics strongly describing changes of curves 

along space. In 2-D space, velocity of each segment of the trajectory is the slope of the straight line 

passing through it: if velocity is negative (positive) the slope will be negative (positive) and the angle 

made by each segment of the trajectory with the positive direction of the r-axis will be obtuse (acute). 

Velocity of Y(i) is defined as the rate of change of i-th object position in a fixed space interval and 

indicating the direction and versus of each segment of the trajectory Y(i) for a given variable.  

Geometrically, acceleration of each pair of segments of trajectory represents their convexity or 

concavity. If acceleration is positive (negative) the trajectory of the two segments is convex 

(concave). Acceleration measures the variation of velocity of Y(i) in a fixed space interval. 

In this work, the dissimilarity between space trajectories was defined as a linear combination of 

distances between trends, velocities and accelerations of a pair of trajectories. 

Therefore, for each space trajectory Y(i), the velocity of evolution of an object i in the interval from 

r to r+1, denoted 1, rrs , is, for the j-th variable: 

1,

1

1,










rr

ijrijr

rijr
s

xx
v

         (4.2) 
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with 01, rijrv  ( 01, rijtv ) if object i, for the j-th variable, presents an increasing (decreasing) rate of 

change of its position in the space interval from r to r+1; 01, rijrv  if the object i for the j-th variable, 

does not change position from r to r+1. 

For each r of the trajectory Y(i), the acceleration of an object i in the interval from r to r+2, denoted 

𝑠𝑟,𝑟+2, is, for the j-th variable: 

1, 2 , 1

, 2

, 2

ijr r ijr r

ijr r

r r

v v
a

s

  








        (4.3) 

and  𝑎𝑖𝑗𝑟,𝑟+2 > 0   ( 𝑎𝑖𝑗𝑟,𝑟+2 < 0 ) if the object i, for the j-th variable, presents an increasing 

(decreasing) variation of velocity in the space interval from r to r+2; 𝑎𝑖𝑗𝑟,𝑟+2 = 0 if object i, for j-th 

variable, does not change velocity from r to r+2. 

 

 

4.2.3 Dissimilarity matrix 

 

The dissimilarity between trajectories maybe represented as a function of distances between 

multivariate objects, Srlir ),,( , by the normalized Minkowski metric of order p (in our case we 

fixed p=2 for Euclidean metric). The distances between trends in a space point r, velocities and 

accelerations in a space interval for object i and l are respectively: 

 

,
1

=),(

1

1=1

1

pk

j

p

ljrijrr xxli 












pk

j

p

rljrrijrrr vvli

1

1=

1,1,

2

1,2

1
=),( 








 


 ,

pk

j

p

rljrrijrrr aali

1

1=

2,2,

3

2,3

1
=),( 








 


  

     (trends distance)                              (velocities distance)                   (accelerations distance) 

 

where p is an integer ≥1, and π1, π2 and π3 are suitable weights to normalize distances. Differences 

between trend intensities, in a space point r, of objects i and l are evaluated according to a measure 

of distance between xi.r and xl.r, 𝑟 ∈ 𝑆; differences between velocities of objects i and l, in a space 

interval, are evaluated according a measure of distance between ),,...( 1,1ri1r,1,
  rikrrri vvv  and 

1,  rrlv

, =1,..., -1r u ; differences between accelerations of objects i and l, in a space interval, are evaluated 

according to a measure of distance between ),...,( 2,2,12,
  rikrrrirri aaa  and 2,  rrla , 2-1,...,= ur . 
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A dissimilarity between trends of Y(i) and Y(l) is a mapping from  Srlir  ),,(1 to 

; between 

velocities of Y(i) and Y(l), a mapping from  Srlirr  ),,(1+ ,2 to 

; and between accelerations of 

Y(i) and Y(l), a mapping from  Srlirr  ),,(2+ ,3 to 

. 

The total dissimilarity between space trajectories Y(i) and Y(l) is mapped by the following weighted 

sum: 

3

1

( , ) ( , ), 1, 2,3m m

m

d i l d i l m



                                                             (4.4) 

where γm, m=1,2,3, are suitable positive weights, that indicate the contribution of each trajectory 

characteristic to determine the total dissimilarity ),( lid  . 

To follow an objective approach to evaluate weights, we maximized the variance of (4.4), as show 

below. 

Let  ),( lid  D  be the ( n n ) matrices of total dissimilarities between trajectories and let 

 ),( lidmm D  be the ( n n ) matrices obtained considering the dissimilarities between Y(i) and Y(l) for 

the three (m=1,2,3) features of each trajectory. Matrices 
D  and mD  may be represented as vectors 

defined by elements of a triangle below (above) the diagonal of the matrices )( 
Dvec  and 

 1,2,3)( mvec mD . Therefore, 
1 2 3( ) = ( ), ( ), ( )m mvec vec vec vec   

   
D D D D D   1,2,3m  is a (n(n-1)/2

 3) matrix; while 


 
3

1

).()(
m

mm vecvec DD   

To compute the total dissimilarity between each pair of time trajectories, )( 
Dvec , the follow problem 

with respect to variables  1 2 3, ,m   


 has to be solved: 

 
















1

))((var=))((var
3

1

  mm

m

mm vecvecmax



 DD
                                   (4.5) 

 

The solution is obtained differentiating the Lagrangian function of (4.5) and equating to zero: 

 

  ,0)-(1))((var m    
 

m

m

vec 



D                                                   (4.6) 
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where   is the Lagrange multiplier. Since    

mmvec =))((var D , where   is the variance and 

covariance matrix of m D ; thus equation (4.4) is: 0)(  mI . Then multiplying for 'm :

     mm
 corresponding to the maximum eigenvalue of   and  m is the associated eigenvector. 

 

 

4.2.4 Dataset 

 

For every subject belonging to the control (n=33, numbered from 1 to 33) and inherited retinal disease 

(IRD, n=4, numbered from 34 to 37), we considered the curves of the five spatial statistic functions 

including G(r), K(r), L(r), g2(r) and s(k), studied in the chapter 3. Our three-way dataset was 

composed of the spatial function values for each study subject at a specific interval of distance r. We 

analysed the curve profiles in the interval distance (Table 4.1) that gave significant differences 

between control and disease groups in the previous chapter 3. 

 

 

Table 4.1. Dataset of study 

Study groups Spatial functions Distance interval (µm) 

 

N= 33 Healthy subjects 

(numbered from 1 to 33) 

N= 4 IRD patients 

(numbered from 34 to 37) 

 

G(r) 6-18 

K(r) 10-20 

L(r) 7-20 

g2(r) 4-14 

S(k) 1-25 

 

 

 

4.3 Results 

 

Clustering analysis was performed using Matlab (version R2013a, The Mathworks Inc., Natick MA, 

USA). Fixing p=2, in the Minkowski metric the dissimilarity, between trajectories of trend, velocity 

and acceleration, matrices π1D1, π2D2 and π3D3 were computed. To determine the total dissimilarity 

matrix, the weights γ1, γ2, γ3 were computed as described in paragraph 4.2.3, by finding the largest 
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eigenvalue and the associated eigenvector of Σ. The values of λ and γ = (γ1, γ2, γ3) for each spatial 

statistic function are shown in Table 4.2. 

 

 

Table 4.2. Values of the largest eigenvalue and the associated eigenvector for the spatial functions. 

 G(r) K(r) L(r) g2(r) S(k) 

λ 2.5106 2.4111 2.2421 2.2226 2.4356 

γ1 0.3129 0.3561 0.2795 0.2457 0.2890 

γ2 0.3595 0.3563 0.3724 0.3782 0.3636 

γ3 0.3276 0.2876 0.3481 0.3761 0.3474 

 

 

Finally, the method of Ward (minimum variance algorithm) linkage was applied to the matrix 
D . 

The dendrograms relative to the dissimilarity matrices of the five studied spatial functions are shown 

in Figures 4.1-5. The vertical axis of the dendrogram represents the distance or dissimilarity between 

clusters. The horizontal axis represents the subjects and clusters.   

 

 

 

Figure 4.1. Dendrogram of the G(r) function in all subjects. Looking at this dendrogram, under the red 

pruning line we can see three clusters, 2 of the control group and 1 with the IRD patients (34 -37). The 

individual profiles of the control group appeared to be not enough homogenous to constitute one cluster.  
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Figure 4.2. Dendrogram of the individual trajectories of the K(r) function, in red pruning line. In this 

graph, the pruning line divided the study in group in two clusters: the first  composed of all the healthy 

subjects, and the second of only the IRD patients. The K(r) function allowed as to differentiate exactly 

between o 

 

 

 

Figure 4.3. Dendrogram of the r trajectories of the L(r) function in all the subjects, in red pruning line. The L(r) 

function information derive from the K(r) function, so also in this dendrogram we identified exactly our two 

study groups. 
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Figure 4.4. Dendrogram of individual trajectories of the g2(r) function. The red pruning line divides 

the subject in three groups: one composed of all the healthy subjects, the other with three subjects of 

the IRD group and the third composed of the outlier 34. 

 

 

Figure 4.5. Dendrogram of the r trajectories of the s(k) function in all the subjects, in red pruning line. In this 

dendrogram we identified under the pruning line two clusters composed exactly of members of the two study 

groups IRD and control. 

 

 

 

4.4 Discussion 

In this chapter, a method to analyse dissimilarities between spatial function profiles have been 

discussed. In this case with application to a dataset where the function curves varied with distance r, 

instead of time t. 
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The used model was a combination of distances between trends, velocities and accelerations 

measured on the spatial second order function, seen in the chapter 4. Aim of this analysis was to try 

a clustering analysis of spatial functions extracted in the AO mosaic images in the control and IRD 

groups. 

The results showed that the right classification of the subjects in the two study groups was performed 

with the K(r), L(r) and s(k) functions, while with the G(r) and the pair correlation function g2(r) the 

control and the IRD groups appeared to be not enough homogenous.  

This is a first attempt to apply such type of analysis based on dynamic curves study, to spatial 

functions extracted from biomedical images. 
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Conclusion 

This thesis has shown different techniques to quantify the information of the cone arrangement in 

the retinal mosaic. 

The first approach is a classical global way to extract spacing descriptors of the distribution cones, 

that gives helpful information summarizing the distance between neighbour cones. We evaluated the 

agreement between three metrics (Scc, LCS and DRPD) currently used to describe the distribution of 

distances between cones in AO images of the cone mosaic in a group of healthy subjects and a group 

of patients with different retinal diseases and variable loss of cone reflectivity. The aim was to 

understand if the three considered metrics, which have been calculated over sampling areas of 

different size, could be used interchangeably in clinical studies. It emerged that the influence of the 

sampling window size is important and the choice of the window size should avoid poor sampling. 

The use of smaller sampling windows allows for a local analysis of the integrity of the cone mosaic, 

while the use of larger areas may lead to overestimating the integrity of the retinal mosaic. Care is 

needed when comparing results of these kind of metrics in different clinical study.  

In the second approach, classical inference methods and bootstrap techniques were applied to 

compare mean second order functions of three groups of cases.  For this purpose, a pointwise, local 

approach with consecutive significance tests at all r/k-values, was chosen. This method overcomes 

issue relative to the selection of the window sampling size and gives information about the 

arrangement of the cones mosaic ad short and long range. The comparison between the three study 

groups was done by a descriptive analysis of the mean spatial functions at specific r values.  

Finally, starting from these results, a first attempt of individual curves classification was made in 

order to cluster the subjects in homogeneous classes corresponding to the normal or pathological 

state. 

The good results obtained with the statistical point pattern analysis suggest as next step, to improve 

this analysis by fitting a model to the cone mosaic in normal and diseased subjects. 
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