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Global patterns of vascular plant alpha
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Global patterns of regional (gamma) plant diversity are relatively well known,
but whether these patterns hold for local communities, and the dependence
on spatial grain, remain controversial. Using data on 170,272 georeferenced
local plant assemblages, we created global maps of alpha diversity (local
species richness) for vascular plants at three different spatial grains, for forests
and non-forests.We show that alpha diversity is consistently high across grains
in some regions (for example, Andean-Amazonian foothills), but regional
‘scaling anomalies’ (deviations from the positive correlation) exist elsewhere,
particularly in Eurasian temperate forests with disproportionally higher fine-
grained richness and many African tropical forests with disproportionally
higher coarse-grained richness. The influence of different climatic, topo-
graphic and biogeographical variables on alpha diversity also varies across
grains. Ourmulti-grainmaps return a nuanced understanding of vascular plant
biodiversity patterns that complements classic maps of biodiversity hotspots
and will improve predictions of global change effects on biodiversity.

Our understanding of the global patterns of plant diversity largely
stems from studies based on either local to national floras or stacked
distribution range maps1–4. These approaches allow quantification of
the total number of species occurring in a region but do not address
how plant species co-occur locally and form species-rich or species-

poor communities. With the notable exceptions of trees and ferns5–9,
the global distribution of local plant diversity remains poorly
understood10.

The species richness of local plant communities, i.e., alpha
diversity, is non-linearly related to the size of the sampling unit, i.e., the
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spatial grain9,11–13. Enlarging the sampling unit means thatmore species
are progressively captured in the same plot, so that the alpha diversity
of a sampled plot slowly, but non-linearly, approaches the regional
species richness, i.e. gamma diversity11,12,14. The steepness of the curve,
i.e., beta diversity, determines how the plant community composition
varies from place to place11. This non-linearity complicates direct
comparisons of biodiversity data from place to place and makes
mapping alpha diversity across large areas challenging. Even in well-
sampled regions, available data are heterogeneousmixtures of surveys
with varying spatial grains and sampling protocols, and different
reference taxonomies9,15,16. Furthermore, there is a typical trade-off
between spatial grain and extent in biodiversity research, with most
fine-grained studies only covering limited spatial extents. Thus the
question of whether global patterns of alpha diversity are consistent
with known patterns of regional gamma diversity has remained
unanswered.

Plant diversity patterns result from ecological and evolutionary
processes acting at different spatial and temporal scales17,18. At

continental and regional scales, evolutionary processes (migration,
speciation, extinction) as well as geological and climatic history play
key roles19,20. At local scales, diversity depends primarily on assembly
processes related to species dispersal, habitat filtering and biotic
interactions (including humans)3,21,22. There is clearly an intimate nes-
ted relationship between processes at different scales, as a species
must be present regionally to occur locally, and large-scale environ-
mental factors influence local conditions8,17,23. An exploration of alpha
diversity patterns at multiple grain sizes can discriminate between
areas where species richness is consistently high or low across grain
sizes, and those where it is not, i.e., where species richness is either
high at fine grains and low at coarse grains, or vice versa9,10,24,25. This
may provide insights into the prevailing mechanisms that shape bio-
diversity distribution at different scales, and which produce and
maintain global plant diversity11,26. For example, the discrepancies
between alpha diversity patterns at different grains could indicate
regional or biome-related variation in the roles of habitat hetero-
geneity, dispersal barriers or environmental filtering27–29.

Fig. 1 | Global distribution of estimated vascular plant alpha diversity in for-
ests. Spatial grains: A 400 m2; B 1000 m2; C 1 ha. The maps on the left show the
median estimated species richness at the corresponding spatial grain for each 2.5
arcminute grid cell of theWorld, averaged over 99 boosted regression treemodels
based on different resampled datasets. Colors are on a log2 scale. The maps on the
right show the distribution of hotspots (red) and coldspots (blue), i.e., areas where
species richness is above the 95th or below the 5th global percentile, respectively.

We only show alpha diversity estimates for locations where forests would grow
under current climate conditions and without human influence208. Hatching
represents data-poor regions, i.e., regions farther than 500km from any vegetation
plots, for which we did not generate predictions. Global maps with predictions for
these data-poor regions can be found in Supplementary Fig. 3. Values are averaged
over 2600 km2 hexagons. Source data are provided as a Source Data file.
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Here, we explore alpha diversity patterns across multiple spatial
grains globally. We leverage methodological advances in modeling
biodiversity across scales9,12,18,30–32 using the sPlot database, a global
initiative that aggregates and harmonizes local-scale species co-
occurrence data from hundreds of independent datasets and vegeta-
tion surveys15,16. The sPlot database incorporates more than 1 million
vegetation plots and covers both natural and semi-natural ecosystems
on all continents and in all biomes15. We focused on terrestrial vascular
plants only, since data on bryophytes, lichens, vascular epiphytes and
aquatic habitats are too scattered in the sPlot database.

We appliedmachine learning (boosted regression trees) tomodel
the relationships between vascular plant species richness at different
grains and 20 global datasets on current and past climate, soil and
topography.Ourmodels allowed relationships between alpha diversity
and environmental variables to vary across grains by including inter-
action terms between plot size and other predictors9. To simulta-
neously quantify uncertainty and to account for the uneven
distribution of data across biomes and vegetation formations in our

database, we averaged our results over 99model runs, each based on a
stratified resampling of the data (Supplementary Fig. 1, Supplementary
Data 1). By modeling the relationships between alpha diversity and
environmental variables across the globe, we (1) predicted alpha
diversity of vascular plants at three different grain sizes spanning two
orders of magnitude, (2) determined how the explanatory power of
potential environmental drivers on alpha diversity varies across the
three grain sizes, and (3) identified regional scaling anomalies, i.e.,
areaswhere alpha diversity is high atfine grain but lowat coarse grains,
or vice versa.

Results
Multi-grain global maps of local species richness
We modeled forest and non-forest ecosystems jointly but focus on
each broad formation separately in the main text. Modeling them
separately yielded similar results (not shown). For forests, we gener-
ated estimates for the three grain sizes most commonly used for
sampling forests: 400 m2, 1000 m2 and 1 ha. At the finest grain

Fig. 2 | Global distribution of estimated vascular plant alpha diversity in non-
forest ecosystems. Spatial grains: A 10 m2; B 100m2; C 1000m2. The maps on the
left show the median estimated species richness at the corresponding spatial grain
for each 2.5 arcminute grid cell of the World, averaged across 99 boosted regres-
sion tree models based on different resampled datasets. Colors are on a log2 scale.
Themaps on the right show the distribution of hotspots (red) and coldspots (blue),
i.e., areas where species richness is above the 95th or below the 5th global

percentile, respectively.Weonly showalpha diversity estimates for locationswhere
the land cover ‘herbaceous vegetation’ occurs based on a consensus map that
integratesmultipleglobal remote sensing-derived land-coverproducts209. Hatching
represents data-poor regions, i.e., regions farther than 500km from any vegetation
plots, for which we did not generate predictions. Global maps with predictions for
these data-poor regions can be found in Supplementary Fig. 5. Values are averaged
over 2600 km2 hexagons. Source data are provided as a Source Data file.
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(400 m2), the estimated alpha diversity of vascular plants (median
prediction of each pixel of 2.5 arcminute resolution across the 99
resampled subsets) ranged from 1 to 120 species (median across all
pixels = 22, interquartile range or IQR = 10; Fig. 1A, Supplementary
Table 1). The areas with alpha diversity above the global 95th percen-
tile (hereafter ‘hotspots’) were the forest-steppe region of easternmost
Europe and Siberia, East Asia, Borneo and New Guinea, the eastern
coast of Australia, the western Congo Basin, eastern Madagascar, the
Andean-Amazonian foothills, the South American Atlantic Forest
(‘Mata Atlântica’) and the Appalachian Mountains. Coldspots (i.e.,
areas with alpha diversity at a given grain size below the global 5th

percentile) occurred in the Atlantic andMediterranean part of Europe,
central and western India, southern Australia, central Africa – specifi-
cally the eastern Guinean forest and the Sudanian savanna belt – and
along the Pacific coast of North America. At the intermediate grain
(1000 m2), the median estimated richness per grid cell in forest eco-
systems ranged from 1 to 197 vascular plant species (global median
across all grid cells = 29, IQR = 13) (Fig. 1B, Supplementary Table 1).
Compared to the finest grain, all the hotspots in the equatorial region
(Indonesia, Borneo, Andean-Amazonian foothills) increased in extent,
whereas hotspots in the temperate and boreal regions either dis-
appeared or shrank considerably. The coldspots in Western and
Southern Europe and western North America remained, while those in
central Africa diminished in size. Finally, at the coarsest grain (1 ha),
average species richness per grid cell ranged from 2 to 921 species
(median = 40, IQR = 39; Fig. 1C, Supplementary Table 1). At this grain,
the well-known difference in species richness between the tropics and
the boreal and temperate regions became apparent. The South
American hotspots became connected, forming a belt spanning from
the Andean-Amazonian foothills through the Chiquitano dry forest to
the southern Pantanal and the Mata Atlântica regions. The hotspot in
the western Congo Basin increased in size (Fig. 1C). The temperate
region contained no hotspots at this grain. The coldspot in southern
Australia expanded to the eastern coast, while the coldspot in central
Africa disappeared. The uncertainty in alpha diversity estimates,

quantified as the ratio between IQR and median across the 99 resam-
pled subsets, was highest in the boreal regions of Canada, Central and
Eastern Siberia, the Amazon and Sundaland (Supplementary Fig. 2).

For non-forest ecosystems, weused an alternative set of grains: 10
m2, 100m2 and 1000m2, to match the most frequently used plot sizes
in our database. At the finest grain (10m2), themedian estimated alpha
diversity across the 99 resampled subsets ranged from0 to68 vascular
plant species (median across all grid cells = 14, IQR = 7; Fig. 2A, Sup-
plementary Table 1). At this grain, non-forest hotspots were widely
distributed across the forest-steppe region of easternmost Europe and
Siberia, the central loess plateau of China, southern Eastern Australia,
theDrakensberg region inSouthAfrica, subtropical SouthAmerica and
eastern North America. Coldspots were widespread in southern Cen-
tral Asia, central and northwestern Australia, the Sahel region of Africa
and along the Pacific coast of South America. At the intermediate grain
(100 m2), the median estimated species richness per grid cell ranged
from 0 to 90 (median = 17, IQR = 9, Fig. 2B, Supplementary Table 1),
and the distribution of hotspots and coldspots remained essentially
unchanged compared to the finest grain. At the coarsest grain
(1000 m2), the median estimated richness per grid cell ranged from 0
to 184 species (median = 23, IQR = 13, Fig. 2C, Supplementary Table 1).
Except for the Loessplateau inChina, hotspotswerealmost exclusively
concentrated in subtropical regions at this scale, especially south-
eastern Australia, Madagascar, the Appalachian region, and the Pan-
tanal and southern Cerrado in South America. The location of
coldspots hardly changed compared to finer grains. The uncertainty in
alpha diversity estimates was highest in northern Canada, the Tibetan
Plateau and the Persian Gulf region (Supplementary Fig. 2). A map
jointly showing alpha diversity of forest and non-forest ecosystems at
1000 m2 grain is available in the supplementary material (Supple-
mentary Fig. 4).

Overall, the models showed a relatively high predictive power
(average over 99 resampling iterations: Pearson’s r = 0.49), even after
implementing a spatially constrained, block cross-validation33 that
accounted for the residual non-independence of training and test

Fig. 3 | Relative influence of environmental and biogeographic variables on
alpha diversity of vascular plants. Points represent the median relative impor-
tance of a predictor across 99 runs of a boosted regression tree model that jointly
models vascular plant species richness in forest and non-forest formations. The

bars connect the 2.5th and the 97.5th percentiles of the relative importance dis-
tribution across runs. The vertical dashed line separates variables with relative
influence higher or lower than expected, i.e., those variables whose relative influ-
ence is higher or lower than 100% divided by the number of variables (n = 20).
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datasets arising from the clustered nature of our database34. We
found no major bias or trend in residuals across grain sizes, biomes
or geographical regions (Supplementary Fig. 6), and the frequency
distributions of observed and predicted values largely overlapped
(Supplementary Fig. 7, Supplementary Table 2). The predicted values
showed a slight tendency towards the samplemean with thinner tails
at the extremes, which is a common feature of ensemble machine-
learning methods, even with the bias-correction method we used
(see Methods)35. Minor deviations only occurred for the dry mid-
latitude and boreal biomes at coarse grains (Supplementary Fig. 7).
Given the relatively small sample size for the wet tropics, we
recommend interpreting the results for these regions with caution.
For a complete description of model validation, see Supplementary
Methods.

Environmental and biogeographical determinants
Our statistical models reveal which of the environmental and biogeo-
graphic variables tested appear to drive alpha diversity of vascular
plants (Fig. 3). Among the predictors having a higher-than-expected
relative influence, plot size, i.e., the grain size of the vegetation plot,
consistently ranked first across the 99 resampledmodels. Climate also
had a high relative influence in shaping alpha diversity patterns,
especially annual mean temperature and the temperature of the
warmest and wettest quarter of the year (PC1 and PC4, respectively, in
a principal component analysis based on 18 bioclimatic variables). The
ecoregional species pool, i.e., the estimated number of species
occurring in the ecoregion in which a given plot is located2, was the
fourthmost important predictor, highlighting the nested link between
local and regional biodiversity. Finally, despite the expected impor-
tance of soil conditions for local plant diversity, only one soil variable,
i.e., the percentage of coarse soil fragments, had an influence greater
than 5%.

We created partial dependence plots to explore the directionality
of these relationships and whether they are consistent across spatial

grains and vegetation formations (Fig. 4). Plant alpha diversity
increased non-linearly with increasing plot size. This effect saturated at
relatively fine grains (~100 m2) in non-forest ecosystems and at 1 ha in
forest ecosystems, which can be explained by the different grains at
which forests and non-forests were sampled, and the different spatial
structure of these vegetation types. Grain size interacted with most of
theotherpredictors, as revealedby thedifferent environment–richness
relationships at different grains (Fig. 4). Alpha diversity increasedwhen
the size of the ecoregional species pool increased, but only for coarse
grains. It also increased toward tropical regions (i.e., regions with
higher temperatures of the warmest and wettest quarters, high scores
on PC4) and at higher mean annual temperature (PC1), especially for
coarse grains.

Regional scaling anomalies in species richness across grain sizes
Many areas with relatively high fine-grained alpha diversity also had
high alpha diversity at coarser grains (Fig. 5). For forests, our models
revealed consistently high alpha diversity across grains in Sundaland,
the Congo Basin, Madagascar, as well as in the eastern Andean foot-
hills, the Amazon Basin and the Southern American Mata Atlântica
(Fig. 5A). Areas with consistently low alpha diversity across all grains
were the western parts of the USA and Canada, the Atlantic region of
Europe, Fennoscandia, the Mediterranean Basin, central and northern
India, and southern Australia. However, not all areas with relatively
high fine-grained richness also had high coarse-grained richness, and
vice versa, revealing regional scaling anomalies in plant alpha diversity
patterns18. Areas with high plant alpha diversity at coarse grains, but
relatively low alpha diversity at fine grains, were the tropical forests of
Africa and the Guiana Shield in South America. The opposite was true
in the Eastern European forest–steppe belt, northeastern Argentina,
Eastern Australia and New Zealand (Fig. 5A).

The regions hosting non-forest ecosystemswith consistently high
plant alpha diversity across grains were the European Alps, the forest-
steppe of Eastern Europe and Siberia, the loess plateau of China,

Fig. 4 | Partial dependence plots for the main determinants of plant alpha
diversity at different grain sizes. These plots show the fitted function of themost
influential variables explaining vascular plant alpha diversity at three different
spatial grains, while holding all other predictor variables constant at their mean
value. The fitted function is the difference between the response value at a given
value of eachpredictor and themean response value. Each line represents the fitted

function for one of the 99 boosted regression tree model runs. Fine, intermediate
and coarse grains correspond to 400 m2, 1000 m2 and 1 ha in forests (A) and 10,
100, and 1000m2 innon-forest ecosystems (B), respectively. Variables are sortedby
decreasing relative influence. The rug plots on the x-axis display the distribution of
the calibration data. Note the different range of plot sizes between forest and non-
forest ecosystems.
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Eastern Australia, eastern South Africa, Madagascar, the Chaco, Mata
Atlântica and some other regions of South America, and eastern North
America (Fig. 5B). Consistently low plant alpha diversity across grains
occurred in Inner Asia and in the northern African desert and semi-
desert regions, the Tibetan Plateau, Namib Desert, central Australia,
the Atacama and High Monte deserts in the high Andean plateaus
south of the equator as well as in the North American prairies and
deserts. High coarse-grain species richness was associated with low
fine-grain species richness in theMyanmar-Thailand-Chinaborderland,
Ethiopia and Mexico. The opposite situation was relatively rare,
occurring locally in the temperate grasslands of southeastern
Australia.

Discussion
By simultaneously highlighting patterns at multiple spatial grains, our
maps provide a nuanced picture of the pattern of alpha diversity of
vascular plants. This complements our understanding of the distribu-
tion of biodiversity hotspots36 and regional (i.e., gamma) vascularplant
diversity2–4,37. Within the broad range of plot sizes commonly used for
vegetation sampling, our maps distinguish between regions where
high coarse-grained alpha diversity results largely from high fine-
grained richness, and regions where high coarse-grained alpha diver-
sity results more from species turnover between adjacent plant com-
munities (i.e., fine-grained beta diversity).

Our results are consistent with previous studies suggesting that
forests in Borneo, New Guinea, Madagascar, eastern South Africa and
the Andean-Amazonian foothills are hotspots for plant biodiversity
across all spatial grains37. There is considerable agreement between
our map of 1-ha alpha diversity in forests and a recently published
global map of tree species richness at the same grain9. Similarly, pat-
terns of fine-grained alpha diversity in non-forest ecosystems are
consistent with the local and regional patterns recently observed for
alpine vegetation38 and Palearctic grasslands25. We also found good
agreement with previous research in the distribution of areas of low
diversity (coldspots), such as the non-forest vegetation in the western
Tibetan Plateau, the semi-desert regions of central Asia, coastal
Somalia and the forests in the Pacific Northwest of North America,
despite the large difference in grain37.

In some regions, however, the difference between our results and
previously reported patterns was striking. None of the regions holding
the world records of plant alpha diversity appeared in our results39.
The foothills of the Carpathians, for instance, are known for hosting
semi-natural grasslands that are among the most species-rich plant
communities globally at fine grains (e.g., >100 species in 16 m2)39,40. As
many as 233 species (including 59 epiphyte species, not considered
here) were observed in a 100 m2 rain forest plot in Costa Rica41. At
intermediate grains, very high plant species richness has been repor-
ted for the hemiboreal forests of the northern Russian Altai

Fig. 5 | Regional scaling anomalies in species richness across grain sizes. Cor-
respondence between estimates of plant alpha diversity at fine and coarse grains
for A forest and B non-forest ecosystems. Fine-grained alpha diversity was calcu-
lated at 400 m2 and 10 m2 for forest and non-forest ecosystems, respectively.
Coarse-grained alpha diversity was calculated at 1 ha and 1000 m2 for forest and
non-forest ecosystems, respectively. We only show alpha diversity estimates where
(A) forests would grow under current climate conditions and without human

influence208, or B the land cover ‘herbaceous vegetation’ occurs, based on a con-
sensus map integrating multiple global remote sensing-derived land-cover
products209. Color codes are based on quartile distributions of species richness at
the two grains. Parallel hatching represents data-poor regions, i.e., regions farther
than 500 km from any vegetation plots. Values are averaged over 7700 km2 hexa-
gons. SR: species richness. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-32063-z

Nature Communications |         (2022) 13:4683 6



(149 species per 1000m2)42 and Colombia (313 species per 1000m2)43.
At coarse grains, the world record is in Ecuador (942 species in 1 ha,
including 172 epiphytes)44. Except for the Altai region, however, our
maps do not show record high species richness in any of these regions.
A general explanation is that our maps represent local averages across
model runs, large areas (2.5 arcminute grid resolution) and a mixture
of habitat types, so that the richest sites, which are rare in the land-
scape, have been averaged with neighboring sites that belong to other
ecosystems with lower species richness. This is true, for instance, in
Europe, where our data contained most non-forest vegetation types,
including species-poor grasslands on acidic soils. The lack of data for
epiphytes can partially explain why our model did not predict the
expected high alpha diversity inMesoamerica, where this growth form
can account for up to 25% of forest species41,45,46.

Interestingly, ourmodels highlighted that alphadiversity does not
differ markedly between temperate and tropical regions at the finest
grains, but differences become more pronounced at coarser grains.
This may reflect the often overlooked fact that tropical forests have a
relatively species-poor herb layer compared to temperate forest
ecosystems46,47. For instance, the high alpha diversity of trees in West
African forests7 is not accompanied by an equally high richness of herb
or shrub species in the understorey. The low diversity in these
understories could bedue to the fact that tropical lowland forests have
a closed canopy year-round48, or that fires occur frequently, favoring
grass-dominated, species-poor understories49. Together with the
scarcity of data on epiphytes, a species-poor herb layer might explain
why tropical lowland forests exhibit scaling anomalies, namely low
alpha diversity at fine grains but high at coarse grains. If most of the
diversity (or data) is in the tree layer, large vegetation plots are needed
to ensure that the diversity of an ecosystem is appropriately sampled,
as few tree individuals canphysically co-occur at small sampling grains.
We note, however, that uncertainties were high for tropical forests,
requiring a cautious interpretation of these results.

In general, finding these scaling anomalies points to the role of
beta diversity as a cross-scale diversity metric, and suggests that the
relative contribution of different eco-evolutionary processes in
determining plant diversity patterns varies between regions. In many
tropical lowland forests, alpha diversity is low at fine grains but
increases rapidly with increasing grain size. This is the case, for
instance, in thewesternAmazon, wheremuchof the regional (gamma)
diversity depends on species turnover rather than on the coexistence
of a high number of species at the same site50. This suggests that the
tropics might be shaped by processes promoting species coexistence
through a tighter packing in the niche space. Recent work found a
latitudinal increase in niche specialization and marginality of trees
towards the equators, which has been attributed to the stable climate
and high productivity in the tropics51. Alternative explanations include
rarity and priority effects related to high productivity29, more uniform
environmental conditions and stronger dispersal limitation at fine
scales28, or stronger mycorrhiza-mediated effects of interspecific
competition and habitat adaptation52 in the tropics compared to
temperate regions. While the relative contribution of these processes
remains a matter of speculation, our work points to the need for an
improved understanding of the spatial variation of beta diversity in
plant diversity analysis53. Beta diversity, rather than alpha diversity
per se, appears to be the main driver of spatial differences in gamma
diversity between temperate and tropical regions.

Conversely, we observed high plant alpha diversity at fine grains
but relatively low alpha diversity at coarse grains in many temperate
regions, including the Eastern European forest-steppe belt, East Asia
and southeastern Australia. This pattern might be indicative of effec-
tive niche partitioning at fine grains and more homogeneous land-
scapes without dispersal barriers at coarse grains54. There is evidence
that niche processes play a stronger role than neutral processes in
determining fine-scale beta diversity at higher latitudes and

altitudes28–30, where species are thought to have broader niches and be
less responsive to geographical changes55. This is consistent with
recent findings that the nestedness of tree communities increases with
latitude, possibly due to the high share of ectomycorrhizal species in
colder and wetter conditions52. Finally, high species richness at fine
grains might also depend on plant size, as many small plants can
coexist in a given grain size. Such conditions mainly occur in grass-
lands, e.g., in Eastern Australia, where this mechanism has been
invoked to explain differences in beta diversity among vegetation
types56.

Our work allows us to rank the predictors of alpha diversity by
their importance. Since the species–area relationship has often been
described as one of the few rules in ecology14, the high importance of
plot size in our models is not surprising. Our important advance,
however, is that by explicitly incorporating this nonlinear relationship
into our models, we created a grain-independent model that links
alpha diversity to multiple climatic, topographic and biogeographical
predictors. We also showed that ecoregions with a large species pool
aremore likely to host species-rich communities. This pattern became
disproportionately stronger at coarser grains, probably because at
finer grains the maximum number of locally co-occurring species is
constrainedby thenumber of individuals that canfit into the grain. The
other biogeographical covariates, namely biomes and realms, had very
little effect on predicting alpha diversity. This is probably because they
are closely related to other predictors with stronger explanatory
power, i.e.,macroclimate andecoregions, respectively3. The increasing
influenceofmacroclimate and ecoregional species pool with grain size
is, however, in line with evidence on the role of climatic and geological
histories of ecoregions on species pools8,10,20,24. This is not surprising
since tectonicmovements, uplift ofmountain ranges, climatic stability,
and glaciation events all play a role in driving regional speciation and
extinction rates3. This result supports the view that, although inti-
mately related, habitat filtering and biogeographical factors related to
regional differences in geological and climatic history, have a different
influence on patterns of alpha diversity at fine vs. coarse grains10.

Although our study is based on the largest collection of global
vegetation-plot data ever compiled, there are some shortcomings. The
most important limitation is the uneven distribution of vegetation
plots across biogeographical regions. Most of our data points were in
Europe and other countries with a strong tradition of vegetation sur-
veys, while the coverage of tropical areas, especially the Amazon and
equatorial Africa, was poor (Supplementary Fig. 1). Furthermore, data
from tropical forests were often incomplete, containing information
on woody species only. Although the targeted search for additional
data, coupled with the stratified resampling and statistical model we
applied, mitigate these problems (see Methods), they clearly cannot
compensate for the lack of comprehensive data on plant composition
in many species-rich regions (especially large parts of the tropics).
Ongoing initiatives to mobilize existing data, expand biodiversity
surveys by including underreported growth forms such as herbs or
epiphytes45,46, and improve the overall taxonomic knowledge for these
regions47,57 are, therefore, high priorities in biodiversity research58. A
second limitation is the scale mismatch between some very fine-
grained vegetation plots and our use of coarse-grained environmental
predictors, as highlighted by other global-scale biogeographical
analyses22. Thus, our models ignore the mounting evidence of the
strong modulating impact of local land cover, topographic hetero-
geneity and vegetation structure on climatic conditions, rendering the
environmental conditions experienced by organisms at the local scale
markedly different from those inferred from global macroclimatic
models59. Finally, our analysis focuses on natural and semi-natural
plant communities but ignores the role of human impacts and non-
native species invasions. These effects are too diverse and multi-
faceted to be included in a simple statistical model but clearly play a
major role in the distribution of plant species, both at local and
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regional scales60. Taken together, these limitations imply that although
the accuracy of our models was relatively high, our results may still be
missing important environmental drivers, especially at fine grain sizes.

Despite these limitations, our analysis provides important insights
and is a step forward in mapping global plant diversity. First, it rein-
forces the idea that large-scale evolutionary and historical processes
interactwith local factors to shape plant communities3,17,23. Indeed, our
models indicate that macroecological gradients have a consistent
effect on plant alpha diversity, but with magnitudes that vary across
grains. Second, by highlighting regional scaling anomalies in alpha
diversity across different plot sizes, our study can improve our ability
to predict biodiversity response to global change11. Third, our work
adds a new dimension to our understanding of global biodiversity
patterns and hotspots previously defined based on gamma diversity
only. This could have implications for conservation. For example,
coarse-grained hotspots might require networks of relatively large
protected areas, whereas fine-grained hotspots might be more sensi-
tive to biotic homogenization and more dependent on maintaining
traditional management or a particular type of land use. Explicit con-
sideration of the difference between coarse- and fine-grained hotspots
complements the regional data on species richness and endemism
commonly used for delineating global biodiversity hotspots.

Methods
Species richness data
The vegetation-plot database ‘sPlot’ (www.idiv.de/splot) collates 110
national or regional vegetation-plot datasets. Vegetation-plot records
provide geo-referenced information on the presence and cover/
abundance of all vascular plants co-occurring within a delimited area.
The sPlot database version 2.1 contains records from 1,121,244 vege-
tation plots surveyed between 1885 and 2015. These comprise
23,586,216 occurrence records for 58,066 vascular plant taxa, whose
names have been standardized to a common nomenclature15. When
the formation to which a plot belonged was not specified (n = 137,146
plots), we used the growth form of the recorded species61 to classify a
plot as forest or non-forest as in ref. 22. That is, we defined a plot
record as forest if the sum of the cover values of all tree taxa was >25%
of the sum of the cover values of all species in that plot, and as non-
forest, if the sum of cover values of all low‐growing taxa other than
trees and shrubs was >90% of the sumof the cover values of all species
in that plot. Plots notmeeting either conditionwere excluded from the
analysis, as well as all plots belonging towetland or aquatic vegetation.
Plots also had a wide variation in the sampled area (1–25,000 m2).
Therefore, we performed a preliminary screening and only retained
plots sized between 100 and 25,000m2 for forest, and between 10 and
1500 m2 for non-forest, as these are the most frequent plot sizes used
by plant ecologists in the field. Plots without information on the
sampled area were also excluded. Similarly, we excluded all plots that
we could confidently assign to anthropogenic communities, here
defined as any vegetation that is shaped by intensive and repeated
human interference, including weed communities on arable land,
ruderal vegetation and intensively managed pastures and meadows.

The data in the sPlot database are geographically biased since
plots are unevenly distributed across geographical regions and for-
mations (Supplementary Fig. 1), with relatively few data from the wet
tropics. We therefore made a special effort to improve the data cov-
erage in these regions by searching for publications and databases that
report species richness, plot size and spatial coordinates of vegetation
plots in the tropics. We focused on plots for which the full assemblage
of vascular plants (with or without epiphytes) was sampled. However,
such data were particularly scarce in many regions (e.g., the central
Amazon, Western Ghats and Sundaland). For these regions, we also
included data reporting woody species richness only (along with the
diameter at breast height—DBH—used as the minimum sampling
threshold). In total, we found information for an additional set of 1914

vegetation plots from 53 papers (Supplementary References). Of
these, only 170 vegetation plots contained species richness informa-
tion for all vascular plants. Finally, we scanned the Global Index of
Vegetation-plot Databases62 to retrieve additional datasets from the
tropics, which were not included in sPlot 2.1. We obtained permission
to use 11 local datasets, totaling 7929 additional vegetation plots (7385
with species richness data for all vascular plants). In total, our database
contained 412,452 vegetation plots41,59,63–196 (Supplementary Fig. 1,
Supplementary Data 1).

Data cleaning and geographical resampling
To further mitigate the remaining geographical bias in vegetation-plot
distribution and to account for the fact that plot sizes vary markedly
across regions and vegetation types (Supplementary Fig. 8), we
applied a stratified resampling strategy that we repeated 99 times. We
defined each stratum as a unique combination of realm197, biome15,
broad formation (two classes: forest and non-forest), and plot size as a
factor variable with four levels (small: ≤150, medium: 150–600, large:
600–1200, very large: >1200 m2). These intervals were chosen to
encompass the grains used for predictions (i.e., 10, 100, 400, 1000 and
1 ha, see below) while accounting for the fact that some plot sizes are
more routinely used than others. For each stratum, we randomly
sampled (without replacement) up to 100 vegetation plots in each
iteration. If a stratum had fewer than 100 vegetation plots, we retained
all of them. This procedure resulted in the selection of 17,972 plots in
each iteration. The total number of plots used across the 99 iterations
was 170,272. Altogether, these plots provided 9,953,940 occurrence
records for 53,271 vascular plant taxa, i.e., ~15% of the estimated
~350,000 vascular plant species that exist. This figure is slightly
underestimated, since for 1893 plots (59,299 occurrence records) only
aggregated alpha diversity data were available, but no species-
level data.

Not all vegetation plots were complete with respect to the sam-
pled functional groups. Most records from tropical forest plots con-
tained either only tree data, or only data on trees and shrubs
(Supplementary Fig. 9). Excluding these plots would not be optimal, as
it would have greatly reduced the spatial coverageof our dataset. Since
most of these incompletely sampled plots were from the tropics,
excluding them would also create the risk of introducing a strong
spatial bias into our model. Therefore, we retained these plots in the
dataset and included a new predictor variable called ‘plants recorded’
(three levels: ‘complete vegetation’, ‘trees and shrubs only’, ‘trees
only’) in our statisticalmodels (seebelow). Specifically, a plot belonged
to the ‘only trees’ level if it only contained information on woody
species with a diameter at breast height (DBH) larger than 5 cm. It
belonged to the ‘only trees and shrubs’ level when it either contained
information on all woody species (both trees and shrubs) but not
herbs, or if the minimum DBH threshold used for sampling woody
individuals was less than or equal to 5 cm.

Asmost of these incompletely sampled plots were in the tropics,
we simulated the occurrence of incomplete plots also in the other
biomes when resampling the full database. This was achieved by
selecting some plots with complete vegetation information and
recalculating their species richness when accounting for ‘only trees’,
i.e., discarding all information on the occurrence of shrub and herb
species, or for ‘only trees and shrubs’, i.e., discarding information on
herbs. We limited this procedure to biomes with >10,000 plots with
complete vegetation information (i.e., subtropics with winter rain,
subtropics with year-round rain, temperate mid-latitudes). In these
biomes, 20% of all the plots selected randomly within each resam-
pling iteration (623 on average) were transformed this way. This
corresponded to an increase in the number of incomplete plots in
these selected biomes from 151 to 359 (on average over the 99
iterations), which is close to the average number of incomplete plots
occurring in the other biomes (n = 373). By rarefying data to simulate
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plots with incomplete vegetation records, we reduced the possible
geographical bias resulting from the uneven distribution of incom-
plete plots across biomes. This allowed the use of incomplete plots
from tropical regions (where complete plots are rare) whenmodeling
the response of local vascular plant richness at the global scale
(see below).

Explanatory variables
Based on the plots’ geographic coordinates, we retrieved bioclimatic,
soil, topographic and biogeographical variables fromexternal sources,
which we used as explanatory variables for species richnessmodeling.
We extracted all the 19 bioclimatic variables included inCHELSA v1.1198,
and seven soil variables at 250-m resolution from the SOILGRIDS
project199. The soil variables were: (1) clay mass fraction (%); (2) silt
mass fraction (%); (3) sand mass fraction (%); (4) coarse fragment
fraction (%); (5) soil organic carbon content (g/kg); (6) soil pH (mea-
sured in water); and (7) cation exchange capacity. After standardizing
and centering all 26 variables, we performed two principal component
analyses (PCA), one for climate and one for soil. For subsequent ana-
lyses, we used the first five principal components for climate and the
first four for soil, because these components accounted formore than
90% of the total variation in these ordinations. We interpreted these
principal components based on the respective loadings of the corre-
sponding environmental variables. For climate, the predictors with the
highest loadings were: mean annual temperature for PC1; mean annual
precipitation and mean diurnal temperature range for PC2; precipita-
tion seasonality and precipitation of the wettest quarter for PC3;
temperature of the wettest and temperature of the warmest quarter
for PC4; and precipitation of the coldest quarter for PC5 (Supple-
mentary Table 3, Supplementary Fig. 10). For soils, PC1 was mainly
explained by soil bulk density; PC2 by sand content; PC3 by the per-
centage of coarse fragments and PC4 by soil pH (Supplementary
Table 4, Supplementary Fig. 11).

To account for topographic heterogeneity, we also extracted data
on plot topography from the EarthEnv.org data portal200. Specifically,
we used terrain ruggedness (TRI, calculated at 50km resolution),
dominant landform (10 types at 1 km resolution: flat, peak, ridge,
shoulder, spur, slope, hollow, footslope, valley, pit), and the number of
landforms within a 50km radius around each plot.

To account for historical and biogeographical factors, we inclu-
ded two predictors of the velocity of climate change between the Last
Glacial Maximum and the present (one for temperature, one for pre-
cipitation) derived from ref. 201. These layersmeasure the local rate of
displacement of climatic conditions and integratemacroclimatic shifts
with local spatial topoclimatic gradients. Additionally, we considered
two nominal biogeographical variables, realm197 and biome15, whichwe
considered as rough proxies of the different geologic, biogeographical
and climatic histories of different regions. The biomes were derived
from Schultz’s ecozones202, which we modified to distinguish alpine
areas203. Thus, our biomes are not nested within realms. As another
surrogate for the biogeographical imprinting on alpha diversity pat-
terns, we also accounted for regional effects by including the esti-
mated size of the regional species pool for each of the 867 terrestrial
ecoregions of the world2.

We then considered three additional predictors: a binary variable
distinguishing two broad formations (i.e., forest: True\False), a nom-
inal predictor accounting for the different functional groups sampled
in each plot (i.e., ‘complete vegetation’, ‘only trees and shrubs’ and
‘only trees’, see above), and plot size, i.e., the spatial grain used in
vegetation sampling.

In total, we considered 20 predictors: five principal components
summarizing climate, four principal components summarizing soils,
three variables quantifying topographic heterogeneity, five related to
biogeographical history, one representing vegetation formation and
two related to sampling design. Multicollinearity among predictors

was limited, as no pair of predictors had Pearson’s r coefficient greater
than 0.64 (Supplementary Fig. 12).

Statistical modeling
We used boosted regression trees (BRTs) to model the relationships
between species richness and the explanatory variables. BRTs are
nonparametric machine-learning models based on decision trees in a
boosting framework. BRTs have few prior assumptions, are relatively
robust against overfitting, missing data, and collinearity, and are very
flexible in detecting nonlinear relationships and interactions among
predictors204. We parameterized our BRTs as follows.We first set a tree
complexity of 5 and a bag fractionof 0.5.We then systematically tested
the combination between learning rates (from 0.00025 to 0.1) and the
number of trees returning the highest 10-fold cross-validated model
fit, using the gbm.step routine from the dismo package205. For each
explanatory variable, we calculated its relative influence (i.e., the
fraction of times a variable was selected for splitting a tree in each BRT
model, weighted by the squared model improvement) across the 99
resampled sets. To visualize the relationship between species richness
and the explanatory variables, we created partial dependence plots at
selected grain sizes to visualize themarginal effect of a given predictor
on the response variable. We considered an explanatory variable as
relevant in the model if its relative influence (averaged over 99
resamplings) was greater than 5%, which is the expected share if all the
20 predictors had the same relative importance.

BRTsare unbiasedonaverage, i.e., the sumof the residuals is close
to zero. Yet, similarly to other ensemble machine-learning methods,
they produce results that are biased in a different sense: small values
are often overestimated and large values underestimated35. This hap-
pens because the final prediction is the unweighted average of a col-
lection of regression trees, which inevitably leads to results biased
towards the sample mean. To avoid this problem, we implemented a
bias-correction algorithm called ROE: regression of observed on esti-
mated values35,206. In the first step, we fitted a linear regression of the
observed values on the fitted values:

Sfit =a+bSobs ð1Þ

where Sfit is the vector of species richness predicted by a BRT in a given
iteration, and Sobs is the vector of observed species richness in that
iteration. We then created a vector of bias-corrected, fitted species
richness Sbcfit as:

Sbcfit =max
Sfit � a

b
, 0

� �
ð2Þ

thus, introducing the constraint that Sbcfit is no smaller than zero206.
We then used the above BRT models, together with the regres-

sion parameters a and b, to make bias-corrected predictions of local
vascular plant richness at different plot sizes for all terrestrial pixels
of the globe at 2.5 arcminute resolution. We did this separately for
forest and non-forest ecosystems. For each pixel, we extracted the
value for all 17 spatially explicit predictors (climate, soil, topography
and biogeography) based on the pixel location. The variable ‘forest’
was set to ‘True’ for creating forest maps and ‘False’ for non-forest
maps. For each of the 99 resampling iterations, we created multiple
predictions, one for each selected sampling grain (i.e., 400 m2, 1000
m2 and 1 ha for forests, and 10, 100 and 1000 m2 for non-forests). In
all cases, we only predicted species richness for the complete vege-
tation (i.e., including trees, shrubs and herbs). We also mapped the
variability of our predictions, as the interquartile range (IQR - i.e., the
difference between the 75th and 25th percentiles) across the 99
resampling iterations. Finally, we created a map of ignorance207

showing the geographic distance from the nearest vegetation plot
used to calibrate our models (Supplementary Fig. 13). The map of
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ignorance highlights the uncertainty due to the uneven geographic
distribution of vegetation plots and shows areas with limited or no
data where our estimation should be taken with caution. Based on
this map, we highlighted all data-poor regions, i.e., regions located
farther than 500 km from the nearest plot, by parallel hatching in our
maps. Given the strong structural differences between forests and
non-forest ecosystems, we presented the multi-grain maps of plant
richness separately for these two broad formations in the main text.
Nevertheless, we also produced a joint map at 1000 m2 grain by
complementing species richness estimates for forests with non-
forest species richness for pixels outside the forest mask. For forests,
we predicted all pixels where forests would grow under current cli-
mate conditions and without human influence208. For non-forest, we
extracted all pixels where the land cover class ‘herbaceous vegeta-
tion’ occurs based on a consensus map integrating land-cover pro-
ducts derived from remote sensing209.

Model validation
We assessed model performance in three ways. First, we averaged the
tenfold cross‐validation across resampled sets obtained from the BRT
output. Second, for each of the 99 resampled sets, we selected all plots
not used in the specific set and calculated Pearson’s correlation
between species richness observed in a given plot and the respective
BRT prediction at a grain corresponding to the plot area. As a third
approach,weperformed a spatially-constrained cross-validation210.We
did this because our plots were spatially clustered and our spatial
predictors had high spatial autocorrelation (2320 km on average
across all the quantitative predictors, based on 5000 random samples,
Supplementary Fig. 14). This means that even selecting plots com-
pletely independent of the training dataset does not ensure proper
validation of our models, as the training and the test data remain
spatially dependent. This violation of the fundamental assumption of
model validation, namely the independence between training and test
data, hasbeen shown to affectmanymappingmodels createdwith ‘Big
Data’ approaches34. To avoid this problem, we divided the world into
square spatial blocks whose size corresponds to the average spatial
autocorrelation range of the quantitative predictors (i.e., 2320 km,
n = 84, Supplementary Fig. 14). For each resampling, we randomly
assigned each block to five folds using the function spatialBlock in the
Rpackage blockCV33, which selects themost even spreadof vegetation-
plot data across folds in 99 iterations (Supplementary Fig. 15).We then
refitted our BRTmodel five times for each resampling, each time using
four out of five folds for training and the remaining fold for validation,
and averaged Pearson’s correlation coefficient between the observed
and predicted species richness across folds. We also repeated this
process separately for each biome separately, i.e., sequentially with-
holding all data located within a fold and a given biome for validation.
We then reported the distribution of these correlation coefficients
across the resampled sets, both when considering all plots, and when
disaggregating by biomes. Finally, we checked the model residuals for
spatial autocorrelation by fitting variogram models to the residuals
using the function variogram from the R package gstat211. All analyses
were performed in R 3.6.3212. Map boundaries derive from R package
rnaturalearth213.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All species richness data
necessary to reproduce the results of this manuscript, including those
retrieved through the literature search, and all raster files (format:
GeoTiff) used to create the multi-grain maps of species richness are
available at: https://doi.org/10.25829/idiv.3506-p4c0mo (ref. 214).

The vegetation-plot raw data contained in the sPlot database are
available upon request by submitting a project proposal to sPlot’s
Steering Committee. The proposals should follow the Governance and
Data Property Rules of the sPlot Working Group available on the sPlot
website (www.idiv.de/splot). Source data are provided with this paper.

Code availability
The code for reproducing the analyses presented in this article is
available at: https://zenodo.org/badge/latestdoi/433417900 (ref. 215).
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