
Noname manuscript No.
(will be inserted by the editor)

A Planning Approach to the Automated Synthesis of
Template-Based Process Models

Andrea Marrella · Yves Lespérance

Received: date / Accepted: date

Abstract The design-time specification of flexible pro-

cesses can be time-consuming and error-prone, due to

the high number of tasks involved and their context-

dependent nature. Such processes frequently suffer from

potential interference among their constituents, since

resources are usually shared by the process participants

and it is difficult to foresee all the potential tasks inter-

actions in advance. Concurrent tasks may not be inde-

pendent from each other (e.g., they could operate on the

same data at the same time), resulting in incorrect out-

comes. To tackle these issues, we propose an approach

for the automated synthesis of a library of template-

based process models that achieve goals in dynamic

and partially specified environments. The approach is

based on a declarative problem definition and partial-

order planning algorithms for template generation. The
resulting templates guarantee sound concurrency in the

execution of their activities and are reusable in a vari-

ety of partially specified contextual environments. As

running example, a disaster response scenario is given.

The approach is backed by a formal model and has been

tested in experiments.

Keywords Flexible Processes, Template-based

Process Models, Partial-Order Planning, Business

Process Management

A. Marrella
Sapienza - Universitá di Roma, Italy
E-mail: marrella@diag.uniroma1.it

Y. Lespérance
York University, Toronto, Canada
E-mail: lesperan@cse.yorku.ca

1 Introduction

Over the last decade, organizations and companies

have started adopting process management method-

ologies and tools, with the aim of increasing the level

of automation support for their operational business

processes. Business Process Management (BPM) has,

therefore, become a leading research area in the broader

field of information systems [2].

Conventional BPM solutions require us to pre-define

a detailed model of the process which completely pre-

scribes the process execution flow and captures every

possible process instance to be executed at run-time

through a Process Management System (PMS). These

models, typically based on imperative process speci-

fication, allow for a complete predefined specification

of process logic able to represent procedural process

knowledge, capturing the tasks to be executed and their

control-flow, as well as process-related data and organi-

zational perspectives [24]. Examples of traditional busi-

ness processes include insurance claim processing, order

handling, administrative processes, etc.

In recent years, the maturity of process manage-

ment methodologies and of PMSs has lead to the appli-

cation of BPM approaches in new challenging dynamic

and knowledge-intensive scenarios [69,18], such as do-

motics [33], healthcare [47], projects coordination [19]

and emergency management [57]. In these working envi-

ronments, most business functions involve collaborative

features and semi-structured (or unstructured) proce-

dures that do not have the same level of predictability

as the routine structured work.

This has lead to the definition of a new class of flex-

ible processes [69]. Processes are defined as “flexible”

when people/agents carry them out with a fair degree

of “uncertainty”, where the uncertainty may depend on

2 Andrea Marrella, Yves Lespérance

many factors, such as the high number of tasks to be

represented, their unpredictable nature, or their depen-

dency on the contextual scenario. In a flexible process,

the sequence of tasks depends heavily on the specifics

of the context (e.g., which resources are available and

what particular options exist at the time), and it is of-

ten unpredictable how the process will unfold.

While there exist several approaches supporting the

enactment and automated adaptation of flexible pro-

cesses at run-time [69,29,52,54,57,55,9,56], the design-

time specification of such processes can be difficult,

time-consuming and error-prone. Flexible processes fre-

quently suffer from potential interference among their

constituents, since resources are usually shared by the

process participants and it is difficult to foresee all

the potential tasks interactions in advance. Moreover,

the process designer often lacks the needed knowledge

to anticipate and incorporate all potential alternatives

into the process model at design-time, as well this

knowledge can become obsolete as process instances are

executed and the context evolves. As a consequence,

flexible processes may include some underspecified ac-

tivities whose exact definition is not yet known at

design-time, and may not be known until the time that

an instance of the process has started execution, due

to their context-dependent nature. In the worst case,

there is no pre-defined view of a flexible process.

To tackle this issue, in this paper we build upon

our previous work [51] and present a planning-based

approach to the automated synthesis of template-based

process models starting from a representation of the

contextual domain in which a flexible process is em-

bedded in and from an extensive repertoire of tasks

defined for such a context. We refer to the concept of

process templates to emphasize that further refinements

may be needed to actually implement a flexible process.

A process template depicts the best-practice procedure

drawn up with whatever contextual information avail-

able at the time; it describes a recommended control

flow for the process that does not only work in a spe-

cific state of the world, but can be enacted in a range

of states satisfying the context conditions.

Specifically, we advocate a modeling approach in-

volving a declarative specification of process tasks. We

annotate process tasks with preconditions and effects

defined over the contextual data of the dynamic sce-

nario, i.e., we consider tasks as single steps that con-

sume input data and produce output data. Then, we

propose to use partial-order planning algorithms (aka

POP [81,62]) to dynamically generate process tem-

plates based on descriptions of the initial state of the

world and of a goal condition to be achieved through the

execution of the template. A state-of-the-art partial-

order planner is fed with task descriptions, initial state

and goal condition, and returns a process template

that satisfies the specification. The use of POP algo-

rithms and, in general, of automated planning tech-

niques, guarantee some interesting properties in the

construction of the template:

– Contextual selection. Tasks composing the template

are contextually selected from a specific repository

and partially ordered in a way consistent with the

context conditions to ensure that the template’s ob-

jectives are achieved.

– Sound concurrency. Concurrent activities of a pro-

cess template are proven to be effectively indepen-

dent one from another (i.e., concurrent tasks cannot

affect the same data). This means more flexibility

during process execution. At run-time, the most ap-

propriate execution path can be selected from those

allowed by the design-time process template defini-

tion, without the risk of interference between con-

current tasks.

– Executability in partially specified environments.

Once synthesized, a template can be executed in

several initial states, since it (usually) requires a

fragment of the knowledge of the initial state to

successfully achieve its objectives. We identify the

weakest preconditions of process templates, and all

the states satisfying such preconditions are good

candidates for executing them.

– Versatility. Our approach allows to represent the

problem of synthesizing a process template as a

planning problem in the standard Planning Do-

main Definition Language [58] (PDDL [58]), which

can be solved through off-the-shelf automated plan-

ners. Since PDDL is independent from the specific

planning system employed, one can seamlessly in-

tegrate different state-of-the-art planners compliant

with PDDL. The effort to integrate a different plan-

ner does not go beyond installing the new planner

and loading the planning-problem formulation that

is generated through our planning-based approach.

The problem formulation remains unchanged when

moving from one planner to the other.

We exploit the idea behind POP of representing

flexible plans that enable deferring decisions. Instead

of committing prematurely to a complete, totally or-

dered sequence of actions, plans are represented as a

partially ordered set, and only the required ordering

decisions are recorded. A process template is generated

on the basis of such a partially ordered set of activi-

ties, and we are able to identify what knowledge about

the initial state is required for successful template ex-

ecution. Moreover, we propose a methodology to build

step-by-step a library of process template specifications

A Planning Approach to the Automated Synthesis of Template-Based Process Models 3

and support efficient retrieval of appropriate templates

from the library in partially specified environments.

The rest of the paper is organized as follows. Sec-

tion 2 presents a running example describing a flexible

process that comes from the emergency management

domain. Section 3 introduces the required background

and preliminaries for our work. Section 4 describes the

basic ingredients for modeling the contextual properties

of a dynamic environment, and introduces formally the

concept of process template. Section 5 discusses in de-

tail our approach to synthesize a library of process tem-

plates. A prototypical implementation of our approach

is presented in Section 6, together with a set of exper-

imental evaluation results that assess the practical ap-

plicability of our approach to design flexible processes.

Section 7 discusses related work and Section 8 concludes

by discussing benefits, limitations and future develop-

ments of the approach. Finally, an Appendix gives some

technical details about the algorithms used for comput-

ing process templates.

2 Running Example

In the emergency management domain, teams of first

responders act in disaster locations with the main pur-

pose of achieving specific goals, including assisting po-

tential victims and assessing and stabilizing the situa-

tion. First responders can benefit from the use of mo-

bile devices and wireless communication technologies,

as well as from the adoption of a process-oriented ap-

proach for team coordination. A response plan encoded

as a business process and executed by a PMS deployed

on mobile devices can help to coordinate the activi-

ties of first responders equipped with smartphones and

supported by mobile networks. The use of business pro-

cesses for coordinating first responders in disaster sce-

narios has been investigated in the European project

WORKPAD1 [12,39,40,11,53]. The following running

example, which represents an excerpt of a real case

study on emergency management investigated within

the WORKPAD project, will be used to illustrate our

approach to the synthesis of process templates.

Let us consider the disaster scenario described in

Fig. 1(a). It concerns a train derailment and depicts

a map of the area (as a 4x4 grid of locations) where

the disaster happened. We suppose that the train is

composed of a locomotive (located in loc33) and two

coaches (located in loc32 and loc31 respectively). The

goal of an incident response plan defined for such a

context is to evacuate people from the coach located in

1 http://www.diag.uniroma1.it/~workpad/

Fig. 1: Area and context of the intervention.

loc32, to extinguish a fire in the coach in loc31 and fi-

nally to take pictures for evaluating possible damages to

the locomotive, located in loc33. Thus, a response team

can be sent to the derailment scene. The team is com-

posed of four first responders (in the remainder, we refer

to them as actors) and two robots, initially located in

loc00. We assume that actors are equipped with mobile

devices (for picking up and executing tasks) and provide

specific capabilities. For example, actor act1 is able to

extinguish fires, while act2 and act3 can evacuate peo-

ple from train coaches. The two robots, instead, may

take pictures and remove debris from specific locations.

Each robot has a battery and each action consumes a

given amount of battery charge. When the battery of a

robot is discharged, actor act4 can charge it. Fig. 1(b)

summarizes the above.

The definition of an incident response plan as a busi-

ness process involves a dynamically selected set of ac-
tivities to be executed on the field by the first respon-

ders. Since the process may be different every time it is

defined because it strictly depends on the actual con-

textual information (the positions of actors/robots, the

battery level of robots, etc.), it is unrealistic to assume

that the process designer can pre-define all the possible

process models for dealing with this kind of interven-

tion and environment (apparently simple). Moreover, if

contextual data describing the environment are known,

the synthesis of a process dealing with such an envi-

ronment is not straightforward, as the correctness of

the process is constrained by the values (or combina-

tion of values) of contextual data. A simple approach

to solving our problem is to build a process as a se-

quence of activities, e.g., the sequence of actions shown

in Fig. 2 (solid arrows represent ordering constraints

between actions). The process in Fig. 2 instructs actor

act1 to reach loc31 to extinguish fire. Then, after the

battery of robot rb2 has been recharged by act4, it can

move in loc32 for removing debris and the actor act2

http://www.diag.uniroma1.it/~workpad/

4 Andrea Marrella, Yves Lespérance

Fig. 2: A process dealing with the scenario of Fig. 1.

can start to evacuate people in that location. Finally,

the battery of robot rb1 is recharged as well, and it can

move into loc33 for taking pictures.

However, this solution is highly inefficient, as many

actions are independent, and they could be executed

concurrently to reduce intervention time; e.g., a robot

could take pictures in parallel with the extinguishing of

the fire in loc31. But, at the same time, a process de-

signer may find it difficult to organize activities for con-

current execution, since each action, for its executabil-

ity, depends on the values of contextual data (e.g., a

robot needs enough battery charge for moving into a

location and taking pictures or removing debris). Also

dependencies between actions play a key role in the def-

inition of the process model (e.g., in order to evacuate

people at loc32, a robot must have removed the debris

beforehand). Finally, a process designer tends to rep-

resent more contextual information than that strictly

needed for defining a process. For example, the pro-

cess in Fig. 2 does not involve actor act3, meaning that

any information concerning act3 (e.g., its capabilities,

its location, etc.) is not required for synthesizing and

executing the process.

3 Background

In this section, we present the required background and

preliminaries for our work. Specifically, in Section 3.1

we discuss the main characteristics underlying a flexible

process and describe some high-level requirements that

have to be fulfilled for its design, while in Section 3.2

we introduce the basic notions on partial-order planning

necessary to understand the rest of the paper

3.1 Characteristics and Requirements for Designing

Flexible Processes

Over the last decade, BPM research has been ex-

panded in many emerging directions, to support pro-

cess mining [3], service-oriented computing [64], case

management [75], cognitive computing [37], knowledge-

intensive processes [18] and flexible processes [69].

The latter may be considered as specific cases of

knowledge-intensive processes. According to [18], where

they are called “dynamic processes”, flexible processes

are seen as “fragments of larger unstructured processes

[...] whose tasks need to be dynamically selected (or gen-

erated) at run-time”. In addition, according to [69],

these processes are implicitly described in text or other

forms of abstract procedures rather than explicitly

modeled, i.e., they are often described directly by their

process instances, by making the separation between

process model and process instance largely blurred or

non-existent.

In Section 2 we have presented an example of a flex-

ible process coming from the emergency management

domain. Starting from the experience gained in the area

and lessons learned from the WORKPAD project and

from the extensive analysis on flexible processes per-

formed in [69,18], in the following we present the main

characteristics underlying a flexible process to be en-

acted in a dynamic real-world scenario:

– [C1] Loosely structured behavior. The set of possi-

ble activities may be known and predefined, but

their execution ordering is not rigidly pre-definable

as many possible execution alternatives are allowed.

– [C2] Data- and Constraint-driven. The main driver

for the process progression is not (only) given by

activity completions, but rather by the availability

and evolution of data and knowledge objects (e.g.,

for representing contextual properties of a dynamic

environment), which drive human decision making

and directly influence the flow of process actions and

events. Sometimes, data objects are used for defin-

ing constraints acting as eligibility criteria and pre-

conditions for selecting the activity to be executed

at run-time and the data sources to be exploited.

– [C3] Unpredictable. The exact activities and con-

trol flow in a flexible process depends on situation-

and context-specific parameters, whose values may

not be known a priori, may change during process

execution, and may vary over different process in-

stances. As a consequence, any detailed and fine-

grained control-flow modeling attempt for flexible

processes may become useless and inefficient.

– [C4] Goal-oriented. Usually, a flexible process

evolves through a series of intermediate goals or

milestones to be achieved. These goals may be

known a priori and predefined, or, they may be

gradually defined as a result of acquired knowledge

and previously achieved goals. Each performed ac-

tion and decision taken towards the achievement

of a given goal has the effect of producing knowl-

edge that will be exploited for supporting subse-

quent decisions and determining the next goals to

be achieved and actions to be executed. Moreover,

goals may be modified or even invalidated as a con-

sequence of an event occurrence that has an impact

on the process state and execution context.

A Planning Approach to the Automated Synthesis of Template-Based Process Models 5

The above characteristics are related to both the model-

ing and execution phases of a flexible process. However,

in this paper, we mainly focus on the modeling phase.

Specifically, we present an approach for the declarative

modeling of contextual data and process tasks, and for

automatically synthesizing a library of template-based

process models ready to be enacted in contextual sce-

narios. Many of the aspects related to the execution of

a flexible process are out of the scope of this paper, and

there exists a vast research literature on the topic [69,

29,52,54,57,55,9,56].

To this end, starting from the above characteristics,

we derive and define a set of 5 high-level requirements

related to flexible process modeling:

– [R1] Modeling contextual data. A strong requirement

for flexible processes is to provide an information

model including all relevant data affecting the pro-

cess and manipulated by it. Contextual data need

be formalized and encoded in some form of domain

theory, so as to define data objects to be considered

as part of the process context and execution state.

A process designer should also be allowed to express

conditions over process data, if needed.

– [R2] Representing data-driven activities. A flexible

process is characterized by activities whose enact-

ment is related to the evolution of the information

model. Such activities must be enriched with declar-

ative elements and constraints (e.g., pre and post-

conditions) defined on contextual data, stating what

data may constrain the process execution or may be

affected after an activity completion.

– [R3] Providing synchronized access to shared data.

To prevent process tasks for possibly accessing and

modifying the same data at the same time, it is re-

quired to provide some form of synchronized access

to shared data.

– [R4] Defining process goals. The process designer

should be able to define process goals on the basis

of the contextual data defined for the process.

– [R5] Modeling for reuse. Even if a flexible process is

often unpredictable, with the models of two process

instances that may differ from one another, this does

not exclude the possibility of predefining common

fragments of the process models and deriving process

templates to be reused, selected and adapted in a

context-dependent way.

In Section 5, we show how our planning approach

to synthesize process templates allows to properly ad-

dress the above requirements. We recognize that there

are other modeling approaches in the research litera-

ture that are able to (partially and fully) deal with the

requirements: We investigate them in Section 7.

3.2 Partial-Order Planning

The Automated Planning field is a branch of Artifi-

cial Intelligence (AI) that aims to the realization of

automated systems for the synthesis of organized se-

quences of real-world activities. Planning systems are

problem-solving algorithms that operate on explicit

representations of states and actions [62,27]. The stan-

dard representation language for automated planners

is known as the Planning Domain Definition Language

(PDDL [58]); it allows us to formulate a problem PR
through the description of the initial state of the world

initPR and of the desired goal condition goalPR. The

domain PD of the planning problem mostly introduces

relational predicates and a set of possible action defi-

nitions Ω. An action definition defines the conditions

under which an action can be executed, called precon-

ditions, and its effects on the state of the world. Each

action a ∈ Ω has a preconditions list and an effects list

to be applied on the state of the world, denoted respec-

tively as Prea and Effa. A planner that works on such

inputs generates a sequence of actions (the plan) that

corresponds to a path from the initial state to a state

meeting the goal condition.

In the literature, there exists a wide range of differ-

ent planning techniques, that are characterized by the

specific assumptions made. In this paper, we make use

of plan-space planning algorithms. They differ from tra-

ditional state-space planning algorithms, that explore

only strictly linear sequences of actions going from the

initial state to the goal, by devising totally ordered

plans. A plan space is an implicit directed graph whose

nodes are partially specified plans and whose edges cor-

respond to refinement operations intended to further

complete a partial plan, i.e., to achieve an open goal or

to remove a possible inconsistency. In order to demon-

strate our approach, we focus on Partial-Order Plan-

ning (POP) algorithms [62,81], a specific type of plan-

space planning algorithms. POP algorithms take as in-

put a planning problem defined in PDDL and search

the space of partial plans without committing to a to-

tally ordered sequence of actions. They usually work

back from the goal, by adding actions to the plan to

achieve each subgoal. A tutorial introduction to POP

algorithms can be found in [81].

Basically, a partial plan is a tuple P = (A,O,CL),

where A ⊆ Ω is a set of (ground) actions, O is a set of

ordering constraints over A, and CL is a set of causal

links over A. Ordering constraints O are of the form

a ≺ b, which is read as “a before b” and means that

action a must be executed sometime before action b,

but not necessarily immediately before. Causal links

CL may be represented as c
p−→ d, which is read as

6 Andrea Marrella, Yves Lespérance

“c achieves p for d” and means that p is an effect of

action c and a precondition for action d. It also asserts

that p must remain true from the time of action c to

the time of action d. In other words, the plan may not

be extended by adding a new action that conflicts with

the causal link and makes p false between c and d. A

precondition without a causal link requires further re-

finement to the plan to establish it, and is considered to

be an open condition in the partial plan. Loosely speak-

ing, the open conditions are preconditions of actions in

the partial plan which have not yet been achieved in the

current partial plan. More formally, an open condition

is of the form (p, a), where p ∈ Prea and a ∈ A, and

there is no causal link b
p−→ a (where b is any action of

the partial plan P).

A classical POP algorithm starts with a null par-

tial plan P and keeps refining it until a solution plan

is found. The null partial plan contains two dummy

actions a0 ≺ a∞ where the preconditions of a∞ corre-

spond to the top level goals goalPR of the problem, and

the effects of a0 correspond to the conditions in initPR.

Intuitively, a refinement operation avoids adding to the

partial plan any constraints that are not strictly needed

for addressing the refinement objective. This is called

the least commitment principle [81], and its advantage

is that decisions about action ordering are postponed

until a decision is forced; constraints are not added to

a partial plan unless strictly needed, thus guaranteing

flexibility in the execution of the plan and allowing ac-

tions to run concurrently. A consistent plan is defined

as a plan with no cycles in the ordering constraints and

no conflicts with the causal links. A consistent plan with

no open conditions is a solution [81].

4 Process Templates

Our approach for the generation of a process template

requires us to explicitly model the contextual knowl-

edge in which the flexible process is embedded through

some declarative rules (some pre-defined at design-time,

some known just before the synthesis of the template)

and logical constraints expressed in terms of task pre-

conditions and effects. This information is given as in-

put to an external partial-order planner that will be

in charge of building a process template, i.e., a graph

of activities reflecting the flexible process required for

solving the specific contextual problem.

The synthesis of a flexible process requires a tight

integration of process activities and contextual data in

which the process is embedded in. The context is rep-

resented in the form of a Domain Theory D, that cap-

tures a set of tasks ti ∈ T (with i ∈ 1..n) and support-

ing information, such as the people/agents that may

be involved in performing the process (roles or par-

ticipants), the data and so forth. Tasks are collected

in a specific repository, and each task can be consid-

ered as a single step that consumes input data and

produces output data. Data are represented through

some ground atomic terms v1[y1], v2[y2], ..., vm[ym] ∈ V
that range over a set of tuples (i.e., unordered sets

of zero or more attributes) y1, y2, . . . ym of data ob-

jects, defined over some data types. In short, a data

object depicts an entity of interest; for example, in

our scenario we need to define data objects for rep-

resenting participants (e.g., data type Participant =

{act1, act2, act3, act4, rb1, rb2}), capabilities (e.g.,

data type Capability = {extinguisher,movement,
. . . hatchet}) and locations in the area (e.g., data type

Location = {loc00, loc10, . . . loc33}). Each tuple yj
may contain one or more data objects belonging to dif-

ferent data types. The domain dom(vj [yj]) over which

a term is interpreted can be of various types:

– Boolean: dom(vj [yj]) = {true, false};
– Integer : dom(vj [yj]) = Z;

– Functional : the domain contains a fixed number of

data objects of a designated type.

Terms can be used to express properties of domain ob-

jects (and relations over objects), and argument types

of a term (taken from the set of data types previ-

ously defined) represent the finite domains over which

the term is interpreted. In our example, we may need

boolean terms for expressing the presence of a fire in

a location (e.g., fire free[loc : Location] = (bool :

Boolean)), integer terms for representing the battery

charge level of each robot (e.g., battery level[prt :

Participant] ∈ Z) or functional terms for recording

the position of each actor in the area (e.g., at[prt :

Participant] = (loc : Location)). Moreover, since each

task has to be assigned to a participant that pro-

vides all of the skills required for executing that task,

there is the need to consider the participants “capa-

bilities”. This can be done through a boolean term

provides[prt : Participant, cap : Capability] that is

true if the capability cap is provided by prt and false

otherwise.

Each task is annotated with preconditions and ef-

fects. Preconditions are logical constraints defined as

a conjunction of atomic terms, and they can be used

to constrain the task assignment and must be satisfied

before the task is applied, while effects establish the

outcome of a task after its execution. Note that our

approach treats each task as a “black box” and no as-

sumption is made about its internal behavior (we con-

sider the task execution as an instantaneous activity).

A Planning Approach to the Automated Synthesis of Template-Based Process Models 7

This is not a limitation, since it corresponds to the tra-

ditional way of modelling tasks in the BPM world at

design-time, where nothing is said on the internal be-

haviour of a task (cf. [1,59,24]).

Definition 1 A task t[x] ∈ T consists of:

– the name of the action involved in the enactment of

the task (it often coincides with the task itself);

– a tuple of data objects x as input parameters;

– a set of preconditions Pret, represented as the con-

junction of k atomic conditions defined over some

specific terms, Pret =
∧

l∈1..k pretl . Each pretl can

be represented as {vj [yj] op expr}, where:

– vj [yj] ∈ V is an atomic term, with yj ⊆ x, i.e.,

admissible data objects for yj need to be defined

as task input parameters;

– An expr can be a boolean value (if vj is a

boolean term); an input parameter identified by

a data object (if vj is a functional term); an

integer number or an expression involving inte-

ger numbers and/or terms, combined with the

arithmetic operators {+,-} (if vj is a integer

term);

– op ∈ {<,>,==,≤,≥} is a relational opera-

tor. The condition op can be expressed as the

equality (==) between boolean terms or func-

tional terms and an admissible expr. On the

contrary, if vj is a integer term, it is possible

to define the op condition as an expression that

make use of relational binary comparison oper-

ators (<,>,==,≤,≥) and involve integer num-

bers and/or integer terms in the expr field.

– a set of deterministic effects Efft, represented

as the conjunction of h atomic conditions defined

over some specific terms, Efft =
∧

l∈1..h efftl .

Each efftl (with l ∈ 1..h) can be represented as

{vj [yj] op expr}, where:

– vj [yj] ∈ V and expr are defined as for precondi-

tions.

– op ∈ {=,+=,-=} is used for assigning (=) to a

term a value consistent with the expr field or for

incrementing (+ =) or decrementing (− =) an

integer term by that value.

Note that if no preconditions are specified, then the task

is always executable. The use of classical partial-order

planning techniques for synthesizing process templates

imposes some limitation in the expressiveness of the

language used for defining the domain theory D. Specif-

ically, negative preconditions are not admitted (e.g., the

use of the NOT operator is forbidden and all the atomic

conditions that require to evaluate if a boolean term is

equal to false will be ignored) and we assume that all

effects are deterministic.

For example, let us consider the complete specifica-
tion of the task Go:

<task>

<name>Go</name>

<parameters>

<arg>actor - Participant</arg>

<arg>from - Location</arg>

<arg>to - Location</arg>

</parameters>

<precondition>at[actor] == from AND

provides[actor,movement] == true

</precondition>

<effect>at[actor] = to</effect>

</task>

It involves two input parameters from and to of type

Location, representing the starting and arrival loca-

tions, and a parameter actor of type Participant, rep-

resenting the first responder that will execute the task.

An instance of Go can be executed only if actor is cur-

rently at the starting location from and provides the

required capabilities for executing the task. As a con-

sequence of task execution, the actor moves from the

starting to the arrival location, and this is reflected by

assigning to the term at[actor] the value to in the effect.

Modeling a business process involves representing

how a business pursues its objectives/goals. The goal

may vary depending on the specific Process Case C
to be handled. A case C reflects an instantiation of the

domain theory D with a starting condition initC and

a goal condition goalC. Both conditions are conjunc-

tions of atomic terms. We do not assume complete in-

formation about initC; this means we allow a process

designer to instantiate only the atomic terms necessary

for representing what is known about the initial state,

i.e., initC = {v1[y1] == val1 ∧ ... ∧ vj [yj] == valj},
where valj (with j ∈ 1..m) represents the j-th value

assigned to the j-th atomic term. Fig. 1(b) shows a

portion of initC concerning the scenario depicted in

Fig. 1(a). The goal is a condition represented as a con-

junction of some specific terms we want to make true

through the execution of the process. For example, in

the scenario shown in Section 2, the goal has to be

represented as : goalC = {fire free[loc31] == true ∧
evacuated[loc32] == true ∧ photo taken[loc33] ==

true}. The syntax of goal conditions is the same as for

tasks preconditions.

A state is a complete assignment of values to atomic

terms in V. Given a case C, an intermediate state stateCi

is the result of i tasks performed so far, and atomic

terms in V may be thought of as “properties” of the

world whose values may vary across states.

Definition 2 A task t can be performed in a given

stateCi
(and in this case we say that t is executable

8 Andrea Marrella, Yves Lespérance

Fig. 3: Task anatomy (a), causality (b) and concurrency

(c) in a process model.

in stateCi) iff stateCi ` Pret, i.e. stateCi satisfies the

preconditions Pret for the task t.

Moreover, if executed, the effects Efft of t modify some

atomic terms in V and change stateCi
into a new state

stateCi+1
= update(stateCi

, Efft). The update function

returns the new state obtained by applying effects Efft
on the current state stateCi

.

Starting from a domain theory D, a Process Tem-

plate captures a partially ordered set of tasks, whose

successful execution (i.e., without exceptions) leads

from initC to goalC. Formally, we define a template as

a directed graph consisting of tasks, gateways, events

and transitions between them.

Definition 3 Given a domain theory D, a set of tasks

T and a case C, a Process Template PT is a tuple (N,L)

where:

– N = T ∪ E ∪W is a finite set of nodes, such that :

– T is a set of tasks instances, i.e., occurrences of

a specific task t ∈ T in the range of the process

template;

– E is a finite set of events, that consists of a single

start event # and a single end event �;

– W = WPS ∪WPJ is a finite set of parallel gate-

ways, represented in the control flow with the �
shape with a “plus” marker inside.

– L = LT ∪LE ∪LWPS
∪LWPJ

is a finite set of tran-

sitions connecting events, task instances and gate-

ways:

– LT : T → (T ∪WPS ∪WPJ ∪ �)

– LE : #→ (T ∪WPS ∪ �)

– LWPS
: WPS → 2T

– LWPJ
: WPJ → (T ∪WPS ∪ �)

The constructs used for defining a template are essen-

tially a subset of the BPMN notation [82], a graphical

language designed to specify a process in a standardized

way. Intuitively, an execution of the process starts at #
and ends at �; a task is an atomic activity executed by

the process, cf. Fig. 3(a); parallel splits WPS open par-

allel parts of the process, whereas parallel joins WPJ re-

unite parallel branches. Transitions are binary relations

describing in which order the flow objects (tasks, events

and gateways) have to be performed, and determine the

control flow of the template. A transition l ∈ L is repre-

sented as p → q, where (p, q) ∈ N . This represents the

fact that there is a transition from the flow object p to

the flow object q. For n ∈ N , IN(n)/OUT (n) denotes

the set of incoming/outgoing transitions of n, with the

following restrictions :

– Only one outgoing/incoming flow may be associ-

ated with # and � respectively, i.e., IN(#) = 0,

OUT (#) = 1, IN(�) = 1, OUT (�) = 0

– Each parallel split wPS ∈ WPS accepts one incom-

ing flow and more outgoing flows, i.e., IN(WPS) =

1, OUT (WPS) > 1

– Each parallel join wPJ ∈WPJ accepts more incom-

ing flows and one outgoing flow, i.e., IN(WPJ) > 1,

OUT (WPJ) = 1;

– Every task t ∈ T is connected exactly to one incom-

ing/outgoing flow, i.e., IN(t) = 1, OUT (t) = 1.

In Fig. 3(b) we have a relation of causality between

tasks ta and tb, stating that ta must take place before

tb happens as ta achieves some of tb’s preconditions.

An important feature provided by a process template is

concurrency, i.e., several tasks can occur concurrently.

In Fig. 3(c) an example of concurrency between t1 and

t2 is shown. In order to represent two or more concur-

rent tasks in a template, the process designer makes use

of the parallel gateways, that indicate points of the tem-

plate in which tasks can be carried out concurrently. A

parallel gateway may act as a divergence element (par-

allel split WPS) or convergent element (parallel join

WPJ). As a point of divergence, the diamond shape

is used when many tasks have to be carried out at the

same time and in any order, which indicates that all

transitions that exit this shape will be enabled together.

As a point of convergence, the diamond shape is used to

synchronize paths that exit a divergence element. This
means that a process template is a graph of tasks (i.e.,

not a sequence) that imposes a partial order on their

execution. A linearization of a process template is any

linear ordering of the tasks that is consistent with the

ordering constraints of the template itself [28]; i.e., a

linearization of a partial order is a potential execution

path of the template from the start event # to the end

event �. For example, the template in Fig. 3(c) has two

possible execution paths r1 = [#; ta; t1; t2; tb;�] and

r2 = [#; ta; t2; t1; tb;�].

Definition 4 Given a process template PT and

an initial state stateC0
` initC, a state stateCi

is

said to be reachable with respect to PT iff there

exists an execution path r = [#; t1; t2; ...tk;�] of

PT and a task ti (with i ∈ 1..k) such that stateCi
=

update(update(. . . update(stateC0 , Efft1) . . . , Effti−1),

Effti).

Therefore, stateCi
is a state that may be reached along

some possible execution of PT in initC.

A Planning Approach to the Automated Synthesis of Template-Based Process Models 9

Definition 5 A task t1 affects the execution of a task

t2, written t1.t2, iff there exists a reachable state stateCi

of PT (for some initial state stateC0
) such that:

– stateCi ` Pret2
– update(stateCi

, Efft1) 0 Pret2
This means that Efft1 modify some terms in V that

are required as preconditions for making t2 executable

in stateCi
.

Definition 6 Given a process template PT, a case C
and an initial state stateC0

` initC, an execution path

r = [#; t1; t2; ...tk;�] (where k = |T |) of PT is said to

be executable in C iff:

– stateC0
` Pret1

– for 1 ≤ i ≤ k − 1, update(stateCi−1 , Effti) `
Preti+1

– update(stateCk−1
, Efftk) = stateCk

` goalC

Definition 7 A process template PT is said to be ex-
ecutable in a case C iff any execution path of PT is

executable in C.

The concept of execution path of a template helps in

defining formally the independence property between

concurrent tasks:

Definition 8 Given a process template PT, a task

tx is said to be concurrent with a task tz iff

there exist two execution paths r1 and r2 of PT
such that r1 = [#; t1; t2; ...; tx; ...; tz; ...;�] and r2 =

[#; t1; t2; ...; tz; ...; tx; ...;�].

A more interesting feature of concurrent tasks concerns

their independence property:

Definition 9 Two concurrent tasks t1 and t2 are said

to be independent, written t1 ‖ t2, iff t1 7 t2 and

t2 7 t1; that is, t1 does not affect t2 and vice versa.

5 An Approach to Synthesize a Library of

Process Templates

This section describes the approach we developed to

address the requirements defined in Section 3.1. Our

approach is focussed on the development and use of a

library of process templates. These are reusable process

models that achieve specified goals of interest in any

initial state that satisfies the template’s required pre-

conditions. Specifically, we focus on the use of a POP-

based tool that can synthesize complex concurrent pro-

cess models, while ensuring that concurrent tasks never

interfere (cf. R3). The process designer’s role is to spec-

ify the domain and context in which the template may

be executed (cf. R1), that is a repository of atomic tasks

annotated with preconditions and effects defined over

the contextual data (cf. R2), as well as the case to be

handled (cf. R4).

The selection of tasks during the development of

the repository is performed by having in mind that a

task specification defines what must be done in order to

transform inputs from the domain theory into outputs

that will affect the domain theory. Specifically, a pro-

cess designer specifies a task in a way that: (i) it can

be potentially executed in some reachable state of the

domain theory (cf. Definition 4 in Section 4); (ii) it will

affect a non-empty set of atomic terms of the domain

theory. While the definition of tasks without precondi-

tions that are always executable in any reachable state

is possible, the designer should avoid to specify tasks

that provide no effects, since their execution would not

contribute to the achievement of the goal condition.

Our POP-based tool can then be used to synthesize

some candidate process models for the template. If the

tool fails to generate a process model or the generated

processes are of insufficient quality (e.g., they are too

time consuming, unreliable, or lack concurrency), the

designer can refine the domain theory and case to ob-

tain better solutions. Once a satisfactory template has

been obtained, it is added to the library. The POP-

based tool automatically identifies the required precon-

ditions for the template to achieve its goal, meaning the

template can be reused whenever a case that matches

the template’s preconditions arises (cf. R5).

In a flexible process domain, there is a wide range

of cases/contexts to handle. New cases often arise and

the requirements for the system frequently evolve. The

designer maintains the template library over time, in

order to have templates that handle effectively most

the cases that arise. The library also stores the tem-

plates specifications, i.e., their process domains, goals,

and initial conditions/cases. New cases are often vari-

ants of existing cases and the designer will be able to

adapt existing domain and case specifications to gener-

ate templates for the new cases using the tool.

In the following, we first describe thoroughly an

architecture and methodology for developing such a

library-based approach, and then we describe some in-

teresting properties satisfied by the approach.

5.1 The General Framework

Our approach to the definition of process templates (cf.

Fig. 4) requires a fundamental shift in how one thinks

about modeling business processes. Instead of defining

a process model “by hand”, the process designer has to

address her/his efforts to specifying the domain theory

10 Andrea Marrella, Yves Lespérance

Fig. 4: Overview of the general approach.

D and the case C to be handled. In particular, s/he has

to identify the starting condition initC, by instantiating

only those atomic terms needed for depicting the con-

text of interest. This means that initC can be partially

specified, i.e, not all terms need to be instantiated with

some value. Also the goal condition goalC is required,

since it reflects the target state after having executed

the template.

Example. Let us consider the scenario depicted in

Section 2, represented with a domain theory D1 and a

goal condition goalC1 = {fire free[loc31]== true ∧
evacuated[loc32]== true ∧ photo taken[loc33]==

true}. Since the process designer may be interested in

an emergency process that involves the fewest partici-

pants, s/he can start by modeling a starting condition

initC1
with information involving only actors act1 and

act2 and the robot rb1, while terms involving act3, act4

and rb2 are not explicitly instantiated in initC1 .

A specific module named PC2PR is in charge of con-

verting the domain theory D and the case C just de-

fined into the corresponding planning domain PD and

planning problem PR specified in PDDL version 2.12

(cf. [26]). Basically, PC2PR implements a function:

fPC2PR : (D, initC, goalC)→ (PD, initPR, goalPR). (1)

Since the use of classical partial-order algorithms for

synthesizing the template requires the initial state of

PR to be a complete state, we make the closed world as-

sumption [72] and assume that every atomic term vj [yj]

that is not explicitly specified in initC is assumed to be

false (if vj [yj] is a boolean term) or “not assigned” (if

2 PDDL 2.1 enables the representation of realistic planning
domains, which include operators with universally quantified
effects and numeric fluents. However, our formalism does not
currently handle conditional effects nor negative precondi-
tions.

vj [yj] is a integer or a functional term) in initPR. Tech-

nical details of the algorithm employed in PC2PR are

shown in Appendix A.1.

At the heart of our approach lies a library of pro-

cess templates built for specific planning domains and

problems/cases. If library templates exist for the cur-

rent values of PD and PR, we can retrieve an appropri-

ate template and have it executed through an external

PMS. However, if no template matches for the current

values of PD and PR, we can invoke an external POP

planner on these same inputs. The planner will try to

synthesize a plan fulfilling the goal condition goalPR.

If the planner is unable to find a plan, this suggests

that there are some missing elements in the definition

of the domain theory D or in the case C. Hence, to

address this, one can try to refine the case C and add
information so that it becomes possible to generate a

plan. There are many ways to strengthen a problem

description, such as adding to the starting condition

initC some terms initially ignored (e.g., to specify the

position of every participant), or adding new objects in

D or new activities in T (e.g., if a task for extinguish fire

is missing). Our approach assumes that one specifies the

context step-by-step, and requires the process designer

to contribute to the system.

Example. If the planner is invoked with initPR1

(devised by applying fPC2PR on the triple D1, initC1
,

goalC1), it will not be able to find any plan for the spe-

cific problem. This is because rb1 does not have enough

battery charge for moving, taking pictures and remov-

ing debris. The designer can try to add new information

to the problem description by instantiating in initC1 all

those atomic terms related to actor act4, the only one

able to charge robot batteries, and devise a new start-

ing condition initC2 (and, consequently, a new initial

planning state initPR2
). A planner invoked with initPR2

A Planning Approach to the Automated Synthesis of Template-Based Process Models 11

Fig. 5: Templates dealing with the scenario in Fig. 1.

is finally able to find a consistent plan P1 satisfying

goalPR1
.

When the POP planner is able to find a partially

ordered plan P consistent with the actual contextual

information, three further steps are required. First we

need to translate the plan into a template PT that pre-

serves the ordering constraints imposed by the plan. A

solution plan is a three-tuple P = (A,O,CL) that

specifies the causal relationships for the actions ai ∈ A,

but without specifying an exact order for executing

them. Since the actions and the set of ordering con-

straints must be represented explicitly as nodes and

transitions in the template, we developed a module

POP2PT implementing a function:

fPOP2PT : P→ PT (2)

that takes as input P and converts it into a template

PT. It works by first finding the immediate predeces-

sors/successors of actions in the plan using the order-

ing constraints, and then constructing the desired plan

template, inserting parallel splits (resp. join) gateways

when an action has more than one immediate succes-

sor (resp. predecessor). A detailed description of the

algorithm implemented in POP2PT is presented in Ap-

pendix A.2.

Example. By applying fPOP2PT to P1, we devise

the template PT1 in Fig. 5(a). Dashed arrows are

causal links that imply an ordering constraint be-

tween pairs of tasks. For example, the ordering con-

straint between Go[act1,loc00,loc31] and Extinguish-

Fire[act1,loc31] is derived from the fact that Go has

the effect at[act1]=loc31 that is needed by Extinguish-

Fire as precondition (i.e., act1 has to be located in loc31

for extinguish the fire in that location).

Secondly, our approach infers the weakest precon-

ditions wPT about the initial state that are required for

the template to achieve its goal. The module we use for

inferring wPT is called calcWP and works by analyzing

the set of causal links CL computed by the POP plan-

ner, to see which logical facts fk are involved in causal

links that originate from the dummy start action a0 and

end in some ak ∈ A. More formally:

∀(clk, fk, ak) s.t. clk = (a0
fk−→ ak) ∈ CL, then fk ∈ wPT.

(3)

Observe that the effects of a0 ∈ A specify all atomic

facts that are true in the initial state initPR. The ini-

tial facts that are actually required for the plan to be

executable and achieve its goal are those that are in-

volved in a causal link with another action in the plan,

and we collect those in wPT as specified in Equation 3

(the plan cannot depend on any negative facts as they

cannot appear in either the goal or in action precondi-

tions). Basically, wPT is the conjunction of those facts

12 Andrea Marrella, Yves Lespérance

strictly required for executing the plan P (and, conse-

quently, the devised template PT), and is used for de-

vising a new problem PRwp = {wPT, goalPRwp
}. We can

then drop the closed world assumption. For any initial

state that satisfies wPT, the obtained process template

PT will be executable and achieve the goal condition

goalPR.

Example. If we invoke calcWP on the causal links

devised from P1 (cf. the dashed arrows of template

PT1 in Fig. 5(a)), we may infer wPT1
. They in-

dicate that, for executing template PT1, it is required

to know the capabilities and the positions of act1,

act2, act4 and rb1 (cf. the logical facts on top of the

causal links, e.g., at[act1] = loc31, at[act2] = loc32,

etc.), the information about the battery level of rb1 (cf.

batteryLevel[rb1]) and the status of the location loc31

(cf. debris free[loc32]). No other contextual informa-

tion is required for a correct execution of the template;

for example, any additional information about further

actors and robots (their positions, battery level, etc.)

can be neglected for the enactment of PT1.

Thirdly, after the process template PT has been syn-

thesized starting from P, it can be stored in our library

together with information about the planning domain

PD and abstracted problem PRwp. Specifically, for every

different planning domain PD devised through our ap-

proach, there is a pointer to a list of different abstracted

planning problems PRwp used for obtaining consistent

plans in previous executions of our tool, together with

the devised process templates.

When a process designer defines a new domain

theory Dnew and a case Cnew, the software module

QueryLIB checks if the corresponding planning domain
PDnew and problem PRnew (obtained by applying fPC2PR
to Dnew and Cnew) are already present in our library.

If the library contains a planning domain PDlib and an

abstracted planning problem PRwp (together with the

associated template PTlib) such that PDlib ⊆ PDnew

and goalPRwp
` goalPRnew

and with initPRnew
` wPT,

then PTlib is executable with respect to PRnew (and

therefore with respect to Cnew).

Since a library template PTlib reflects an instanti-

ation of a flexible process in a specific case (i.e., it is

a single process instance ready to be enacted), there

is the risk that other library templates defined on the

same planning domain PDlib ⊆ PDnew and solving sim-

ilar problems to PRnew are not considered for the se-

lection. To tackle this issue, the QueryLIB module al-

lows the process designer to “generalize” the search by

setting some abstraction rules on specific data types

defined in the domain theory. For example, if the pro-

cess designer flags the data type Participant as “ab-

stracted”, the searching of an existing library template

that satisfies PDnew and PRnew is performed in two

steps. First, from each library template PTlib indexed

with PDlib ⊆ PDnew, the QueryLIB module substitutes

all the constants values representing the specific partic-

ipants involved in task instances with as many variables

(of type Participant) as the participants are. The same

substitution is done for the participants included in the

abstracted planning problem PRwp associated to PTlib.

Then, during the search, the QueryLIB module applies

a simple substitution mechanism of type {variable/data

object} [73] for verifying if there exists a valid binding

between the constant values representing the available

participants in initPRnew
and the generic variables of

type Participant in PTlib. A valid binding is associated

to a {variable/data object} binding list that applies to

the abstracted planning problem PRwp and satisfies the

preconditions of task occurrences in PTlib.

Example. Let us consider the template PT1 in

Fig. 5(a), obtained with PD1 and PR2. Let us suppose

now that the designer, on the same planning domain

PD1, has devised a new planning problem PR2b (de-

rived from a new case C2b), with information about

actor act3 rather than about actor act2. At a first

glance, PT1 does not match with the information con-

tained in initPR2b
, since PT1 requires the presence of

actor act2 for executing the template. However, if the

process designer decides to generalize the search task

with respect to the data type Participant, every con-

stant value of type Participant in PT1 is substituted

with a generic variable of type Participant. For ex-

ample, the tasks Go[act2,loc00,loc32] and Evacuate-

People[act2,loc32] become Go[x,loc00,loc32] and Evac-

uatePeople[x,loc32], and the information that con-

cern act2 in PRwp are affected as well (e.g., pro-

vides[act2, hatchet] becomes provides[x,hatchet]). The

QueryLIB module starts searching for a valid bind-

ing. The partial binding {..,x/act1,..} is not valid,

since the term provides[act1,hatchet] is false in initPR2b
.

A valid partial binding is instead {..,x/act3,..}, since

the term provides[act3,hatchet] is true in initPR2b

and the tasks Go[act3,loc00,loc32] and EvacuatePeo-

ple[act3,loc32] are executable in PT1 (i.e., they satisfy

the template’s tasks preconditions).

Despite the fact that a process template is exe-

cutable “as is” in a specific contextual situation, when

QueryLIB searches for an existing template in the li-

brary (i.e., for a valid binding with the current val-

ues of PDnew and PRnew), we can apply some abstrac-

tion rules that allow a library template to be used for

generating several models matching the properties of

different situations. This makes our templates reusable

in a variety of different contexts, in which we don’t

have complete information about the initial state. At

A Planning Approach to the Automated Synthesis of Template-Based Process Models 13

this point, the process designer may decide to execute

through an external PMS the template PTlib just found,

or to refine Dnew and Cnew if PTlib does not fit with the

designer expectations.

Example. Let us suppose that the template shown

in Fig. 5(a) does not satisfy at all the process designer,

since s/he could add one further robot rb2 to the sce-

nario in order to increase the degree of parallelism

in the tasks execution. It follows that a new starting

condition initC3 including also contextual information

about rb2 can be defined. The associated initial planning

state initPR3
, together with the original goal condition

goalPR1 and the planning domain PD1 are first used for

verifying if a matching synthesized template is already

stored in the library. The library returns the template

PT1 shown in Fig. 5(a), since its weakest preconditions

wPT1 are satisfied by initPR3 (i.e., initPR3 ` wPT1), and

goal condition and planning domain are the same as be-

fore. Even if the template in Fig. 5(a) is executable with

initPR3 , the designer may try to obtain another plan

that would exploit the presence of the new robot rb2.

This can be done by directly invoking the planner with

the new information about the initial state. The plan-

ner can generate a new plan starting from initPR3 , and

the associated template PT2 is shown in Fig. 5(b). PT2

requires the presence of one more robot (i.e., robot rb2)

and more contextual information for being executed (so

its weakest preconditions wPT2
are stronger than wPT1

),

but it provides a higher degree of concurrency in the ex-

ecution of its tasks. Notice also that the initial state

associated to PT1 is satisfied by the weakest precondi-

tions wPT2
. This means that PT1 is executable in wPT2

,

and that the process designer can choose which tem-

plate is best for her/his purposes: one with less con-

currency in the tasks enactment but with the fewest

participants (cf., Fig. 5(a)), or one with more concur-

rency but requiring more resources for being executed

(cf., Fig. 5(b)).

If several matching templates (for which the weak-

est preconditions hold and which reach the desired goal

state) are retrieved from the library, the QueryLIB com-

ponent categorizes them on the basis of some parame-

ters useful for evaluating their quality. Specifically, each

template is stored with information about (i) the num-

ber of different participants involved; (ii) the number of

tasks in the control flow; (iii) the degree of parallelism

provided (i.e., the maximum number of tasks that can

be possibly executed concurrently at the same time)

and (iv) the weakest preconditions wPT associated to

the template, that help to understand the amount of

knowledge about the initial state that is required for

executing the template itself. At this point, the pro-

cess designer can choose which template provides the

required quality on the basis of the current case to be

dealt with. We do not currently discuss any mechanism

to evaluate and quantify the similarity between differ-

ent templates, but it is interesting to notice that the

presence of annotated tasks and causal links describing

the structure of a template allows potentially to con-

vert a template in a business process graph [21] and to

perform all the similarity metrics as described in [22]

(i.e., node matching similarity, structural similarity and

behavioral similarity).

5.2 Properties

A process template PT guarantees some interesting

properties, such as the executability of the template

with respect to the information available in the initial

state, and the property of sound concurrency, meaning

that concurrent activities of a template are proven to

be independent from each other.

Theorem 1 Given a solution plan P, a process tem-

plate PT synthesized for P using our approach is exe-
cutable for any process case C that satisfies the weakest

preconditions wpPT inferred from P.

The proof is straightforward. By definition, a sound

planner generates a consistent plan [81] that leads from

an initial state to a goal. Since we represent the domain

theory/case as a PDDL planning domain/problem, the

planner synthesizes a plan (i.e., a process template) that

is executable with respect to Definition 7.

A second property we can prove is sound concur-

rency. Even if in a process designed by following data

and workflow patterns [23] the concurrent execution of
two or more tasks should guarantee the consistency of

data accessed by the concurrent tasks, in practice this is

often not true. In fact, in complex environments there is

not a clear correlation between a change in the context

and corresponding process changes, making it difficult

to design by hand a process where concurrent tasks are

also independent. On the contrary, all concurrent tasks

of a template built with our approach are proven to be

independent from one another.

Theorem 2 Given a process template PT synthesized

with our approach, all concurrent tasks are indepen-
dent.

Proof By contradiction, let us suppose that a process

template PT has two concurrent tasks t1 and t2 such

that t1 ∦ t2. Hence, t1 (or t2) has some effect affecting

the precondition of t2 (or of t1). This means that t1 . t2
or t2 . t1. Since PT has been synthesized as result of a

POP planner, this dependency between t1 and t2 would

14 Andrea Marrella, Yves Lespérance

Fig. 6: The wizard-based editor to build tasks specifications.

Fig. 7: The workspace required to design and visualize BPMN processes.

be represented with a causal link t1
e−→ t2 (or t2

e−→ t1),

where e is an effect of task t1 and a precondition for task

t2 (or vice-versa). This causal link requires an ordering

between t1 and t2, meaning they need to be executed

(and represented in the process template) in sequence.

But this means that t1 and t2 are not concurrent tasks,

by contradicting the original hypothesis. ut

6 Validation

One of the main obstacles in applying AI techniques

to real problems is the difficulty to model the domains.

Usually, this requires that people that have developed

the AI system carry out the modeling phase since the

representation depends very much on a deep knowledge

of the internal working of the AI tools.

To tackle the above issue, we have implemented

our approach through a GUI-based tool consisting of

several wizard-based editors that assist the process de-

signer in the definition of the process knowledge (i.e.,

data objects, atomic terms, tasks with preconditions

and effects, initial and goal condition, etc.), without the

need of being expert of the internal working of the plan-

ning system used for synthesising process templates. In

Fig. 6 we show one of the wizard-based editors provided

by the tool, specifically the one to build a task speci-

A Planning Approach to the Automated Synthesis of Template-Based Process Models 15

fication through the definition of the single conditions

composing the task preconditions and effects.

The tool has been developed as a standard Java

application, using the Java SE 7 Platform, and the

JGraphX open source graphical library3, and has been

built on top of the SmartPM adaptive PMS [55,56].

SmartPM provides a graphical editor to design the con-

trol flow of a business process using a relevant subset

of the BPMN 2.0 notation; we customized such an edi-

tor to allow the visualization of the synthesized process

templates (see Fig. 7).

In order to investigate the practical applicability of

our approach, we performed two different experiments

with the implemented tool. The first experiment con-

sisted of an empirical evaluation with real users to as-

sess whether our approach is actually usable in practice

to design flexible processes (see Section 6.1). The sec-

ond experiment was targeted to learn the time amount

needed for synthesizing a partially ordered plan for

some variants of our running example (see Section 6.2).

6.1 Empirical User Evaluation

To assess the usability of our approach against the com-

plexity of realistic dynamic environments, we performed

an empirical evaluation with 20 users. Users were se-

lected from a group of Master students in Engineering

in Computer Science at Sapienza University of Rome.

Only students with a good experience in process mod-

eling with BPMN were chosen.

After a preliminary training session to describe the

usage of the tool, we provided the students with 3 dif-

ferent homeworks of growing complexity in 3 consecu-
tive weeks (one homework per week). Each homework

consisted of a general description of a realistic problem

(with a specific objective to be fulfilled) taken from real-

world application domains (specifically, smart manufac-

turing, emergency management and home cleaning) to

be solved through the modeling of a BPMN process. In

order to correctly tackle the homework problems, the

control flow of each solution process required (at least)

two, three and four parallel branches, respectively. No-

tice that the second homework was derived from our

running example in Section 2, and its solution process

is the one shown in the top part of Fig. 5.

We asked each student to provide two different so-

lutions for each homework: A first solution obtained by

simply modeling the process through BPMN (for this

purpose, we made use of the BPMN editor provided by

SmartPM, see Fig. 7), and a second solution by design-

ing the domain theory, the task descriptions and the

3 http://www.jgraph.com/

initial/goal conditions with our approach, which gen-

erates automatically a BPMN process. The target was

to understand the actual usability of our approach to

design flexible processes, in contrast to the traditional

control-flow oriented way of modeling processes. The

students were requested to complete the homework as-

signed to them in a specific week within the end of the

week itself. Before the assignment of a new homework,

we shown to the students the minimal solution to per-

form correctly the previous homework.

The results of the experiments are provided in

Fig. 8. Collected data are organized in 3 diagrams re-

lated to the achievement of the objectives of the three

homeworks. For any diagram, the x-axis indicates the

specific approach used to solve the homework (either

with our approach or by straightforwardly modeling

the solution processes with BPMN), while the y-axis

indicates the number of students that successfully com-

plete the homework. Notice that for each homework

we represent two bars for separating the students that

performed correctly the whole homework from the stu-

dents that were not able to complete it or to compute

a correct solution.

The analysis of the performed experiments points

out some interesting aspects. For example, let us con-

sider the first diagram in Fig. 8, which shows the num-

ber of students that performed correctly the first home-

work. In this case, 19 out of 20 students were able to

design the correct solution process by simply model-

ing it in BPMN, while less students (16 out of 20) ob-

tained a correct solution with our approach. This result

can be explained by the fact that the first homework

(the simplest one) contained very precise information

about the sequencing of the activities, with few activi-

ties that required to be executed concurrently (two par-

allel branches were sufficient to satisfy the solution).

In the second and third diagram of Fig. 8, which

show the number of students that performed correctly

the second and third homework (respectively), the

trend drastically changes. The number of students that

were able to provide a correct solution process with

BPMN decreases, probably due to the presence of more

contextual information (aimed at driving the design of

the solution processes) in the description of the home-

works, and to the need of defining three and four paral-

lel branches (respectively) in the BPMN solution pro-

cess to achieve the homework objectives. Notice that

even if the complexity of the second and third home-

work is comparable, the presence of (at least) four par-

allel branches in the solution process of the third home-

work makes very complex its modeling with BPMN

(50% of students failed to provide a correct solution).

http://www.jgraph.com/

16 Andrea Marrella, Yves Lespérance

Plan-based approach
OK 16 students
NOK 4 students

BPMN Modeling
OK 19 students
NOK 1 students

0

5

10

15

20

16

19

4

1

1st Homework

Plan-based approach
OK 15 students
NOK 5 students

BPMN Modeling
OK 12 students
NOK 8 students

0

5

10

15

20

15

12

5

8

2nd Homework

Plan-based approach
OK 17 students
NOK 3 students

BPMN Modeling
OK 10 students

NOK 10 students

0

5

10

15

20

17

10

3

10

3rd homework

Successful completion of the homework Not successful completion of the homework

Fig. 8: Analysis of the practical usability of the planning-based tool.

Table 1: Time performances of POPF2.

Facts in goalPR Knowledge in initPR Time for a sub-opt. sol.

1
complete state 0.17

No information about act1 0.15
No information about act1 and act3 0.12

2
complete state 0.12

No information about act3 0.10
No information about act3 and rb1 0.08

3
complete state 0.13

No information about act3 0.11
No information about act3 and rb2 0.09

4
complete state 0.21

No information about act3 0.20
No information about act3 and rb1 0.10

5
complete state 0.17

No information about act3 0.16
No information about act3 and rb1 0.10

6
complete state 1.56

No information about act3 1.19
No information about act3 and act1 1.13

To sum up, the results obtained allow to observe

a decreasing success rate when the solution process is

modeled directly with BPMN and the complexity of

the homework increases, in particular when there is an

increase of parallel branches in the solution BPMN pro-

cess. Conversely, the experiments depict an increase of

the succession rate with our approach, with a “discon-

tinuity” of this trend between the first and the sec-

ond homework, probably caused by the first relevant

increase of complexity. The results also suggests that

students performing the homeworks were able to effi-

ciently learn the usage of the tool without any knowl-

edge of the planning system employed into the tool.

6.2 Experiments with a partial-order planner

To show the feasibility of our approach from the timing

perspective, we ran some experiments and measured the

time required for synthesizing a partially ordered plan

for some variants of our running example described in

Section 2.

We ran our tests using POPF2 [13] on an Intel

U7300 1.30GHz, 4GB RAM machine. POPF2 is a tem-

poral planner that handles PDDL 2.1 [26] and preserves

the benefits of partial-order plan construction in terms

of producing makespan-efficient, flexible plans. Search

in POPF2 is based around the idea of expanding a

partial-order plan in a forwards direction; steps added

to the plan are ordered after a subset of those in the

partial plan, rather than after every step in the plan.

A Planning Approach to the Automated Synthesis of Template-Based Process Models 17

The experimental setup was run on variants of our

running example. We represented 7 planning actions

in PD (corresponding to 7 different tasks stored in the

tasks repository T), annotated with 7 relational predi-

cates and 6 numeric fluents, in order to make the plan-

ner search space sufficiently challenging. Then, we de-

fined 18 different planning problems of varying com-

plexity by manipulating the number of facts in the goal.

As well, we examined how irrelevant domain knowledge

affects the performance of the planner. Starting from a

planning problem PR with an initial state initPR com-

pletely specified and with a goal condition goalPR ex-

pressed as the conjunction of n facts, we manipulated

the specification of the initial state initPR to reduce the

number of known facts. In our experiments, the number

of facts in goal condition ranges from 1 single fact to

a conjunction of 6 logical facts (that make the contex-

tual problem harder). As shown in Table 1, for a given

goal condition composed of n facts, our purpose was

to measure the computation time needed for finding a

sub-optimal solution for problems specified with initial

states with a decreasing amount of knowledge. The col-

umn labeled as “Knowledge in initPR” makes explicit

which information is removed from the initial state of

the planning problem. For example, if we consider our

running scenario, whose goal condition is composed of

3 facts and characterized by a complete specification of

the initial state, the time needed for finding a solution

plan is of 0.13 seconds. After removing from the ini-

tial state all the information concerning the actor act3,

the time required for computing the plan decreases to

0.11 seconds. In general, for a given goal condition, re-

moving “irrelevant information” from the initial state

reduces the possibilities to select “wrong” planning ac-

tions (e.g., any action that involves act3) during the

plan synthesis and, consequently, reduces the search

space and the computation required for synthesizing

the plan.

Concerning the fact that variant times observed in

Table 1 are quite small, this depends by the specific

case study tested, which is of medium size. With larger

domain theories, since automated planning is known

to be PSPACE-complete (cf. [27]), the variants would

have been certainly larger. This emphasizes once more

the importance of exploiting the weakest preconditions

in the definition of the initial state to considerably limit

the exploration of the search space.

We finally notice that a sub-optimal solution may

include more actions than those strictly required for

fulfilling the goal, and when the number of facts in

a goal condition increases, the quality of the solution

may decrease. This happens beacuse the current ver-

sion of POPF2 (which is currently the best performing

POP planner available in the literature) is able to build

partial-order plans for which only the correctness of the

solution is guaranteed (nothing can be really said on its

optimality in terms of plan’s length). However, the fact

that our approach is able to generate standard PDDL

files would allow us to integrate different planners for

the generation of the templates. Obviously using plan-

ning we can also look for optimal plans, though this

would be more costly. Nonetheless, based on the re-

sults of our experiments, we can conclude that POPF2

is feasible for the generation of medium-sized flexible

process templates as used in practice.

7 Related Work

Process modeling is the first and most important step

in the BPM lifecycle [50], which intends to provide a

high-level specification of a business process that is in-

dependent from implementation and serves as a ba-

sis for process automation and verification. Traditional

business process models are usually well-structured, i.e,

they reflect highly repeatable and predictable routine

work with low flexibility requirements [49]. All possi-

ble options and decisions that can be made during pro-

cess enactment are statically pre-defined at design-time.

A major assumption is that such processes, after hav-

ing been modeled, can be repeatedly instantiated and

executed in a predictable and controlled manner. The

current leading commercial PMS products [14,77,41,

60,83] and research prototypes [46,35] support the full

business processes life-cycle by providing tools used to

model, configure and enact business processes.

However, current BPM technology is generally

based on rigid process models making its applica-

tion difficult in highly dynamic and possibly evolving

domains [69], where pre-specifying the entire process

model is not possible. This problem can be mitigated

through specific approaches to process variability, which

allow to customize a process by implementing specific

variants of the process in a way that a model of each

variant can be derived by adding or deleting fragments

according to a domain model or to some customization

option [44,5]. Customization of process models can be

made either at design-time or run-time.

Approaches that support customization decisions

made at run-time are not concerned with maintaining

a library of process models (and their variants) to be

reused at run-time. On the contrary, such approaches

rely on a unitary process model from which individual

process instances may deviate at run-time on a case-

by-case basis. Run-time customization has been studied

as a separate topic in the literature, and is known as

process adaptation. This is the case of two well-known

18 Andrea Marrella, Yves Lespérance

adaptive PMSs, like ADEPT2 [29] and SmartPM [55,

56], which support the run-time adaptation of the

process instances by dynamically adding/implementing

process fragments that were not specified in the original

process model. In our work, as stated in Section 3.1 we

made the choice to focus on design-time aspects of flex-

ible processes. Nonetheless, we think that our approach

can be complementary to process adaptation. In fact,

the process templates that are automatically generated

by our approach can be seen as candidate process models

to be enacted with the existing adaptive PMSs.

On the other hand, process models can be cus-

tomized at design-time in order to capture families of

process variants derived via transformations of the cus-

tomizable process model of interest, e.g., by removal

of behaviour from the underlying process model (vari-

ability by restriction) or by addition of dedicated pro-

cess variants (variability by extension). There exist four

different ways to approach the customization of a pro-

cess model: (i) by defining specific configurable nodes

within the process that capture variability through dif-

ferent customization options [71,45]; (ii) by annotating

process model elements (control-flow nodes, resources,

objects, etc.) with properties of the application do-

main [70]; in this way, all the model elements whose do-

main conditions are evaluated to false will be removed

from the model; (iii) by specializing process model el-

ements with specific variation points that provide sev-

eral possible refinements to the process [31]; (iv) by

applying specific change operations (e.g., insert, delete,

move, replace, etc.) to restrict or extend the process

model [32].

The fact is that the existing approaches to design-

time process variability do not consider that flexi-

ble processes are incomplete “by nature”. Basically,

such approaches require to manually pre-define a “base

model” explicitly marked with several “adjustment

points” identified in one of the ways listed above. While

this activity works perfectly in case of traditional busi-

ness processes, it can be time-consuming and error-

prone when flexible processes are to be modeled, due

to their context-dependent nature that make difficult

the specification of all the potential tasks interactions

and process variants in advance.

Conversely, in our planning-based approach the pro-

cess designer is not required to define in advance neither

a base process model nor its individual variants. The de-

signer specifies just the contextual knowledge (as a do-

main theory) in which the flexible process is embedded,

a repository of tasks and some logical constraints ex-

pressed in terms of task preconditions and effects, which

allow to make explicit the connection between tasks and

contextual data. This information is then used to feed

a POP planner that will automatically build a process

template. At this point, by modifying the domain the-

ory or by inserting/removing new/existing tasks in the

repository, it is possible to obtain several process tem-

plates that can be considered as different process vari-

ants to achieve a goal condition. If compared with the

traditional approaches to process variability, the novelty

here is that such templates are synthesised automati-

cally on a case-by-case basis, without the need of defin-

ing them manually; this feature makes our approach

specifically tailored to the modeling of flexible processes.

As discussed in Section 3.1, flexible processes usu-

ally exhibit a loosely structured behavior and require

process tasks to be semantically annotated with pre-

conditions and effects defined over contextual data.

While most approaches in the Semantic Business Pro-

cess Management field (SBPM) mainly concentrate on

the annotation of process models (cf. [76,10]), with-

out any automatic generation of the models, in this pa-

per we focus on automatically synthesizing process tem-

plates by means of their semantic annotations.

To this end, we focused on declarative approaches

to business process management, as they offer a way of

modeling processes that integrates a certain amount of

flexibility into the process models [66]. The idea under-

lying declarative approaches consists of performing the

modeling phase of processes by exploiting the concept of

control-flow constraints for the specification of relation-

ships among tasks, instead of strictly and rigidly defin-

ing the control-flow of process tasks using a procedural

language. Recently, several declarative approaches for

supporting loosely-structured processes have been pro-

posed [65,80,30]. DECLARE [65] is a constraint-based

PMS that uses a declarative language grounded in lin-

ear temporal logic (LTL [79]) for the development and

execution of process models. Rather than using a proce-

dural language for expressing the allowed sequences of

tasks, it describes processes through the usage of con-

straints: the idea is that every task sequence can be

performed, except when it does not respect them. Sim-

ilarly, Alaska [80], a tool suite developed at the Uni-

versity of Innsbruck, allows to define task constraints

that implicitly define possible execution alternatives by

prohibiting undesired execution behavior. Finally, the

work [30] presents a declarative approach that enables

the modeling of dynamic sets of candidate activities

from which a subset is automatically selected for exe-

cution. While the above approaches allow to define con-

straints exclusively on process activities (i.e., the data

perspective, which plays a relevant role for flexible pro-

cesses, is neglected in the definition of task constraints),

our approach allows a process designer to explicitly cap-

ture the contextual domain (i.e., the data perspective)

A Planning Approach to the Automated Synthesis of Template-Based Process Models 19

in which the process is meant to run, and to define con-

straints between tasks and data.

Processes may also be specified using the data-

centric paradigm. In data-centric methodologies, the

data perspective is predominant and captures domain-

relevant object types, their attributes, their possible

states and life-cycles, and their interrelations, which to-

gether form a complex data structure, i.e., an informa-

tion model. This information model enables the iden-

tification and definition of the activities that rely on

the object-related information and act on it, produc-

ing changes on attribute values, relations and object

states. Notice that activities of a data-centric process,

which do not have a pre-specified order, are triggered

only when the required data is available, i.e., the evolu-

tion of the information model drives the process execu-

tion. There exist several approaches belonging to the

data-centric paradigm: Case Handling [78], Artifact-

centric process models [36], Object-aware process mod-

els [43], Data-Centric Dynamic Systems [6] and the

OMG’s emerging Case Management Modeling Notation

standard (CMMN) [63]. All these approaches are po-

tentially good candidates to deal with the requirements

presented in Section 3.1. However, they require to man-

ually anticipate in an explicit way all the interrelations

between tasks and the information model (i.e., the con-

textual properties of the domain), and this could be a

complex activity to be performed at design-time. This is

particularly true in dynamic environments, where the

process designer often lacks the needed knowledge to

model every required constraint ahead of time.

On the contrary, the approach presented in this pa-

per allows to declare in an implicit way (by means of

tasks preconditions and effects) the constraints between

tasks and data. The novelty is that the control flow con-

straints between tasks (i.e., causal links and ordering

constraints) will be automatically and contextually gen-

erated by an external planner, together with the process

template to be executed.

A further research area related to our approach is

the one of service discovery. In the literature, there ex-

ists a wide range of solutions for the automated dis-

covery and selection of services specified via a service

profile and a process model [84]. A service profile de-

scribes the signature of a service in terms of its input

and output parameters, and its execution semantics via

preconditions and effects. Prominent approaches to rep-

resent such profiles are, for example, WSDL and SML.

A service process model describes the operational be-

havior of a service in terms of its internal control and

data flow. Such models are described, for example, in

OWL-S, WSML and USDL.

Most of service discovery techniques rely on the

matching of the semantic annotations of service profile

(i.e., signature matching) and/or process model. With-

out any doubt, task specifications in our approach and

service profiles are similar concepts. However, there ex-

ists a relevant difference in what our approach and ser-

vice discovery techniques aim to discover. While service

discovery approaches aim at locating and selecting ex-

isting services that are relevant for a given request, the

main target of our approach is to synthesize new non-

existing process templates. Therefore, we exploit the se-

mantic annotations of tasks (preconditions and effects)

included in a repository not for discovering tasks, but

for generating process templates that orchestrate such

tasks in order to achieve a goal condition.

Nonetheless, we think that service discovery tech-

niques can provide a great value in the phase of re-

trieving process templates from our existing library. As

discussed in Section 5, we currently provide a basic se-

mantic binding mechanism for the selection of a suit-

able template. As a future work, it is our intention to

consider service discovery techniques to improve the se-

lection mechanism of process templates.

7.1 Plan-based Process Design

The AI community has been involved with research on

process management for several decades, and AI tech-

nologies can play an important role in the construction

of PMS engines that manage complex processes, while

remaining robust, reactive, and adaptive in the face of

both environmental and tasking changes [61].

A number of research works exist on the use of plan-

ning techniques in the context of BPM, covering the

various stages of the process life cycle. For the run-

time phase, existing literature works reports on the use

of planners to allocate process activities to (human) re-

sources [15], whereas works [52,54,57,9,55,56] report

on approaches to adapt the running process instances

to cope with anomalous situations, including connec-

tion anomalies, exogenous events and task faults. The

work [8] discusses at high level how the use of an in-

telligent assistant based on planning techniques may

suggest compensation procedures or the re-execution

of activities if some anticipated failure arises during

the process execution. In [42] the authors describe how

planning can be interleaved with process execution and

plan refinement, and investigates plan patching and

plan repair as means to enhance flexibility and respon-

siveness. Similarly, the approach presented in [68] high-

lights the improvements that a legacy workflow applica-

tion can gain by incorporating planning techniques into

20 Andrea Marrella, Yves Lespérance

its day-to-day operation. In the context of process min-

ing, the works [20,17,16,48] use planning techniques to

recover and align events log traces against imperative

and declarative process models.

Readers should observe that the entire aforemen-

tioned approaches use planning techniques for com-

pletely different purposes. Some research works also ex-

ist that use planning techniques to deal with problems

for the design-time phase, and the closest to our ap-

proach are [74,67,25,34].

The work [74] presents the basic idea behind the

use of planning techniques for generating a process

schema, but no implementation seems to be provided,

and the direct use of the PDDL language for speci-

fying the domain theory requires a deep understand-

ing of AI planning technology. In [67], the authors

exploit the IPSS planner for modeling processes in

SHAMASH [4], a knowledge-based system that uses a

rule-based approach. To automate the process model

generation, they first translate the semantic represen-

tation of SHAMASH into the IPSS language. Then,

IPSS produces a parallel plan of activities that is fi-

nally translated back into SHAMASH and is presented

graphically to the user. This work proposes the schedul-

ing of parallel activities (that implicitly handle time and

resource constraints), meta-modeling that deals with

planning explicitly, and suggests that learning could be

used for process optimization. However, in [74] and

[67] the emphasis is on supporting processes for which

one has complete knowledge, while for flexible processes

some contextual information may not be available at

the time of process model synthesis. Conversely, our

approach allows the specification of process templates

in partially specified environments, i.e., such templates

require a fragment of the knowledge of the initial state

to successfully achieve their objectives. We identify the

weakest preconditions of process templates, and all the

states satisfying such preconditions are good candidates

for executing them.

The work [25] proposes a new life cycle for workflow

management based on the continuous interplay between

learning and planning. The approach is based on learn-

ing activities as planning operators and feeding them

to a planner that generates the process model. An in-

teresting result concerns the possibility of producing

process models even though the activities may not be

accurately described. In such cases, the authors use a

best-effort planner that is always able to create a plan,

even though the plan may be incorrect. By refining the

preconditions and effects of planning actions, the plan-

ner will be able to produce several candidate plans, and

after a finite number of refinements, the best candidate

plan (i.e., the one with the lowest number of unsatis-

fied preconditions) is translated into a process model.

Unfortunately, as acknowledged in [25], the best plan

found is often far from the correct solution. According

to Theorem 1, one of the strengths of our approach re-

lies on its ability to generate process templates that are

always executable for any case that satisfies the weakest

preconditions inferred from the template itself.

The SEMPA approach [34] introduces a semantic-

based automatic planning of process models. In

SEMPA, process actions are semantically described by

specifying their input/output parameters with respect

to an ontology implemented in OWL [7]. An action

state graph (ASG) is automatically derived from the

semantic information about input/output parameters.

It includes those process actions that lead to the given

goals from a pre-specified initial state. Then, a pro-

cess model represented as an UML activity diagram is

derived from the ASG by identifying the required con-

trol flow for the process. If compared with other plan-

ning approaches, the planning algorithm implemented

in SEMPA for the derivation of the ASG provides some

interesting characteristics, such as the ability to build

the ASG in presence of initial state uncertainty and

with different conflicting goals. The problem here is that

concurrent activities of the generated process are not

proven to be independent from each other with respect

to data. On the contrary, concurrent activities of a pro-

cess template generated by our approach are proven to

be effectively independent one from another (i.e., con-

current tasks cannot affect the same data)

8 Concluding Remarks

In the last years, there was a growing trend of man-

aging flexible processes in dynamic environments [69],

mainly due to the increased availability of sensors dis-

seminated in the world that allow to monitor the evo-

lution of several real-world objects of interest and to

support mobile workers that execute tasks in such dy-

namic settings. According to the recent keynote talk

performed by Rick Hull at BPM 2016 Conference [38],

the traditional BPM approaches are not tailored for the

management of flexible processes, and advances in goal

identification and planning are clearly needed, that is,

enabling process designers to take advantage of knowl-

edge that is relevant to a decision or task at hand, and

ignore knowledge that is irrelevant.

This paper goes exactly in the above direction and

addresses the problem of developing template-based

process models for processes and application contexts

which demand flexibility (e.g., processes for emergency

management). To this end, we developed a technique

A Planning Approach to the Automated Synthesis of Template-Based Process Models 21

based on Partial-Order Planning algorithms and declar-

ative specifications of process tasks for synthesizing a

library of process templates to be enacted in contex-

tual scenarios. The resulting templates guarantee sound

concurrency in the execution of their activities and are

reusable in a variety of partially specified contextual

environments. A key characteristic of our approach is

the role of contextual data acting as a driver for process

templates generation.

Since one of the main obstacles when dealing with a

flexible process lies in the difficulty of interacting with

and manipulating the knowledge embedded into the

process, we have implemented a dedicated user-friendly

graphical interface that helps the process designer in the

definition/refinement of the domain theory/case and in

the choice of the right template (i.e., one having the

required quality, if several templates satisfy the cur-

rent case) to be selected for the execution in a specific

contextual situation. To this end, we have performed a

complete validation of the approach by investigating its

practical applicability for designing flexible processes.

Even if our work is focused on process modeling at

design-time, we think that the proposed approach can

be complementary to run-time approaches to process

adaptation. In fact, the process templates that are au-

tomatically generated by our approach can be seen as

candidate process models to be enacted with the exist-

ing adaptive PMSs, which in general rely on a unitary

process model from which individual process instances

may deviate at run-time on a case-by-case basis. In par-

ticular, we are currently working on integrating our ap-

proach with SmartPM [55,56], an adaptive PMS that

accepts in input process models whose tasks specifica-

tion and domain theory formalization is similar to the

one proposed in our approach.

The fact that our approach relies on well-founded

planning formalisms opens the door to very promising

future works. First of all, since our approach is able to

automatically encode planning problems in the stan-

dard and system-independent PDDL language, one can

seamlessly update to the recent version of the best per-

forming (or expressive) POP planner, with evident ad-

vantages in term of versatility and customization. In

fact, the effort to integrate a different planner does

not go beyond installing the new planner and load-

ing the planning-problem formulation that is gener-

ated through our approach. The problem formulation

remains unchanged when moving from one planner to

the other. A second future direction for this work is

to generate and support hierarchical process templates,

with high-level templates achieving more general goals

that can invoke simpler templates to achieve some of

their subgoals. It seems that agent-technology can pro-

vide promising approaches and methods to address this

challenge. We also plan to address some expressiveness

limitations of our POP-based tool, such as express-

ing complex goal conditions (comprising, for example,

the use of existential quantifiers, disjunctions and inter-

mediate subgoals), handling preferences, representing

conditional effects and negative preconditions (they are

currently not supported by most POP planners, includ-

ing POPF2) and supporting non functional-properties

(like cost or time-constraints). A third interesting fu-

ture work is to devise a set of design-time guidelines

that may help the process designer in the selection of

the tasks to be included in the repository and in the

refinement of a process template. Finally, we are also

working on the formalization of new quantitative met-

rics for evaluating process templates’ quality.

This paper extends previous work in [51] in several

directions by includes many new elements that were

neglected in our previous work:

– a new section describing the characteristics of flexi-

ble processes and requirements for managing them.

If, on the one hand, such requirements motivate the

need of our work in the BPM context, on the other

hand they have provided concrete pointers to the

building of the tool underlying the proposed ap-

proach;

– a new section describing the tool’s implementation

and user interface;

– a more thorough description of how process tem-
plates are concretely retrieved from the library, an

aspect that was neglected in our previous work;

– a completely new set of experiments to test the us-

ability of the approach against real users, in com-

parison with traditional activity-centric approaches

to BPM;

– the related work section has been partially rewritten

and extended significantly;

– the description of flexible processes is more detailed

and complete;

– all the details of the translation algorithms for in-

terfacing with the planner; i.e., for translating a

domain theory and a process case into a planning

domain and a planning problem, and for convert-

ing a partially ordered plan into a process template.

These algorithms, which are included in a dedicated

Appendix, allow our approach to be replicated and

concretely implemented by any researcher;

– all other sections of the paper have been edited and

refined to present the material more thoroughly.

22 Andrea Marrella, Yves Lespérance

References

1. van der Aalst, W., Pesic, M., Schonenberg, H.: Declara-
tive Workflows: Balancing between Flexibility and Sup-
port. Computer Science - Research and Development
23(2), 99–115 (2009)

2. van der Aalst, W.M.: Business Process Management: A
Comprehensive Survey. ISRN Software Engineering 2013
(2013). URL http://dx.doi.org/10.1155/2013/507984

3. van der Aalst, W.M.: Process mining: data science in ac-
tion. Springer (2016)

4. Aler, R., Borrajo, D., Camacho, D.: A Knowledge-
based Approach for Business Process Reengineering,
SHAMASH. Know.-Based Syst. 15(8) (2002)

5. Ayora, C., Torres, V., Weber, B., Reichert, M.,
Pelechano, V.: VIVACE: A framework for the systematic
evaluation of variability support in process-aware infor-
mation systems. Information and Software Technology
57, 248–276 (2015). URL https://doi.org/10.1016/j.

infsof.2014.05.009
6. Bagheri Hariri, B., Calvanese, D., de Giacomo, G.,

Deutsch, A., Montali, M.: Verification of Relational Data-
centric Dynamic Systems with External Services. In:
Proceedings of the 32nd Symposium on Principles of
Database Systems, PODS ’13, pp. 163–174. ACM, New
York, NY, USA (2013). DOI 10.1145/2463664.2465221.
URL http://doi.acm.org/10.1145/2463664.2465221

7. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks,
I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.,
et al.: Owl web ontology language reference. W3C rec-
ommendation 10, 2006–01 (2004)

8. Beckstein, C., Klausner, J.: A Meta Level Architecture
for Workflow Management. Journal of Integrated Design
and Process Science 3(1), 15–26 (1999)

9. van Beest, N.R., Kaldeli, E., Bulanov, P., Wortmann,
J.C., Lazovik, A.: Automated runtime repair of business
processes. Information Systems 39, 45–79 (2014). DOI
10.1016/j.is.2013.07.003

10. Brockmans, S., Ehrig, M., Koschmider, A., Oberweis, A.,
Studer, R.: Semantic alignment of business processes. In:
ICEIS (3), pp. 191–196 (2006)

11. Catarci, T., de Leoni, M., Marrella, A., Mecella, M.,
Russo, A., Steinmann, R., Bortenschlager, M.: Workpad:
Process management and geo-collaboration help disaster
response. IJISCRAM 3(1) (2011)

12. Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Sal-
vatore, B., Vetere, G., Dustdar, S., Juszczyk, L., Man-
zoor, A., Truong, H.L.: Pervasive software environments
for supporting disaster responses. IEEE Internet Com-
puting 12(1) (2008)

13. Coles, A.J., Coles, A., Fox, M., Long, D.: Forward-
Chaining Partial-Order Planning. In: ICAPS (2010)

14. Cosa GmbH: COSA BPM product description. Retrieved
July 03, 2017, from: http://www.cosa.nl/docs/EN/COSA%
20BPM%205.7%20Productdescription_en_new_K.pdf

(2013)
15. Currie, K., Tate, A.: O-Plan: The Open Planning Archi-

tecture. Artificial Intelligence 52(1), 49–86 (1991). URL
10.1016/0004-3702(91)90024-E

16. De Giacomo, G., Maggi, F.M., Marrella, A., Patrizi,
F.: On the Disruptive Effectiveness of Automated Plan-
ning for LTLf -Based Trace Alignment. In: Thirty-First
AAAI Conference on Artificial Intelligence, pp. 3555–
3561 (2017). URL http://aaai.org/ocs/index.php/

AAAI/AAAI17/paper/view/14652
17. De Giacomo, G., Maggi, F.M., Marrella, A., Sardiña,

S.: Computing Trace Alignment against Declarative

Process Models through Planning. In: Twenty-Sixth
International Conference on Automated Planning
and Scheduling (ICAPS), pp. 367–375 (2016). URL
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/

paper/view/13094
18. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-

Intensive Processes: Characteristics, Requirements and
Analysis of Contemporary Approaches. Journal on Data
Semantics 4(1), 1–29 (2015). URL http://dx.doi.org/

10.1007/s13740-014-0038-4
19. Di Ciccio, C., Mecella, M.: Mining Constraints for Artful

Processes. In: 15th International Conference on Busi-
ness Information Systems (BIS), pp. 11–23. Springer
Berlin Heidelberg (2012). URL https://doi.org/10.

1007/978-3-642-30359-3_2
20. Di Francescomarino, C., Ghidini, C., Tessaris, S., San-

doval, I.V.: Completing Workflow Traces Using Ac-
tion Languages, pp. 314–330. Springer International
Publishing (2015). URL http://dx.doi.org/10.1007/

978-3-319-19069-3_20
21. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph

matching algorithms for business process model similar-
ity search. In: Business Process Management, pp. 48–63.
Springer (2009)

22. Dijkman, R., Dumas, M., Van Dongen, B., Käärik, R.,
Mendling, J.: Similarity of business process models: Met-
rics and evaluation. Information Systems 36(2), 498–516
(2011)

23. Dumas, M., van der Aalst, W.M.: Process-aware infor-
mation systems: bridging people and software through
process technology. Wiley-Interscience (2005)

24. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.:
Fundamentals of Business Process Management. Springer
Berlin Heidelberg (2013). URL http://dx.doi.org/10.

1007/978-3-642-33143-5
25. Ferreira, H., Ferreira, D.: An Integrated Life Cycle for

Workflow Management Based on Learning and Planning.
Int. J. Coop. Inf. Systems 15 (2006)

26. Fox, M., Long, D.: PDDL2.1: an Extension to PDDL for
Expressing Temporal Planning Domains. J. Artif. Int.
Res. 20(1) (2003)

27. Geffner, H., Bonet, B.: A Concise Introduction to
Models and Methods for Automated Planning. Syn-
thesis Lectures on Artificial Intelligence and Ma-
chine Learning 8(1), 1–141 (2013). DOI 10.2200/
S00513ED1V01Y201306AIM022

28. Godefroid, P.: Partial-Order Methods for the Verifica-
tion of Concurrent Systems: An Approach to the State-
Explosion Problem. Springer-Verlag (1996)

29. Goser, K., Jurisch, M., Acker, H., Kreher, U., Lauer,
M., Rinderle-Ma, S., Reichert, M., Dadam, P.: Next-
generation Process Management with ADEPT2. In:
Demonstration Program of the 5th International Con-
ference on Business Process Management (BPM) (2007)

30. Grambow, G., Oberhauser, R., Reichert, M.: Contextual
generation of declarative workflows and their application
to software engineering processes. International Journal
on Advances in Intelligent Systems 4(3 and 4), 158–179
(2012)

31. Gröner, G., Bosković, M., Silva Parreiras, F., Gasević, D.:
Modeling and Validation of Business Process Families.
Information Systems 38(5), 709–726 (2013). URL http:

//dx.doi.org/10.1016/j.is.2012.11.010
32. Hallerbach, A., Bauer, T., Reichert, M.: Capturing vari-

ability in business process models: the Provop approach.
Journal of Software: Evolution and Process 22(6-7), 519–
546 (2010). URL http://dx.doi.org/10.1002/smr.491

http://dx.doi.org/10.1155/2013/507984
https://doi.org/10.1016/j.infsof.2014.05.009
https://doi.org/10.1016/j.infsof.2014.05.009
http://doi.acm.org/10.1145/2463664.2465221
http://www.cosa.nl/docs/EN/COSA%20BPM%205.7%20Productdescription_en_new_K.pdf
http://www.cosa.nl/docs/EN/COSA%20BPM%205.7%20Productdescription_en_new_K.pdf
10.1016/0004-3702(91)90024-E
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14652
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14652
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13094
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13094
http://dx.doi.org/10.1007/s13740-014-0038-4
http://dx.doi.org/10.1007/s13740-014-0038-4
https://doi.org/10.1007/978-3-642-30359-3_2
https://doi.org/10.1007/978-3-642-30359-3_2
http://dx.doi.org/10.1007/978-3-319-19069-3_20
http://dx.doi.org/10.1007/978-3-319-19069-3_20
http://dx.doi.org/10.1007/978-3-642-33143-5
http://dx.doi.org/10.1007/978-3-642-33143-5
http://dx.doi.org/10.1016/j.is.2012.11.010
http://dx.doi.org/10.1016/j.is.2012.11.010
http://dx.doi.org/10.1002/smr.491

A Planning Approach to the Automated Synthesis of Template-Based Process Models 23

33. Helal, S., Mann, W., El-Zabadani, H., King, J., Kad-
doura, Y., Jansen, E.: The Gator Tech Smart House:
A Programmable Pervasive Space. Computer 38, 50–60
(2005). URL http://dx.doi.org/10.1109/MC.2005.107

34. Henneberger, M., Heinrich, B., Lautenbacher, F., Bauer,
B.: Semantic-based planning of process models. In: Mul-
tikonferenz Wirtschaftsinformatik (2008)

35. ter Hofstede, A., van der Aalst, W., Adams, M., Russell,
N.: Modern Business Process Automation: YAWL and
its Support Environment. Springer (2009). URL https:

//doi.org/10.1007/978-3-642-03121-2
36. Hull, R.: Artifact-Centric Business Process Models: Brief

Survey of Research Results and Challenges. In: On the
Move to Meaningful Internet Systems: OTM 2008, Lec-
ture Notes in Computer Science, vol. 5332, pp. 1152–
1163. Springer Berlin Heidelberg (2008)

37. Hull, R., Motahari Nezhad, H.R.: Rethinking BPM in
a cognitive world: Transforming how we learn and per-
form business processes. In: Business Process Manage-
ment - 14th International Conference, BPM 2016, Rio
de Janeiro, Brazil, September 18-22, 2016. Proceedings,
Lecture Notes in Computer Science, vol. 9850, pp. 3–19.
Springer (2016). DOI 10.1007/978-3-319-45348-4 1

38. Hull, R., Motahari Nezhad, H.R.: Rethinking BPM in a
Cognitive World: Transforming How We Learn and Per-
form Business Processes, pp. 3–19. Springer International
Publishing (2016). URL http://dx.doi.org/10.1007/

978-3-319-45348-4_1
39. Humayoun, S.R., Catarci, T., de Leoni, M., Marrella,

A., Mecella, M., Bortenschlager, M., Steinmann, R.: De-
signing mobile systems in highly dynamic scenarios. the
workpad methodology. Springer’s International Journal
on Knowledge, Technology and Policy 22(1) (2009)

40. Humayoun, S.R., Catarci, T., de Leoni, M., Marrella,
A., Mecella, M., Bortenschlager, M., Steinmann, R.: The
workpad user interface and methodology: Developing
smart and effective mobile applications for emergency op-
erators. In: HCI (7), pp. 343–352 (2009)

41. IBM Inc.: An introduction to WebSphere Process Server
and WebSphere Integration Developer. Retrieved July
03, 2017, from: ftp://ftp.software.ibm.com/software/
integration/wps/library/WSW14021-USEN-01.pdf

(2008)
42. Jarvis, P., Moore, J., , J.S., Macintosh, A., du Mont,

A.C., Chung, P.: Exploiting AI Technologies to Realise
Adaptive Workflow Systems. In: Proceedings of the
AAAI Workshop on Agent-Based Systems in the Busi-
ness Context (1999)

43. Künzle, V., Weber, B., Reichert, M.: Object-aware Busi-
ness Processes: Fundamental Requirements and their
Support in Existing Approaches. International Journal of
Information System Modeling and Design (IJISMD) 2(2),
19–46 (2011). URL http://dbis.eprints.uni-ulm.de/

721/
44. La Rosa, M., van der Aalst, W.M., Dumas, M., Milani,

F.P.: Business Process Variability Modeling: A Survey.
ACM Computing Surveys (2013). URL http://doi.acm.

org/10.1145/3041957
45. La Rosa, M., Dumas, M., Ter Hofstede, A.H., Mendling,

J.: Configurable multi-perspective business process mod-
els. Information Systems 36(2), 313–340 (2011). URL
https://doi.org/10.1016/j.is.2010.07.001

46. Lanz, A., Kreher, U., Reichert, M., Dadam, P.: En-
abling process support for advanced applications with the
AristaFlow BPM Suite (2010)

47. Lenz, R., Reichert, M.: IT support for healthcare pro-
cesses - premises, challenges, perspectives. Data &

Knowledge Engineering 61, 39–58 (2007). URL https:

//doi.org/10.1016/j.datak.2006.04.007
48. de Leoni, M., Marrella, A.: Aligning Real Process Exe-

cutions and Prescriptive Process Models through Auto-
mated Planning. Expert Syst. Appl. 82, 162–183 (2017).
URL https://doi.org/10.1016/j.eswa.2017.03.047

49. Leymann, F., Roller, D.: Production workflow: concepts
and techniques. Prentice Hall PTR (2000)

50. Lu, R., Sadiq, S.: A Survey of Comparative Business Pro-
cess Modeling Approaches. In: 10th International Confer-
ence on Business Information Systems (BIS), pp. 82–94.
Springer-Verlag (2007)

51. Marrella, A., Lesperance, Y.: Synthesizing a library of
process templates through partial-order planning algo-
rithms. In: S. Nurcan, H. Proper, P. Soffer, J. Krogstie,
R. Schmidt, T. Halpin, I. Bider (eds.) Enterprise,
Business-Process and Information Systems Modeling,
Lecture Notes in Business Information Processing, vol.
147, pp. 277–291. Springer Berlin Heidelberg (2013).
DOI 10.1007/978-3-642-38484-4 20. URL http://dx.

doi.org/10.1007/978-3-642-38484-4_20
52. Marrella, A., Mecella, M.: Continuous Planning for Solv-

ing Business Process Adaptivity. In: 12th International
Conference on Business-Process and Information Sys-
tems Modeling (BPMDS), pp. 118–132. Springer Berlin
Heidelberg (2011). URL http://dx.doi.org/10.1007/

978-3-642-21759-3_9
53. Marrella, A., Mecella, M., Russo, A.: Collaboration On-

the-field: Suggestions and Beyond. In: 8th International
Conference on Information Systems for Crisis Response
and Management (ISCRAM 2011) (2011)

54. Marrella, A., Mecella, M., Russo, A.: Featuring Au-
tomatic Adaptivity through Workflow Enactment and
Planning. In: 7th International Conference on Collab-
orative Computing: Networking, Applications and Work-
sharing (CollaborateCom 2011), pp. 372–381 (2011).
URL https://doi.org/10.4108/icst.collaboratecom.

2011.247096
55. Marrella, A., Mecella, M., Sardiña, S.: Smartpm: An

adaptive process management system through situation
calculus, indigolog, and classical planning. In: Princi-
ples of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourteenth International Conference, KR
2014, Vienna, Austria, July 20-24, 2014 (2014)

56. Marrella, A., Mecella, M., Sardiña, S.: Intelligent process
adaptation in the smartpm system. ACM TIST 8(2),
25:1–25:43 (2017). DOI 10.1145/2948071. URL http:

//doi.acm.org/10.1145/2948071
57. Marrella, A., Russo, A., Mecella, M.: Planlets: Auto-

matically Recovering Dynamic Processes in YAWL. In:
20th International Conference on Cooperative Informa-
tion Systems (CoopIS) - OTM Conferences (1), pp. 268–
286. Springer Berlin Heidelberg (2012). URL https:

//doi.org/10.1007/978-3-642-33606-5_17
58. Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C.,

Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL - The
Planning Domain Definition Language. Tech. rep., Yale
Center for Computational Vision and Control (1998)

59. Meyer, A., Smirnov, S., Weske, M.: Data in Business Pro-
cesses. Universitätsverlag Potsdam (2011)

60. M.Kinateder: SAP advanced workflow techniques. Re-
trieved July 03, 2017, from: http://scn.sap.com/docs/
DOC-3286.

61. Myers, K.L., Berry, P.M.: Workflow Management Sys-
tems: An AI Perspective. AIC-SRI report (1998)

62. Nau, D., Ghallab, M., Traverso, P.: Automated Planning:
Theory & Practice. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2004)

http://dx.doi.org/10.1109/MC.2005.107
https://doi.org/10.1007/978-3-642-03121-2
https://doi.org/10.1007/978-3-642-03121-2
http://dx.doi.org/10.1007/978-3-319-45348-4_1
http://dx.doi.org/10.1007/978-3-319-45348-4_1
ftp://ftp.software.ibm.com/software/integration/wps/library/WSW14021-USEN-01.pdf
ftp://ftp.software.ibm.com/software/integration/wps/library/WSW14021-USEN-01.pdf
http://dbis.eprints.uni-ulm.de/721/
http://dbis.eprints.uni-ulm.de/721/
http://doi.acm.org/10.1145/3041957
http://doi.acm.org/10.1145/3041957
https://doi.org/10.1016/j.is.2010.07.001
https://doi.org/10.1016/j.datak.2006.04.007
https://doi.org/10.1016/j.datak.2006.04.007
https://doi.org/10.1016/j.eswa.2017.03.047
http://dx.doi.org/10.1007/978-3-642-38484-4_20
http://dx.doi.org/10.1007/978-3-642-38484-4_20
http://dx.doi.org/10.1007/978-3-642-21759-3_9
http://dx.doi.org/10.1007/978-3-642-21759-3_9
https://doi.org/10.4108/icst.collaboratecom.2011.247096
https://doi.org/10.4108/icst.collaboratecom.2011.247096
http://doi.acm.org/10.1145/2948071
http://doi.acm.org/10.1145/2948071
https://doi.org/10.1007/978-3-642-33606-5_17
https://doi.org/10.1007/978-3-642-33606-5_17
http://scn.sap.com/docs/DOC-3286
http://scn.sap.com/docs/DOC-3286

24 Andrea Marrella, Yves Lespérance

63. OMG: Case Management Model and Notation, Version
1.0 (2014). URL http://www.omg.org/spec/CMMN/1.0

64. Papazoglou, M.P., Heuvel, W.J.: Service oriented archi-
tectures: approaches, technologies and research issues.
The VLDB JournalThe International Journal on Very
Large Data Bases 16(3), 389–415 (2007)

65. Pesic, M., Schonenberg, H., van der Aalst, W.M.: De-
clare: Full support for loosely-structured processes. In:
Enterprise Distributed Object Computing Conference,
2007. EDOC 2007. 11th IEEE International, pp. 287–287.
IEEE (2007)

66. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling,
J., Reijers, H.A.: Imperative versus declarative process
modeling languages: An empirical investigation. In:
Business Process Management Workshops, pp. 383–394.
Springer (2012)

67. R-Moreno, M.D., Borrajo, D., Cesta, A., Oddi, A.: Inte-
grating Planning and Scheduling in Workflow Domains.
Exp. Syst. with App.: An Int. J. 33(2) (2007)

68. R-Moreno, M.D., Kearney, P.: Integrating AI Plan-
ning Techniques with Workflow Management System.
Knowledge-Based Systems 15(5-6) (2002). URL https:

//doi.org/10.1016/S0950-7051(01)00167-8
69. Reichert, M., Weber, B.: Enabling Flexibility in Process-

Aware Information Systems. Springer Berlin Hei-
delberg (2012). URL http://dx.doi.org/10.1007/

978-3-642-30409-5
70. Reijers, H.A., Mans, R., van der Toorn, R.A.: Improved

model management with aggregated business process
models. Data & Knowledge Engineering 68(2), 221–243
(2009). URL https://doi.org/10.1016/j.datak.2008.

09.004
71. Reinhartz-Berger, I., Soffer, P., Sturm, A.: Extending the

Adaptability of Reference Models. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and
Humans 40(5), 1045–1056 (2010). URL https://doi.

org/10.1109/TSMCA.2010.2044408
72. Reiter, R.: On Closed World Data Bases. In: M. Gins-

berg (ed.) Readings in Nonmonotonic Reasoning. Morgan
Kaufmann Publishers Inc. (1987)

73. Russell, S.: Artificial intelligence: A modern approach,
2/E. Pearson Education India (2003)

74. Schuschel, H., Weske, M.: Triggering replanning in an
integrated workflow planning and enactment system. In:
ADBIS (2004)

75. Silver, B.: Case management: Addressing unique bpm
requirements. Taming the Unpredictable: Real-World
Adaptive Case Management pp. 1–12 (2009)

76. Thomas, O., Fellmann, M.: Semantic business process
management: Ontology-based process modeling using
event-driven process chains. IBIS 4, 29–44 (2007)

77. Tibco Software Inc.: TIBCO iProcess En-
gine - Architecture Guide. Retrieved July
03, 2017, from: https://docs.tibco.com/pub/

iprocess-engine/11.1.0-september-2009/pdf/

tib-iprocess-engine-architecture-guide.pdf (2009)
78. van der Aalst, W.M., Weske, M., Grünbauer, D.: Case

Handling: A New Paradigm for Business Process Sup-
port. Data & Knowledge Engineering 53(2), 129–162
(2005). DOI 10.1016/j.datak.2004.07.003

79. Vardi, M.Y.: An automata-theoretic approach to linear
temporal logic. In: Logics for concurrency, pp. 238–266.
Springer (1996)

80. Weber, B., Pinggera, J., Zugal, S., Wild, W.: Alaska sim-
ulator toolset for conducting controlled experiments on
process flexibility. In: Information Systems Evolution,
pp. 205–221. Springer (2011)

81. Weld, D.: An Introduction to Least Commitment Plan-
ning. AI mag. 15(4) (1994)

82. White, S.A., Miers, D.: BPMN Modeling and Reference
Guide: Understanding and Using BPMN. Future Strate-
gies Inc. (2008)

83. Wongwatkit, C.: A development of order processing sys-
tem: BPMN model. In: 14th International Conference
on Advanced Communication Technology (ICACT), pp.
653–658 (2012)

84. Zunino, A., Campo, M.: A survey of approaches to web
service discovery in service-oriented architectures. Inno-
vations in Database Design, Web Applications, and In-
formation Systems Management 107(1) (2012). URL
https://doi.org/10.4018/jdm.2011010105

http://www.omg.org/spec/CMMN/1.0
https://doi.org/10.1016/S0950-7051(01)00167-8
https://doi.org/10.1016/S0950-7051(01)00167-8
http://dx.doi.org/10.1007/978-3-642-30409-5
http://dx.doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1016/j.datak.2008.09.004
https://doi.org/10.1016/j.datak.2008.09.004
https://doi.org/10.1109/TSMCA.2010.2044408
https://doi.org/10.1109/TSMCA.2010.2044408
https://docs.tibco.com/pub/iprocess-engine/11.1.0-september-2009/pdf/tib-iprocess-engine-architecture-guide.pdf
https://docs.tibco.com/pub/iprocess-engine/11.1.0-september-2009/pdf/tib-iprocess-engine-architecture-guide.pdf
https://docs.tibco.com/pub/iprocess-engine/11.1.0-september-2009/pdf/tib-iprocess-engine-architecture-guide.pdf
https://doi.org/10.4018/jdm.2011010105

A Planning Approach to the Automated Synthesis of Template-Based Process Models 25

A Translation Algorithms

This appendix is focussed primarily on presenting technical
details concerning the translation algorithms introduced in
Section 5.1. Specifically, in the following, we describe:

– the module PC2PR used for translating a domain theory
D and a process case C into a planning domain PD and a
planning problem PR;

– the module POP2PT used for converting a partially ordered
plan P into a process template PT.

A.1 Representing Domain Theories and Process Cases

in PDDL

To obtain a process template that handles a case C, a cor-
responding PDDL planning problem definition PR has to be
specified. This can be done by mapping initC to initPR and
goalC to goalPR. The planning domain PD is built starting
from the definition of ground atomic terms and data types
as shown in Section 4, and by making explicit the actions
associated with each annotated task t ∈ T, together with
their pre-conditions, effects and input parameters. Basically,
the planning domain describes how predicates and functions
change after an action’s execution, and specifies the contex-
tual properties constraining the execution of tasks stored in
the tasks repository.

Our framework provides a software module named PC2PR

in charge of performing such a translation, which makes use
of PDDL version 2.1 (cf. [26]). In the following, we discuss
how the domain theory D can be translated into a PDDL file
representing the planning domain PD:

– the name and the domain of a data type correspond to
an object type in the planning domain;

– boolean terms have a straightforward representation as
relational predicates (templates for logical facts) in the
planning domain;

– integer terms correspond to PDDL numeric fluents, and
are used for modeling non-boolean resources (e.g., the
battery charge level of a robot) in the planning domain;

– functional terms do not have a direct representation in
PDDL 2.1, but may be represented as relational predi-
cates. Since a functional term is a function f : Objectn →
Object that maps tuples of objects with domain types Dn

to objects with co-domain type U , it may be encoded in
the planning domain as a relational predicate P of type
(Dn, U).
For example, let us consider the running example pre-
sented in Section 2 and its formalization with the domain
theory D as shown in Section 4. The module PC2PR con-
verts D into a PDDL planning domain PD defined as fol-
lows:

(define (domain Derailment)

...

(:types participant location capability)

(:predicates

(at ?prt - participant ?loc - location)

(provides ?prt - participant

?cap - capability)

...

)

(:functions

(battery level ?prt - participant)

(battery_consumption_debris)

...

)

The :types field is used to declare the relevant types
of objects interacting in our contextual scenario. Specifi-
cally, three new types have been declared: participant,
location and capability. The :predicates field consists
of a list of declarations of relational predicates, reflecting
the properties of the contextual scenario. Notice that in
PDDL, variables are distinguished by an initial ′?′ char-
acter, for example ?prt and ?loc are two variables. The
dash ′−′ is used to assign types to the variables. In the
example above, ?prt is defined to be of type participant

and ?loc is defined to be of type location. For example,
the predicate at holds true if a participant ?prt is situ-
ated in location ?loc. The predicate provides is used for
declaring if a capability ?cap is provided by the partici-
pant ?prt.

– a given task, together with the associated pre-conditions,
effects and input parameters, is translated into a PDDL
action schema. An action schema describes how the re-
lational predicates and/or numeric fluents change after
the action’s execution. For example, given the following
XML specification of the task Go ∈ T (with respect to
the language provided in Section 4):

<task>

<name>Go</name>

<parameters>

<arg>prt - Participant</arg>

<arg>from - Location</arg>

<arg>to - Location</arg>

</parameters>

<precondition>at[prt] == from AND

provides[prt,movement] == true

</precondition>

<effect>at[prt] = to</effect>

</task>

the module PC2PR produces the following PDDL represen-
tation:

(:action go

:parameters (?prt - participant

?from - location

?to - location)

:precondition (and (at ?prt ?from)

(provides ?prt movement))

:effect (and (forall (?loc - location)

(not (at ?prt ?loc)))

(at ?prt ?to))

This task can be executed only if the actor denoted by
?prt is not currently located in the target location ?to

(and is located in her/his starting location ?from) and is
capable of moving into the area. The desired effect turns
the value of the predicate (at ?prt ?to) to true and of
(at ?prt ?loc) to false, where ?loc is any location dif-
ferent from the destination.

The planning problem PR can be seen as an instance of the
planning domain PD. It first declares the constant symbols in
the initial state of the planning problem, then defines the ini-
tial state initPR and finally specifies a goal condition goalPR
for the planning problem. Specifically, the module PC2PR con-
verts the case C into a PDDL file representing the planning
problem PR as follows:

26 Andrea Marrella, Yves Lespérance

– for each data type defined in the planning domain, all the
possible object instances of that particular data type are
explicitly instantiated as constant symbols in the initial
state of the planning problem (e.g., the fact that act1,
act2, act3, act4, rb1 and rb2 are Participants, and that
loc00, ..., loc33 are Locations);

– a representation of the initial state of the planning prob-
lem is generated; basically, the initial state of the planning
problem initPR is composed of a conjunction of relational
predicates (representing functional and boolean terms in
initC) and the initial value of each numeric fluent (e.g.,
the value of the battery charge level for each robot), cor-
responding to the values of integer terms in initC;

– the goal condition of the planning problem is a logical
expression over facts, which partially specifies the state
to be reached after the execution of the process template;
it is a condition represented as a conjunction of relational
predicates and numeric fluent atoms representing the spe-
cific boolean, functional and integer terms we want to
make true through the correct execution of the process
template (as defined in goalC).
Notice that the description of the planning problem PR
derived from the case C of our running example roughly
corresponds to the contextual information available on
the dynamic environment described in Fig. 1(b):

(define (problem EM1) (:domain Derailment)

(:objects

act1 - participant

...

rb2 - participant

movement - capability

camera - capability

...

loc00 - location

...

loc33 - location

)

(:init

(at act1 loc00)

...

(at rb2 loc00)

(provides act1 movement)

...

(provides rb2 battery)

...

(= battery_level rb1 3)

)

(:goal

(and (evacuated loc32)

(fire_free loc31)

(photo_taken loc33))

))

A.2 Translating a Partially Ordered Plan P into a

Process Template PT

Once the plan P has been synthesized, it needs to be trans-
lated in a process template PT. As explained in Section 3.2,
a solution plan is a three-tuple P = (A,O,CL), where A is
the set of actions appearing in the plan, O and CL are re-
spectively the set of ordering constraints and of causal links
over A. Since the set of actions A composing the plan and
the set of ordering constraints O over A must be explicitly
expressed as nodes and transitions of the template’s control

flow (as well as their intrinsic ordering), we have implemented
a module named POP2PT that takes as input a solution plan
P and converts it into a process template PT.

We provide two algorithms - named respectively
“FindPREC/NEXT ” (cf. Algorithm 1) and “BuildPT” (cf.
Algorithm 2) - to be executed sequentially for automatically
computing a process template PT. For each planning action
ai ∈ A, Algorithm 1 is in charge of detecting which actions
“directly” precede and follow ai in the plan. This information
will be crucial for instantiating the transitions between the
flow objects of the process template. However, this knowledge
is not directly available in O. In fact, an ordering constraint
a ≺ b between two actions a ∈ A and b ∈ A indicates that a
must be executed sometime before action b, but not necessar-
ily immediately before. Algorithm 1, for each action ai ∈ A,
builds two sets containing the actions that immediately pre-
cede ai (the set PREC(ai)) and immediately follow ai (the
set NEXT (ai)).

Definition 10 Given an ordering constraint (a ≺ b) ∈ O
between two actions a ∈ A and b ∈ A, we say that a directly
precedes b and b directly follows a iff no further action
c ∈ A exists such that a ≺ c and c ≺ b.

Basically, for each ordering constraint ok = (ai ≺ aj) ∈ O,4

the algorithm FindPREC/NEXT works as follows:

– if there does not exist any planning action ah 6= aj

that precedes ai - i.e., such that (ah ≺ ai) ∈ O -
then the only predecessor of ai is the dummy start ac-
tion a0. Therefore, a0 is added to the set of predecessors
of ai (i.e., PREC(ai) = PREC(ai) ∪ {a0}) and ai is
added to the set of successors of a0 (i.e., NEXT (a0) =
NEXT (a0) ∪ {ai}).

– if there does not exist any planning action ah 6= ai

that follows aj - i.e., such that (aj ≺ ah) ∈ O - then
the only successor of aj is the dummy end action a∞.
Therefore, aj is added to the set of predecessors of a∞
(i.e., PREC(a∞) = PREC(a∞) ∪ {aj}) and a∞ is
added to the set of successors of aj (i.e., NEXT (aj) =
NEXT (aj) ∪ {a∞}).

– if there does not exist any planning action ah 6= ai that
precedes aj - i.e., such that (ah ≺ aj) ∈ O - then ai

directly precedes aj (and aj directly follows ai), meaning
that PREC(aj) = PREC(aj) ∪ {ai} and NEXT (ai) =
NEXT (ai) ∪ {aj}.

– if there exists a planning action ah 6= ai that precedes
aj - i.e., such that (ah ≺ aj) ∈ O - but there does not
exist any finite sequence of actions a1, a2, ..., an such that
(ai ≺ ... ≺ a1 ≺ a2 ≺ ... ≺ an ≺ ... ≺ ah), then ai

directly precedes aj (and aj directly follows ai), meaning
that PREC(aj) = PREC(aj) ∪ {ai} and NEXT (ai) =
NEXT (ai) ∪ {aj}.

Starting from the two sets just computed, the algorithm
BuildPT is in charge of building the process template PT,
by instantiating the tasks, gateways, events and transitions
between them. For every action a ∈ A, a corresponding
task instance ta ∈ T (basically, a task instance is an oc-
currence of a specific task t ∈ T) is generated (cf. the func-
tion taskify in Algorithm 2). Transitions between tasks de-
pend on the number of predecessors/successors contained in
PREC(a)/NEXT (a). In particular, if an action b ∈ A is such
that b ∈ PREC(a) or b ∈ NEXT (a), it is clear that there
must be some kind of transition between ta and tb in PT:

4 Before the execution of the algorithm, all the ordering
constraints involving the dummy start action a0 and the
dummy end action a∞ are removed from O.

A Planning Approach to the Automated Synthesis of Template-Based Process Models 27

Fig. 9: Overview of the working of the Algorithm

FindPREC/NEXT .

– if b is the only successor of a, and a is the only predecessor
of b (cf. Fig. 9(a)), then (ta → tb) ∈ LT (cf. Fig. 9(b));

– if a is the only predecessor of b, but b is not the only
successor of a (cf. Fig. 9(c)), then a parallel split wPS ∈
WPS is needed between ta and tb. Hence (ta → wPS) ∈
LT and (wPS → tb) ∈ LWPS

(cf. Fig. 9(d));

– if b is the only successor of a, but a is not the only prede-
cessor of b (cf. Fig. 9(e)), then a parallel join wPJ ∈WPJ

is needed between ta and tb. Hence (ta → wPJ) ∈ LT

and (wPJ → tb) ∈ LWPJ
(cf. Fig. 9(f));

– if ta is not the only predecessor of tb and tb is not the
only successor of ta (cf. Fig. 9(g)), then a parallel split
wPS ∈ WPS and a parallel join wPJ ∈ WPJ are needed
between ta and tb. Hence (ta → wPS) ∈ LT , (wPS →
wPJ) ∈ LWPS

and (wPJ → tb) ∈ LWPJ
(cf. Fig. 9(h)).

Finally, if an action a ∈ A has no predecessors/successors
(i.e., the set PREC(a)/NEXT (a) is empty), this means that
ta must be connected with the start event #/end event �.

A stand-alone software implementation of the module
POP2PT is available for testing at: https://goo.gl/z8uJ8S.

Algorithm 1: FindPREC/NEXT - Find actions

predecessors and successors

Data:
– A : the set of actions appearing in the final plan P,

including dummy actions a0 and a∞.
– O : the set containing the ordering constraints returned

by the planner, in the form ok = (ai ≺ aj), with
(ai, aj) ∈ A. Ordering constraints that involve a0 and
a∞ are removed.

– NEXT (ai) : a set containing the list of successors of the
i-th action ai ∈ A.

– PREC(ai) : a set containing the list of predecessors of
the i-th action ai ∈ A.

– k : an integer number, used as counter for the ordering
constraints.

– lenght(S) : returns the size of a set S.
– add(a, S) : inserts an action a into a set S.

Result: for each ai ∈ A, it returns NEXT (ai) and
PREC(ai)

Init:
k = 0
for each ai ∈ A do

NEXT(ai) = ∅
PREC(ai) = ∅

begin
while k < lenght(O) do

take the k-th ordering constraint,
ok = (ai ≺ aj) from O

start scanning the O set
if @ (ah ∈ A) : ah 6= aj ∧ (ah ≺ ai ∈ O) then

add(ai, NEXT (a0));
add(a0, PREC(ai));

if @ (ah ∈ A) : ah 6= ai ∧ (aj ≺ ah ∈ O) then
add(a∞, NEXT (aj));
add(aj , PREC(a∞));

if @ (ah ∈ A) : ah 6= ai ∧ (ah ≺ aj ∈ O) OR
∃ (ah ∈ A) : ah 6= ai ∧ (ah ≺ aj ∈ O) AND
@ any finite sequence of actions a1, a2, ..., an

such that
(ai ≺ ... ≺ a1 ≺ a2 ≺ ... ≺ an ≺ ... ≺ ah)
then

add(aj , NEXT (ai));
add(ai, PREC(aj));

else
do nothing, because it means that
ai ≺ ah ≺ aj . The ordering constraint
ai ≺ ah will be considered in a future
iteration of the algorithm.

k++

https://goo.gl/z8uJ8S

28 Andrea Marrella, Yves Lespérance

Algorithm 2: BuildPT - Build Process Template
Data:
– A : the set of actions appearing in the final plan, including a0

and a∞.
– L = LT ∪ LE ∪ LWPS

∪ LWPJ
is a finite set of transitions

connecting events, task instances and gateways. Initially it is
empty.

– NEXT (ai)/PREC(ai) : a set with the list of
successors/predecessors of ai.

– lenght(S) : returns the size of a set S.
– insert(x, S) : given an element x and a set S, if x /∈ S inserts x

into S.
– taskify(a) : given a planning action a ∈ A, it generates a

corresponding task instance ta ∈ T .

begin
for each ai ∈ A do

tai
= taskify(ai)

if lenght(PREC(ai)) > 1 then
for each aq ∈ PREC(ai) do

taq = taskify(aq)

if lenght(NEXT (aq)) > 1 then
insert({w splitq → w joini}, LWPS

)

else
insert({taq → w joini}, LT)

insert({w joini → tai
}, LWPJ

)

else
if lenght(NEXT (aq)) > 1 (let aq be the only
predecessor of ai) then

if lenght(PREC(aq)) > 0 then
insert({w splitq → tai

}, LWPS
)

else
insert({#→ w splitq}, LE)
insert({w splitq → tai

}, LWPS
)

else
if lenght(PREC(aq)) > 0 then

insert({taq → tai
}, LT)

else
insert({#→ tai

}, LE)

if lenght(NEXT (ai)) > 1 then
for each aj ∈ NEXT (ai) do

taj
= taskify(aj)

if lenght(PREC(aj)) > 1 then
insert({w splitq → w joini}, LWPS

)

else
insert({w spliti → taj

}, LWPS
)

insert({tai
→ w spliti}, LT)

else
if lenght(PREC(aj)) > 1 (let aj be the only
successor of ai) then

if lenght(NEXT (aj)) > 0 then
insert({tai

→ w joinj}, LT)

else
insert({tai

→ w joinj}, LT)
insert({w joinj → �}, LWPJ

)

else
if lenght(NEXT (aj)) > 0 then

insert({tai
→ taj

}, LT)

else
insert({tai

→ �}, LT)

	Introduction
	Running Example
	Background
	Characteristics and Requirements for Designing Flexible Processes
	Partial-Order Planning

	Process Templates
	An Approach to Synthesize a Library of Process Templates
	The General Framework
	Properties

	Validation
	Empirical User Evaluation
	Experiments with a partial-order planner

	Related Work
	Plan-based Process Design

	Concluding Remarks
	Translation Algorithms
	Representing Domain Theories and Process Cases in PDDL
	Translating a Partially Ordered Plan P into a Process Template PT

