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Summary 
 
RASopathies are a family of syndromes affecting development and growth, sharing RAS signaling 

dysregulation as pathogenetic mechanism. Past work of our group and others have significantly 

contributed to our understanding of the molecular causes of these diseases. However, a large 

fraction of RASopathy cases remains unexplained molecularly. Here, I used the nematode C. 

elegans to reveal novel molecular mechanisms underlying RASopathies, as well as to identify new 

candidate genes for these group of developmental disorders. C. elegans is an excellent model to 

study RASopathies since the RAS-MAPK pathway is well conserved in worms, where it plays a 

crucial role in vulval development. 
 

Based on a gene candidacy approach, we identified two germline mutations in RRAS, a gene 

encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, 

underlying a rare and atypical form of Noonan syndrome (NS), the most common RASopathy. We 

also identified somatic RRAS mutations in 2 cases of non-syndromic juvenile myelomonocytic 

leukaemia (JMML), a childhood myeloproliferative/myelodysplastic disease caused by upregulated 

RAS signaling. Two of the three identified mutations affected known oncogenic hotspots of RAS 

genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. 

Expression of an RRAS mutant homolog in C. elegans enhanced RAS signaling causing a 

multivulva (Muv) phenotype, and engendered protruding vulva (Pvl), a phenotype previously linked 

to the RASopathy-causing SHOC2
S2G

 mutant. These findings provided evidence of a functional 

link between RRAS and MAPK signaling and reveal an unpredicted role of enhanced RRAS 

function in human disease. 
 

Epistatic analyses performed on C. elegans transgenic lines allowed us to establish that the 

RASopathy-causing SHOC2 and RRAS mutants belong to the same pathway. Within this signaling 

network, both RAS-1/RRAS and RAS-2/MRAS are downstream to constitutively active SHOC2, 

with the former being epistatic to the latter. By using a reverse genetic approach based on RNA 

interference experiments, we demonstrated that the Muv phenotype was completely mediated by 

LET-60/RAS, while the Pvl phenotype was modulated by the RHO-family small GTPases CDC-42 

and RAC1. We then confirmed these results in fibroblasts derived from patients with Mazzanti 

syndrome (NS with loose anagen hair) and transfected cell lines. In these models, we observed 

constitutive RAC1 activation and aberrant lamellipodia formation in cells expressing SHOC2
S2G

 

compared to wild-type cells. 
 

These results suggested RHO GTPases as excellent candidate genes to be mutated in 

RASopathies. To explore this hypothesis, mutation scanning of RAC1, RAC2 and CDC42 genes was 

performed in RASopathy patients by targeted resequencing and identified seven different



germline CDC42 mutations in 11 unrelated subjects with a variable phenotype partially overlapping 

NS and predisposing to thrombocytopenia. In vitro biochemical characterization demonstrated a 

variable impact of the mutations on GTPase activity and defective binding to WASP. In vitro and in 

vivo (C. elegans) functional characterization of these mutants allowed to define their impact on cell 

migration and proliferation, as well as on vulval induction and morphogenesis. A first class of 

mutations was shown to have an hypomorphic effect on processes mediating cell polarized 

migration, with no effect on the RAS-MAPK signaling, while a second class of mutations had a 

gain-of-function effect on both cell migration/proliferation and LET-60/RAS-mediated vulval 

induction. Overall, our data highlighted the possible contribution of dysregulated signaling 

controlling cell spreading and migration to certain features of RASopathies, such as lymphedema, 

cardiac defects and lymphocytes infiltration in non-hematopoietic tissues in case of JMML. 



1. Introduction 
 

1.1 The RAS/mitogen-activated protein kinase (MAPK) pathway 
 

The RAS/mitogen-activated protein kinase (MAPK) pathway plays a pivotal role in several 

biological processes with a key role in development, including cell proliferation, survival, 

senescence and differentiation (Rauen, 2013), and is activated by extracellular inputs in the form of 

growth factors, citokines and hormons (Figure 1) (Kratz et al., 2007). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The RAS signaling pathway relays growth signals 
from activated growth factor receptors to the nucleus. 
Kratz et al., 2007 

 

 

RAS genes constitute a multigene family that includes HRAS, NRAS and KRAS. RAS proteins are 

small guanosine nucleotide-bound GTPases that function as a critical signaling hub within the cell. 

RAS proteins act as molecular switches by cycling between an active guanosine triphosphate 

(GTP)-bound and an inactive guanosine diphosphate (GDP)-bound state. Stimulated growth factor 

receptors recruit a number of adaptor proteins that activate guanosine nucleotide exchange factors 

(GEFs) to remove guanine nucleotides from RAS. RAS is then activated by binding to GTP, which 

is present at a ten fold higher concentration than GDP. In the GTP-bound state, the two switch 

regions of RAS (switch I and II) modify their conformation. This conformational switch allows 

RAS to bind and activate RAS effector proteins such as RAF1. The “on” position is turned “off” by 

an intrinsic GTPase activity, which hydrolyses and releases a phosphate group from RAS·GTP to 

produce RAS·GDP. The conformational transition of the switch I and II regions that is associated 

with this reaction disrupts the interaction between RAS and its effectors. The intrinsic GTPase 
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activity of RAS is slow and accelerated about 105-fold by GTPase activating proteins (GAPs), such 

as neurofibromin or p120 GAP. These GAPs mediate Ras·GTP hydrolysis by inserting an arginine 

residue (arginine finger) into the phosphate binding pocket of RAS (Figure 2). 

 
 
Figure 2. RAS cycles between an 
active GTP-bound and an inactive 
GDP-bound conformation. In the 
active state, the two switch regions, 
switch I and II, change their 
conformation allowing RAS to activate 
effector proteins. The intrinsic GTPase 
hydrolyzes a phosphate group to 
produce RAS·GDP. This reaction is 
accelerated by GTPase activating 
proteins (GAPs).  
Kratz et al., 2007. 
 
 
 
 
 
 
 
 
The MAPK pathway is one of the many critical downstream signaling cascades of RAS. Activated 

RAS leads to the activation of RAF (ARAF, BRAF and/or CRAF), the first MAP kinase kinase 

kinase of the pathway. RAF phosphorylates and activates the MAP kinase kinase MEK1 and/or 

MEK2 which, in turn, phosphorylate and activate the MAP kinase ERK1 and/or ERK2,which exert 

their function on a large number of downstream molecules, both nuclear and cytosolic. ERK1 and 

ERK2 substrates include nuclear components, transcription factors, membrane proteins, and protein 

kinases that in turn control vital cellular functions, including cell cycle progression, differentiation 

and growth (Yoon and Seger, 2006). 
 
The Ras/MAPK pathway has been studied extensively in the context of oncogenesis because its 

somatic dysregulation is one of the primary causes of cancer. RAS is somatically mutated in at least 

20% of human cancers (Bos, 1989), and BRAF is mutated in approximately 7% of malignancies 

(Pritchard et al., 2007). 

 
 
1.2 The RASopathies 
 

The RASopathies are a class of autosomal dominant developmental disorders caused by germline 

mutations in genes encoding RAS genes themselves, or RAS regulators or effectors involved in the 

RAS/MAPK pathway. These disorders are considered cancer predisposition syndromes, with the 

majority of associated mutations resulting in enhanced pathway activation or dysregulated 
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signaling. However, biochemical studies have demonstrated that a large fraction of the novel 

germline mutations identified in the pathway are not as robustly activating as those associated with 

oncogenesis. This is likely due to the embryonic lethality arising from these germline mutations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. RAS/MAPK cascade and disorders 
involving germline mutations of related genes. MAPK, 
mitogen-activated protein kinase; NF1, 
neurofibromatosis type 1; NS, Noonan syndrome. 
*Indicates additional causative genes that have been 
reported since 2013.  
Aoki et al., 2016 

 
 
 
 
Each RASopathy exhibits a unique phenotype, but owing to the common mechanisms of 

RAS/MAPK pathway dysregulation, they share many overlapping features, including craniofacial 

dysmorphisms, cardiac defects, ectodermal, skeletal and ocular abnormalities, variable 

neurocognitive disabilities, and an overall increased cancer risk (Figure 4). 
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Figure 4. Clinical images of patients 
with RASopathies. (a) A young boy 
who has a clinical diagnosis of 
neurofibromatosis type 1. (b) A young 
girl with Noonan syndrome who has a 
PTPN11 mutation. (c) A young adult 
woman with Costello syndrome who has 
the common p.G12S HRAS mutation. (d) 
A school-age boy with cardio-facio-
cutaneous syndrome who has a MEK2 
mutation.  
Rauen, 2013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Taken together, the RASopathies are one of the largest family of genetic disorders affecting 

development and growth, with an estimated prevalence of approximately 1 in 1,000 individuals. 

 
 
 
 
1.3 Molecular mechanisms underlying RASopathies 
 

Although RAS signals to multiple intracellular pathways, hyperactivation of the MAPK pathway 

represents the common pathogenic feature of most RASopathies (Tartaglia et al., 2011), although 

enhanced signaling through the PI3K/AKT cascade has been documented (Edouard et al., 2010) 

(Table 1). However, each syndrome results from mutations in specific genes associated with the 

MAPK pathway and distinct mutations within these genes affect RAS signaling through different 

molecular mechanisms. Neurofibromatosis type 1 (NF1) was the first syndrome identified as being 

caused by heterozygous loss-of-function mutations of a gene involved in the RAS/MAPK pathway 

(NF1) (Cawthon et al., 1990; Viskochil et al.,1990; Wallace et al., 1990), and numerous other 

syndromes have subsequently been identified (Figure 3). These disorders include (a) Noonan 

syndrome (NS), caused by activating mutations in PTPN11 (Tartaglia et al., 2001), SOS1 (Roberts 

et al., 2007; Tartaglia et al., 2007), SOS2 (Cordeddu et al., 2015; Yamamoto et al., 2015) RAF1 
 
(Pandit et al., 2007; Razzaque et al., 2007), KRAS (Schubbert et al., 2007), NRAS (Cirstea et al., 
 
2010); (b) atypical NS, caused by mutations in SHOC2 (Cordeddu et al., 2009), CBL (Martinelli et 

al., 2010; Niemeyer et al., 2010), RIT1 (Aoki et al., 2013) and LZTR1 (Yamamoto et al., 2015); (c) 
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Noonan  syndrome  with  multiple  lentigines  (NSML),  caused  by  allelic  mutations  in  PTPN11 
 
(Digilio et al., 2002) or, rarely, in RAF1 (Pandit et al., 2007); (d) capillary malformation-

arteriovenous malformation syndrome (CM-AVM), caused by haploinsufficiency of RASA1 (Eerola 

et al., 2003); (e) Costello syndrome (CS), caused by activating mutations in HRAS (Aoki et al., 
 
2005); (f)  cardio-facio-cutaneous syndrome  (CFC), caused by  activating  mutations in BRAF 
 
(Niihori et al., 2006; Rodriguez-Viciana et al., 2006) and MAP2K1 (MEK1) or MAP2K2 (MEK2) 
 
(Rodriguez-Viciana et al., 2006); and (g) Legius syndrome, caused by inactivating mutations in 
 
SPRED1 (Brems et al., 2007). 
 

 

1.3.1 Small GTPases: HRAS, KRAS, NRAS, RIT1 
 

RAS GTPases 
 

HRAS, KRAS and NRAS encode the main GTPases belonging to the RAS subfamily, which cycle 

between an active GTP-bound state to an inactive GDP-bound state. HRAS is located on 11p15.5 

and encodes the Harvey rat sarcoma viral oncogene homologue. The vast majority of HRAS 

mutations underlying CS result from amino acid substitutions affecting glycine residues at positions 

12 or 13. These changes disrupt the guanine nucleotide binding site and cause a reduction in 

intrinsic and GAP-stimulated GTPase activity, resulting in constitutive activation of RAS and 

sustained signaling through the MAPK cascade (Gibbs et al., 1984; McGrath et al., 1984; Sweet et 

al., 1984). Germline HRAS mutations involve the same residues affected by somatic lesions 

occurring in cancer. However, individual amino acid substitutions rarely overlap, with those 

associated with CS having a milder effect than cancer-causing lesions. KRAS is located on 

chromosome 12p12.1 and consists of two different isoforms encoded through alternative splicing. It 

encodes the V-Ki-Ras2 Kirsten rat sarcoma viral oncogene homolog. Biochemical analyses of 
 
KRAS activating mutations associated with NS or CFC demonstrated a general hypermorphic role 

of KRAS mutation (Schubbert et al., 2007). Of note, germline and somatic lesions do not overlap, 

the former being weak hypermorphs due to their impaired binding to a plethora of effectors 

(Gremer et al., 2011). 

 
Finally, the NRAS gene encode the neuroblastoma Ras viral (V-Ras) oncogene homolog (NRAS) 

and is located on chromosome 1p13.2. Mutations in NRAS have been found in a very small number 

of individuals with NS (Cirstea et al., 2010). Mutations have been identified within or near the 

switch II region of NRAS and are thought to interfere with GTPase function. Also for NRAS, 

germline mutations do not overlap lesions found in malignancies. 
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Table 1. Functional classificationof genes associated with RASopathies or suggested to be associated 
with this group of diseases (red).  
Tidyman WE and Rauen KA, 2016 
 

Class Gene Protein name Protein function 
Pathogenetic 

 

 
mechanism  

     
      

 
HRAS 

HRAS: Harvey rat sarcoma viral Hydrolyzes GTP) and activates Raf by recruiting to the Activating  
 oncogene homologue cell membrane mutations  
   
      

  KRAS: the V-Ki-Ras2 Kirsten  
Activating 

 
 KRAS rat sarcoma viral oncogene Hydrolyzes GTP and activates Raf by recruiting to the cell  
 mutations  
  homolog membrane  
    

GTPase 
     

NRAS 
NRAS: neuroblastoma Ras viral Hydrolyzes GTP and activates Raf by recruiting to the cell Activating  

 (V-Ras) oncogene homolog membrane mutations  
   
      

 
RRAS 

RRAS: Related Ras viral R-Ras) Hydrolyzes GTP and activates Raf by recruiting to the cell Activating  
 oncogene homologue membrane mutations  
   
      

 
RIT1 RIT1; Ras-like protein in tissue 

Hydrolyzes GTP and participates in Ras/MAPK and p38 Activating  
 signaling mutations  
    
      

   Binds activated G-proteins and stimulate their GTPase   
 NF1 Neurofibromin activity switching the active GTP-bound Ras to the Loss of function  
   inactive GDP-bound form   
      

  
RASA1: p120-RasGTPase- 

Binds activated G proteins and stimulate their GTPase   
 RASA1 activity switching the active GTP-bound Ras to the Loss of function  
 activating protein  
  inactive GDP-bound Ras   

RasGAP 
    
     

 

RASA2: Ras p21 
Binds activated G proteins and stimulates GTPase activity 

  

    
 RASA2 switching the active GTP-bound Ras to the inactive GDP- Loss of function  
 proteinactivator 2  
  bound Ras   
     
      

   Neuron-specific RasGAP that binds activated G proteins   
 SYNGAP1 SynGAP: Synaptic Ras GAP and stimulates GTPase activity switching the active GTP- Loss of function  
   bound Ras to the inactive GDP-bound Ras   
      

 
SOS1 

SOS1: Son of sevenless RasGEF that stimulates the conversion of Ras from the Activating  
 homologue 1 inactive GDP-bound form to the GTP-bound active form mutations  

RasGEF 
  
     

SOS2 
SOS2: Son of sevenless Ras-GEF that stimulates the conversion of Ras from the Activating 

 

  
 homologue 2 inactive GDP-bound form to the GTP-bound active form mutations  
   
      

  SHOC2: Homologue of  
Activating 

 
Scaffolding SHOC2 suppressor of clear (SOC-2) in Binds GTP-Ras and mediates protein phosphatase 1  

mutation  
  Caenorhabditis elegans translocation to the cell membrane.  
    
      

Ubiquitin Ligase CBL 
CBL: casitas B-lineage E3 ubiquitin ligase that inhibits Ras activity by targeting 

Loss of function 
 

lymphoma phosphorylated substrates for proteasome degradation  
    
      

  SHP2: Tyrosine-protein  
Activating 

 
Phosphatase PTPN11 phosphatase non-receptor type Non-receptor protein tyrosine phosphatase that in its active  

mutations  
  11; Src Homology 2 form, increases downstream Ras activity  
    
      

 
BRAF 

BRAF: v-Raf murine sarcoma Serine/threonine protein kinase that activates MEK1 Activating  
 viral oncogene homolog B and/or MEK2 by phosphorylation mutations  
   
      

  CRAF: v-Raf-1 murine  
Activating 

 
 RAF1 leukemiaviral oncogene Serine/threonine protein kinase that activates MEK1  
 mutations  
  homolog 1 and/or MEK2 by phosphorylation  
    

Kinase 
     

MAP2K1 
MEK1: Mitogen-activated Threonine/tyrosine kinase that activates ERK1 and/or Activating  

 protein kinase kinase 1 ERK2 by phosphorylation mutations  
   
      

 
MAP2K2 

MEK2: Mitogen-activated Threonine/tyrosine kinase that activates ERK1 and/or Activating  
 protein kinase kinase 2 ERK2 by phosphorylation mutations  
   
      

 
MAP3K8 

MAP3K8: Mitogen-activated Serine/threonine protein kinase which can activate both Activating  
 protein kinase kinase kinase 8 the Ras/MAPK and JNK pathways. mutation  
   
      

   Negative regulator of Ras by inhibiting phosphorylation of   
 

SPRED1 
SPRED1: Sprouty-related EVH1 Raf. Also, SPRED1 binds to the RasGAP, NF1, inducing 

Loss of function 
 

Sprouty Related protein domain containing 1 the membrane localization of NF1 which in turn inhibits  
   

   Ras   
      

 SPRY1 SPRY1/Sprouty1 Negative regulator of Ras/MAPK pathway signaling Loss of function  
      

  MYST4: Histone    
Acetyltransferase MYST4 Acetyltransferase (Monocytic Epigenetic modification of DNA by transferring an acetyl Loss of function  

  Leukemia-4) group from acetyl-CoA to histone proteins.   
      

Adaptor protein LZTR1 
LZTR1: Leucine-zipper-like  

Unknown 
 

transcriptional regulator 1 Unknown  
    
      

  
A2ML1: Alpha-2- 

Protease inhibitor that binds lipoprotein receptor-related   
Protease inhibitor A2ML1 protein 1, which is an upstream activator of the Unknown  

macroglobulin-like 1  
  Ras/MAPK pathway   
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Other GTPases: RIT1 
 

RIT1 is located on chromosome 1q22 and encodes RIT1 (RAS-like protein in tissues), which is a 

member of a novel branch of RAS-related GTPase proteins of the RAS family. RIT1 shares 

approximately 50% structural homology with RAS, but lacks a C-terminal lipidation site. Most of 

the RIT1 mutations are in the switch I or II regions and are predict to result in a constitutively active 

protein (Aoki et al., 2015) 

 
 
 
 
1.3.2 RasGAP : Neurofibromin, RASA1, RASA2 
 

Neurofibromin 
 

The NF1 gene is located on chromosome 17q11.2. NF1 is large with 60 exons covering 

approximately 350 Kb and encodes neurofibromin. NF1 is a GTPase-activating protein (GAP) that 

belong to a family of RAS regulatory proteins that stimulate RAS-GTPase activity. This results in a 

negative regulation of activated RAS. Neurofibromatosis type 1 is an autosomal dominant genetic 

syndrome caused by various types of loss-of-function mutations in the NF1 gene resulting in 

neurofibromin haploinsufficiency within the cell (Cawthon et al., 1990; Viskochil et al., 1990; 

Wallace et al., 1990). This reduces RAS-GTPase activity and, therefore, results in an overall 

increase in active GTP-bound RAS. 

 
RASA1 
 

RASA1, like NF1, encodes a RAS-GAP, specifically the p120-RAS-GTPase-activating protein 

(p120-RAS-GAP). The N-terminus contains a Src (sarcoma) homology region and the C-terminus 

contains a pleckstrin homology domain and the RAS-GTPase-activating domain. Like 

neurofibromin, RASA1 increases the intrinsic GTPase activity of RAS, behaving as a negative 

regulator of the RAS/MAPK signal transduction pathway. Heterozygous inactivating mutations in 
 
RASA1 was shown to cause the autosomal dominant CM-AVM (Eerola et al., 2003) 
 

RASA2 
 

RASA2 is located on chromosome 3q23 and encodes the RAS-GAP protein Ras P21 Protein 

Activator 2, RASA2, which is a negative regulator of the RAS/MAPK pathway. The three 

mutations associated with NS affect two different residues, Y326 and R511, located in the 

conserved RASA2 GAP domain, and are predicted to have a dominant negative effect on RAS. 
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1.3.3 RasGEF : SOS1, SOS2 
 

SOS1 
 

SOS1 is located on chromosome 2p22.1 and consists of 23 exons encoding son of sevenless 

homolog 1, SOS1. SOS1 is a RAS-specific guanine exchange factor (RAS-GEF). The majority of 
 
SOS1 mutations associated with NS affects residues that are responsible for stabilizing SOS1 in its 

autoinhibited conformation. Therefore, alteration of these residues disrupts interactions mediating 

autoinhibition, causing increased GDP/GTP exchange that, in turn, lead to hyperactivation of signal 

flow through RAS and the MAPK cascade. 

 
SOS2 
 

SOS2 is located on chromosome 14q21.3 and consists of 23 exons encoding the son of sevenless 

homolog 2, SOS2; SOS2 is a RAS-GEF and homologue to SOS1. The murine and human SOS1 

and SOS2 proteins have an overall 65% amino acid identity. The heterozygous autosomal dominant 
 
SOS2 mutations observed in NS are located in the Dbl homology (DH) domain, that is responsible 

for maintaining SOS2 in its auto-inhibited conformation (Cordeddu et al., 2015; Yamamoto et al., 
 
2015). Functional studies demonstrated that mutations cause higher levels of GTP-bound RAS and, 

therefore, increase signaling through the RAS/MAPK pathway, which is consistent with the 

mechanism associated with NS causative SOS1 mutations. 

 
 
 
 
1.3.4 Scaffolding : SHOC2 
 

SHOC2 is a homolog of suppressor of clear (SOC-2) in Caenorhabditis elegans, which encodes a 

protein whose primary structure consists almost entirely of leucine-rich repeats. SHOC2 functions 

as a scaffold protein linking RAS to RAF1, its downstream effector in the RAS/MAPK pathway. 

SHOC2 is ubiquitously expressed and serves as the regulatory subunit of protein phosphatase 1C 

(PP1C) (Rodriguez-Viciana et al., 2006). SHOC2 binds RAS-GTP and mediates PP1C translocation 

to the cell membrane. This enables PP1C dephosphorylation of residue S259 of RAF1, which is 

required for RAF1 translocation to the cell membrane and catalytic activity. A single germline 

mutation in SHOC2, which results in a p.S2G substitution, has been shown to underlie a rare subset 

of NS individuals with an atypical phenotype characterized by loose anagen hair and Attention-

Deficit/Hyperactivity (ADHD)-like disorder (Cordeddu et al., 2009). This unique p.S2G mutation 

causes the abnormal addition of a 14-carbon saturated fatty acid chain, myristate, to the N-terminal 

glycine of SHOC2, which results in the aberrant translocation of SHOC2 to the cell 
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membrane, prolonged PP1C dephosphorylation of  RAF1, and sustained MAPK pathway activation. 

In C. elegans, ectopic expression of SHOC2
S2G

 engendered protruding vulva, a neomorphic 

phenotype previously associated with aberrant signaling. 
 
 
 
 
1.3.5 Ubiquitin Ligase : CBL 
 

CBL is located on chromosome 11q23.3 and consists of 16 exons encoding the tumor suppressor 

casitas B-lineage lymphoma, CBL. CBL is an E3 ubiquitin ligase which is an enzyme that targets 

substrates for degradation by the proteasome. CBL mediates the association of ubiquitin with 

activated RTKs, which is necessary for receptor internalization and degradation and, therefore, acts 

as a negative regulator of RAS/MAPK signaling (Dikic et al., 2007). Missense mutations ofCBL 

associated with a NS-like phenotype characterized by susceptibility to myeloid malignancies alter 

the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase 

binding domain and behave as dominant negative proteins. Mutations in CBL reduce the turnover 

of activated RTK increasing MAPK activation. 

 
 
 
 
1.3.6 Phosphatase : PTPN11 
 

PTPN11, the first-discovered and major gene underlying NS (Tartaglia et al., 2001), encodes SHP2, 

a non-receptor protein tyrosine phosphatase (PTP) composed of two N-terminal Src Homology 2 

(SH2) domains and a catalytic PTP domain. The N-SH2 domain acts as an allosteric switch. 

Basally, the catalytic function of the protein is auto-inhibited through a blocking interaction of the 

N-SH2 domain and the catalytic PTP domain (Hof et al., 1998). Following binding of the N-SH2 

domain with SHP2’s signaling partners containing phosphorylated tyrosines, the phosphatase 

switches towards an open, catalitycally active conformation. Most of the disease-causing mutations 

cluster residues involved in the interface between the N-SH2 and PTP domain, altering the stability 

of the catalytically inactive state (Keilhack et al., 2005; Tartaglia et al., 2006). 
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1.3.7 Kinase : BRAF, CRAF/RAF1, MEK1, MEK2 
 

BRAF 
 

BRAF is located on chromosome 7q34, contains 18 exons and spans approximately 190 Kb. BRAF 

encode v-Raf murine sarcoma viral oncogene homolog B (BRAF) which is a serine/threonine 

protein kinase and is one of the many direct downstream effectors of RAS. Heterozygous mutations 

in BRAF cause CFC with the most common mutations occurring in the cysteine-rich domain in 

exon 6 and in the protein kinase domain. Germline mutations do not overlap somatic lesions found 

in melanoma. In vitro functional analyses of BRAF demonstrated that most of them have increased 

kinase activity (Niihori et al., 2006; Rodriguez-Viciana et al., 2006). 

 
CRAF/RAF1 
 

CRAF, like BRAF, is a downstream effector of RAS and is a member of the Raf family of 

serine/threonine protein kinases. RAF1 is the gene that encodes the v-raf-1 murine leukemia viral 

oncogene homolog 1 (CRAF/RAF1) and is located on chromosome 3p25.2. Like BRAF, CRAF 

also has three conserved regions and can phosphorylate to activate the dual specificity protein 

kinases MEK1 and MEK2, which, in turn, phosphorylate to activate the serine/threonine specific 

protein kinases, ERK1 and ERK2. Mutations in this gene are associated with NS and, rarely, NSML 

(Pandit et al., 2007; Razzaque et al., 2007). The majority of RAF1 mutations in NS cluster in the 

Conserved Region 2 flanking p.S259 and the Conserved Region 3, surrounding the activation 

segment. These mutations have a gain-of-function since the phopshorylation of residues p.S259 and 

p.S621 are responsible for regulation of CRAF. 

 
MEK1 and MEK2 
 

The MAP2K1 gene is located on chromosome 15p22.31 and spans approximately over 11 exons. 

The MAP2K1 gene encodes the mitogen-activated protein kinase kinase 1 (MEK1) which is a 

threonine/tyrosine kinase and is a downstream effector of BRAF. MEK1 activates both ERK1 and 

ERK2 by phosphorylation. Missense mutations in MEK1 cause CFC (Rodriguez-Viciana et al., 
 
2006). The majority of them are missense mutations affecting residues located in exons 2 and 3. 

Functional studies of CFC mutant proteins have shown that they are more active than wild-type 

MEK1 in stimulating ERK phosphorylation (Rodriguez-Viciana et al., 2006). 

 
The MAP2K2 gene is located on chromosome 19p13.3, spans approximately 34 Kb and contains 11 

exons. The MAP2K2 gene encodes the mitogen-activated protein kinase kinase 2 (MEK2). MEK2 is 

a threonine/tyrosine kinase that, like MEK1, has the ability to phosphorylate and activate both 
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ERK1 and ERK2. Like MEK1, MEK2 mutants are hyperactive proteins increasing signaling 

through the MAPK cascade (Rodriguez-Viciana et al., 2006; Anastasaki et al., 2009). 

 
Overall, heterozygous missense mutations in MAP2K1 and MAP2K2 are present in approximately 

25% of CFC individuals in which a gene mutation has been identified. 

 
 
 
 
1.3.8 Sprouty related protein : SPRED1 
 

SPRED1 is located on chromosome 15q14 and encodes sprout-related EVH1 domain containing 1, 

SPRED1. SPRED1 functions as a negative regulator of RAS by inhibiting phosphorylation of RAF 

(Wakioka et al., 2001). Heterozygous inactivating mutations in SPRED1 cause Legius syndrome 

which is an autosomal dominant RASopathy that shares many phenotypic features with NF1 

(Brems et al., 2007). The vast majority of SPRED1 mutations associated with Legius syndrome 

cause truncation of the protein, a loss of SPRED1 function and dysregulated RAS/MAPK pathway 

signaling. 

 
 
 
 
1.3.9 Adaptor protein : LZTR1 
 

LZTR1 is located on chromosome 22q11.21 and has 21 exons. The encoded protein is leucine-

zipper-like transcriptional regulator 1 (LZTR1) which belongs to a functionally diverse family of 

proteins containing BTB-kelch domains that are thought to localize to the cytoplasmic surface of 

the Golgi membrane (Nacak et al., 2006). Heterozygous missense mutations have been identified in 

individuals with a clinical diagnosis of NS (Chen et al., 2014; Yamamoto et al., 2015). The 

mutations are in the highly conserved kelch domain and are predicted to disrupt protein function. 

Interestingly, the link between this protein and the RAS/MAPK cascade has not been elucidated yet. 

Based on this consideration, the possibility that LZTR1 mutations might be associated with a 

phenocopy of NS cannot be ruled out. 
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1.4 Use of the nematode Caenorhabditis elegans as an animal model for human diseases 
 

Characterization of the nature of RAS/MAPK signal dysregulation is essential to understanding the 

molecular mechanisms underlying RASopathies. The use of animal model is useful to study and 

characterize how individual gene mutations can affect the protein properties and alter intracellular 

signaling. 

 
1.4.1 Caenorhabditis elegans 
 

In 1963, Sydney Brenner observed that the success of molecular biology was due to the existence of 

model systems, defined as extremely simple organisms, such as bacterial phage that can be handled 

in large numbers. With the awareness of how important model systems are in biological research, 

he introduced Caenorhabditis elegans (C. elegans) as a model organism for pursuing research in 

developmental biology and neurology. 

 
Ever since its introduction by Brenner, C.elegans has been widely used in research laboratories 

(Wood, 1988). Due to its value as a research tool, a sophisticated knowledge infrastructure has been 

developed, with freely disseminated research methods and protocols. 

 
Caenorhabditis elegans (Caeno, recent; habditis, rod; elegans, nice), is a free-living, non-parasitic 

soil nematode. It is small (about 1 mm in length), transparent for ease manipulation and 

observation, feeds bacteria, such as E. coli, and can be easily and cheaply housed and cultivated in 

large numbers (10,000 worms/petri dish) in the laboratory. C. elegans has five pairs of autosomes 

and one pair of sex chromosome. There are two sexes (Figure 5) determined by the number of X 

chromosomes: hermaphrodites have two X chromosomes and males have just one X chromosome. 

 
 

Figure 5. A) A C. elegans male with 
description of tail copulatory apparatus. B) 
A C. elegans hermaphrodite. 
Modified from WormAtlas 
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In wild populations living in the soil, most C. elegans are hermaphrodites (XX), with males (XO) 

being just 0.05% of the total population on average. Hermaphrodites produce both eggs and sperm 

and, as a result, can self-fertilize. Self-fertilization in a hermaphrodites results in 99.95% 

hermaphrodite offspring. Males are produced only when an offspring inherits only one X 

chromosome, due to a mistake during meiosis, and their role is to guarantee the genetic variability. 

Males cannot produce offspring by themselves, but they may mate with hermaphrodites to produce 

offspring. When hermaphrodites mate with males, 50% of the progeny will be males and 50% will 

be hermaphrodites. In the laboratory, self-fertilization of hermaphrodites or crossing with males can 

be manipulated to produce progeny with desired genotypes that are especially useful for genetic 

study. In addition, C. elegans is extremely fecund: a hermaphrodite can produce about 300 to 350 

offspring under self-fertilization and even more if it mates with males. 

 
Under laboratory conditions, the average life span of the individuals is ~ 2-3 weeks, depending on 

the temperature, while the development time is 3 to 4 days. The short life cycle of C. elegans 

consists of four larval stages (L1, L2, L3 and L4) (Figure 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Life cycle of C.elegans. Modified from WormBook. 
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First, regardless of whether the sperm that fertilizes the oocyte comes from the spermatheca of the 

hermaphrodite or from mating with a male, the embryo begins development inside the 

hermaphrodite. Once the embryo has approximately 28–30 cells, it is typically laid into the 

environment through the vulval opening. Embryogenesis is then completed outside the 

hermaphrodite during an approximately 13-hour period. Just prior hatching, the egg contains a fully 

formed larva of 558 cells that can be seen tumbling inside the eggshell in a 3-fold pretzel 

configuration. At hatching, this L1 larva will arrest in development if there is no food available. In 

the presence of food, the larva proceeds through four stages that are punctuated by intervening 

molts when the animal sheds its cuticle to accommodate increasing body growth. During the larval 

period, a number of blast cells divide and the germline and sexually dimorphic features such as the 

hermaphrodite vulva and male tail develop so that the animal will be able to reproduce when it 

reaches young adulthood. An alternative pathway in the life cycle is taken when the animal 

encounters poor conditions such as a limited food supply at the L1/L2 larval molt. In this scenario 

rather than developing into an L3 larva, the animal enters into dauer or diapause pathway. This 

stage is an adaptation to survive at extreme conditions (mainly lack of food). Dauer larval 

development is induced by crowding, temperature and genetics (there are many loci that control 

dauer development, and there is variation between wild strains in the propensity for dauer 

development). Dauer larvae are highly resistant to stress and will reenter the normal life cycle at the 

L4 stage when conditions improve such as when food becomes available. The genes that control the 

decision to enter the dauer pathway are interesting because they are homologs of the vertebrate 

insulin-signaling pathway and many of them play an independent role in the longevity of C. 

elegans. 
 
C.elegans was the first multicellular eukaryotic organism to have its genome sequenced (C. elegans 
 
Sequencing Consortium, 1998). As sequence information from additional Caenorhabditis species as 

well as more distantly-related nematodes has become available in the past decade, the information 

from C. elegans has provided the basis for rich comparative genomics studies. The entire C. elegans 

genome is 100 Mb (C. elegans Sequencing Consortium, 1998) and has 20,444 protein-coding genes 

(WormBase release WS245, Oct. 2014). Both C. elegans sexes contain five autosomal 

chromosomes named linkage group (LG) I, II, III, IV, and V and the X chromosome. Individual 

genes of C. elegans are arranged in conventional eukaryotic fashion with 5’ untranslated regions, 

open reading frames (ORFs) containing exons and introns, and 3’ untranslated regions. Compared 

to vertebrate genes, C. elegans genes are relatively small with the average gene size of 3 kb due 

primarily to the presence of very small introns; C. elegans genes also have many normal-sized 

introns. The chromosomes do not contain traditional centromeres; during mitosis the microtubule 
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spindle attaches to more than one position along the chromosome (these attachments are said to be 

holocentric or polycentric). In fact, a specific sequence does not seem to be required for attachment 

since extrachromosomal DNA-containing transgenes can be inherited throughout many cell 

divisions. Despite their simple anatomy, these animals show a large repertoire of behaviors included 

locomotion, feeding, defecation and egg laying, besides more complex abilities such as 

thermosensitivity, attraction or repulsion to several substances (chemotaxis), the response to 

mechanical stimulation, the ability to perceive light despite the absence of the eyes, and social 

behavior (Rankin, 2002; De Bono, 2003). 
 
The developmental fate of all somatic cells (959 in the adult hermaphrodite, 1,031 in the adult male) 

have been mapped out. These patterns of cell lineage are largely invariant between individuals, in 

contrast to what occurs in mammals (Figure 7). C. elegans is one of the simplest organisms with a 

nervous system. The hermaphrodite has a total of 302 neurons. These can be divided into the 

pharyngeal nervous system containing 20 neurons and the somatic nervous system containing 282 

neurons; the somatic nervous system contains 6,393 chemical synapses, 890 gap junctions, and 

1,410 neuromuscular junctions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. C.elegans cell lineage. Out of one zygote, 1,090 cells are created, and they differentiate into 
various cells.During this process, 131 cells die according to the developmental program.  
Modified from WormBook 
 
 
The animals can be maintained in culture in the lab where they grow at 20°C on plates or liquid 

medium using Escherichia coli as a food source; mutant animals can be obtained through chemical 

mutagenesis, radiation exposure (Anderson, 1995; Jorgensen and Mango, 2002) or RNA 
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interference (RNAi). The sexual dimorphism and the production of a broad progeny (each 

hermaphrodite lays about 300 eggs) allow to easily perform genetic crosses. All these features, 

along with easy manipulation and the possibility to hibernate the larvae at -80 °C or in liquid 

nitrogen, make this animal an ideal model organism in genetic studies, notoriously difficult in more 

complex organisms such as vertebrates. 
 
Historically, the first researches on C. elegans were conducted by Sydney Brenner since 1965. For 

the discoveries on the spatial and temporal development of the organism, and apoptosis, the same 

Brenner, Robert Horvitz and John Sulston received in 2002 the Nobel prize for medicine. In 2006, 

Andrew Fire and Craig Mello received the same recognition for the discovery of RNA-interference, 

and a few years later the worm received its third Nobel prize thanks to Chalfie’s research on the 

first use of GFP in vivo. 

 
1.4.2 Modeling human diseases in Caenorhabditis elegans 

 

At least 50% of worm genes have human homologs, and C. elegans orthologs exist for ~70% of 

known human disease related genes (Schwarz, 2005) (partially summarized in Table 2). The genetic 

overlap between C. elegans and Homo sapiens, although not as significant as the overlap between 

humans and more complex model organisms, enables researchers to use this simple model system 

to study the functions and interactions of genes contributing to basic cellular pathways relevant to 

human disease. 
 

Table 2 . Human disease-related genes conserved in C. elegans 
 

Disorder Human gene C. elegansgene 
  

INBORN ERRORS OF METABOLISM/SIMPLE  
MENDELIAN DISORDERS   

Aarskog-Scott syndrome FGD1 (guanine nucleotide exchange factor) exc-5 

Achondroplasia FGFR3 (FGF receptor tyrosine kinase) egl-15 

Alzheimer’s disease AD3 and 4 (presenilins) sel-12 

 APP (amyloid precursor protein) apl-1 

Amyotrophic lateral sclerosis SOD1 (super oxide dismutase) sod-4 

Aniridia PAX6 (paired homeobox domain) vab-3 

Ataxia telangiectasia AT (PI-3 kinase-like domain) atl-1 

Barth syndrome TAZ (phosphate acyl transferase) acl-2 

Beckwith-Weidemann syndrome GFI1/2 (C2H2 zinc-finger protein) pag-3 

Charcot-Marie-Tooth disease, type 4B2 SBF1 (SET-binding factor) mtm-5 

Cystic fibrosis CFTR (ABC transporter) mrp-2 

Diabetes mellitus IRF4 (insulin) Y53F4B.10 

Glucose-6-phosphate 1-dehydrogenase G6PD (glucose-6-phosphate dehydrogenase) B0035.5 

deficiency   
Hermansky-Pudlak syndrome AP-3 (adaptin) apm-3  
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Huntington’s disease HD (huntingtin) F21G4.6 

Hypogonadotropic hypogonadism GNRHR (gonadotropin releasing hormone receptor) gnrr-1 

Lissencephaly/Miller-Diekersundrome LIS1 (platelet activating factor acetylhydrolase) lis-1 

Marfan syndrome FBN1 (fibrillin) fbn-1 

Menkes syndrome ATP7A (Cu2+ transporting ATPase) cua-1 

McArdle disease PYGM (muscle glycogen phosphorylase) T22F3.3 

Muscular dystrophy, Duchenne/Becker DMD (dystrophin) dys-1 

Muscular dystrophy, Fukuyama FCMD (fukutin) T07D3.4 

Muscular dystrophy, limb-girdle, type 2D SGCA (sarcoglycan alpha) sgca-1 

Muscular dystrophy, limb-girdle, type 2E SGCB (sarcoglycan beta) sgcb-1 

Myotonic dystrophy CUGBP1 (RNA binding protein) etr-1 

Neimann-Pick disease type B (NPB) ASM (acid sphingomyelinase) asm-2 

Neimann-Pick disease type C1 (NPC1) NPC1 (patched membrane domain-containing permease) ncr-1 and -2 

Neimann-Pick disease type C2 (NPC2) NPC2 (cholesterol-binding protein) heh-1 

Pallister-Hall syndrome GLI3 (GLI-Kruppel family transcription factor) tra-1 

Parkinson’s disease PARK2 (parkin) pdr-1 

Phenylketonuria PAH (phenylalanine-4-hydroxylase) pah-1 

Polycystic kidney disease, type 1 PKD1 (polycystin-1) lov-1 

Polycystic kidney disease, type 2 PKD2 (polycystin-1) pkd-2 

Spastic paraplegia 4 SPAST (spastin, AAA ATPase) spas-1 

Spinal muscular atrophy SMN (survival motor neuron, an mRNA splicing protein smn-1 

Spinocerebellarataxia 1 SCA1 (ataxin-1) K04F10.1 

Spinocerebellarataxia 2 SCA2 (ataxin-2) atx-2 

Stargardt disease ABCA4 (ABC transporter) abt-4 

Waardenburg syndrome PAX3 (paired homeobox domain) vab-3 

Werner syndrome WRN (RecQ DNA helicase) wrn-1 

Wernicke-Korsakoff syndrome TKT (transketolase) D2007.2 

Wilson disease ATP7B (Cu2+ transporting ATPase) cua-1 

Zellweger syndrome 3/Refsum disease PXMP3 (peroxisomal membrane protein 3) prx-2 

CANCER   

Adenomatous polyposis coli APC (tumor suppressor in beta-catenin signaling pathway apr-1 

Cowden disease PTEN (tumor suppressor, phosphatase and tensin) daf-18 

Hereditary non-polyposis colon cancer qMLH1 (DNA mismatch repair) mlh-1 

 MSH2 (MutS DNA repair) msh-2 

Leukemia, juvenile myelomonocytic GRAF (GTPase regulator associated with focal adhesion T04C9.1 

 kinase)  
Li-Fraumenisyndrome TP53 (p53 tumorsuppressor) cep-1 

Multiple endocrine neoplasia, type 2a RET (receptor tyrosine kinase) egl-15 

Nevoid basal cell carcinoma syndrome PTCH (SSD patched membrane protein) ptc-1 

Neurofibromatosis, type 2 NF2 (talin family) nfm-1 

Pancreatic carcinoma PC4 (TGFβ signal transducer) sma-4 

Retinoblastoma RB1 (tumor suppressor) lin-35 
 
Modified from Silverman et al.,2010 
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Finding C.elegans orthologues of human disease genes can offer rapid and unforeseen insights into 

the functions of the human gene. For example, it may be possible to uncover genes which, when 

mutated, could either enhance or suppress a particular biochemical pathway and, as such, their gene 

products may represent novel candidate drug targets. Also, by screening for and analyzing mutants 

that either suppress or enhance the phenotypic effect of already characterized mutations, 

functionally interacting gene products can be identified. Both strategies can be deployed to identify 

the different components of a novel signaling pathway. For example, the tyrosine kinase receptor– 

RAS signaling pathway is involved in C.elegans vulval development. The corresponding human 

signaling cascade is involved in cell proliferation processes in general, and research in this area is 

proving to be of considerable interest in understanding the control of cell proliferation. 

 
 
 
 
1.4.3 RAS/LET-60 signaling and vulval development in C. elegans 
 

The RAS-MAPK pathway plays a central role during the metazoans development controlling 

various biological processes (Schlessinger, 2000) .The RAS proteins and many of RAS regulatory 

proteins are highly conserved during evolution. In C. elegans, let-60 is the ortholog of the human 

genes HRAS, KRAS and NRAS (Han and Sternberg, 1990), and the only known role of the protein 

encoded by this gene is to activate the MAPK cascade. LET-60 acts downstream at least two 

different tyrosine kinase receptors, LET-23 (corresponding to the human epidermal growth factor 

receptor, EGFR; Aroian et al., 1990) and EGL-15 (corresponding to the human fibroblasts growth 

factor receptor, FGFR; De Vore et al., 1995) (Figure 8). Following the binding of the respective 

ligands, these receptors dimerize and autophosphorylate at the C-terminal, by generating binding 

sites for adapter proteins such as SEM-5/GRB2 or SOC-1 (similar to GAB1). These proteins, in 

turn, recruit the GEF proteins such as SOS-1, which activate LET-60. It follows the cascade 

activation of LIN-45/RAF (Han et al., 1993), MEK-2/MEK (Churc et al., 1995; Kornfeld et al., 
 
1995; Wu et al., 1995) and MPK-1/ERK (Lackner et al., 1994; Wu and Han, 1994). The latter, 

when activated, modulates the activity of a large number of substrates (Figure 8). 
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Figure 8. In C. elegans RAS-MAPK signalling controls different processes. 
LET-23/EGFR and EGL-15/FGFR are activated by different ligands, and 
control different biological processes. A) The processes depending on LIN-
3/LET-23 include the vulva and the excretory duct formation through the 
regulation of nuclear proteins (LIN-1, SUR-2, LIN-25, EOR-1, EOR-2. B) 
The processes depending on EGL-17/FGF-EGL-15/FGFR refer the sexual 
myoblasts migration, but the target proteins of MPK-1 are unknown; C) 
other receptors control the cell progression in meiosis. The signal is 
mediated by SEM-5 protein adapter (GRB2) who recruits the GEF proteins 
that activate LET-60 and the MAPK cascade (Sundaram, 2013). 

 

Due to the crucial role played by LET-60 during nematode development, it is not surprising that 

many different defects can be generated by mutations in let-60 and other genes involved in this 

pathway. In particular, the excretory duct formation, necessary for osmoregulation, vulva formation 

and its connection with the uterus, spicule formation in male meiosis and progression in germline 

cells from pachytene stage are very important processes regulated by this pathway (Sundaram, 

2013). 
 
The development of the vulva is certainly the most intensively studied and better understood among 

the various mechanisms regulated by this pathway (Sternberg, 2005). In the adult animals the vulva 

is required for the eggs deposition and for mating. Vulval development occurs since the 

specification of six precursor cells called Vulval Precursors Cells (VPC), P3.p, P4.p, P5.p, P6.p, 

P7.p and P8.p, at the larval stage L1/L2 . The action of the hox genes, in particular lin-39, is 

required for the differentiation of the six VPC. In L3, these cells will face three different fates (fate 

1st, 2nd and 3rd) by forming a different cell progeny. The P5.p, P6.p and P7.p cells will form the 

vulval cells (fate 1° and fate 2°), while P3.p, P4 .p and P8.p cells will become epidermal cells (fate 

3°). These different cellular fates depend on the action of a single cell called Anchor cell (AC).  
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This cell activates MAPK pathway through the production of LET-23/EGFR receptor ligand LIN-

3/EGF. LIN-3 binds primarily to the LET-23 receptors on P6.p, the nearest cell to AC, and to a 

lesser extent to receptors on the of P5.p and P7.p surface. In normal conditions, the AC signal will 

not be able to reach the P3.p, P4.p and P8.p cells, that will fuse with the epidermal syncytium hyp7. 

The massive activation of the LET-23/LET-60/MPK-1 pathway in P6.p leads the cell to assume fate 

1°. Furthermore, this pathway inhibits the LIN-12/Notch receptor formation in P6.p, while it 

stimulates the production of the ligand of LIN-12 that are released from the same P6.p and bind to 

the surface receptors of P5.p and P7.p. In these cells the activation of the LIN-12 pathway causes 

the MAPK cascade and fate 1° inhibition, and the consequent assumption by P5.p and P7.p of fate 

2° (Figure 9). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. VPC different cell fates during vulval development. Yellow, 
fate 3°; red, fate 2°; blue, fate 1°. The green arr ows indicate the positive 
regulation by the Anchor cell mediated by the release of LIN-3/ EGF. The 
induction resulting from the Anchor cell (LIN-3; Green) is required in order 
to prevent the fate 3° determination. The lateral s ignalingoriginated from 
the VPC-induced P6.p (blue) promotes fate 2° in P5.p an d P7.p cells (LIN-
12/Notch signaling).  
Modified from Herman &Hedgecock, 1990; Horvitz & Sternberg, 1991. 

 
 

 

The L4 vulva consists of 22 cells. P6.p will divide symmetrically to generate 8 adult cells, 4 vulE 

cells e 4 VulF cells, while P5.p and P7.p cells will divide asymmetrically, each generating 2 VulA 

cells, 2 VulB cells, 2 VulC cells and 1 VulD cell. These different cellular types will have distinct 

functions and different patterns of gene expression. Finally, during L4 stage, the cells originated 

from P5.p, P6.p and P7.p will undergo a range of morphogenetic movements leading to the 

formation of a proper vulva in the adult. The RAC protein, encoded by ced-10 and mig-2 genes, 

seem to be important for the proper execution of this process (Kishore and Sundaram, 2002). VPC 

induction and morphogenetic defects cause different phenotypes (Sternberg; WormBook, 2005); in 

particular, reduced LET-23-LET-60 signaling leads to the absence of avulva (Vulvaless phenotype, 

Vul) with failure of egg-laying (Egl phenotype) and consequent accumulation of larvae inside the 

mother (Bag-of-worms phenotype) (Figure 10). In contrast, augmented signaling through this 
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cascade causes the formation of multiple ectopic pseudovulvae (Muv phenotype). Finally, migration 

defects of VPCs, as well a loss-of-function mutations in LIN-12,was shown to engender protruding 

vulva (Pvl phenotype). 

 
 

           
Figure 10.Different defects in the vulval development. A) Adult wild-type hermaphrodite; 
the white arrow indicates the vulva. B)Adult hermaphrodite presenting ectopic pseudovulvae 
(Multivulva phenotype, Muv). The white arrow indicates the normal vulva, the asterisks refer 
to pseudovulvae. C) Hermaphrodite without vulva (Vulvaless phenotype, Vul) in which the 
vulva absence causes eggs to hatching into the adult (phenotype Bag-of-worms, Bag). D) 
Hermaphrodite adult with protruding vulva (Pvl). Wormbook and personal observations. 

 
 
 

 

Many aspects of the RAS-MAPK pathway regulation in mammals have been elucidated using C. 

elegans as a model organism because, as previously mentioned, the core of the RAS pathway, and 

many of its regulators and effctors are highly conserved between C. elegans and vertebrates. 

Overall, C. elegans represents an excellent tool to study the effect of novel and previously identified 

mutations in RASopathy-causing genes on development and intracellular signaling (Tan and Kim, 

1999; Wang and Sternberg, 2001; Moghal and Sternberg, 2003; Sundaram, 2004). 
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1.5 Rho-family GTPases in C. elegans 
 

Rho-family GTPases in C. elegans and other systems have roles in cytoskeletal organization, cell 

polarity, cell migration and cell membrane protrusion. The C. elegans genome encodes seven 

members of the Rho family of GTPases, and effector binding regions are typically highly 

conserved, with some exceptions. Canonical members of the Rho-family GTPases include RHO 

(rho-1), RAC (ced-10), and CDC-42 (cdc-42). The rac-2 gene is nearly identical to ced-10, but it is 

unclear if rac-2 is a functional gene or a non-functional duplication of the ced-10 locus; mig-2 

encodes an Mtl (MIG-2-like) GTPase, a family found in invertebrates with similarity to both RAC 

and CDC-42. Functionally, MIG-2 is similar to mammalian RHOG (deBakker et al., 2004). RHO-1, 

CDC-42 and CED-10 were in one functional cluster, with CDC-42 and CED-10 being closer 

together, and MIG-2 and CRP-1 were in another, suggesting that CRP-1 and MIG-2 have similar 

biochemical properties. By similarity of sequence, MIG-2 was closer to CED-10 and CDC-42, 

followed by RHO-1 and CRP-1. 
 
RNAi-mediated knockdown of RHO-1 activity resulted in early embryonic arrest 

(http://www.wormbase.org/), and embryos that arrested later in development displayed severe 

defects in tissue morphogenesis. These phenotypes could be explained by defects in Rho-mediated 

actin cytoskeleton organization (e.g., actin forms the contractile ring during cytokinesis and is 

involved in cellular migration and morphogenesis) (Schonegg and Hyman, 2006). Furthermore, 

RHO-1 is involved in establishing and maintaining the position of the PAR complex proteins in 

early embryonic polarity (Schonegg and Hyman, 2006). RHO-1 also controls neuronal cell shape 

after the establishment of the normal axon and dendrite morphology of the neuron. 
 
CDC-42 is required for an assortment of developmental events involving the cytoskeleton, cell 

polarity, and protrusion. A conserved signaling module of CDC-42 with the polarity proteins PAR-

3/PAR-6/PKC-3 is iteratively used in multiple developmental events, and CDC-42 acts upstream of 

the Rac GTPases CED-10 and MIG-2 in protrusive events in a Rho GTPase hierarchy of signaling. 

cdc-42-directed RNAi caused defects in embryonic cytokinesis similar to rho-1(RNAi) (Kay and 

Hunter, 2001). cdc-42(RNAi) also perturbed the polarity of the single-celled zygote and resulted in 

defects in anterior-posterior axis formation and mitotic spindle orientation (Gotta et al., 2001; Kay 

and Hunter, 2001). A conserved CDC-42/PAR-3/PAR-6/PKC-3 module acts in multiple cellular 

events beyond embryonic polarization, including neuronal morphogenesis and cell migration during 

vulval development (Welchman et al., 2007). CDC-42 acts as a negative regulator of LIN-12/Notch 

function in VPC fate specification, and in this case is necessary and sufficient for 2° cell fate 

specification (Choi et al., 2010). 
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CED-10 and MIG-2 act redundantly in multiple aspects of vulval development and morphogenesis. 

mig-2 and ced-10 single mutant vulvae are largely wild-type, whereas mig-2; ced-10 double loss-of-

function mutants display defects in the orientation of asymmetric divisions of the 1° and 2° vulval 

cells (Figure 11), indicating that mig-2 and ced-10 might redundantly control spindle orientation 

(Kishore and Sundaram, 2002). mig-2; ced-10 doubles also display a failure in the migrations of 2° 

vulval cells toward the 1° vulval cells to form a functional vulva (Kishore and Sundaram, 2002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 . Vulval defects in ced-10 Rac and mig-2 mutants. Nomarski photomicrographs of L4 animals 
showing vulval cell nuclei and the vulval invagination. Anterior of the worm is to the left and ventral is 
down. (A) Wild-type; (B) ced-10(n1993lf);mig-2(mu28lf); (C–F) ced-10(n1993lf); mig-2(RNAi); (B) P7.p 
descendants have formed a separate invagination (arrow). (C) Vul animal in which P5.p adopted a hybrid 
fate. Arrow points to non vulval anterior daughter of P5.p. (D) Early L4 animal immediately following the 
last round of division; P6.ppp and P7.pap have divided longitudinally, resulting in adjacent daughter nuclei 
(arrows). (E) P5.p descendants have failed to migrate toward P6.p descendants, resulting in an extended 
invagination (arrow). (F) P7.p descendants have formed a separate invagination (arrow). 
Kishore and Sundaram, 2002 
 
 
 
 
1.6 Rho-family GTPases in mammals 
 

Rho GTPases are members of the Ras superfamily of monomeric 20-30 kDa GTP-binding proteins. 

Ten different mammalian Rho GTPases, some with multiple isoforms, have been identified to date: 

Rho (A, B, C isoforms), Rac (1, 2, 3 isoforms), Cdc42 (Cdc42Hs, G25K isoforms), Rnd1/Rho6, 

Rnd2/Rho7, Rnd/RhoE, RhoD, RhoG, TC10 and TTF (Ridley, 2000). Different members of the 

large Ras superfamily regulate a diverse array of cellular processes, from vesicle trafficking to 

signal transduction. They all have in common the ability to bind and hydrolyse GTP, creating a 
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switch between an active GTP-bound conformation and an inactive GDP-bound conformation 

(Figure 12). The structure of Rho GTPases is highly conserved and the presence of the Rho-specific 

insert domain distinguishes them from other small G proteins (Madaule and Axel, 1985; Jaffe and 

Hall 2005). All Rho GTPases contain the effector domain and some possess a CAAX box (C-

cysteine, A- aliphatic amino acid, X- any amino acid) on the C-terminal tail. The CAAX box is a 

potential substrate for geranyl- or farnesyltransferases (Foster et al., 1996; Liang et al., 2002) 

(Figure 13). These enzymes catalyze a lipidation of the CAAX box, which facilitates protein 

anchoring in the membrane. A hypervariable region is situated upstream of the CAAX box and in 

some Rho GTPases this contains a polybasic sequence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. The Rho GTPase cycle. Rho-like 
GTPases cycle between an active GTP-bound and an 
inactive GDP-bound form. This is regulated by 
guanine nucleotide exchange factors (GEFs) and 
GTPase-activating proteins (GAPs). Guanine 
nucleotide dissociation inhibitors (GDIs) inhibit 
nucleotide dissociation and control cycling of Rho 
GTPases between membrane and cytosol. Signals 
like growth factors, extracellular matrix (ECM) or 
lysophosphatidic acid (LPA) are able to activate 
Rho-like GTPases. Active GTPases interact with 
effector molecules to elicit various cellular 
responses. Additionally GEFs could work as 
scaffold proteins by either binding directly to Rac 
effectors or other scaffold proteins that bind to 
effectors. http://www.cruk.manchester.ac.uk 

 
 
 
 
 
 
 
 
 
 
Figure 13. A general schematic diagram of Rho 
GTPase domain architecture. The G domain in 
Rho GTPases is highly conserved and is 
responsible for binding to guanine nucleotides. The 
G domain contains a variety of amino acid motifs 
responsible for GTP and GDP binding and 
coordinating conformational changes. The P-loop 
(phosphate-binding loop), also known as the G1 
domain, is a conserved GXXXXGKS/T motif that 
is responsible for binding to the β,γ-phosphate of 
the guanine nucleotide. Rho GTPase specificity is 
imparted through the hypervariable domain at the 
carboxyl terminus, which contains several 
important sequences (and shows the highest level 
of variability between Rho proteins). The 
highlighted sequence shown is taken from RhoA as 
an example. The CAAX motif (red) at the C 
terminus undergoes a variety of post-translational 
lipid modifications that are crucial for membrane 
targeting. Some Rho GTPases also contain a C-
terminal polybasic region (orange) that 
immediately precedes the CAAX motif, containing 
several Lys and Arg residues, which provide a 
positively charged interface for membrane 
association. 
Hodge and Ridley, 2006 

 
 
 
 
 
Over the intervening years, many more activities of Rho GTPases have been demonstrated (Figure 
14).  
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Figure 14. Cellular effects of Rho GTPases. In addition to 
controlling the assembly of filamentous actin and the 
organization of the actin cytoskeleton, Rho GTPases have been 
shown to contribute to the regulation of gene transcription, cell 
cycle, microtubule dynamics, vesicle transport and numerous 
enzymatic activities such as phosphoinositide 3-kinase and 
NADPH oxidase in mammalian cells and glucan synthase in 
yeast. A special relationship appears to exist between Cdc42 and 
the establishment of polarity in all eukaryotic cells. Hall, 2005. 

 
 
 
The major role of Rho GTPases is to control the assembly and organization of the actin 

cytoskeleton (Hall, 1998) and, consequently, the cell migration and polarity. Directional cell 

migration is dependent on cell polarity which influences the formation of the leading and trailing 

cell edges. A typical polarized migrating cell exhibits cell protrusions, such as filopodia and 

lamellipodia at the front and large focal adhesion complex at the back (Mayor and Carmona-

Fontaine, 2010). Directional cell migration is achieved by the polarized formation of cell 

protrusions at the front and the contraction of stress fibres at the trailing edge. The typical Rho 

GTPases – RHOA, RAC1 and CDC42 – play a crucial role in controlling cell polarity. These three 

Rho GTPases regulate different aspects of cytoskeleton dynamics. CDC42 has been shown to be 

involved in controlling the actin cytoskeleton present in protrusions known as filopodia (Gupton 

and Gertler, 2007). RAC1 promotes the formation of lamellipodia – large, flattened and ruffling 

protrusions – by regulating actin polymerization (Jaffe and Hall, 2005). The three Rho isoforms – 

RhoA, RhoB and RhoC – can induce stress fibres form action (Wheeler and Ridley, 2004) (Figure 

15). In addition to their role in actin dynamics, the Rho GTPases also control polarized adhesion to 

the substratum during directional migration. Small focal complex structures are localized in the 

lamellipodia of most migrating cells, and are important for the attachment of the extending 

lamellipodium to the extracellular matrix (Lauffenburger and Horwitz, 1996). 
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Figure 15. Rho GTPases and cell protrusion control. 
Mayor and Carmona-Fontaine, 2010 

 
 
 
It is not surprising, therefore, that Rho GTPases have been found to play a role in a variety of 

cellular processes that are dependent on the actin cytoskeleton, such as cytokinesis (Mabuchi et al., 
 
1993; Drechsel et al.,1997; Prokopenko et al., 2000), phagocytosis (Cox D et al., 1997; Caron and 

Hall, 1998), cell migration (Allen et al., 1998; Nobes and Hall, 1999), morphogenesis (Settleman, 

1999) and axon guidance (Luo et al., 1997). Therefore, although Rho GTPases are best 

characterized for their effects on the actin cytoskeleton, there is now much interest in their ability to 

affect cell proliferation and gene transcription, and the contributions of all of these activities to 

malignant transformation is an important field of study. Although members of Rho GTPase family 

are relatively homologous in their structure, the selectivity in their binding of different effector 

proteins is significant; Rho GTPases can interact with a wide range of structurally different 

proteins; these include various scaffold proteins, serine/threonine kinases, tyrosine kinases, lipid 

kinases, lipases and oxidases (Jaffe and Hall, 2005). 

 
On the basis of the crucial role of these Rho GTPases regulating cell migration and polarity, we 

assume that dysregulation of their proper functions in these mechanisms it may underlie clinical 

features characteristic of RASopathies, such as cardiac defects, lymphedema and lymphocytes 

infiltration in non-hematopoietic tissues (JMML). 
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2. Aim of the thesis 
 
 
Noonan syndrome and other RASopathies present a high genetic heterogeneity. In recent years, the 

research conducted by our group and others allowed the identification of numerous disease genes, 

which are mutated in about 75% of affected individuals. Because of the absence of sufficiently large 

families for linkage analyses, gene hunting was performed by using a gene candidacy approach 

based on mutation scanning of candidate genes with a role in RAS-MAPK pathway. The crucial 

role of this cascade in the pathogenesis of NS and related phenotypes, and the genetic heterogeneity 

of the disease, suggest a continuous research of new disease genes within this signaling pathway. 

The recent discovery of mutations in RIT1 and LZTR1 underlying Noonan syndrome suggests that 

research should not be confined to genes that are part of the RAS-MAPK backbone, but should be 

extended to genes that encode for proteins contributing to the propagation of signal flow 

downstream/parallel to RAS. 
 
During my PhD studies, efforts have been directed to identify novel disease genes underlying 

orphan RASopathies and characterize the molecular mechanisms of pathogenesis, using C. elegans 

as an experimental tool. 
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3. Material and Methods 
 
 
3.1 In silico prediction of RASopathy candidate genes 
 
A web-based tool, Genes2FANs (http://actin.pharm.mssm.edu/ genes2FANs), using a large-scale 

protein-protein interaction network coupled to a panel of functional association networks (FANs) 

was utilized to build a subnetwork connecting proteins to the known RASopathy genes (i.e. 
 
PTPN11, SOS1, NF1, SPRED1, CBL, NRAS, KRAS, HRAS, RAF1, BRAF, SHOC2,MAP2K1and 
 
MAP2K2), as seed proteins. Gene Ontology (biological process tree), mammalian phenotype 

browser, and Connectivity Map (drug-associated gene expression signatures), ChEA and 

TRANSFAC (transcription factor networks) databases were selected to construct the functional 

subnetworks utilized for prioritization of candidates (Dannenfelser et al., 2012). 

 
 
3.2 Patients and mutation analysis 
 
Three cohorts of patients were considered in the RRAS study. A first group including 96 subjects 

with clinical features within the RASopathy spectrum and without mutation in previously identified 

RASopathy genes was screened for a selected panel of candidates. A second cohort including 408 

subjects with NS or a strictly related phenotype previously tested negative for mutations in a 

heterogeneous subset of RASopathy genes was scanned for RRAS mutations. In both cohorts, the 

clinical diagnosis was made on the basis of standardized clinical criteria assessed by experienced 

clinical geneticists and pediatricians. RRAS mutation analysis was also carried out on a cohort 

including 110 subjects with non-syndromic JMML that had prospectively been collected and 

genotyped (Perez et al., 2010). Mutation screening was performed on the entire RRAS coding 

sequence and flanking intronic stretches (NC_000019.10, 49635295.. 49640143, complement; 

NM_006270.3; NP_006261.1) on genomic DNA extracted from circulating leukocytes (cohorts I, II 

and III) or bone marrow aspirates (cohort III) by denaturing high-performance liquid 

chromatography (DHPLC) (3100 or 3500HT WAVE DNA fragment analysis system, 

Transgenomic) and/or direct bidirectional sequencing (ABI Prism 3130, 3730 and 3500 Genetic 

Analyzers). Primer pairs, PCR and DHPLC conditions are available upon request. dbSNP137 

(http://www.ncbi.nlm.nih.gov/projects/ SNP/snp_summary.cgi), HapMap (rel.27) 

(http://hapmap.ncbi. nlm.nih.gov/) and 1000 Genomes (http://www.1000genomes. org/) databases 

were used to annotate the identified sequence variants. SIFT (http://sift.jcvi.org/), PolyPhen-2 

(http://genetics. bwh.harvard.edu/pph2/) and MutationTaster (http://www.muta tiontaster.org/) were 

used to predict the functional impact of the identified variants. Paternity was confirmed by STR 

genotyping, using the PowerPlex 16 System (Promega). DNA from leukocytes, hair bulb cells, bone 

 
28 



marrow aspirates and skin fibroblasts was extracted using standard protocols. DNA specimens were 

collected under Institutional Review Board-approved protocols. Informed consent for DNA storage 

and genetic analyses was obtained from all subjects. 
 
Targeted enrichment and massively parallel sequencing were performed on genomic DNA extracted 

from circulating leukocytes and fibroblasts of patient 9802. Exome capture was carried out using 

the SureSelect Human All Exon V4+UTRs (Agilent), and sequencing with a HiSeq2000 instrument 

(Illumina). Image analysis and base calling were performed using the Real Time Analysis (RTA) 

pipeline v. 1.14 (Illumina). Paired-end reads alignment to the reference human genome (UCSC 

GRCh37/hg19) and variant calling were carried out using the CASAVA v. 1.8 pipeline (Illumina). 

Variant annotation,SNP filtering (dbSNP135, 1000 Genomes, HapMap and IntegraGen Exome 

databases) and patient-matched germline variant filtering were attained using an in-house pipeline 

by IntegraGen (Evry, France). 
 
CDC42 was analyzed by targeted resequencing performed on a large cohort of patients with clinical 

features within the RASopathy phenotypic spectrum. Clinical exome sequencing was conducted on 

single families with syndromic intellectual disabilities by our collaborators Dr. Marco Seri 

(University of Bologna), Dr. Raoul Hennekam (University of Amsterdam Medical Center) and 

Ghayda Mirzaa (University of Washington). Sanger sequencing was performed to validate genetic 

variants and perform segregation analyses. 

 
 
 
3.3 Structural analysis of RRAS and CDC42 mutants 
 
Structural analysis of RRAS and CDC42 mutants was performed by Prof. Lorenzo Stella 

(Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma 'Tor Vergata', Rome, Italy.) 

and Prof. Reza Ahmadian (Heinrich-Heine University, Düsseldorf, Germany), respectively. 
 

Briefly, starting coordinates for MD simulations were obtained from the RRAS 

crystallographic structure in complex with GDP and Mg
2+

 (PDB: 2FN4; RCSB Protein Data Bank, 

http://www. rcsb.org/pdb/home/home.do). The N-terminus and C-terminus of RRAS, absent in the 

crystal, were not considered in simulations. All MD simulations were performed with GROMACS 

4.5 package, by using the GROMOS96 43a1 force field parameters for the protein. Parameters for 

GDP were taken from the GROMACS website (http://www.gromacs.org). Simulations were 

performed as previously described (Bocchinfuso et al., 2007; Martinelli et al., 2008), except for 

some details. UCSF Chimera (http://www.cgl.ucsf.edu/chimera/) was used for molecular graphics 

and structures superposition, by using the MatchMaker option. 
 

Binding interfaces of p50GAP, intersectin and WASP, used as representatives for CDC42 

GAPs, GEFs and effectors, respectively,were mapped, using CDC42 in both its inactive and active 
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states. Structures with PDB codes 1CEE (CDC42-WASP), 1grn (CDC42-p50GAP) and 1ki1 

(CDC42- intersectin) were illustrated by using Pymol molecular viewer (DeLano, 2002). Residues 

in reciprocal vicinity up to 4Å were considered as part of the binding interface. Structures with PDB 

codes 1AN0 (inactive CDC42) and 2QRZ (active CDCD42) were used for indicating the molecular 

surfaces with color coded binding interface and mutated residues. 

 
 
3.4 Biochemical studies of RRAS and CDC42 mutants 
 
Biochemical analysis of RRAS and CDC42 mutants was performed by Prof. Reza Ahmadian 

(Heinrich-Heine University, Düsseldorf, Germany). Briefly, the generation of constructs, and 

preparation and purification of proteins were as previously described (Gremer et al., 2011). The 

intrinsic activities of the RAS proteins, their modulation by GEFs and GAPs and their interaction 

with different effector proteins were determined as described earlier (Hemsath and Ahmadian, 

2005; Jaiswal et al., 2012). Dissociation of mantGDP from RAS proteins was measured using a 

Perkin Elmer fluorimeter at 366 nm (excitation wavelength) and 450 nm (emission wavelength). 

GEF-accelerated mantGDP dissociation from RAS proteins (0.1 mM) was measured as mentioned 

earlier, in the presence of the catalytic domain of SOS1, Cdc25 (5 mM), using stopped-flow 

instrument. The intrinsic GTPase reaction was performed by mixing 70 mM nucleotide-free RAS 

proteins (HRAS, RRASWT, RRASV55M and RRASG39dup) with 50 mM GTP using HPLC assay as 

previously described (Eberth and Ahmadian, 2009). Samples were taken at different time points and 

analyzed by HPLC for their GDP and GTP contents to determine the relative GTP content 

[(GTP)/(GDP + GTP)]. For determination of GAP (neurofibromin, residues 1–333)-stimulated 

GTPase activity, GDP bound to HRAS and RRAS proteins was exchanged with excess mantGTP in 

the presence of alkaline phosphatase. Reactions measured the decrease in fluorescence owing to 

hydrolysis of mantGTP. Effector binding assays were performed using a Fluoromax 4 fluorimeter in 

polarization mode. 
 

pGEX vectors were used for bacterial expression of CDC42WT, CDC42R68Q and 

CDC42E171K, as well as the GTPase-binding domain (GBD) of WASP (aa 154-321), the catalytic 

domains of CDC42-intersectin (aa 1229-1580), and p50RHOGAP (aa 198-439), as previously 

described (Jaiswal et al., 2005, 2014; Hemsath et al., 2015). Proteins were isolated as glutathione S-

transferase (GST) fusion proteins in E. coli BL21 (DE3) cells purified after cleavage of the GST tag 

via gel filtration (Superdex 75 or 200, Pharmacia, Uppsala, Sweden) (Hemsath et al., 2005). 

Nucleotide-free and fluorescent nucleotide-bound CDC42 variants were prepared using alkaline 

phosphatase (Roche) and phosphodiesterase (Sigma Aldrich) at 4° C, as described (Hemsath and 

Ahmadian , 2005; Eberth and Ahmadian, 2009). Fluorescent nucleotides were methylanthraniloyl 
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(mant-) GDP and mantGppNHp (guanosine 5’- β,γ-imidotriphosphate), a non-hydrolysable GTP 

analog, and tetramethylrhodamine (tamra-) GTP (Eberth et al., 2005). All purified proteins were 

analyzed by SDS-PAGE and stored at -80°C. Kinetic m easurements of the CDC42-WASP(GBD) 

interaction, GEF-catalyzed nucleotide exchange and GAP-stimulated GTP hydrolysis were 

performed using a stopped-flow apparatus (Hi-Tech Scientific SF-61 with a mercury xenon light 

source and TgK Scientific Kinetic Studio software), as described (Hemsath et al., 2005; Jaiswal et 

al., 2013, 2014). 

 
 
3.5 Caenorhabditis elegans studies 
 
Culture and maintenance of animals were as previously described (Sulston and Hodgkin, 1988). 

The let-60(n1046) (let-60/RAS gain-of-function allele), let-23(sy1) (let-23/EGFR hypomorphic 

allele), soc-2 (ku167) (soc-2/SHOC 2 loss-of-function allele), ras-1 (gk237) (ras-1/RRAS loss-of-

function allele), ras-2 (ok682) (ras-2/MRAS loss-of-function allele), ced-10 (n1993) (ced-10/RAC1 

loss-of-function allele), mig-2 (mu28) (mig-2/RAC1 loss-of-function allele), cdc-42 (gk388) (cdc- 
 
42/CDC42 loss-of-function allele), rho-1 (ok2418) (rho-1/RHOA loss-of-function allele) strains 

were provided by the Caenorhabditis Genetics Center (University of Minnesota). The three-

nucleotide insertion, c.81_82insGGC (ras-1G27dup), corresponding to c.116_118dup in RRAS, was 

introduced in the wild-type cDNA (ras-1WT) (C. elegans ORF clone AAB03320, Thermo Scientific) 

by site-directed mutagenesis (QuikChange Site-Directed Mutagenesis Kit, Stratagene). ras-1 

cDNAs were subcloned into the pPD49.83 heat shock-inducible vector (a gift of A. Fire, Stanford 

University School of Medicine). In the same vector we subcloned the wild-type cdc-42 cDNA (C. 

elegans ORF clone R07G3.1, Thermo Scientific) and c.68A>G (p.Tyr23Cys), c.247T>C 

(p.Ser83Pro), c.476C>T (p.Ala159Val), c.511G>A (p.Glu171Lys) nucleotide substitutions, as well 

as the double c.202A>C/c.203G>A (p.Arg68Gln) change, were introduced by site directed 

mutagenesis. Germline transformation was performed as described (Mello et al., 1991). pJM371 

plasmid [pelt-2:: NLS::RFP] (a gift from J.D. McGhee, University of Calgary), which drives red 

fluorescent protein (RFP) expression in intestinal cell nuclei, and pJM371 plasmid [pelt-

2::NLS::GFP] (a gift from J.D. McGhee, University of Calgary), which drives green fluorescent 

protein (GFP) expression in intestinal cell nuclei, was used as co-injection marker (30 ng/ml). Two 

different doses of constructs were injected (30 and 100 ng/ml). 
 
Synchronized embryos were heat shocked (30 min at 30° C) to study the effects of transgene 

expression on embryonic and early larval development (embryonic lethality was measured as the 

percentage of unhatched eggs), while L1/L2 larvae were heat shocked (60 min at 30° C) to study the 

consequences on later larval development, movement and fertility. To analyze vulval induction 
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and morphogenesis, synchronized animals from at least three independent lines for each construct 

were grown at 20° C and heat-shocked (90 min at 33° C followed by 30 min at 30° C) in parallel at 

early L3 larval stage and scored for vulval induction from late L3 to mid L4 stages, as well as for 

the presence of a protruding vulva (Pvl phenotype), multiple ectopic pseudovulvae (Muv 

phenotype) and lack of a vulva (Vul phenotype) at the adult stage. All the animals were scored 

blindly at a Leica MZ10F dissecting microscope. Isogenic worms that had lost the transgene were 

cloned separately and used as controls. All the screened lines exhibited a variable prevalence of 

these phenotypes upon heath shock. Lines gbEx555a[hsp-16.41::ras-1WT;pelt-2::NLS::RFP], 

gbEx557a[hsp-16.41::ras-1G27dup;pelt-2::NLS::RFP], gbEx620c[hsp-16.41::cdc-42WT;pelt-

2::NLS::GFP], gbEx637a[hsp-16.41::cdc-42Y23C;pelt-2::NLS::GFP], gbEx622a[hsp-16.41::cdc-

42R68Q;pelt-2::NLS::GFP], gbEx634b[hsp-16.41::cdc-42S83P;pelt-2::NLS::GFP], gbEx635a[hsp-

16.41::cdc-42A159V;pelt-2::NLS::GFP] and gbEx623b[hsp-16.41::cdc-42E171K;pelt-2::NLS::GFP] 

were scored quantitatively in triplicate experiments at the compound microscope and used for 

further analyses and crosses. 
 
Genetic crosses were performed according to standard methods (Sulston and Hodgkin, 1988). After 

each cross, the genotype of individual alleles was confirmed by direct sequencing of the appropriate 

genomic region. Isogenic animals that had lost the transgene (control groups) were cloned 

separately and used as controls in each experiment. Vulval induction was evaluated using a Nikon 

Eclipse 80i instrument equipped with Nomarski differential interference contrast optics. Live 

animals were mounted on 2% agarose pads containing 10 mM sodium azide as anesthetic. 
 
RNAi was performed by feeding as previously described (Kamath et al., 2001), with minor 

modifications. Briefly, plates containing NGM agar, 1 mM IPTG and 25 μg/ml carbenicillin were 

seeded with E. coli bacteria expressing double stranded RNA (Addgene) and grown overnight at 

37°C. To reduce both maternal and zygotic activities of the gene and overcome lethality, we carried 

out RNAi of mothers for short periods and looked for phenotypes in their progeny. Synchronized 

adults were placed on plates seeded with RNAi bacteria at 20°C for 0, 2, 4 or 8 hours. Longer 

incubations result in variable degree of embryonic lethality. Adults were then transferred to fresh 

RNAi plates and allowed to lay eggs for 2 hours before removal. Progeny were incubated at 20°C 

until they reached the required stage for heat shock (early L3). Phenotypic analysis was performed 

at the adult stage. The RNAi clone was sequenced prior to use. As a control of the efficiency of the 

modified RNAi protocol, let-60 RNAi experiments were performed on animals carrying the let-60 

gain-of-function allele n1046 (p.Gly13Glu), and the prevalence of the Muv phenotype was scored at 

a dissecting microscope (Table 7). 
 
P-values were calculated using two-tailed Fisher's exact test. 
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3.6 Cellular studies 
 
Cellular studies was performed by Prof. Reza Ahmadian (Heinrich-Heine University, Düsseldorf, 

Germany), and Elisabetta Flex (Department of Hematology, Oncology and Molecular Medicine, 

Istituto Superiore di Sanità, Rome, Italy) and Simona Coppola (Italian National Centre for Rare 

Diseases, Istituto Superiore di Sanità, Rome, Italy ) of our research group. 
 

For cell-based assays in RRAS study, COS-7 cells were transiently transfected with FLAG-

tagged RRASWT,RRASV55M or RRASG39dup by the DEAE-dextran method. Cleared cell lysates were 

incubated with GSH-beads loaded with GST-RAF1-RBD. GTP-bound proteins and total 

recombinant proteins were analyzed by immunoblotting with anti-FLAG antibody. Antibodies 

against MEK1/2, ERK1/2, AKT, phospho-MEK1/2 (Ser217/221), phospho-ERK1/2 

(Thr202/Tyr204) and phospho-AKT (Thr308) were purchased from Cell Signaling Technology. 
 

In CDC42 study, the wild-type human CDC42 variant 1 cloned into a pcDNA3-FLAG was 

generated by PCR and cloned via BamHI and EcoRI restriction sites. Mutant constructs carrying the 

Y23C, R68Q, S83P, A159V and E171K were generated by site-directed mutagenesis using the 

QuikChange XL kit (Agilent Technologies) in accordance with the manufacturer's protocol. All 

generated constructs were checked by direct sequencing. 3T3 murine cell line was obtained from 

American Type Culture Collection (ATCC). FLAG-tagged CDC42 mutants, wild-type protein or 

the empty vector (pcDNA3-FLAG, 2 µg/35mm dish) was transfected using Fugene 6 (Roche, Basel, 

Switzerland). Twenty-four hours after transfection, cells were assayed for cell growth or processed 

for wound healing assays. Transfection efficiency was verified by western blot analysis of the 

protein lysate as previously described (Magini et al., 2014). 
 
Motility of 3T3 cells on fibronectin-coated wells (10ug/ml; SIGMA, St Louis, MO) was evaluated 

by wound-healing assays. Monolayers of 3T3 cells transfected for 24 hours with the indicated 

plasmids were scratched with a 200-µl micropipette tip and incubated in the presence of thymidine 

(10 mM; Sigma) to inhibit cell proliferation. Images were acquired at different time points using a 

Nikon Eclipse TS100 microscope, a Nikon Plan Fluor 10×0.13 objective and a Nikon Coolpix 990 

digital camera (Nikon, UK). Cells that had migrated in the wounded area were counted in four 

fields per well and the fold increase of migratory cells compared to the WT counterpart was 

evaluated 4 hours after scratch. 
 
Proliferation and viability of transiently transfected 3T3 cells were quantified by manual counting 

using a Neubauer hemocytometer. Cell viability was detected by the exclusion of the Trypan Blue 

dye (5 g/ml in PBS; Sigma). Cells were counted at different time points using a LeitzOrtholux II 

microscope, a Leitz 10×0.13 objective (Leitz, Germa ny). 
 
P-values were calculated using student's t Test. 
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4. Results 
 
4.1 Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and 
contribute to leukaemogenesis (Flex et al., 2014) 
 
4.1.1 Identification of candidate disease genes and RRAS mutation analysis 
 

While the core of the machinery implicated in RAS signaling has been characterized widely, signal 

propagation through this network is likely to include a larger number of proteins playing a 

modulatory or structural role (McKay and Morrison, 2007), whose aberrant or defective function is 

expected to perturb development and contribute to oncogenesis. Based on this supposition, we used 

a protein interaction/functional association network analysis to select a panel of genes encoding 

proteins functionally linked to the RAS signaling network as candidates for NS or a related 

RASopathy (Dannenfelser et al., 2012) (Figure 16). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Mammalian protein interaction/functional association network analysis 
constructed by using proteins known to be mutated in RASopathies as seed proteins. 
The analysis was performed by using Genes2FANs (Dannenfelser et al., 2012) 
(http://actin.pharm.mssm.edu/genes2FANs). Connections are based on Protein-
Protein Interaction (PPI) and Connectivity Map (CMAP) networks, Mammalian 
Phenotype (MP) Browser, and Gene Ontology (GO), ChIP Enrichment Analysis 
(ChEA) and TRANSFAC databases. Connections involving RRAS are highlighted. 
Purple lines indicate protein-protein interactions; magenta lines indicate GO-
biological process links. RASopathy genes are in blue. 
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Candidate gene selection was based on the use of the previously identified RASopathy genes as 

‘seed’ proteins ( i.e., proteins used to build the interaction/functional networks), and considering a 

panel of databases to construct functional subnetworks (Figure 16). Sequence scanning of the best 

candidates in a RASopathy cohort including 96 unrelated subjects negative for mutations in known 

disease-genes allowed the identification of a functionally relevant RRAS change (c.163G>A, 

p.Val55Met) (Figure 17) in an adult subject with clinical features suggestive of NS but lacking 

sufficient characteristics to allow a definitive diagnosis (Table 3). 

 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

B 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Germline and somatic disease-associated RRAS mutations. (A) 
Electropherograms showing the de novo, germline origin of the c.116_118dup 
change (p.Gly39dup) in sporadic case 9802 (RASopathy with AML), and the 
somatic origin of the same in-frame duplication and the c.260A>T missense 
substitution (p.Gln87Leu) in subjects 7615 and 14385 (non-syndromic JMML).  
(B) Electropherograms of the germline c.163G>A missense substitution 
(p.Val55Met) in subject NS1166. 
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Parental DNA was not available for segregation analysis. The mutation was not identified among 

>400 population-matched unaffected individuals, indicating that it did not represent a common 

polymorphic nucleotide substitution. 

 

 
Table 3. Clinical features of the subjects heterozygous for germline RRAS mutations. 
 

Patient # NS1166 9802 
   

Nucleotide change c.163G c.116_118dup 
Amino acid change p.Val55 p.Gly39dup 
Sporadic/familial unknow sporadic 
Origin of mutation - de novo 
Age at last evaluation (years) 51 16 
Sex female female 
Prenatal findings NA polyhydramnio 
Feeding difficulties NA + 
Growth failure NA + 
Short stature (<3

rd
centile) 1 + 

Facial features 
- 

triangular face, downslanting       triangular face, downslanting 
 

palpebral fissures, low-set ears, 
2 

 palpebral fissures, ptosis , low-set 

Low posterior hairline 
thick lips ears, thick lips 

+ + 
Congenital heart defect - pulmonic 
Hypertrophic cardiomyopathy - - 
Short/webbed neck - - 
Broad chest + + 
Pectus deformity - - 
Coagulation defects - - 
Postnatal lymphedema - - 
Ophthalmological problems - - 
Motor delay / muscular hypotonia - delayed acquisition of 

 
3 

                           walking 

Cognitive deficits - - 

Ectodermal anomalies - - 
Lentigines - - 
Nevi - - 
Café-au-lait spots - + 
Malignancy 

4 5 
+ + 

Other  Crowded teeth, pyloric stenosis, 
  glomerulonephritis, arthritis  

NA, not available. 
1
10th centile. 

2Congenital, surgically treated. 
3Borderline cognitive abilities. 
4Unspecified bone tumour (left leg) diagnosed during childhood. 
5AML suspected to be secondary to JMML, with onset at 13 years (Supplementary Table S3). The condition was 
not associated with any germline/somatic mutation affecting previously identified RASopathy genes. Several 
complications occurred during treatment (renal failure, pulmonar infection, vein-occlusive disease),  
without complete remission. Death occurred at age of 16 by recurrence of the disease after 2 years of palliative 
treatment. 

 
 
This change, rs368625677 (dbSNP 138), had been described in 1/13,006 alleles in the NHLBI 

Exome Sequencing Project (http://eversusgs.washington.edu/EVS/). Of note, similar frequencies 

have been reported in the same database for recurrent RASopathy-causing mutations (e.g., 
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c.922A>G in PTPN11 and c.1259G>A in CBL). Mutation analysis was extended to additional 408 

patients with NS or a clinically related phenotype tested negative for mutations in the major NS 

disease genes, allowing to identify one sporadic case heterozygous for a three nucleotide 

duplication (c.116_118dup, p.Gly39dup) (Figure 17). Parental DNA sequencing of the relevant 

exon demonstrated the de novo origin of the variant, and STR genotyping confirmed paternity. In 

this subject, the duplication was documented in DNA obtained from skin fibroblasts, excluding a 

somatic event restricted to haematopoietic cells. The subject had features reminiscent of NS (Figure 

18 and Table 3), with onset of AML suspected to represent a blast crisis of JMML. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. RASopathy causing and leukaemia associated RRAS mutations. (A) 
Facial features of the affected subject (9802) heterozygous for the de novo germline 
c.116_118dup. (B) RRAS exon-intron arrangement with coding exons as blue boxes. 
RRAS functional motifs include the GTP/GDP binding domain (G1 to G5, starting from 
the N-terminus) (red), switch I (light green), switch II (dark green) and hypervariable 
region (light brown) with the C-terminal CAAX motif (dark brown). The unique N-
terminal region is also shown (violet). Location of disease-associated mutations is 
reported. (C) Position of affected residues on the three-dimensional structure of RRAS 
in its GDP-bound, inactive state (PDB: 2FN4) (above) and that of non-hydrolysable 
GTP analogue (GppNHp)-bound, active HRAS (PDB: 5P21) (below). The red surface 

indicates 
39 40 13

and 
14 

in  HRAS),  whereas 
55 29

)  andGly  and  Val (Gly Val  , Val (Val 
87 61 

in blueand green,respectively.  GDP  is reported  as semi-Gln  (Gln )  are  shown
transparent yellow surface. 

 
 
 
 
In this patient, exome sequencing performed on leukaemic and non-leukaemic DNA failed to reveal 

any additional relevant germline/somatic change affecting genes known to be mutated in 

RASopathies and JMML, as well as genes directly linked to the RAS signaling network, further 
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supporting the causal role of the identified RRAS lesion. Based on this association, the occurrence of 
 

RRAS mutations was also explored in a panel of genomic DNAs obtained from bone marrow 

aspirates/circulating leukocytes of 110 subjects with JMML. Heterozygosity for the previously 

identified Gly39 duplication and the c.260A>T (p.Gln87Leu) change was observed in two patients 

with JMML rapidly progressing to AML (Table 4). Both lesions were absent in non-leukaemic DNA, 

indicating their somatic origin (Figure 17). 

 
Table 4. Haematological features associated with germline or somatically acquired RRAS mutations. 
Mutations characterize a subset of myeloid neoplasms with classical features of JMML (i.e., monocytosis, 
low blast counts, presence of circulating myeloid progenitors, and elevated basophil counts) combined with 
atypical features, including late onset and rapid progression to AML. 

 
 Patient 9802 7615 14385 
     
 

Diagnosis 
1 2 2 

 AML  JMML JMML   

 Gender F F F 

 Age at onset (years) 13 10 13 

 Splenomegaly yes yes no 

 Peripheral blood cell counts (x10
9
/L)    

 Platelets 663 47 180 

 White blood cells 11 7.4 14 

 Monocytes 1.3 1.5 4.6 

 Basophils 0.2 0.18 0.77 

 Myeloid precursors in peripheral blood (%) 14 15 10 

 Circulating undifferentiated myeloid blasts (%) 8 3.5 10 

 Bone marrow smear cytomorphology    

 Undifferentiated myeloid blasts (%) 38 12 18 

 Myelodysplasia + + + 

 In vitro growth of myeloid progenitors microclusters only microclusters only + 

 Haemoglobin (g/L) 86 104 120 

 Fetal Haemoglobin NA 5% - 

 
RRAS mutation 

c.116_118dup c.116_118dup c.260A>T 
 p.Gly39dup p.Gly39dup p.Gln87eu 
  (germline) (somatic) (somatic) 
   NRAS, c.82A>G NRAS,c.35GA 
 Concomitant RAS pathway mutations - p.Q61R p.G12D 
   (somatic) (somatic) 
    

 BCR-ABL transcript - - - 

 Karyotype (blasts)      46,XX,t(3;6)(q26;q26   45,XX -7  

      )[24] /46,XX[1]    
      

NA, not available. 
1
Secondary 

to JMML. 
2
Rapidly 

progressed to AML.  3The clonal architecture was investigated by sequencing the somatic RRAS and NRAS mutations in 62 individual colonies 
obtained by in vitro culture of myeloid precursors (30 CFU-GM and 32 CFU-M). All colonies exhibited both mutations. 
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These subjects also carried a somatic NRAS mutation, suggesting that the two hits might cooperate 

with this severe form of disease. Sequencing of isolated JMML myeloid colonies in patient 14385 

showed that NRAS and RRAS mutations coexisted in the same progenitors but failed to establish their 

sequence of appearance during leukaemogenesis, not allowing to discriminate whether the latter was 

involved in initiation or progression of disease. 

 
 
4.1.2 Structural analyses 
 
RRAS encodes a 23-kD membrane-bound monomeric GTPase with 55-60% amino acid identity to 

RAS proteins (Lowe et al., 1987). This highly conserved structure is flanked by a unique 26-amino 

acid region at the N-terminus (Figure 18B). Similarly to the other RAS family proteins, RRAS binds 

to GTP and GDP with high affinity and specificity and functions as a molecular switch by cycling 

between active, GTP-bound and inactive, GDP-bound states (Wennerberg et al., 2005). RRAS is 

activated by guanine nucleotide exchange factors (GEFs) in response to signals elicited by cell 

surface receptors. In the GTP-bound state, two functionally conserved regions, switch I and switch II 

(Figure 18B), undergo a conformational change enabling RRAS to bind to and activate effector 

proteins. This interaction is terminated by hydrolysis of GTP to GDP, which is promoted by GTPase-

activating proteins (GAPs) and results in switching towards the inactive conformation. Disease-

associated RRAS mutations affected residues highly conserved among orthologs and paralogs (Figure 

19) residing in the GTP-binding pocket (Figure 18C) and were predicted to be damaging with high 

confidence. 

 
 
 
 
 
 
 
 
 
 

 
Figure 19. Partial amino acid sequence alignment of human RRAS, KRAS, NRAS and HRAS 
proteins, together with representative RRAS orthologs showing conservation of the RRAS mutated 
residues. Blue arrows on top of the alignment mark amino acids affected by disease-associated RRAS 
mutations, while the red asterisks below the alignment indicate the positions of the cancer-associated 
mutation hot spots in RAS proteins. 

 

Among them, Gln87, homolog of Gln61 in RAS proteins, is directly involved in catalysis (Krengel et 

al., 1990; Saez et al., 1994).The p.Gln87Leu substitution had previously been reported as a rare 

somatic event in lung carcinoma, and mutations affecting Gln61 are among the most recurrent 

oncogenic lesions in RAS genes (COSMIC database, http://cancer.sanger.ac.uk/cosmic). Likewise, 

p.Gly39dup altered the G1 motif participating in GTP/GDP binding and GTPase activity (Figure 
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18B). Within this motif, Gly12 and Gly13 (Gly38 and Gly39 in RRAS) represent major mutation hot-

spots in human cancer (COSMIC database) and account for the majority of germline HRAS mutations 

causing Costello syndrome (Aoki et al., 2005). In contrast, no somatic/germline RAS mutation 

affecting Val29, homolog of Val55 in RRAS, had previously been reported. 
 
Molecular dynamics (MD) simulations were performed to predict in silico the effects of p.Val55Met 

on the structure and dynamics of RRAS (Figure 20). The mutation was introduced in the available 

crystallographic structure of RRAS in complex with GDP and Mg2+, and the system was simulated in 

water for 200 ns. For comparison, MD simulations were also performed using the wild-type protein, 

which maintained a stable structure along the whole simulation, as expected (Figure 20A, left panel). 

In contrast, a dramatic local structural transition extending up to the switch I region (residues 58-64), 

which mediates effector binding, was documented for the RRASV55M mutant, after ~80 ns (Figure 

20A, right panel). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 20. Molecular dynamics (MD) simulations. (A) Structural perturbations promoted by the 
p.Val55Met substitution as obtained from MD simulations of the RRAS/GDP complex. The wild-type (WT)  
protein is also shown for comparison. Top panels report the protein structures at the beginning of simulations, 
whereas the final structures (200 ns) are shown at the bottom. The final structure of RRASV55M is well  
representative of the last 120 ns of the trajectory. The protein surface of RRAS is shown with GDP (yellow). The 
mutated residues and those forming a cluster in the simulation of mutated RRAS are coloured as follows: 
Val

55
/Met

55
 (blue), Tyr

58
 (pink) and Ile

50
 (cyan). Residues 59-64, which, together with Tyr

58
, form the switch I 

region, are coloured in green. (B) Solvent accessible surface of GDP in the MD simulations of wild-type (red) and 
mutant (blue) RRAS/GDP complexes. (C) Conformation of the loop comprised between Val

55
/Met

55
 and Asp

59
 in 

wild-type (red) and mutant (blue) RRAS/GDP complexes obtained from MD simulations. GDP is reported as semi-
transparent yellow surface. Superimposed conformations of the corresponding loop (residues 29-33) in GDP-bound 
HRAS (violet) (PDB: 4Q21) and GDP-bound HRAS complexed with SOS1 (cyan) (PDB: 1BKD) are shown for 
comparison. The side chains of Tyr

58
 and the corresponding residue in HRAS, Tyr32, are displayed as sticks. 
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This conformational transition resulted in an increased solvent exposure of Met55, in agreement with 

the higher hydrophilicity of this residue compared with Val, and was accompanied by the formation 

of a stable cluster involving residues Ile50, Met55 and Tyr58 (Figure 20A) permitted by the unbranched 

and long side-chain of Met55.The major effect of this structural rearrangement was to increase 

exposure of GDP to the solvent (Figure 20B) and a loss of the H-bonds between residues at codons 

55 and 56, and GDP. We also observed that after the conformational rearrangement, the RRASV55M 

region implicated in GEF binding populated a structure similar to that assumed in RAS/GEF 

complexes (Figure 20C), suggesting a possible enhanced interaction of the disease-associated RRAS 

mutant with GEFs. Overall, these data supported an activating role of p.Val55Met through enhanced 

GDP release as a result of a decreased affinity for the nucleotide and/or enhanced interaction with a 

GEF. 
 
 
4.1.3 Biochemical and functional characterization of RRAS mutants 
 

To characterize the impact of p.Val55Met and p.Gly39dup on protein function, we analyzed the 

intrinsic and GEF-accelerated nucleotide exchange reaction of these mutants. Dissociation kinetics 

analysis demonstrated a dramatically increased intrinsic (RRASG39dup) and GEF-stimulated 

(RRASG39dup and RRASV55M) dissociation rate of mantGDP, indicating a facilitated nucleotide release 

in both mutants (Figure 21A). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21. In vitro biochemical characterization of the RRASG39dup and RRASV55M mutants. (A) Intrinsic 
mantGDP nucleotide dissociation measured in the presence of 20-fold excess of non-labelled GDP. 
RRASG39dup exhibited a 35-fold increased intrinsic dissociation of mantGDP. (B) Intrinsic GTP hydrolysis 
kinetics of RRASG39dup and RRASV55M proteins, documenting the impaired catalytic activity in the former. 
(C) Dissociation constants (Kd) for the interaction of HRASWT and RRAS proteins to the RBDs of RAF1, 
RALGDS, PLCE1, PIK3CA and RASSF5. Of note, RRASWT binds to RAF1, RALGDS, RASSF5 and PLCE1 
less efficiently than HRAS, whereas an increased binding affinity to PIK3CA is observed. 
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Assessment of RRASG39dup and RRASV55M GTPase activity documented a significantly reduced 

intrinsic and GAP-stimulated GTP hydrolysis in the former (Figure 21B). Finally, the interaction of 

RRAS proteins with various effectors was analyzed (Figure 21C) and an aberrant binding behavior of 

the two RRAS mutants was demonstrated, with RRASG39dup exhibiting an increased binding affinity 

towards PIK3CA, RAF1, PLCE1 and RASSF5, and RRASV55M to RALGDS. To gain further insights 

into the impact of disease-causing mutations on RRAS functional dysregulation and explore their 

effects on RAS signaling, the activation state of RRAS proteins and extent of signaling through the 

MAPK and PI3K/AKT cascades were evaluated using transient expression in COS-7 cells. 

Consistent with the above-mentioned findings, pull-down assays revealed a variably higher 

proportion of active, GTP-bound form for both mutants (Figure 22A). Moreover, similarly to what 

observed under cell-free conditions, RRASG39dup was resistant to GAP stimulation. Expression of 

both mutants promoted enhanced serum-dependent MEK, ERK and AKT phosphorylation (Figure 

22B), which was more evident in cells expressing the RRASG39dup mutant. 

 

Figure 22. RRASG39dup and 
RRASV55Msignalling activities in cells.(A) 
Determination of GTP-bound RRAS levels in 
COS-7 cells transiently expressing wild-type 
or mutant FLAG-tagged RRAS proteins. 
Assays were performed in the presence of 
serum (above), and in serum-free conditions 
(2GAP) or in the presence of the 
neurofibromin GAP domain (+GAP) (below). 
RRAS

G39dup
 was predominantly present in 

the active GTP-bound form and was resistant 
to GAP stimulation, whereas a  
slightly increased level of GTP-bound 
RRASV55M was observed in the presence of  
serum. Representative blots of three 
performed experiments are shown.  
(B) Determination of MEK, ERK and AKT 
phosphorylation levels (pMEK, pERK and 
pAKT) in transiently transfected COS-7 
 
in medium with serum (left) or basal medium (right). Expression of each RRAS mutant resulted in variably 
enhanced MEK, ERK and also partially AKT phosphorylation after stimulation. Total MEK, ERK and AKT 
in cell lysates are shown for equal protein expression and loading. Expression levels of exogenous, FLAG-
tagged RRAS in cell lysates are shown for each experiment. Representative blots of three performed 
experiments are shown. 

 

4.1.4 Caenorhabditis elegans studies 
 

To explore further the functional impact of the RASopathy causative RRAS mutants on RAS 

signaling in vivo, we used the nematode C. elegans as an experimental model. In C. elegans, the role 
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of ras-1, the RRAS ortholog (Lundquist, 2006), has not been characterized yet. On the contrary, as 

described in the introduction, proper signaling through let-60, the C. elegans ortholog of the human 
 
RAS genes, has been established to play a crucial role in vulval development (Stenberg, 2005). In 

particular, LET-60/RAS is known to mediate the priming signal (LIN-3/EGF) released by the anchor 

cell to induce the three nearby vulval precursor cells (VPCs), P5.p, P6.p and P7.p, to generate a 

normal vulva. Enhanced and decreased signaling through LET-60 and the MAPK cassette results in 

multiple ectopic pseudovulvae (multivulva phenotype) and a failure in VPC induction (vulvaless 

phenotype), respectively (Stenberg, 2005; Sundaram, 2016). Multiple transgenic lines were generated 

to conditionally express the wild-type ras-1 cDNA (ras-1WT) or the allele homologous to the disease-

associated three-nucleotide duplication (ras-1G27dup), which was identified to occur both as a germline 

and somatic event. Exogenous RAS-1 expression was induced by heat shock at early L3 larval stage 

to investigate the effects of the mutant protein on vulval development. Animals expressing ras-

1G27dup displayed abnormal vulval morphogenesis resulting in the formation of a protruding vulva 

(Pvl) (Figure 23A and B; Table 5), a phenotype associated with aberrant traffic through different 

signaling cascades (Eisenmann and Kim, 2000; Kishore and Sundaram, 2002).Of note, this 

phenotype had previously been reported in worms expressing the RASopathy causative SHOC2S2G 

mutant (Cordeddu et al., 2009). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 23. Consequences of ras-1G27dupexpression on C. elegans vulval development. (A) Heat-shock-driven 
expression of ras-1WT and ras-1G27dup at early L3 stage results in protruding vulva (Pvl), egg laying defective 
(Egl) and bag-of-worms (Bag) phenotypes. Isogenic animals that had lost the transgene (control group) and worms 
expressing the heat shock-inducible vector (empty vector) were subjected to heat shock and scored in parallel for 
comparison. The dose at which the transgene has been injected is reported at the bottom. Error bars indicate SD of 
three independent experiments. Asterisks indicate significant differences compared with ras-1WT at the 
corresponding dose of injection (∗P< 0.05; ∗∗P< 0.005; ∗∗∗P< 0.0005; Fisher’s Exact Test). (B) A proper vulva 
develops in heat-shocked control animals (left), whereas a protruding vulva is observed in heat-shocked ras-1G27dup 
young adults (middle) and adult worms (right). (C) Nomarski images of vulval precursor cells in late L3 (left), early 
L4 (middle) and mid-late L4 (right) stages from synchronized animals heat-shocked at early L3. 
In control animals (N= 48), only P6.p descendants invaginate (upper panel), whereas in 10 of 30 analysed ras-
1G27dup-expressing worms, P5.p and/or P7.p descendants also detach from the cuticle, generating asymmetric 
invaginations (lower panel). Black arrowhead spot into P6.p descendant invagination, whereas white 
arrowheads point to P5.p and P7.p descendant invagination. Anterior is to the left and dorsal is up, in all 
images. 
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Like those animals, ras-1G27dup worms showed decreased egg-laying efficiency (Egl phenotype), 

and accumulation of larvae inside the mother (Bag-of-worms phenotype). A significantly less 

penetrant phenotype was observed in animals expressing ras-1WT. These findings, together with the 

observation that animals lacking ras-1 do not exhibit any vulval defect (WormBase, 

http://www.wormbase.org/, and our personal assessment), supported the gain-of-function role of the 

mutation on RAS-1 function. At the late L3/early L4 larval stage, vulva morphogenesis normally 

begins with the descendants of VPC P6.p detaching from the cuticle and forming a symmetric 

invagination (Figure 23) (Stenberg, 2005). Animals in which the expression of ras-1WT had been 

induced at early L3 largely maintained this pattern (17/20). In contrast, in larvae expressing ras-

1G27dup, descendants of VPCs P5.p and/or P7.p more frequently detached from the cuticle, resulting 

in larger and more asymmetric invaginations (10/30). This morphogenesis defect was the earliest 

detectable effect of the ras-1G27dup allele on vulval development, similarly to that previously 

documented in transgenic lines expressing SHOC2S2G (Cordeddu et al., 2009). 
 

Table 5. C. elegans phenotypes resulting from expression of wild-type 

RAS-1 or the disease-associated RAS-1
G27dup

mutant. 
 

Transgene     
(dose of injection) N Pvl (%) Egl (%) Bag (%) 

     

none 175 1.1 0.6 0.6 

empty vector (30 ng/µl) 106 1.9 0.9 0.9 

ras-1
WT

 (30 ng/µl) 103 15.5 12.7 9.7 

ras-1
G27dup

 (30 ng/µl) 103 29.1
1 

28.2
2 

17.5 

ras-1
WT

 (100 ng/µl) 94 18.1 17.0 14.9 

ras-1
G27dup

 (100 ng/µl) 89 42.7
3 

41.6
3 

32.6
4 

 
Injections were carried out on N2 worms (wild-type background). 
Strains: ras-1

WTand ras-1
G27dup indicate hsp-16.41::ras-1

WTand hsp-16.41::ras-
1

G27dup, respectively; ras-1
G27dup

 results from the three-nucleotide insertion, 
c.82_83insGCG,  corresponding  to  the RASopathy  causative  c.116_118dup  in  
RRAS.  
The concentration at which the plasmid has been injected is reported in 
parenthesis.  
Worms were grown at 20 °C and heat-shocked at early L3 stage. Isogenic worms 
that had lost the transgene were cloned separately and used as controls.  
N indicates the number of animals scored.  
Pvl is the percent of adult worms with a protruding vulva.  
Egl is the percent of animals with an increased number of eggs retained in the 
uterus (N > 22). Bag is the percent of bag-of-worms animals counted up to 6 days 
post-fertilization. 
1-4Statistical significance of comparisons with worms expressing ras-1

WT at the 
corresponding dose of injection (1

P < 0.05; 2P < 0.005; 3P < 0.0005; 4P < 0.01). P 
values were calculated using 2-Tail Fisher’s Exact Test.  
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Genetic interaction between the RAS-1/RRAS mutant and LET-60/RAS was also investigated. 

While expression of the RAS-1
G27dup

 mutant was able to exacerbate the multivulva phenotype 

associated with a hyperactive let-60 allele (n1046), expression of wild-type RAS-1 failed to do so 

(Table 6). Similarly, a significant, although partial rescue of the VPC induction defect associated 

with a let-23/EGFR hypomorphic allele (sy1) was observed in animals expressing the activating 

RAS-1G27dup mutant, but not in worms expressing the wild-type counterpart (Table ). 

 
Table 6. Vulva phenotypes in C. elegans mutant strains expressing wild-type RAS-1 or the disease-
associated RAS-1G27dup mutant 
 
 Genotype Transgene N Muv (%) Vul (%) Pvl N P6.p 
         

 wild-type none 207 0 0 1.0 48 100 

 let-60(n1046) none 201 77.9 – 0.5 50 100 

 let-60(n1046) ras-1
wt 

244 76.4 – 2.8 43 100 

 let-60(n1046) ras-1G27dup 231 87.1
a 

– 3.0 50 100 
 let-23(sy1) none 194 – 87.8 3.6 178 13.4 

 let-23(sy1) ras-1
 wt 

169 – 84.3 4.1 156 14.0 

 let-23(sy1) ras-1G27dup 282 – 83.3 10.3 
b 

128 24.2
c 

 
Strains: let-60(n1046) is a gain-of-function allele of let-60 (ortholog of the human HRAS, KRAS and NRAS genes); let-
23(sy1) is a hypomorphic allele of let-23 (ortholog of the human EGFR gene). ras-1

WTand ras-1
G27dupindicate hsp-

16.41::ras-1
WT- and hsp-16.41::ras-1

G27dup-containing constructs injected at 100 ng/ml, respectively. After each cross, 
isogenic worms that had lost the transgene were cloned separately and used as controls.  
Animals were grown at 20°C and heat-shocked in para llel at early L3 stage. N indicates the number of animals scored. 
Multivulva (Muv), vulvaless (Vul) andprotruding vulva (Pvl) phenotypes are expressed as percentage of worms with 
ectopic pseudovulvae, animals lacking a vulva and adults with a protruding vulva, respectively. Induction of vulval cell 
fate is expressed as percentage of P6.p that has been induced to invaginate.  
In all comparisons, P-values were calculated using two-tailed Fisher’s exact 
test. aSignificantly different from let-60(n1046) (P< 0.02).  b
Significantly different from let-23(sy1) (P< 0.01) and let-23(sy1);ras-1

WT
(P< 0.02). 

c
Significantly different from let-23(sy1) (P= 0.02) and let-23(sy1);ras-1

WT
(P< 0.05). 

 

Overall, these experiments provided evidence of a positive modulatory role of the RAS-1/RRAS 

mutant on LET-60/RAS signaling. 

 
 
4.2 RASopathy-causing mutants dysregulate multiple pathways in C. elegans 
 

 

4.2.1 Functional equivalence between SHOC2 and RRAS mutants 
 
Because of the similar impact of the RASopathy-causing SHOC2S2G and RRASG39dup mutants on C. 

elegans vulval development (i.e., Pvl, Egl and Bag phenotypes) (Cordeddu et al., 2009; Flex et al., 

2014), epistatic studies were carried out to further analyze the functional link between these 

mutants. Genetic crosses set up between worms expressing SHOC2S2G and animals knockout for 
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ras-1/RRAS or ras-2/MRAS, the latter being a SHOC2 interactor mediating RAF activation in 

mammals (Rodriguez-Viciana e t al., 2006), demonstrated that SHOC2S2G-related Pvl is strongly 

reduced in a ras-1-/- genetic background and is completely suppressed in the absence of ras-2 

(Figure 24). In contrast, the prevalence of vulval defects caused by expression of RAS-1G27dup 

(homolog of RRASG39dup) did not change in worms knockout for sur-8/SHOC2 or ras-2. Overall, 

these data established that the RASopathy-causing SHOC2 and RRAS mutants belong to the same  

pathway. Within this signaling network, both RAS-1 and RAS-2 are downstream to constitutively  

active SHOC2, with the former being epistatic to the latter. 
 
 
 
 
 

Figure 24. Epistatic analyses showe d that SHOC2, MRAS and RRAS belong to the same pathway. 
 
 

 

 

Accordingly, animals expressing both the mutants showed a slightly higher prevalence of Pvl than 

worms expressing ras-1G27dup only (Figure 25A), confirming that they work within the same 

pathway (Figure 25B), and su pporting the evidence that Pvl engender ed by expression of 

SHOC2S2G is largely due to ras-1 hyperactivation. 
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Figure 25. (A) Co-expression of SHOC2 and RRAS mutants did not increase thhe prevalence of the Pvl 
phenotype supporting their function within the same pathway. (B) The Muv phenotype is LET-60/RAS-
dependent, whereas the Pvl phe notype is not; it depends on proper function of ras-1/RRAS and ras-
2/MRAS that are downstream of S HOC2S2G, RRAS being epistatic to MRAS. 

 
 
 
 
4.2.2 Exploring the role of LE T-60/RAS and Rho-family GTPases in med iating vulval defects 
 
To define the genes and signaling cascades controlling the cellular processes underlying the Pvl and 

Muv phenotypes, RNA interference (RNAi) experiments of candidate genes were carried out on 

animals expressing SHOC2S2G under the control of the lin-31 promoter, which drives expression in 

VPCs. As expected, expression of SHOC2S2G and RAS-1G27dup engendered both Pvl and Muv 

phenotypes, while expression of the wild-type counterparts did not (% of Pvl and Muv associated 

with plin-31::SHOC2S2G: 12% and 3%, respectively; % of Pvl associated with plin-31::ras-1G27dup: 

5% and 3%, respectively). Sincee RASopathy-causing SHOC2 and RRAS mutants are expected to 

promote vulval defects by altering LET-60/RAS-MAPK signaling (Muv phenotype), or perturbing 

pathways downstream of cell fate specification involved in the control of VPC migration and/or 

polarity (Pvl phenotype), a selected panel of genes (let-60/RAS, age-1/p110, cdc-42/CDC42, rho-

1/RHOA and mig-2, ced-10/RAC1) has been interfered in transgenic lines to identify the genes 

placed downstream to SHOC2, MRAS and RRAS mediating these phenotypes.To find the common 

effectors mediating the Pvl phenotype, we focused on the RHO-family small GTPases RHO, RAC 

and CDC42 which, in mammals, play a role in promoting plasma membrane protrusions regulating 

cell migration (Wozniak et al., 2005). In C. elegans, they control cell polarity and migration in the 

embryos and VPCs (Kishore and Sundaram, 2002; Schonegg and Hyman, 20006). 
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To explore this hypothesis, we used a reverse genetic approach. RNA interference can be performed 

in C. elegans by feeding worms with bacteria expressing the double stranded RNA corresponding to 

the gene to be silenced. RNAi experiments were carried out in the context of partial gene 

knockdown (see the Materials and Methods section) because complete inhibition of these genes was 

shown to result in embryonic lethality (http://www.wormbase.org/). To validate such a protocol, we 

performed let-60 RNAi on both N2 and let-60 (n1046) worms, the latter carrying a let-60 gain-of-

function allele, and the number of animals without a vulva (Vul phenotype) or with multiple ectopic 

pseudovulvae (Muv) were counted (Table 7). This assay demonstrated the effectiveness of such an 

approach. 

 
 

Table 7. Partial RNAi performed on N2 and let-60 (n1046) worms 
 

 
RNAi

a 
  Embryonal/Larval  

Genotype Vul (%) Muv (%) Letality (%) N 
      

N2 0 0 0 0 125 
N2 2 3 0 0 150 
N2 4 32 0 5 171 
N2 6 41 0 10 179 
N2 8 55 0 36 103 
N2 72 10 0 80 144 
let-60(n1046) 0 0 73 2 205 
let-60(n1046) 2 12 44 1 150 
let-60(n1046) 4 14 39 2 174 
let-60(n1046) 6 15 34 10 117 
let-60(n1046) 8 21 26 15 120 
let-60(n1046) 72 10 10 50 115 

 
aTime of exposure (hours) of animals to RNAi bacteria. Screening of the Vul and Muv phenotypes 
was carried out on F1 (0–8 hs) or F2 (72 hs) hermap hrodites. Percentage of the phenotype was 
calculated on survival animals. 

 
 
 
 
By using this strategy, we found that silencing of cdc-42, rho-1 and rac genes in wild-type animals 

caused vulval defects per se, whose prevalence increased with the length of exposure to dsRNA, 

confirming previous data on the role of RAC and CDC-42 in vulval development and provided first 

evidence indicating that RHO is also involved in this process (Figure 26 ). 
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Figure 26. RNAi experiments sho wed that silencing of cdc-42, rho-1 and rac gene s in wild-type animals 
caused vulval defects per se. 

 

In animals expressing SHOCS2G, we showed that rho-1 RNAi had no effect on the penetrance of the 

Pvl phenotype. In contrast, the penetrance of Pvl was significantly increased by cdc-42 RNAi and 

completely suppressed by RAC1 RNAi, demonstrating that SHOC2S2G elicits Pvl through RAC 

hyperactivation in VPCs (Figure 27). All the data are present in Table 8, Tabl e 9 and Table 10. 
 
 
 

 
Figue 27. RNAi experiments showi ng the role of CDC-42 and RAC1 in modulating the Pvl phenotype. 

 
Table 8. rho-1 RNAi. 

 
  

RNAia 
  Embryonal  Gonad  

 Genotype Pvl (%) Muv (%) Letality (%) Sterility (%) D efects (%) N 
         

 N2 0 0.7 0 0 0 0 150 
 N2 2 12.9 0 0 85 60 289 
 N2 72   98   180 

 rho-1(ok2418)
+/- 

0 1.7 0 0 0 0 303 
 plin-31::SHOC2

S2G 
0 12.4 2.6 0 0 0 499 

 isogenic animals 0 0.3 0 0 0 0 302 
 plin-31::SHOC2

S2G 
2 28.9 5.6 0 na na 308 

 isogenic animals 2 18.8 0.6 0 na na 361 
 plin-31::SHOC2

S2G 
4 41.3 3.3 7 na na 92 

 isogenic animals 4 32.5 0 4 na na 117 
 plin-31::SHOC2

S2G 
6 51.0 1.2 15 na na 48 

 isogenic animals 6 36.5 0 8 na na 63 
 plin-31::SHOC2

S2G 
8 58.1 0 33 na na 86 

 isogenic animals 8 48.8 0 23 na na 69 
         

 
aTime of exposure (hours) of animals to RNAi bacteria. Screening of the Pvl and Mu v phenotypes 
was carried out on F1 (0– 8 hs) or F2 (72 hs) hermaphrodites. Percentage of the phenoty pe was 
calculated on survival animals. In all ex periments, isogenic worms that had lost the transgene were 
used as controls.  
na: not ascertained. 
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Table 9. cdc-42 RNAi. 
 
  

RNAia 
  Embryonal/Larval   

 Genotype Pvl (%) Muv (%) letality (%) N P 
        

 N2 0 0 0 0.7 148  
 N2 2 2 0 0 121  
 N2 72 10 10 77 266  
 cdc-42(gk388)

+/- 
0 0.6 0 0 155  

 plin-31::SHOC2
S2G 

0 9.6 3.3 0 396  
 plin-31::SHOC2

S2G
;cdc-42(gk388)

+/- 
0 15.7* 2.5 1 204 *<0.05 

 plin-31::SHOC2
S2G 

0 12.3 3.2 0 160  
 isogenic animals 0 0.3 0 0 312  

 plin-31::SHOC2
S2G 

2 21.3 0.7 0 140  
 isogenic animals 2 3.8 0 0 83  
 plin-31::SHOC2

S2G 
4 21.5 2.4 3 209  

 isogenic animals 4 4.2 0 3 120  
 plin-31::SHOC2

S2G 
6 24.3* 2.5 15 120 *<0.005 

 isogenic animals 6 3.8 1.9 15 90  
 plin-31::SHOC2

S2G 
8 41.0* 1.9 18 156 *<0.001 

 isogenic animals 8 19.6 0 15 138  
        

 
a
Time of exposure (hours) of animals to RNAi bacteria. Screening of the Pvl and Muv phenotypes was 

carried out on F1 (0–8 hs) or F2 (72 hs) hermaphrod ites. Percentage of the phenotype was calculated on 
survival animals. In all experiments, isogenic worms that had lost the transgene were used as controls.  
P-values were calculated using two-tailed Fisher’s exact test. 
 
 
Table 10. ced-10 RNAi. 

 
  

RNAia 
  Embryonal/Larval   

 Genotype Pvl (%) Muv (%) letality (%) N P 
        

 N2 0 0 0 0 158  
 N2 2 0 0 0 222  
 N2 72 0 0 0 95  
 mig-2(mu28) 0 0 0 0 100  
 mig-2(mu28) 2 7.3 0 2 192  
 mig-2(mu28) 72 69 10 59 230  
 plin-31::SHOC2

S2G
;mig-2(mu28) 0 11.8 3.3 0 184  

 isogenic animals 0 0.5 0 0 142  

 plin-31::SHOC2
S2G

;mig-2(mu28) 2 15.3 2.4 0 144  
 isogenic animals 2 2.6 0 1 122  

 plin-31::SHOC2
S2G

;mig-2(mu28) 4 16.2 4.3 4 190  
 isogenic animals 4 4.1 0 3 188  

 plin-31::SHOC2
S2G

;mig-2(mu28) 6 18.6* 2.3 10 189 *<0.05 
 isogenic animals 6 13.8* 0 5 121  

 plin-31::SHOC2
S2G

;mig-2(mu28) 8 40.5* 2.0 21 169 *<0.0001 
 isogenic animals 8 40.0* 0 14 96  
        

 
a
Time of exposure (hours) of animals to RNAi bacteria. Screening of the Pvl and Muv phenotypes was 

carried out on F1 (0–8 hs) or F2 (72 hs) hermaphro dites. Percentage of the phenotype was calculated on 
survival animals. In all experiments, isogenic worms that had lost the transgene were used as controls.  
P-values were calculated using two-tailed Fisher’s exact 
test. na: not ascertained. 
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We then confirmed these results by performing genetic crosses betweeen males expressing 

SHOC2S2G and females heterozygous for a cdc-42 loss-of-function mutation or a mig-2/RAC1 gain-

of-function mutation (Figure 28). 
 
 

 
Figure 28. Genetic cros ses indicating that cdc-42 haploinsufficiency increased the 
SHOC2 phenotype, and that SHOC2S2G was also able to worsen the vulval defects 
observed in animals carrying a gain-of-function mutation in mig-2, one of the two RAC1 
homologs. 

 
 
To validate these results in humans, we evaluated RAC1 activity and RAC- dependent cytoskeletal 

alterations in patient-derived fibroblasts. As shown in Figure 29, we observed constitutive RAC1 

activation in pull-down experiments, and consistent with the role of RAC1 in promoting 

lamellipodia formation, these structures were more extended in S2G fibroblasts compared to wild-

type cells. Next, we confirmed these results in transfected cells. Here, you can easily recognize 

loosely adherent actin projections on the leading edge of the cell, indicating increased lamellipodia 

extensions in S2G cells, and what’s also interesting is that SHOC2 co-localized with lamellipodia. 

 
 
Figure 29. Constitutive 
RAC1 activation (pull-
down experiments) and 
lamellipodia formation 
were more extended in 
SHOC2S2G fibroblasts 
compared to wild-type 
cells (upper panels). 
Loosely adherent actin 
projections on the 
leading edge of the cell 
were more extended in 
SHOC2S2G transfected 
cells (lower panel). 
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Overall, C. elegans studies showed that SHOC2 and RRAS mutants enhance signal flow through 

RAS and RAC in VPCs, that CDC42 and RAC have counteracting effects on vulval defects, and 

confirmed RAC1 hyperactivation in patient-derived fibroblasts (Figure 30 ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           

  
 

Figure 30. Scheme indicating the proteins mediating induction of 
the Pvl and Muv phenotype. 

 
 
 
 
Finally, these findings also suggest RHO-family small GTPases as excellent candidate genes to be 

mutated in RASopathies. Interestingly, a RAC2 mutation has recently been reported in JMML 

(Caye et al., 2015), and a single CDC42 change was found in two patients with thrombocytopenia 

and developmental delay (Takenouchi et al., 2015). 
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4.3 Germline CDC42 mutations cause a phenotype partially overlapping NS 
 

 

4.3.1 Identification of CDC42 mutations and clinical characterization 
 
Based on our findings derived from in vivo and in vitro studies indicating that RAC1, RAC2 and 
 
CDC42 are excellent candidate genes for RASopathies, mutation scanning of the entire coding 

sequence of these genes was performed on a cohort of patients with clinical features suggestive of 

NS or a clinically related phenotype, and negative for mutations in known disease genes. Such a 

screening effort allowed us to identify two germline CDC42 mutations in three unrelated subjects 

(two de novo and one segregating with the disease in a single family). Thanks to the wide network 

established in the last decade by Dr. Marco Tartaglia, as well as to the use of available software 

(i.e., GeneMatcher, https://genematcher.org/), we started collaborating with Dr. Ghayda Mirzaa 

(Seattle Children’s Research Institute and Department of Pediatrics, University of Washington, 

Seattle, Washington, USA), Raoul Hennekam (Department of Pediatrics and Translational Genetics, 

Department of Pediatrics, Academic Medical Center, University of Amsterdam Medical Center, 

Amsterdam, The Netherlands) and Marco Seri (Department of Medical and Surgical Science, 

Policlinico Sant' Orsola Malpighi and University of Bologna, Italy), who had been identified by 

whole exome sequencing (WES) germline CDC42 mutations in patients with intellectual disability, 

facial dysmorphisms and thrombocytopenia. Overall, seven functionally relevant CDC42 changes 

(c.68A>G, p.Tyr23Cys; c.196A>G, p.Arg66Gly; c.203G>A, p.Arg68Gln; c.242G>T, p.Cys81Phe; 

c.247T>C, p.Ser83Pro; c.476C>T, p.Ala159Val; c.511G>A, p.Glu171Lys) have been identified in 

11 unrelated subjects (Table 11 and Figure 31). Interestingly, two CDC42 lesions were recently 

reported by Takenouchi and colleagues (Takenouchi et al., 2015, 2016) in two individuals with a 

severe form of syndromic thrombocytopenia. 
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Table 11. Main clinical features of CDC42 mutation-positive subjects 
(N=11) 

Feature 
Number GI GII GIII 

 N = 4 N = 4 N= 5a 

Growth     
Prenatal Weight at birth ≤–2SD 2/11 1/4 1/4 0/3 

OFC at birth ≤–2SD 2/5 0/2 1/2 1/2 
PostnatalLength/height ≤–2SD 6/10 3/4 3/4 1/5 
OFC ≤–2SD 4/9 3/4 1/4 2/3 

OFC ≥+2 SD 1/9 0/4 1/4 0/3 
Signs resembling Noonan syndrome

b 
3/11 0/4 1/4 2/5 

Other facial signs     
Sparse hair 6/8 2/4 4/4 1/2 
Sparse eyebrows 4/11 2/4 2/4 1/5 
Epicanthal folds 4/11 1/4 0/4 3/5 
Strabismus 7/10 4/4 3/4 2/4 
Long philtrum 5/11 1/4 2/4 2/5 
Thin upper vermillion 8/11 4/4 2/4 4/5 
Hearing loss 2/11 2/4 0/4 0/5 
Optic atrophy 3/9 1/3 0/3 2/5 
Scoliosis; vertebral anomalies 9/11 1/2 1/4 1/4 
Digital anomalies (camtodactyly, syndactyly) 4/11 1/3 3/4 1/5 
Cardiac defects 5/11 2/4 3/4 1/5 
Recurrent infections 4/11 3/3 2/4 0/5 
Platelet abnormalities     

Thrombocytopenia 3/11 3/4 2/3 0/5 
Macrothrombocytes 2/11 2/4 1/3 0/5 

Neurologic abnormalities     
Intellectual disability 6/11 4/4 3/4 1/5 
Seizures 4/11 0/4 3/4 1/5 
Brain MRI abnormalities

c 
7/7 3/3 4/4 1/1 

Tone abnormalities 6/11 4/4 3/4 1/5 

 
aGroup III also include the two previously published patients by Takenouchi et al., 
2015, 2016.  
bScored positively if 6 or more of the following 12 signs were present: extra hair 
whorls; ptosis; wide nasal bridge; flaring nostrils; broad nasal tip; low-set ears; webbed 
neck; pectus excavatum; PS or HCM; multiple nevi; peripheral lymphedema; 
lymphangiectasia.  
cventriculomegaly (5x), Dandy-Walker malformation, crowded posterior fossa (2x), 
small cerebellum, thin corpus callosum, dysmyelination, heterotopias. 
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Figure 31. Facial dysmorphism and MRI scans of four patients with de novo 
mutation in CDC42 gene. Patient 1 has a p.Y23C mutation, patients 2 and 3 
have a p.S83P mutation and patient 4 has a A159V mutation. We have received 
the declaration of informed consent for the publication of the photos. 

 

 

4.3.2 Structural and biochemical analysis of CDC42 mutants 
 
In collaboration with the group of Reza Ahmadian, based on the location of the affected residues 

and the available information on CDC42 structure and function, we have structurally and 

functionally divided the identified missense mutations in CDC42 into three major classes. 
 

Group I includes the mutations affecting the switch II region (Tyr64Cys, Arg66Gly and 

Arg68Gln), which mediates the interaction of CDC42 with its binding partners (Dvorsky and Ahmadian, 

2004). Tyr64 and Arg66 are solvent exposed residues, and are directly involved in the interaction with 

GEFs, GAPs and effectors (Figure 32). Differently, the invariant Arg68 is a buried residue that 

contributes to the non-polar intramolecular binding network with multiple residues (Ala59, Gln61, Glu64 

and Glu100) stabilizing the conformation of the switch II region. Its substitution to the hydrophilic 

glutamine is predicted to have a disrupting impact locally. These residues are also relatively close to the 

active site of the GTPase, which suggests a possible impact of these changes 
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on the intrinsic and stimulated catalytic activity of the mutants and/or on their perturbed binding to 

GTP/GDP. 
 
Group II includes mutations affecting residues mapping at the pocket of the GTPase mediating 

GTP/GDP binding (Ser83Pro and Ala159Val). These mutations were predicted to affect the 

nucleotide binding properties of CDC42 (Figure 32). Specifically, Ala159 is directly facing the 

guanine base and its replacement by valine is expected to promote fast GDP/GTP cycling, a 

well-established aberrant behavior reported in members of the RAS subfamily (Tartaglia et al., 
 
2011). Similarly, Ser83 is indirectly involved in binding and stabilizing Gln116, which covers the 

guanine base. Its substitution to proline is also predicted to increase the intrinsic nucleotide 

exchange. 
 
Finally, group III includes the “rear mutations” (Tyr23Cys, Thr25Ile and Glu171Lys), which lie 

outside of the main interacting interface (Figure 32). All three residues are exposed to the 

solvent, but quite far from both nucleotide binding site and the switch regions. These residues, 

however, map in a region that has been implicated in the binding of CDC42 to effectors 

containing a CDC42/RAC-interacting binding (CRIB) motif, such as WASP and PAK1 

(Hemsath et al., 2005). Due to their vicinity to the CRIB motif binding sites, these residues were 

predicted to perturb CDC42 binding to these interactors. In particular, Glu171 maps in the region 

mediating binding to WASP (Figure 33). We hypothesize that Glu171 is a major part of the 

electrostatic mechanism favoring an accelerated WASP-CDC42 association reaction (Hemsath 

et al., 2005). This process is a prerequisite for WASP activation and a critical step in temporal 

regulation and integration of WASP-mediated cellular responses. 
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Figure 32. Relative positions of amino acids in CDC42 altered in patients with NS. (a) Secondary 
structure elements and conserved motifs of CDC42. The α-helices and β-strands are illustrated as 
cylinders and arrows, respectively. The G-domain of CDC42 also consists of five conserved motifs 
(black boxes) that are responsible for specific and tight nucleotide binding and hydrolysis. (b-c) 
Solvent accessible surfaces of CDC42 molecules are shown in the active GTP-bound state (b) and the 
inactive GDP-bound state (c). For clarity, structures are illustrated in two different views. Therefore, 
left panels are rotated 120° around the vertical ax es to the left (right panel). Amino acids altered in 
patients with NS are color-coded. Dashed arrows depict critical residues buried within the 
hydrophobic core of the CDC42. Residues of CDC42 that mediate the interactions with guanine 
nucleotide-dissociation inhibitors (GDIs), guanine nucleotide-exchange factors (GEFs), GTPase-
activating proteins (GAPs) and effectors, such as WASP, are colored in yellow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 33. Localization of group III “rear mutation” Glu171Lys in 
the region of CDC42 mediating binding to WASP effector. 

 
 
 

 
Consistent with in silico structural predictions, biochemical characterization of purified CDC42R68Q 

revealed that replacement of Arg68 by glutamine had no significant effects on the GEF-catalyzed 

nucleotide exchange, but led to a drastic impairment of both intrinsic (9-fold) and GAP-stimulated 

(240-fold) GTP hydrolysis (Figure 34). 
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Figure 34. Gain-of-function of CDC42 due to mutation of Arg68 to 
Glutamine and a loss-of-function effect in CDC42E171K  in effector binding. 
WASP-GBD associates with CDC42WT and R68Q proteins. Association rates 
(kon) of WASP-GBD binding CDC42WT

 and R68Q. Various CDC42 proteins 
were analyzed regarding (a) the GEF-catalyzed nucleotide exchange, (b) the 
GAP-stimulated GTP hydrolysis and (c) effector association. Therefore, purified 
catalytic domain of the CDC42-specific GEF (intersectin), the catalytic domain 
of the CDC42-specific GAP (p150GAP), and (c) the GTPase-binding domain 
(GBD) of the CDC42 effector (WASP) were used along with appropriate 
fluorescent nucleotides. Obtained data (for more details see Figs. S1 and S2) 
were evaluated and depicted as numbers and bars. A mean value of at least three 
different experiments was single exponentially fitted to obtain the observed rate 
constants (kobs values) for the reactions in the absence (intrinsic) and in the 
presence of GEF and GAP, and the effector association. 

 
 
These data indicate that the destabilization of the switch II region of CDC42 promoted by the 

Arg68Gln change leads to an accumulation of CDC42 in its active, GTP-bound state, and consequently 

would contribute in principle to an increased and persistent signaling. On the other hand, biochemical 

characterization of CDC42E171K documented that substitution of Glu171 by lysine had no effects on both 

GEF-catalyzed nucleotide exchange and GAP-stimulated GTP hydrolysis, but completely abolished 

association of WASP, which was consistent with structural data. 
 
Counteracting effects of amino acid substitutions affecting the switch I and II regions resulting in 

only mildly activated behavior have been documented for RASopathy-causing RAS gene mutations 

(Gremer et al., 2010). Based on these considerations, to evaluate a possible impact of group I 

mutations on binding to effectors, CDC42R68Q binding to WASP was investigated. Quantification of 

the binding properties of CDC42R68Q showed a decreased association with and an increased 

dissociation from the GTPase-binding domain (GBD) of WASP, leading to an overall reduction in 

affinity of 7.5 fold (Figure 34) 
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4.3.3 Impact of disease-causing mutants on cell migration and proliferation 
 
CDC42 is a master regulator of cell polarization, and plays a critical role in controlling cell 

migration and growth (Melendez et al., 2011, 2013; Zegers and Friedl, 2014). Based on these 

evidences, in collaboration with Simona Coppola, we investigated the impact of disease-causing 
 
CDC42 mutations on polarized migration and cell proliferation. To this goal, in vitro wound-

healing assays and cell growth analyses were performed using NIH3T3 cells transiently transfected 

to express CDC42WT and the disease-causing CDC42Y23C, CDC42R68Q, CDC42S83P, CDC42A159V 

and CDC42E171K mutants. As expected, cells expressing exogenous wild-type CDC42 were 

documented to migrate more rapidly into the scratched area than cells transfected with the empty 

vector (Figure 35A, B). Notably, mutants appeared to differentially perturb polarized migration. In 

particular, CDC42S83P and CDC42A159V overexpression variably enhanced the wound closure ability 

of transfected cells compared to the wild-type protein, whereas expression of CDC42Y23C, 

CDC42R68Q and CDC42E171K failed to increase migration (Figure 35A,B), suggesting a loss-of-

function effect of the Y23C, R68Q and E171K amino acid substitutions. A different behavior 

among mutants was also observed in cell proliferation. Specifically, the CDC42A159V mutant was 

shown to significantly enhance cell proliferation, compared to cells expressing CDC42WT, as well as 

those expressing the CDC42S83P and CDC42E171K mutants, while a reduced proliferation, suggestive 

of a dominant negative effect, was documented in cell expressing CDC42Y23C and CDC42R68Q 

(Figure 35C). Overall, these data indicate that the disease-causing mutations have a diverse impact 

on CDC42 function, and are able to differentially perturb specific cellular processes controlled by 

the GTPase. 
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Figure 35. Polarized migratio n and growth in CDC42 overexpressing cells . (A) Migration in the 
wounded area of 3T3-transfecte d cells at 0,4 and 7hours after creating the scratch. The wound was 
generated at 24 hours post transfection. A representative experiment out of thre e performed is shown. 
(B) Migratory cells fold increase compared to migratory WT at 4 and 7hours a fter scratch is shown. 
Cells invading the scratched area were considered as migratory cells. Mean values ± SD relative to WT 
observed in three separate experiments are reported. (C) Cell growth of 3T3-t ransfected cells at the 
indicated time points. Mean values ± SEM observed in three separate exp eriments are reported 
(*P<0.05; **P <0.01; student's t Test). 
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4.3.4 C. elegans studies 
 
To explore the functional impact of the disease-causing CDC42 mutants on intracellular signaling 

in vivo, I used the nematode C. elegans as an experimental model. Multiple transgenic lines were 

generated to conditionally express wild-type CDC-42 (CDC-42WT) or CDC-42Y23C, CDC-42R68Q, 

CDC-42S83P, CDC-42A159V and CDC-42E171K, homologs of the disease-associated mutants 

(alignments are shown in Figure 36). 
 
 
 

Figure 36. Protein sequence 
alignments around Tyr23, Arg68, 
Ser83, Ala159 and Glu171 (reported in  
bold) between H. sapiens and C. 
elegans. In the middle row, 
identity/conservation of individual  
residues is reported. Alignments  
were gathered from 
https://www.ncbi.nlm.nih.gov. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

According to the key role played by CDC-42 during embryogenesis, embryonic expression of CDC-

42WT caused a full penetrant lethal phenotype (P<10
-6

; two-tailed Fisher’s Exact Test), that was 

significantly higher compared with that observed in embryos expressing CDC-42Y23C, CDC-42R68Q 
and CDC-42E171K (P< 0.001 in all comparisons) (Figure 37), indicating a hypomorphic effect of 
these lesions in cellular processes mediating embryonic lethality. 
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Figure 37. Consequences of CDC-42 expression on C. elegans 
embryonic development. Eggs laid from synchronized animals were heat 
shocked at 30° C for 30 min and lethality was evalu ated 24 hours later 
counting the number of unhatched eggs. Isogenic animals that had lost 
the transgene (control group) and worms expressing the heat shock 
inducible vector (empty vector) were subjected to heat shock and scored 
in parallel for comparison. P-values were calculated using two-tailed 
Fisher's exact test (*P < 0.001; ** P <10-6). 

 
 

 
During early larval development (L1 and L2 stages), ectopic expression of wild-type and mutant CDC-

42 caused no visible phenotype, whereas at early L3 larval stage, it caused abnormal vulval 

morphogenesis, resulting in the formation of a protruding vulva (Pvl) (Figure 38A, E and Table 12), a 

phenotype that had previously been reported in C. elegans lines expressing the RASopathy-causing 

SHOC2S2G and RRASG39dup mutants (Cordeddu et al., 2009; Flex et al., 2014). Like those animals, a 

variable proportion of CDC-42 hermaphrodites exhibiting Pvl displayed egg-laying defects (Egl 

phenotype) and accumulation of larvae inside the mother (Bag-of-worms phenotype). Of note, a 

significantly less penetrant phenotype was observed in animals expressing CDC-42Y23C (P< 0.0001), 

CDC-42R68Q (P< 0.05) and CDC-42E171K (P< 0.0001) compared to CDC-42WT, while a more penetrant 

phenotype was detected in those expressing CDC-42S83P and CDC-42A159V (P< 0.0001 in both 

comparisons) (Figure 38A), indicating a hypomorphic and hypermorphic function in the induction of 

Pvl of the former and the latter group of mutants, respectively. 
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Table 12. Vulval phenotypes in C. elegans strains expressing wild-type CDC-42 
and the disease-associated mutants. 

 
 

Genotype Transgene Pvl (%) Muv (%) Vul (%) N 
      

wild-type - 0.5 0 0 >2000 
wild-type empty vector 0.9 0 0 233 
wild-type cdc-42WT 18.3a 2.3d 0 1447 
wild-type cdc-42Y23C 

8.1a,b 2.9d 0 588 
wild-type cdc-42R68Q 12.6a,c 2.0d 0 810 
wild-type cdc-42S83P 31.0a,b 4.5d,c 0 749 
wild-type cdc-42A159V 34.3a,b 5.8d,e 0 572 
wild-type cdc-42E171K 8.5a,b 2.1d 

0 943 

let-60(n1046) - na 72.5 0 501 
let-60(n1046) cdc-42WT na 89.2f 0 182 

let-23(sy1) - 0 0 80.2 956 
let-23(sy1) cdc-42WT 0 0 47.4g 475 
let-23(sy1) cdc-42Y23C 0 0 47.5g 133 
let-23(sy1) cdc-42R68Q 0 0 47.8g 251 
let-23(sy1) cdc-42S83P 0 0 30.2g,h 374 
let-23(sy1) cdc-42A159V 0 0 21.6g,h 236 
let-23(sy1) cdc-42E171K 0 0 49.4g 

166 

 
Strains: let-60(n1046) is a gain-of-function allele of let-60/RAS;let-23(sy1) is a 
hypomorphic allele of let-23/EGFR.  
The wild-type and mutant cdc-42 alleles were expressed under the control of the 
hsp16.41 inducible promoter. Animals were grown at 20°C and heat-shocked at early L3 
stage. N indicates the number of animals scored. Multivulva (Muv), Protruding vulva 
(Pvl) and Vulvaless (Vul) phenotypes are expressed as percentage of adults with ectopic 
pseudovulvae, exhibiting a protruding vulva or lacking a vulva, respectively.  
na: not ascertained.  
In all comparisons, P-values were calculated using two-tailed Fisher's exact test. 
aSignificantly different from animals expressing the empty vector (P<0.00005). 
bSignificantly different from animals expressing cdc-42WT(P< 0.0001). 
cSignificantly different from animals expressing cdc-42WT(P< 0.05). 
dSignificantly different from animals expressing the empty vector (P<0.05). 
eSignificantly different from animals expressing cdc-42WT(P< 0.001). 
fSignificantly different fromlet-60(n1046) animals (P< 0.00001). 
gSignificantly different fromlet-23(sy1) animals (P<10-12). 
hSignificantly different fromlet-23(sy1) animals expressing cdc-42WT(P< 0.0001). 
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Figure 38. Consequences of CDC-42 expression on C. elegans vulval development.  
Ectopic expression of CDC-42WT at early L3 larval stage elicits protruding vulva (Pvl) 
(A) and multivulva (Muv) (B) phenotypes. A less (CDC-42Y23C, CDC-42R68Q and 
CDC-42E171K) and more (CDC-42S83P and CDC-42A159V) penetrant Pvl phenotype was  
observed in animals expressing the mutant proteins, while a more penetrant Muv 
phenotype was observed in CDC-42S83P- and CDC-42A159V-expressing mutants. (C) 
CDC-42 overexpression in a LET-23/EGFR hypomorphic background reduces the  
penetrance of the vulvaless (Vul) phenotype and supports a gain-of-function role of 
CDC-42S83P and CDC-42A159V on the RAS-MAPK cascade. (D) Modulation of the Pvl  
phenotype by wsp-1 RNA interference. White and gray bars indicate the penetrance of 
Pvl in non-interfered and interfered animals, respectively. The darker the gray, the 
longer is the exposure time to bacteria expressing wsp-1 RNAi.Error bars indicate 
SEM of four independent experiments (A-D). Asterisks specify significant differences 
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between animals expressing CDC-42WT and control worms orCDC-42 mutants (A-C), 
and between interfered and non-interfered nematodes (D) (*P < 0.05; ** P < 0.001; *** P 
< 0.0001; **** P< 0.00005; two-tailed Fisher's exact test). (E) Nomarski images 
showing that a normal vulva develops in adult control animals (left), whereas a single 
protruding vulva (middle) or multiple ectopic pseudovulvae (right) are observed in a 
variable proportion of CDC-42-expressing animals. Black and white arrowheads point 
to the vulva and ectopic pseudovulvae, respectively. (F, G) Nomarski images of VPCs 
at late L3 (F) and mid L4 (G) larval stages. In control animals, only P6.p descendants 
detach from the cuticle generating a single, symmetric invagination (left), whereas in 
CDC-42 expressing animals, VPCs descendants generates asymmetric invaginations 
(middle), or additional VPCs assume fate 1 generating multiple invaginations (right). 
Black and white arrowheads point to P6.p descendants-derived invagination and extra 
invaginations, respectively. Anterior is to the left and dorsal is up, in all images. 

 
 
Besides promoting Pvl, ectopic expression of wild-type and mutant CDC-42 at early L3 larval stage 

caused a low penetrant Muv phenotype (Figure 38B, E and Table 12).Of note, a more severe 

phenotype was observed in CDC-42S83P- and CDC-42A159V-expressing animals (P< 0.05 and P< 

0.001, respectively), suggesting a gain-of-function effect of these lesions on LET-60/RAS-MAPK 

signaling. To further explore this hypothesis, I have evaluated vulval phenotypes in let-60 and let-

23/EGFR sensitized backgrounds. Phenotypic analysis showed that expression of CDC-42WT was 

able to exacerbate the Muv phenotype associated with a hyperactive let-60 allele and to strongly 

reduce the penetrance of the Vul phenotype associated with a hypomorphic let-23 allele (P< 0.0001, 

in both comparisons), supporting a positive modulatory role of CDC-42 on VPCs induction and the 

MAPK cascade (Figure 38C and Table 12). Moreover, expression of CDC-42 mutants provided 

evidence for a gain-of-function role of CDC-42S83P and CDC-42A159V on this pathway (P< 0.0001). 

As expected, Nomarski observations of L3 and L4 control larvae showed that only P6.p descendants 

detach from the cuticle generating a single, symmetric, invagination (Figure 38F, G) (Sternberg, 

2005). In contrast, a variable proportion of larvae expressing ectopically wild-type and mutant 

CDC-42 displayed single asymmetric and/or multiple invaginations. These defects represent the 

earliest detectable effect of cdc-42 overexpression on vulval development, similarly to what had 

previously been documented in transgenic lines expressing SHOC2S2G and RRASG39dup mutants 

(Cordeddu et al., 2009; Flex et al., 2014). 

 
To explore the genes/pathways working downstream to cdc-42 and involved in the Pvl phenotype, I 

performed RNA-mediated interference (RNAi) to inhibit the expression of WSP-1/WASP, a CDC-

42 effector required for hypodermal cell migration during morphogenesis (Ouellette et al., 2016) 

and promoting invadopodia formation during anchor cell (AC) invasion into the vulval epithelium 

(Lohmer et al., 2016). RNAi experiments were carried out in the context of partial gene knockdown 

because complete wsp-1 inhibition was shown to result in embryonic and larval lethality (Sawa et 
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al., 2003).Weak wsp-1 RNAi had no vulval phenotype per se (Table 13) and significantly reduced 

the prevalence of Pvl associated with CDC-42WT expression (P< 0.0001) (Figure 38D and Table 

13), indicating that occurrence of this phenotype is mediated, in part, by WSP-1. In contrast, the 

vulval defect observed in CDC-42R68Q and CDC-42E171K animals was not modulated by wsp-1 

RNAi, supporting biochemical data indicating abolished (CDC-42E171K) or strongly reduced (CDC-

42R68Q) association of these mutants with WASP (Figure 34). A similar behavior has been observed 

for CDC-42Y23C, suggesting a possible WSP-1 binding defect for this mutant. Finally, wsp-1 RNAi 

was not able to reduce the Pvl phenotype associated with CDC-42S83P and CDC-42A159V expression, 

indicating that other CDC-42 effectors are likely to play a major role in mediating abnormal vulval 

morphogenesis caused by these mutants, although a defective WSP-1 binding cannot be ruled out. 

Notably, the Muv phenotype was not modulated by wsp-1 RNAi (Table 13), supporting a model in 

which ectopic expression of wild-type and mutant cdc-42 perturbs different pathways involved in 

vulval induction and morphogenesis. 
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Table 13. Modulation of vulva phenotypes by wsp-1 RNA-interference in C. elegans strains 
expressing wild-type CDC-42 and the disease-associated mutants. 

 
   Gene Time of exposure to    
 Genotype Transgene Modulated Pvl (%) Muv (%) N  RNAi bacteria (hours)    by RNAi    
       
        

 let-60(n1046) - let-60 0 na 73.2 205 
    2 na 44.0a 150 
    4 na 34.2a 117 
    8 na 25.8a 120 
 wild-type - wsp-1 0 0.7 0 150 
    8 1.3 0.2 829 
 wild-type cdc-42WT 

wsp-1 0 21.4 2.4 627 
    2 19.5 1.8 56 
    4 13.5b 1.8 168 
    8 11.7c 

4.1 410 
 wild-type cdc-42Y23C wsp-1 0 7.5 2.6 154 
    2 8.0 2.5 122 
    4 7.1 2.4 85 
    8 6.8 2.8 72 
 wild-type cdc-42R68Q wsp-1 0 13.6 2.7 86 
    2 14.1 2.0 105 
    4 12.5 2.8 72 
    8 9.8 3.2 96 
 wild-type cdc-42S83P wsp-1 0 31.2 4.2 214 
    2 30.0 3.8 78 
    4 35.0 4.0 101 
    8 42.0b 

4.9 205 
 wild-type cdc-42A159V 

wsp-1 0 42.3 6.3 189 
    2 45.0 6.3 79 
    4 48.0 5.9 119 
    8 49.3 7.7 143 
 wild-type cdc-42E171K 

wsp-1 0 8.7 2.3 263 
    2 8.8 1.9 54 
    4 8.3 2.2 89 
    8 9.4 1.6 124 
 

Wild-type and mutant cdc-42 alleles were expressed in N2 worms under the control of the hsp16.41 inducible 
promoter. Adult hermaphrodites were left on agar plates seeded with RNAi bacteria for the indicated time. 
Screening of the Protruding vulva (Pvl) and Multivulva (Muv) phenotypes was carried out on adult F1 animals 
grown at 20°C and heat-shocked at early L3 stage. N indicates the number of animals scored.  
na: not ascertained.  
P-values were calculated using two-tailed Fisher's exact test.  a
Significantly different from non-interfered let-60(n1046) animals (P< 0.0001). 

b
Significantly different from the corresponding non-interfered animals (P< 0.05). 

c
Significantly different from the corresponding non-interfered animals (P< 0.0001). 
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5. Discussion 
 

 

Mutations of genes coding for proteins with role in RAS signaling and the RAF/MEK/ERK cascade 

have been identified as the molecular cause underlying a group of clinically related developmental 

disorders, the RASopathies. Here, we used a gene candidacy approach based on large-scale protein– 

protein interaction/functional network analysis to identify RRAS as a novel gene implicated in a 

condition with features within the RASopathy spectrum. Disease-causing RRAS mutations are 

activating and act by maintaining the GTPase in its GTP-bound active state. Aberrant RRAS 

function was demonstrated to perturb variably intracellular signal flow through the RAF/MEK/ERK 

cascade, and to a certain extent also the PI3K/AKT pathway. Of note, these gain-of-function 

mutations are likely to define a novel leukaemia-prone condition. Consistent with this view, the 

same class of RRAS lesions was identified tooccur as acquired somatic event in JMML, 

characterizing a subset of this myeloproliferative/myelodysplastic disorder with rapid progression to 

AML. RRAS shares several biochemical properties with HRAS,NRAS and KRAS, as well as some 

common function, including stimulation of cell proliferation, survival and transformation (Saez et 

al.,1994). Despite these similarities, however, previous observations have emphasized the role of 

RRAS in cell adhesion, spreading and migration, and its modulatory function on effectors distinct 

from those used by ‘classical’ RAS proteins (Osada et al., 1999; Wozniak et al., 2005). While 

PI3K/AKT has been recognized as a major effector pathway of RRAS, only a minor impact on 

MAPK signaling had been reported (Osada et al., 1999; Marte et al., 1997). The present in vitro 

findings provide evidence that disease-associated RRAS mutants enhance the activation of the 

MAPK cascade, at least in response to specific stimuli. On the other hand, the identification of 
 
RRAS as a novel disease gene implicated in a RASopathy disorder further emphasizes the relevance 

of dysregulated signaling controlling cell spreading and migration in certain features of NS (e.g. 

congenital heart defects and lymphedema) and JMML (leukocyte infiltration in non-haematopoietic 

tissues) (Marte et al., 2007; Wang et al., 2009; Chen et al., 2010). This hypothesis was strongly 

supported by the identification of CDC42 as a novel gene implicated in a syndromic form of 

thrombocytopenia with clinical features partially resembling NS or a clinically correlated 

phenotype. CDC42 belongs to the RHO-family GTPases and play a key role in mediating cell 

migration and polarity (Melendez et al., 2011). Furthermore, a RAC2 mutation has recently been 

identified in a patient with sporadic JMML (Caye et al., 2015), further supporting the role of 

signaling pathways parallel/downstream to RAS and the MAPK cassette in both somatic and 

germline RASopathies. 
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Caenorhabditis elegans studies provided evidence for a genetic interaction between the RAS-

1G27dup/RRASG39dup and LET-60/RAS in vivo. Specifically, expression of the RAS-1 mutant protein 

was able to rescue, in part, the VPC induction defect resulting from a hypomorphic LET-23 mutant 

and enhanced the multivulva phenotype associated with a LET-60 gain-of-function genetic 

background. No impact of wild-type RAS-1/RRAS expression was observed in both models. We 

also observed that worms expressing ras-1G27dup displayed abnormal vulval morphogenesis 

(protruding vulva), possibly resulting from aberrant morphogenetic movements of the VPC 

descendant cells. Of note, we observed an equivalent phenotype in transgenic lines expressing 
 
SHOC2S2G (Cordeddu et al., 2009) and a PTPN11/SHP2 gain-of-function mutant (our unpublished 

data), suggesting functional equivalence of these mutants. This hypothesis was tested by performing 

epistatic analyses, which allowed us to demonstrate that RAS-1/RRAS and SHOC2 mutants work in 

the same pathway, the latter being downstream to the former. 
 
Genetic studies support the view that vulval defects arise, in part, through perturbation of signaling 

mediated by the RHO-related GTPase, RAC and CDC42, which play a critical role in vulval 

morphogenesis (Kishore and Sundaram, 2002; Welchman et al., 2007) and polarity (Schonegg and 

Hyman, 2006). This finding is in line with the established role of RRAS on RAC signaling (Osada 

et al., 1999; Wozniak et al., 2005) and with preliminary data indicating enhanced migration and 

chemotactic capabilities in cells stably expressing the disease-associated RRAS mutants (our 

unpublished data). 
 
The biochemical characterization of disease-associated RRAS and CDC42 mutations provided 

strong evidence for the existence of distinct structural and mechanistic effects resulting in an overall 

dysregulation of intracellular signaling. Function of RAS family proteins in signal transduction is 

controlled by two events, the GDP/GTP exchange and GTP hydrolysis. Any perturbation of these 

processes can affect dramatically the fine-tuned balance of the GTPase interaction with effectors 

and signal output. The majority of gain-of-function mutations affecting RAS proteins, including 

those contributing to oncogenesis, trigger the accumulation of these GTPases in the active state by 

impairing intrinsic GTPase activity, and/or conferring resistance to GAPs (Wennerberg et al., 

2005). This is also the case of two of the three mutations identified in RRAS, p.Gly39dup and 

p.Gln87Leu, as well as of the p.Arg68Gln change of CDC42. The characterization of the 

biochemical behavior of RRASG39dup, however, also demonstrated a dramatic increase in both the 

intrinsic and GEF-catalyzed nucleotide exchange as a process contributing to the accumulation of 

this mutant in its GTP-bound state. Aberrant GEF-accelerated nucleotide exchange dynamics was 

identified as the event driving functional dysregulation in the RRASV55M mutant, which was 

documented to be hyper responsive to GEF stimulation, but retained stimulus dependency. 
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Remarkably, the RRAS and CDC42 mutants were demonstrated to exhibit a diverse binding 

behavior to effectors suggesting a differential impact of mutations on downstream signaling 

cascades, including PI3K/AKT and RALGDS/RAL, whose biological significance and impact, 

however, require further studies. 
 
The clinical phenotype of subjects with germline RRAS or CDC42 mutations was reminiscent of 

NS. Clinical features, however, were distinctive, and not typical of NS in most cases. The patient 

heterozygous for the p.Val55Met substitution exhibited a very mitigated phenotype characterized by 

suggestive facial characteristics (triangular face, downslanting palpebral fissures and low-set ears), 

low posterior hairline, broad chest and borderline cognitive abilities, without cardiac involvement or 

defective growth, indicating that clinical features associated with RRAS mutations might be quite 

subtle. Of note, the milder phenotype associated with the p.Val55Met change is consistent with the 

weaker perturbing effect of the RRASV55M mutant on MAPK and PI3K/AKT signaling compared 

with the RRASG39dup protein. Notably, the different effect of individual CDC42 mutations on RAS 

signaling is not associated with a clear genotype/phenotype correlation, indicating that altered 

function (hypo- versus hyper-morphic) of CDC42 has similar consequences on development. 
 
JMML is a clonal myeloproliferative/myelodysplastic disorder of childhood characterized by 

overproduction of immature myeloid cells that variably retain the capacity to differentiate. 

Upregulation of RAS/MAPK signaling owing to germline and somatic mutations in PTPN11, 

NRAS, KRAS, NF1 and CBL isa major event implicated in this malignancy (Loh, 2011; Emanuel, 

2008; Niemeyer and Kratz, 2008). Our data document that upregulated RRAS function represents a 

novel event contributing to JMML pathogenesis and/or disease progression. Notably, somatic RRAS 

mutations co-occurred with acquired NRAS lesions in atypical JMML characterized by late onset 

and rapid progression to AML. While JMML is generally an aggressive malignancy, a subset of 

NRAS/KRAS mutation-positive patients has been reported to exhibit a mild course, with 

spontaneous remission despite the RAS-mutated clone persisting for years (Takagi et al., 2007; 

Matsuda et al., 2008; Flotho et al., 2013, our unpublished data). This suggests that in some 

instances, certain NRAS mutations are not sufficient to support full leukaemogenesis, requiring 

synergism with a second RAS signaling targeting event. In line with this view, NRAS mutations 

have been documented to co-exist with defects in other RASopathy genes (e.g. PTPN11) in some 

cases resulting in a particularly aggressive disease resembling AML with myelodysplasia-related 

changes (Park et al., 2012; Sakaguchi et al., 2013), as that observed in the present cases. Other 

studies, however, are required to appreciate more precisely the role of enhanced RRAS function in 

leukaemogenesis as well as its clinical relevance in haematological malignancies. 
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In conclusion, our findings document that germline activating mutations in RRAS and CDC42 

underlie two conditions within the RASopathy family that may resemble, in part, NS 

phenotypically. In the examined cohorts, RRAS and CDC42 lesions were found to account for only 

a small portion of cases, which might be related to their severe consequences on embryonic/fetal 

development and/or to the biased selection of the subjects included in these studies. Based on the 

present findings, however, RRAS mutations are expected to bemore common among subjects with 

clinical features only partially overlapping NS, and particularly in patients with syndromic 

JMML/AML not associated with mutations in the PTPN11, NF1, CBL, KRAS and NRAS genes. 

Similarly, CDC42 mutations are expected to be more common among subjects with 

thrombocytopenia. While further efforts are required to characterize more precisely the clinical 

impact of germline mutations affecting RRAS and CDC42, our findings suggest an unpredicted role 

of these GTPases in development and haematopoiesis. Consistent with the recent identification of 
 
RIT1 and LZTR1 as disease genes implicated in a significant proportion of NS (Aoki et al., 2013; ), 

our findings further extend the concept of ‘RASopathy gene’ to transducers whose dysregulated 

function perturbs signal flow through the MAPK cascade but does not belong to the core 

RAS/MAPK signaling cassette. 
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