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NON-LOCAL LOGISTIC EQUATIONS

FROM THE PROBABILITY VIEWPOINT

M. D’OVIDIO

Abstract. We investigate the solution to the logistic equation involving non-local
operators in time. In the linear case such operators lead to the well-known theory of
time changes. We provide the probabilistic representation for the non-linear logistic
equation with non-local operators in time. The so-called fractional logistic equation

has been investigated by many researchers, the problem to find the explicit repre-
sentation of the solution on the whole real line is still open. In our recent work the
solution on compact sets has been written in terms of Euler’s numbers.

1. Introduction

The study of the logistic and fractional logistic growth has attracted many researchers
because of the high impact in the applied sciences. Here we bring to the reader’s attention
some of the recently appeared papers, [1, 11, 15, 16, 17] in which the role of the logistic
equation has been investigated and discussed. Concerning the stochastic interpretation
and representation, a comparison with other models of growth has been given recently
in [10]. Many other works are devoted to the logistic SDEs. The literature is huge, we
mention only few works here and further on in the presentation of the results.

In this short note, we discuss some aspects concerning logistic equations and random
time changes. The fractional logistic equation has been investigated by many researchers
in the last decade. However, the solutions has been obtained only recently in [13]. Many
similar problems have been considered in order to find solutions sharing some peculiar
properties with the solution to the fractional logistic equation. A discussion on this point
has been given in [20] and the references therein.

We consider non-local operators more general than the Caputo–Djrbashian fractional
derivative. Then, we introduce non-local logistic equations and discuss the probabilis-
tic representation of the solutions in terms of inverses to subordinators. Thus, we use
stochastic processes driven by non-local partial differential equations in order to solve
non-local logistic equations.

Our presentation is based on two cases concerning respectively the logistic equation
on the real line and the logistic equation on compact sets.

2. Preliminaries on fractional calculus and probability

Let H = {Ht , t ≥ 0} be a subordinator (see [5] for a detailed discussion). Then, H
can be characterized by the Laplace exponent Φ, that is,

E0[exp(−λHt)] = exp(−tΦ(λ)),
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λ ≥ 0. As usual we denote by Ex the expected value w.r. to Px where x is a starting
point. Moreover, if Φ is the Laplace exponent of a subordinator, then there exists a
unique pair (k, d) of non-negative real numbers and a unique measure Π on (0,∞) with∫
(1 ∧ z)Π(dz) < ∞, such that for every λ ≥ 0

(2.1) Φ(λ) = k+ dλ+

∫ ∞

0

(
1− e−λz

)
Π(dz).

The Lévy-Khintchine representation in formula (2.1) is written in terms of the killing
rate

k = Φ(0)

and the drift coefficient

d = lim
λ→∞

Φ(λ)

λ
,

where

Φ(λ)

λ
= d+

∫ ∞

0

e−λzΠ(z)dz, Π(z) = k+Π((z,∞))(2.2)

and Π is the so called tail of the Lévy measure. We recall that Φ is uniquely given by
(2.1). In particular, it is a Bernstein function, then Φ is non-negative, non-decreasing
and continuous. For details, we refer to the well-known book [5]. The interested reader
can also consult the recent book [26].

We define the inverse process L = {Lt , t ≥ 0} to a subordinator as

Lt := inf{s ≥ 0 : Hs /∈ (0, t)}.
We recall that H0 = 0 and L0 = 0. We do not consider step-processes with Π((0,∞)) <
∞, we focus only on strictly increasing subordinators with infinite measures (then L
turns out to be a continuous process). By definition of inverse process, we can write

P0(Lt < s) = P0(Hs > t).(2.3)

We also denote by

h(t, x)dx = P (Ht ∈ dx) and l(t, x)dx = P (Lt ∈ dx)(2.4)

the corresponding densities (see for example [21]). Further on we use the following
potentials ∫ ∞

0

e−ξx h(t, x) dx = e−tΦ(ξ), ξ > 0,(2.5)

and, after easy calculations involving (2.3) and (2.5) (as already proved in [21])∫ ∞

0

e−λt l(t, x) dt =
Φ(λ)

λ
e−xΦ(λ), λ > 0.(2.6)

Let M > 0 and w ≥ 0. Let Mw be the set of (piecewise) continuous function on [0,∞)
of exponential order w such that |�(t)| ≤ Mewt. Denote by �̃ the Laplace transform of
�. Then, we define the operator DΦ

t : Mw �→ Mw such that∫ ∞

0

e−λt
D

Φ
t �(t) dt = Φ(λ)�̃(λ)− Φ(λ)

λ
�(0), λ > w,

where Φ is given in (2.1). Since � is exponentially bounded, the integral �̃ is absolutely
convergent for λ > w. The inverse Laplace transforms � and DΦ

t � are uniquely defined.
Since

Φ(λ)�̃(λ)− Φ(λ)

λ
�(0) = (λ�̃(λ)− �(0))

Φ(λ)

λ
,(2.7)
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the function DΦ
t � can be written as a convolution involving the ordinary derivative and

the inverse transform of (2.2) iff � ∈ Mw ∩C([0,∞),R+) and �′ ∈ Mw. We also observe
that (Young’s inequality)∫ ∞

0

|DΦ
t �|pdt ≤

(∫ ∞

0

|�′|pdt
) (

lim
λ↓0

Φ(λ)

λ

)p

, p ∈ [1,∞),(2.8)

where limλ↓0 Φ(λ)/λ is finite only in some cases. For example, for d = 0 and k = 0:

i) inverse Gaussian subordinator with Φ(λ) = σ−2
(√

2λσ2 + μ2 − μ
)
with σ 
= 0;

ii) gamma subordinator with Φ(λ) = a ln(1 + λ/b) with ab > 0;
iii) generalized stable subordinator with Φ(λ) = (λ + γ)α − γα with γ > 0 and

α ∈ (0, 1).

Thus, for example, DΦ
t � ∈ L1(0,∞) if �′ ∈ L1(0,∞) and Φ′(0) < ∞. The operator DΦ

t ,
in alternative and sometimes slightly different forms, it has been first considered in [25]
after in [18] and recently in [9, 27].

We introduce the following notation

M′
w = {ϕ ∈ C([0,∞),R+) : ϕ, ϕ′ ∈ Mw}.

Remark 2.1. Let us recall a couple of special cases.

i) We notice that when Φ(λ) = λ we have that Ht = t and Lt = t a. s. and in (2.8)
the equality holds. The operator DΦ

t becomes the ordinary derivative

Dt�(t) =
d�

dt
(t).

ii) The well-known case Φ(λ) = λα, α ∈ (0, 1) gives the Caputo–Djrbashian deriva-
tive

Dα
t �(t) =

1

Γ(1− α)

∫ t

0

�′(s) (t− s)−α ds.(2.9)

The corresponding processes are Ht which is a stable subordinator and Lt which
is an inverse to a stable subordinator ([12, 21, 22]).

Remark 2.2. We recall the following result which will be useful below. Let us introduce
the Riemann–Liouville (type) derivative

DΦ
t �(t) =

d

dt

∫ t

0

�(s) Π(t− s) ds.

Between DΦ
t and DΦ

t there exists the following relation

D
Φ
t u(t) = DΦ

t

(
u(t)− u(0)

)
= DΦ

t u(t)− u(0)Π((t,∞)),(2.10)

where in the last step we have used the fact that

DΦ
t c = cΠ((t,∞)) for a constant c.

The density l of the process Lt solves the following problem

DΦ
t l(t, x) = − ∂l

∂x
(t, x), x > 0, t > 0,

l(t, 0) = Π((t,∞)),

l(0, x) = δ(x).

(2.11)

From the Laplace technique, by considering (2.7) and the potential (2.6) we get imme-
diately the result. We skip the proof (the reader can consult [27]).
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3. Non-local linear equations

Lemma 3.1. Let v ∈ M′
w with w ≥ 0 be the solution to

dv

dt
= f(v), v(0) = c ≥ 0,(3.1)

where f is linear on M′
w. Then, v is the unique classical solution to

D
Φ
t v = f(v) ∗Π, v(0) = c.(3.2)

Proof. Notice that f on M′
w together with (3.1) say that f : M′

w → M′
w. The Laplace

transform of equation (3.1) writes

λṽ(λ)− v(0) = f(ṽ(λ))

or equivalently

Φ(λ)ṽ(λ)− Φ(λ)

λ
v(0) = f

(
Φ(λ)

λ
ṽ(λ)

)
.

The latter has the following reading

Φ(λ)ṽ(λ)− Φ(λ)

λ
v(0) =

∫ ∞

0

e−λtDΦ
t v(t)dt

and

f

(
Φ(λ)

λ
ṽ(λ)

)
=

Φ(λ)

λ
f (ṽ(λ)) =

Φ(λ)

λ

∫ ∞

0

f(v(z))e−zλdz

=

∫ ∞

0

e−λt

(∫ t

0

f(v(t− z))Π(z)dz

)
dt.

That is, the following pointwise equality holds, ∀ t > 0,

DΦ
t v(t) =

∫ t

0

f(v(t− z))Π(z)dz. �

The solution to DΦ
t u = f(u) where f is linear can be written in terms of the density

l(t, x). This is expected in case of linear f and it is well-known in case of linear operator
Av. Indeed, the latter can be included in the theory of time-changed processes first
introduced in [4] for the fractional (Caputo–Djrbashian) derivative and after, in [9, 27]
for a general non-local operator. For the sake of completeness we provide the following
statement.

Theorem 3.2. Let the setting of Lemma 3.1 prevails with w ≥ 0 and v ∈ M′
w. Then,

the function

M′
w 
 u(t) =

∫ ∞

0

v(x)l(t, dx) =: E0[v(Lt)]

is the unique classical solution to the non-local Cauchy problem

DΦ
t u = f(u), u(0) = c ≥ 0.(3.3)

Proof. We have that

ũ(λ) =
Φ(λ)

λ

∫ ∞

0

v(x)e−xΦ(λ)dx =
Φ(λ)

λ
ṽ(Φ(λ)), Φ(λ) > w

and the equation (3.3) leads to

Φ(λ)ũ(λ)− Φ(λ)

λ
u(0) = f(ũ(λ)).
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From the linearity of f , we can write

Φ(λ)ṽ(Φ(λ))− u(0) = f(ṽ(Φ(λ))).

Set λ∗ = Φ(λ). From the fact that u(0) = v(0) we write

λ∗ṽ(λ∗)− v(0) = f(ṽ(λ∗)),

which holds, for f linear, if and only if v′ = f(v). �
Let us consider Φ(λ) = λα. The well-known case

f(v) = −av, a > 0,

brings to the solution

u(t) = Eα(−atα) =
∑
k≥0

(−atα)k

Γ(αk + 1)
,(3.4)

which is the Mittag-Leffler function. Thus, equation (3.1) gives v(x) = ce−ax and equa-
tion (3.2) gives (as proved in [6])

u(t) = E0[e
−aLt ].(3.5)

We also notice that, from∑
k≥0

(−atα)k

Γ(αk + 1)
=

∑
k≥0

(−a)k

k!
E0[(Lt)

k] = E0

[
e−aLt

]
we can write

E0[(Lt)
k] =

Γ(k + 1)

Γ(αk + 1)
tαk, k ∈ N0.(3.6)

We focus on Φ given in (2.1) with

d = 0 and k = 0.(3.7)

Further on we always assume that (3.7) applies.

4. Non-local non-linear equations

Let us consider

f(z) = z(1− z).

We now approach the problem to find a probabilistic representation for the fractional
logistic equation. In particular, we consider the following two cases involving inverses to
subordinators.

4.1. Case I. The solution v to the logistic equation

dv

dt
= f(v), v(0) = v0 ∈ (0, 1)

on the positive real line can be written as

v(t) =
v0

v0 + (1− v0)e−t
=

∑
k≥0

(
v0 − 1

v0

)k

e−kt, t ≥ 0.(4.1)

We denote by Var[Y ] the variance of Y , that is Var[Y ] = E[(Y −E[Y ])2].
Let us introduce the process v(Lt) whose realizations include plateaux according to

the random time Lt. We have that

v(Lt) = v0 +

∫ Lt

0

f(v(s)) ds
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or equivalently

v(Lt) = v0 +

∫ ∞

0

f(v(s))1(s<Lt)ds,

where Lt can be regarded as the first time the subordinator Hs exits the set (0, t), that
is (s < Lt) ≡ (t > Hs) under P0. Thus,

E0[v(Lt)] = v0 +

∫ ∞

0

f(v(s))P0(Hs < t) ds.(4.2)

The λ-potential

E0

[∫ ∞

0

e−λt v(Lt) dt ; Lt < ζ

]
=

Φ(λ)

λ
E0

[∫ ζ

0

e−tΦ(λ)v(t) dt

]
, λ > 0,(4.3)

can be associated with (4.2) only if ζ = ∞ almost surely. Formula (4.3) can be obtained
from (2.5) and (2.6), see [8] for details. Let us consider ζ such that ζ = T < ∞ almost
surely. From (4.3) we observe that, as λ → 0+, we obtain for u(t) = E0[v(Lt);Lt < T ],∫ ∞

0

u(t) dt =

(
lim
λ↓0

Φ(λ)

λ

) ∫ T

0

v(t) dt,(4.4)

which is finite only if the limit Φ(λ)/λ is finite. Since v is continuous and bounded,
formula (4.2) is finite. In order to have a finite integral in (4.4), the function u is
obtained by extension with zero for t ≥ HT , that is for Lt ≥ T .

Assume that v, u ∈ L1((0, T ∗)) for some T ∗. Then, formula (4.4) can be considered
in order to have a reading in terms of delayed and rushed growth (see [8]). A helpful
example of this phenomenon is presented in Figure 1.

Theorem 4.1. Let σ ∈ Cb([0,∞)). Let u ∈ M′
0 be the solution to

DΦ
t u+ σ = f(u), u(0) = u0 ∈ (0, 1).

Then, u(t) = E0[v(Lt)] if and only if σ(t) = Var[v(Lt)].

Proof. With (2.11) in mind, an integration by parts yields

DΦ
t u(t) = −

∫ ∞

0

v(x)
dl

dx
(t, x) dx = v0 l(t, 0) +E0[v

′(Lt)],

where

lim
x↓0

∫ ∞

0

e−λtl(t, x) dt = lim
x→0

Φ(λ)

λ
e−xΦ(λ) =

Φ(λ)

λ
,

that is, ∫ ∞

0

e−λtl(t, 0) dt =

∫ ∞

0

e−λtΠ((t,∞)) dt.

From (2.10), we have that

D
Φ
t u(t) = DΦ

t u(t)− u(0)Π((t,∞))

and therefore, by taking into account that u(0) = v0, we write

DΦ
t u(t) = E0[v

′(Lt)] = E0[f(v(Lt))].

Since f(v) = v(1− v), we write

E0[v
′(Lt)] = E0[v(Lt)− v2(Lt)] = u(t)− u2(t)−E0[v

2(Lt)− u2(t)].
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Now we observe that

E0[v
2(Lt)− u2(t)] =E0[v

2(Lt)]−
(
E0[v(Lt)]

)2
= Var[v(Lt)]

and this concludes the proof. �

Let us consider the case Φ(λ) = λα. With formula (4.1) at hand, from (3.4) and (3.5),
we can write

u(t) =
∑
k≥0

(
u0 − 1

u0

)k

Eα(−ktα), t ≥ 0.(4.5)

This is the solution on the whole positive real line to

Dα
t u+ σ = u(1− u), u(0) = u0 ∈ (0, 1)(4.6)

according to Theorem 4.1. The function (4.5) has been first considered in [29] and after
in [2] in order to have a good approximation of the solution to the fractional logistic
equation (with Caputo–Djrbashian derivative). In [14] the author considered shifted-
Legendre polynomials in order to obtain approximate solutions of the fractional-order
logistic equation. In [24] the authors considered a simple algorithm in order to obtain
such solution including a numerical implementation in terms of Padè approximation.
Recently, it has been also considered in [20] as the solution to a modified fractional
logistic equation which is related to (4.6).

In conclusion, Theorem 4.1 extends the non-local logistic equation associated with
(4.1) to a general Φ.

4.2. Case II. The solution v to the logistic equation

dv

dt
= f(v), v(0) = v0 ∈ (0, 1)

on the convergence set (0, r) of the real line can be written as

v(t) =
∑
k≥0

Ek
tk

k!
, t ∈ (0, r),(4.7)

where E0 = v0 and the sequence {Ek}k is given by the Euler’s numbers if v0 = 1/2. The
equation

Dα
t u = u(1− u)

(where Dα
t is the Caputo–Djrbashian derivative) has been investigated in [13]. It turns

out that,

u(t) =
∑
k≥0

Eα
k

tαk

Γ(αk + 1)
, t ∈ (0, rα),(4.8)

is written in terms of the coefficient {Eα
k }k which are strictly related with the numbers

{Ek}k. In particular, we have that E1
k = Ek, ∀ k ≥ 0 and, for the sequence {Eα

k }k, we
have that

Eα
0 = u0 (the initial datum)

Eα
1 = Eα

0 (1− Eα
0 ) (the logistic constraint)

and

Eα
k+1 = Eα

k −
k∑

i=1

[
k
i

]
α

Eα
i Eα

k−i, k ∈ N,
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is the generating recursive formula. We termed[
k
i

]
α

=
Γ(αk + 1)

Γ(αi+ 1)Γ(β(k − i) + 1)
(4.9)

as fractional binomial coefficient because of the many similar properties shared with the
binomial coefficient. For example,[

k
i

]
1

=
k!

i! (k − i)!
=

(
k

i

)
.

Straightforward calculations show that, for any σ,

u(t) 
= E0[v(Lt)].

Indeed, u is defined on compacts K ⊆ (0, r). However, we are still able to establish some
connection between u and the process Lt. Let us consider

φk(t) :=
1

k!
E0[(Lt)

k], k ∈ N, t ∈ (0, r),(4.10)

which is the rescaled moment of order k of Lt. For a suitable sequence {EΦ
k }k, we

introduce the function

ū(t) :=
∑
k≥0

EΦ
k φk(t) = EΦ

0 φ0(t) +
∑
k≥1

EΦ
k φk(t),(4.11)

where obviously φk(0) = 0 ∀ k > 0 and φ0(t) = 1 ∀ t ≥ 0.

Lemma 4.2. If Φ(λ) = λα and EΦ
k = Eα

k for any k, then

u(t) = ū(t), ∀ t ∈ (0, rα).

Proof. The proof follows immediately by comparing (4.8) with (4.11). Since DΦ
t = Dα

t ,
the coefficients EΦ

k are exactly given by Eα
k and, from (3.6),

φk(t) =
tαk

Γ(αk + 1)
.

This concludes the proof. �
We notice that the representation (4.7) holds on compact sets. In particular, v(t),

t < r implies that v(Lt) is defined as Lt < r. That is, t < Hr. Thus, we should consider
the probabilistic representation

E0[v(Lt); t < Hr]

for the solution (4.8) where H is a stable subordinator and L is the inverse to H.

Lemma 4.3. Let us consider (4.10). We have that

D
Φ
t φk(t) = φk−1(t), t > 0, k ∈ N.

Proof. It follows immediately from the fact that (see formula (2.6))∫ ∞

0

e−λt

∫ ∞

0

xk l(t, x) dx dt =
Φ(λ)

λ

∫ ∞

0

xk e−xΦ(λ) dx =
Φ(λ)

λ

Γ(k + 1)

(Φ(λ))k+1

from which we get the Laplace transform∫ ∞

0

e−λtφk(t) dt =
1

λ (Φ(λ))k
.

This formula has been obtained in [28]. From (2.7) and the fact that φk(0) = 0, we write

Φ(λ)
1

λ (Φ(λ))k
− Φ(λ)

λ
φk(0) =

1

λ (Φ(λ))k−1
.
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We conclude the proof. �
We observe that for the sequence EΦ

k = (−a)k, k ≥ 0, a > 0 we have that

ū(t) =
∑
k≥0

(−a)k

k!
E0

[
(Lt)

k
]
= E0

[
e−aLt

]
,(4.12)

where Lt is an inverse to a subordinator with symbol Φ. Such a representation holds for
t ≥ 0. Moreover, from Lemma 4.3 we are able to conclude that

DΦ
t ū(t) =

∑
k≥0

(−a)k+1 φk(t) = −a ū(t).

This means that ū(t) = E0[v(Lt)] where v′ = −av. That is, the case in Theorem 3.2.
Concerning the extension of the result in Lemma 4.2 to a general symbol Φ, our

conjecture is as follows: There exists a sequence {EΦ
k }k such that

D
Φ
t ū(t) = f(ū(t)), t ∈ (0, rΦ)

for some rΦ > 0. Moreover,

ū(t) = E0[v(Lt); t < HrΦ ],

where H is a subordinator and L is the inverse of H.

0

0.
2

0.
6

1.
0

0e+00 2e+05 4e+05 6e+05 8e+05

0
0

0e+00 2e+05 4e+05 6e+05 8e+05

0.
2

0.
6

1.
0

order 0.5

Figure 1. Top picture: the function (0, 10) 
 t → v(t) ∈ (0, 1) given in
formula (4.1) with v0 = 0.1. Picture in the middle: a realization of Lt,
that is a continuous function from (0, T ) to (0, 10) where T = 8e + 05.
Here Lt is the inverse to a stable subordinator with α = 0.5. Bottom
picture: the composition v(Lt) : (0, T ) → (0, 1). The last picture shows
that Lt “delays” the profile of v(t). Indeed, due to the plateaux of the
new time Lt, from the function v(t), t ∈ (0, 10) we obtain the random
function v(Lt), t ∈ (0, T ) where T � 10. This can be regarded as a
delaying effect of Lt on the growth v(t).
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The function (4.12) has been also studied in [18] for complete Bernstein functions and
[23] for special Bernstein functions. It has been considered also in [7] in connection with
the Poisson and Skellam processes. Moreover, the case EΦ

k = ak has been also studied in
[19] for complete Bernstein functions and in [3] in the general case. As far as we know
for the moments of Lt and the function (4.12) we do not have an explicit representation.
Actually, this still is an open problem.

In conclusion, the above conjecture would extend the non-local logistic equation asso-
ciated with (4.7) to a general Φ.
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